Sizing - Pietro Fiorentini
Sizing - Pietro Fiorentini
Sizing - Pietro Fiorentini
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
<strong>Sizing</strong><br />
Pressure Regulators &<br />
Control Valves
<strong>Sizing</strong> the Pressure Regulators<br />
<strong>Sizing</strong> of regulators is usually made on the basis of Cg valve and KG sizing coefficients. Flow rates at fully open<br />
position and various operating conditions are related by the following formulae where:<br />
Q = flow rate in Stm 3/h<br />
Pu = inlet pressure in bar (abs)<br />
Pd = outlet pressure in bar (abs).<br />
A > When the Cg and KG values of the regulator are known, as well as Pu and Pd, the flow rate can be calculated<br />
as follows:<br />
A-1 in sub critical conditions: (Pu Vice versa, when the values of Pu, Pd and Q are known,the Cg or KG values, and hence the regulator size,<br />
may be calculated using:<br />
B-1 in sub-critical conditions: (Pu
The above formulae are applicable to natural gas having a relative density of 0.61 w.r.t. air and a<br />
regulator inlet temperature of 15°C. For gases having a different relative density d and temperature<br />
tu in °C, the value of the flow rate, calculated as above, must be multiplied by a correction factor<br />
Fc, as follows:<br />
Fc =<br />
CAUTION:<br />
175.8<br />
S x ( 273.15 + tu )<br />
Correction factors FC<br />
Type of gas<br />
Air<br />
Propane<br />
Butane<br />
Nitrogen<br />
Oxygen<br />
Carbon dioxide<br />
Relative density<br />
1.0<br />
1.53<br />
2.0<br />
0.97<br />
1.14<br />
1.52<br />
Fc Factor<br />
0.78<br />
0.63<br />
0.55<br />
0.79<br />
0.73<br />
0.63<br />
Lists the correction factors Fc for anumber of gases at 15°C.<br />
in order to get optimal performance, to avoid premature erosion phenomena and to limit noise<br />
emissions, it is recommended to check gas speed at the outlet flange does not exceed the values<br />
of the graph below.<br />
The gas speed at the outlet flange may be calculated by means of the following formula:<br />
V<br />
=<br />
345 . 92<br />
Q<br />
x<br />
2<br />
DN<br />
1 - 0.<br />
002 x Pd<br />
x<br />
1 + Pd<br />
Gas speed at the outlet flange [m/sec]<br />
450<br />
400<br />
350<br />
300<br />
250<br />
200<br />
150<br />
100<br />
50<br />
0<br />
0 5 10 15 20 25 30 35 40 45 50 55<br />
Outlet pressure [bar]<br />
where:<br />
V = gas speed in m/sec<br />
Q = gas flow rate in Stm3/h<br />
DN = nominal size of regulator in mm<br />
Pd = outlet pressure in barg.
Cg and Kg valve coefficient<br />
Aperflux 101<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Aperflux 851<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Reflux 819<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Reflux 819/FO<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
25<br />
1"<br />
480<br />
505<br />
113,9<br />
25<br />
1"<br />
575<br />
605<br />
106,78<br />
25<br />
1"<br />
575<br />
605<br />
106,78<br />
Tables<br />
50<br />
2”<br />
1682<br />
1768<br />
103<br />
50<br />
2"<br />
1550<br />
1627<br />
113,9<br />
50<br />
2"<br />
2220<br />
2335<br />
106,78<br />
50<br />
2"<br />
2220<br />
2335<br />
106,78<br />
80<br />
3"<br />
3790<br />
3979<br />
113,9<br />
80<br />
3"<br />
4937<br />
5194<br />
106,78<br />
80<br />
3"<br />
4937<br />
5194<br />
106,78<br />
100<br />
4"<br />
5554<br />
5837<br />
113,9<br />
100<br />
4"<br />
8000<br />
8416<br />
106,78<br />
100<br />
4"<br />
8000<br />
8416<br />
106,78<br />
80<br />
3”<br />
4200<br />
4414<br />
108<br />
150<br />
6"<br />
11112<br />
11678<br />
113,9<br />
150<br />
6"<br />
16607<br />
17471<br />
106,78<br />
150<br />
6"<br />
16607<br />
17471<br />
106,78<br />
200<br />
8"<br />
17316<br />
18199<br />
113,9<br />
200<br />
8"<br />
25933<br />
27282<br />
106,78<br />
200<br />
8"<br />
25933<br />
27282<br />
106,78<br />
250<br />
10"<br />
24548<br />
25850<br />
113,9<br />
250<br />
10"<br />
36525<br />
38425<br />
106,78<br />
250<br />
10"<br />
36525<br />
38425<br />
106,78
Dixi AP<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Staflux 185<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Aperval 101<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Aperval<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
25<br />
1"<br />
159<br />
167<br />
99,5<br />
25<br />
1"<br />
439<br />
462<br />
106,78<br />
25<br />
1"<br />
584<br />
613<br />
90<br />
50<br />
2"<br />
1681<br />
1768<br />
106,78<br />
50<br />
2”<br />
2091<br />
2199<br />
108<br />
80<br />
3"<br />
3764<br />
3960<br />
106,78<br />
50<br />
2"<br />
1978<br />
2077<br />
101<br />
Dival 160 AP<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Staflux 187<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
80<br />
3”<br />
4796<br />
5045<br />
108<br />
65<br />
2"1/2<br />
3530<br />
3706<br />
101<br />
80<br />
3"<br />
4525<br />
4751<br />
101<br />
25<br />
1"<br />
140<br />
147<br />
93,5<br />
25<br />
1"<br />
130<br />
136<br />
106,78<br />
100<br />
4”<br />
7176<br />
7546<br />
108<br />
100<br />
4"<br />
6719<br />
7055<br />
101
Cg and Kg valve coefficient<br />
Reval 182<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Terval<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Terval/R<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Dixi<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
25<br />
1"<br />
575<br />
605<br />
106,78<br />
Tables<br />
50<br />
2"<br />
2220<br />
2335<br />
106,78<br />
65<br />
2" 1/2<br />
3320<br />
4197<br />
106,78<br />
50<br />
2"<br />
1706<br />
1796<br />
108<br />
50<br />
2"<br />
1667<br />
1755<br />
104<br />
25<br />
1"<br />
540<br />
567<br />
96<br />
80<br />
3"<br />
4937<br />
5194<br />
106,78<br />
65<br />
2" 1/2<br />
2731<br />
2875<br />
104<br />
65<br />
2" 1/2<br />
2793<br />
2940<br />
104<br />
40<br />
1" 1/2<br />
983<br />
1034<br />
96<br />
100<br />
4"<br />
8000<br />
8416<br />
106,78<br />
150<br />
6"<br />
16607<br />
17471<br />
106,78<br />
80<br />
3"<br />
3906<br />
4112<br />
100<br />
80<br />
3"<br />
4099<br />
4315<br />
106<br />
50<br />
2"<br />
1014<br />
1066<br />
96<br />
200<br />
8"<br />
25933<br />
27282<br />
106,78<br />
100<br />
4"<br />
5490<br />
5775<br />
100<br />
100<br />
4"<br />
5660<br />
5954<br />
106<br />
250<br />
10"<br />
36525<br />
38425<br />
106,78
Dival 600<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Dival 700<br />
Norval<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
Norval 608<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
K1 body shape factor<br />
25<br />
1"<br />
269<br />
283<br />
94<br />
25<br />
1"<br />
331<br />
348<br />
106,78<br />
Head ø 280 Head ø 280/TR<br />
40<br />
1"1/2<br />
652<br />
685<br />
94<br />
40<br />
1"1/2<br />
848<br />
892<br />
106,78<br />
50<br />
2"<br />
1700<br />
1788<br />
106<br />
50<br />
2"<br />
781<br />
821<br />
86<br />
50<br />
2"<br />
1360<br />
1430<br />
106,78<br />
65<br />
2"1/2<br />
2240<br />
2356<br />
106,78<br />
80<br />
3"<br />
3500<br />
3681<br />
106<br />
25<br />
1"<br />
315<br />
331<br />
97<br />
See the capacity Table<br />
80<br />
3"<br />
3395<br />
3571<br />
106,78<br />
40<br />
1"1/2<br />
692<br />
727<br />
95<br />
100<br />
4"<br />
5100<br />
5365<br />
106,78<br />
50<br />
2"<br />
770<br />
809<br />
97<br />
150<br />
6"<br />
10600<br />
11151<br />
106,78<br />
200<br />
8"<br />
16600<br />
17463<br />
106,78
Cg and Kg valve coefficient<br />
<strong>Sizing</strong> the Control Valve<br />
Choise of the valve is usually on the basis of Cg valve and Cg flow rate coefficients.Cg coefficient corresponds<br />
numerically to the value of air flow in SCF/H in critical conditions with full open valve operating with an upstream<br />
pressure of 1 psia at a temperature of 15°C.KG. coefficient corresponds numerically to the value of natural gas<br />
flow rate in Stm/h in critical conditions with full open valve operating with an upstream pressure of 2 bar abs at a<br />
temperature of 15°C. Flow rates at full open position and various working conditions, are bound by the following<br />
formule where:<br />
Pu = inlet pressure in bar (abs) Q = flow rate in Stm/H<br />
Pd = outlet pressure in bar (abs) KG, Cv, Cg = valve coefficent<br />
1 > When the Cg and KG values of the control valve are known, as well as Pu and Pd, the flow rate can be<br />
calculated as follows:<br />
1.1 > in non critical conditions:<br />
1.2 > in critical conditions:<br />
Reflux 919 - Syncroflux - VLM<br />
Q = KG (Pu - Pd) Pd Q = 16,8 x Cv x Pu x sin 106,78<br />
KG<br />
Q x<br />
= 2<br />
2 > Vice versa, when the values of Pu, Pd and Q are known, calculate the values of Cv, Cg or KG with:<br />
KG =<br />
Q<br />
Pd ( Pu - Pd )<br />
Cv =<br />
Pu - Pd<br />
Pu Q= 16,8 x Cv x Pu Q= 0,526 x Cg x Pu (valid for Pu ≥ 2 x Pd)<br />
Q<br />
.16,8x<br />
Pux<br />
sinx<br />
106,78<br />
Pu - Pd<br />
((<br />
Pu<br />
(valid for Pu < 2 x Pd)<br />
2.2 > in critical conditions: x Q<br />
KG =<br />
(valid for Pu ≥ 2 x Pd)<br />
Pu<br />
2<br />
Q<br />
Q<br />
Cv =<br />
Cg =<br />
16,8 x Pu<br />
0,526 x Pu<br />
Pu<br />
(valid for Pu < 2 x Pd)<br />
Q<br />
A oversizing of 20% on calculated values is raccomanded. Cg formulae give flow rate values more correct while<br />
KG formulae give values 5% higher than real ones only in noncritical conditions. In the case of noise limitation level<br />
a speed at the outlet flange of 130 m/sec. it is also raccomanded. Above formulae are valid for natural gas with a<br />
relative specific gravity of 0,61 compared to air and temperature of 15° C at inlet. For gases with different relative<br />
specific gravity (S) and temperature t (in °C) ), value of flow rate calculated as above, must be adjusted multiplying<br />
by:<br />
175.8<br />
Fc =<br />
S x ( 273.15 + tu )<br />
Reflux 919 - Syncroflux - VLM<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Cg flow coefficient<br />
KG flow coefficient<br />
Cv flow coefficient<br />
Q = 0,526 x Cg x Pu x sin<br />
25<br />
1"<br />
575<br />
605<br />
18<br />
50<br />
2"<br />
2200<br />
2335<br />
69<br />
106,78<br />
80<br />
3"<br />
4937<br />
5194<br />
154<br />
Pu - Pd<br />
100<br />
4"<br />
8000<br />
8416<br />
250<br />
Pu<br />
Cg =<br />
150<br />
6"<br />
16607<br />
17471<br />
519<br />
200<br />
8"<br />
25933<br />
27282<br />
810<br />
250<br />
10"<br />
36525<br />
38425<br />
1141<br />
( (<br />
( (<br />
0,526 . xPux<br />
sinx<br />
106,78<br />
Pu - Pd<br />
((<br />
Pu
<strong>Sizing</strong> the Control Valve<br />
A. Subcritical conditions<br />
(when ΔP < 0.5F 2 P1)<br />
Volume flow rate (gas and vapor)<br />
Q = 290 Cv<br />
P Δ (P1+P2)<br />
G T<br />
Weight flow rate (gas and vapor)<br />
Q = 355 Cv<br />
GΔP (P1+P2)<br />
T<br />
Weight flow rate (saturated steam)<br />
W = 13,55 Cv ΔP (P1+P2)<br />
Weight flow rate (overheated steam)<br />
Cv ΔP (P1+P2)<br />
W = 13,55<br />
(1+0,00126Δt)<br />
B. Critical conditions<br />
(when ΔP 0.5F2 P1)<br />
Volume flow rate (gas and vapor)<br />
262 F Cv P1<br />
Q =<br />
G T<br />
Weight flow rate (gas and vapor)<br />
W = 321 F Cv P1<br />
G<br />
T<br />
Weight flow rate (saturated steam)<br />
W = 11,73 F Cv P1<br />
Weight flow rate (overheated steam)<br />
F Cv P1<br />
W = 11,73<br />
(1+0,00126 Δ t)<br />
Deltaflux<br />
GAS, VAPOR AND STEAM BIPHASE FLUIDS<br />
A. Subcritical conditions<br />
(when ΔP < 0.5F 2 P1)<br />
Constant liquid/gas mixture ratio (liquid containing<br />
non condensable gas or liquid containing high title<br />
vapor)<br />
W = 19,1 Cv ΔP (w1+w2)<br />
Variable liquid/vapor mixture ratio (liquid containing<br />
low title vapor, less then 0.5)<br />
W = 27,1 Cv ΔP w1<br />
B. Critical conditions<br />
(when ΔP ≥ 0.5F 2 P1)<br />
Constant liquid/gas mixture ratio (liquid containing<br />
non condensable gas or liquid containing high title<br />
vapor)<br />
W = 13,5 F Cv P1 (w1+w2)<br />
Variable liquid/vapor mixture ratio (liquid containing<br />
low title vapor, less then 0.5)<br />
W = 19,1 F Cv P1 w1<br />
100<br />
w1 =<br />
Xg (Vg1-Vf) + 100 Vf<br />
100<br />
w2 =<br />
Xg (Vg2-Vf) + 100 Vf
Cg and Kg valve coefficient<br />
LIQUIDS<br />
Glossary<br />
A. Subcritical conditions<br />
(when ΔP < F 2 ΔPc)<br />
Volume flow rate<br />
Cv ΔP<br />
Qf =<br />
1.17 Gf<br />
Weight flow rate<br />
W = 855 Cv GfΔP<br />
Note:<br />
For values of ΔP ≥ ΔPk the<br />
valve works under cavitation<br />
conditions.<br />
Deltaflux<br />
Cv = valve flow rate coefficient: US gpm of water with<br />
∆P = 1 psi<br />
ΔP = valve pressure drop P1-P2: bar<br />
ΔPc = maximum dimensioning differential pressure: bar<br />
ΔPk = cavitation differential pressure: bar<br />
Δt = overheating temperature delta t1 - ts: °C<br />
F = valve recovery factor: non dimensional<br />
G = gas relative density (air=1): non dimensional<br />
Gf = liquid relative density at operating temperature<br />
(water at 15°C=1)<br />
Kc = valve incipient cavitation factor: non dimensional<br />
Xg = weight percentage of gas or vapor in the mixture at<br />
upstream pressure: %<br />
P1 = valve upstream pressure: bar abs<br />
P2 = valve downstream pressure: bar abs<br />
Pc<br />
Pk<br />
Pv<br />
T<br />
t1<br />
ts<br />
Q<br />
Qf<br />
W<br />
W1<br />
W2<br />
Vf<br />
Vg1<br />
Vg2<br />
B. Critical conditions<br />
(when ΔP ≥ F 2 ΔPc)<br />
Volume flow rate<br />
F Cv ΔPc<br />
Qf =<br />
1.17 Gf<br />
Weight flow rate<br />
W = 855 F Cv Gf Δ Pc<br />
ΔPc = P1-Pc<br />
Pc = Pv (0,96-0,28<br />
Pv<br />
Pk<br />
ΔPk = Kc (P1-Pv)<br />
= vena contracta critical pressure: bar abs<br />
= thermodynamic critical point pressure: bar abs<br />
= vapor pressure at operating temperature: bar abs<br />
= upstream gas absolute temperature (273+°C): °K<br />
= overheated steam upstream temperature: °C<br />
= saturated steam temperature at upstream pressure: °C<br />
= volume flow rate at 15 °C and 1.013 bar abs: Sm3/h<br />
= volume flow rate: m3/h<br />
= weight flow rate: Kg/h<br />
= upstream mixture density: kg/m3<br />
= downstream mixture density: kg/m3<br />
= specific volume of liquid: m3/kg<br />
= specific volume of gas or vapor at upstream pressure: m3/kg<br />
= specific volume of gas or vapor at downstream pressure: m3/kg<br />
)
Cv coefficient<br />
Deltaflux<br />
Dn<br />
2"<br />
3"<br />
4"<br />
6"<br />
8"<br />
10"<br />
12"<br />
14"<br />
16"<br />
18"<br />
20"<br />
24"<br />
Deltaflux<br />
Dn<br />
2"<br />
3"<br />
4"<br />
6"<br />
8"<br />
10"<br />
12"<br />
14"<br />
16"<br />
18"<br />
20"<br />
24"<br />
Cv coefficient<br />
at 100% opening<br />
82<br />
215<br />
405<br />
1080<br />
1750<br />
2860<br />
3980<br />
5000<br />
6800<br />
8400<br />
10600<br />
16100<br />
Cv coefficient<br />
at 100% opening<br />
60<br />
150<br />
290<br />
650<br />
1225<br />
1975<br />
2825<br />
3475<br />
4675<br />
5950<br />
7500<br />
11100<br />
Liquid control application<br />
Liquid trim<br />
Gas control application<br />
Gas trim<br />
Deltaflux<br />
Note: To verify the dimensioning and, in detail, for the dimensioning of Deltaflux control<br />
valves bigger than 24”, always refer to <strong>Pietro</strong> <strong>Fiorentini</strong> S.p.A.
<strong>Sizing</strong> the Slam Shut Valves<br />
Calculation of the pressure drop<br />
The following formula can be used to calculate pressure losses of the slam shut valve in fully<br />
open position:<br />
Δp = KG x Pu - (KG2 x Pu 2) - 4Q 2<br />
2 x KG<br />
Δp = pressure loss in bar<br />
Pu = absolute inlet pressure in bar<br />
Q = flow rate Stm3/h<br />
KG = flow coefficient<br />
Pressure loss calculated as above is referred to natural gas with specific gravity of 0.61 (air=1)<br />
temperature of 15 °C at valve inlet, for gases with different specific gravity S and temperatures t<br />
°C, pressure loss can still be calculated with the above formula, replacing the value of the flow<br />
coefficent in the table with:<br />
KG1 = KG x<br />
S x<br />
175 . 8<br />
( 273 . 15<br />
+ t)
SBC 782<br />
Nominal diameter (mm)<br />
Size (inches)<br />
KG flow coefficient<br />
SCN<br />
Nominal diameter (mm)<br />
Size (inches)<br />
KG flow coefficient<br />
HBC 975<br />
Nominal diameter (mm)<br />
Size (inches)<br />
KG flow coefficient<br />
Dilock 108<br />
Nominal diameter (mm)<br />
Size (inches)<br />
KG flow coefficient<br />
25<br />
1"<br />
510<br />
25<br />
1"<br />
549<br />
50<br />
2"<br />
1970<br />
40<br />
1" 1/2<br />
1116<br />
100<br />
4"<br />
7120<br />
25<br />
1"<br />
500<br />
65<br />
2" 1/2<br />
3550<br />
50<br />
2"<br />
1788<br />
150<br />
6"<br />
14780<br />
40<br />
1" 1/2<br />
860<br />
80<br />
3"<br />
4390<br />
65<br />
2" 1/2<br />
2603<br />
200<br />
8"<br />
23080<br />
50<br />
2"<br />
976<br />
80<br />
3"<br />
4086<br />
100<br />
4"<br />
7120<br />
100<br />
4"<br />
6122<br />
250<br />
10"<br />
32470<br />
150<br />
6"<br />
14780<br />
150<br />
6"<br />
13680<br />
200<br />
8"<br />
23080<br />
200<br />
8"<br />
21700<br />
250<br />
10"<br />
32506
<strong>Sizing</strong> the Safety Relief Valves<br />
Calculation of the safety relief valves<br />
The flow rate is calculated by the following formulae:<br />
M<br />
q = (0.9 Kc) • (394.9 x C) • P1 A • Q = 23.661<br />
q = maximum flow rate to be discharged, in Kg/h<br />
Q = maximum flow rate (Stm3/h)<br />
A = minimum area (cm2) (see table)<br />
Kc = outflow coefficient<br />
P1= setting pressure plus a 10% overpressure (bar abs)<br />
T1= temperature in °K of the fluid at the valve inlet during<br />
the discarge, reported by user or by designer.<br />
0,9 = safety coefficient<br />
M = molecular mass of the fluid in Kg/Kmol (see table)<br />
Z1 = compressibiliti factor of the fluid under the P1<br />
conditions to be considered approximately equal to<br />
one if the actual values is not known.<br />
k=<br />
Z1 T1<br />
Cp exponent of equation of the isentropic expansion<br />
Cv under the P1 and T1 conditions.<br />
Cp = specific heat at consistant pressure<br />
Cv = specific heat at consistant volume<br />
C = coefficient of expansion = C =<br />
(see table)<br />
2<br />
k ( )<br />
k+1<br />
k-1<br />
k+1<br />
q<br />
M
PVS 782<br />
Nominal diameter (mm)<br />
Size (inches)<br />
Calculation area (cm2)<br />
Outflow coefficient K<br />
Molecular mass and expansion coeff.<br />
Relative density<br />
Carbon dioxide<br />
Hydrogen<br />
Methane<br />
Natural gas*<br />
Nitrogen<br />
Oxigen<br />
Propane<br />
* Medium value<br />
Molecular mass M<br />
28,97<br />
44,01<br />
2,02<br />
16,04<br />
18,04<br />
28,02<br />
32,00<br />
44,09<br />
Capacity table versus pressure<br />
Pressure<br />
Nominal diameter (mm)<br />
Size<br />
2 barg<br />
10 barg<br />
20 barg<br />
30 barg<br />
40 barg<br />
Flow rate (Kg/h)<br />
25<br />
1"<br />
332<br />
1885<br />
2472<br />
5337<br />
7063<br />
25<br />
1"<br />
4,71<br />
0,56<br />
50<br />
2"<br />
20,03<br />
0,56<br />
Coefficient of expansion C<br />
0,685<br />
0,668<br />
0,686<br />
0,669<br />
0,669<br />
0,685<br />
0,685<br />
0,635<br />
50<br />
2"<br />
2144<br />
8016<br />
15357<br />
22697<br />
30038<br />
80<br />
3"<br />
4604<br />
17214<br />
32976<br />
48738<br />
64500<br />
80<br />
3"<br />
43,01<br />
0,56<br />
100<br />
4"<br />
7991<br />
29881<br />
57242<br />
84603<br />
111964<br />
100<br />
4"<br />
74,66<br />
0,56<br />
150<br />
6"<br />
18043<br />
67462<br />
129235<br />
191008<br />
252781<br />
150<br />
6"<br />
168,56<br />
0,56<br />
200<br />
8"<br />
27788<br />
103894<br />
199028<br />
294161<br />
389295<br />
200<br />
8"<br />
259,59<br />
0,56
The data are not binding. We reserve the<br />
right to make eventual changes without<br />
prior notice.<br />
CT-s 570-E June 12<br />
DA SISTEMARE !!!!!!!!<br />
www.fiorentini.com<br />
<strong>Pietro</strong> <strong>Fiorentini</strong> S.p.A.<br />
via E.Fermi 8/10<br />
I-36057 Arcugnano (VI) Italy<br />
Tel. +39 0444 968.511<br />
Fax. +39 0444 960.468