20.11.2012 Views

Chemical composition and deterioration of glass excavated in the ...

Chemical composition and deterioration of glass excavated in the ...

Chemical composition and deterioration of glass excavated in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<strong>Chemical</strong> <strong>composition</strong> <strong>and</strong> <strong>deterioration</strong> <strong>of</strong> <strong>glass</strong> <strong>excavated</strong> <strong>in</strong> <strong>the</strong><br />

15th–16th century fishermen town <strong>of</strong> Raversijde (Belgium) B<br />

O. Schalm a, *, D. Caluwé b , H. Wouters c , K. Janssens a , F. Verhaeghe b , M. Pieters c<br />

a Department <strong>of</strong> Chemistry, University <strong>of</strong> Antwerp, Universiteitsple<strong>in</strong> 1, B-2610 Antwerp, Belgium<br />

b Department <strong>of</strong> Archaeology, Free University <strong>of</strong> Brussels, Ple<strong>in</strong>laan 1, B-1040 Brussels, Belgium<br />

c Institute for <strong>the</strong> Archaeological Heritage <strong>of</strong> <strong>the</strong> Flemish Community, Doornveld Industrie Asse 3, nr. 11, bus 30, B-1731 Zellik, Belgium<br />

Received 24 November 2003; accepted 10 May 2004<br />

Available onl<strong>in</strong>e 2 September 2004<br />

The chemical <strong>composition</strong>, as determ<strong>in</strong>ed by electron probe X-ray microanalysis <strong>of</strong> a series <strong>of</strong> ca. 100 archaeological <strong>glass</strong> fragments,<br />

<strong>excavated</strong> at <strong>the</strong> Raversijde site (Belgium) is discussed. In <strong>the</strong> 15th–16th century, Raversijde was a flourish<strong>in</strong>g fishermen town located on <strong>the</strong><br />

shore <strong>of</strong> <strong>the</strong> North Sea, close to <strong>the</strong> city <strong>of</strong> Ostend. As a consequence <strong>of</strong> several battles that were fought <strong>in</strong> its vic<strong>in</strong>ity, <strong>the</strong> site was ab<strong>and</strong>oned<br />

<strong>in</strong> <strong>the</strong> 16th century <strong>and</strong> was not occupied s<strong>in</strong>ce <strong>the</strong>n. It is one <strong>of</strong> <strong>the</strong> rare archaeological sites <strong>in</strong> Europe that conta<strong>in</strong>s a significant amount <strong>of</strong><br />

<strong>in</strong>formation on <strong>the</strong> daily life <strong>in</strong>side a small but affluent medieval community.<br />

A comparison <strong>of</strong> <strong>the</strong> chemical <strong>composition</strong> <strong>of</strong> fragments <strong>of</strong> vessels <strong>and</strong> w<strong>in</strong>dow <strong>glass</strong> encountered <strong>in</strong> Raversijde to those found <strong>in</strong> urban<br />

centres <strong>in</strong> Belgium <strong>and</strong> to literature date on German <strong>and</strong> French archaeological f<strong>in</strong>ds shows that <strong>glass</strong> made with wood ash dom<strong>in</strong>ates.<br />

Usually, it concerns artifacts with a predom<strong>in</strong>antly utilitarian use. A few objects made with sodic (i.e., Na-rich) <strong>glass</strong> were also encountered,<br />

likely to have been imported from Venice dur<strong>in</strong>g <strong>the</strong> 15th century or <strong>in</strong> later periods from an urban centre such as Antwerp, where Façon-de-<br />

Venice <strong>glass</strong> manufactur<strong>in</strong>g activities were established near <strong>the</strong> start <strong>of</strong> <strong>the</strong> 16th century.<br />

D 2004 Elsevier B.V. All rights reserved.<br />

Keywords: Historical <strong>glass</strong>; EPMA; Quantitative analysis; Glass <strong>composition</strong><br />

1. Introduction<br />

Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

In <strong>the</strong> 15th–16th century, Raversijde was a flourish<strong>in</strong>g<br />

fishermen town located on <strong>the</strong> shore <strong>of</strong> <strong>the</strong> North Sea <strong>in</strong><br />

what is presently Belgium, close to <strong>the</strong> city <strong>of</strong> Ostend. The<br />

town had a population <strong>of</strong> at least several hundreds <strong>and</strong> was<br />

considerably larger than o<strong>the</strong>r villages <strong>in</strong> <strong>the</strong> area. On <strong>the</strong><br />

o<strong>the</strong>r h<strong>and</strong>, Raversijde was appreciably smaller than <strong>the</strong><br />

neighbor<strong>in</strong>g cities Ostend <strong>and</strong> Nieuwpoort. As a consequence<br />

<strong>of</strong> several battles that were fought <strong>in</strong> its vic<strong>in</strong>ity, <strong>the</strong><br />

site was ab<strong>and</strong>oned <strong>in</strong> <strong>the</strong> 16th century <strong>and</strong> was not<br />

B This paper was presented at <strong>the</strong> International Congress on X-Ray<br />

Optics <strong>and</strong> Microanalysis (ICXOM XVII), held <strong>in</strong> Chamonix, Mont Blanc,<br />

France, 22–26 September 2003, <strong>and</strong> is published <strong>in</strong> <strong>the</strong> special issue <strong>of</strong><br />

Spectrochimica Acta Part B, dedicated to that conference.<br />

* Correspond<strong>in</strong>g author. Tel.: +32 3 820 23 73; fax: +32 3 820 23 76.<br />

E-mail address: koen.janssens@ua.ac.be (O. Schalm).<br />

0584-8547/$ - see front matter D 2004 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.sab.2004.07.012<br />

www.elsevier.com/locate/sab<br />

occupied s<strong>in</strong>ce <strong>the</strong>n: <strong>in</strong> <strong>the</strong> period 1482–1492 its neighbor<strong>in</strong>g<br />

Flemish cities Brugge <strong>and</strong> Ghent were at war with<br />

Maximilian <strong>of</strong> Austria while <strong>in</strong> 1567 <strong>the</strong> Eighty Years’ war<br />

between Spa<strong>in</strong> <strong>and</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s erupted. The town<br />

f<strong>in</strong>ally disappeared after <strong>the</strong> siege <strong>of</strong> Ostend (1601–1604),<br />

dur<strong>in</strong>g which <strong>the</strong> Spanish cavalry used it as an encampment.<br />

The rema<strong>in</strong>s <strong>of</strong> Raversijde are exceptionally well-preserved<br />

<strong>and</strong> provide a unique opportunity to reconstruct its socioeconomic<br />

history by comb<strong>in</strong><strong>in</strong>g <strong>in</strong>formation present <strong>in</strong><br />

historical documents with that which can be ga<strong>the</strong>red from<br />

<strong>the</strong> artifacts <strong>excavated</strong> at <strong>the</strong> site. Thus, it is one <strong>of</strong> <strong>the</strong> rare<br />

archaeological sites <strong>in</strong> Europe that conta<strong>in</strong>s a significant<br />

amount <strong>of</strong> <strong>in</strong>formation on <strong>the</strong> daily life <strong>in</strong>side a small but<br />

affluent medieval community.<br />

In what follows, <strong>the</strong> analysis results <strong>of</strong> a set <strong>of</strong> ca. 100<br />

<strong>glass</strong> fragments, <strong>excavated</strong> at <strong>the</strong> Raversijde site, are<br />

described <strong>and</strong> <strong>the</strong> relation between on <strong>the</strong> one h<strong>and</strong> <strong>the</strong><br />

shape <strong>and</strong> use <strong>of</strong> <strong>the</strong> <strong>glass</strong> objects <strong>and</strong> on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>


1648<br />

<strong>the</strong>ir <strong>composition</strong> is discussed. Also, various <strong>glass</strong> <strong>composition</strong>s<br />

that are encountered <strong>in</strong> Raversijde are compared to<br />

those previously found <strong>in</strong> urban centres <strong>of</strong> <strong>the</strong> low countries<br />

<strong>of</strong> <strong>the</strong> same period.<br />

2. Background <strong>in</strong>formation<br />

2.1. Evolution <strong>of</strong> <strong>glass</strong> <strong>composition</strong>s <strong>in</strong> northwestern Europe<br />

up to <strong>the</strong> (post) medieval period<br />

The process for <strong>glass</strong> production <strong>in</strong> northwestern Europe<br />

<strong>in</strong> <strong>the</strong> period 800–1700 AD was based on melt<strong>in</strong>g a<br />

siliceous constituent (e.g., quartz s<strong>and</strong>, crushed quartz<br />

pebbles) with a flux<strong>in</strong>g agent (e.g., potassium- or sodiumrich<br />

vegetable ashes) while sometimes an additional<br />

calcium-rich material (such as limestone, seashells [1] or<br />

marble) was used. In a number <strong>of</strong> cases, also a lead source<br />

<strong>and</strong> small amounts <strong>of</strong> colorant, opacifier or decolorant<br />

materials were added to <strong>the</strong> melt. Fig. 1 provides an<br />

overview <strong>of</strong> <strong>the</strong> most important periods <strong>in</strong> <strong>the</strong> history <strong>of</strong><br />

<strong>glass</strong>mak<strong>in</strong>g <strong>in</strong> northwestern Europe.<br />

In <strong>the</strong> Antique to <strong>the</strong> post-Roman period, <strong>glass</strong> was made<br />

with Natron as flux<strong>in</strong>g agent, a mixture <strong>of</strong> NaHCO3,<br />

Na 2CO 3 <strong>and</strong> o<strong>the</strong>r Na-salts, found <strong>in</strong> Wadi Natrun (Egypt).<br />

This resulted <strong>in</strong> a durable Na-rich <strong>glass</strong> which could be<br />

worked <strong>in</strong>to a variety <strong>of</strong> shapes. In view <strong>of</strong> its relatively low<br />

Fe content, it could easily be rendered colorless by addition<br />

<strong>of</strong> oxidiz<strong>in</strong>g products such as MnO2 or Sb2O5 [2,3]. After<br />

<strong>the</strong> breakdown <strong>of</strong> <strong>the</strong> Roman empire <strong>and</strong> roughly until 1000<br />

AD, knowledge on <strong>glass</strong> mak<strong>in</strong>g was no longer available <strong>in</strong><br />

northwestern Europe while also some <strong>of</strong> <strong>the</strong> raw materials<br />

were no longer available.<br />

Dur<strong>in</strong>g <strong>the</strong> dwood <strong>and</strong> plant ashT period (800–1800 AD),<br />

<strong>the</strong> dom<strong>in</strong>ant fus<strong>in</strong>g agent for <strong>glass</strong>mak<strong>in</strong>g <strong>in</strong> northwestern<br />

Europe were ashes from wood <strong>and</strong> terrestrial plants. With<br />

this agent, a calco-potassic <strong>glass</strong> (hav<strong>in</strong>g SiO2,K2O <strong>and</strong> CaO<br />

as major constituents) was made. Accord<strong>in</strong>g to Wedepohl<br />

[4], <strong>in</strong> Germany, with<strong>in</strong> <strong>the</strong> dwood <strong>and</strong> plant ash T period (see<br />

Fig. 1), a subperiod between 1000 <strong>and</strong> 1400 AD can be<br />

dist<strong>in</strong>guished where <strong>glass</strong> was made from s<strong>and</strong> <strong>and</strong> wood<br />

ash, <strong>and</strong> a second period between 1400 <strong>and</strong> 1800 where <strong>glass</strong><br />

was made with s<strong>and</strong>, wood ash <strong>and</strong> lime. The first <strong>glass</strong> type<br />

is known as potassic <strong>glass</strong>, <strong>the</strong> second as calcic <strong>glass</strong>. Both<br />

<strong>glass</strong> types have a typical greenish-yellow color <strong>and</strong> are<br />

collectively known as forest <strong>glass</strong> or dWaldglasT. Wood ash is<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

calcium- <strong>and</strong> magnesium-rich, but potassium-poor. In <strong>the</strong><br />

nor<strong>the</strong>rn half <strong>of</strong> France, wood ash was also used for <strong>the</strong><br />

production <strong>of</strong> potassic <strong>and</strong> calcic <strong>glass</strong>, but additionally fern<br />

ash was used for <strong>the</strong> production <strong>of</strong> potassic <strong>glass</strong>. Glass made<br />

with fern ash is known as dVerre de fougèreT. Ferns conta<strong>in</strong><br />

significant quantities <strong>of</strong> potassium <strong>and</strong> much less calcium<br />

<strong>and</strong> magnesium. In <strong>the</strong> publications <strong>of</strong> Barrera <strong>and</strong> Velde<br />

[5,6] on <strong>glass</strong> <strong>in</strong> <strong>the</strong> north <strong>of</strong> France dur<strong>in</strong>g <strong>the</strong> same time<br />

span, a dist<strong>in</strong>ction is made between three major periods:<br />

period II from <strong>the</strong> 12th to <strong>the</strong> mid-15th century, period III<br />

from <strong>the</strong> mid-15th century to <strong>the</strong> end <strong>of</strong> <strong>the</strong> 16th century <strong>and</strong><br />

period IV from <strong>the</strong> 17th to <strong>the</strong> late 18th century.<br />

The production <strong>of</strong> sodic <strong>glass</strong> (hav<strong>in</strong>g Na2O, SiO2 <strong>and</strong><br />

CaO as major constituents, similar to modern soda-lime<br />

<strong>glass</strong>) <strong>in</strong> northwestern Europe started with <strong>the</strong> arrival <strong>of</strong><br />

Italian <strong>glass</strong>makers dur<strong>in</strong>g <strong>the</strong> 16th century <strong>in</strong> <strong>the</strong> urban<br />

centres. They produced <strong>glass</strong> <strong>in</strong> <strong>the</strong> Venetian style (Façon-de-<br />

Venise) with locally available raw materials [7]. This <strong>glass</strong><br />

has a slightly different <strong>composition</strong> than <strong>the</strong> genu<strong>in</strong>e Venetian<br />

<strong>glass</strong>, which was available <strong>in</strong> two varieties: (1) Vitrum<br />

Blanchum that was <strong>in</strong> use from <strong>the</strong> 14th century onward, <strong>and</strong><br />

(2) Cristallo that was produced s<strong>in</strong>ce around 1450 [8]. The<br />

most prom<strong>in</strong>ent feature <strong>of</strong> both <strong>the</strong>se types is that <strong>the</strong>y are<br />

colorless, transparent <strong>glass</strong> with a specific <strong>composition</strong> [8];<br />

however, <strong>the</strong> more common Vitrum Blanchum was made with<br />

less pure raw materials that <strong>the</strong> top quality Cristallo.<br />

2.2. Excavated <strong>glass</strong> fragments at <strong>the</strong> Raverszijde site<br />

Although only a small part <strong>of</strong> <strong>the</strong> town <strong>of</strong> Raverszijde<br />

has been <strong>excavated</strong> by <strong>the</strong> Institute for <strong>the</strong> Archaeological<br />

Heritage <strong>of</strong> <strong>the</strong> Flemish Community up to now, already a<br />

substantial collection <strong>of</strong> artifacts was recovered (e.g.,<br />

tableware, co<strong>in</strong>s). Among <strong>the</strong>se are ca. 700 <strong>glass</strong> fragments,<br />

<strong>in</strong> direct opposition to <strong>the</strong> accepted notion that <strong>in</strong> <strong>the</strong> 15th<br />

century, <strong>glass</strong> was so expensive that only <strong>the</strong> richest<br />

communities <strong>and</strong> citizens could afford it. Moreover, <strong>the</strong><br />

abundance <strong>of</strong> <strong>glass</strong> fragments found at <strong>the</strong> Raversijde site<br />

certa<strong>in</strong>ly is not an exception; also <strong>in</strong> <strong>the</strong> archaeological<br />

depots <strong>of</strong> neighbor<strong>in</strong>g coastal towns <strong>and</strong> cities, <strong>the</strong> material<br />

evidence is present that <strong>glass</strong> was <strong>in</strong> frequent use here s<strong>in</strong>ce<br />

<strong>the</strong> 15th century.<br />

A visual <strong>in</strong>spection <strong>of</strong> <strong>the</strong> light green vessel <strong>glass</strong> that was<br />

<strong>excavated</strong> <strong>in</strong> Raversijde <strong>and</strong> <strong>the</strong> neighbor<strong>in</strong>g centres revealed<br />

that <strong>glass</strong> objects <strong>of</strong> <strong>the</strong> same shape <strong>of</strong> various quality <strong>and</strong><br />

surface f<strong>in</strong>ish were present. However, <strong>the</strong> level <strong>of</strong> decoration<br />

Fig. 1. Most important <strong>glass</strong>mak<strong>in</strong>g periods <strong>and</strong> subperiods <strong>in</strong> northwestern Europe.


among artifacts <strong>of</strong> <strong>the</strong> same shape varies considerably. Thus,<br />

<strong>the</strong> question can be raised whe<strong>the</strong>r <strong>glass</strong> objects <strong>of</strong> similar<br />

shape <strong>and</strong> function were available <strong>in</strong> <strong>the</strong>se communities <strong>in</strong><br />

different price categories. The co-existence <strong>of</strong> <strong>glass</strong> <strong>of</strong><br />

different quality might (partially) expla<strong>in</strong> <strong>the</strong> fact that next<br />

to heavily or even completely deteriorated objects, also <strong>glass</strong><br />

artifacts were <strong>excavated</strong> on <strong>the</strong> same location that are <strong>in</strong> a<br />

nearly perfect condition. Additionally, one can also wonder<br />

whe<strong>the</strong>r or not objects with a predom<strong>in</strong>antly utilitarian value<br />

(such as w<strong>in</strong>dow <strong>glass</strong> or bottles) were made <strong>in</strong> <strong>the</strong> same<br />

k<strong>in</strong>d <strong>of</strong> <strong>glass</strong> than objects hav<strong>in</strong>g a high(er) es<strong>the</strong>tic value,<br />

such as vessel <strong>glass</strong> (e.g., w<strong>in</strong>e goblets).<br />

2.3. Typological classification <strong>and</strong> pre-selection <strong>of</strong> <strong>the</strong> <strong>glass</strong><br />

fragments<br />

Before a chemical analysis was performed on a subset <strong>of</strong><br />

<strong>the</strong> ca. 7400 <strong>excavated</strong> fragments, <strong>the</strong> latter were classified<br />

accord<strong>in</strong>g to <strong>the</strong>ir shape <strong>and</strong> color. Table 1 lists <strong>the</strong> results.<br />

Among <strong>the</strong> vessel <strong>glass</strong> fragments, 319 fragments could<br />

be ascribed to at least 117 <strong>in</strong>dividual specimens. The objects<br />

were divided <strong>in</strong>to different types: 15th century beakers (101<br />

vessels), 16–17th century beakers (12 vessels) <strong>and</strong> bottles (4<br />

vessels). In Table 2, an overview is given <strong>of</strong> <strong>the</strong> vessel<br />

shapes encountered.<br />

All <strong>the</strong> medieval vessel <strong>glass</strong> was utilitarian <strong>in</strong> nature,<br />

i.e., simple blown tableware, made from a pale <strong>glass</strong> <strong>of</strong><br />

greenish color. Only 12 beakers could be associated with <strong>the</strong><br />

period <strong>of</strong> late 16th century <strong>in</strong>habitation or that <strong>of</strong> occupation<br />

by <strong>the</strong> Spanish cavalry. These vessels were more luxurious<br />

<strong>in</strong> nature <strong>and</strong> could be fur<strong>the</strong>r divided <strong>in</strong>to a group <strong>of</strong> eight<br />

colorless <strong>and</strong> one <strong>of</strong> four greenish beakers. Among <strong>the</strong><br />

bottles were two green 18th century w<strong>in</strong>e bottles, one greencolored<br />

16th century bottle <strong>and</strong> one colorless flask, probably<br />

<strong>of</strong> <strong>the</strong> 15th century.<br />

W<strong>in</strong>dow <strong>glass</strong> <strong>in</strong> pr<strong>of</strong>ane build<strong>in</strong>gs appeared from <strong>the</strong><br />

second half <strong>of</strong> <strong>the</strong> 15th century onwards <strong>and</strong> non-figurative<br />

<strong>glass</strong>-w<strong>in</strong>dows with a geometrical network <strong>of</strong> lead was <strong>of</strong>ten<br />

used. The w<strong>in</strong>dow <strong>glass</strong> fragments associated with <strong>the</strong><br />

Raverszijde chapel (15th century) consisted <strong>of</strong> (a) greenish<br />

<strong>glass</strong> panes decorated with <strong>glass</strong> pa<strong>in</strong>ts, (b) <strong>glass</strong> panes<br />

covered with a th<strong>in</strong> red flashed layer; <strong>and</strong> (c) (ma<strong>in</strong>ly) bluecolored<br />

pot-metal <strong>glass</strong>. Only a few <strong>of</strong> fragments associated<br />

with pr<strong>of</strong>ane build<strong>in</strong>gs were decorated with <strong>glass</strong> pa<strong>in</strong>ts.<br />

The beads that were <strong>excavated</strong> were used <strong>in</strong> jewels <strong>and</strong><br />

as decoration on cloth<strong>in</strong>g. For example, to one small piece<br />

Table 1<br />

Overview <strong>of</strong> <strong>the</strong> 706 <strong>glass</strong> fragments <strong>excavated</strong> <strong>in</strong> Raversijde classified<br />

accord<strong>in</strong>g to function <strong>and</strong> color <strong>of</strong> <strong>the</strong> artifacts <strong>the</strong>y correspond to<br />

Vessel <strong>glass</strong> W<strong>in</strong>dow <strong>glass</strong> Beads<br />

Greenish 280 154 –<br />

Colorless 38 26 2<br />

Colored 1 10 9<br />

Rest 72 148 –<br />

Total 391 338 11<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656 1649<br />

Table 2<br />

The different typologies <strong>of</strong> <strong>the</strong> 101 vessels <strong>of</strong> which <strong>the</strong> fragments were<br />

<strong>excavated</strong> <strong>in</strong> Raverszijde<br />

Vessel type Number <strong>of</strong> objects<br />

Maigele<strong>in</strong> 14<br />

Maigelbecher 48<br />

Octagonal Maigelbecher 20<br />

Beaker with oblique ridges 12<br />

Beaker with sharply bent ridges 3<br />

Beaker with ridges <strong>in</strong> relief 1<br />

Prunted beaker<br />

See Ref. [17] for a description <strong>of</strong> <strong>the</strong> types.<br />

3<br />

<strong>of</strong> cloth five small beads were attached, made <strong>in</strong> a yellowcolored<br />

<strong>glass</strong>. Also, one <strong>in</strong>dividually blown bead with a<br />

soda-lime <strong>composition</strong> orig<strong>in</strong>at<strong>in</strong>g <strong>of</strong> <strong>the</strong> 15th century has<br />

been found.<br />

3. Experimental<br />

The set <strong>of</strong> analyzed <strong>glass</strong> samples <strong>in</strong>cluded <strong>glass</strong> <strong>of</strong><br />

different archaeological contexts, <strong>of</strong> different colors <strong>and</strong> <strong>of</strong><br />

different vessel shapes. By necessity, <strong>the</strong> analyzed set <strong>of</strong><br />

samples is not completely representative for <strong>the</strong> collection<br />

<strong>of</strong> <strong>excavated</strong> fragments: completely deteriorated <strong>glass</strong> is<br />

underrepresented <strong>in</strong> <strong>the</strong> analyzed set while <strong>the</strong> relative<br />

abundance <strong>of</strong> <strong>the</strong> typologies <strong>of</strong> <strong>the</strong> <strong>excavated</strong> artifacts has<br />

not been (completely) respected <strong>in</strong> <strong>the</strong> subset <strong>of</strong> <strong>glass</strong><br />

fragments that were analyzed.<br />

S<strong>in</strong>ce <strong>excavated</strong> <strong>glass</strong> fragments can show considerable<br />

surface wea<strong>the</strong>r<strong>in</strong>g, it is <strong>in</strong> practice not possible to employ a<br />

non-destructive method <strong>of</strong> analysis such as (microscopic) Xray<br />

fluorescence analysis for obta<strong>in</strong><strong>in</strong>g reliable quantitative<br />

data on <strong>the</strong> orig<strong>in</strong>al <strong>glass</strong> <strong>composition</strong>. By employ<strong>in</strong>g<br />

electron probe microanalysis (EPMA), reliable estimates<br />

<strong>of</strong> <strong>the</strong> major <strong>composition</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> low-Z constituents<br />

Na2O <strong>and</strong> MgO, can be obta<strong>in</strong>ed from relatively small<br />

amounts <strong>of</strong> material.<br />

Thus, small samples (typically 1 mm 2 to 1 cm 2 <strong>in</strong> side)<br />

were removed from <strong>the</strong> selected <strong>glass</strong> fragments. Several<br />

samples were embedded toge<strong>the</strong>r <strong>in</strong>to one block <strong>of</strong> res<strong>in</strong> <strong>and</strong><br />

polished to expose <strong>the</strong> orig<strong>in</strong>al <strong>glass</strong> <strong>of</strong> <strong>the</strong> samples. The<br />

result<strong>in</strong>g surface was carbon-coated <strong>and</strong> <strong>the</strong> major <strong>composition</strong><br />

<strong>of</strong> <strong>the</strong> <strong>glass</strong> samples was determ<strong>in</strong>ed by means <strong>of</strong><br />

EPMA. These analyses were performed with a JEOL 6300<br />

scann<strong>in</strong>g electron microscope (SEM) equipped with an<br />

energy-dispersive spectrometry (EDS) Si(Li) detection<br />

system. The spectra were acquired for 100 s with a beam<br />

current <strong>of</strong> 1 nA <strong>and</strong> at a voltage <strong>of</strong> 20 kV. The net elemental<br />

X-ray <strong>in</strong>tensities were calculated with <strong>the</strong> program AXIL [9]<br />

(analysis <strong>of</strong> X-rays by iterative least squares) <strong>and</strong> a<br />

st<strong>and</strong>ardless ZAF program was used to calculate <strong>the</strong><br />

<strong>composition</strong> [10].<br />

Various National Institute <strong>of</strong> St<strong>and</strong>ards <strong>and</strong> Technology<br />

(NIST) <strong>and</strong> Corn<strong>in</strong>g Museum <strong>of</strong> Glass (CMG) st<strong>and</strong>ards<br />

were used to validate <strong>the</strong> quantification procedure. Details


1650<br />

Table 3<br />

Criteria used to dist<strong>in</strong>guish among different <strong>glass</strong> types<br />

Glass type Criterion<br />

Calco-potassic <strong>glass</strong> K2O+CaON22% w/w<br />

Sodic <strong>glass</strong> Na2ON6% w/w<br />

Lead <strong>glass</strong> PbON15% w/w<br />

<strong>of</strong> <strong>the</strong> quantitative accuracy <strong>of</strong> <strong>the</strong> method for analysis <strong>of</strong><br />

<strong>glass</strong> can be found <strong>in</strong> more detail elsewhere [2]. At<br />

concentration levels below 2% w/w, <strong>the</strong> relative accuracy<br />

is between 5% <strong>and</strong> 10%. The reproducibility <strong>of</strong> <strong>the</strong> analysis<br />

is largely determ<strong>in</strong>ed by count<strong>in</strong>g statistics <strong>and</strong> is generally<br />

below <strong>the</strong> 5% level. The total experimental error on <strong>the</strong> TiO 2<br />

determ<strong>in</strong>ation <strong>the</strong>refore is smaller than 20% <strong>of</strong> <strong>the</strong> amount<br />

present; <strong>the</strong> latter varies between 0.05% <strong>and</strong> 0.80% w/w [2].<br />

In most cases, remov<strong>in</strong>g samples from irregular <strong>glass</strong><br />

fragments did not present a problem; <strong>in</strong> <strong>the</strong> case <strong>of</strong> more<br />

precious objects, only small fragments were removed; s<strong>in</strong>ce<br />

<strong>the</strong> sample preparation procedure for EPMA analysis is<br />

destructive, rare objects such as <strong>glass</strong> beads could not be<br />

sampled.<br />

From <strong>the</strong> set <strong>of</strong> 706 fragments, a subset <strong>of</strong> 119 samples<br />

was selected for analysis. Among this subset were fragments<br />

<strong>of</strong> 26 beakers <strong>of</strong> <strong>the</strong> 15th century, <strong>of</strong> 86 15th century<br />

w<strong>in</strong>dow <strong>glass</strong> panes, <strong>of</strong> 2 15th century beads <strong>and</strong> <strong>of</strong> 5<br />

beakers <strong>of</strong> <strong>the</strong> 16th–early 17th century.<br />

4. Results <strong>and</strong> discussion<br />

4.1. Glass <strong>composition</strong>s encountered<br />

By us<strong>in</strong>g <strong>the</strong> criteria given <strong>in</strong> Table 3, <strong>the</strong> set <strong>of</strong> analyzed<br />

fragments could be divided <strong>in</strong>to three groups: sodic <strong>glass</strong> (6<br />

samples), calco-potassic <strong>glass</strong> (113 samples) <strong>and</strong> lead <strong>glass</strong><br />

(1 sample). For K 2O <strong>the</strong> concentrations varied cont<strong>in</strong>uously<br />

between 2.5% w/w <strong>and</strong> 16% w/w, while <strong>the</strong> Na 2O concentration<br />

was below 4.5% w/w (for <strong>the</strong> calco-potassic <strong>glass</strong>) or<br />

well above 8.5% w/w (for <strong>the</strong> sodic <strong>glass</strong>). Thus, <strong>in</strong> <strong>the</strong><br />

Na2O-concentration distribution, a gap between 4.5% <strong>and</strong><br />

8.5% is observed. Barrera <strong>and</strong> Velde [5] reported a similar<br />

gap between 4% <strong>and</strong> 6% for <strong>the</strong>ir set <strong>of</strong> <strong>composition</strong>s.<br />

Accord<strong>in</strong>g to <strong>the</strong>se authors, sodic <strong>glass</strong> <strong>of</strong>ten features a Na2O<br />

concentration higher than 10% w/w. The calco-potassic <strong>glass</strong><br />

fragments conta<strong>in</strong>ed SiO 2 between 50% <strong>and</strong> 63% w/w, with<br />

an average <strong>of</strong> 57%; <strong>the</strong> sodic <strong>glass</strong> showed a slightly higher<br />

SiO2 abundance: 63–69% with an average <strong>of</strong> 65% w/w.<br />

Among <strong>the</strong> analyzed fragments, only two samples<br />

conta<strong>in</strong><strong>in</strong>g a small amount <strong>of</strong> PbO (between 2% <strong>and</strong> 3%)<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

were present. Dur<strong>in</strong>g <strong>the</strong> analysis <strong>of</strong> archaeological vessel<br />

<strong>glass</strong> f<strong>in</strong>ds <strong>excavated</strong> <strong>in</strong> Antwerp (a city <strong>in</strong> <strong>the</strong> low countries<br />

some 150 km distant from Raverszijde), small admixtures <strong>of</strong><br />

PbO (between 2% <strong>and</strong> 7%) were sometimes found as well<br />

[7]. The occurrence <strong>of</strong> such small amounts <strong>of</strong> PbO <strong>the</strong>refore<br />

does not appear to be exceptional; however, <strong>the</strong> relatively<br />

low PbO concentration is not sufficient to classify <strong>the</strong>se<br />

fragments as lead <strong>glass</strong>.<br />

The 15th century beakers <strong>and</strong> <strong>the</strong> great majority <strong>of</strong> <strong>the</strong><br />

w<strong>in</strong>dow <strong>glass</strong> panes were made <strong>in</strong> a calco-potassic <strong>glass</strong>,<br />

except for one sodic w<strong>in</strong>dow <strong>glass</strong> fragment. The group <strong>of</strong><br />

analyzed w<strong>in</strong>dow <strong>glass</strong> fragments conta<strong>in</strong>ed three dark blue,<br />

one light blue, one purple <strong>and</strong> one flashed (red) <strong>glass</strong><br />

fragment; however, <strong>the</strong>se <strong>in</strong>tentionally colored samples do<br />

not have a <strong>composition</strong> which dist<strong>in</strong>guishes <strong>the</strong>m from more<br />

clear, not <strong>in</strong>tentionally colored, <strong>glass</strong> fragments.<br />

Two beads were also analyzed <strong>and</strong> <strong>the</strong>ir <strong>composition</strong> is<br />

listed <strong>in</strong> Table 4. A yellow bead orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> piece<br />

<strong>of</strong> cloth was made <strong>of</strong> lead <strong>glass</strong> (with 31% SiO2 <strong>and</strong> 68%<br />

PbO as major constituents), a <strong>composition</strong> that rarely<br />

occurred <strong>in</strong> <strong>the</strong> dwood <strong>and</strong> plant ashT period. Lead <strong>glass</strong><br />

not only has a high density <strong>and</strong> a low melt<strong>in</strong>g po<strong>in</strong>t, but also<br />

a high refractive <strong>in</strong>dex, giv<strong>in</strong>g rise to brilliant colors [11].<br />

The o<strong>the</strong>r bead analyzed was colorless <strong>and</strong> made <strong>of</strong> Vitrum<br />

Blanchum <strong>glass</strong>. This artifact is <strong>the</strong> only object <strong>of</strong> sodic<br />

<strong>glass</strong> <strong>composition</strong> that can be associated with <strong>the</strong> medieval<br />

town <strong>of</strong> Raverszijde.<br />

The 16th or early 17th century vessel <strong>glass</strong> fragments<br />

that were analyzed were all made with a colorless sodic<br />

<strong>glass</strong> or a colorless mixed-alkali <strong>glass</strong>, except for one object<br />

that was made with a colorless calcic <strong>glass</strong>. This object also<br />

featured a higher SiO2 concentration than <strong>the</strong> 15th century<br />

calco-potassic <strong>glass</strong> fragments.<br />

In many cases, <strong>the</strong> concentrations <strong>of</strong> <strong>the</strong> oxides present<br />

above 1% w/w, <strong>in</strong>troduced via <strong>the</strong> fus<strong>in</strong>g agents, are <strong>the</strong><br />

most useful for group<strong>in</strong>g sets <strong>of</strong> <strong>glass</strong> fragments accord<strong>in</strong>g<br />

to <strong>the</strong>ir chemical <strong>composition</strong>. When <strong>the</strong> Na2O, K2O, MgO<br />

<strong>and</strong> CaO concentrations were used to classify <strong>the</strong> potassocalcic<br />

<strong>and</strong> sodic <strong>glass</strong> groups by means <strong>of</strong> hierarchical<br />

cluster<strong>in</strong>g, <strong>the</strong> different <strong>composition</strong>al classes listed <strong>in</strong><br />

Table 5 were obta<strong>in</strong>ed.<br />

4.1.1. Calco-potassic <strong>glass</strong><br />

The group <strong>of</strong> calco-potassic <strong>glass</strong> could be divided <strong>in</strong> a<br />

large group <strong>of</strong> <strong>glass</strong> rich <strong>in</strong> CaO (Group 1, 104 analyzed<br />

samples, hav<strong>in</strong>g an average CaO content <strong>of</strong> 21.8F0.2% w/<br />

w) <strong>and</strong> a second group rich <strong>in</strong> K2O (Groups 2a–2c, 8<br />

samples). The <strong>composition</strong>al variation with<strong>in</strong> Group 1<br />

appeared to be too small to allow for a mean<strong>in</strong>gful<br />

Table 4<br />

Major <strong>composition</strong> <strong>of</strong> <strong>the</strong> two beads <strong>in</strong> % w/w, as determ<strong>in</strong>ed by EPMA<br />

Color Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO MnO Fe2O3 BaO PbO<br />

Bead 1 Yellow 0 0 0.06 31.4 0 0 0 0 0 0 0.22 0 68.4<br />

Bead 2 Colorless 14.6 2.3 3.8 65.4 0.43 0.23 0.77 3.8 7.2 0.70 0.71 0.21 0


Table 5<br />

Average <strong>composition</strong> <strong>in</strong> % w/w <strong>of</strong> <strong>the</strong> different classes with<strong>in</strong> <strong>the</strong> calco-potassic <strong>and</strong> sodic <strong>glass</strong><br />

Calco-potassic <strong>glass</strong> (113) Sodic <strong>glass</strong> (6)<br />

Group 1 (104) Group 2a (4) Group 2b (3) Group 2c (1) Group 3 (1) Group 4 (1) Group 5a (2) Group 5b (2)<br />

Na2O 1.83F0.08 2.9F0.7 1.0F0.1 0.6 8.9 11.2 12.7F0.2 15.0F0.4<br />

MgO 3.83F0.07 7.2F0.3 5.9F0.2 3.5 1.90 4.3 2.9F0.2 3.0F0.8<br />

Al2O3 3.1F0.1 1.7F0.1 1.2F0.1 1.0 1.04 2.14 1.6F0.2 3.0F1.4<br />

SiO2 57.3F0.2 51.4F0.6 61.0F0.8 59.7 68.8 62.5 63F0.1 65.1F0.2<br />

P2O5 2.21F0.05 3.5F0.3 2.21F0.03 1.02 0.09 0.26 0.13F0.02 0.3F0.1<br />

SO3 0.23F0.02 0.16F0.08 0.11F0.08 0.44 0.31 0 0.29F0.02 0.30F0.08<br />

Cl 0.34F0.01 0.24F0.01 0.41F0.03 0 0.47 0.58 0.48F0.08 0.7F0.1<br />

K2O 6.6F0.2 13.5F0.3 15.1F0.8 14.7 11.6 5.3 8.8F0.6 4.0F0.3<br />

CaO 21.8F0.2 14.5F0.5 11.8F0.3 16.9 6.24 9.8 8.7F1 7.9F0.7<br />

MnO 1.34F0.07 2.0F0.9 0.57F0.05 1.25 0.32 0.52 0.42F0.03 0.5F0.2<br />

Fe2O3 0.80F0.02 1.6F0.6 0.49F0.08 0.40 0.32 0.92 0.73F0.24 0.5F0.2<br />

BaO 0.57F0.02 0.38F0.03 0.20F0.1 0.61 0.20 0.16 0.24F0.07 0.15F0.06<br />

PbO n.d. n.d. n.d. n.d. n.d. 2.36 n.d. n.d.<br />

The number <strong>of</strong> member fragments is <strong>in</strong>dicated between brackets.<br />

n.d.: not detected.<br />

subdivision <strong>of</strong> this set <strong>in</strong>to smaller clusters. The <strong>glass</strong> from<br />

Group 2 conta<strong>in</strong>s somewhat more Na 2O <strong>and</strong> MgO than <strong>the</strong><br />

<strong>glass</strong> from Group 1.<br />

The average <strong>composition</strong> <strong>of</strong> Group 1 corresponds to <strong>the</strong><br />

Calcic <strong>glass</strong> A <strong>composition</strong> described by Wedepohl [1], a<br />

<strong>glass</strong> assumed to be made with beechwood ash <strong>and</strong> lime as<br />

flux<strong>in</strong>g agents. For <strong>in</strong>stance, <strong>the</strong> K2O, CaO <strong>and</strong> MgO<br />

contents <strong>of</strong> Group 1 strongly resemble to that <strong>of</strong> <strong>glass</strong><br />

found at <strong>glass</strong> workshops <strong>in</strong> Thur<strong>in</strong>gia [12] <strong>of</strong> <strong>the</strong> 15–16th<br />

century, although <strong>the</strong> average sodium content <strong>of</strong> <strong>the</strong><br />

German <strong>glass</strong>es is higher (around 3% w/w). The <strong>glass</strong> <strong>of</strong><br />

Group 2 corresponds to Wedepohls Calcic <strong>glass</strong> B, made<br />

with beechwood ash only or with a mixture <strong>of</strong> beechwood<br />

<strong>and</strong> fern ash. In <strong>the</strong> analyzed set, no samples made with<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656 1651<br />

Potassic <strong>glass</strong> C, made with fern ash only, were<br />

encountered. In terms <strong>of</strong> its K 2O, MgO <strong>and</strong> CaO content,<br />

it also resembles <strong>the</strong> high Mg/high K <strong>glass</strong> type that is was<br />

found <strong>in</strong> Period III <strong>in</strong> France by Barerra <strong>and</strong> Velde <strong>and</strong><br />

attributed to early (14th century) <strong>glass</strong> production <strong>in</strong> <strong>the</strong><br />

Parisian <strong>and</strong> Western areas <strong>of</strong> France, such as Norm<strong>and</strong>y<br />

<strong>and</strong> Orleans [5,13].<br />

In Fig. 2, where <strong>the</strong> concentration ratio (Na2O+MgO)/<br />

CaO is plotted aga<strong>in</strong>st CaO/(K 2O+CaO), <strong>the</strong> dist<strong>in</strong>ction<br />

between Groups 1 <strong>and</strong> 2 is highlighted. The two ellipses<br />

<strong>in</strong>dicate <strong>the</strong> boundaries <strong>of</strong> Wedepohls Calcic Glass types A<br />

<strong>and</strong> B. This plot shows that <strong>the</strong>re is no relation between<br />

<strong>glass</strong> type, shape <strong>and</strong> chemical <strong>composition</strong> among <strong>the</strong><br />

Raversijde f<strong>in</strong>ds.<br />

Fig. 2. Plot <strong>of</strong> CaO/(K 2O+CaO) versus <strong>the</strong> (Na 2O+MgO)/CaO concentration ratios for <strong>the</strong> different types <strong>of</strong> calco-potassic vessel <strong>glass</strong> <strong>and</strong> w<strong>in</strong>dow <strong>glass</strong><br />

<strong>excavated</strong> <strong>in</strong> Raverszijde.


1652<br />

Fig. 3. Scatter plot <strong>of</strong> <strong>the</strong> Na 2O versus Cl concentrations. The l<strong>in</strong>e <strong>in</strong> <strong>the</strong> graph is only a visual aid to <strong>in</strong>dicate <strong>the</strong> correlation.<br />

A negative l<strong>in</strong>ear correlation between K2O <strong>and</strong> CaO is<br />

observed, s<strong>in</strong>ce <strong>the</strong>se are <strong>the</strong> pr<strong>in</strong>cipal oxides <strong>in</strong> <strong>the</strong> ashes<br />

employed for <strong>glass</strong>mak<strong>in</strong>g. Such correlation was not found<br />

for any o<strong>the</strong>r comb<strong>in</strong>ation <strong>of</strong> detected constituents, except<br />

for Na 2O <strong>and</strong> Cl. Their relation is shown <strong>in</strong> Fig. 3,<br />

<strong>in</strong>dicat<strong>in</strong>g that sodium has been <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> calcopotassic<br />

<strong>glass</strong> by m<strong>in</strong>ute amounts <strong>of</strong> NaCl. Accord<strong>in</strong>g to<br />

Gerth et al. [14] <strong>in</strong> studies <strong>of</strong> German <strong>glass</strong>es, <strong>the</strong> salt was<br />

added <strong>in</strong> order to modify <strong>the</strong> viscosity <strong>of</strong> <strong>the</strong> <strong>glass</strong>. The<br />

two encircled vessels which belong to Group 2 (see Fig. 3)<br />

do not follow this tendency. To make <strong>the</strong> <strong>glass</strong> <strong>of</strong> <strong>the</strong>se<br />

two objects (a Maichelbecher <strong>and</strong> an octagonal Maichelbecher),<br />

apparently ano<strong>the</strong>r Na 2O source, poorer <strong>in</strong> Cl,<br />

was used; o<strong>the</strong>r than that, <strong>the</strong>re are no visual <strong>in</strong>dications<br />

that <strong>the</strong> Maigelbecher differs from <strong>the</strong> o<strong>the</strong>rs <strong>of</strong> vessels <strong>of</strong><br />

<strong>the</strong> same type. The octagonal Maigelbecher, on <strong>the</strong> o<strong>the</strong>r<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

h<strong>and</strong>, has a much f<strong>in</strong>er surface f<strong>in</strong>ish<strong>in</strong>g, suggest<strong>in</strong>g that<br />

this object may have belonged to a more expensive class<br />

<strong>of</strong> <strong>glass</strong> artifacts.<br />

4.1.2. Sodic <strong>glass</strong><br />

In view <strong>of</strong> <strong>the</strong> limited number <strong>of</strong> sodic <strong>glass</strong> <strong>composition</strong>s,<br />

<strong>the</strong> classification shown <strong>in</strong> Table 5 <strong>in</strong> this case only<br />

serves to highlight <strong>the</strong> fact that several Na-rich <strong>glass</strong><br />

<strong>composition</strong>s are represented at <strong>the</strong> Raversijde site, albeit<br />

through one or two <strong>of</strong> <strong>the</strong> analyzed fragments only. The<br />

<strong>composition</strong> labelled bGroup 3Q <strong>in</strong> Table 5 corresponds to a<br />

mixed-alkali <strong>glass</strong>, i.e., a <strong>glass</strong> <strong>composition</strong> where <strong>the</strong><br />

concentrations <strong>of</strong> Na 2O, K 2O <strong>and</strong> CaO do not differ very<br />

much from each o<strong>the</strong>r <strong>and</strong> are close to 10% w/w; <strong>the</strong> object<br />

<strong>in</strong> Group 4 is separate from <strong>the</strong> o<strong>the</strong>r sodic <strong>glass</strong> artifacts<br />

s<strong>in</strong>ce it conta<strong>in</strong>s ca 2.4% w/w <strong>of</strong> PbO. F<strong>in</strong>ally, Group 5<br />

Table 6<br />

Average <strong>composition</strong> <strong>of</strong> 15th century w<strong>in</strong>dow <strong>glass</strong> <strong>and</strong> 15th century vessel <strong>glass</strong>, divided <strong>in</strong> calcic <strong>glass</strong> type A, calcic <strong>glass</strong> type B <strong>and</strong> sodic <strong>glass</strong><br />

W<strong>in</strong>dow <strong>glass</strong> Vessel <strong>glass</strong><br />

Type A (80) Type B (5) Sodic (1) Type A (23) Type B (3)<br />

Na2O 1.9F0.1 1.2F0.2 11.2 1.52F0.08 3.3F0.8<br />

MgO 3.88F0.07 6.4F0.3 4.3 3.5F0.1 7.4F0.4<br />

Al2O3 2.9F0.1 1.3F0.1 2.1 3.7F0.3 1.7F0.2<br />

SiO2 57.7F0.3 59F1.9 62.5 55.7F0.5 51.4F0.9<br />

P2O5 2.08F0.06 2.3F0.3 0.3 2.65F0.07 3.7F0.4<br />

SO3 0.24F0.02 0.11F0.05 – 0.21F0.08 0.20F0.1<br />

Cl 0.35F0.02 0.35F0.04 0.6 0.30F0.02 0.24F0.01<br />

K2O 6.5F0.2 14F1.2 5.3 7.2F0.2 13.6F0.4<br />

CaO 21.8F0.2 14F1.1 9.8 21.7F0.3 14.2F0.5<br />

MnO 1.12F0.06 1.5F0.8 0.5 2.1F0.2 1.7F0.2<br />

Fe2O3 0.81F0.03 0.56F0.06 0.9 0.77F0.04 1.9F0.7<br />

BaO 0.53F0.03 0.30F0.09 0.2 0.63F0.06 0.35F0.02<br />

PbO – – 2.4 – 0.9F0.9


consists <strong>of</strong> objects made <strong>in</strong> Venetian Vitrum Blanchum or <strong>in</strong><br />

Façon-de-Venise <strong>glass</strong>, as found, e.g., <strong>in</strong> Antwerp <strong>in</strong> <strong>the</strong><br />

16th century [7].<br />

4.2. Relation between <strong>glass</strong> <strong>composition</strong> <strong>and</strong> artifact type<br />

In Table 6, <strong>the</strong> average <strong>composition</strong> <strong>of</strong> a number <strong>of</strong><br />

homogeneous shape/<strong>composition</strong> groups are listed. Both for<br />

<strong>the</strong> vessel <strong>glass</strong> objects <strong>and</strong> for <strong>the</strong> w<strong>in</strong>dow <strong>glass</strong> panes, a<br />

dist<strong>in</strong>ction was made between calco-potassic <strong>glass</strong> <strong>of</strong> types<br />

A <strong>and</strong> B.<br />

It is clear that <strong>the</strong> vessel <strong>glass</strong> <strong>of</strong> Calcic type B is<br />

somewhat richer <strong>in</strong> Na2O than <strong>the</strong> equivalent w<strong>in</strong>dow <strong>glass</strong>,<br />

although both groups feature a similar concentration <strong>of</strong><br />

MgO. Probably, <strong>in</strong> <strong>the</strong>se vessels, sodium was <strong>in</strong>troduced by<br />

<strong>the</strong> use <strong>of</strong> a small amount <strong>of</strong> sodium-rich ash, hence <strong>the</strong> lack<br />

<strong>of</strong> correlation between <strong>the</strong> Na 2O <strong>and</strong> Cl concentrations <strong>in</strong><br />

two <strong>of</strong> <strong>the</strong> three samples <strong>in</strong> this group (see Fig. 3).<br />

The vessel <strong>glass</strong> <strong>of</strong> Calcic type A has a somewhat<br />

higher MnO content than <strong>the</strong> equivalent w<strong>in</strong>dow <strong>glass</strong>. It<br />

is not unlikely that dur<strong>in</strong>g <strong>the</strong> production <strong>of</strong> vessel <strong>glass</strong> <strong>of</strong><br />

Calcic type A, an additional amount <strong>of</strong> MnO2 (pyrolusite,<br />

also known as <strong>glass</strong>makers soap) was <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong><br />

melt <strong>in</strong> order to decolorize <strong>the</strong> <strong>glass</strong>, someth<strong>in</strong>g which<br />

probably was not commonly done <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong><br />

w<strong>in</strong>dow <strong>glass</strong>.<br />

4.3. Comparison with <strong>glass</strong> <strong>composition</strong>s <strong>excavated</strong> <strong>in</strong><br />

Antwerp<br />

4.3.1. Vessel <strong>glass</strong><br />

In previous studies [15,16], analyses were performed on<br />

a large series <strong>of</strong> 15–17th century <strong>glass</strong> rema<strong>in</strong>s <strong>excavated</strong> <strong>in</strong><br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656 1653<br />

Table 7<br />

Relation between typology <strong>and</strong> <strong>the</strong> type <strong>of</strong> <strong>glass</strong><br />

Vessel Type Catalogue<br />

number<br />

Glass <strong>composition</strong><br />

Bossed beaker 99 Vitrum Blanchum,<br />

Group 5b<br />

Bossed beaker 100 Façon-de-Venise,<br />

Group 5a<br />

Vetro-a-fili <strong>glass</strong> 102 Façon-de-Venise,<br />

Group 5a<br />

Colorless beaker<br />

107 Calcic <strong>glass</strong>,<br />

on foot<br />

Group 1<br />

Colorless beaker<br />

on foot<br />

All beakers were made <strong>in</strong> colorless <strong>glass</strong>.<br />

<strong>the</strong> historical centre <strong>of</strong> <strong>the</strong> city <strong>of</strong> Antwerp, located at a<br />

distance <strong>of</strong> ca. 150 km from <strong>the</strong> Raversijde site. The<br />

<strong>composition</strong> <strong>of</strong> <strong>the</strong> calco-potassic vessel <strong>glass</strong> objects<br />

<strong>excavated</strong> <strong>in</strong> Raversijde was compared with those recovered<br />

<strong>in</strong> Antwerp, as shown <strong>in</strong> Fig. 4.<br />

The vessel <strong>glass</strong> <strong>of</strong> Antwerp can clearly be divided <strong>in</strong>to<br />

three different <strong>composition</strong>al groups, co<strong>in</strong>cid<strong>in</strong>g with<br />

Wedepohls Groups A–C. Among <strong>the</strong> Antwerp vessel <strong>glass</strong>,<br />

Ca-rich Group A consists <strong>of</strong> 15th century Maigele<strong>in</strong>s <strong>and</strong><br />

Maigelbechers <strong>and</strong> <strong>of</strong> 17th century Roemers; Group B<br />

conta<strong>in</strong>s <strong>the</strong> 16th century prunted beakers, Berkenmeiers<br />

<strong>and</strong> Roemers while Antwerp Group C comprises <strong>the</strong> late<br />

16th <strong>and</strong> 17th century colorless beaker types <strong>and</strong> 17th<br />

century goblets [17].<br />

It is strik<strong>in</strong>g to observe that almost all <strong>the</strong> 15th century<br />

beakers <strong>of</strong> Raversijde have <strong>composition</strong>s that co<strong>in</strong>cide with<br />

that <strong>of</strong> Antwerp Group A; only three beakers belong to<br />

Antwerp type B. This means that <strong>the</strong> Maigele<strong>in</strong>s <strong>and</strong><br />

Maigelbechers <strong>of</strong> Raversijde <strong>and</strong> Antwerp have a similar<br />

Fig. 4. Scatter plot <strong>of</strong> K2O versus CaO for vessel <strong>glass</strong> artifacts <strong>excavated</strong> <strong>in</strong> Antwerp <strong>and</strong> Raversijde.<br />

108 Mixed-alkali <strong>glass</strong>,<br />

Group 3


1654<br />

<strong>composition</strong>. However, <strong>the</strong> Raversijde <strong>composition</strong>s <strong>in</strong> both<br />

Groups A <strong>and</strong> B conta<strong>in</strong> somewhat higher amounts <strong>of</strong> K2O.<br />

The group <strong>of</strong> analyzed late 16th–early 17th century<br />

beakers were all made <strong>of</strong> colorless <strong>glass</strong>. Table 7 provides<br />

an overview <strong>of</strong> <strong>the</strong> <strong>glass</strong> types <strong>and</strong> <strong>composition</strong>s encountered.<br />

Remarkable is that <strong>the</strong> Vitrum Blanchum, Façon-de-<br />

Venise <strong>and</strong> <strong>the</strong> mixed-alkali <strong>glass</strong> all conta<strong>in</strong> somewhat<br />

more K 2O than <strong>the</strong>ir equivalents <strong>excavated</strong> <strong>in</strong> Antwerp. The<br />

w<strong>in</strong>dow <strong>glass</strong> fragment <strong>of</strong> Group 4 has a <strong>composition</strong><br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

Fig. 5. Scatter plot <strong>of</strong> <strong>the</strong> K 2O versus <strong>the</strong> CaO concentrations for 15th–17th calco-potassic w<strong>in</strong>dow <strong>glass</strong> <strong>excavated</strong> <strong>in</strong> different locations <strong>in</strong> Belgium.<br />

resembl<strong>in</strong>g that <strong>of</strong> Façon-de-Venise <strong>glass</strong> but with a small<br />

admixture <strong>of</strong> PbO. One bead was also identified as hav<strong>in</strong>g a<br />

Vitrum Blanchum <strong>composition</strong> (Group 5b).<br />

4.3.2. W<strong>in</strong>dow <strong>glass</strong><br />

In Fig. 5, <strong>the</strong> relation between <strong>the</strong> CaO <strong>and</strong> K2O content<br />

<strong>of</strong> <strong>the</strong> Raversijde w<strong>in</strong>dow <strong>glass</strong> samples is compared to<br />

that from similar artifacts uncovered <strong>in</strong> several o<strong>the</strong>r<br />

(urban) archaeological sites <strong>in</strong> Belgium. In total, 396<br />

Fig. 6. The frequency distribution <strong>of</strong> K 2O for <strong>the</strong> 396 calco-potassic w<strong>in</strong>dow <strong>glass</strong> <strong>composition</strong>s shown <strong>in</strong> Fig. 5 can be described by two Gaussian components<br />

centered at 6.0% <strong>and</strong> 11.0% w/w, respectively.


w<strong>in</strong>dow <strong>glass</strong> <strong>composition</strong>s, dated to 15th–17th century<br />

contexts, are compared here. No clear difference between<br />

<strong>the</strong> 15th century w<strong>in</strong>dow <strong>glass</strong> <strong>of</strong> Raversijde <strong>of</strong> Calcic<br />

<strong>glass</strong> type A <strong>and</strong> <strong>the</strong> 16th–17th century w<strong>in</strong>dow <strong>glass</strong> from<br />

<strong>the</strong> o<strong>the</strong>r cities is visible; as is <strong>the</strong> case <strong>in</strong> Raversijde, also<br />

<strong>in</strong> <strong>the</strong> o<strong>the</strong>r <strong>in</strong>vestigated sites, <strong>the</strong> majority <strong>of</strong> <strong>the</strong> w<strong>in</strong>dow<br />

<strong>glass</strong> belongs to Calcic <strong>glass</strong> type A, with only a few<br />

fragments featur<strong>in</strong>g a <strong>composition</strong> that resembles to that <strong>of</strong><br />

Calcic <strong>glass</strong> type B.<br />

S<strong>in</strong>ce <strong>the</strong> major difference between Wedepohl’s Calcic<br />

<strong>glass</strong> types A <strong>and</strong> B is <strong>the</strong> K2O concentration, <strong>the</strong> frequency<br />

distribution <strong>of</strong> this oxide was calculated for <strong>the</strong> abovementioned<br />

set <strong>of</strong> 396 w<strong>in</strong>dow <strong>glass</strong> <strong>composition</strong>s (see<br />

Fig. 6). The distribution is dom<strong>in</strong>ated by a component<br />

hav<strong>in</strong>g a K2O content <strong>of</strong> 6.0F1.5% w/w, correspond<strong>in</strong>g to<br />

Calcic <strong>glass</strong> type A, <strong>and</strong> a smaller component hav<strong>in</strong>g an<br />

average K 2O content <strong>of</strong> 11F2% w/w, correspond<strong>in</strong>g to<br />

Calcic <strong>glass</strong> type B. The abundance ratio between <strong>the</strong>se two<br />

<strong>glass</strong> types is approximately 11:1 overall. It is remarkable<br />

that <strong>the</strong> w<strong>in</strong>dow <strong>glass</strong> <strong>of</strong> Raversijde contributes <strong>in</strong> a<br />

comparatively strong manner to <strong>the</strong> frequency distribution<br />

<strong>of</strong> Calcic <strong>glass</strong> B.<br />

The results summarized <strong>in</strong> Fig. 6 show that with respect<br />

to <strong>the</strong> production <strong>of</strong> commodity <strong>glass</strong> <strong>in</strong> <strong>the</strong> 15th–17th<br />

century, <strong>the</strong> geographical region <strong>of</strong> Belgium can be<br />

considered as one technological area, although it is possible<br />

that dur<strong>in</strong>g <strong>the</strong> 15th century Calcic <strong>glass</strong> type B is somewhat<br />

more abundant than <strong>in</strong> <strong>the</strong> 16th–17th century.<br />

5. Conclusions<br />

In this work, <strong>the</strong> chemical <strong>composition</strong> <strong>of</strong> 119 samples<br />

was determ<strong>in</strong>ed by means <strong>of</strong> quantitative EPMA. Except for<br />

<strong>the</strong> differences between calco-potassic <strong>glass</strong>, sodic <strong>glass</strong> <strong>and</strong><br />

lead <strong>glass</strong>, <strong>and</strong> <strong>the</strong> dist<strong>in</strong>ction between calcic <strong>glass</strong> with a<br />

low amount <strong>of</strong> K2O (i.e., type A) <strong>and</strong> calcic <strong>glass</strong> with a<br />

higher amount <strong>of</strong> K2O (i.e., type B), no groups could be<br />

identified with<strong>in</strong> <strong>the</strong> set by means <strong>of</strong> hierarchical cluster<strong>in</strong>g.<br />

However, several subtle fluctuations were observed. The<br />

samples were divided <strong>in</strong> several groups accord<strong>in</strong>g to <strong>the</strong><br />

former function, age <strong>and</strong> <strong>the</strong> chemical <strong>composition</strong> <strong>of</strong> <strong>the</strong><br />

artifacts.<br />

The set <strong>of</strong> 15th century beakers (26) could be divided <strong>in</strong><br />

23 samples <strong>of</strong> calcic <strong>glass</strong> type A (K2O: 7%, CaO: 22%)<br />

<strong>and</strong> 3 samples <strong>of</strong> calcic <strong>glass</strong> type B (K2O: 14%, CaO:<br />

14%). The calcic <strong>glass</strong> type B conta<strong>in</strong>s somewhat higher<br />

amounts <strong>of</strong> Na2O <strong>and</strong> MgO than type A. For two samples<br />

<strong>of</strong> type B, <strong>the</strong> amount <strong>of</strong> sodium did not follow <strong>the</strong> relation<br />

between Na 2O <strong>and</strong> Cl that was noticed for <strong>the</strong> calcopotassic<br />

<strong>glass</strong>. This is an <strong>in</strong>dication that a small amount <strong>of</strong><br />

sodium-rich plant ash or recuperated sodic <strong>glass</strong> was<br />

<strong>in</strong>troduced to <strong>the</strong> batch <strong>in</strong>stead <strong>of</strong> sea salt. Remarkable is<br />

that <strong>the</strong> only analyzed vessel <strong>glass</strong> with a very f<strong>in</strong>e<br />

f<strong>in</strong>ish<strong>in</strong>g was identified as calcic <strong>glass</strong> B with a sodium<br />

source different from sea salt. This suggests that next to<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656 1655<br />

ord<strong>in</strong>ary quality <strong>glass</strong> objects, also more luxurious objects,<br />

made with <strong>glass</strong> <strong>of</strong> slightly different <strong>composition</strong>, were<br />

available.<br />

With <strong>the</strong> set <strong>of</strong> 15th century w<strong>in</strong>dow <strong>glass</strong> panels (86),<br />

one sample was identified as be<strong>in</strong>g made <strong>in</strong> sodic <strong>glass</strong> with<br />

a small amount <strong>of</strong> PbO. The rest <strong>of</strong> <strong>the</strong> w<strong>in</strong>dow <strong>glass</strong> was <strong>of</strong><br />

Calcic <strong>glass</strong> type A (80) <strong>and</strong> Calcic <strong>glass</strong> type B (5).<br />

W<strong>in</strong>dow <strong>glass</strong> <strong>and</strong> vessel <strong>glass</strong> were similar <strong>in</strong> <strong>composition</strong>,<br />

except for type B. Although <strong>the</strong> MgO content for vessel<br />

<strong>glass</strong> <strong>and</strong> w<strong>in</strong>dow <strong>glass</strong> type B was similar, <strong>the</strong>re was a clear<br />

difference <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> Na2O. Vessel <strong>glass</strong> type B<br />

conta<strong>in</strong>ed somewhat more Na2O (3.3% <strong>in</strong>stead <strong>of</strong> 1.5%),<br />

<strong>in</strong>dicat<strong>in</strong>g that an additional sodium-rich <strong>in</strong>gredient was<br />

used <strong>in</strong> <strong>the</strong>ir production. From <strong>the</strong> comparison <strong>of</strong> 15th<br />

century w<strong>in</strong>dow <strong>glass</strong> <strong>of</strong> Raversijde with that <strong>of</strong> o<strong>the</strong>r cities<br />

<strong>in</strong> Belgium, it could be concluded that <strong>the</strong> period between<br />

<strong>the</strong> 15th <strong>and</strong> <strong>the</strong> 17th century can be considered as one<br />

technological period. Calcic <strong>glass</strong> <strong>of</strong> type A strongly<br />

dom<strong>in</strong>ates <strong>glass</strong> <strong>of</strong> type B, with an approximate abundance<br />

ratio <strong>of</strong> 11:1. The measurements also suggest that Calcic<br />

<strong>glass</strong> type B was more common <strong>in</strong> <strong>the</strong> 15th century than <strong>in</strong><br />

<strong>the</strong> 16th <strong>and</strong> 17th century.<br />

The chemical <strong>composition</strong> <strong>of</strong> <strong>the</strong> 15th century beads (2)<br />

was completely different from <strong>the</strong> rest <strong>of</strong> <strong>the</strong> 15th century<br />

<strong>glass</strong>. One yellow bead attached to a piece <strong>of</strong> cloth was<br />

made <strong>of</strong> lead <strong>glass</strong>. The o<strong>the</strong>r bead was a colorless blown<br />

bead. It was made <strong>of</strong> Vitrum Blanchum <strong>and</strong> is likely to have<br />

orig<strong>in</strong>ated from Venice.<br />

The 16th–17th century vessel <strong>glass</strong> (5) conta<strong>in</strong>ed a much<br />

higher diversity <strong>in</strong> chemical <strong>composition</strong> than <strong>the</strong> 15th<br />

century vessel <strong>glass</strong>. The analyzed set consisted <strong>of</strong> 2 Façonde-Venise<br />

<strong>glass</strong> objects, 1 Vitrum Blanchum, 1 Calcic <strong>glass</strong><br />

type A <strong>and</strong> 1 mixed-alkali object.<br />

It can <strong>the</strong>refore be concluded that both <strong>in</strong> <strong>the</strong> 15th<br />

century, where <strong>the</strong> only <strong>glass</strong> that was available was<br />

utilitarian <strong>in</strong> nature, had a greenish dWaldglasT color <strong>and</strong> a<br />

calcic <strong>composition</strong>, as well as <strong>in</strong> <strong>the</strong> 16th century, where<br />

also more luxurious vessels <strong>of</strong> colorless soda-<strong>glass</strong> were<br />

available, citizens <strong>of</strong> <strong>the</strong> relatively small town <strong>of</strong> Raversijde<br />

could afford to purchase <strong>the</strong>se products <strong>and</strong> use <strong>the</strong>m <strong>in</strong><br />

<strong>the</strong>ir households. Apart from <strong>the</strong> artifacts made <strong>in</strong> sodic<br />

<strong>glass</strong>, <strong>of</strong> which <strong>the</strong> provenance can be established because<br />

<strong>of</strong> <strong>the</strong> existence <strong>of</strong> specific chemical <strong>composition</strong>s, <strong>the</strong><br />

orig<strong>in</strong> <strong>of</strong> majority <strong>of</strong> <strong>the</strong> <strong>glass</strong> fragments cannot be<br />

established, <strong>in</strong> view <strong>of</strong> <strong>the</strong> high degree <strong>of</strong> <strong>composition</strong><br />

similarity among <strong>the</strong> calcic <strong>glass</strong> fragments found <strong>in</strong><br />

Raversijde <strong>and</strong> o<strong>the</strong>r centres <strong>in</strong> Belgium <strong>and</strong> <strong>the</strong> surround<strong>in</strong>g<br />

regions.<br />

References<br />

[1] K.H. Wedepohl, A. Baumann, The use <strong>of</strong> mar<strong>in</strong>e molluskan shells for<br />

Roman <strong>glass</strong> <strong>and</strong> local raw <strong>glass</strong> production <strong>in</strong> <strong>the</strong> Eifel area (Western<br />

Germany), Naturwissenschaften 87 (2000) 129–132.<br />

[2] A. Aerts, B. Velde, K. Janssens, Change <strong>in</strong> silica sources <strong>in</strong> Roman<br />

<strong>and</strong> post Roman <strong>glass</strong>, Spectrochim. Acta Part B 58 (2003) 659–667.


1656<br />

[3] A. Aerts, K. Janssens, F. Adams, "Trace level microanalysis <strong>of</strong><br />

Roman <strong>glass</strong> from Khirbet Qumran, Israel", J. Archaeol. Sci. 26<br />

(1999) 883–891.<br />

[4] K.H. Wedepohl, <strong>Chemical</strong> <strong>composition</strong> <strong>of</strong> medieval <strong>glass</strong> from<br />

excavations <strong>in</strong> West Germany, Glastech. Ber. Glass Sci. Technol. 70<br />

(8) (1997) 246–255.<br />

[5] J. Barrera, B. Velde, A study <strong>of</strong> French medieval <strong>glass</strong> <strong>composition</strong>,<br />

Archéol. Médiév. 19 (1989) 81–130.<br />

[6] J. Barrera, B. Velde, A study <strong>of</strong> French medieval <strong>glass</strong> <strong>composition</strong>,<br />

J. Glass Stud. 31 (1989) 48–54.<br />

[7] De Raedt I.: Composition <strong>of</strong> 16–17th century Façon-de-Venise <strong>glass</strong><br />

<strong>excavated</strong> <strong>in</strong> Antwerp <strong>and</strong> neighbour<strong>in</strong>g cities, PhD <strong>the</strong>sis, Antwerp,<br />

2001.<br />

[8] W.P. McCray, Glassmak<strong>in</strong>g <strong>in</strong> Renaissance Italy: <strong>the</strong> <strong>in</strong>novation <strong>of</strong><br />

Venetian Cristallo, Archaeotechnology, May 1998, pp. 14–19.<br />

[9] P. Van Espen, K. Janssens, J. Nobels, AXIL-PC, s<strong>of</strong>tware for <strong>the</strong><br />

analysis <strong>of</strong> complex X-ray spectra, Chemometr. Intell. Lab. Syst. 1<br />

(1987) 109–114.<br />

[10] O. Schalm, K. Janssens, A flexible <strong>and</strong> accurate quantification<br />

algorithm for electron probe X-ray microanalysis (EPXMA) based<br />

on th<strong>in</strong>-film element yields, Spectrochim. Acta Part B 58 (4) (2003)<br />

669–680.<br />

O. Schalm et al. / Spectrochimica Acta Part B 59 (2004) 1647–1656<br />

[11] G. Eggert, Science <strong>and</strong> source texts on <strong>glass</strong>, <strong>in</strong>: E. Pernicka, G.A.<br />

Wagner (Eds.), Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 27th Symposium on Archaeometry<br />

held <strong>in</strong> Heidelberg, April 2–6, 1990, Birkh7user Verlag, Basel, 1991,<br />

pp. 247–253.<br />

[12] G. Hartmann, Late-medieval <strong>glass</strong> manufacture <strong>in</strong> <strong>the</strong> Eichsfield<br />

region (Thur<strong>in</strong>gia, Germany), Chem. Erde 54 (1994) 103–128.<br />

[13] B. Velde, K. Janssens, I. De Raedt, Potassic <strong>glass</strong> <strong>composition</strong>s <strong>in</strong><br />

nor<strong>the</strong>rn Europe: 12–17th centuries, Oxf. J. Archaeol. (2003)<br />

(unpublished results).<br />

[14] K. Gerth, K.H. Wedephol, K. Heide, Experimental melts to explore<br />

<strong>the</strong> technique <strong>of</strong> medieval woodash <strong>glass</strong> production <strong>and</strong> <strong>the</strong> chlor<strong>in</strong>e<br />

content <strong>of</strong> medieval <strong>glass</strong> types, Chem. Erde 58 (1998) 219–232.<br />

[15] K.H. Janssens, I. Deraedt, O. Schalm, J. Veeckman, Composition <strong>of</strong><br />

15–17th century archaeological <strong>glass</strong> vessels <strong>excavated</strong> <strong>in</strong> Antwerp,<br />

Belgium, Mikrochim. Acta 15 (1998) 315–320.<br />

[16] I. De Raedt, K. Janssens, J. Veeckman, L. V<strong>in</strong>cze, B. Vekemans, T.<br />

Jeffries, Trace analysis allows to dist<strong>in</strong>guish between Venetian <strong>and</strong><br />

façon-de-Venise <strong>glass</strong> vessels <strong>of</strong> <strong>the</strong> 16th <strong>and</strong> 17th century, J. Anal.<br />

At. Spectrom. 16 (9) (2001) 1012–1017.<br />

[17] H.E. Henkes, Glas zonder glans/Glass without gloss, Vijf eeuwen<br />

gebruiksglas uit de bodem van de Lage L<strong>and</strong>en, Rotterdam Papers 9<br />

(1994) 305–306.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!