10.07.2015 Views

MITSUBISHI

MITSUBISHI

MITSUBISHI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MITSUBISHI</strong>OPTOELECTRONICSOPTICAL SEMICONDUCTORDEVICES andOPTICAL·FIBERCOMMUNICATION SYSTEMSo~J7OJooA,. <strong>MITSUBISHI</strong>.... ELECTRIC


All values shown in this catalogue are subject to change forproduct improvement.The information, diagrams and all other data includedherein are believed to be correct and reliable. However, noresponsibility is assumed by Mitsubishi Electric Corporationfor their use, nor for any infringements of patents or otherrights belonging to third parties which may result fromtheir use.


OPTICAL SEMICONDUCTORS COMPONENTS GUIDANCELASER DIODESLIGHT EMITTING DIODESPHOTODIODESCANCELED PRODUCTSOPTICAL-FIBER COMPONENTS GUIDANCEOPTICAL-FIBER COMPONENTS DATA SHEET


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSCONTENTSpageML9XX2 SERIES················································································2 - 171ML9XX3 SERIES················································································2 - 177ML9XX5 SERIES················································································2 - 180D LIGHT EMITTING DIODESME1XX3 SERIES ...................................................... ·························3 - 3ME1XX4 SERIES···············································································3 - 8ME7XX2 SERIES ............................................................................... 3 - 12.. PHOTODIODESPD2XX1 SERIES················································································ 4 - 3PD1XX2 SERIES················································································4 - 5PD1XX5 SERIES" ......................................................................... ·····4 - 9PD7XX5 SERIES················································································4 - 13PD7XX6 SERIES················································································4 - 17PD7XX7 SERIES················································································4- 21PD8XX2 SERIES················································································4 - 25g CANCELED PRODUCTSPRODUCTS TO BE DISCOUNTINUED····· .................................................. 5 - 3II OPTICAL-FIBER COMPONENTS GUIDANCELIST OF PRODUCTS·········································································· 6 - 3MAP OF PRODUCTS·········································································· 6 - 6PRODUCT DESIGNATION CODE······························································ 6 - 7METHOD FOR ORDERING THAN STANDARD PRODUCTS ................................. 6 - 7SAFETY CONSIDERAITON FOR LD MODULE ............................................... 6 - 8MEASURING PROCEDURES FOR OPTOELECTRONIC COMPONENTS······················ 6 - 9D OPTICAL-FIBER COMPONENTS DATA SHEETLD Module for Singlemode Fiber (Receptacle Type)FU-G11SLD-N2················································································ 7 - 3FU-16SLD-N1 .......................................................................... , ...... 7 - 5FU-16SLD-N3 ................................ ~ ............................................... , 7 - 8FU-17SLD-N1 ................................................................................. 7 - 5FU-17SLD-N3 ................................................................................. 7 - 8LD Module for Singlemode Fiber (Coaxial Type)FU-411SLD'" ................................................................... ··············7 - 11FU-411SLD-20 ...................................................... ··························7 - 14FU-611SLD ...................................................... ······························7 - 16FU-611SLD-15 ...................................................... ··························7-19'. .. MITSUBI$HI..... ELECTRIC·


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSCONTENTSLD Module for Singlemode Fiber (DIP TypelButterfly Type)FU-43SLD-1 ...................................................... ················:············7 - 21FU-43SLD-2 ................................................................................... 7 - 24FU-44SLD-1 ................................................................... ' ................ 7 - 27FU-44SLD-7 ................................................................................... 7 - 30FU-45SLD" .................................................................................. ··7 - 33FU-64SLD-1 ···················································································7 - 36FU-64SLD-7 ···················································································7 - 39DFB-LD Module for Singlemode Fiber (DIP Type/Butterfly Type)FU-41SDF·················· .................................................................. ··7 - 42FU-44SDF··············· , .............................. ' ...................................... ··7 - 42FU-45SDF-38 .................................................................................. 7 - 45FU-45SDF-4 ................................................................................... 7 - 48FU-48SDF-1 ······················ .. ···························································7 - 51FU-61SDF···························· .... ····!·················································7 - 54FU-64SDF'" ...... , ......................................................... ······· .... ·········7 - 54FU-65SDF-3 .......................................................................... , ........ 7 - 57FU-65SDF-4 .......................................................... , ........................ 7 - 60FU-68SDF-2 ......... , .......................................................................... 7 - 63LD Module for Multimode FiberFU-01 LD-N (0.78) ............................................................................. 7 - 66FU-27LD (0.78)···································································· ············7 - 66FU-01 LD-N (0.85) ............................................... ' .............................. 7 - 69FU-27LD (0.85) ................................................................................ 7 - 69FU-23LD ....................................................................................... 7 - 72FU-11LD-N·················· .......................................... ·························7 - 75FU-33LD ··························.. ··········· .. ·······························.. ·..··········7 - 77LED ModuleFU-02LE-N ..................................................................................... 7 - 80FU-23LE ...................................................................,.................... 7 - 80FU-13LE-N····· ............................................................... ·················7 - 83FU-34LE ....................................................................................... 7 - 83PO ModuleFU-04PD-N .................................................................................... 7 - 86FU-21PD .................... , ................................................................ ··7 - 86FU-15PD-N ·········································································,··········7 - 89FU-16PD-N ................................................................... ',' .............. ·7 - 89 ,FU-35PD ..................................................................................... ··7 - 91page" ' <strong>MITSUBISHI</strong>...... ELECTRIC


OPTICAL SEMICONDUCTORS COMPONENTS GUIDANCE


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSORDERING INFORMATIONOrdering InformationDevice type {ML : Laser diodeME : Light emitting diodePD : PhotodiodeL--t--+-+--------- Wavelength code* 2* 1L--I-I _________ Package type (old = 2digits. new = 3digits)'-ic---------Chip series No.L-___ --____ Pin connectiori' 3( fixed only to the monitor PD)incorporated laser diode* 1 Applicable from Jan. 1991.* 2 Wavelength code classificationDevice type Wavelength code Wavelength range (nm)23 800


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSAPPLICATION DIAGRAM IApplication DiagramLaser Diode (LD)Light Emitting Diode (LED)50/AIGaAs,/InGaAsP( * New pmduct )** Under development[J '" •• " ML9XX4**20 ..... 1_~--1 ML5XX4....~ 10oCL(IJo+'g 5Optical Disk MemoryWORM )RewritableLaser Printer (High speed)ML6XX3A~ML4XX5ML9XX3ML9XX1APo(mW)CWPOS2ML4XX2ML4XX2AML4XX3ML4XX10ML4XX14ML4XX15ML4XX16ML4XX19*~ ::',::'"y';'~CD,VDCD- V,CD- ROMLaser PrinterLEDOptical communicationME1XX3ME1XX4LEDME7XX2ML9XXlML9XX2ML9XX5*0.6 0.70.80.9 1.0 1.11.2 1.31.4 1.51.6 1.7WavelengthAp(,um)High Responsivity Photodiode (pinPD. APD)< XSi-pinPDPD2XXl< XSi-APOPD1XX2PD1XX5InGaAs- 'pinPOPD7XX5PD7XX6P07xxrInGaAs-APOPD8XX2':>:>1 - 4" "IVIITSUBISHI"'ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSAPPLICATION DIAGRAM IT(PULSE OPTICAL OUTPUT)Application DiagramLaser diodes for OTDR applications200-r-InGaAsP/ 200 \....::Ja.:; 150oro..,. ua.o-I-ML7XX3120Q)rJ)"Sc...Po (p) 100(mW)-I-/AIGaAs80100\ ML9XX3ML5XX450-I-ML7XX1A40ML9XX1 AoIIII0.6 0.7I I I I I0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6Wavelength A P (/J. m)ML5XX4 ......................... Pulse width 2 fJ. s, duty 0.2 %ML7XX1A}ML 7XX3 ......................... Pulse width less than 1 fJ. s duty less than 1 %ML9XX1A'ML9XX3.• <strong>MITSUBISHI</strong>.... ELECTRIC 1-5


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSINDEX BY APPLICATIONIndex by Application[Application][Main use][ Wavelength] [ Rated optical output ]typo (nm) (Forward current)[ Series name ](Features· Structure)ML4XX3 (low droop)Po=5mWPo= BmWPo= 15mWML4XX14 (low droop. small dispersion)ML4XX 19* (":!ediuf!! output. smalldis rSlonML6XX3A (higher output, for high- speemachine)ML5XX4(pulse high output operation)ML7XX1 A (pulse high output operation)Informationprocessing &instrumentationML7XX3(pulse high output operation)ML9XX1 A (pulse high output operation)Po= 5mWML9XX3ML4XX5(pulse high output. operation)(shortwave length)Po= 5mWPo = 20mWPo= 35mWPo = 60mWPo= 25mWML4XX15 (read only)ML6XX1 A (for mass-produced machine)ML6XX 10 (small dispersion)ML6XX 11 (low lop, small dispersion)ML6XX14** (low lop)ML5XX3A (for mass-produced machine)Po= 35mWML5XX5(small dispersion)* : New product** : Under development1 - 6• . <strong>MITSUBISHI</strong>.... ElECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICON.DUCTORSINDEX BY APPLICATIONIndex by Application[Application][Main use][Wavelength] [Rated optical output]typ.(nm) (Forward current)[ Series name ](Features' Structure)Po=5mWPo= 3.5mWPo= 10mWML4XX10(higher reliability, multi-mode)ML4XX1S( higher reliability, pulsation)ML3XXl (higher reliability)ML2XXl (higher reliability)(If = 75mA)ME' XX3ME'XX4(AIGaAs- LED, t/J '00 It miens)(AIGaAs- LED, t/J 200 It miens)Po=6mWPo=6mWPo= .12mW(If = 120mA)Po=SmWPo= 12mWML8XXl (high-temperature operation,FP-LD)ML7XXl (high-temperature operation.ML7XXS** FP- LD)ML7XX2 (for digital use, DFB-LD)ML7XX5 (for analog use, DFB-LD)ME7XX2


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSINDEX BY FUNCTIONMitsubishi laser diodes are high- performance light sources that offer extremely stable single• AIGaAs Laser Diodes' -mode oscillation with a .Iow threshold current. Hi~h ~e'iab!'ity a~d long-service life m~ke these• devices sUitable for use In a broad range of applications. Including such areas as optical communicationsand optical data processing.;;;:'..j1Ylil$ , Material POPQl!!, -·~I1f~~~;·f;i/':i;·I;'1~}., lTc' .rT o;tiQ.. :;: ;[,'i, .~' .. .oj; ~~.C(~. '. i~~~ r. (;C~ ..' (~)" ",.. r .. Wp;· . M.X: rtypjMaj


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSINDEX BY FUNCTION• InGaAsP Laser DiodesM~ Ratings' It ..1'ype Material Po I~Oll!l :@PO (rnA:), TstQowTeP,ui$'(mW), ',c,('OJ ('C)(mW) (mW),Tyo~ 0.1 ...-20 -40ML7XX1 InGaAsP 10 10 - -lI!2+ 70 + 100-20 -405 10 30ML7XX1A InGaAsP 30 400mA - - 25 10 30+50 + 100lnGaAsP0 -40ML7XX2 6 -- - 5 15 40(DFB laser)+SO + 100-+20 -40- ML7XX3 InGaAsP 30 lI!2900mA.;. 30 + 100ML7XX5InGaAsP(DFB laser)+20 -4020 - - -+ 30 + 10025 20 5010 15 40ML7XX6** InGaAsP Not specified (under development)-20 -40ML8XX1 lnGaAsP 6 10 - -+70 + 1005 15 30-20 -40ML9XX1 InGaAsP 6 10- - 5 15 35+SO - +100-20 . -40- ML9XX1A InGaAsP 20 lI!215 15 35400mA+ 50 HOO0 -40InGaAsPML9XX26 -(DFB laser) - -5 20 40+ SO + 100+ 20 40lI!2ML9XX3 InGaAsP 30 900mA - - 25 25 50+ 30 + 100lop(rnA)'T)'!). 0.1 ....25 5070 13030 8080 15045 8030 SO40 SO75 12045 90120 180Vop , SMSR~p (J~ 8.l 1m lI!$'@Po.(V) (nm) (d,;)(dog1 (rnA}(OS)Tv," Me .. Min. Typ. 0.10 .. Ty .. Typ. MI.,. Tm M&~., Min.' Typ.1.2 I.S 1280 1300 1330 25 30 0.2 0.5 - - -1.5 2.0 1280 1310 1330 25 30 0.2 0.5 - - -1.2 1.8 - 1310 - 25 30 0,1 0.25 - 30 401.5 2.0 1280 1310 1330 25 30 0.1 0.2 - - -1.2 1.8 - 1310 - 25 30 - - - 30 401.2 1.S 1180 1200 1230 25 30 0.2 0.5 - - -1.3 1.7 1520 1550 1580 30 35 0.2 0.5 - - -1.5 2.0 1520 1550 1580 30 35 0.1 0.3 - - -1.2 1.8 - 1550 - 30 35 0.1 0.25 - 30 401.5 2.0 1520 1550 1580 30 35 0.1 0.3 - - -ML9XX4** InGaAsP Not specified (under development)ML9XX5*InGaAsP(DFB laser)+ 20 -4020 -- -+ 30 + 10010 20 40 45 901.2 1.8 - 1550 - 30 35 - - - 30 40* 1 : Duty less than 50 %. pulse width less than 1 ~ s* 2 : Forward current max. rating. duty; 1 %, pulse width less than 1 J1 s * 3 : 1m value depends on package type* : New product ** : Under development• LEOsThe Mitsubishi communication LEOs are high - performance optical sources which provide wide modulation bandwidth, optical output with excellent linearity, high coupling efficiency, high reliability, and long service Me.Typef IF (00)M~terial :@-Tc;ii'50-o",''Max. Ratings~ufJ) TeTstg@i. "P(mA)(nm). (rnA) @fr:l'j'"P , ('C) ('C) Min. Max.ME1XX3 AIGaAs 75 120-40 - 55- -+ 100 + 12550 '820 880ME1XX4 AIGaAs 75 120-40 -55- -+ 100 + 12550 820 880ME7XX2 InGaAsP 120*1: Duty;50%,f;100kHz *2: Pf(ilW.GI 50/125 OPtIcal FIber)- 30 -40-- - 100 1280 1340+80 + 100t.A; PocbC) P"1so) lI!1 fo (MHz)(nm) (mW) (mW) lRF =-4mAp~pTyp. "Ai;". ,TyP. -Min. Max. Min . Typ;45 1.0 1.5 2.0 3.0 15 3045 0.5 1.5 1.0 3.0 10 30130*2 *215 20- - - 150• . <strong>MITSUBISHI</strong>"ELECTRIC1 - 9


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSINDEX BY FUNCTION.51 pin Photodiodes . Mitsubishi Si ~in photodiod~s ar~ high-performance oPtical detectors for standard short­• waveband applications offering high-speed responseMitsubishi Si avalanche photodiodes are high- performance optical detectors for.51 Avalanche Photodiodes : short-waveband applications offering high-speed response, wide band width andlow noisePD1XX2 Si 200 10 - .p2oo 100 150 200 0.12 1.5+110 +1502.0 0.3 1.0 0.4 0.45 1000 2PD1XX5 Si 200 10-40 -55.p 500 100 150 200 0.12 5.0+ 110 + 1507.0 0.3 1.0 0.4 0.45 1000 0.4• InGaAs pin Photodlodes . Mitsubishi InG~As. photodio~esare high-performance oPtical detectors for long­• waveband applications offering hlgh- speed response+80 + 100-30 -40PD7XX6 InGaAs 3000 2 .p300 3 15 200 0.6+80 + 100-30 -40**1 *1 *,1PD7XX7 InGaAs 500 2 .p40 1000-1600 0.6+80 + 100 0.3 , 1 1500*1:@VR=5VMitsubishi InGaAs avalanche photodiodes are high - performance optical• InGaAs Avalanche Photodiodes : detectors for long-waveband applications offering high-speed response,wide bandwidth and low noise*: New product1 - 10• <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSINDEX BY SERIES TYPEIndex by Series TypeTypeSeriesML2XXlML2701ML3XXlML3101ML4XX2ML4012NML4412NML4XX2AML4102AML4XX3ML4403ML4413CML4XX5ML4405ML4XX10ML40110RML4XX14ML44114NML40114NAIGaAsML4XX15ML40115CLDML4XX16ML40116RML4XX19* ML44119NML5XX1AML5101AML5XX3AML5413AML5XX4ML5784FML5XX5ML5415NML6XX1AML6101AML6XX3AML6413AML6XX10ML64110NML6XXllML60111 RML6XX14** ML64114RML7XXlML7011RML774A1FML7911ML7XX1AML7781AML7XX2ML774A2FML7XX3ML7783FInGaAsPML7XX5ML7925LDML8XXlML8701ML9XXlML9701ML9XX1AML9781AML9XX2ML974A2FML9XX3ML9783FML9XX5* ML9925AIGaAs ME1XX3 ME1013LED ME1XX4 ME1504InGaAsPLEDME7XX2ME7022Si PD1XX2 PD1002APD PD1XX5 PD1005Sipin PDPD2XX1PD2101PD7XX5PD7005InGaAsPD7XX6PD7006pin PDPD7XX7InGaAsPD8XX2APD* PD805A2* : New product ** : Under developmentML3411ML41 02ML4442NML4402AML4403RML4445NML44114CML40114RML40115RML44119RML5401AML5415CML6411AML6413CML64110CML64111NML60114RML720A1SML776B1FML7911AML7922ML874A1FML974A1FML9911AML9922ME1514ME7032PD1032PD7035NameML4402ML4412AML4413NML44114RML5415RML6411CML64110RML7701ML7781ML9911Page2-32 -102-172 - 252 - 322 -392-442- 512-582-642 -712 -732-802 - 872-932 -1002-1082 - 1142 -1212 -1282 -1302 -1382 -1432 -1492 -1522 -1542 -1602 -1662 -1712 -1772 -1803-33-83 -124-54-94-34-134-174-214-25'. . MlTSUBlSHI.... ELECTRIC1 - 11


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSPRINCIPLES OFLASER OSCILLATION1.PRINCIPLES OF EMITTING DEVICES>­'"~UJE, ----t.___--_.I-- >-..Excitation level------E2E'c:UJElectronEo ----•• 1---- Base level • E,'"",_;r '-,, '-E.I\f\J+ . \)\r-~'\!\JLight Light(a) ENERGY level (b) Thermal equilibrium (c) Absorption (d) Spontaneous (e) StimJ.i1atedstatus (Excitation) Emission EmissionFig. 1 Energy level and transition processesElectrons accompanying atoms and molecules haveindividual energetic values at specific intervals, asshown in Fig.1- (a). This status is called energylevel. The lowest energy level is defined as 'baselevel', and the higher one is called 'excitationlevel'. When electrons transit from level E2 to level El,electrons absorb or emit light which has a wavelengthrelated as described in the following formula.A = C = 1.2398 ......... (1)I E2 - E, I /h I E2 - E, IC: Velocity of light (2.998 x lOBcm/sec)h : Planck's constant (6.625 x 10-" Joule.sec.)E,: Energy before transitionE2: Energy after transitionThe termal equilibrium status on Fig. 1-(b) considersthat excitation is balanced with the spontaneousemission process. The transition process consistsof 3 different modes as shown Fig. l-(c)-(e). Thefirst is defined as 'absorption', where electronstransit from low energy level El to higher level E2by absorbing. The second is ' spontaneousemission', in which electrons transit from highenergy level E2 to the stable low level El and emitthe energy I Er El I as light. (Fig. 1 -( d)). In thiscase low energy electrons loclilted at energy levelE2 are moving at random relative to each other.A light that is generated under such conditions iscalled incoherent (not in phase) and it is adistinctive feature of sponteneous emission. Theemitted light of LED's belongs to this category.The third transition process is defined as'stimulated emission'. Fig. l-(e) explains that whenphotons of ligh with energy almost equal to I E2-El Ihave incidence on electrons located at E2 theelectrons move by compulsion to the El level.The light generated in this way is calledstimulated emission light, or in other words,coherent light.Light is emitted in this way on the condition thatit is resonant with the incident light, therefore bothphoton energies ( wavelength) are equal and thephase relationship is constant. This phenomena hasbeen applied to laser diodes.The stimualted emission is only realized when thenumber of electrons after excitation on E2 getslarger than those on the low level E,. Such a stateis called 'population inversion'. An electric currentshould be applied to a laser diode, in order to createthis condition. Once stimulated emission occurs, thestrength of the incident light should be increasedand thereby achieve optical amplification. Then, itbecomes be possible to cause the optical oscillationby making an optical resonator. 'LASER' is anacronym of Light Amplification by StimulatedEmission of Radiation.1 - 12 .. , ... .. '<strong>MITSUBISHI</strong>"'-ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSPRINCIPLES OF LASER OSCILLATION2,STRUCTURE OF AIGaAs LASERLaser Beam-------~-----r.~~~--~n-GaAsSubstrate(-)Energyn-AlxGal_xAs(Clad layer)nr ,---------,H00oo00oI..Q.IIIp-AlxGal~xAs(Clad layer)"I I.. d1 1I 1••• ~ •• h---.......,(E~ctron)!:•••••••• • • ••• IIT'TTTT'I"rrT''''''''''11I 1~ !-,----I :1 11 1p(Y)~n..l--.L:~1AlyGal ~yAs (y< x)(Active layer)(a)(+)Structure ofCross sectionLayer(b) Energy band(C)Injection carrierdensity (Gain)(d) Refractive index(e)Distribution oflight intensityFig. 2 Operational principle of double hetero junction laserA laser diode can't oscillate if amplication hasoccured, Laser oscillation never happens unless ithas feedback. In order to achieve this a "Fabry­Perot" oscillator is often used. (See Fig. 2-(a)).The operation principles are: use the two cleavedfacets as reflection mirrors. At first the beams goin every direction within the active layer. However.only selected beams that correspond to the Fabry- Perot oscillator's direction would be confinedbetween these mirrors and the result that opticaloscillation occurs.AIGaAs laser diode for example, has a doublehetero junction structure, where an AlyGal - Asactive layer is sandwiched between nand p-AlxGal-xAs cladding layers (y< x). (See Fig. 2-(a)). Theamplifying media is a double hetero junction narrowband gap layer (AlyGal- yAs active layer). By makingthe p - clad layer E& and the n - clad layer e, andadding forward directed bias, electrons and holeswill be injected from the nand p-cladding layers.Carriers will be confined to the active layer andcreate 'population inversion'. The result is that ahigh gain will be obtained, because' the band - gapof the cladding layer is larger than that of activelayer and a barrier will be produced in the junction.(Fig. 2- (b), (c)). Light has a characteristic that itgathers to' the area of high refractive index. Therefractive index of the activation layer is higherthan that of cladding layer. in an AIGaAs LASER.(Fig. 2 - ( d) ) .The light will therefore remain in the active layer.This is called 'optical confinement'. In this way.stimulated emission will be performed effectively,because carriers and light are confined in the activelayer.• ,<strong>MITSUBISHI</strong>..... ELECTRIC 1 - 13


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSPRINCIPLES OF LASER OSCILLATION3.Longitudinal modeOn the condition that laser oscillation occurs, beamsruh both ways in the optical resonator and thereis an optical standing wave produced whose phasefront is parallel to the reflection mirrors. Poweroutput will be obtained by the wave's penetrationfrom the reflection mirrors. This standing wave isshown in Fig, 3-(a). Letting the vertical length ofoptical resonator equal L, the equivalent refractiveindex of the wave in the wave guide equal n, andthe wave length of the standing wave in the waveguide equal ,l., then it will be clear that the totallength L equals a multiple whole number of halfwavelengths for the media ,l. /2n, and thefollowing formula will be derived:-2A q = L (q : Integer) ••••••••• (2)n ,In the case of ,l. = 780nm, n = 3.5 and L = 250 IJ, m,the integer q becomes 2.244 resulting in a very largenumber. Even if q changes by up to ± 1, theresonant wavelength changes by only a smallfraction, and in the above case the wavelengthbalance fj.,l. will be I fj. ,l. I = 3.5A. A laser resonatorhaving resonator length L which is far longer thanthe wavelength allows the resonating of manywaves having slightly different lengths.c ~o 0·13 .;:., E~a:Reflectionmirrorqq-l'- ....q-2 Gain balance(a) Standing waves of longitudinal mode,(b) Resonance spectrum for longitudinal modeFig. '3 Longitudinal mode generating mechanism4.Transverse modeThe standing waves at laser oscillation consists ofa wave generated between both reflection surfacesshown earlier (the longitudinal mode), a wavegenerated in the direction perpendicular to the activelayer (the vertical transverse mode), and a wavegenerated in the direction in parallel to the activelayer (the horizontal transverse mode). Normally thetransverse mode of a laser diode is required to bea basic mode where just one luminous point exists.The perpendicular transverse mode will be a basicmode on the normal double hetero structure laserwhich has a thin active rayer. In order to achievestable oscillation on a basic parallel transversemode, the expanding electromagnetic fields will berestained by inclucing optical waveguide using theexisting refractive index. Stripe structure, that makesthe width of optical waveguide as oscillation otherthan a basic mode is insulated, is fully worked out.These modes have a grat influence on the opticallongitudinal mode, linearity of current-light outputpower characteristics, modulation speed, thresholdcurrent, aberration' of laser beam, and so on.1 - 14 '" ' ,<strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSTECHNICAL TERMS AND CHARACTERISTICSTECHNICAL TERMS AND SYMBOLS FOR LASER DIODESTERMThreshold currentOperating currentOperating voltageSlope efficiencyLight output powerPulse light output powerDroopMonitoring light output powerMonitoring output currentPeak wavelength .Spectral half widthBeam divergence angleParallelPerpendicularNear field patternSYMBOLIthlopVop1/PoPo (P)ll.PPm1m). Pt.A8//8.l.NFPDESCRIPTIONCurrent at which laser oscillation begins (Fig. 1)Forward current to obtain specified light output (Fig. 1)Forward voltage to obtain specified light output (Fig. 1)Change of light output per unit of applied forward currentt. Po/ A lop = 1/ (mW/mA)Output power from the front facet of the LD (Fig. 1)Pulsed output power from the front facet of the LDCharacteristic of dropping of light output caused by heat generated when a constantcurrent in 'pulse is applied to semiconductor laser. It is expressed as follows:PA : Light output initial value of 600Hz. 10% duty t. P PA - PB x, 00 (%)PB: Light output final value of 600Hz. 90 % duty. PA (ref. 1- 31)Output power from the rear facet of the LD (Fig. 2)Output current of monitor' photodiode (Fig. 1)Wavelength of peak longitudinal mode in emission spectra (Fig. 2)Full width at a half maximum of enveloped profile of emission spectra (Fig. 2)The beam from semiconductor laser spreads as shown in Fig. 2. This angle refersto the width (full angle) at the point which is 1 12 of peak intensity in intensitydistributions parallel and perpendicular to junction. Parallel direction is expressed in e/I and vertical direction in e L The intensity distribution concerned is called far fieldpattern (FFP).This pattern refers to the intensity distributions parallel and perpendicular to junctionat the front facet of semiconductor laser chip (Fig. 2).Rise timeFall timeCutoff frequencyAstigmatic distancePolarization ratioRelative intensity noiseComposite Second OrderComposite Triple BeatSignal to Noise ratiotrtffcA.PI/I P .l.RINCSOCTBSI NSide mode suppression ratio SMSRInterferograma.f3Time taken for the optical output to increase from 10% to 90 % of max output.Max optical output means the steady state value attained after relaxation oscillation.Time taken for the optical output to decrease from 90 % to 10 % of max output.The frequency in which the sine wave amplitude of the modulated light outputobtained by intensity-modulating small signals with a sine wave at the specified lightoutput bias point drops to 112 of the low frequency amplitude.There is a difference of the focal point in the parallel and perpendicular direction tojunction when the laser beam is focused. This distance is called astigmatic distance(Fig. 3)The laser beam consists mainly of parallel polarized light output.This is the retio between parallel polarized light and perpendicular polarized light.The parameter to indicate. like SI N. the intensity fluctuation of laser beam.Let the average light output of semiconductor laser by DC drive be Po. the intensityfluctuation of light output be 6 p. and the band width under test be t. f. then.RIN = 1010g « 6 P)2 I P02 • 11M) [dBI Hz]CSO(Composite Second Orderhefers to the intensity difference between the secondaryharmonic distortion component and the signal component generated when a semiconductorlaser is driven by current modulation (analog modulation) with a multi - chl;lnnel sinewave signal. CTB(Composite Triple Beathefers to the intensity difference betweenthe tertiary harmonic distortion component and the signal component .. Intensity fluctuation of laser' beam. If the average light output power is defined asPo and the intensity fluctuation is defined as 6 Po. the signal to noise is defined as.SIN =2010g(Po/6 Po) [dB]Mainly. a semiconductor laser has ( 1 ) mode hopping noise in which the mode jumpsat the temperature change in the junction and (2) the returen beam noise in whichthe laser beam reflects from the externalresonator(a' composite resonator).Ratio of spectrum intensity of maximum mode (main mbde) to side mode.The parameter to indicate the singularity of the longitudinal mode of DFB (DistributionFeedback) laser. (Fig. 4)The damping pattern of the interferogram obtained when the laser beam is made theinterference beam through the Michelson interferometer. For details. see •. MeasuringOscillating Wavelengths' on page 1 - 24.1 -15


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSTECHNICAL TERMS AND CHARACTERISTICSIMonitoring output current IILight output----'----------=11-=====----+:2!::.-. Forward1mcurrentParallel(Emission// A p "-,~~A\g ~ \- 5;; . /Lorigitudinal, I mode, /spectra)' .... _ .... _/./I\ (Monitoring Light\ output Pm)IForward voltageFig. 1 Electrical and optical characteristics of laser diode(with a Monitor photodiode)Astigmatic distance AsLaserI -- - ----~ ~E- -I +---~----.lli.: 81/:(FarField Pattern)Front facetPerpendicularParallelFig. 2 Optical characteristics of laser diodeTc = 25"C2Gb/s NRZPpeak= 5mWIb = IthFig. 3 Astigmatic distance130513101315Wavelength A (nm)Fig. 4 Spectral Side Mode Suppression Ratio1 - 16• MITSUBISH. I


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSTECHNICAL TERMS AND CHARACTERISTICSTECHNICAL TERMS AND SYMBOLS FOR LEOsTERMSYMBOLForward currentIFForward voltageVFRise timetrFall timetlCutoff frequencyfcBeam divergence angle (JOptical outputPoFiber coupled powerPIStandard operating current (Fig. 5)DESCRIPTIONForward voltage when IF is supplied (Fig. 5)Time taken· for the optical output to increase from 10 % to 90 % of max outputTime taken for the optical output to decrease from 90 % to 10 % of max outputThe frequency (Hz) in which the sine wave amplitude of the modulated light outputobtained by intensity- modulating small signals with a sine wave at the specifiedoperating point drops to 1 /2 of the low frequency amplitude.Full angle at a half maximum of far field radiation patterns.The total optical output value to be obtained when the specified forward current isapplied. (Fig. 5)The optical output value which can be coupled with optical fiber when the specifiedforward current is applied. (Fig. 5)Optical output~


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSTECHNICAL TERMS AND CHARACTERISTICSTECHNICAL TERMS AND SYMBOLS FOR PHOTODIODESTERMSDark currentResponsivityQuantum efficiencyRise timeFall timeCutoff frequencyTotal capacitanceBreakdown vOltageMultiplication rateExcess noise factorBreakdown voltagetemperature coefficientSYMBOLIDRDESCRIPTIONThe current which flows when the specified reverse voltage is applied without lightincidence .. (Fig. 6)Output current per unit of input optical power of a specified wavelength7/ Percentage of number output of electrons per number of input photonstrtffcCtV (BR) RMFTime taken for the incident light to increase from 10 % to 90 % of max powerTime taken for the incident light to decrease from 90 % to 10 % of max powerThe frequency in which the sine wave amplitude of the signal output obtained whenthe intensity modulated light of small signal by sine wave is introduced at thespecified operating point drops to 1 /2 of the low frequency amplitude.The capacitance between the anode and cathode lead terminals. which is obtained atthe specified reverse voltage and frequencyBreakdown voltage refers to the voltage to be obtained when the specified reversecurrent is flown in the area. (Fig. 6)Ratio of the output current multiplied by avalanche multiplication to the outputcurrent without any multiplicationIndicates the scale of noise produced in the avalanche multiplication procesS.Excees noise factor may be repre~entedfollowing relation:F= MXin excess noise index X shown in theThe change rate of breakdown voltage to the temperature with the breakdown voltageat Tc = 25"C as standardForward current11111I1II 1I ,/,// i Vopen (open voltage)Reverse voltage_~--~~--~~--~--~~~~--~~------~VForward voltageZero bias highload straight lineIsh (Short circuit current).--'" Reverse bias highload straight lineZERO bias low load straight lineReverse currentFig. 6 Operating figure of Photodiode1 - 18'," ,<strong>MITSUBISHI</strong> .... ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURES, Page1. Optical output vs. forward and monitoring current .................... 1 - 202. Impedance ............................... ~ ............................... 1 - 213. Measurement of thermal resistance····································· 1 - 224. Far Field Pattern (FFP) ................................................. 1 - 235. Emission Spectra························································ 1 - 246. Pulse response·························································· 1 - 257. Polarization ratio .............................. ' .......................... 1 - 258. Astigmatic distance······················································ 1 - 269. Near Field Pattern······················································· 1 - 2610. Wave front' distortion' ................................................... 1 - 2711. Harmonic distortion .characteristic······································· 1 - 2812. SI N characteristic ............. ' ...................... ' .................... 1 - 2913. Relative Intensity Noise (RIN) characteristic .•...... : ................... 1 - 3014. Droop characteristic (Thermal characteristic) ......................... ~. 1 - 3115. Cutoff frequency···············,························· ',' ............... 1 - 3216. Pulse response characteristic of monitor photodiode··················· 1 - 3217. Measurement of Pf (fiber coupled power of LED)····················· 1 - 3318. PO spectral response characteristic····································· 1 - 331 -19


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESI Opticaloutp!Jt vs. forward and monitoring currentDC powersupply'------' +50QswXV recorder,Fig. 1 P-IF and ,P-Im characteristics measuring systemFig. 1 is an example of a measuring system thattraces P - IF and P - 1m characteristics on an XYrecorder. A noise filter and the slow starter areimplemented in order to avoid degradation of LD. by Surge current. A silicon or germanium photodiodeis used as a detector, and the output is previouslyadjusted by the load resistance R1.(i) P-IF.Turn ·SW to "IF"connect the LD to the power supplyat minimum volatge switch the power supply onand gradually increase current from DC powersupply. The P-IF curve will be traced. Then beforedisconnecting, set the power supply to the minimumvoltage, disconnedct the LD then turn the powersupply switch OFF.(ii) P-ImThe load resistance R2 is adjusted to the PD biasvoltage to get an object scaling. SW is turned to"1m" and operated as above P-Im characteristic willbe traced on the XY recoder. Please take care notto operate the LD over the maximum optical powerrating of the LD.1 - 20.• . MlTSUBlSHI."B.EC1'RIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESI Impedance1. Reference (SHORT)Measuring substrate (50 0 Micro strip line)Network analyzerFig. 2 Reference measuring system2. MeasurementFig. 3 Impedance characteristic measuring systemFig.2 and 3 are examples of circuits used tomeasure the input impedance characteristics. Atfirst the network analyser should be referenced byplacing at the output a SHORT (0 point on Smithchart). as shown on Fig. 2 .. Next. connect the circuit.measure the return-loss and phase at this time andplot these on a Smith chart. By repeating thisoperation at every frequency. the input impedancewill be calculated.Typical impedance characteristics of the ML4011 OR,with lead lengths of 2mm. are shown in Fig. 4 withthe bias currents as the parameter.Test frequency is swept from 100MHz to 1300MHzwith 100MHz steps.Above the threshold current. the impedance can beapproximated by a series connection of a resistanceof 3.50hm and an inductance of .2.3nH.Fig. 4 Example of impedance characteristic• . MrTSUBISHI.... ELECTRIC 1 - 21


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING ,PROCEDURESI M.easurement of thermal resistanceIm (1mA),........, ,........,1,«lth)v, ~ hSAMPLEn I nVml v, Vm2Fig. 5 Timing chartThermal resistance is measured by measuring thetemperature· change in the junction surface by usingthe temperature dependence of the forward voltagedrop of the PN junction of LD.At first let a small current (1m = 1 mAl with anegligible temperature rise to flow in the forward .direction of the LD, and then measure the forwardvoltage drop (Vml) at that time.j"-ML40116R (¢ 5.6mm pkg)300200e 100ISc 80...ie'li 40


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESI Far Field Pattern(FFP)//////Laser chip/// Vertical// plane(81.>":::;;11"1---"--- - - - - - ~ 7Laserbeam/8//Horizontal /Plane // L=lOOmm//Turnig //__-_-_---'_,..._ ~ir~~i':n ___///-lrnmT,m;" A--, Jl:.~ PDd"ectlon~~Plate SlitFig. 8 FFP measuring photodiodeCenter axisPhotodiode (PD)Fig. 7 FFP measuring systemOptical intensity of laser beamtCenter axisFig. 9Angle (9//. 91.)Direct the PD in a horizontal plane (parallel to thelaser junction surface) toward the luminous surfaceof laser chip and turn it along with circumference(Length; 1 OOmm) of which center is luminoussurface. and can be measured. (Fig. 7) At this. time.the PD receiver surface is larger than the luminoussurface of the laser chip, so it is necessary to fullyenlarge the length from the laser chip and settlea slit on PD, in order to improve resolution (Fig.8). To measure the (;11. direction, turn the laser chip90· from the .center axis and measure in the sameway as (;1//.The measured result is shown in Fig. 9 . Figures of(;1// and (;11. are hanging-bell type symmetrical to thecenter axis, as angles from the center axis, getlarger. This is called Gauss distribution, and thesharpness of beam direction depends on the widthof this distribution. Generally the width of angle(full angle at half maximum) in the parallel ((;11/) andin the perpendicular ((;11.) d.irection of which theintensity gets down to 0.5 of the maximun opticalintensity is specified as the beam spreading angle.Resolution by this measurement is 0.10· .The angle of gap between the center axis of (;II/and (;11.in FFP is defined as the angle gap,A (;I//A (;I Hespectively.. •. MITSU.· BlSHI.... ELECTRIC 1 - 23


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESI Emission Spectra1. Measurement by diffraction gratingThe measurement of the Emission spectra with aspectrometer, in which the light from the deviceunder measurement is scattered by diffractiongrating is shown in Fig. 10.The light comes through the slit into a photomultiplier.The oscilloscope indicates the spectra which can bemeasured.SpectrometerSlitPhotomultiplier2. Measurement by InterferogramTo measure the Emission spectra with interferogram,the light from the device under measurement isrepresented as interference light with a Michelsoninterferometer (Fig. 11 ).Performing an inverted Fourier transformation onthis interferogram yields the spectra.If the peak value corresponding to the zeroposition of movable mirror is defined as 1 in Fig. 12,the first peak ratio is defined as interferogramdamping ratio a.The minimum value between the peak value ofoptical path difference 0 and the primary peak valueis defind as /3.OscilloscopeFig. 1 0 Emission spectra measuringprinciple by diffraction gratingFixed mirrorFig. 1.1. Beam splitter( Movable mirror-Q~+QInterference lightMichelsoninterferometerMichelson interferometer1 AInverted Fourierf3 t transformationA. A ~t'.A - __...E---"-__ ~- Q +Q Wavelength(illInterferogram(blSpectrumFig. 12 Measuring by interferogram1 - 24'.. MITSUBISH. I"ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESI Pulse responseP.G.Pulsegenerator470:!- 1---- Oscilloscope500 Micro strip line 500 Mico strip liner:::::==:::J---i-4 0 SamplingLOPO or APOIFig. 13 Pulse response characteristic measuring systemFig, 13 indica.tes an example for measuringseriesPulse response characteristics.Let the time required for the pulse rising (10 %-90%) from the sampling oscilloscope output waveformbe tr, and the time for falling be tf.I Polarization ratioSlowstartert---'\NIr..-lAPC circuitPolarization PrismPOt----n--+----0 P- output(to XY recorder Y)IF- output(to XY recorder X)Fig. 14 Polarization ratio measuring systemA laser beam is oscillated almost in TE mode (Beampolarized horizontally to hetero junction). The beamstrength is shown as PII. TM mode (Beam polarizedvertically to hetero junction) is just as strong asnatural light (beam). This beam strength is shownas P.L The Polarization ratio is the ratio betweenthe optical strength of the TM mode and the TEmode (P/II P .1.). Fig. 14 shows an example of themeasurement set - up required to measure thePolarization ratio. Turn the laser beam to acollimated one by using a lens with NA = 0.5 andresolve the polarization prism, to measure themaximum power (P/I) and minimum power (P.1.).Obtain the ratio of PI/to P .1. at each optical outputfrom the curves of P w IF and P.1. -IF. The ratio thusobtained is the polarization ratio.• <strong>MITSUBISHI</strong>.... ELECTRIC. 1 ~ 25


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESOJ Astigmatic distanceCameraCamera controllerr:===::1 Display(Astigmatic difference)PersonalcomputerFig. 15 Astigmatic distance measuring system(*) LD window glass thickness correction lensFigure 15 shows a sample measuring system. Movethe LD in the optical axis direction in steps of 2f.L m by driving the Z-axis motor. Read the spotsparallel and perpendicular to hetero junction surfacein the intensity diameter of 1/ e 2 of the peak value.Plot the spot diameters (parallel and perpendicular) inthe direction of LD movement as shown in Fig. 16.Then, approximate this data with a curve to obtainthe LD position at which the spot diameters inparallel and perpendicular directions are smallest.The difference in the distance of the movementis the astigmatic distance. A measurement example(ML4403) is shown' in Fig. 16.m Near Field PatternIn Fig. 15 please observe the near field pattern ofLD by a real image of 500 magnification andcamera of 5000 magnification.E"-~.


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESiii Wave front distortion~tt=======~--{:":'::~#======1~=;~Beam Splitter 2Beam Splitter 1 ~t=~~======--""'r+=====v:;~~CollimateNA=0.30Equiphase surface of a laser beam without anyaberratiqn is spherical. However, in general, the wavefront has a distortion. Most of this distortionconsists of an astigmatism. The astigmatism forparallel direction to the hetero junction has adifferent value from that for perpendicular directionto the hetero junction. because the curvatures ofwave front for the two directions are different toeach other.The wave front distortion is measured by theequal- path Mach - Zehnder interferometer shown inFig. 17. Various aberrations are calculated by Zernike'spolynomial approximation for the interference fringesobserved by the Mach - Zehnder interferometer. Therelationship between the astigmatism (A RMS .: O. 014LDDetector arrayFig. 17 Wave front distortion measuring systemNA=O. 25. Po=3mW CWA ~ p.v : O. 129parallelPerpendicularRIII .I Astigmatic distanceI .I It-AZ --i,I IRy I I" " , I II IR " ," IIIFig. 18 Relationship between astigmaticdistance {j. Z and astigmatism (j. if;The sample measurement (ML5415N) is shown inFigures 19 and 20.Fig. 19 shows wave front (phase front) of ML5415Nwhen the laser beam is collimated.NA=O. 25. Po=3mW. CW-1.00.0580.025I~~~~~~~~~~~~,~~,~ -0.071.-0.5 0.0 O. 5---:.;.!. 0Distance on Surface Parallel directionFig. 19 Example of wave front distortionType of aberrationlJ. 'l> Aberration (Note)RMS P-VSpherical aberration 0.011 * 0.130Coma aberration 0.011 * 0.128Astigmatism 0.014 0.129Curvature of field 0.011 * 0.128Distortion 0.014 0.129(* 0.011 is a measuring limit value)Fig. 20 Example of wave front distortion• <strong>MITSUBISHI</strong>"'ELECTRIC 1 - 27


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESID Harmonic distortion characteristic0SO-450MHzMulti-channelL. ___ generator \ _Sig_n_al __ ~ LD~~. ____ ==·~ __ ==_~~AmplifierSpectrum analyzer'Fig.21 Harmonic distortion measuring systemFigure 21 shows a harmonic distortion measuringsystem. When a semiconductor laser is directlymodified with a multi-channel sine wave signal fn(n = 1 -) of 6MHz intervals, the secondary harmonicdistortion component is generated on thefrequencies of fn ± 1.25 and fn ± 0.75 against signalfrequency fn. The tertiary harmonic distortioncomponent is generated on the frequency same assignal frequency fn (see Fig. 22). The intensitydifference between the signal component and thesecondary harmonic distortion component is definedas CSO, and that between the signal componentand the tertiary harmonic distortion component asCTB.CSO(CompositeSecond order)_.L-_-'-_-'-_-"_--I__ [MHz]fn-1.25: fn : fn+1.25fn - 0.75~Ifn + 0.75· : CTB: (Composite: Triple Beat)·tfnIFig.22 Example of spectrum at 40ch modulation1 - 28., MTSUBISHIlTa.B.ECJRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESIII SIN characteristicLength of external resonator (variable)Effective NA = 0.15FilterPelche (Tc control)BS PBS Detector(MERET MDA438)Fig. 23 S/N ratio characteristic evaluating systemc:;> DC (Signalspectrum analyzer(Noise)The noise of a laser produced in Optical DiskSystems is mainly optical feedback noise.Theoptical feedback noise is generated when the beamfrom a semiconductor laser is reflected from a disksurface or the like and gets in the laser again. Letthe mean optical power by CW drive be Po andfluctuation be 0 Po, then the SI N value is asfollows:PoS/N = 20 log -- [dB]1) PoOptical feedback noise is measured by the set- upas shown in Fig. 23. Optical feedback ratio will bechanged from 0 to 5 % by using filters.For the noise at each optical feedback ratio,measure the worst value to be obtained when thecase temperature has been changed.Make thismeasure by specifying the measuring frequency andthe measuring band width. Figure 24 shows ameasuring example with a measuring frequency of20kHz and a measuring band width of 300Hz.70ML4402f=20kHz, BW=300Hz, T c=25-50'C80r-~----~-------r------4m 90~r·----·~·~---r-------r-----~-0 .-A. ....•Z ' :/'='---_~.~"" --0-- 1 mW;n 100 lII"'=1'f--


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESIII Relative Intensity Noise (RIN) characteristicSpectrumanalyzerFig.2E? RIN evaluating systemThe analog communication light sources such asthe cable TV ( CATV) require the low noisecharacterisric up to several 100MHz. RIN can beobtained as follows with laser's mean optical outputbeing Po, the optical output fluctuation being 8 Po,and the band width under measurement being A f :r. < 8 P >21 JRIN = 1010g l Po 2 • A f [dB/Hz]For measuring the RIN characteristic, the opticalsystem shown in Fig.25 is used. Figure 26 showsa sample measurement with Tc = 25 "C, the bandwidth under measurement = 3MHz, and the opticalfeedback ratio Rf = 0 %.';)J:...... -100CD;Sza:-120.~0c -140>... .,c$ -160,S:.~j -1800ML7925Tc = 25 "C. tot = 3MHz, Rt = 0%CW.Po= 10",W0.2 0.4 0.6 0.8Frequency CGHz)-1.0Fig.26 Example of RIN measurement1 - 30'. ". MrTSUBISHl"'ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURES• Droop characteristic(Thermal characteristic)r---lI IOscilloscope : :IIlop monitor:@o'+:--+-:---.Jj'------.---,L ___ .JOscilloscopeL--_J-___ 1m (Po) MonitorMonitor output(Optical output)-~b;'09£ duty'909£ duty600Hz---PB'~,Fig. 28 Definition of droopPulseGenerator-5V5000 2.2kO Tr : 2SC13241000MZ3042701------


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURESII Cutoff frequencyT. G. 50 Q Micro strip line 470Tracking Q----/ 1-,-=-=-t====5~M~generatorLD50 Q Micro strip lineSpectrum analyzerM===::J--r----1 t----DAPDIIFig. 30 Cutoff frequency evaluating systemFig.30 is an example of the measuring set- up forfrequency characteristics.The Cutoff frequency fc (MHz) is the frequencyat which the signal level falls by 3dB.1m Pulse response characteristic of a monitorphotodiodePulsegeneratorSampling OscilloscopeFig. 31Monitor PD pulse response characteristicFig.31 an example of a measurement system formonitor PO pulse response characteristic.To minimize the losses use rnicro strip lines forthe connection on PG/LO and po/~sc.1 -32


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSMEASURING PROCEDURES• Measurement of Pf (fiber coupled power ofLED)PDLEDGI 50/125 OF+------0 OutputFig. 32 Pf measuring systemWhe'n using optical fiber in communication systems.it is important to know how much of the outputlight from the LED is efficiency coupled to the fiber.Fig. 32 shows a Pf measuring circuit. Let constantcurrent flow through the LED. and moving the endof fiber to X. Y and Z direction near the emittingpoint until the measured light is a maximum.Fiber used is normally G150/125 OF.lIB PO spectral response characteristic~=(>DQ===PDHalogen lamp----­Fig. 33 PD spectral response measuring system IphFig.33 shows an example of a system used tomeasure the PO spectral response characteristic.Using a halogen lamp etc. as a light source. andtaking only light of a single wavelength by usinga monochrometer. focus the light and irradiate thePD.The responsivity R for that Wavelength ( .l. ) willbe the calculated as the ratio between Iph(opticalcurrent flowing through the PO) and P (the inputpower) R = Iph/P (A/W).•. <strong>MITSUBISHI</strong>r...El..ECTRIC 1 - 33


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSDRIVING CIRCUITSDRIVING CIRCUITS• Example of a slow starter circuits• Common Anode type (- Power drive)L1820 p. H 2SA850- D L2820 p. Hr-~~~rn~~--~-oB(-)• Common Cathode type (+ Power drive)L1820p.HL2820 p. H.r-~-----...~~-_--oB(+)~--~-4---"""--~--~-oB'(GND)-+---.:....::.~---4-'----.....--~-oB·(GND)• Example of an APC circuits• N type~~PD'~'LDPhotodiodeB'o--~~r-~~------t~-=--~--~-.GND2SC3311AR5 440.C type+5Vh~/PD'5'LDBo-~r-------~----+----------------• R type50 Qnh~PDfS,LD50 Q Ml308Photodiode!'LaserdiodeB'o-~~~~~~~--~--~------~--~GND1 - 34


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSDRIVING CIRCUITS• APPLICATION(LASER BEAM PRINTER)M37450 (8- bit MCU) 10MHzM37451 016bit TimerCPUSerial I/O UARTControl BoardCPU Interface16bit Timer16bit Timer8bitBaud rategeneratorROM0- A 8bitD- A 8bit4K/8K/16KRAM128/256/384A-D 07I/O PortA-D 7DC MotorPWM OutputM66510 (*)(Digital ASSP)VL1(*) Note: M66512 is available for N type.SeriesControl Signal• <strong>MITSUBISHI</strong>.... ELECTRIC 1 - 35


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORS. RELIABILITYAs the operating life time of optical devices. especially laser diodes. is important for reliability. it is explainedat this page. We sincerely hope that the "Mitsubishi semiconductor reliability handbook" will be of valuefor basic concepts for quality. quality assurance system. reliability theory and reliability tests of Mitsubishisemiconductor devices.1. Definition of life timeThe life time of laser diodes is defined as thechange of the. light output power P versus forwardcurrent IF characteristic because the P-I characteristicis the most important factor for laser diodes.In Fig. 1 (a) shows P-I characteristic under initialcondition.The laser should be operated continuously andits light output power(Po) should be kept constantby the APe drive.Operating current lop (0) at initial conditionincreases until lop (to) that is caused by decreasingslope efficiency and increasing threshold current asa result of degradation of the crystal. (Fig. 1 (b»As degradation increases, a constant light output(Po) can't be kept. (Fig. 1 (c»Fig. 2 shows an example of operating current lop(t) vs. operating time t.Life time is defined as the time at which theoperating current lop (t) is 1.5times as large as theinitial operating current lop (0).In Fig. 1, the life time of laser diodes justcorresponds to condition (b) .a.~Q Po -------­;;Q;;oc~ 1.0u10p(0)lop (to)Current IFFig. 1 Light output power vs.forward current characteristic of laser diodeOlc.;::;i 0.5o-0.~"iiiE(;z2.0~-------~--"'"OL-------~--~otoTime tFig. 2 Change in time of operating current1- 36•... . ··.<strong>MITSUBISHI</strong>...... ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSRELIABILITY2. Occasion of Influence on lifetimeIn the operating condition a large injection current density-kA/ c m' and a large optical density-MW / c m'exist in certain areas of the active region of laser diode, so their permitted quantity is not large for excessivecurrent injection and excessive light output power.So for practical purposes do not use the absolute maximum rating of the individual laser diodes.Under the maximum absolute values the case temperature influences the operating lifetime of the laserdiode. Increasing case temperature causes the injection current to increase the temperature of the activeregion, this results in accelerated degradation. Increasing the light output power causes the optical densityto increase resulting in accelerated degradation.Acceleration of degradation caused by temperature and light output power is expressed experimentally asfollows.(1) Accelerated life time due to temperature increaseArrhenius formula can be applied to the failure rateof a laser diode just like almost any othersemiconductor. Life time accelerationbetween caseindicated as follows.AL = e l!.kE tfactor ALtemperature To ( K) and T, (K) is~o -+,) = e "606 x l!.E(-r'o -+)where t::.. E ( ev) is the activation energy, k isBoltzmann's constant.For example, in the case where t::.. E = 1 eV, and thetemperature rise is 10 "C from room temperature(300k), the lifetime acceleration factor is 2.8.Fig. 3 shows the example of mean time to failure(MTTF) vs. case temperature Tc ("C).(2) Accelerated lifetime due to increased lightoutput power.There is no qualitative formula for acceleratedlifetime due to increased light output power, but itis expressed experimentally as follows.BL = ~~~rwhere BL is the lifetime acceleration factqr betweenthe light output powers PI and P2.In the case where n = 2, and the light outputpower change from 2mW to 4mW, the life timeacceleration factor is 4.Fig. 4 shows the example of mean time to failure(MTTF) vs. light output power (Po).:Ju 10·iF. Defect criterion§ 10' ; 6Iop > 50%~.


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSSAFETY CONSIDERATIONS• Safety considerations for laser diodesMitsubishi laser diodes are aU put given operatingaging tests at high temperature and have highreliability.In order to keep this reliability. take care with thefollowing points .Max. Rating f----------f\(• Maximum ratingLaser is a semiconductor device which has highcurrent density and high optical density ofabout 2.1 /.t m x 0.7 /.t m near field ( ML4000series). Degradation of devices should be consideredmore carefully than silicon semiconductordevices. Therefore. the absolute maximum ratingsshould never be exceeded even for a short time .• Surge current and heat radiationIn operating laser diodes. sufficient surge protectionmeasures are required. Surge current is easilyproduced during power switching and outputadjustment.Referring to the example of connections forlaser operation. and make sure that sufficientcare is taken.CurrentFig. 1 Light output power vs.forward current characteristic of laser diode· Prior light output adjustment should be done by load resistance fromseveral Q to over ten Q.· Turn the switch of APC(ACC) circuit to regulated light output. If there isany influence of optical feedback from solar battery. slant it a little andlet it receive the beam.Solderingwill be thebest.· Heatsinking (The life of laser diodes depends on the case temperature.Fix the laser to heat sinking and , make the operation temperature as lowas possible.)APC circuit (ACC) I· The beat way is to make a light output adjustment checking both currentand light output.· Refer to the drive circuit on page 1 - 34Slow starter circuit~Power supply· Keep power ON before setting up the laser diode, in order to protect itfrom surge current produced by switching (ON - OFF) the power supply.Fig. 2 Example of surge current suppressing and heat releasing circuit· AC noise filter for protecting against surge current from AC 100V.1 - 38'.. .·.·MlTSUBlSHI.... ELECTRIC


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSSAFETY CONSIDERATIONS• SafetiesThe laser beam from the laser ( diode) mainlyconsists of near infrared rays and is very harmfulto the human eyes though it is invisible. Take greatcare not to !Iook directly into the luminous pointwhen the laser is in operation. The laser beam canbe observed by with an IR viewer, lTV camera ora simpler,lR phosphor device (made by KODAKcorp.), which can all detect infrared rays.,·tWMilINVISIBLE LASER RAOIATION­AVOIO DIRECT EXPOSUAE TO BEA~PEAK POWERmONWAvELENGTHnmCL.ASS m b LASER PRODUCTWarning LabelSEMICONDUCTOR LASER~AVOID EXPOSURE-InvisibleLaser Rad iation is em ittedfrom this aperture.Aperture Label* Looking into the output beam condensedby the lens is strictly prohibited.For each device, each of the labels shown rightare attached to the individual laser container.They are illustrated to comply with the requirementsof DHHS standards under the Radiation Control forHealth and Safety Act of 1968.TYPE ML.:.:N.:::.o'-----____Ith lop ",A :.-Po~_.::.:mw~Ap~Im~_~ ~@~ ___·~cMANUFACTUREDThis produci conforms to OH HS regulations21 CFR Subchapter J.• <strong>MITSUBISHI</strong> ELECTRIC CORP..... 2-J.MclrUAlUCn 2c::home,Ct"tyoda kU,Tokvo 100 JapanIdentification and Certification Label• <strong>MITSUBISHI</strong>'"-ELECTRIC1 - 39


LASER DIODES


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEML2701DESCRIPTIONML2XXl is a high - Power AIGaAs semiconductorlaser which provides a stable. single transverse modeoscillation with emission wavelength of 830-870nmand standard light output of 8mW.ML2XXl uses a hermetically sealed package incorporatingthe photodiode for optical output monitoring.This high-performance. highly reliable. and long-lifesemiconductor laser is suitable for such applicationsas short- distance optical communications.FEATURES• Single longitudinal mode• Short astigmatic distance• Low threshold current. low operating current• Built- in monitor photodiode• High reliability. long operation fifeAPPLICATIONOptical communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 10Pulse (Note 1) 15VRL Reverse voltage (Laser diode) - 3VRO Reverse voltage ( Photodiode) - 15IFo Forward curr~nt( Photodiode) - 10Tc Case temperature - - 40~+ 70T.,g Storage temperature - - 55~+ 100Note 1: Duty less than 50 %. pulse width less than 1 J1. s.UnitmWVVmA°C°cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po = 8mWVop Operating voltage CWo Po = 8mW11 Slope efficiency CW.Po=8mWA P Peak wavelength CW.Po=8mW8;; 8eam divergence angle ( parallel) CW.Po=8mW8l. Beam divergence angle (perpendicular) CW.Po=8mW1mMonitoring output current CWo Po = 8mW. VRO = 1 V.(Photodiode) RL = 10 Q (Note 2)10 Dark current (Photodiode) VRO = 10VC, Total capacitance (Photodiode) VRO = OV. f = 1 MHzNote 2: RL is load resistance of the photodiode.LimitsMin. Typ.- 30.- 55- 1.8- 0.32830 850- 12- 350.3 0.8- -- 7Max.Unit50 mA90 mA2.5 V- mW/mA870 nm- deg.- deg.2.0 mA0.5 J1.A- pF• <strong>MITSUBISHI</strong>.... FIF~~?-"l


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIES.FOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS¢ 9 -0. 03Dimensions in min1 ~~I~ ~ ~'" c. =='-==r ............oReference slot(2) (1)4 - ¢ 0.45P.C.D.¢ 2.542-4


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward current characteristiesare shown in Fig.1. The threshold current forlasing is typically 30mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical power of about BmW isobtained at Ith + 25mA.Because Ith and slope efficiency T/ (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutputcurrent of the built- in monitor PD becomesconstant.)1:01:.JFig. 1 Light output vs. forward current1Or---,---r---T-"---"Forward current. IF (rnA)II Temperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent is shown in Fig.2. The characteristic temperatureTo of the threshold current typically 65K inTc ~ 50"(;, where the definition of To is Ith ex: exp(Tc/To).Fig. 2 Temperature dependence of threshold current700/ V",.......,/ V'0 1 010 2030 40 50Case temperature. Tc ("C)II Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency T/ is shown in Fig.3. The gradient is- 0.002mW/mA/oC.Fig. 3 Temperature dependence of slope efficiency~E"-~ 0.3,5'">-0t:.!!!.Il~..Q£0.2~Po~8mWCW..............~~~o 10 20 30 40 50Case temperature. Tc ("C).• MITSUI3ISHI.... ELECTRIC 2-5


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIESFOR OPTICAL COMMUNICATIONII Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general. as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV/oC at IF = , mA.4030Fig. 4 Forward current VS.voltage00Tc = 50 'C "'IJ"-..25'C0o 1.0 2.0Forward voltage. VF (V)EI Optical output dependence of emission spectraTypical emission spectrum under CW operation areshown in Fig.S. In general, at an output of 5mW,single mode is observed.The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationTc = 25'CXl8mWX1.3 5mWX7.9 j 2mWX250 _,11111 Ith843 853 863Wavelength. A (nm)mTemperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at. an output of CW 8mW is shown inFig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate 6fabout 0.25 nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthE 857-5"-""~858Po=8mW855~ 854.J/f,..-r'85325 30 35 40Case temperature. Tc ('C)2-6..• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIESFOR OPTICAL COMMUNICATIONI Far-field patternML2XX1 oscillates in the standard transverse mode(TEoo) regardless of the optical output level. Theyhave a typical emitting a'rea(size of near-field pattern)of 2.1 x 0.7 II rn'. 'Fig.7 and Fig.B show typicalfarfield radiation patterns in • parallel" and·perpendicular" planes.The fu1l angles at half maximum points (FAHM)are typically 12° and 35° .Fig. 7 Far- field patternsin plane parallel to heterojunctionslOmWOff- axis angie (deg.)Fig, 8 Far- field patterns,in plane perpendicular to heterojunctions5S:>oOlf- axis angie (deg.)I Pulse response waveformIn the digital optical transmission systems, theresponse waveform and speed of the light outputagainst the input current pulse waveform is one ofthe main concerns.In order to shorten the oscillation delay time, thelaser diode is usually biased close to the thresholdcurrent. Figure 9 shows a standard response waveformobtained by biasing ML2XX1 to Ith and applyinga square pulse current (top of Fig.9) up to BmW.Aquick response is obtained with rising and fallingtimes being both O.3ns typical.Fig, 9 Pulse response waveformTime (nsec.).,·<strong>MITSUBISHI</strong>"-ELECTRIC .2-7


<strong>MITSUBISHI</strong> LASER DIODESML2XX1 SERIESFOR OPTICAL COMMUNICATIONI Light output vs. monitoring output characteristicThe laser diodes emit-;'bearns from both of theirmirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbe,am since the rear beam. is proportional to thefront one. Fig.'10 shows an example of lightoutput vs. monitoring photocurrent characteristics.The monitored photocurrent linearly increases withthe light output.Fig. 10 Light output vs. monitoring output current~.5~'5Q'50.E.2'-'10r---------~r-----------,52Monitoring output. 1m (mA)1m Polarization ratio va. light output characteristicThe main polarization of ML2XX1 is made' in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the light polarizedin parallel to the active layer to the light polarizedin perpendicular to it. Figure 11 shows thestandard polarization ratio vs. Total light outputcharacteristic.The polarization ratio increases with the light power..~c:.2.~~Fig. 11 Polarization ratio vs. light output120r-------,-------""T'--------,4 8 12Light output, Po (mW)Bllmpedance characteristicsTypical impedance characteristics of the ML2XX1,with lead lengths of 2mm,is shown in Fig.12 withthe bias currents as the parameter. Test frequencyis swept from 100MHz to 1300MHz with 100MHzsteps.Above the threshold current" the impedance ofthe ML2Xxf is nearly equal to a series connectionof a resistance of 5' ohm and ah inductance of5nH.Fig. 12 Impedance characteristics2-8, • ,,' MlTSUBlSHI"ELECI'RIC


ML2XX1 SERIESFOR OPTICAL COMMUNICATION.. Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance betweeen the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions. Therefore, whenthe laser beam is focused, there is a diff-erence infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML2XXI is shown in Fig.13.The LD position which minimizes the horizontal andvertical spot diameters is obtained. The astigmaticdistance is the difference in moved distances thusobtained.E...~:21N","- ::;·1E0.VI105Fig. 13 Astigmatic distance'. Po=3mW CW II \ NA=O.7 I.. I " perpendicular\ ... I directionI\.......~, I' .. 'I:r-'I'~ \ I "I I I\. \ ' I•"-.... ,,..,.... paralleldirectionAstigmatic--;oj--+~ distance 6.8 Jl mooL-----~10--~--2~OL---~3~O-----740-LD moving distance. (Jl m)2-9


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML31 01, ML3411DESCRIPTIONML3XX1 is an AIGaAs semiconductor laser whichprovides a stable. single transverse mode oscillationof a standard light output of 3mW aroundemission wavelength of 850nm.ML3XX1 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high- perfomance. highly reliable.and long - life semiconductor laser is suitable forsuch applications as optical information processingand precision telemetry.FEATURES• Single longitudinal mode• Short astigmatic distance (1 IJ, m standard)• Low threshold current. low operating current• Built- in monitor· photodiode• High reliability. long operation lifeAPPLICATIONLaser beam printer. telemetry. instrumentation.alignment. and optical communicationABSOLUTE MAXIMUN RATINGSSymbol Parameter Conditions RatingsCW 3.5Po Light output powerPulse (Note 1) 6VRL Reverse voltage ( Laser diode) - 3VRD Reverse voltage (Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case temperature - -40-+ 60T.t9 Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse width less than 1 Il s.UnitmWVVmA·C·cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·c)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po=3mWVop Operating voltage CWo Po=3mWT} Slope efficiency CW.Po=3mWA P Peak wavelength CW.Po=3mW811 Beam divergence angle (parallel) CWo Po=3mW8J. Beam divergence angle (perpendicular) CWo Po=3mWMonitoring output current CWo Po = 3mW. VRD = 1 V.1m(Photodiode) RL = 10 Q (Note 2)ID Dark current (Photodiode) VRD = 10VCt Total capacitance (Photodiode) VRD = OV. f = 1 MHzNote 2: RL IS load resistance of. the photodiode.LimitsUnitMin. Typ. . Max.- 20 40 mA- 30 50 mA- 1.8 2.5 V- 0.3 - rr)W/mA830 850 870 nm8 11 18 deg.20 30 50 deg.0.1 0.3 0.7 mA- - . 0.5 I1A- 7 - pF2-10.• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS16±0.25Dimensions in mm(3)as.~ IIIIPD S LD(2) (1)mmReferencer slot(3)as.~II IIPD 5 LD(2) (I)3 - ¢ 0.45" 0.05P.CD. ¢ 2.54(1)(3)(2)• <strong>MITSUBISHI</strong>.... ELECTRIC2 - 11


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSD Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig.l. The threshold current forlasing is typically 20mA at room temperature.Above the threshold. the light output increases. linearly with current. and no kinks are observed inthe curves. An optical power of about 3mW isobtained at Ith + 10 mA.Beacause Ith and slope efficiency TJ (dPo/ dlF) istemperature dependent. obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in ,monitor PO becomesconstant.)Fig. 1 Light output vs. forward current4o~~~~==~ __ -L __ ~o 10 20 30 40 50Forward current IF (rnA)EI Temperature dependence of threshold current (lth)A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictemperature. To of the threshold current is typically65K in Tc;;;; 50°C. where the definition of To is hhoc exp (Tc/To)Fig. 2 Temperature dependence of threshold current40r-------~------_r-------,10~------~------~------~o 20 40 60Case temperature Tc ("C)I Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency TJ is shown in Fig.3. The gradient is- O.0015mW/mA/oC.Fig. 3 Temperature dependence of slope efficiencyg O.2~------+-------~------~u;o 20 40 60Case temperature Tc ("C)2-12'. <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current va. voltageTypical forward current vs. voltage characteristics areshown in Fig.4. In general, as the case temperaturerises, the forward voltage VF decreases slightly againstthe constant current IF. VF varies typically at a rateof - 2.0mV/oC at IF = 1 mA.~.§..!!oE~:JU"EE0...Fig. 4 Forward current vs. voltage40302010a oTc=50C"'" "" 25'C)1.0 2.0Forward voltage VF 01)II Optical output dependence of emission spectraTypical emission spectrum under CW operation areshown in Fig.5. In general, at an output of 3mW, singlemode is observed. The peak wavelength dependson the operating case temperature and forwardcurrent (output level).Fig. 5 Emission spectra under CW operationTc = 25"CXl3mWX1.6 III 2mWX16 ..dII lmWX16Ith840 850 860Wavelength A (nm)m Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an, output of CW, 3mW is shown inFig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/oC typical.Fig .. 6 Temperature dependence of peak wavelength813E 812581 1.t:a;j ., 810~"'"Po=3mW1. 809~/,-r-l-1I80825 30 3540Case temperature Tc ("C)• <strong>MITSUBISHI</strong>..... ELECTRIC 2 -13


<strong>MITSUBISHI</strong>l.ASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternML3XX1 oscillates in the standard transverse mode(TEoo) regardless of the optical output level. Theyhave a typical emitting area(size of near-field pattern)of 2.2 x 0.8.u m'. Fig.7 and Fig.8 show typical farfieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximum points (FAHM)are typically 11 0 and 30 0 •0"-':50.':50~.r;g.2 '"~a::in1.00.5Fig. 7 Far-field patternsplane parallel to heterojunctions ell9"0-30 30Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunctions e .L1. 0,---...,----;..,..---.,.---,8.L0"-'5S:J01: 0.5~'" >~a:: "-30 0Off- axis angle (deg.)m Pulse response waveformIn the digital optical transmission systems. the responsewaveform and speed of the light output against the inputcurrent pulse waveform is one of the main concerns.In order to shorten the oscillation delay time. thelaser diode is usually biased close to the thresholdcurrent. Figure 9 shows a standard response waveformobtained by biasing ML3XX1 to Ith and applyinga square pulse current (top of Fig. 9) up to 3mW.A quick response is obtained with rising and fallingtimes being 0.3ns and O.4ns typical respectively.Fig. 9 Pulse response waveformo 2 3 5Time (nsec.)2 -14• <strong>MITSUBISHI</strong>"ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMS·I Light output vs. monitoring output characteristicFig. 10 Light output vs. monitoring output currentThe laser diodes emit beams from both of their4mirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontLbeam since the rear beam is proportional to the ~/front one. Fig.10 shows an example of light .§output vs monitoring photocurrent characteristics.2When the front baeam output is 3mW, the monitoroutput becomes O.3mA.1/Vo o 0.1 0.2 0.3 0.4 0.5Monitoring output. 1m (mA)1m Polarization ratio vs. light output characteristicThe main polarization of ML3XX1 is made in thedirection paraliel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in paraliel to the active layer to the lightpolarized in perpendiculat to it. Figure 11 showsthe standard polarization ratio vs. total light outputcharacteristic.The polarization ratio increases with the light power.-iQ.~Q..21!c;-0:~.!!!~Fig. 11 Polarization ratio vs. light output10080604020/vV ./o o/ V 2 3 4Light output, Po (mW)• Impeda~ce characteristicsTypical impedance characteristics of the ML3XX1, withlead . lengths of 2mm, is shown in Fig.12 with thebia~ currents as the parameter. Test frequency is sweptfrom 100MHz to 1300MHz with 100MHz steps.Above the threshold current, the impedance ofthe ML3XXl is nearly equal to a seriel! connectionof a resistance of 50hm and an inductance of5nH.Fig. 12 Impedance characteristics--,.x---Iop•. -MlTSUBlsHI..... ELECTRIC 2-15


<strong>MITSUBISHI</strong> LASER DIODESML3XX1 SERIESFOR OPTICAL INFORMATION SYSTEMSIII Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7 ofML3XXl is shown in Fig.l 3.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus .obtained.E'l.~~:2;:~::;;.~00.r.n105oFig. 13 Astigmatic distance•Po =3mW CW\\ " NA=O. 7" , I'",I" , ," , ,.. ,., ,'II , ,, Parallel.: ~direction\",\,"......... ~ ..'7•- • direction:--Perpendicular1--


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML4012N, ML41 02, ML4402,ML4412N, ML4442N .DESCRIPTIONML4XX2 is an AlGa As semiconductor laser whichprovides a stable, single transverse mode oscillationwith emission wavelength of 780 nm and standardlight output of 3mW.FEATURES• Single longitudinal mode• Low threshold current, low operating current• Built- in monitor photodiode• High reliability, long operation lifeML4XX2 uses a hermetically sealed packageincorporating the photodiode for optical output APPLICATIONmonitoring. This high - perfomance, highly reliable, Audio compact disk player, laser beam printer,and long -life semiconductor laser is suitable forsuch applications as optical disk reading and alignmentoptical information processing.optical distance meter, Bar code reader, opticalABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 5Pulse (Note 1) 6VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage ( Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case temperature - - 40-+ 60Tstg Storage temperature - - 55-+ 100Note 1: Duty less than 50 %, pulse width less than 1 /L s.UnitmWVVmA'c~CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po=3mWVop Operating voltage CW,Po-3mW1/ Slope efficiency CW.Po-3mWA P Peak wavelength CW,Po-3mW() II Beam divergence angle (parallel) CW,Po=3mW()J. Beam divergence angie (perpendicular) CW,Po-3mW1mMonitoring output current CW, Po = 3mW, VRD = 1 V.(Photodiode) RL= 10 Q (Note 2)ID Dark current ( Photodiode) VRD -10VCt Total capacitance ( Photodiode) VRD - OV. f - 1 MHzNote 2 . RL IS load resistance of the photodlode.LimitsMin. Typ. Max.Unit- 30 60 mA- 40 70 mA- 1.8 2.5 V- 0.3 - mW/mA765 780 795 nm8 11 15 deg.20 33 45 deg.0.15 0.35 0.7 mA- - 0.5 /LA- 7 pF• <strong>MITSUBISHI</strong>.... ELECTRIC2-17


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGSO. 4 ~g. \' 2. O(P. C. 0 ) Dimensions in mm00+1".ffP-===!=0(3)RaseI; IIPD S LDM~+--t±i-:=MoN+I'''0..:+1+1oc..:i-F=Ti=;=~+- Reference plane(2) (1)Dimensions in mm(3)~.s.IIIIPD S LD(2) (1)19 :!:8. 03 Dimensions in mmReference slotroo~;f!..--'---+-"_",Reference ..;;;:plane+1oc..:3 - if> 0.45 ± 0.05p.e.D. if> 2.54(1 )(3)(2)2 -18.• <strong>MITSUBISHI</strong>"-ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSMAX.~ 7.6~6.4Dimensions in mm(3)Reference slotA·S •1/ 1/PD S LD(2) (1)3 - ~ 0.45 ± 0.05p.e.D. ¢ 2.54(1)(3)(2)¢ 9 ::t::g. 03 Dimensions in mmgsd+1'{j .-------j---.~Reference ~ l---r"---rr---'plan. r::-l---'-----mrW-lIr---'Reference slot(3)A'S.II IIPD S LD(2) (1)•.. <strong>MITSUBISHI</strong>.... ELECTRIC2 -19


'.,., ,<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig.1. The threshold currentfor lasing is typically 30mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical power of about 3mW isobtained at Ith + 10mA.Beacause Ith and slope efficiency "1/ (dPo/dIF) is Etemperature dependent, obtaining a constant output :3at varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)Fig. 1 Light output vs. forward current5o~ __-=~~__ ~ __-L__ ~o 80 100Forward current IF (rnA)I Temperature dependence of threshold current (lth)A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictemperature To of the threshold current is typically140K in Tc;:;;;60"C, where the definition of To is Ithex: exp (Tc/To)Fig. 2 Temperature dependence of threshold current70


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSI Forward current va. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variesty'picallY at a rate of - 2.0mV/"C at IF = , mA.:( 30-5.,!!,E20§""E~ 10~Fig, 4 Forward current vs. voltage40TC=50~J25"C1.0 2.0Forward voltage VF (V)I Optical output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig.5. In general, at an output of 3mW,single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level),Fig. 5 Emission spectra under CW operationTe = 25"CXl5mWX23mWX20 j lmWX20Ith770 780 790Wavelength .l.(nm)IDTemperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW, 3mW is shown inFig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.26nm/"C typical.Fig. 6 Temperature dependence of peak wavelengthE-50-"".~""~785 Po = 3mW784783782r-78 1 lr..-78025 30~)'35J40Case temperature Te ("C)2- 21


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far - field patternML4XX2 oscillates in the standard transverse mode(TEoo) regardless of the optical output level. Theyhave a typical emitting area (size of near- fieldpattern) of 2.1 x 0.7 fJ. m'. Fig.7 and Fig.S showtypical far-field radiation patterns in "parallel" and"perpendicular" planes.The full angles at half maximun points (FAHM)are typically 11· and 33·~'5Q'5oFig. 7 Far- field patterns in planeparallel to heterojunctions 81/811Reflected lightV- 5mWv 3mwfrom monitoringphotoiode\IWY ~tlmW-30 o 30Off-axis angle (deg.)Fig. 8 Far- field patterns in planeperpendicular to heterojunctions 8.L'5S:>oOff-axis angle (deg.)II Pulse response waveformIn the digital optical transmission systems. theresponse waveform and speed of the light outputagainst the input current pulse waveform is one ofthe main concerns.In order to shorten the oscillation delay time. thelaser diode is usually biased close to the thresholdcurrent since the delay time is a time for chargingthe junction up to the threshold current. Figure 9shows a standard response waveform obtained bybiasing ML4XX2 to Ith and applying a square pulsecurrent (top of Fig.9) up to 5mW. A quick responseis obtained with rising and falling times beingO.3ns and O.4ns typical respectively.5lcjFig. 9 Pulse response waveformTime (nsec.)2-22'. . <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSII Light output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.10 shows an example of lightoutput vs. monitoring photocurrent characteristics.When the front beam output is 3mW. the monitoroutput becomes 0.3 mA.Fig. 10 . Light output vs. monitoring output current5~,500..SS0.E.2'..J2 L//L/L0.2 0.4 0.6Monitoring output 1m (mA)lID Polarization ratio vs. light output characteristicThe main polarization of ML4XX2 i.s made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figure 11 showsthe standard polarization ratio vs. total light outputcharacteristic.The polarization ratio increases with the lightpower.,0..~a::.2~c:.21;;.!::!li00..Fig. 11200150100V50Polarization ratio vs. light output/v2 4 6Light output Po (mW)II SIN vs. optical feedback ratioS/N vs. optical feedback ratio. where the freQuencyis 20kHz and the bandwidth is 300Hz is shown inFig.12.That where the freQuency is 10MHz and thebandwidth is 300kHz is shown in Fig.13.The S/N value is the worst value obtained atcase temperatures of 25"C to 50 "C.Fig. 12 S/N vs. optical feedback ratiof=20kHz, BW=300Hz, T c=25-50'C70r-r-----~r------,-------,80~~------~----~-------;.....~ 90~~.~~ ..-...--~------~------;z ~ /""'--. ~::-~ 100...: :.-::::w- .-0-=10, .:..:::::::lil.... ~;*':-::~~~.:.~:::v--C>--lmW--...[J.·-2mW· .. -- .. -3mW--&-4mW11 0 ~+-------t------~~-----i ....•.. - 5mW120~~~ ______ ~ ____ ~~ ____ ~o 0.01 0.1 10Optical feedback ratio Rf (%)• <strong>MITSUBISHI</strong>.... ELECTRIC 2-23


<strong>MITSUBISHI</strong> LASER DIODESML4XX2 SERIESFOR OPTICAL INFORMATION SYSTEMSFig. 13 S/N vs. oPtical feedback ratiof=10MHz, BW=300kHz, Tc =25-50'C5060~~----~------t------i---O--lmW---Q--2mW-"-


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML4102A, ML4402A, ML4412ADESCRIPTIONML4XX2A is an AIGaAs semiconductor laser whichprovides a stable, single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 3mW.ML4XX2 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high - performance, highly. reliable,and long - life semiconductor laser is suitable forsuch applications as optical disk reading andoptical information processing.FEATURES.Low noise• Built- in monitor photodiode• High reliability. long operation life• Multiple longitudinal modeAPPLICATIONReading memory disk. video disk player, data linkABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsPo Light output powerCWPulse (Note 1)VRL Reverse voltage (Laser diode) -VRO Reverse voltage ( Photodjode) -IFo Forward current ( Photodiode) -Ratings5621510Tc Case temperature - -40-+60Tst; Storage temperature - -55-+ 100Note 1: Duty less than 50 96, pulse width less than 1 p. s.UnitmWVVmA"C"CELECTRICAUOPTICAL CHARACTERISTICS (Tc = 25 "C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW,Po=3mWVop Operating voltage CW,Po-3mW1/ Slope efficiency CW,Po =3mW). P Peak oscillation wavelength CW,Po=3mW(JII Beam divergence angle (parallel) CW,Po =3mW(JL Beam divergence angle (perpendicular) CW,Po-3mW1m Monitoring output current CWo Po = 3mW. VRO = 1 V.( Photodiode) RL = 10 Q (Notel)10 Dark current ( Photodiode) VRD-10VCt Total capacitance (Photodiode) VRD - OV, f -1MHzNote 2: RL is load resistance of the Photodiode.LimitsMin. Typ. Max.Unit- 40 60 mA- 50 70 mA- 1.8 2.5 V- 0.32 - mW/mA765 780 795 nm8 11 15 deg.20 33 45 deg.0.15 0.4 0.7 mA- 0.5 p.A- 7 - pF. •. ' <strong>MITSUBISHI</strong>.... B.ECTRIC.2-25


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGSDimensions in mm(3)Aa ••II I!PO S . LO(2) (1)~ Referenceplan.Dimensions in mmReferenceplane0+1... "'.:}+ 1o0~-K~,J TReference slot3- ¢o. 45±0.05p.e.D. ~ 2.54~ifPO S LO(2) (I)(1)(3)(2)fie ~g.03Dimensions in mmReference slot(3)hI!PO,S,LO(2) (1)(1)(3)(2)2-26•. MrrsuBlsHl·.... B.ECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward currentcharacteristics are shown in Fig.l. The thresholdcurrent for lasing is typically 40mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about3mW is obtained at Ith + 10mA.Because Ith and slope efficiency 11 (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PD becomesconstant.)1::.J '"Fig. 1 Light output VS. forward current54O"C,21f~20"C Tc;,=60"C'\) j)20 40 60 80Forward current IF (mA)IElTemperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent is shown in Fig.2. The characteristic To ofthe threshold current is typically 140K in T c;:;; 70°C,where the definition of Tois Ith ex: exp (Tc/To)Fig. 2 Temperature dependence of threshold current


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV /'C at IF = 1 mA.:?.s.!:E~::J"'E~0u.Fig. 4 Forward current vs. voltage40302010o oTC=50~jj25"C1.0 2.0Forward voltage VF (V)&I Optical output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig.5. Generally, at the output of about3mW, the laster oscillates in the multi-mode; whenthe output is raised to about 5mW ,it beginsoscillating in the single mode. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationTc = 25'CXl5mWX6.3 ...J 3mWX80 .. 1I11ll~ lmWX80Ith771 781 791Wavelength ,l.(nm)iii Temperature dependence of peak wavelengthA typical temperature dependence .of thepeakwavelength at an output of CW 3mW is shown inFig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthE..50."".c0,c:.lI!Q)>~'"~785784783782Po=3mW/'78lV/7802530L ,/35/40Case temperature Tc ("C)2-28'. <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternML4XX2A oscillates in the standard transversemode (TEoo) regardless of the optical output level.They have a typical emitting area (size of near-fieldpattern) of 2.1 f.l rn'. Fig.7 and Fig.8 show typical far-fieldradiation patterns in "parallel" and ·perpendicular"planes.The full angles at half maximum points (FAHM)are typically 11 0 and 33 0 •~Co "'5oFig. 7 Far- field patternsin plane parallel to heterojunctions 81/8 IIReflected lightlmW30Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunctions 8.loC.Co "'5oOff - axis angle (deg.)iii Pulse response waveformIn the digital optical transmission systems. theresponse waveform and speed of the light outputagainst the input current pulse waveform is one ofthe main concerns.Generally. the laser diode is biased up to near thethreshold current to minimize oscillation delay time.Figure 9 shows a standard response waveformobtained by biasing ML4XX2A to Ith and applyinga square pulse current (top of Fig.9) up· to 3mW.The rise time and the fall time in Fig.9 are typicallyO.3ns and O.4ns. They are limited by responsespeed of the detecter.21c:oCo~Fig. 9 Pulse response waveformTime (nsec.)InpUj pulse• <strong>MITSUBISHI</strong>;"ELECTRIC2 -29


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMSI Light output vs. monitoring output characteristicThe laser diodes emit beams form both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.10 shows an example of light outputvs monitoring photocurrent characteristics. Whenthe front beam output is 3mW. the monitor outputbecomes O.4mA.Fig. 1054~.5£ 3~" C>;0.E.2'~2Light output vs. monitoring output current/LLL1 L VV0.2 0.4 0.5Monitoring output 1m (mA)1m Polarization ratio vs. light output characteristicThe main polarization of ML4XX2A is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figure 11 shows thestandard polarization ratio vs. total light outputcharacteristic.The polarization ratio increases with the lightpower.-iFig. 11200Q. 150~0:0Polarization ratio vs. light output/1VL V0o 2 4 6Light output Po (mW)_Impedance characteristicsTypical impedance characteristics of the ML4XX2A.with lead lengths of 2mm. and shown in Fig.12with the bias currents as the parameter.Test frequency is swept from 100MHz to 1300MHzwith 100MHz steps.Fig. 12 Impedance characreristics2-30• . <strong>MITSUBISHI</strong>...... ELECTRIC·


<strong>MITSUBISHI</strong> LASER DIODESML4XX2A SERIESFOR OPTICAL INFORMATION SYSTEMS111 SIN VB. optical f,edback ratioS/N vs optical feedback ratio, where the frequencyis 20kHz and the bandwidth is 300Hz is shown inFig.13.That where the frequency is 10MHz and thebandwidth is 300kHz is shown in Fig.14.The S/N value is the worst value obtained atcase temperatures of 25"C to 50 "C.zFig. 13 S/N vs: optical feedback ratiof=20kHz. BW=300Hz. T c=25-50°C70rT-------r------,-----~80UJ 100--C>--lmW---Q·-2mW···---lmW80 ---Q'-2mW'''-


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML4403, ML4403R, ML4413N,ML4413CDESCRIPTIONML4XX3 is an AIGaAs semiconductor laser Whichprovides a stable, single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 3mW.ML4XX3 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high- performance, highly reliable,and long -life semiconductor laser is suitable forsuch applications as laser beam printers.FEATURES• Single longitudinal mode• Low threshold current, low operating current• Built- in monitor photodiode• High reliability, long operation life.Low droopAPPLICATIONLaser beam printerABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 5Pulse (Note 1) 6VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage ( Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case Temperature - - 40-+ 60T5,g Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse width less than 1 !.l s.UnitmWVVmA'c'CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po=3mWVop Operating voltage CW.Po=3mW17 Slope efficiency CW.Po-3mWAP Peak wavelength CW.Po-3mWell Beam divergence angle ( parallel) CW. Po = 3mWe.'- Beam divergence angle (perpendicular) CW.Po =3mW1mMonitoring output current CWo Po = 3mW. VRD = 1 V.( Photodiode) RL = 10 Q (Note 2)ID Dark current ( Photodiode) VRD = 10VC, Total capacitance ( Photodiode) VRD = OV. f = 1 MHzNote 2. RL IS load resistance of the photodlode.LimitsMin. Typ.- 35- 50- 1.8- 0.15765 7808 1120 330.4 1.0- -- 7Max.Unit60 mA85 mA2.5 V- mW/mA795 nm15 deg.45 deg.2.0 mA0.5 JlA- pF2-32•. <strong>MITSUBISHI</strong>"ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGSDimension in mmMAX.¢ 7.6¢6.4A(3) CaseII IIPD S LDReference slot(2) (1)ML4403~+1Reference ~-r------f-"""'''"''''plane ~ t---r"---,...,---'- +13 - ¢ 0.45 ± 0.05to-P .C.D. ¢ 2.54(1 )(3)(2)(3)PDS fI+~ LD(2) (1)ML4403RDimensions in mmMAX.¢ 7.6PDA(3) CaseII IIS. LDo:g -8 ~~k~::;;;::~~C---~ Reference slotOJ ":~ 0~ ~+1 0t===FIfi==I==='il(2) (1)ML4413N(3)(1 )(3)(2)3 - 1> 0.45 ± 0.05P.C.D.1> 2.54-1 1/AasePD S LD(2) (1)ML4413C'. MITSU. BlSHI ..... ELECTRIC ., 2 - 33


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSa Light output vs forward currentTypical light output vs. forward current characteristicsare shown in Fig.l. The threshold currentfor lasing is typically 35mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical power of about 3mW isobtained at Ith + 15mA.Because Ith and slope efficiency T/ (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PD becomesconstant.)~.5Fig. 1 Light output vs. forward current5~ 3~----~----~~~+-r-~S0. 20"C. ~ 2 ~----t-----"~H-+----clc-------lForward current IF (mA)I Temperature dependence of threshold current(lth)A typical temperature dependence of the thresholdcurrent is shown Fig.2. The characteristic temperatureTo of the threshold current is typically 130K inTc:;; 60°C,(Tc/To)where the definition of To is Ith oc expFig. 2 Temperature dependence of threshold current7060------ --50:(40.52 30E~:;u20'C'0.s:..~.s:t-10o20 40 60Case temperature Tc ("C)I] Temperature dependence of slope efflclenty( T/ 0)A typical temperature dependence of the slopeefficiency T/- O.0005mW/mA/oC.is shown in Fig.3. The gradient isFig. 3 Temperature dependence of slope efficiency0.3> 0.2:~~&~1 O. 0-- ----20 40 60Case temperature Tc ("C)2-34'.<strong>MITSUBISHI</strong>;"ElECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current va. voltageTypical forward current vs. voltage characteristicsare shown ing Fig.4; In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF, VF variestypically at a rate of - 2.0mV/"C at IF = 1 mAo40< 30 §.!:E~ 20:J(J"E~0 10 u.Fig. 4 Forward current vs. voltageTc =50"C"} 25°C1.0 2.0Forward voltage VF (V)II Optlca,1 output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig.5. In general, at an output of 3mW.single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationXl5mWX1.6 3mWX6.3 lmWX16 .... Ith778 788 798Wavelength ~(nm)I Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of 3mW is shown in Fig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.26nm/"C typical.Fig. 6 Temperature dependence of peak wavelength786Po=3mWE L785.5Q""' 784.s::C,17831 782~78125V.Jc:_30 35 40Case temperature Tc ("C)• MlTSUBlSHI.... ELECTRIC ? - ."1"


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternML4XX3 oscillates in the standard transverse mode(TEoo) regardless of the optical output levle. Theyhave a typical emitting area (size of near- fieldpattern) of 2.1 J,lm'X 0.7 J,lm'. Fig.7. and Fig.8 showtypical far- field radiation patterns in "parallel" and"perpendicular" planes.The full angles at half maximum points (FAHM)are typically 11 0 and 33 0 •~::JoFig. 7 Far- field patternsin plane parallel to heterojunctions 8/18/1Reflected lightfrom monitoringphotodiodei'-5mwLP \~lmw:"- 3mW-30 o 30Off- axis angle (deg.)Fig. 8 Far- field patterns in planeperpendicular to heterojunctions 8.LsS::JoOff-axis angle (deg.)m Pulse response waveformIn the digital optical transmission systems, theresponse waveform and speed of the light outputagainst the input current pulse waveform is one ofthe main concerns.In order to shorthen the oscillation delay time,the laser diode is usually biased close to thethreshold current since the delay time is a time forcharging the junction up to the threshold. Figure 9shows a standard response waveform obtained bybiasing ML4XX3 to Ith and applying a square pulsecurrent (top of Fig.9) up to .3mW. The rise timeand the fall time in Fig.9 are typically 0.3ns and0.4ns, respectively.3lcoIFig. 9 Pulse response waveformt,=220Time (nsec.)Pulse drivecurrentItf=250ps52- 36' ..... MITSU.· .BlSHII!T&ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSII Light output vs. monitoring output characteristicThe laser diodes emit beams form both of theirmirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.'O shows an example of light outputvs. monitoring photocurrent characteristics. Whenthe fornt beam output is 3mW, the monitor outputbecomes l.OmA.Fig. 10 Light output vs. monitoring· output current~50"-5Q50E354/32V1 /VV~a a 0.5 1.01.5Monitoring output 1m (mA)II Polarization ratio vs. light output characteristicThe main polarization of ML4XX3 is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figure " shows thestandard polarization ratio vs. total light outputcharacteristic.-i"-"- ii:.2ec:0:~1ii0"-Fig. 1120015010050/a oPolarization ratio vs. light outputIL/ /v "..-2 3 4 5Light output Po (mW)II Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser be.am. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML4XX3 is shown in Fig.12.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E::t'-'1~~~C.~III0QI/)Fig. 12 Astigmatic distance10Po -3mW CW:T',.\,\5 .~ ,.• perpendicular ,I direction ,,',, ,a\ ,- t~ ,--0-,f-~~ ~arallel. ''-.1'Astigmat~ ts;anoe 3.6 ill mdirectiona 10 20 30LD moving distanoe (il m)• <strong>MITSUBISHI</strong>.... ELECTRIC 2-37


<strong>MITSUBISHI</strong> LASER DIODESML4XX3 SERIESFOR OPTICAL INFORMATION SYSTEMSIII Wave front distortion characteristicsTypical wave ·front distortion (mainly astigmatism)of ML4XX3 is shown in Fig.l 3. This figure showswave front (phase front) when laser beam iscollimated.Various aberrations are calculated by Zernike'spolynomaial approximation for the interferencefringes observed by the Mach-Zehnder interferometer.Fig. 13 Wave front distortionRMS: O. 030Po=3mW CW 0 213NA=0.28 P-V: .o~.- " >~ 'ii~j.5-1.0-0.5 0.0 0.5 1.0parallel direction0.001-0.052-0.105• DroopDroop characteristics indicate the amount whichoptical light output is down by heating up whenconstant pulse current is loaded on LD.Definition is follows.Po


<strong>MITSUBISHI</strong> LASER DIODESML4XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML4405, ML4445NDESCRIPTIONML4XX5 is a visible light AIGaAs semiconductorlaser which provides a stable, single transverse modeoscillation with emission wavelength of 750nm andstandard light output of· 3mW.ML4XX5 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring.This high- performance, highly reliable, and longlifesemiconductor laser is suitable for suchapplications as the light sources for a bar codereaders and printer.FEATURES• Low threshold current, low operating current• Built- in monitor photodiode• High reliability, long operation lifeAPPLICATIONBar code reader, laser beam printerABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsCWPo Light output powerPulse (Note 1)VRL Reverse voltage (Laser diode) -VRD Reverse voltage ( Photodiode) -IFD Forward current ( Photodiode) -Ratings5621510Tc Case Temperature - -40-+60Tstg Storage temperature - -55-+ 100Note 1: Duty less than 5096, pulse width less than 1 /1. s.UnitmWVVmA'C°cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW, Po=3mWVop Operating voltage CW,Po=3mWT/ Slope efficiency CW,Po=3mWA P Peak wavelength CW, Po = 3mW8 II Beam divergence angle ( parallel) CW, Po = 3mW8l. Beam divergence angle ( perpendicular) CW, Po = 3mW1mMonitoring output current CW, Po = 3mW, VRD = 1 V,CPhotodiode) RL= 10 Q (Note 2)ID Dark current ( Photodiode) VRD-10VCt Total capacitance ( Photodiode) VRD = OV, f = 1 MHzNote 2: RL IS load resistance of the photodlode.LimitsMin. Typ.- 35- 45- 2.0- 0.3735 7508 1120 330.15 0.35- -- 7Max.Unit70 mA80 mA3.0 V- mW/mA765 nm15 deg.45 deg.0.7 mA0.5 /1. A- pF...• <strong>MITSUBISHI</strong>..... ELECTRIC2 - 39


<strong>MITSUBISHI</strong> LASER DIODESML4XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS~ 9 :!:8. 03 Dimensions in mmMAX. 0.6"6.4Reference slot. AS ..(3)III.!PO S LO(2) (1)tio,..:Dimensions in mm(3) .Reference slotA·s •I.! IIPO S LO(2) (1)2-40'. .MITSUBISH. I~El.ECTRIC.


<strong>MITSUBISHI</strong> LASER DIODESML4XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Llgth output va. forward currentTypical light output vs. forward currentcharacteristics are shown in Fig.l. The thresholdcurrent for lasingis typically 35mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about3mW is obtained at Ith + 10mA.Because Ith and slope efficiency 7J(dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.).E.2'..JFig. 1 Light output VS. forward current5421/'/1/!~~~/F50Y;j)10 20 30 40 50 60Forward current IF (mA)II Temperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictemperature To of the threshold current is typically130K in Tc;:;; 50·C, where the definition of To is Ithoc exp (T c/T 0)Fig. 2 Temperature dependence of threshold current:(§EEi!!:;u'" '0.t:.


<strong>MITSUBISHI</strong> LASER DIODESML4XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSII Far - field patternML4XX5 oscillates in the standard transverse mode(TEoo) regardless of. the optical output level. Theyhave a typical emitting area (size of near- fieldpattern) of 2.1 x 0.7 f.J, rrf. Fig.4 shows typical farfieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximum points (FAHM)are typically 1 1 ° and 33 ° .~50.50..:-~..~ga:Fig. 4 Far- field patterns in parallel and planeperpendicular to heterojunctions0.5060Off-axis angle (deg.)II Emission spectraTypical emission spectra under CW operation areshown in Fig.5. In general. at an output of 3mW.single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationXl5mWX1.3 3mWX15.8 .J lmWX50Ith740 750 760Wavelength A (nm)[gTemperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW 3mW is shown inFig.B.As the temperature rises. the peak wavelengthshifts to the long wavelength side at a rate ofabout 0.20nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthE-5s=Sc~>;: '""" :lln.760 Po -3mW758756~,-7541/752V75025 35 50J60Case temperature Te ('C)2-42. '<strong>MITSUBISHI</strong>.... B.ECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSI Light output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfac~s, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.7 shows an example of light outputvs. monitoring photocurrent characteristics.When the front beam output is 3mW, themonitor output becomes 0.35mA.Fig. 7 Light output VS.432/17 /vmonitoring output currentV /VI Astigmatic distanceThere seems to be Ii difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML4XX5 is shown in Fig.S.The LD position which minimizes the horizontaland vertical spot diameters is obtaained. Theastigmatic distance is the difference in moveddistances thus obtained.E-3I~~.~..8.CI)100.1 0.2 0.3 0.4 0.5Monitoring output 1m (mA)Fig. 8 Astigmatic distancePo =3mWCWI'NA=0.7,I,II, , . perpendicular~ V direction" 1"• . - ..... ' ~~~~.'I ,",I5o a\,:1 -.... ,.... ~'Astigmr~ distance 5.6 It m\ , ~ directionI I I10 20 30LD moving distance (It m)2-43


<strong>MITSUBISHI</strong> LASER DIODESMl4XX10 SERIESFOR OPTICAL COMMUNICATIONTYPE,NAMEiML40110RDESCRIPTIONML4XX10 is an AIGaAs semiconductor laser whichprovides a stable. single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 3mW.ML4XXlO uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high- performance. highly reliable.and long-life semiconductor laser is suitable forsuch applications as the light sources for anoptical communications including data link.FEATURES• Built- in monitor photodiode• High reliability. long operation life• Low noiseAPPLICATIONOptical communication system (Data link)ABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 5Pulse (Note 1) 6VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage ( Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case Temperature - - 40-+ 60Tstg Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse WIdth less than 1 11 S.UnitmWVVmA-c·CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po=3mWVop Operating voltage (Laser diode) CW.Po-3mW1/ Slope efficiency CW.Po=3mW.l. P Peak wavelength CW.Po=3mW8/1 Beam divergence angle ( parallel) CW.Po=3mW81. Beam divergence angle (perpendicular) CW.Po-3mWMonitoring output current CWo Po = 3mW. VRD = 1 V.1m(Photodiode) RL= 10 Q (Note 2)ID Dark current ( Photodiode) VRD -10VCt Total capacitance ( Photodiode) VRD - OV. f - 1 MHzNote 2: RL IS load resIstance of the photodlode.LimitsMin. Typ. Max.- , 45 60- 53 70- 1.8 2.5- 0.32 -765 780 8008 11 2020 33 480.15 0.4 0.7- - 0.5- 7 -UnitmAmAVmW/mAnmdeg.deg.mAfJ.ApF2-44• <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS0.4 ~ g.l ~ 2.0 (p.e.D.) Dimensions in mm"! .---±::::iI::±r::::i...:.L...i::::i.,0N +1x - 00+1~'--!J!.z::==+- +1h'!==rF;=~~Reference plane~ 0 ~ "--__ . IT 3 - 0.45 ~(1) (3)(2)(3)/; IIAasePO S LO(2) (1)2-45


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSD Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig.l. The threshold currentfor lasing is typically 45mA at room temperature.Above the threshold, the light output increases.linearly with current, and no kinks are observed inthe curves. An optical power of about 3rriW isobtained at Ith + 8mA.Because Ith and slope efficiency 1/(dPo/dIF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PD becomesconstant.)~-5tE~"S"0.E0>:::;Fig. 1 Light output VS. forward current5r---,----,---,rr-r.---,42°0~---2~0~==4~0~~6~0----8~0~~100Forward current IF (mA)11 Temperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictemperature To of the thershold current is typically170K in Tc~60"C, where the definition of To is Ithex: exp (Tc/To).Fig. 2 Temperature dependence of threshold curreJ:lt----6050:(-5 40.c1:~::J":l20.s;;;'" ~.s;;;I-3020- f..----1020 3040 50 60 70Case temperature Tc ("C)I Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency 1/- 0.001 mW/mA/oC.is shown in Fig.3. The gradient isFig. 3 Temperature dependence of slope efficiency:( 0.4E"- 3:-5'"(';c:.II!,.11~ 0.3Q)"0u;- r-- r--. ~.20 30 40 50 60 70Case temperature Te ("C)2-46•. <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATIONI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV /"C at IF = 1 rnA.Fig. 4 Forward current vs. voltage characteristics40:( 30,§.!!.E!! 20:;u"E~0 10u.oTc=50"C-Tc=25"C-o 1.0 2.0jForward voltage VF (V)I Optical output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig.5. Generally, at the output of about3mW, the laster oscillates in the multi-mode; whenthe output is raised to about 5mW, it beginsoscillating in the single mode. The peak wavelengthdepends on the operating case temperature andforward current (output levle).Fig. 5 Emission spectra under CW operationWavelength A (nm)D'lTemperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW 3mW is shown inFig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/"C typical.Fig. 6 Temperature dependence of peak wavelengthE50.'"'" 0,c:~~~""~78578478378278 1VPo .=3mW/V/" V/78025303540Case temperature Te ("C)'.' MITSUBISH. I ..... ELECTRIC 2-47


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATIONI Far-field patternML4XX10 oscillates in the standard transversemode (TEee) regardless of the optical output level.They have a typical emitting area (size of nearfieldpattern) of 2.1 x 0.7 Il 01'. Fig.7 and Fig.S showtypical far-field radiation patterns in "parallel" and"perpendicular" planes.The full angles at half maximum points (FAHM)are typically 1.1 0 and 33 0 •Fig. 7 Far- field patterns in plane parallelto heterojuncticns 8//8/15mW/3mWjY ['


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATIONI SIN va optical feedback ratioS/N vs. optical feedback ratio. where the frequencyis 20kHz and the bandwidth is 300Hz is shown inFig.10.And that where the frequency is lOMHz and thebandwidth is 300kHz is shown in Fig.ll.The S/N value (RIN value) is the worst valueobtained at case temperatures of 25"C to 50·C.Fig. 1 0 S/N vs. optical feedback ratiof=20kHz, BW=300Hz, T c=25-50'C70~-------r------'-------'-10080-110~ 90~~=----1~--~~L-~L--i zS-120 a:z~ 100N:r......III-0--0--1mW-130 ---0-- 2mW_··


<strong>MITSUBISHI</strong> LASER DIODESML4XX10 SERIESFOR OPTICAL COMMUNICATION• Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML4XX10 is shown in Fig.13.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E::t~~.c:2;:'Q,::::;"-·1tiCoVI105o oFig. 13 Astigmatic distance, Po =3mW CW\ :NA=0.7\ t\ ,\ t, ,, ,, , perpendicular..\ ...... .;V direction ,-, - , , ...., ............... -,t -.-\, ,,/ parallel direction, ,--.,.-' I IAstigmatic distance 5.6 p m1 -.l I I10 20 30LD moving distance (p m)2-50.• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML44114N, ML44114C, ML44114RML40114N, ML40114RDESCRIPTIONML4XX14 is an AIGaAs semiconductor laser whichprovides a stable, single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 3mW.ML4XX14 is produced by the MOCVD crystalgrowth method which is excellent in massproduction and characteristics uniformity. This is ahigh - performance, highly reliable, and long - lifesemiconductor laser.FEATURES• Single longitudinal mode oscillation• Short astigmatic distance• Low threshold current• Built- in monitor photodiode• High reliability, long operation life.Low droopAPPLICATIONLaser beam printer, digital copyABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 5Pulse (Note .1) 6VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage ( Photodiode) - 15IFD Forward current (Photodiode) - 10Tc Case temperature - -40-+ 60Tstg Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse widty less than 1 fJ. s.UnitmWVVmA°c°CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po=3mWVop Operating voltage CWo Po=3mWT/ Slope efficiency CWA P Peak wavelength CWo Po-3mW8 II Beam divergence angle ( parallel) CW, Po = 3mW8J. Beam divergence angle (perpendicular) CW, Po=3mWMonitoring output current CWo Po = 3mW. VRD = 1 V.1m( Photodiode) RL= 10 Q (Note 2)ID Dark current ( Photodiode) VRD = 10VCt Total capacitance ( Photodiode) VRD = OV. f = 1 MHzNote 2: RL IS load resistance of the photodlode.LimitsMin. Typ.- 30- 50- 2.0- 0.25765 7809 1126 330.25 1.0- -- 7Max.50702.5-79515402.00.5-UnitmAmAVmW/mAnmdeg.deg.mAI1ApF. • <strong>MITSUBISHI</strong>.... ELECTRIC? - F\1


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS¢9~g.03MAX.¢ 7.6Dimensions in mm(3)RaseII/;PO S LO.\--~~&.?--Reference slot(2) (1)ML44114N (3)PDf~+~LD(2) (1)(3) ML44114C0.4:': g.1" 3 - ¢ 0.45 ± 0.05P.C.D. ¢ 2.54(1) (3) (2)¢ 2.0 (P. c. D. ) Dimensions in mm1/fPO 5 LO(2) (I)ML44114R(3)II /;RcasePD S LO(2) (1)ML40114N~==r'i=i==S."':'- Reference plane(3)Rase4' IIPO 5 LO- +1o,..:~--o .-tr- 3 - 0.45 ¢(1) (3) (2)(2) (1)ML40114R2 -52., <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSD Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig.l. The threshold currentfor lasing is typically 30mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical power of about 3mW isobtained at Ith + 12 rnA.Beacause Ith and slope efficiency 7J (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying tern - peratures requires to control thecase temperature Tc or the laser current. (Controlthe case temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)Fig. 1 Light output VS. forward current5~--~-----'--~~-r--~Forward current. IF (mA)a Temperature dependence of threshold current (lth)A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictempera'ture To of the threshold current is typically150K in Tc ~ 60°C, where the definition of To is Ithex: exp (Tc/To).Fig. 2 Temperature dependence of threshold current":20.t:'" ~.t:f-7050---40-I-- r---3020102030 40 50 60 70Case temperature. Tc ('C)I Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency 7J is shown in Fig.3. The gradient is- O.0003mW/mA/"C.Fig. 3 Temperature dependence of slope efficiency


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIES.FOR OPTICAL INFORMATION SYSTEMSI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1.5mV /"C at IF = 1 mA.


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far - fIeld patternThe ML4XX14 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typicalemitting area (size of near-field pattern) of 1.8 x O.7 I.l rn'. Fig.7 and Fig. 8 show typical far- fieldradiation patterns in ·parallel" and ·perpendicular"planes.The full angles at half maximun points (FAHM)are typically 13· and 33· .00-S~::J01:g.,.2:.11i~Fig. 7 Far - field patternsin plane parallel to heterojunction (J /I1.0all5mW0.5 J'/0-30e.JV Xl3mWVlmWo 30Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunction (J.L1. 0 ;---,-----,,,..----,----,O.L::Ja5o~ 0.5r----+--+-~~~~--~---;g~JOff- axis angle (deg.)m LIght output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.S shows an example of light outputvs monitoring photocurrent characteristics. Whenthe front beam output is 3mW, the monitor outputbecomes 1.0mA.Fig. 9 Light output vs. monitoring output current54~-500- 3.,;::J~::J01:~2lV//LLo o/0.5 1.0 1.5Monitoring output. 1m (rnA)• MlTSUBlSHI"ELECTRIC 2-55


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSm Polarization ratio vs. light output characteristicThe main polarization of ML4XX14 is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figure 10 showsthe standard polarization ratio vs. total light outputcharacteristic.The polarization ratio increases with the lightoutput.--i0..~a: 200Fig. 1 0 Polarization ratio vs. light output300 NA=0.5./.2 VV/'§c:o:~~ 100~o oVV2 3 4V5Light output. Po (mW)1m Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore. whenthe laser beam is focused. there is a difference infocal point in the two directions. making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML4XX14 is shown in Fig.11.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E"-~.


<strong>MITSUBISHI</strong> LASER DIODESML4XX14 SERIESFOR OPTICAL INFORMATION SYSTEMS• DroopDroop characteristics indicate the amount whichoptical light output is down by heating up whenconstant pulse current is loaded on LD.Definition is follows.b.P=PA - PsPBx 100 (%)PA: Initial value of monitoring current at 10% dutypulse. (600Hz)PB: Final value of monitoring current at 90% dutypulse. (600Hz)Typical droop characteristic of ML4XX14 is shownin Fig.13. Typical droop value is 4 % at PA = 3mW.10 -­O-O%~~~--~~~.L4--+--+--+~lO. 333ms/ qiv• <strong>MITSUBISHI</strong>.... ELECTRIC 2- 57


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEI ML40115C, ML40115RDESCRIPTIONML4XX15 is an AIGaAs semiconductor laser whichprovides a stable, single transverse mode oscillationFEATURES• Built- in monitor photodiode• High reliability, long operation lifewith emission wavelength of 780nm and standardlight output of 3mW..Low noise• Multiple longitudinal modeML4XX15 uses a hermetically sealed packageincorporating the photodiode for optical output APPLICATIONmonitoring. It is produced by the MOCVD crystal Audio compact disc playergrowth method which' is excellent is massproduction and characteristics uniformity. This highperfomance,highly reliable, and long - life semiconductorlaser is suitable for such applications asthe light source for a compact disk player.ABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsPo Light output powerCWPulse (Note 1)VRL Reverse voltage (Laser diode) -VRD Reverse voltage (Photodiode) -IFD Forward current (Photodiode) -Tc Case temperature -Tstg Storage temperature -Note 1: Duty less than 50 %. pulse Width less than 1 /1 S.Ratings5621510- 40-+ 60- 55-+ 100UnitmWVVmA°C°CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW. Po = 3mWVop Oprating voltage (Laser diode) CW. Po = 3mWTJ Slope efficiency CW.Po=3mWA P Peak wavelength CW.Po=3mWfJ II Beam divergence angle (paraller) CW, Po-3mWfJ.l Beam divergence angle(perpendicular) CWo Po=3mWMonitoring output current CWo Po = 3mW. VRD = 1V.1m(Photodiode) RL= 10 Q (Note 2)ID Dark current ( Photodiode) VRD = 10VCt Total capacitance (Photodiode) VRD - OV. f - 1 MHzNote 2: RL IS load resistance of the photodiode.Min.----7659300.15--LimitsTyp.45581.80.378011380.35-7Max.Unit60 mA70 mA2.5 V- mW/mA795 nm16 deg.48 deg.0.7 mA0.5 /1A- pF2 - 58• <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS0.4 +0. 1 Dimensions in mm-0 ~ 2. O( P. C. O. )A(3)caseIIIIPO S LO(2) (1)ML40115C(3)"'0'"N+I-f-F===rFi=~i--Reference planeNO...: +1 -t--L-'---,n-#m----'-'+1o~'.L.. __ 0 '+-3-0.45~(1) (3) (2)iIAase(2) (I)IIPO S LOML40115R• <strong>MITSUBISHI</strong>.... ELECTRIC2 - 59


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward currentcharacteristics are shown in Fig.1. The thresholdcurrent for lasing is typically 45mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about3mW is obtained at Ith + 13mA.Beacause Ith and slope efficiency 7J (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)Fig. 1 Light. output VS. forward current5r----,----~----~,_~~3r---~----_+--~~+_--~2r-----r_----r_~~~----;0~0----~2~0----~~~~----~80Forward current IF (mA)I Temperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent. is shown in Fig. 2. The characteristictemperature To of the threshold current is typically130K in Tc;:;;i60"C, where the definition of To is Ithoc exp (Tc/To).Fig. 2 Temperature dependence of threshold current70--50< I--- I'"""",§ 40E-E 30~":l2 200.s:~.s:f-102030 40 50 60 70Case temperature, Tc ("C)I Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency 7}about OmW/mA/"C.is shown in Fig.3.' The gradient isFig. 3 Temperature dependence of slope efficiency


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VFslightly against the constant current IF.decreasesVF variestypically at a rate of - 1.5mV /oC at IF = 1 mAo~786.>


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far - field patternThe ML4XX15 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typicalemitting area (size of near-field pattern) of 1.8 x0.51.1 rn'. Fig.7 and Fig.8 show typical far- fieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximun points (FAHM)are typically 11· and 38· ..:~ "o "Fig. 7 Far- field patternsin plane parallel to heterojunction e /I6/1_5mW1/ r-- 3mWjY ,;v1mw~-30 o +30Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunction e.L~S-o.SoOff - axis angle (deg.)m Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to the'front one. Fig.9 shows an example of light outputvs monitoring photocurrent characteristics.Whenthe front beam output is 3mW. 1m is 0.5mA typicaland the monitor output current increases inproportion to the front beam output.Fig. 9 Light output vs. monitoring output current~§~S0.S0.E0>::;54321///v/ V/0.2 0.4 0.6Monitoring output. 1m (rnA)2-62• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX15 SERIESFOR OPTICAL INFORMATION SYSTEMSI SIN va. optical feedback ratioS/N vs. optical feedback ratio, where frequency is20kHz and the bandwidth is 300Hz is shown inFig.l0.And that where the frequency is 10MHz and thebandwidth is 300kHz is shown in Fig.ll.The S/N value is the worst value at casetemperatures of 25"C to 50 "C.Fig. 10 S/N vs. optical feedback ratiof=20kHz, BW=300Hz, T c=25-SO'C7080ol")--O--lmWCWID 90 ---Q.-2mWCW"tlz.r-.-o.-Q--':g::- -l?'._..o..-.. -- --.. =-~.0-..··.. 6en 100 ~;:~.::~ r--..e-"11 0"'--"-3mW CW--Lr--4mW CW....... -5mWCW120o 0.01 0.1 10Optical feedback ratio, Rf (96)Fig. 11 S/N vs. optical feedback ratiof=10MHz,BW=300kHz, Tc=25~50t60~-------r------~------'----lmWCWzen 90100~-------r------~----~_'-0-'- 2mW CW-"~"-3mWCW··..·t:r·..·4mW cw--....--5mWCW11 0 Iti-J.--L.........I...-=""-.:......I.--..I.--!--L---'L..-,I.o 0.01 0.1 10Optical feedback ratio, Rf (96)_Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7 ofML4XX15 is shown in Fig.12.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E::t~:2:2~~Ci!I';;;0..(I)10,,5o oFig. 12 Astigmatic distance,Po~3mW CW. 'NA=0.7. ,I I ,I ,. II........... .......',\'-," '.'" parallel direction. ,--I-- perpendicular& __.'directonJ, I IAstigmatic distance~ , ,- \-I 1 1 11.2 ~ m10 20 30 40LD moving distance (It m)2-63


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEML40116RDESCRIPTIONML4XX16 is AlGa As semiconductor laser whichprovides a stable, single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 3mW.ML4XX16 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high- perfomance, highly reliable,and long -life semiconductor laser provides multimodeoscillation (longitudinal mode) and is suitablefor suqh applications as the light sources foroptical communications including data links.FEATURES• Built- in monitor photodiode• High reliability, long operation life• Low noise• Multiple longitudinal oscillation (Self pulsation)APPLICATIONDigital communication system (Data link)ABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsPo Light output powerCWPulse (Note 1)VRL Reverse voltage (Laser diode) -VRD Reverse voltage ( Photodiode) -IFD Forward current ( Photodiode) -Tc Case temperature -Tst9 Storage temperature -Note 1: Duty less than 50 %. pulse width less than 1 /1 s.Ratings5621510- 40-+ 60- 55-+ 100UnitmWVVmA'c'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po=3mWVop Operating voltage (Laser diode) CW.Po=3mW7) Slope efficienty CW.Po =3mW.l. P Peak wavelength CW.Po=3mW8 II Beam divergence angle (parallel) CW.Po-3mW8.l Beam divergence angle (perpendicular) CW.Po=3mW1mMonitoring output current CWo Po = 3mW. VRD = 1 V.(Photodiode) RL = 10 Q (Note 2)ID Dark current (Photodiode) VRD = 10VCt Total capacitance (Photodiode) VRD - OV. f = 1 MHzNote 2: RL is load resistance of the photodiode.LimitsMin. Typ. Max.- 45 70- 55 80- 1.8 2.5- 0.3 -765 780 8008 11 2020 38 480.15 0.4 0.7- - 0.5- 7 -UnitmAmAVmW/mAnmdeg.deg.mA/1ApF2-.64• MITSUBI. SHI"ELECTRIC


~<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGS0.4 ~ g.l ¢ 2.0 (P.e.D.) Dimensions in mm00+1"Reference stot- :ifiZ~:i: 0"!",0N +1h2===;=f:;==~~Reference plane(3)~/¥PO S LO(2) (1)+1q....-'---__ 0 .-8-- 3 - 0.45 ¢(1) (3) (2). • <strong>MITSUBISHI</strong>..... ELECTRIC2 - 65


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTIC,AL COMMUNICATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig.l. THe threshold currentfor lasing is typically 45mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical power of about 3mW isobtained at Ith + 10mA. Beacause Ith and slopeefficiency T/ (dPo/dIF) is temperature dependent,obtaining a constant output .at varying temperaturesrequires to control the case temperature Tc or thelaser current.(Control the case temperature orlaser current such that the output current of thebuilt- in monitor PO becomes constant.)I Temperature dependence of threshold current (lth)A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. The characteristictemperature To of the threshold current is typically170K in Tc~60"C, where the definition of To is IthIX exp (Tc/To).--Fig. 2 Temperature dependence of threshold current70~50,540 -~:E+"c: 30~:;:!2"0.s::;.,!.s::;I-20102030 40 50 60 70Case temperature. Tc ("C)I Temperature dependence of slope efficiencyA typical temperature dependence of the slopeefficiency T/about OmW/mA/·C.is shown in Fig.3. The gradient isFig. 3 Temperature dependence of slope efficiency~~ 0.4::,5~.91~ 0.3r----r----+----r----+----i20 30 40 50 60 70Case temperature. Tc ("C)2-66• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises. the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of -2.0mV/oC at IF = 1 mA.~§1:E~:lU'E~0u.Fig. 4 Forward current vs. voltage40302010o oTc=50"C....;o?-25"C)1.0 2.0Forward voltage YF 01)II Emission spectraTypical emission spectra under CW operation areshown in' Fig. 5. ML4XX16 oscillates in thelongitudinal multiple mode. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationTc=25"CWavelength. A (nm)Ii'ITemperature dependence of peak wavelengthA typical temperature dependence of the peak wavelengthat an output of CWo 3mW is shown in Fig.6.The peak wavelength of the beam shifts to adjacentlongitudinal mode by variation of operating temperature.Averaged temperature coefficient is about O.26nm/"CFig. 6 Temperature dependence of peak wavelength785E 784,5Q~"";;,I:.!!783~ 782~"" l 781Po=3mW/",L/VL78025 30 35 40Case temperatue. Tc ("C).•. MlTSUBISHI..... ELECTRIC 2-67


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSI Far - field patternThe. ML4XX16 laser diodes lase in fundamentaltreanverse (TEoo) mode. and the mode does notchange with the current. They have a typicalemitting area (size of near-field pattern) of 2.1 x0.7 Il rn'. Fig.7 and Fig.8 show typical far- fieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximun points (FAHM)are typically 11 0 and 38 0 •Fig. 7 Far- field pattemsin plane parallel to heterojunction (J III) II1""--5mWII" r-3mWJ'I f'\t1mw~30 o 30Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunction (J J..'5a5oOff- axis angie (deg.)II Light output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam· since the rear beam is proportional to thefront one. Fig. 9 shows an example of light outputvs. monitoring photocurrent characteristics.When the front baeam output .is 3mW. 1mO.4mA typical and the monitor output currentincreases in proportion to the front beam output.isFig. 9 Light output vs. monitoring output current~,5540a. 3.;::>S::>0 2~~::; '"/LVVI1 LV0.2 0.4 0.6 0.8 1.0Monitoring output. Irn (rnA)2-68,... <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSIi] SIN vs. optical feedback ratioS/N vs. optical feedback ratio where the frequencyis 20kHz and the bandwidth is 300Hz is shown inFig.l0.That where the frequency is 10MHz and thebandwidth is 300kHz is shown in Fig.ll.The S / N value is the worst value at casetemperatures of 25"C to 50 "C.Fig. 10 S/N vs. optical feedback ratiof=20kHz, BW=300Hz, T c=25-50·C7080-100A-oooo4--o--O+--(f"'.)---I


<strong>MITSUBISHI</strong> LASER DIODESML4XX16 SERIESFOR OPTICAL COMMUNICATION SYSTEMSII Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular directions with thelaser beam.This distance between the two points isthe astigmatic focal distance.. Therefore, when the.Iaser beam is focused, there is a difference in focalpoint in the two directions, making .. it difficult toconverge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7 ofML4XX16 is shown in Fig.13. The LD positionwhich minimizes the horizontal and vertical spotdiameters is obtained. The astigmatic distance isthe difference in moved distances. thus obtained.105Fig. 13 Astigmatic distanceI IPo =3mWCWI \ I, NA=O.7,·\II , :•I . ,I,I I,\,,. ,•\ ,e .,~ I .........'.,~ I~\ "fl- perpendicular directionI I, 1'\paralleldirectionAstigmatic distance 14 .. 0 /.l m°O~~~1~O~~~20~~~3~O~---J40LD moving distance (/.l m)2~ 70 ....'.. MITSUBISH.ELECTRICI


<strong>MITSUBISHI</strong> LASER DIODESML4XX19 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEML44119N, ML44119RDESCRIPTIONML4XX19 is an AlGa As semiconductor laser whichprovides a stable. single transverse mode oscillationwith emission wavelength of 780nm and standardlight output of 5mW.It is produced by the MOCVD crystal growth methodwhich is excellent in mass production and characteristicsuniformity. This is a high - performance.highly reliable. and long -life semiconductor laser.FEATURES• Low droop• Short astigmatic distance• Low threshold current• Single longitudinal, mode• Built- in photodiodeAPPLICATIONLaser beam printer and digital copyABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output power CW 8VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage ( Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case temperature - - 40-+ 60Tstg Storage temperature - - 55-+ 100UnitmWVVmA'c'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)SymbolParameterIth Threshold currentlop Operating currentVop Operating voltage1/ Slope efficiencyA P Peak wavelength011 Beam divergence angle ( parallel)OJ. Beam divergence angle (perpendicular)Monitoring output current1m(Photodiode)ID Dark current ( Photodiode)Ct Total capacitance ( Photodiode)* RL = The load resistance of photodlode.Test conditionsCWCW.Po=5mWCW.Po=5mWCW.Po-5mWCW.Po-5mWCW.Po=5mWCW.Po=5mWCWo Po = 5mW. VRD = 1 V.RL *= 10QVRD = 10VVRD = OV. f = 1 MHzLimitsMin. Typ.- 30- 45- 2.0- 0.35765 7809 1126 330.3 0.7- -- 7Max.Unit50 mA70 mA2.5 V- mW/mA795 nm15 deg.40 deg,1.7 mA0.5 /1A- pF" ' '<strong>MITSUBISHI</strong>..... a.ECTRIC2-71


<strong>MITSUBISHI</strong> LASER DIODESML4XX19 SERIESFOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGSDimensions in mm(3)A'SO. . 1/. IIPO S LOReference slot(2) (1)ML44119N(3)A"SO1/ IIPO S LO(2) (1)ML44119R(1) (3)(2)2-72•. <strong>MITSUBISHI</strong>.... ELECTRIC


MITSUBiSHI LASER DIODESML5XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENEMEML5101A, ML5401ADESCRIPTIONML5XXl A is a high - power semiconductor laserwhic.h provides a stable, single transverse modeoscillation with emission wavelength of 850nm andstandard light output of 15mW.ML5XX1A uses a hermetically sealedpackageincorporating the photodiode for optical outputmonitoring. This high - performance, highly reliable,and 10hg -life semi - conductor laser is suitable forsuch high - power applications as instrumentation.FEATURES• High power (pulse 30mW)• Single longitudinal mode• Short astigmatic distance• Low threshold currrent, low operating current• Built - in monitor photodiode• High reliability, long operetion lifeAPPLICATIONLaser printer, optical communication, and instrumentationABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsCW 18Po Light output powerPulse (Note 1) 30VRL Reverse voltage (Laser diode) - 3VRD Reverse voltage ( Photodiode) - 15IFD Forward current (Photodiode) - 10Tc Case temperature - -40-+50Tstg Storage temperature - -55-+ 100Note 1: Duty less than 50 96. pulse width less than 1 Il S.UnitmWVVmA"C"CELECTRICAUOPTICAL CHARACTERISTICS (Tc = 25 "C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po -15mWVo~ Operating voltage CW.Po-15mW71 Slope efficiency CW.Po=15mWA P Peak wavelength CW.Po-15mWOil Beam divergence angle (parallel) CW.Po-15mWOJ. Beam divergence angle (perpendicular) CW.Po=15mW1mMonitoring output curren CWo Po = 15mW. VRD = 1 V.(Photodoide) RL= 10 Q (Note 2)ID Dark current (Photodoide) VRD= 10VCt Total capacitance ( Photodoide) VRD - OV. f - 1 MHzNote 2 :. RL IS load resistance of the photodlode.. LimitsUnitMin. Typ. Max.- 30 50 mA- 60 90 mA- 1.8 2.5 V- 0.45 - mW/mA830 850 870 nm8 11 16 deg.20 30 40 deg.0.5 1.0 3.0 mA- - 0.5 IlA- 7 - pF• .··MlTSUBlSHI"'B.ECTRIC2-73


<strong>MITSUBISHI</strong> LASER DIODESML5XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS16±O.25Dimensions in mm, A(3) CaseIIIIPD S LD(2) (1)Dimensions in mmReference slotf'I'f!PD S LD(2) (1)+1o,..:3- ¢ O. 45±0. 05P. C. D. ¢ 2. 54(1 )(3) (2)2-74• MITSUBISH, I..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward currentcharacteristics are shown in Fig.1. The thresholdcurrent for lasingis typically 30mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about15mW is obtained at Ith + 30 mA.Because Ith and slope efficiency 7} (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)~~.50Cl.'5c.'50.E.2'...JFig. 1 Light output vs. forward current15 303l:; 0c. *It)..10 20~Spulse "0.5


<strong>MITSUBISHI</strong> LASER DIODESML5XX1 A SERIESFOR OPTICAL INFORMATION SYSTEMSI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV /oC at IF = 1 mA.80< 60§,!!,E 40~'50'0~~0u.20Fig. 4 Forward current vs. voltageTc=50~I~cj1.0 2.0Forward voltage, VF 01)II Emission spectraTypical emission spectra under CW operation areshown in Fig.5. In general, at an output of 10mW,single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationXll5mWX1.6 lOmWX6.3.J 3mWX200Ith842 852 862Wavelength, A (nm)II Te~perature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW 15mW is shownin Fig.B.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthESc..s'" c:.S!'" >'" ~-"l829Po =15mW828rV827J826825/824~25 30 35 40Case temperature, Tc ('C)2-76• . <strong>MITSUBISHI</strong>"ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternThe ML5XX1 A laser diodes in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typicalemitting area (size of near -field pattern) of 2.3 x0.8 ~ m'. Fig.7 and Fig.8 show typical far- fieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximum points (FAHM)are typically 11· and 30· .~5Cos0.Eg.~i c::Fig. 7 Far- field patternsin plane parallel to heterojunction e / /1. o.---r----y----,---,8 II0.5Off- axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunction e 1.Off- axis angle (deg.)II Pulse response waveformIn the digital optical transmission systems. theresponse waveform and speed of the light outputagainst the input current pulse waveform is one ofthe main concerns.In order to shorten the oscillation delay time. thelaser diode is usually biased close to the thresholdcurrent.Figure 9 shows a standard response waveformobtained by biasing ML5XX1 A to Ith and applyinga square pulse current (top of Fig.9)up to 15mW.A quick response is obtained with rising and fallingtimes being both O.3ns typical.Fig. 9 Pulse response waveformTime (nsec.)Input pulseItf=250ps• . <strong>MITSUBISHI</strong>.... ELECTRIC 2-77


<strong>MITSUBISHI</strong> LASER DIODESML5XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSI Light output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one.Fig. 10 shows an example of lightoutput vs. monitoring photocurrent characteristics.When the front beam output is l5mW, themonitor output becomes about 1.OmA.Fig. 10 Light output vs. monitoring output current15r-----~r-------~------,typo10r----f--r-------t-------;5r-~----+_------_+-------42 3Monitoring output, 1m (rnA)1m Polarization ratio vs. light output characteristicThe main polarization of ML5XX1A is made in the'direction parallel to the active layer.Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figurell shows thestandard polarizastion ratio vs. total light outputcharacteristic.The polarization ratio increases with the lightoutput.Fig. 11200a. '"~150Cl:0.~..c:.~.!:!j0.a.10050Polarization ratio vs. light output/ /"...V ,//'5 10 15 20Light output. Po (mW)Fig. 12 Impedance characteristics• Impedance characteristicsTypical impedance characteristics of the ML5XXl A,with lead lengths of 2mm, are shown in Fig.12with the bias currents as the parameter.Testfrequency is swept from lOOMHz to l300MHz withlOOMHz steps.Above the threshold current, the impedance ofthe ML5XXl A is nearly equal to a seriesconnection of a resist - ance of 5 ohm and aninductance of 5nH.---X---1op2-78, • ,,' MITSUBISH, I.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX1 A SERIESFOR OPTICAL INFORMATION SYSTEMSII SIN vs. optical feedback ratioS/N vs. optical feedback ratio, where the frequencyis 20kHz and the bandwidth is 300Hz is shown inFig.13.That where the frequency is 10MHz and thebandwidth is 300kHz is shown in Fig.14.The S/N value is the worst value at casetemperatures of 25"C to 50 "C.Fig. 13 S/N vs. optical feedback ratiof=20kHz. BW=300Hz. Tc=25-50C70al1:lz"-en 100---0--lmW-·~·-2mW-··~··-3mW---&--4mW110Hf----+----+-----l····.···.5mW1204~--~~~~~~~~~~~.o O. 01 O. 05 O. 10. 2 O. 5 1 2 5 10Optical feedback ratio. Rf (%)Fig. 14 S/N vs. optical feedback ratio50 f=10MHz, BW=300kHz, Tc=25-50'C60z"- en---0-- lmW-.~.- 2mW90HI------1-----+-----I-··~ ..-3mW---&-- 4mW..··.····5mW100 Lfj-J'-:-~-:-.I.:c:-:'....,...,.'_,,__:_'_:,...............J-~_,J.o 0.01 0.050.10.2 0.5 1 5 10Optical feedback ratio. Rf (%)III Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsin the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultot converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML5XXl A is shown in Fig.15.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.Fig. 15 Astigmatic distance10r-,---~----~--r_~-----,\ Po=3mW cw, I\ I'. \\ NA=0.7\ \ : perpendicular\ \ ~direction ," \ :\ "\~ \ ' I5r--~+-~~.--+~,-~~-~-1"\'" ., ......\ .... .4" "-parallel, ! - direction' .. 'Astigmatic--;oI---++E- distance 6.8 /1 mLD moving distance (/1 m)2-79


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML5413ADESCRIPTION.ML5XX3A is a high - power semiconductor laserwhich provides a stable, single transverse modeoscillation with emission wavelength of 820 nmand standard continuous oscillation of 10mW.ML5XX3A uses a hermetically sealed packageincorporating the photodiode for optiocal outputmonitoring. This high- performance, highly reliable,and long-life semiconductoL laser is suitable forsuch ·high - power applications as optical diskmemory writing.FEATURES• High-power, stable single longitudinal mode• Low threshold current, low operating current• Built- in monitor photodiode• High reliabillity, long operation lifeAPPLICATION. Optical disk drive, laser beam printer, opticalcommunicationABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitPo Light output power CW 25 mWVAL Reverse voltage (Laser diode) - 2 VVAD Reverse voltage (Photodiode) - 15 VIFD ForWard current ( Photodiode) - 10 mATc Case temperature - -40-+60 "CTstg Storage temperature - -55-+ 100 "CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 "C)Symbol Parameter Test conditionsMin. Typ. Max.Ith Threshold current CW - 40 60 mAlop Operating current . CW,Po-10mW - 65 100 mAVop Operating voltage (Laser diode) CW,Po=10mW 2.0 2.5 V1/ Slope efficiency CW, IF - Ith + 25mA - 0.4 - mW/mAA P Peak wavelength CW,Po-10mW 800 820 840 nm(JII Beam divergence angle ( parallel) CW,Po= 10mW 10 12 17 deg.(Jl. Beam divergence angle ( perpendicular) CW,Po= 10mW 20 30 35 deg.1mMonitoring output current CW, Po = 1 OmW, VAD = 1 V,LimitsUnit0.3 0.8 1,7 mA(Photodiode) RL = 10 Q (Note 1)10 Dark current ( Photodiode) VRD = 10V - - 0.5 IJ.ACt Total capacitance (Photodiode) VRD - OV. f - 1 MHz - 7 - pFNote .1 : RL IS load resistance of the photodlode.2-80


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS+ 9 ~g. 03 Dimensions in mmMAX. + 7. 6+6.4(3)k:~~~.r-- Reference slot/I II·AasePO. S LO.(2) (1)3- + O. 45±0. 05P. C. D. + 2. 542-81


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forWard currentTypical light output vs . forward currentcharacteristics' are shown in Fig. 1. The thresholdcurrent for lasing is typically 40mA at roomtemperature. Above the threshold. the light outputincreases linearly with current. and no kinks areobserved in the curves. An optical power of about10mW is obtained at Ith + 25m A.Because Ith and slope efficiency TJ (dPo/ dlF) istemperature dependent. obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built~in monitor PD becomesconstant.)IFig. 1 Light output vs. forward current25£ 15~----~----~-I~~---;&~ 10~--~~----~~~~---;°0~----~3~0.w~~----~----~Forward current IF (mA)II Temperature dependence of threshold current (Ith)A typical temperature dependence of the thresholdcurrent is shown in Fig. 2. the characteristictemperature To' of the threshold current is typically150K in Tc ~ 60'C. where the definition of To is Ith0: exp (Tc/To).Fig. 2 Temperature dependence of threshold current


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATIO.N SYSTEMSI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig.4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV/"C at IF = 1 mA.:( 40.s1:~30c:!:;CJ'E~0u.Fig. 4 Forward current vs. voltage502010Tc =50·C ~T~=25·C -j1.0 2. aForward voltage VF (V)I Emission spectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of 10mW,single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationXl25mWX410mWX32 .JIIIN. 3mWX500Ith813 823 833Wavelength ). (nm)I] Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of cw, 20mW is shownin Fig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.2nm/oC typical.Fig. 6 Temperature dependence of peak wavelength83 5E 833-5~ 83 197....r82525 30po;"20mwI-'/~,/40 50 60Case temperature Tc ("C)• <strong>MITSUBISHI</strong>.... ELECTRIC 2 -83


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSI Far - field patternThe ML5XX3A la5og 0.5~--~--~--+--1----~--~.~~rP.-30Off- axis angle (deg.)m Monitoring outputThe laser diodes emit beams from both of theirmirro'r surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.9 shows an example of light outputvs. monitoring photocurrent characteristics.When the front beam output is 1 OmV, themonitor output becomes about 0.8mA.Fig. 9 light output vs. monitoring output current" 0.;;o.-'25r------,-------:nMonitoring output 1m (mA)2 - 84" ,'<strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSII Impedance characteristicsTypical impedance characteristics of the ML5XX3A,with lead lengths of 2mm, are shown in Fig. 1 0with the bias currents as the parameter.Testfrequency is swept from 100MHz to 1300MHz with100MHz steps.Above the threshold, the impedance of theML5XX3A is nearly equal to a series connection ofa resistance of 4 ohm and an inductance of 4nH.Fig. 1 0 Impedance characteristics1m SIN vs. optical feedback ratioS/N vs. optical feedback ratio, where frequency is20kHz and the bandwidth is 300Hz is shown inFig. II.That where the frequency is 10MHz and thebandwidth is 300kHz is shown in Fig. 12.The S/N value is the value obtained at CW driveand high-frequency superimpose drive. It the worstvalue at case temperatures of 25 ·C to 50·C andan environmental temperature of 25 "C. Thefrequency of high-frequency superimpose is about700MHz and the input level is the value obtainedat aobut 35mAp- p.Cl1JFig. 11 S/N vs. optical feedback ratiof=20kHz. BW=300Hz T c=25-50'C600 ~ p/ '-." III0 \I8.I.,II\z, ..J3OJ 90 /---0--...)---~'.....10 IUI: I11 0a o. 01 0.1...,.'--0----3mWCW~-,~,-"'Lf 20mW CW3mW HF10Optical feedback ratio Rf (%)'g 70z"­C/). .Fig. 12 S/N vs. optical feedback ratiof=10MHz BW=300kHz T c=25-50'C50,P, ,60 .d8 090r;-~~= r:.--.()'"''0..'' ., '--l..J,/--0--3mWCW-,~,-20mW CW100o 0.01 0.1-3mW HF10Optical feedback ratio Rf (%). • <strong>MITSUBISHI</strong>"'ELECTRIC 2-85


<strong>MITSUBISHI</strong> LASER DIODESML5XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSID Astigmatic distanceThere seems to be a difference in "luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML5XX3A is shown in Fig.13.The LD position whi.ch minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E"'-~;S~(\I~::;Q).~b0.


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEML5784FDESCRIPTIONThe ML5XX4 series is a high-power semiconductorlaser which provides a stable. single transversemode oscillation with emission wavelength of 850nm and standard continuous oscillation of 15 mW.ML5XX4 uses a hermetically sealed packageincorporating the photodiode for optical outputmonitoring. This high - performance. highly reliable.and long - life . semicond~ctor laser is suitable forsuch applications as the light sources for opticalfiber broken - point detector and long - distancecommunication.FEATURES• High power(CW 20mW. pulse 80mW)• Low threshold current. low operating current• Built- in monitor photodiode• High reliability. long operation lifeAPPLICATIONOTDR. optical communication systemABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output power CW 20IF Forward current (Laser diode) Pulse (Note 1) 450VRL Reverse voltage (Laser diode) - 3VRD Reverse voltage ( Photodiode) - 15IFD Forward current ( Photodiode) - 10Tc Case temperature - -40-+ 50Tstg Storage temperature - -55-+ 100Note 1: Duty· less than 1 %. pulse width less than 4 f.l s.UnitmWmAVVmAoc;oc;ELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditionsIth Threshold current CWlap Operating current CWo Po = 15mWVop Operating voltage CWo Po = 15mWPo (Pl Pulse light output Pulse. IF = 400mA (Note 2)A P Peak wavelength CW.Po= 15mWB/I Beam divergence angle ( parallel) CWo Po = 15mWB-1 Beam divergence angle (perpendicular) CWo Po = 15mWMonitoring output current CWo Po = 15mW. VRD = 1V.1m(Photodiode) RL= 10 Q (Note 3)ID Dark current ( Photodiode) VRD = 10VCt Total capacitance ( Photodiode) VRD = OV. f = 1 MHzNote 2 : Pulse Width 2 f.l s. 0.2 % duty3 : RL is load resistance of the photodiode.LimitsMin. Typ.- 25- 50- 1.880 -830 8508 1120 300.04 0.12- -- 7Max.50902.5-87016401.00.5-UnitmAmAVmWnmdeg.deg.mAilApF• <strong>MITSUBISHI</strong>"'ELECTRIC? - R7


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGS19:::g. 03MAX1S.1(Unit: mm)(¢ 9mm, 4- ptnlow- cap package)? c·0Cl(4) (3)If 117PD 1'sT LD(2) (1)(1)(3)(2)(41, 4- /0 O. 45P. c. D .• 2.542-88•. <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSSAMPLE CHARACTERISTICSD Light output vs. forward currentFigure 1 shows the typical light output vs. currentcharacteristic in the CW drive of ML5XX4. Thethreshold current Ith at room temperature is about30mA. The optical output increases at currentslarger than Ith and no' kink is observed. An opticaloutput of about 15mA can be obtained at Ith +25mA. Figure 2 shows the typical optical outputvs. current characteristic in the pulse drive at apulse width of 2 fJ- m and duty cycle of 0.2 %. Anoptical output of about 80mW or more can, beobtained at room temperature with a forwardcurrent IF of 400mA.Because Ith and slope efficiency 7) (dPo/ dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PD becomesconstant.)~g§cESCoS0.E.11!...J.,..0;0..g§00..~:::>S:::>0.E0>:JFig. 1 Light output vs. forward current20100 0 100Forward current IF (rnA)Fig. 2 Light output vs. forward current100r-----~----~-----r----_,50Forward current IF (rnA)(pulse width 2 f.J. s. 0.2 % duty)I Temperature dependence of threshold current(lth}A typical temperature dependence of the thresholdcurrent is shown in fig. 3. The characteristictemperature To of the threshold current is typically65K in Tc;:;; 50·C, where the definition of To is Ithex: exp (Tc/To).Fig. 3 Temperature dependence of threshold current~§:EEl!!~():s!0.t::..l!!.t::f-70504030/'" V-........ ~20102030 40 50 60 70Case temperature Tc ('C). • <strong>MITSUBISHI</strong>.... ELECTRIC 2 - 89


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSI Temperature dependence of slope efflclency( TJ 0)A typical temperature dependence of the slopeefficiency TJ is shown in Fig.4. The gradient is:... O.005mW/mA/OC.Fig. 4 Temperature dependence of slope efficiency~ 0.6r-------r-~~~r-----~.sg.iI!.11:;! 0.5r-----~------_r--~r-~~o 20 40 60Case temperature Tc ('C)II Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 5. In general, as the casetemperature rises,the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a tate of - 2.0mV/"C at IF = 1 mAo50 ,< 40.s..!:~" u'E~30200II.100Fig. 5 Forward current vs. voltageTc=50t~T~=25t-0.5 1.0 1.5 2.0jForward voltage VF (V)I Emission spectraTypical emission spectra under CW operation areshown in Fig.S. In general, at an output of 15mW,single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 6 Emission spectra under CW operationTc=25'CWavelength ). (nm)2-90. • ·MITSUBlSHI"'B.ECTRIC.


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSiii Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW, 15mW is shownin Fig.7.As the temperature rises, the peak wavelengthshifts . to the long wavelength side at a rate ofabout 0.25 nrh/"C typical.Fig. 7 Temperature dependence of peak wavelengthE,50.'"~..0.c:.S!>~".~a.860858856854852Po =15mW-----r J ~r I--'850 W25 30 40 50 60Case temperature Tc (~)I Far-field patternThe ML5XX4 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typicalemitting area (size of near-field pattern) of 2.3xO.8 ~ rn'.Fig.8 and Fig.9 show typical far- field radiation.patterns in "parallel" and "perpendicular" planes.The full angles at half maximum points (FAHM)are typically 11' and 30· .Fig. 8 Far- field patterns in plane parallelto heterojunctions () I I() II20mW15mW5mW-30 +30Off- axis angle(deg.)Fig. 9 Far- field patterns in plane perpendicularto heterojunctions (}.L~SaSoOff- axis angel (deg.) ,• <strong>MITSUBISHI</strong>.... ELECTRIC 2 - 91


<strong>MITSUBISHI</strong> LASER DIODESML5XX4 SERIESFOR OPTICAL COMMUNICATION SYSTEMSII Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces, front and rear sufaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig.IO shows an example of light outputvs. monitoring photocurrent characteristics.When the front beam output is 15mW, themonitor output becomes about O.12mA.Fig. 10 Light output vs. mO(litoring output current.E0>:::;m Astigmatic distanceThere seems to be a difference ,in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in' the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.70fML5XX4 is shown in Fig.ll.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E"-~.c;'03'Q,"-~ill'(;;130.en0.2Monitoring output 1m (mA)Fig. 11 Astigmatic distance'. Po~3mW CW ,I\ \ NA=O. 7 I\ \ : perpendicular\ \~ directon I\\\ I4,\ \ I\\- ,I\\'.....,."I\~ ......"parallel\ ;direction'...'• IAstigmaticdistance 6.8 /1. mo o10510 20 30 40LD moving distance (/1. m)2- 92.• <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML5415N,ML5415C, ML5415RDESCRIPTIONML5XX5 is a high - power AlGa As semiconductorlaser which provides a stable, single transverse modeoscillation with emission wavelength of 825nm andstandard light output of 30mW.It is produced by the MOCVD crystal growthmethod which is excellent in mass production andcharacteristics uniformity. This is a high-performance,highly reliable, and long -life semiconductor laser.FEATURES• High power (35mW CW, 45mW pulse)• Short astigmatic distance (2!1 m typical)• Built- in monitor photodiode• High reliability, long lifeAPPLICATIONOptical disk drive (rewritable, write once)ABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo light output powerCW 35Pulse (Note 1) 45VRL Reverse Voltage (Laser diode) - 2VRD Reverse Voltage (Photodiode) - 30IFD Forward current( Photodiode) - 10Tc Case temperature - - 40-+ 60Tstg Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse width less than 1 /.l s.UnitmWVVmA'C'CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW,Po=30mWT/ Slope efficiency CW, Po = 30mWVop Operating voltage CW,Po=30mWA P Peak wavelength CW,Po=30mW81/ Beam divergence angle ( parallel) CW,Po =30mW8.l Beam divergence angie (perpendicular) CW,Po=30mWIm(Note 2) Monitoring output current CW, Po = 30mW. VRD = 1 V,Im(Note 3) (Photodiode) RL=10Q(Note 4)ID Dark current ( Photodiode) VRD -10VCt Total capacitance ( Photodiode) VRD = OV, f - 1 MHz. .Note 2: This specificatIOn apphes to ML5415N, ML5415C .3 : This specification applies to M L5415R.4 : RL is load resistance of the photodiode.LimitsMin. Typ. Max.- 50 70- 125 150- 0.4 -- 2.0 2.5810 825 8409 11 1423 26 292.0 4.0 6.00.6 1.7 3.0- - 0.5- 7 -UnitmAmAmW/mAVnmdeg.deg.mA/.lApF• <strong>MITSUBISHI</strong>"'ELECTRIC2 - 93


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS~~~o~0_"g~K03MAX. "7.6"6.4Dimensions in mm~ 0 0 __ - Reference slot8 + I :I:::=~s;::rf~'" .,.~ d'S,(3)PD LD~~(2) (1)ML5415N (3)flt'!PD S LD(2) (1)c~~L5415C, , 3 - ;b o. 45 ±O. 05P. C. D. ;b 2. 54PD CfS, LD(2) (1)ML5415R2-94'. ..<strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSI Light output vs. forward currentTypical light eutput vs. ferward current characteristicsare shewn in Fig.l. The thresheld current ferlasing is typically 50mA at roem temperature.Abeve the thresheld, the light eutput increaseslinearly with current, and no. kinds are ebserved inthe curves.· An eptical pewer ef abeut 30mW isobtained at Ith + 75mA.Because Ith and slepe efficiency 7J(dPo./ dlF) istemperature dependent, ebtaining a censtant outputat varying temperatures requires to. centrol the casetemperature Tc er the laser current. (Centrel thecase temperature er laser current such that theeutput current ef the built-in meniter PD becemescenstant.)~,§ 2000..5~0.E.21...JFig. 1 Light o.utput V5.fo.rward current301r-------~------~----~_,10°0~------~~----1~0--0----~150Forward current IF (rnA)I Temperature dependence of threshold current (lth)A typical temperature dependence ef the thresheldcurrent is shewn in Fig. 2. The characteristictemperature To. ef the thresheld current is typically140K in Tc::;i60·C, where the definitien ef To. is Ithoc exp (Tc/To.).Fig. 2 Temperature dependence o.f thresho.ld current~,§:EE~::l":20.c:'" ~.c:I-10070---- ~-102050302030 40 50 60 70Case temperature Tc ('C)I Temperature dependence of slope efficiency ( 7J )A typical temperature dependence o.f the slepeefficiency 7J is shown in Fig.3. The gradient is- O.0014mW/mA/·C.Fig. 3 Temperature dependence o.f slo.pe efficiency~E"- ~,§'"~


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSI Forward current vs. voltageTypical forward current vs. voltage characteristicsare . shown in Fig. 4.In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1.6mV /oC at IF = 1 mA.


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMS&I Far - field patternThe ML5XX5 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typicalemitting area (size of near-field pattern) of 2.3 x0.9 II m'. Fig.7 and Fig.8 show typical far- fieldradiation patterns in "parallel" and "perpendicular"planes.The full angles at half maximum points (FAHM)are typically 11 0 and 26. 0 •~c. "'5oFig. 7 Far- field patternsin plane parallel to heterojunctions 8/1(J II10mWI-30Off- axis angle (deg.)Fig. 8 Far- field pattemsin plane perpendicular to heterojunctions ().L(J.L~" c.'5oOff- axis angle (deg.)II Optical output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Figure 9 shows the typical front beamoutput vs. monitoring output current characteristicsof ML5415N and ML5415C. When the front beamoutput is 30mW. the monitoring output becomes4.0mA typical. (With ML5415R. the monitoringoutput becomes 1. 7mA typical when the frontbeam output is 30mA.)Fig. 9 Light output vs. monitoring output current~.50


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSII Polarization ratio VS. optical output characteristicThe main polarization of ML5XX5 is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Figure 10 showsthe standard polarization ratio vs. total lightoutput characteristic.The polarization ratio increases with the lightpower.Fig. 10 Polarization ratio vs. light outputN. A. =0.65-i 2001----l__---l__---,.,I~~.2'§c:.2 100 I----o>'~---l__----I.~1ii~OL-----~------~------~o 10 20 30Light output Po (mW)• Impedance characteristicsTypical impedance characteristics of the ML5XX5,with lead lengths of 2mm, are shown in Fig.11with the bias currents as the parameter. Testfrequency is swept from 100MHZ to 1300MHZ with100MHz steps.Above the threshold, the impedance of theML5XX5 is nearly equal to a series connection ofa resistance of 4 ohm and an inductance of 3nH.Fig. 11Impedance characteristicsII SIN VS. optical feedback ratioS/Nvs. optical feedback ratio, where the frequencyis 20kHz and the bandwidth is 300Hz is shown inFig.12. That where the frequency is 10MHz andthe bandwidth is 300kHz is shown in Fig.13.S/N ratio is worst on CW driving and on HFsuperimposed driving, when case temperature is 25-50"C and atmosphere temperature is 25 "C. Thefrequency and input level of HF superimpositionare about 700MHz, 35mAp - P.z"­(/)Fig. 12 S/N vs. optical feedback ratiof=20kHz, BW=300Hz40~-------r------~-n~~5070--0-80IH-----I---+----.30.--l-+~---I 3mW CW, ---{}---30mWCW90,/.--3mW HF---.- .... -...-- 100~~~~~~~~~~~~~00.01 0.050.10.20.5 1 2 5 10Optical feedback ratio Rf (%).• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML5XX5 SERIESFOR OPTICAL INFORMATION SYSTEMSFig. 13 S/N vs. oPtical feedback ratiof=10MHz, BW=300kHzCD'Czen80--0--3mWCW90H-----+----+----j ;~~~~- ....... -100 3mW HFo 0.01 0.05 O. 1 O. 2 0.5 1 2 5 10Optical feedback ratio (%)III Astigmatic focal distanceThere seems to be a difference in luminous pointin the parallel and perpendicular direction with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the two directions, making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7of ML5XX5 is shown in Fig. 14.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E~'"~.t=~N","-~.~VIl5Cl(/)Fig. 14 Astigmatic focal distance10Po =3mWCW INA=0.75III.IIIIIIIIIII"'~...... l _, ,\ -II..- r>:~ -i- parallel~\~ direction\' perpendicular~J directionAstigmatico I distance 3.2 I.t mo 10 20 30LD moving distance (I.t m)"II Wave front distortion characteristicsTypical wave front distortion (mainly astigmatism)of ML5XX5 is shown in Fig.15. This figure showswave front (phase front) when laser beam iscollimated.Various aberrations are .calculated by Zernike'spolynomial approximation for the interferencefringes observed by the Mach - Zehnderinterferometer.Fig. 15 Wave front distortionRMS: 0.014P-v: O. 129Po =3mW CWNA=0.25-1.0-1.0 -0.5 0.0 0.5parallel direction1.00.025-0.007-0.039-0.071• <strong>MITSUBISHI</strong>..... ELECTRIC 2-99


<strong>MITSUBISHI</strong> LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML6101A, ML6411A, ML6411CDESCRIPTIONFEATURESML6XX1A is a high-power semiconductor laser .High power (CW'20mW)which provides a stable, single transverse modeoscillation with emission wavelength of 780 nmand standard light output of 10mW.• Single longitudinal mode• Short astigmatic distance• Low noiseML6XXl A uses a hermetically sealed package • Low threshold current, low operating currentincorporating the photodiode for optical outputmonitoring. This high-performance, highly reliable, and• Built- in monitor photodiode• High reliability, long operation lifelong -life semiconductor laser is suitable for suchhigh - power applications as optical disk memory APPLICATIONwriting. Optical disk drive, laser beam printer, opticalcom municationABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 20Pulse (Note 1) 25VRL Reverse voltage (Laser diode) - 2VRD Reverse votage (Photodiode) - 15IFD Forward current (Photodiode) - 10Tc Case temperature - - 40-+ 60Tstg Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse width less than 1 11 s.UnitmWVVmA'C'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po= 10mWVop Operating voltage CWo Po = 10mWTJ Slope efficiency CWo Po = 10mWA P Peak wavelangth CWo Po = 10mW81/ Beam divergence angle (parallel) CWo Po = 10mW8J. Beam. divergence angie (perpendicular) CWo Po = 10mW1mMonitoring output current CWo Po= 10mWVRD= lV(Photodiode) RL= 10 Q (Note 2)ID Dark current (Photodiode) VRD = 10VCt Total capacitance (Photodiode) VRD - OV. f - 1 MHzNote 2: RL IS load resistance of the photodlode.LimitsUnitmin. Typ max.- 40 60 mA- 65 100 mA- 2.0 2.5 V- 0.4 - mW/mA765 780 795 nm10 12 17 deg.20 30 35 deg.0.3 0.8 1.7 mA- - 0.5 I1A- 7 - pF2-100. •... ". <strong>MITSUBISHI</strong>.... ELECTRIC


MITUBISHI LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS16±0.25Dimensions in mm,5,(3)PD LD~/I(2) (1)ReferenceplaneDimensions in mm'"~,2,£;'" -~~Ik~~:rl=i~~'" o .,..° 0g;: ;ti°t==4lfi'=:=='I=S'!I'Reference slot3- 10. 45±0. 05P. C. D. 12. 54(3)RaseII IIPD 5 LDPD(2) (1)ML641lA(3)flt~,5 LD(2) (1)ML641lC• <strong>MITSUBISHI</strong>"ELECTRIC2 -101


MITUBISHI LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical ,light output vs. forward currentcharacteristics are shown in Fig. 1. The thresholdcurrent for lasing is typically 40mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about10mW is obtained at Ith + 25mA.Because Ith and slope efficeency TJ(dPo/dIF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant:)~.s0


<strong>MITSUBISHI</strong> LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current va. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 2.0mV /"C at IF = 1 mAo:;(,5.!!oE~u"'E~0"-40302010o oFig. 4 Forward current vs. voltageTc~50'Cl 25CJ1.0 2.0Forward voltage VF 01)I Emission spectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of 10mW,single mode is observed. The peak wavelengthdepends on the operating case temperature andforward current (output level).Fig. 5 Emission spectra under CW operationTc=25"CXIX2~20mW10mWX31.6 3mWXI60IthI764 774 784Wavelength A (nm)I Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW, 10mW is shownin Fig.6.As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthE5Cl""-E'" c:~.,., >~'"~781780779778777Po=IOmW~J1/7762530 35 40Case temperature Tc ("C). • <strong>MITSUBISHI</strong>;"ELECTRIC 2-103


<strong>MITSUBISHI</strong> LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternThe ML6XXI A laser diodes lase in fundamentaltransverse (TEee) mode and the mode does notchange with the current. They have a typicalemitting area (size of· near - field pattern) of0.7 x 2.0 pm'· Fig. 8 show typical farfield radiationpatterns in "parallel" and "perpendicular" planes.The full angles at half maximum points (FAHM)are typically 12· and 30·.'5S:JoFig. 7 Far- field patterns in plane parallelto heterojunctions ellell-30Off-axis angle (deg.)Fig. 8Far- field patterns in plane perpendicularto heterojunctins e.l'5c.'5oOff- axis angle (deg.)II Pulse response waveformIn the digital optical transmission systems, theresponse waveform and speed of the light outputagainst the input current pulse waveform is one of. the main concerns. In order to shorten theoscillation delay time, the laser diode is usuallybiased close to the threshold current, Figure 9shows a standard response waveform obtained bybiasing ML6XXI A to Ith and applying a squarepulse current (top of Fig. 9) up tol OmW. A Quickresponse is obtained with rising and falling timesbeing 0.3ns and O.4ns typical respectively.Fig. 9Pulse response waveformTime (nsec.)2 -104'. . <strong>MITSUBISHI</strong>..... ELECTRIC


, Mil ~U"I;'"I ~;'I:.n ..,."'.., ....ML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSI Light output vs. monitoring output characteristicThe laser diodes emit beams from both of theirmirror surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront ,one. Fig. 10 shows an example of lightoutput vs. monitoring photocurrent characteristics.When the front beam output is 15mW, the monitoroutput becomes about 1.0mA.Fig. 10 Light output vs. monitoring output current~§ 10~Sa.501: 5.S!'...J15r--------r~--~-------,2Monitoring output 1m (rnA)• Polarization ratio vs. light output characteristicThe main polarization of ML6XX1 A is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in, perpendicular to it. Figure 11 showsthe standard polarization ratio vs. total light outputcharacteristic. The polarizastion ratio increases withthe light power.Fig. 11500Polarization ratio vs. light output/-i 4000..~0.. 300/.2~.§ 200LJ /~ 100Vo o5 10 15 20 25Light output Po (mW)Dllmpedance characteristicsTypical impedance characteristics of the ML6XX1 A,with lead lengths of 2mm, are shown in Fig. 12with the bias currents as the parameter. Testfrequency is swept from 100MHz to 1300MHz with100MHz steps.Above the threshold, the impedanceof the ML6XX1A is nearly. equal to a seriesconnection of a resistance of 30hm and aninductance of 3nH.Fig. 12 Impedance characteristics2-105


<strong>MITSUBISHI</strong> LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYSTEMSII SIN va. optical feedback ratioS / N vs. optical feedback ratio, where thefrequency is 20kHz and the bandwidth is 300Hz isshown in Fig. 13. That where the frequency is10MHz and the bandwidth is 300kHz is shown inFig. 14. S/N ratio is worst on CW driving and onHF superimposed driving, when case temperature is25 ~ 50°C and atmosphere temperature is 25 "Crespectively. The frequency and input level of HFsuperimposition are about 700MHz, 35mAp- p.Fig. 13 S/N vs. optical feedback ratiof=20kHz, BW=300Hz, T c=25~50'C607080K/ '" \,II\IIII.I.;j90 /( ---(}..--


<strong>MITSUBISHI</strong> LASER DIODESML6XX1A SERIESFOR OPTICAL INFORMATION SYST.EMS• Wave front distortion characteristicsTypical wave front distortion (mainly astigmatism)of ML6XX1A is shown' in Fig. 16. This figureshows wave front (phase front) when laser beamis collimated. Various aberrations are calculated byZernike • s polynomial approximation for theinterference fringes observed by the Mach-Zehnderinterferometer.Fig. 16 Wave front distortionRMS: O. 018 P-V: 0.155Po =3mW CWNA=0.25-0.050-1. 0 -0.5 0.0 0.5 1.0parallel direction-0.089.,' <strong>MITSUBISHI</strong>JJhJ..ELECTRIC 2-107


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML6413A, ML6413CDESCRIPTIONML6XX3A is a high- power semiconductor· laserFEATURES• Optical power 15mW CWwhich provides a stable. single transverse mode • Low threshold current, low operatihg currentoscillation with emission wavelength of 780nm • Built- in monitor photodiodeand standard light output of 10mW.• High reliability, long operation lifeML6XX3A uses a hermetically sealed packageincorporating the photodiode for optical output APPLICATIONmonitoring. This high- performance, highly reliable, Optical disk drive. high speed laser beam printerand long - life semiconductor laser is suitable forsuch high - power applications as optical diskmemory writing and the light source for high-speedprinter.ABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output power CW 15VRL Reverse voltage (Laser diode) - 2VRO Reverse voltage (Photodiode) - 15IFO Forward current (Photodiode) - 10Tc Temperature - - 40-+ 60T.tg Storage temperature - -55-+ 100UnittnWVVmA"C"CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po= 10mWVop Operating voltage CWo Po = 10mW1/ Slope efficiency CW.Po-l0mWit P Peak wavelength CW.Po= 10mW(JII Beam divergence angle (parallel) CWo Po= 10mW(Jl. Beam divergence angle(perpendicular) CW.Po= 10mW1mMonotoring output current CWo Po= 10mWVRO= lVCPhotodiode) RL=lQQ (Note 1)10 Dark current (Photodiode) VRO= 10VCt Total capacitance (Photodiode) VRO - OV. f - 1 MHz.Note 1: Rt is load resistance of the photodiode.LimitsUnitMin. Typ. Max.- 40 60 mA65 100 mA2.0 2.5 V- 0.4 - mW/mA765 780 795 nm10 12 17 deg.20 30 35 deg.0.3 0.8 1.7 mA- - 0.5 /1. A- 7 - pF2-108..• MrrsuBIsHI.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS¢ 9 :1::8.03MAX. n.6Dimensions in mm(3)...~1/ /JPO S LOk~~~~- Reference' slot, , 3- ¢0.45±0.05,P. C. D. ¢ 2. 54(2) (1)ML6413A(3)...~1/ IIPO S LO(2) (1)ML6413C1111311212-109


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A,SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSa Light ouput vs forward currentTypical light output vs forward current characteristicsare shown in Fig. 1. The threshold current for lasingis typically 40mA at room temperature. An opticalpower of about 10mW is obtained at Ith + 25m A.Because Ith and slope efficiency 1/ (dPo/dIF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control the casetemperature or laser current such that the· outputcurrent of the built-in monitor PD becomes constant.)~§o·Co.':;.9-:J01:Cl:.JFig. 1 light output vs. forward current'5r----r---,----.--,~-,~10o~ __ ~ __ ~~~--~--~o 20 100Forward current IF (rnA)II Temperature dependence of thre,shold current (Ith)A typical temperature dependence of the thresholdcurrent is shown inFig. 2. The characteristictemperatu~e To of the threshold current is typically140K in Tc;;;; 60°C, where the defintion of To is Ithoc exp (Tc/To).Fig. 2 Temperature dependence of threshold current


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current vs. voltageTypical forward current vs. voltage characteristics areshown in Fig. 4. In general, as the case temperaturerises, the forward voltage VFdecreases slightlyagainst the constant current IF. VF varies typicallyat a rate of - 2.0mV /"C at IF = 1 mA.Fig. 4 Forward current vs. voltage5040302 0Tc=50'C~T~=25'C ~0)oo 1.0 2.0Forward voltage VF (V)I Optical output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of 10mW,single mode is observed. The peak wavelength dependson the operating case temperature ana forWardcurrent (output level).Fig. 5 Emission spectra under CW operationTe - 25"CXl15mWXl10mWX7.9 3mWX250Ith771 781 791Wavelength A (nm)I Temperature dependence of peak wavelengthA typical temperature dependence of the peakwavelength at an output of CW, 10mW is shownin Fig. 6 ..As the temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout O.25nm/oC typical.Fig. 6 Temperature dependence of peak wavelengthE 785-5786Po=lOmWCo"' 784.cc;;c:~., 783~~ 78278 ,25~J1/30 35 40Case temperature Te ("C)• . <strong>MITSUBISHI</strong>"'-ELECTRIC 2 -111


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSI Far-field patternThe ML6XX3A laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typical emittingarea (size of near-field pattern) of 2.0 x 0.7 f.l rn'. Fig. 7shown typical farfield radiation patterns in "parallel"and ·perpendicular" planes.The full angles at half maximum points (FAHM)are typically 12· and 30·.0c..:;0.:;0:.=g.~ "~Fig. 7 Far- field patternsin plane parallel to heterojunctions 0/19/1-30 30Off-axis. angle (deg.)inFig. 8 Far- field patternsplane perpendicular to heterojunctions OJ..::JS::JoOlf- axis angle (deg.)m Monitoring outputThe laser diodes emit beams from both of theirmirro surfaces, front and rear surfaces. The rearbeam can be used for monitoring power of frontbeam since the rear beam is proportional to thefront one. Fig. 9 shows an example of light outputvs monitoring photocurrent characteristics. Whenthe front beam output is 1 OmW, the monitoroutput becomes about 0.8mA.Fig. 9 Light output vs. monitoring output current::J0.:;oor;.2'...J1. 5 2.0Monitoring output 1m (rnA)2 -112. •. <strong>MITSUBISHI</strong>If&ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX3A SERIESFOR OPTICAL INFORMATION SYSTEMSI Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular directions with thelaser beam. This distance between the two pointsis the astigmatic focal distance. Therefore. whenthe laser beam is focused. there is a difference infocal point in the two directions. making it difficultto converge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7 ofML6XX3A is shown in Fig. 10. The LD positionwhich minimizes the horizontal and vertical spotdiameters is obtained. The astigmatic distance isthe difference in moved distances thus obtained.E"-~:;::§~10N.,5::."-Q).~Fig. 10 Astigmatic distance,, , ,,, ,, ,Po 3mWCWNA~O. 7, ,,- ,, .... ''~, ,. parallel..direction, - ...... i--· .. ".'.. '.-' F-- perpendicular'0direction0. IVIAstigmaticdista?C9 4.0 /1. moo 10 20 30LD moving distance (/1. m)II Wave front distortion characteristicsTypical wave front distortion (mainly astigmatism)of ML6XX3A is shown in Fig. 11. This figure showswave front (phase front) when laser beam iscollimated. Various aberrations are calculated byZernike • s polynomial approximation for theinterference fringes observed by the Mach-Zehnderinterferomerer.Fig. 11Wave front distortionRMS: 0.018 P-v : 0.155Po~3mW CWNA~0.25c:0'e~o:~.!a ~"0$E·5 ,f;.g.~ :c 0.066!~~e;-1.0 -0.5 O. a 0.5 1.0parallel direction1.0O. 028-0.011-0. 050-0. 089• <strong>MITSUBISHI</strong>"ELECTRIC 2 -113


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML64110N, ML64110C, ML64110RDESCRIPTIONML6XX10 is a high - power AIGaAs semiconductorlaser which provides a stable, single transverseoscillation output with emission wavelength of785nm and standard light output of 30mW.ML6XX10 is produced by the MOCVD crystalgrowth method which is excellent in massproduction and characteristics uniformity. This is ahigh- performance, highly reliable, and long-lifesemiconductor laser.FEATURES• Output 35mW (CW), 45mW (pulse)• Short astigmatic distance• Built- in monitor photodiode• Highly reliable, long operation lifeAPPLICATIONOptical disk drive (rewritable, write once)ABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsRatingsCW35Po Light output powerPulse (Note 1) 45VRL Reverse voltage (laser diode) - 2 VVRD Reverse voltage (Photodiode) - 30 VIFD Forward current (Photodiode) - 10 mATc Case temperature - -40-+ 60Tstg Storage temperature - - 55-+ 100'c'cNote 1: Duty less than 50 %, pulse width less than 1 il s.UnitmWELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po = 30mWT/ Slope efficiency CW.Po =30mWVop Operating voltage CW.Po=30mW,A P Peak wavelength CWo Po=30mW8 II Beam divergence angle (parallel) CWo Po =30mW8l. Beam divergence angle (perpendicular) CW.Po =30mW1m Monitoring output current CWo Po = 30mW. VRD = lV. RL= 10 Q1m (Note 1) (Photodiode) (Note 3)ID Dark current (Photodiode) VRD = 10VCt Total 'capacitance (Photodiode) VRD = OV. f = 1 MHzNote 2: Applicable to ML64110R.3 : RL = the load resistance of photodiode.LimitsMin. Typ. Max.- 70 85- 140 160- 0.4 -- 2.0 2.5770 785 8009 10.5 1324 26.5 281.0 3.0 6.00.6 2.7 4.0- -- 70.5-UnitmAmAmW/mAVnmdeg.deg.mAmAilApF2 -114, " <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS-:iII 9 ~ 8.03MAX.ql7.6116.4Dimensions in mm,; '" do Reference slot8+1!=~~~~~(1)(3)(2)3 - ql 0.45 ± 0.05p.e.D. ql2.54(3)A"se. 1/ IIPO S LO(2) (1)ML64110N (3)Asa1/ I;POAasaS LO(3) (2) . (1)I; IIPO S LO(2) (1)ML64110RML64110C2 -115


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. forward current characteristicsFigure 1 shows the typical light output vs. currentcharacteristic of ML6XX10. The threshold currentIth at room temperature is about 70mA. Theoptical output linearly increases at currents largerthan Ith and no kink .is observed. An optical output'of about 30mA' can be obtained at Ith + 70mA.Because Ith and slope efficiency TJ (dPo/dIF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or, the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)~'50.'5oFig. 1 Light, output vs. forward current30r------,r-----~--~--~20r-------r------+--~r-~10r-------t------.~~--~o~----~--~~~----~o 50Forward current IF (mA)I Temperature dependance of threshold currentA typical temperature depndence of the thresholdcurrent of ML6XX10 is shown in Fig. 2. Thecharacteristic temperature To of the thresholdcurrent is typically about l60K in Tc ;:a; 60"C, wherethe definition of To is Ith cc: exp (Tc/To).Fig. 2 Temperature dependence of threshold current~..s:El00~=r::+=~~~~70 -50E!!~u 30:sO!0"" ~ 20I- ""10.~ __ ~ __ ~ ____ ~ __ ~ __ ~20 30 40 50 60 70Case temperature Tc ("C)II Temperature dependance of slope efficiencyA typical temperature dependance of the slopefficiency TJof ML6XXlO is shown in Fig. 3. Thegradient is - O.0013mW/mA/"C typical.Fig. 3 Temperature dependence of slope' efficiency0.5 ;----.,----.,-----,0.3~ ___"_____"--___o 20 40 60Case temperature Tc ("C)2-116• . MITSUBISH,' I.... EI..ECTAIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSIII Forward current vs. voltage characteristicTypical forward current vs. voltage characteristicsof ML6XX10 are shown in Fig. 4. In general, as thecase temperature rises, the forward voltage VFdecreases slightly against the constant current IF. VFvaries typically at a rate of - l.4mV /OC at IF = 1 mA.


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far - field patternML6XX10 oscillates in the fundamental transversemode (TEoo) regardless of light output level. Thetypical size of the light emitting area (the spot sizeof near field pattern) is about 2.3 Ii- m x 0.9 Ii- m.Figures 7 and 8 respectively show the typicalnear field patterns which are parallel (e /I) andperpendicular (e.L) to the active layer. The fullangles at half maximum points are typically 1 1 0and 26 0•~0. "SoFig. 7 Far field pattern 8'/18//30mWAngle (deg.)8.LFig. 8 Far field pattern (}.LB "o "Angle (deg.)I Light output vs. monitoring output characteristicThe laser diode emits beams from both the frontand rear sides. The intensities of these beams arein proportional relationship. Therefore, the rearbeam is used for monitoring the front beam .Figure 9 shows the typical front beam output vs.monitor output current characteristic of ML641 10Nand ML641 10C.When the front beam output is 30 mW, themonitor output typically becomes 3.0mA.WithML641 lOR, when the front beam output is 30mW,the monitor output typically becomes 2.7mA.~B "" o1: 10Ol:.JFig. 9 Light output vs. monitor outputcurrentvcharacteristic30vv oo 2 3 4 5Monitor output current 1m (rnA)2 -118• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSI Polarization ratio vs. light output characteristicThe main polarization of ML6XX10 is made in thedirection parallel to the active layer. Polarizationratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the lightpolarized in perpendicular to it. Fig. 10 shows thestandard polarization ratio vs. total light outputcharacteristic. The polarization ratio increases withthe light output.--lCI.~CL0.~c:0.~.!:!S0CI.Fig. 10 Polarization ratio vs. light outputNA =0.5200100O~----~------~----~o 10 20 30Light output Po (mW)II Impedance characteristicTypical impedance characteristic of ML6XX10, witha lead length of 2mm and the bias current beingused as the parameter is shown in Fig. 11. Testfrequencies are 100MHz to 1300MHz in steps of100MHz.Above the threshold! the impedance of ML6XX10is nearly equal to a series connection of aresistance of 40hms and an inductance of 3nH.Fig. 11ImpedanceII SIN vs. optical feedback ratio characteristicS / NA vs. optical feedback ratio, where thefrequency is 20kHz and the bandwidth is 300Hz isshown in Fig. 12.That where the frequency is10MHz and the bandwidth is 300kHz is shown inFig. 13. S/N ratio is worst on CW driving and HFsuperimposed driving, when case temperature is 25°C to 50°C and ambient temperature is 25 °C. Thefrequency and input level of HF superimpositionare the values obtained at about 700MHz andabout 35mAp- p, respectively.z.....enFig. 12 S/N vs. optical feedback ratiof = 20kHz, BW = 300Hz~~------'-------r-----,5060~------4-------r+--~-170-0--3mW CW--~30mW CWFeedback ratio Rf (%)2 -119


<strong>MITSUBISHI</strong> LASER DIODESML6XX10 SERIESFOR OPTICAL INFORMATION SYSTEMSFig .. 13 S/N VS. optical feedback ratiof = 1 OM Hz. BW = 300kHz50~-------r~----'-------'60zVi 80--0--3mW CW90 H----+----+------j 30~CW-.-+---3mW HF1004~~--J--L~--~~-L--~o 0.01 0.05 0.1 0.2 O. 5 1 2 5 10Feedback ratio Rf (%)II Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular directions with thelaser beam.This distance between the two points isthe astigmatic focal distance. Therefore. when thelaser beam is focused. there is a difference in focalpoint in the two direcctions. making it difficult toconverge the beam spot to the diffraction limit.The typical astigmatic focal distance at NA = 0.7 ofML6XX10 is shown in Fig. 14.The LD position which minimizes the horizontaland vertical spot diameters is obtained. Theastigmatic distance is the difference in moveddistances thus obtained.E,5:2~~.,"- G!E.!!!"C00.Vl105Fig. 14 Astigmatic distance.. Po=3mW. CW'.NA=0.71/,'.• , .'. .'...... /' .~- ......;_..-!-.. '-1- -'Cr -" '~arallel direction'I ._, Perpendicular~ directionAstigmaticI- distance 3.6 Jl. mo o 10 20 30LD moving distance (Jl. m)II Wave front distortion characteristicTypical wave front distortion (mainly astigmatism)of ML6XX10 is shown in Fig. 15. This figure· showswave front (phase front) when the laser beam iscollimated. VCirious aberrations are calculated byZernike • s polynomial approximation for theinterferance fringes observed by the Mach - Zehnderinterferometer.Fig. 15 Wave frong distortionRMS: 0.023 P-V: 0.089Po = 3mW.CWNA = 0.25!41'-==~' ,_. ..>---+---r----t--_--.---+---t-._ 1. 0-1. 0 -0.5 0.0 0.5 1. 0Parallel direction0.5-0.50.0370.015-0.007- 0.030-0.0522-120• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESMl6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEMl60111 R, Ml64111 NDESCRIPTIONFEATURESML6XXll is a high- power AIGaAs semiconductor • Output 35mW (CW), 45mW (pulse)laser which provides a stable, single transverse • Short astigmatic distancemode oscillation with emission wavelength of • Built- in monitor photodiode785nm and standard light output of 30mW. • Low lop specificationsML6XXll is produced by the MOCVD crystalgrowth method which is excellent in mass APPLICATIONproduction and characteristics uniformity. This is· a Optical disk drive (rewritable, write once)high- performance, highly reliable, and long-lifesemiconductor laser.ABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo light output powerCW 35Pulse (Note 1) 45VRL Reverse voltage Claser diode) - 2VRD Reverse voltage (Photodiode) - 30IFD Forward current (Photodiode) - 10Tc Case temperature - - 40-+ 60Tstg Storage temperature - -55-+ 100Note 1: Duty less than 50 %. pulse Width less than 1 fJ. s.UnitmWVVmA-C·CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po =30mWT/ Slope efficiency CW. Po = 30mWVop Operating voltage CW.Po-30mW). P Peak wavelength CW.Po=30mW011 Beam divergence angle (parallel) CW.Po=30mWOJ. Beam divergence angle (perpendicular) CW.Po=30mW1m Monitoring output current CWo Po = 30mW. VRD = 1V. RL= 10 Q1m (Not. 2) (Photodiode) (Note 3)ID Dark current (Photodiode) VRD = 10VCt Capacitance (Photodiode) VRD - OV. f - 1 MHzNote 2: Applicable to ML60111 R.3 : RL = the load resistance of photodiode.LimitsMin. Typ. Max.- 60 75- 120 135- 0.5 -- 2.0 2.5770 785 8009 10.5 1324 26.5 28- 0.9 -- 0.7 -- - 0.5- 7 -UnitrriAmAmW/mAVnmdeg.deg.mAmAfJ.ApF'. <strong>MITSUBISHI</strong>.... ELECTRIC2 - 121


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS¢B:: 8.03MAX.¢ 7.6¢6.4Dimensions in mmReference slotfi(3) CaseII IIPD .s LD(2) (1)(1 )(3)(2)Dimensions in mmA(3) CaseII IIPD .s LD(2) (1)h2=;:j::;=::i,-r Reference plane(11(3)(213 - 0.45 ¢2-122.'. <strong>MITSUBISHI</strong>.... ELECTRIC .


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSSAMPLE CHARACTERISTICSI Light output va. forward current characteristicFigure 1 shows the typical light output vs. currentcharacteristic of ML6XXll. The thershold currentIth at room temperature is about 60mA. The opticaloutput linearly increases at currents larger than Ithand no kink is observed. An optical output ofabout 30mW can be obtained at Ith + 60mA.Because Ith and slope efficiency 1} (dPo! dlF) istemperature dependent, obtaining a constant outputat varying temperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)Fig. 1 Light output vs. forward current30~-----,,------,--,,~,~5 20~--~--+-------~~--~~S~o~ 10~------4-----~~------~:J '"50 100 150Forward current IF (mA)I Temperature dependence of threshold currentA typical temperature dependance of the thresholdcurrent of ML6XXll is shown in Fig. 2.Thecharacteristic temperature To of the thresholdcurrent is typically about l60K in Tc ;:;; 60°C, wherethe definition of To is Ith oc exp (Tc/To).Fig. 2 Temperature dependence of threshold current100


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSII Forward current vs. voltage characteristicTypical forward current vs. voltage characteristicsof ML6XXll are shown in Fig. 4. In general,as thecase temperature rises, the forward voltage VFdecreases slightly against the constant current IF.VF varies typically ,at a rate of - 1 .4mV It atIF = 1 mA.


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSI Far field patternML6XX11 oscillates in the fundamental transversemode (TEoo) regardless of light output level. Thetypical size of the light emitting area (the spot sizeof near field pattern) is about 2.3 JJ. m x 0.9 JJ. m.Figures 7 and 8 respectively show the typical nearfield patterns which are parallel (8 II) andperpendicular (8 J.) to the active layer. The fullangles at half maximum points are typically 11 08/1Fig. 7 Far field pattern (J "30mWand 26 0•Angle (deg.)Fig. 8 Far field pattern (J J.S0.SoAngle (deg.)I Light output vs. monitoring output characteristicThe laser diode emits beams from both the frontand rear sides.The intesities of these beams are inproportional relationship. Therefore. the rear beamis used for monitoring the front beam. Figure 9shows the typical front beam output vs. monitoroutput current characteristic of ML64111 N. Whenthe front beam output is 30mW. the monitoroutput typically becomes 0.9mA.Fig. 930j! 20d's~::J0.E 100>:::;Light output vs. monitor output current/ V/// ~0o 0.2 0.4 0.6 0.8 1.0Monitor output cuirent 1m (rnA)2-125


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSI Polarization ratio vs. light output characteristicThe main polarization of ML6XXll is made in thedirection parallel to the active layer. Polarization'ratio refers to the intensity ratio of the lightpolarized in parallel to the active layer to the, lightpolarized in perpendicular to it. Figure 10 shows thestandard polarization ratio vs.' total light outputcharacteristic. The polarization ratio increases withthe light output.Fig. 1 0 polarization ratio "s. light outputNA=0.5~ 2001--------r-------r-----~~~.ge.§ 1ool---------;}I>jC--------r-------j,~.!lI~°0~-------1~0------~207-----~30Light output Po (mW)II Impedance characteristicTypical impedance characteristic of ML6XX11, witha lead length of 2mm and the bias current beingused as the parameter is show(l in Fig. 11. Testfrequencies are 100MHz to 1300 MHz in steps of100MHz. Above the threshold, the impedance ofML6XX10 is nearly equal toa series connection ofa resistance of 40hms and an inductance of 3nH.Fig. 11Impedance• SIN vs. optical feedba'ck ratio characteristicS / NA vs. optical feedback rat,io, where thefrequency is 20kHz and the bandwidth is 300Hz isshown in Fig. 12. That where the frequency is 10MHz and the bandwidth is 300kHz is shown in Fig.13. S/N ratio is worst on CW driving and HFsuperimposed driving, when case temperature is 25"C to 50"C and ambient temperature is 25"C. Thefrequency and input level of HF superimpositionare the values obtained at about 700MHz andabout 35mAp - p, res~ectivelyFig. 12 S/N vs. optical feedback ratiof = 20kHz. BW = 300Hz40~------,-----~r-----~5080ri--~~~~_.~~----,__


<strong>MITSUBISHI</strong> LASER DIODESML6XX11 SERIESFOR OPTICAL INFORMATION SYSTEMSFig. 13 S/N vs. optical feedback ratiof = 1 OMHz. BW ~ 300kHz--0---3mW CW90~-------+-------+------~---o---30mW CW---.---3mW HF, 00 O~i'". 0=,--'-70.-=0=-5 -=0"-:. ,~o-:-, =-2 -=0""=. 5:-':'-2':---:5:---" 0Feedback ratio Rf (%)• Astigmatic distanceThere seems to be a difference in luminous pointin the parallel and perpendicular directions with thelaser beam. This distance between the two points'is the astigmatic focal distance. Therefore, whenthe laser beam is focused, there is a difference infocal point in the directions, making it difficult toconverge the beam spot to the diffraction limit.Thetypical astigmatic focal distance at NA = 0.7 ofML6XX11 is shown in Fig. 14. The LD positionwhich minimizes the horizontal and vertical spotdiameters is obtained. The astigmatic distance isthe difference in moved distances thus obtained.E::t~.r:.1{::::;!E.Il!...,'05Fig. 14 Astigmatic distancePo-3mW CW ,~ NA = 0.7I.I.II\... ,~\"!' .,,,,-ParalleldirectionI.,'.':ii-I15:~Q Astigmaticen - distance 2.8 JJ. mI" ..•..... fL ....."~rpendicular- • directionIo o '0 20 30LD moving distance (JJ. m)II Wave front distortion characteristicTypical wave front distortion (mainly astigmatism)of ML6XX11 is shown in Fig. 15. This figureshows wave front (phase front) when the laserbeam is collimated. Various aberrations arecalculated by Zernike's polynomial approximationfor the interference fringes observed by the Mach- Zehnder interferometer.Fig. 15 Wave front distortionRMS : 0.023 P - v : 0,150Po = 3mW.CWNA = 0.25- 0,015--~~--+-~----~~~~ - 0,053-1. 0 -0.5 0.0 0.5 1. 0Parallel direction'. MlTSUBlSHI .... ELECTRIC 2 -127


<strong>MITSUBISHI</strong> LASER DIODES·ML6XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSTYPENAMEML60114R, ML64114RDESCRIPTIONML6XX14 is a high - power AIGaAs semiconductorlaser which provides a stable, single transversemode oscillation with emission wavelength of785nm and standard light output of 50mW.ML6XX 14 is producedby the MOCVD crystalFEATURES• Output 60mW (CW), 70mW (pulse)• Short astigmatic distance• Built- in monitor photodiode• MOW active layergrowth method which is excellent in mass APPLICATIONproduction and characteristics uniformity. This is a Optical disk drive (rewritable, write once)high - performance, highly reliable. andsemiconductor laser.long - lifeABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 60Pulse (Note 1) 70VRL Reverse voltage (laser diode) - 2VRD Reverse voltage (Photodiode) - 30IFD Forward current (Photodiode) - 10Tc Case temperature - -40-+ 60T5'9 Storage temperature - - 55-+ 100Note 1: Duty less than 50 %. pulse width less than 1 /l s.UnitmWVVmA°C°CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po=50mWTI Slope efficiency CW, Po=50mWVop Operating voltage CW, Po = 50mW .A P Peak wavelength CW, Po-50mW8 II Beam divergence angle (parallel) CW, Po = 50mW81. Beam drivergence angle (perpendicular) CW, Po = 50mW1m Monitoring output current CW, Po = 50mW, VRD = 1 V, RL = 10 Q1m (Note 2) (Photodiode) (Note 3)ID Dark current (Photodiode) VRD=10VC, Capacitance (Photodiode) VRD = OV, f = 1 MHzNote 2: Applicable to ML60114R.3 : RL = the load resistance of photodiode.LimitsMin. Typ. Max.- 55 -- 135 -- 0.6 -- 2.0 2.5770 785 800- 9.5 -- 25 -- 0.3 -- 0.3 -- - 0.5- 7 -UnitmAmAmW/mAVnmdeg.deg.mAmA/lApF2-128" ,<strong>MITSUBISHI</strong>"ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML6XX14 SERIESFOR OPTICAL INFORMATION SYSTEMSOUTLINE DRAWINGS~ 9 ~ 8.03 Dimensions in mm-;;! :s"~ do8+lb~~~=/-~ do+1o '"Reference slot(3)f ~as. 1/ IIPO S LO(2) (1)Dimensions in mmh"=;::f:T=!::L.;....- Reference plane~+1o,..:3-0.4S¢(I) (3)(2)• <strong>MITSUBISHI</strong>..... ELECTRIC2-129


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEM L7011 R, M L720A 1 S, M L7701ML774A1 F, ML776B1 F, ML7781ML7911DESCRIPTIONML7XXl series are InGaAsP laser diodes whichprovide a stable. single transverse mode oscillationwith emission wavelength of 1300nm and standardcontinuous light output of 5mW.ML7XXl are hermetically sealed devices havingthe photodiode for optical output monitoring. Thishigh-performance. high reliability. and long-life laserdiode is suitable for such applications as the lightsources for long - distance optical communicationsystems and optical mesurment systems.FEATURES• Stable fundamental transverse mode oscillation• Low threshold current. low operating current• Built- in monitor photodiode• High reliability. long operation life• 1300nm typical emission wavelength• High speed of responseAPPLICATION• Optical communication systems• Optical measurment systems(except ML7911)ABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output· powerCW 10Pulse (Note 1) 10VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage (Photodiode) - 20IFD Forward current (Photodiode) - 2Tc Case Temperarure - - 20-+ 70Tstg Storage temperature - - 40-+ 100Note 1: Duty less than 50 %. pulse width less than 1 jJ. sunitmWVVmA·C-CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditions!th Threshold current CWlop Operating current CW.Po-5mWVop Operating voltage CW.Po=5mWn Slope efficiency CW. Po = 5mWA P Peak wavelength CW.Po=5mWtd Spectral half width CW. Po = 5mWOil 8eam divergence angle (parallel) CW.Po=5mW01- Beam divergence angle (perpendicular) CW.Po=5mWtr. tf Rise and fall times IF = !th. Po = 5mW. 10 %-90 %Monitoring output current CWo Po = 5mW. VRD = 1 V. RL = 10 Q1m(Photodiode) (Note 2)ID Dark current (Photodiode) VRD = 10VCt Total capacitance (Photodiode) VRD = 1 OV. f = 1 MHzPm (Note 3) Monitoring Light Output CW.Po=5mWNote 2: RL is load resistance of the photodiode.3 : Pm only apply to ML 7911.LimitsMin. Typ.- 10- 25- 1.20.2 0.351280 1300- 3- 25- 30- 0.30.2 0.5- 0.2- 8- 1.0Max.Unit30 mA50 mA1.6 V- mW/mA1330 nmnm- deg.- deg.0.7 ns- mA0.5 jJ.A20 pF- mW2 -130.•.. <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONOUTPUT DARAWINGS0.4+ 0.1- 0 (> 2.0 (p.e.D.)Dimensionsin mm(¢ 5.6mm 3pinsmall package)00+1-ffiz::::==l=d(3)AasoI; IIPO S LO"l",0N +1f.-,d:==;=i=r===;"";-~ Reference plane(2) (1)- +1C!....Dimensions in mm(¢ 5.6mm 4pinLD, PD floating)Reference plane(1) (2)~'1 IILD "2. PD• Case(3) (4)- +1~Dimensions in mm(¢ 9mm 4pinStandard package)j2::::l '"+1"l0dReference slot4===;;'"'"",,,,=="11- ~ ~+1;1 ~Referonce[Er"----rr-----'-, ~ U :!lplanef(4) (3)I! IIPD S LD(2) (1)'case; ci'" +l- "1• <strong>MITSUBISHI</strong>.... ELECTRIC 2 - 131


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATION¢ 5.6 ~ 8.03¢ 4.8 ± 0.3Dimensions in mm(¢ 5.6mm 4pinwith thick cap)0ro8+ ¥"I; IIRO.15MAX.PD S LD- .~ ~~d c & (1) (2)Reference plane+1~4 - ¢ 0.45, (3)(1) (4) (2)¢ 2.0P.C.D¢ 5.6~ 8.03¢ 4.4Dimensions in mm(¢ 5.6mm 4pinsmall package)00ro8~oHc·00.0~0cE~dReference plane(4) (3)+ f"(2) (1)I; IIPD S LD+10N• 9:t:g. 03MAX .8.1.6.4+0. 2-0.1.3Dimensions in mm(¢ 9mm, 4pin,Low cap package)c·00.. ~ .O..J°+I~+It==-rc~i1l=-:QT"rRe.ference ~ -t---r~TT--".,No~co .~ - Reference slotoEo>M(2) (1)4-.0.45P. c. D .• 2.54(1 )(3)(2)(4)2-132•. <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONDimensions in mm(Chip carrierpackage)l±O.-.--r-±--,-j~~--.­~ ~'g NL-_"'~~~~¥_...L"'~g ~ l±O.l'eCeramic~ .3 ~DChiP N~DE~ ,,' JI:lI.t'l r--II) I I I- I. 3±O. 1. i(Luminous point)• .....: I I ,....:~t::::J* (1).Case""0(2)• <strong>MITSUBISHI</strong>.... ELECTRIC2-133


SAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward currentcharacteristic are shown in Fig. 1.The thresholdcurrent for lasing is typically 10mA at roomtemperature. Above the threshold. the light outputincreases linearly with current. and no kinks areobserved in the curves. An optical power of about.5mW is obtained at Ith + 15mA.As can be seen in Fig.1. Ith and slope efficiencyY} (dPo/dIF)depends on case temperature. obtaininga constant output at varying temperatures requiresto control the case temperature Tc or the lasercurrent.(Control the case temperature or lasercurrent such that the output current of the bui Itinmonitor PO becomes constant.)§2.,5 400..'5e0 ".E 2OJ:.J<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONFig. 1 Light output vs. forward current65300Forward current IF (mA)50II Temperature dependence of threshold current(lth). operating current (lop) and slope efficiency ( Y} )A typical temperature dependence of the thresholdcurrent and operating current (5mW)Fig. 2.is shown inThe characteristic temperature To of thethreshold current is typically 55K in Tc;:;; 50·C. 45Kin Tc > 50·C where the definition of To is Ith a;exp (T c/T 0).Fig. 2 Temperature dependence of threshold current1007050~~ 40lo~(5niW)0:,5!--r""30-:.:E 20! t:~ .,B ~ 10OJ 07. ~ =§ 5(p 1i 40. .,01: 3r-2~I .......j...-'".IIth~ Vr'"1-20-10 0 10 20 30 40 50 60 70 80Case temperature Tc C'G)A typical temperature dependences of the slopeefficiency TJ is shown in Fig. 3. The gradient is- O.0015mW/mA/·C.Fig. 3 Temperature dependence of slope efficiency0.5~E 0.4"- ?;,5., 0.3-(;c:.lE.11 0.2~.,0.0u; 0.1r- r- r-r-~---20-100 10 20 30 40 50 60 70 80Case temperature Tc ('C)2-134.• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONII Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF.VF variestypically at a rate of -1.3mV/oC and -lmV/C atIF = 1 mA and 10mA, respectively.Fig. 4 Forward current VS.voltage50r-~-r-'--~'--T~r-~-r~T c=70JC~ l25"C40~----------~--H--------130~----------~-H~-------120~----------~~---------11o~ 10~----------~~---------1Forward voltage VF (V)II Emission spectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of 5mW,several modes are observed.Longitudinal modespacings are typically 1 nm and spectral width(FWHM) is typically 3nm at an output of 5mW.The peak wavelength depends on the operatingcase temperature and the forward current (outputlevel).>.t::"' t:l!l.5.~.§£Tc=25'C1290 1300 1310Wavelength A (nm)A typical temperature dependence of the peakwavelength at an output of 5mW is shown in Fig. 6.As the temperature rises, the peak wavelengthshifts to the long - wavelength side at a rate ofabout O.35nm!'C.Fig. 6 Temperature dependence of peak wavelength1315Po=5mW~ 1310E..50..'"" 1305.r:;a,..i 1300i1 1295V.// v'"/ ///"1290010 203040506070Case temperature Tc ('C).. ' <strong>MITSUBISHI</strong>.... ELECTRIC 2-135


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONII Far-field patternThe ML7XXl laser diodes lase in fundamentaltransverse (TEee) mode and the mode does notchange withthe current. They have a typical emittingarea (size of near- field pattern) of 1.0 x 1.25 /J. rn'.Fig. 7 and Fig. 8 show typical far- field radiationpatterns in "parallel" and "perpendicular" planes.The full angles at half maximum points (FAHM)are typically 25deg. and 30deg., respectively.'55o.EgiFig. 7 Far- field patternsin plane parallel to heterojunctions ell1. O...-...--,.........,..--,r--..-.....--.---.-,.........,+50Off- axis angle (deg)Fig. 8 Far- field patternsin plane perpendicular to heterojunctions e.L1. Or--r---,---,-.,..--r----r-r---r---,---,00..'5Q'50..~.


<strong>MITSUBISHI</strong> LASER DIODEML7XX1 SERIESFOR OPTICAL COMMUNICATIONI Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring the power of thefront beam since the power of the rear beam isproportional to the front one. In the ML7XX1 series.the rear beam power is changed into photocurrentsby monitor photodiodes. Fig. 10 shows typical lightoutput vs. monitoring photocurrent characteristics.Above the threshold current. the monitoringphotocurrent increases linearly with the front lightoutput. The monitoring output current is typicallyO.SmA when the front light output is SmW. In theML7911. monitor photodiodes are not installed inthe laser package. Monitoring output is emittedfrom the back of package.Monitoring output is typically 1 mW when frontlight output is SmW.Fig. 10 Light output VS. monitoring output current6i,5.eS0-S01:.2'..J543/2,//o o(0)///0.5(1)Monitoring output 1m (rnA)(Monitoring light output Pm (mW»1.0(2)Ilmpendance characteristicsTypical impendance characteristics of the ML 7XX 1.with lead lengths of 2mm is shown in Fig. 11 withthe bias currents as the parameter. Test frequencyis swept from 100MHz to . 1300MHz with 100MHzstep.Fig. 11Impedance characteristics"2-137


<strong>MITSUBISHI</strong> LASER DIODI:SML7XX1ASERIESFOR OPTICAL COMMUNICAtiONTYPENAMEML7781A, ML7911ADESCRIPTIONML7XX1 A series are InGaAsP high power laserdiodes which provide a stable. single transversemode oscillation with emission wavelength of1310nm and standard continuous light output of25mW.ML7XX1 A are hermetically sealed devices havingthe photodiode for optical output monitoring. Thishigh-performance. high reliability. and long-life laserdiode is suitable for such high-power applicationsas the light sources for OTDR systems and long -distance optical communication systems.FEATURES• Low threshold current. low operating current• Built- in photodiode (ML7781 A)• High reliability. long operation life• High power (CW 25mW. Pulse 100mW)• 131 Onm typical emission wavelength• High speed of response• Stable fundamental transverse mode oscillationAPPLICATIONDigital communication systems. OTDR systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output power CW 30IF Forward current Pulse (Note 1) 400VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage (Photodiode) - 20IFD Forward current (Photodiode) - 2Tc Case temperature - -20-+ 50Tstg Stroage temperature - - 40-+ 100Note 1: Duty less than 1 %. pulse width less than 1 JJ. S.UnitmWmAVVmA·C·CELECTRICAL/OPTICAL CHARACTERISTIC (Tc = 25 ·C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po-25mWVop Operating voltage CW.Po-25mWPo (P) Pulse ligth output Pulse (Note 1). IF = 3S0mAA P Peak wavelength CW.Po=25mWLlA Spectral half width CW.Po-25mW81/ Beam divergence angle (parallel) CWo Po-25mW8J. Beam divergence angle (perpendicular) CWo Po=25mWtr. tf Rise and fall times IF -Ith. Po - 25mW. 10 %-90 %1mMonitoring output current CWo Po = 25mW. VRD = 1 V. RL = 10 Q(Photodiode) (Note 2)ID Dark current (Photodiode) VRD -10VCt Capacitance (Photodiode) VRD - 1 OV. f = 1 MHzPm (Note 3) Monitoring light output CWo Po-25mWNote 2: RL IS load resistance of the photodlode.3 : Pm only apply to ML 7911 A.LimitsMin. Typ. Max.- 10 3070 130- 1.5 2.0100 - -1280 1310 1330- 8 -- 25 -- 30 -- 0.3 -0.2 0.5 -- 0.2 0.5- 8 20- 1.0 -UnitmAmAVmWnmnmdeg.deg.nsmAJJ.ApFmW2-138• MIlSUBISHI.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML7XX1A SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS,. 9~~. 03MAX"8.1"6.4+0.2-0.1¢3Dimensions in mm(¢ 9mm, 4pin,Low cap package)'0'~8 ... ,b;i~~/~ d~c.~, o


<strong>MITSUBISHI</strong> LASER DIODESML7XX1A SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output VS. forward currentTypical light output vs. forward currentcharacteristics are shown in Fig. 1. The thresholdcurrent for lasing is typically 10mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in the curves. An optical power of about25mW is obtained at Ith + 60mA.TJAs can be seen in Fig. 1. Ith and slope efficiency(dPo/dIF) depends on case temperature, obtaininga constant output at varying temperatures requiresto control the case temperatureTc or the lasercurrent.(Control the case temperature or lasercurrent such that the output current of the builtinmonitor PO becomes constant.)~S "o "Fig. 1 Light output vs. forward current (CW)30~----------~~~~~--,E 10~----~~~~----------~.2'...J°0~~~------~~--------~1~00Forward current IF (mA)Fig. 2 shows a typical light output vS.forwardcurrent under pulse operation.Pulse conditions are pulse width tp = 1 f.l sec andduty = 1 %.They emit light power of 100mW up to50°C case temperature.3 100-5Fig. 2 Pulse light output vs.forward current at pulse operation75~----+-----~~~-+-----;50~----~~~+-----+-----125~--~+-----~-----+-----;~'" Ol:.J100 200 300 400Pulse forward current IF (mA)II Temperature dependence of ith, lopTypical temperature dependence of the thresholdand operating currents is shown in Fig. 3. Thecharacteristic temperature To of the thresholdcurrent is typically 55K for Tc;;; 50°C, where thedefinition of To is ItheTc/To).1 100n70.£50403020c:~to"'C'01075432Fig. 3 Temperature dependenceof threshold and operating currentsI I 1t""" _I I,lop(25mW)II,. ~IIth,.'" 1~ -20-10 0 10 20 30 40 50 60 70 80I- '"Case temperature ("C)2-140'. <strong>MITSUBISHI</strong>..... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML7XX1A SERIESFOR OPTICAL COMMUNICATIONI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig.4.In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1.3mV /oC and -at IF = 1 mA and 10mA, respectively.1 mW/OC


<strong>MITSUBISHI</strong> LASER DIODESML7XX1A SERIESFOR OPTICAL COMMUNICATIONI Far - field patternThe ML7XXI A laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current.They have a typicalemitting area (size of near- field pattern) of 1.0 x1.25 f.l rna. Fig. 7 and 8 show the typical far- fieldpatterns.The full angles at half maximum points (FAHM)are typically 25deg. and 30deg., respectively.0Q.~:;JCo'50~.


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEML774A2F, ML7922DESCRIPTIONML7XX2 is a DFB (Distributed Feedback) laser diodewhich oscillates in a single wavelength withemission wavelength of 1310nm and standardcontinuos light output of 5mW.ML7XX2 are hermetically sealed devices havingthe photodiode for optical output monitoring. Thisis a high-performance. high reliability. and long-lifelaser' diode.FEATURES• Low threshold current typical 15mA.High stable fundamental transverse mode oscillation• High side mode suppression ratio typical 40dB(Tc = 0-+ 60"C)• High speed of response (Rise and fall timetypically 0.2nsec)APPLICATIONLong-distance. large-capacity optical communicationsystemsABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsPo Light output power CWVRL Reverse voltage (Laserdiode) -VRD Reverse voltage (Photodiode) -IFD Forward current (Photodiode) -Tc Case temperature -Tot9 Storage temperature -Ratings Unit6 mW2 V20 V2 mA0-+60 'c-40-+ 100 'CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CW.Po=5mWVop Operating voltage (Laser diode) CW.Po-5mWT) Slope efficiency CW.Po=5mW.l. P Peak wavelength CW.Po=5mW8 II Beam divergence angle (parallel) CW.Po-5mW8J. Beam divergence angle(perpendicular) CW.Po=5mW1mMonitoring output currentCWo Po = 5mW. VRD = 1 V. RL = 10 Q(Photodiode) (Note 1)tr / tl Rise and fall times IF -Ith. Po - 5mW. 10 %-90 %SMSR Side mode suppression ratio CWo Po = 5mW. 0-+ 60 'cPm(Note 1) Monitoring Light Output CW.Po=5mWNote 1: RL is load resistance of the photodiode.2 : Pm only apply to ML 7922.LimitsMin. Typ. Max.Unit- 15 40 mA- 30 80 mA- 1.2 1.8 V- 0.4 - mW/mA- 1310 - nm- 25 - deg.- 30 - deg.0.1 0.25 - mA- 0.2 0.4 ns30 40 - /l.A- 0.5 - mW• <strong>MITSUBISHI</strong>"ELECTRIC2 -143


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 SERIESFOR OPTICAL COMMUNICATION .OUTLINE DRWINGSDimensions in mm(¢ 5.6mm 4pinwith thick cap)+(4) +(3)' Case1/ . IIPD S LD(I) (2)" 6±0.2 -Jl ±I -,---r0.l:C~=n(2~¢1±O.1LD chip I ~CeramicDimensions in mm, " -:;r¥,I iu·~~~': I r ,~t2,5 ~---Lf--..2--,-+.w-", . E~'-'-d(Luminous point)(Chip carriertype package)Case ~(I). IW7 0(2)2-144• <strong>MITSUBISHI</strong>"'ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output forward current characteristicsare shown in Fig. 1. The threshold current forlasing is typically 20mA at room temperature.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves.An optical power of about 5mW isobtained at Ith + 13mA.As can be seen in Fig. 1. Ith and slope efficiency11 ' (dPo / dlF) depends on case temperature,obtaining a constant output at varying temperaturesrequires to control the case temperature Tc or thelaser current. (Control the case temperature or lasercurrent such that the output of the built - inmonitor PO becomes constant.)~SQSo1:.2'...JFig. 1 Light output vs. forward current6~----~-r-r~--~~~-'4r-----~~--~7------r-;3~----~4---~+-------~2r---~~---+~-------r-;O~~~~----J-----~~o 40 60Forward current IF (mA)I Temperature dependence of threshold current (Ith),operating current (lop) and slope efficiency. ( 11 )A typical temperature dependence of the thresholdcurrent and operating current (5mW) is shown inFig. 2. The characateristic temperature To of thethreshold current is typically 60K in Tc:;o 40"C, 55Kin Tc > 40 "C.Fig. 2 Temperature dependenceof threshold current and operating current1001 70I Ilop(5mW) .-_i"""Q 50.2 4030201075432-I--r--Ithf.....-V1-20-10 0 10 20 30 40 50 60 70 80'Case temperature Tc ('C)A typical temperature dependences of the slopeefficiency 11 is shown in Fig. 3. The gradient is- O.0012mW/mA/"C.Fig. 3 Temperature dependence of slope efficiency0.5~ 0.4-r- -~ 0.3--~.!I! 0.2~,&£ 0.1o-20 -10 0 10 20 30 40 50 60 70 80Case temperature Tc ('C)" 'MITSlI3ISH, I"ELECTRIC2-145


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 .SERIESFOR OPTICAL COMMUNICATIONI Forward current vs. voltageTypical forward current vs. voltage characteristicsare sho,wn in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreaseslightly at a constant current IF. VF varies typicallyat a rate of - 1.2mV /C and - 1.1 mV /"C at IF =1 mA and 10mA, respectively.:(,§.!!.~:JU'E~0...Fig. 4 Forward current vs. voltage50TC=50~_ l.- 25'C40302010)~1.0 2.0Forward voltage VF MFig. 5 Emission spectra under CW operation .I Optical output dependence of emission spectraTypical emission spectra under CW operation areshown in Fig. 5.Tc=25"C~~J ,........po =3mW_.-./) \ Po=lmW _Emission spectra under 2.5Gb/s (NRZ) modulationis shown in Fig.6.Typical spectral width (Chirping) is about O.15nmat - 3dB. 0.45nm at - 10dB and O.60nm at - 20dB.AA1\ It\"1305 1310Wavelength .l (nm)J./ t'-po=5mW-IF=lth-1315Fig. 6 Emission specturm under modulated operation1305Tc=25"C:-!JIJ,,"----1310Wavelength A (nm)2.5Gb/s NRZ-Ppeak=5mWIb=lth-13152-146


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 SERIESFOR OPTICAL COMMUNICATIONA typical temperature dependence of the peakwavelength at an output of 5mW is shown in Fig. 7.As the temperature rises, the peak wavelengthshifts to the iong - wavelength side at a rate ofabout 0.1 nm/"C.\Fig. 7 Temperature dependence of peak wavelength1315~ 1310E.5Q.... 1305i ''".¥1. 1295~ V...... ~ ~1290-20-100 10 203040 5060Case temperature Tc ('C)II Far-field patternThe ML7XX2 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does not changewith the current. They have a typical emitting area(size of near- field pattern) of 1.0 x 1 ;25 /.t rn'.Fig. 8 and 9 show the typical far-field patterns.The full angles at half maximum points (FAHM)are typically 3Odeg. and 35deg., respectively.s~.t:~1.0Fig. 8 Far field pattern (parallel)0.51------+-+----'1-----1o +45Angie (deg.)Fig. 9 Far field pattern (perpendicular)Angle (deg.)2-147


<strong>MITSUBISHI</strong> LASER DIODESML7XX2 SERIESFOR OPTICAL COMMUNICATIONI Pulse response, In digital optical transmission systems. the responsewaveform and speed of the light output againstthe input pulse current waveform is a main concern.In order to, shorten the oscillation delay time. thelaser diode is usually biased close to the thresholdcurrent. Fig. 10 shows a typical response waveformwhen a rectangular pulse current (rise/fa" time isshorter than 0.1 ns) is applied.Rise/fa" times is typically 0.2ns at Ib =ith and Po=5mW.Fig. 10 Pulse response waveformt \~ 90 ~-+-I-+J-I---±-I--+-I--t--;.E I \~,~I \j I ' \10 ---------,-----O%r--t~t__+--+_~~~--I__r~~~200ps/divI Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces (see theoutline drawing). The rear beam can be used formonitoring the power of the front beam since thepower of the rear beam is proportional to the frontone. In the ML7XX2 'series, the rear beam power ischanged into photocurrents by monitor photo diodes.Fig. 11 shows typical light output vs. monitoringphotocurrent characteristics. Above the thresholdcurrent, the monitoring photocurrent increaseslinearly with the front light output. The monitoringoutput current is typically 0.25mA when the frontlight output is 5mW.In the ML7922, monitor photodiodes are notinstalled in the laser package. Monitoring output isemitted fromthe back of package. Monitoringoutput is typically 0.5mW when the front lightoutput is 5mW.Fig. 11 Light output vs. monitoring output current6~.5.e4'5 3e-::J0E 2:3'5'///Lo Vo 0.25 0.5~ ~~ umMonitoring output 1m (rnA)/(Monitoring light output Pm (mW))2-148


<strong>MITSUBISHI</strong> LASER DIODESML7XX3 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEI ML7783FDESCRIPTIONML7XX3 series are InGaAsPHigh Power laserdiodes which provide a stabe. single transversemode oscillation with emission wavelength of1310nm and standard continuous light output of25mW.ML7XX3 are hermetically sealed devices havingthe photodiode for optical output monitoring. Thishigh-performance. high reliability. and long-life laserdiode is suitable for such high - power applicationsas the light sources for OTDR systems and logdistanceoptical communication systems.FEATURES• High Power (CE 30mW. Pulse 200mW).1310mm typical emission wavelength• High speed of response• Stable fundamental transverse mode oscillation• Low threshold current. low operating current• Built- in monitor photodiode• High reliability. long operation lifeAPPLICATIONOTDR systems. optical communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output power CW 30IF Forward current Pulse (Note 1) 900VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage (Photodiode) - 20IFD Forward current (Photodiode) - 2Tc Case temperature - + 20-+ 30Tstg Storage temperature - - 40-+ 100Note 1: Duty less than 1 %. pulse width less than 1 J1, s.UnitmWmAVVmA'c'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Operating current CWo Po = 25mWVo~ Operating voltage CWo Po = 25mWPo (P) Pulse light output Pulse. IF = 800mA (Note 2)A P Peak wavelength CW.Po=25mWtd Spectral half width CW.Po=25mW8 II Beam divergence angle (paralieD CW. Po= 25mW8J. Beam divergence angie (perpendicular) CW. Po = 25mWtr. tf Rise and fall times IF = Ith. Po = 25mW. 10 %-90 %Monitoring output current CWo Po = 25mW. VRD = lV. RL = 10 Q1m(Photodiode) (Note 3)ID Dark current (Photodiode) VRD = 10VCt Capacitance (Photodiode) VRD = 10V. f = 1 MHzNote 2 : Duty cycle less than 1 %. pulse WIdth less than 1 J1, s3 : RL is load resistance of photodiode.LimitsMin. Typ. Max.- 20 50- 80 150- 1.5 2.0200 - -1280 1310 1330- 8 -- 25 -- 30 -- 0.3 -9·1 0.2 -- 0.2 0.5- 8 20UnitmAmAVmWnmnmdeg.deg.nsrnAJ1,ApF• <strong>MITSUBISHI</strong>.... ELECTRIC2 -149


<strong>MITSUBISHI</strong> LASER DIODESML7XX3 SERIES. FOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGSDimensions in mm( 9mm 4pin 'Low cap package)'0


<strong>MITSUBISHI</strong>I,.ASER DIODESML7XX3 SERIESFOR OPTICAL COMMUNICATION SYSTEMSSAMPLE CHARACTERISTICSI Light output vs. fo~ard current characteristicFig. 1 shows the typical light output vs. forwardcurrent characteristic of ML7XX3. The thresholdcurrent Ith at room temperature is about20mA.Above the threshold, the light output increaseslinearly with current, and no kinks are observed inthe curves. An optical output of 25mW can beobtained at Ith + 60mA.Fig. 1 Light output VS. forward current (cw)30 Tc=25'C/! 20~SQ.gE 10~//V//o o/50100Forward current IF (mA)Fig. 2 shows the typical light output vs. forwardcurrent characteristic of ML7XX3 under pulseoperation. Pulse conditions are pulse width tp = 1p, sec and duty = 1 %. More than 200mW isobtained at IF = 800mA.Fig. 2 Pulse light output vs. forward current (Pulse)250 Tc= 25'C~ 200~& 150gE 100g/ ///o o/200400//'tp = 1 ~ sDuty = 1 %600800Pulse forward current IF ,(mA)• MlTSUBlSHI~ELECTRIC 2-151


<strong>MITSUBISHI</strong> LASER DIODESML7XX5 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEML7925DESCRIPTIONML7XX5 series areDFB (Distributed Feedback) laserdiodes emitting light beam around 1310nm.They are well sujted for light source in longdistanceanalog transmission system for examplecable television (CATV).The ML7925 are speciallydesigned for in fiber modules and mount on flatopen packages.Rear output can be used for automatic control ofthe operating current or case temperature of thelaser.FEATURES• Excellent distortion characteristic42- channel transmission testCSO (composite second order) typical - 65dBcCTB (composite triple beat) typical - 70dBc• Low relative intensity noise characteristic (typical- 155dB/Hz)• Low threshold current (typical 15mA)• High- side mode suppression ratio (typical 40dB)• High speed of response (typical O.2ns)APPLICATIONLong - distance analog transmission systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitPo Light output power CW 20 mWVRL Reverse voltage (Laser diode) - 2 VVRD Reverse voltage (Photodiode) - 20 VIFD Forward current (Photodiode) - 2 mATc Case temperature - + 20-+ 30 "CTstg Storage temperature - -40-+ 100 "CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)Symbol Parameter Test conditionsMin. Typ. Max.Ith Threshold current CW - 15 40 mAlop Operating current CWo Po = 10mW 45 80 mAVop Operating voltage CWo Po = 10mW - 1.2 1.8 VTJ Slope efficiency CWo Po = 10mW - 0.4 mW/mA.l. P Peak wavelength CWo Po = 10mW - 1310 - nme/l Beam divergence angle (parallel) CWo Po -10mW - 25 - deg.8.L Beam divergence angie (perpendicular) CWo Po= 10mW - 30 - deg.tr. tl Rise and fall times IF = Ith. Po = 10mW. 10-90% - 0.2 0.4 nsSMSR Side mode suppression ratio CWo Po = 10mW 30 40 - dBPm Monitoring output CWo Po -10mW - 1 - mWCSO Composite second order 42- channel transmission test - -65 - dBcmodulation depth 11 M = 0.035.CTB Composite triple beataverage light output Po = 10mW to 20mW - -70 - dBcRINRelative intensity noiseCWo Po = 10mW to 20mW.measuring frequency fm = 550MHz.LimitsUnit'- -155 - dB/Hz


<strong>MITSUBISHI</strong> LASER DIODESML7XX5 SERIESFOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGSDimensions in mm(Chip carriertype package)LD chip~(1). ~ 0(2)Case.• MlTSUBlSHI.... ELEC1RIC 2-.153


<strong>MITSUBISHI</strong> LASER DIODESML8XX1 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEML8701, ML874A 1 FDESCRIPTIONML8XXl series are InGaAsP laser diodes whichprovide a stable, single transverse mode oscillationwith emission wavelength of 1200nm and standardcontinuous light output of 5mW.ML8XXl are hermetically sealed devices havingthe photodiode for optical output monitoring. Thishigh-performance, high reliability, and long-life laserdiode is suitable for such applications as the lightsource for multiple wavelength optical communicationsystems.FEATURES• Stable fundamental transverse mode oscillation• Low threshold current, low operating current• Built- in photodiode• High reliability, long operation life• 1200nm typical emission wavelength• High speed of responseAPPLICATIONDigital communication systems, multiple wavelengthcommunication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitPo Light output powerCW 6mWPulse (Note 1) 10VRL Reverse voltage (Laser diode) - 2 VVRD Reverse voltage (Photodiode) - 20 VIFD Forward current (Photodiode) - 2 mATc Case temperature' - -20~+ 70 'cTstg Storage temperature - - 40-+ 100 'cNote 1: Duty less than 50 %. pulse width less than 1 /l s.ELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsMin. Typ. Max.!th Threshold current CW - 15 30 mA,lop Operating current CW.Pb=5mW - 30 60 rnAVop Operating voltage CW.Po-5mW - 1.2 1.6 Vn Slope efficiency CW.Po-5mW 0.2 0.35 - mW/mA.l. P Peak wavelength CWo Po=5mW 1180 1200 1230 nmld Spectral half width CWo Po=5mW - 3 - nmell Beam divergence angle (parallel) CWo Po=5mW - 25 - deg.el. Beam divergence angle (perpendicular) CWo Po=5mW - 30 - deg.tr. tf Rise and fall times IF = !th. Po = 5mW. 10 %-90 % - 0.3 0.7 ns1mMonitoring output currentCWo Po = 5mW. VRD = 1V.RL = 10 Q(Photodiode) (Note 2)LimitsUnit0.2 0.5 - mAID Dark current (Photodiode) VRD = 10V - 0.2 0.5 /lACt Capacitance, (Photodiode) VRD = 1 OV. f = 1 MHz - 8 20 pFNote 2: RL IS load resistance of the photodlode.2-154" <strong>MITSUBISHI</strong>"ELECTRIC


~<strong>MITSUBISHI</strong> LASER DIODESML8XX1 SERIESFOR OPTICAL COMMUNICATIONOUTPUT DRAWINGSDimensions in mm(¢ 9mm 4pinStandard package)o~~Boo~+I8 ~ ==.n.......­d 0+1'"dReference slot+(4) (3)fcaseiI IIPD S LD(2) (1)Dimensions in mm(¢ 5.6mm 4pinwith thick cap)1o •N¢ 2.7..-----.~8 f~· 1 II; I I' "l', (3)(1 ) (4) (2)~P.c.ORO.15MAX .'E ~.£I .,; => a adec.t-~.;I~4 - ¢ 0.45nee plane+(4) +(3) Case/1 IIPO S LO(1) (2)• <strong>MITSUBISHI</strong>"'ELECTRIC2-155


<strong>MITSUBISHI</strong> LASER DIODESML8XX1 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI LIght output vs. forward currentTypical I.ight output vs. forward currentcharacteristics are shown in Fig. 1. The thresholdcurrent for lasing is typically 15mA at roomtemperature. Above the threshold, the light outputincreases linearly with current, and no kinks areobserved in ~he5mW is obtained at Ith + 15mA.curves. An optical power of aboutAs can be seen in Fig.1 Ith and slope efficiencyTJ (dPo / dlF) depends on case temperature,obtaining a constant output at varyingtemperatures requires to control the casetemperature Tc or the laser current. (Control thecase temperature or laser current such that theoutput current of the built-in monitor PO becomesconstant.)Fa Temperature dependence of threshold current (lth),operating current (lop) and slope efficiency ( TJ )A typical temperature dependence of the thresholdcurrent and operating current is shown in Fig. 2.The characteristic temperature To of the thresholdcurrent is typically 45K in Tc;:;;40·C, 35K in. Tc>40·C,where the definition of To is Ith 0: exp (Tc/To).~-500..:;0.:;0E.!1'-'Fig. 1 Light output vs. forward current6r----n~'"--~r----r---,432


<strong>MITSUBISHI</strong> LA51:FI DIUUt:.~ML8XX1 SERIESFOR OPTICAL COMMUNICATIONI Forward current va: voltageTypical forward current vs. vol,tage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - lo3mV /"C and - 1 mV /"Cat IF = 1 mA and 10mA, respectively.50:( 40.s~301::~il"E 20~0u-10Fig. 4 Forward current vs. voltageTc=70'C~UV 25 'C..J1.0 2.0Forward voltage VF (V)I Emission spectraTypical emission spectra under CW operation areshown in Fig. S. In general, at an output of SmW,several modes are observed. Longitudinal modespacings are typically 1 nm and spectral width(FWHM) is typically 3nm at an output of SmW.The peak wavelength depends on the operatingcase temperature and the forward current (outputlevel)...C> .t:l!!,5jFig. 5 Emission spectra under CW operationWavelength A (nm)A typical temperature dependence of the peakwavelength at an output of SmW is shown in Fig. 6.As the temperature rises, the peak wavelengthshifts to the long - wavelength side at a rate ofabout O.37nm/"C.Fig. 6 Temperature dependence of peak wavelength1215E 1210-5Q"" 1205.


<strong>MITSUBISHI</strong> LASER DIODESML8XX1 SERIESFOR OPTICAL COMMUNICATIONII Far-field patternThe ML8XX1 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current.They have a typicalemitting area (size of near-field pattern) of 1.0 x1.25 f.J. mo. Fig.7 and 8 show the typical far- fieldpatterns. The full angles at half maximum points(FAHM) are typically 25deg. and 30deg., respectively.00.."~S0.E~.~.!i~Fig. 7 Far- field patternsin plane parallel to hetero junctions (J /I1. or---r-'"T""...,...~--'---"'--r-'"T"""""'''''0.5~50 +50Off-axis angle (deg.)Fig. 8 Far- field patternsin plane perpendicular to heterojunctions (J 1.1.0r-~-r~~~.-~...,...~--~0':sc.S0~"" g.,j0.5OIf- axis angie (deg.)I Pulse responseIn digital optical transmission systems, the responsewaveform and speed of the light output againstthe input pulse current waveform is a mainconcern. In order to shorten the oscillation delaytime, the laser diode is usually biased close to thethreshold current. Fig.9 shows a typical responsewaveform when a rectangular pulse current (rise/fall time is shorter than 0.2ns) is applied.Rise/fall time is typically 0.3ns at Ib = Ith and Po=5mW.s~o "Fig. 9 Pulse response waveformiIb=lth100r--t---:;;;+;;;;7't-"""~~v--r--Po=5mW90 --- -p'":':- ---110 ~ -- ------ --- -----\;ti'­O%~'r-+--+-i--i~~~~~--~~500ps/div2-158


<strong>MITSUBISHI</strong> LASER DIODESML8XX1 SERIESFOR OPTICAL COMMUNICATIONI Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of thefront beam since the power of the rear isproportional to the front one. In the ML8XXlseries. the rear beam power is changed intophotocurrents by monitor photodiodes. Fig. 10shows typical light output vs. monitoringphotocurrent characteristics. Above the thresholdcurrent. the monitoring photocurrent increaseslinearly with the front light output. The monitoringoutput current is typically O.5mA when the frontlight output is 5mW.Fig. 10 Light output vs. monitoring output current~.500..654S 30.S0~.s::;~21/o o////v0.5Monitoring output 1m (rnA)1.0'<strong>MITSUBISHI</strong>"ELECTRIC2-159


<strong>MITSUBISHI</strong> LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEML9701, ML974A1F, ML9911DESCRIPTIONML9XXl series are InGaAsP laser diodes whichprovide a stable. single transverse mode oscillationwith emission wavelength of 1550nm and standardcontinuous light output of 5mW.ML9XXl are hermetically sealed devices havingthe photodiode for optical output monitoring, Thishigh-performance. high reliability. and long-life laserdiode is suitable for such applications as the lightsource for long - distance optical communicationsystems.FEATURES• Stable fundamental transverse mode oscillation• Low threshold current. low operating current• Built- in photodiode (ML9701. ML974A 1 F)• High reliability. long operation life.1550nm typical emission wavelength• High speed of responseAPPLICATIONLong - distance communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo Light output powerCW 6Pulse (Note 1) 10VRL Reverse voltage (Laser diode) - 2VRD Reverse voltage (Photodiode) - 20IFD Forward current (Photodiode) - 2Tc Case Temperature - - 20-+ 60T.tg Storage temperature - - 40-+ 100Note 1: Duty less than 50 %. pulse width less than 1 /1 s.UnitmWVVmA°C°CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)Symbol Parameter Test ConditionsIth Threshold current CWlop Operating currrent CW, Po=5mWVoP Operating voltage CWo Po-5mWT/ Slope efficiency CW,Po=5mW.l. P Peak wavelength CW,Po = 5mWcd Spectral half width CW,Po -5mW8 II Beam divergence angle (parallel) CWo Po=5mW81. Beam divergence angle (perpendicular) CWo Po= 5mWtr, tf Rise and fall times IF -Ith, Po = 5mW. 10 %-90 %'1m Monitoring output current CWo Po = 5mW, VRD = lV. RL= 10 Q (Note 2)ID Dark current (Photodiode) VRD = 10VCt Capacitance (Photodiode) VRD = 10V. f = 1 MHzPm (Note 3) Monitoring light output CW.Po-5mWNote 2: RL IS load resistance of the photodlode.3 : Pm only apply to ML9911.LimitsMin.- Typ.- 15- 40- 1.3- 0.21520 1550- 5- 30- 35- 0.30.2 0.5- 0.2- 8- 1.0Max.35601.7-1580---0.7-0.520-UnitmAmAVmW/mAnmnmdeg.deg.nsmA/1ApFmW2 -160" ' <strong>MITSUBISHI</strong>"'ELECTRIC


<strong>MITSUBISHI</strong>,LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS~-..:':~!~;~tl1'1til~Dimensions in mm(cf> 9m m 4pi nStandard package)Reference slot


<strong>MITSUBISHI</strong> LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig. 1. The threshold current forlasing is typically 15mA at room temperature.Above. the threshold, the light output increaseslinearly with current, and no kinks are observed in,the curves. An optical power of about 5mW isobtained at Ith + 25mA.As can be seen in Fig. 1. Ith and slope efficiencyT/ (dPo / dlF) depends on case temperature,obtaining a constant output at varying temperaturesrequires to control the case temperature Tc or thelaser current. (Control the case temperature or lasercurrent such that the output current of the builtinmonitor PO becomes constant.)I 4~SCo 3S0.E 2.2'...JFig. 1 Light output vS. forward current6r---'-~rr~r-r7--'----'Forward current IF (mA)II Temperature dependence of threshold current (lth).operating current (lop) and slope efficiency ( T/ )A typical temperature dependence of the thresholdcurrent and operating current (5mW) is shown inFig. 2. The characteristic temperature To. of thethreshold current is typically 65k in Tc => 40"C, 50kin Tc > 40 "C.Fig. 2 Temperature dependence of thresholdcurrent and operating currentI I-lop(5:nW\ ~


<strong>MITSUBISHI</strong> LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONI Forward current vs. voltageTypical forward current vS.voltage characteristicsare shown in Fig. 4.In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1 mV /"C at IF = 1 mA andlOmA.:(,§.;!,E!:;u'E..~0u..5040302010oFig. 4 Forward current vs. voltageTc=60"C- --",'f,-25"C/Io 1.0 2.0Forward voltage VF (V)II Emission SpectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of 5mW,several modes are observed. Longitudinal modespacings are typically 1 nm and spectral width(FWHM)is typically 5nm at an output of 5mW.The peak wavelength depends on the operatingcase temperature and the forward current (outputlevel).>.~~.5.~~Fig. 5Emission spectra under CW operationTc = 25'C1535 1550 1565Wavelength ),(nm)A typical temperature dependence of the peakwavelength at an output of 5mW is shown in Fig. 6.As the temperature rises, the peak wavelengthshifts to the long - wavelength side at a rate ofabout O.35nm/oC.Fig. 6 Temperature dependence of peak wavelength1565E 1560.50.""' 1555"" c;,c:~.,~ 1550;:""P o =5mW/ /V/V~ 1545//1540o 10 20 30 40 50 60 70Case temperature Tc ("C)• <strong>MITSUBISHI</strong>.... ELECTRIC 2-163


<strong>MITSUBISHI</strong> LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONI Far-field patternThe ML9XX1 laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current.They have a typicalemitting area (size of near- field pattern) of 1.0X1.25 /.t rn'. Fig. 7 and 8 show the typical far- fieldpatterns. The full angles at half maximum points(FAHM) are typically 30deg. and 35deg., respectively.0!l.SS "01:g'" >';:.lli0:: '"Fig. 7 Far- field patterns in planeparallel to heterojunctions 13 1/1.0 ...-----"""7r-r------,0.5o + 50Off - axis angle (deg)Fig. 8 Far- field patterns in planeperpendicular to heterojunctions 13 1.1. 0..--------,...---------.0!l.SS "01:g'" >';:.lli0:: "0.5Off- axis angle (deg)I Pulse responseIn digital optical transmission systems, theresponse waveform and speed of the light outputagainst the input pulse current waveform is a mainconcern. In order to shorten the oscillation delaytime, the laser diode is usually biased close to thethreshold current. Fig. 9 shows a typical responsewaveform when a rectangular pulse current (rise/fall time is shorter than O.2ns) is applied. Rise/falltime is typically O.3ns at Ib = Ith and Po = 5mW.Fig. 9 Pulse response waveformg ~~H+H+H+H+~~7H+HtH~H+H+~H+~.~ r-~--~--~-+--~_4~~--~_4--~ro \~10~-----+----~----~-----+-----~----~-~,,~-----~-4--~O%--~~~-t--+__i~_r~~~--~~[500ps/div/2-164" • <strong>MITSUBISHI</strong>.... ELECTRIC


MIT$UBISHI LASER DIODESML9XX1 SERIESFOR OPTICAL COMMUNICATIONI Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces, front and rear surfaces (see theoutline drawing). The rear beam can be used formonitoring power of the front beam since thepower of the rear beam is proportional to thefrontone. The rear-side beam is received by the builtinmonitoring PO to be output as the monitoringcurrent. Fig. 10 shows typical light output vs.monitoring photocurrent characteristics. Above thethreshold current, the monitoring photocurrentincreases linearly with the front light output. Themonitoring current is typically O.SmA when thefront light output is SmW.In the ML9911, monitor photodiodes is notinstalled in the laser package. Monitoring output isemitted from the back of package.Monitoring output is typically 1 mW when thefront light output is SmW.Fig. 10 Light output VS.~,§00..:;Q:;0.E$65432/V///vmonitoring output currento o 0.5 1. 0(0) (1) (2)Monitoring output 1m (mA)(Monitoring light output Pm (mW))2-165


2-166'. MlTSUBISH. I"ELECTRIC<strong>MITSUBISHI</strong>LASER DIODESML9XX1A SERIESFOR OPTICAL COMMUNICATIONTYPENAME ML9781A, ML9911A I'---------'-,.-----.DESCRIPTIONML9XXl A series are InGaAsP High Power laserdiodes which provide a stable, single transversemode oscillation with emission wavelength of1550nm and standard continuous light output of15mW.ML9XX 1 A are hermetically sealed devices havingthe photodiode for optical output monitoring. Thishigh-performance; high reliability, and long-life laserdiode is suitable for such applications as the lightFEATURES.. Stable fundamental transverse mode oscillation• Low threshold current, low operating current• Built- in photodiode (ML9781 A)• High reliability, long operation life• High power (CW 15mW, Pulse 40mW)• 1550nm typical emission wavelength• High speed of responseAPPLICATIONsources. for OTDR ~ystems and long - distance Digital communication systems,OTDR systemsoptical communication systems.ABSOL~TE MAXIMUM RATINGSSymbol Parameter Conditions RatingsPo· Light output power (peak) CW 20IF Forward current Pulse (Note 1) 400VRL. Reverse voltage (Laser diode) - 2VRO Reverse voltage (Photodiode) - 20IFD Forward current (Photodiode) - 2Tc Cas.e Temperature - - 20-+ 50Tstg Storage temperature - -40-+ 100Note 1: Duty less than 1 %, pulse width less than 1 f.l s.UnitmWmAVVmA'C'CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsIth Threshold current CWlop Qperating current CW, Po = 15mWVop Operating voltage CW, Po-15mWPo (P) Pulse light output Pulse, IF = 350mA (Note 4),1, P Peak wavelength CW,Po= 15mWt.,1, ~pectral half width CW, Po = 15inW .8/1 Beam divergence angle (parallel) CW, Po -15mW8l Beam divergence angle (perpendicular) CW, Po = 15mWtr, tf Rise and fall times IF = Ith, Po = 15mW, 10 %-90%1mMonitoring output current CW, Po = 15mW, VRO = 1V, RL= 10 Q(Photodiode) (Note 2)10 Dark current (Photodiode) VRO = 10VCt Capacitance (Photodiode) VRO = 1 OV, f = 1 MHzPm (Not. 3) Monitoring light output CW, Po -15mWNote 2: RL IS load resistance of the photodlode.3 : Pm only apply to ML9911 A.4 : Duty cycle less than 1 %, pulse width less than 1 f.l s.LimitsMin. Typ. Max.- 15 35- 75 120- 1.5 2.040 - -1520 1550 15808 -- 30 -35 -- 0.3 0.70.1 0.3 -- 0.2 0.5- 8 20- 0.6 -UnitmAmAVmWnmnmdeg.deg.nsmAf.lApFmW


<strong>MITSUBISHI</strong> LASER DIODESML9XX1A SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS;6 9:+:~. 03MAX;68.1Dimensions in mm(¢ 9mm, 4- pin, Lowcap package)c'go~g- Reference slot~'EM~J~~~!i!I\=-~:r'f-+-.,...,--~----"..., N M+(4) • +(3) CaseII IIPD S LD(2) (I)+1en, 4-" O. 45P. C. D. "2.54(1 )(3)(2)(4)Dimensions in mm1±0.~ r--r-+--r---t-~rn;l---r~g~L..._L,L-'.-,LJ.~~~~---1o~g 1> l±O.l] L~DchipCeramic~~-: ']14LD +1 I I U!~ ~ : I: r--:~ ~ ~1.3±0.1.1(Luminous point)~6Case ~CD •• -1+1ldJ7-l*l---


<strong>MITSUBISHI</strong> LASER DIODESML9XX1A SERIES. FOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output va. forward currrentTypical light output vs. forward current characteristicsare shown in Fig. 1. The threshold current for lasingis typically 15mA at room temperature. Above thethreshold, the light output increases linearly withcurrent, and no kinks are observed in the curves.An optical power of about 15mW is obtained at Ith+ 60mA.As can be seen in Fig.l. Ith and slope efficiency·TJ (dPo / dlF) depends on case temperature;obtaining a constant output at varying temperaturesrequires to control the case temperature Tc or thelaser current. (control the case temperature or lasercurrent such that the output current of the builtinmonitor PO becomes constant.)~'.s~5501:::3'Fig. 1 Light output vs. forward current (CW)20r------T----.rrr~----,1510550'C00 150Forward current IF (mA)Fig. 2 shows a typical light output vS.forwardcurrent under pulse operation.Pulse conditions are pulse width tp = 1 fJ. sec andduty = 1 %. They emit light. power of 40mW up to50"C on case temperature. 'Fig. 2 Pulse light output vs. forwardcurrent (pulse)~ ~~--~--~~~~---4~:o~2Or-----+l~1-+_----+_----1tp=l/lS8C1:: Duty=l%~10r---~~----+-----+-----;~~O~L-~----~----~--~o 100 200 300 400Pulse forward currant IF (mA)I Temperature dependence of Ith, lopTypical temperature dependence of the thresholdand operating currents (15mW) is shown in Fig. 3.The characteristic temperature To of the thresholdcurrent is typically 65K, for To ~ 50"C where thedefinition of To is Ith ex: exp (Tc/To).! 100c. 70.2504030201075432Fig. 3 Temperature dependence ofthreshold and operating currents..L.-I- ~lop(15mW).!~I~ ~---1-20-100 10 20 30 40 50 60 70 80Case temperature Tc ("C)2-168


<strong>MITSUBISHI</strong> LASER DIODESML9XX1A SERIESFOR OPTICAL COMMUNICATIONI Forward current vs. voltageTypical forward current vs. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1 mV /oC at IF = 1 mA andlOmA.~§!!oE~::l"'E .,~0"-5040302010o oFig. 4 Forward current vs. voltageTc=60'C->., 'I--- 25 'CJ~1.0 2.0Forward voltage VF (V)II Emission spectraTypical emission spectra under CW operation areshown in Fig. 5. In general, at an output of l5mW,several modes are observed. Longitudinal modespacings are typically 1 nm and spectral width(FWHM) is typically 8nm at an output of l5mW.The peak wavelength depends on the operatingcase temperature and the forward current (outputlevel).Fig. 5 Emission spectra under CW operationTc=25'Cl! ~ 15mWX1.0U10mW XI1. 3j AA 5mW X2.5Ith X 1 1 2. 61542 1550 1558Wavelength A (nm)A typical temperature dependence of the peakwavelength at an output of l5mW is shown in Fig. 6.As the temperature rises, the peak wavelengthshifts to the long - wavelength side at a rate ofabout O.5nm/oC.Fig. 6 Temperature dependence of peak wavelength1565E 1560-50..r;;t;,c:~>1555.. 1550~"" .,If 1545po~15mJ.,I/I/LVL/1540 I-20 -10 0 10 20 30 40 50Case temperature Tc ("C)'. <strong>MITSUBISHI</strong> .... ELECTRIC 2 -169


<strong>MITSUBISHI</strong> LASER DIODESML9XX1A SERIESFOR OPTICAL COMMUNICATIONI Far- field patternThe ML9XXI A laser diodes lase in fundamentaltransverse (TEoo) mode and the mode does notchange with the current. They have a typical emittingarea (size of near- field pattern) of LOX1.25 f.l rrI'.Figures 7 and 8 show the typical far-field patterns.The full angles at half maximum points (FAHM) aretypically· 30deg. and 35deg., respectively.0Q.SCoS0E~.,.2:Iii~Fig. 7 Far- field patterns in plane parallelto heterojunctions . e II1.0....-------,:------,0.5+50Off- axis angle (deg)Fig. 8 Far- field· patterns in plane perpendicularto heterojunctions e.L1.0r---------~=r-----------,0Q.SS::J0E 0.5g.,.2:~I Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces, front and rear surfaces (see the'outline drawing). The rear beam can be used formonitoring the power of the front beam since thepower of the rear beam is proportional to the frontone. In the ML9XXIA series, the rear beam poweris changed into photocurrents by monitorphotodiodes. Fig. 9 shows typical light output vs.monitoring photocurrent characteristics. Above thethreshold current, the monitoring photocurrentincreases linearly with the front light output. Themonitoring current is typically O.3mA when thefront light output is 15mW.In the ML9911 A, monitor photodiodes is notinstalled in the laser package. Monitoring output isemitted from the back of package.Monitoring output is typically O.6mW when thefront light output is 15mW.Off- axis angle (deg)Fig. 9 Lightd output vs. monitoring output current~::JCoSo0.5 1. a(1) (2)Monitoring output (rnA)(Monitoring light output Pm (mW))2- 170• <strong>MITSUBISHI</strong>"ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML9XX2 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEML974A2F, ML9922DESCRIPTIONML9XX2 is a DFB (Distributed Feedback) laser diodewhich oscillates in a single wavelength withemission wavelength of 1550nm and standardcontinuos light output of 5mW.ML9XX2 are hermetically sealed devices havingthe photo diode for optical output monitoring. Thisis a high-performance, high reliability, and long-lifelaser diode.FEATURES.• Low threshold current typical 20mA.High stable fundamental transverse mode oscillation• High side mode suppression ratio typical 40dB(Tc = 0-+ 60 "C)• High speed of response (Rise and fall time typically0.2nsec)APPLICATIONLong-distance, large-capacity optical communicationsystemsABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsPo Light output power CWVRL Reverse voltage (Laser diode) -VRD Reverse voltage (Photodiode) -IFD Forward current (Photodiode) -Tc Case Temperature Tstg Storage temperature -Ratings Unit6 mW2 V20 V2 mA0-+60 -c-40-+ 100 -cELECTRICAUOPTICAL CHARACTERISTICS (Tc = 25-c)Symbol Parameter Test ConditionsIth Threshold current CWlop Operating current CW,Po-5mWVop Operating voltage CW,Po-5mWT} Slope efficiency CW,Po-5mWA P Peak wavelength CW,Po=5mW811 Beam divergence angle (parallel) CW,Po-5mW81- Beam divergene, angle (perpendicular) CW,Po-5mW1mMonitoring output current(Photodiode)CW, Po = 5mW, VRD = lV. RL= 10 Q(Note 1)tr. tf Rise and fall times IF - Ith. Po - 5mW. 10-90 %SMSR .Side mode suppression ratio CWo Po - 5mW. 0-+ 60 "CPm(Note 2) Monitoring Light Output CW.Po-5mWNote 1: RL IS load resistance of the photodlode.2 : Pm only apply to ML9922.LimitsUnitMin. Typ. Max.- 20 40 mA45 90 mA1.2 1.8 V0.25 mW/mA- 1550 - nm30 deg.35 deg.0.1 0.25 - mA0.2 0.4 ns30 40 dB0.5 mW2-171


<strong>MITSUBISHI</strong> LASER DIODES,ML9XX2 SER1ESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS~ 5.6~g.03~ 4.B ± 0,3Dimensions in mm(if> 5.6mm; 4 pin,with thick cap)+ 1~~;!1 '"8Ii-lli-~r~' I II I,, (3)(1) (4) (2)~ P.C.DIfRO.15MAX....E.'" c0 ...J "" 0 .~C &+1r-- :Refere nee planelI-~r--4 -~O.45Dimensions in mm(4) (3)If JlisePDTSTLD(I) (2)(Chip carrier typepackage)± 0.21 ±O.ICase ~(I) •• -!tW*--


<strong>MITSUBISHI</strong> LASER DIODESML9XX2 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Light output vs. forward currentTypical light output vs. forward current characteristicsare shown in Fig. 1. The threshold current for lasingis typically 20mA at room temperature. Above thethreshold. the light output increases linearly withcurrent. and no kinks are observed in the curves.An optical power of about 5mW is obtained at Ith+ 25mA.As can be seen in Fig. 1. Ith and slope efficiencyT/ (dPo / dlF) depends on case temperature •obtaining a constant output at varying temperaturesrequires to control the case temperature Tc or thelaser current. (Control the case temperature or lasercurrent such that the output current of the builtinmonitor PD becomes constant.)Fig. 1 Light output vs. forward current60~0--~~--~--~~--~--~100Forward current IF (mA)I Temperature dependence of threshold current (lth), .operating current (lop) and slope efficiency ( T/ )A typical temperature dependence of the thresholdcurrent and operating current (5mW) is shown inFig. 2. The characteristic temperature To of thethreshold current is typically SOk in Tc~ 40 "C. 50kin Tc > 40"C.Fig. 2 Temperature dependence of thresholdcurrent and operating current< 100E 70I, I.lop(5mW)50J....o"....40,.., --I30Ith20 ,...., ......~10754321-20-100 10 20 30 40 50 60 70 80Case temperature Tc ("C)A typical temperature dependences of the slopefficiency T/ is shown in Fig. 3. The gradient is­- O.013mW/mA/"CFig. 3 Case temperature dependence of slope efficiency0.5~ 0.4~E0.3g:~ 0.2:;!£ o. 1r--- r-- --t-.o-20-100 10 20 30 40 50 60 70 80Case temperature Tc ("C)2-173


<strong>MITSUBISHI</strong> LASER DIODESML9XX2 SERIESFOR OPTICAL COMMUNICATIONI Forward current ys. YoltageTypical forward current v~. voltage characteristicsare shown in Fig. 4. In general, as the casetemperature rises, the forward voltage VF decreasesslightly against the constant current IF. VF variestypically at a rate of - 1.0mV/"C and - O.9mV/"Cat IF = 1 mA and 10mA, respectively.,..,«,.s,!i,1:! Su"E~0...Fig. 4 Forward current VS. voltage504030Tc =50-c- l.-wcJo o2010J1.0 2.0Forward voltage VF (V)Fig. 5 Light output dependence of emission spectraIII Emission spectraTypical emission spectra under CW operation areshown in Fig. 5.Tc=25'CI./~'-"" -.......JA,./....... /\.'/\'Y)-... Po=lmW_Emission spectrum under 2.5Gb/s (NRZ) modulationis shown in Fig. 6.Typical spectral width (Chirping) is about O.15nmat - 3dB, O.35nm at - 10dB and O.80nm at - 20dB.A .... AI""- Po=5mW-~o=3mw-IF=lth-,...1550 1555 1560Wavelength ~ (nm)Fig. 6 Spectrum at modulationTc =25'CA2.5Gb/s NRZPeak=5mWIb=lth---} \..~1550 1555Wavelength ,1. (nm)15602-174. -. ·<strong>MITSUBISHI</strong>~B.ECTRIC


.~<strong>MITSUBISHI</strong> LASER DIODESML9XX2 SERIESFOR OPTICAL COMMUNICATIONA typical temperature dependence of the peakwavelength at an output of 5mW is shown in Fig. 7.As the temperature rises, the peak wavelengthshifts to the long - wavelength side at a rate ofabout O.OSnm/"C.Fig. 7 Temperature dependence of peak wavelength1565E 1560c:Q.'" ,£; 1555C.j~ 1550~1!L 1545...... ......!"""'" !"""'" .1--'1540-20-10 0 10 20 30 40 50 60 70 80Case temperature Tc ("C)I Far-field patternThe ML9XX2 -laser diodes lase in fundamentaltransverse (TEool mode and the mode does notchange with the current. They have. typical emittingarea (size of near-field pattern) of 1.0 x 1.25 tt rrf.Fig. S. and 9 show the typical far- field patterns.The full angles at half maximum points (FAHM)are typically 30deg. and 35deg., respectively.'5Q.'50~,£;0.5~.~.!iIIIa:Fig. 8 Far- field pattern (parallel)1.0r------.....,.~----.....,Angie (deg.)o· 45Fig. 9 Far- field pattern (perpendicular)'5Q.'5oAngie (deg.). •. <strong>MITSUBISHI</strong>..... ELECTRIC . 2-175


<strong>MITSUBISHI</strong> LASER DIODESML9XX2 SERIESFOR OPTICAL COMMUNICATIONI Pulse responseIn digital optical transmission systems. the responsewavelength and speed of the light output againstthe input pulse current. waveform is a mainconcern.In order to shorten the oscillation delay time. thelaser diode is usually biased close to the thresholdcurrent. Fig. 10 shows a typical response waveformwhen a rectangular pulse current (rise/fall time isshorter than 0.1 ns) is applied. Rise/fall time istypically 0.2ns at Ib = Ith and Po = SmW.'h r1090--10 --r0%IFig. 10 Pulse ·response wavef.ormIb=lthPo=5mW-- -- - - - -- -- -- -- ------I \,./. .\I \II \-- -- --- --- -- -- --- ~---200ps/divII Monitoring outputThe laser diodes emit beams from both of theirmirror surfaces. front and rear surfaces. The rearbeam can be used for monitoring power of thefront beam since the power of the rear beam isproportional to the front one. In theML9XX2series, the rear beam power is changed intophotocurrents by monitor photodiodes. Fig. 11shows typical light output vs. monitoring photocurrentcharacteristics.Above the threshold current, the monitoredphotocurrent increases linearly with the front lightoutput. The monitoring output current is typicallyO.2SmA when the front light output is SmW. In theML9922, monitor photodiodes are not installed inthe laser package. Monitoring output is emittedfrom the back of package. Monitoring output istypically O.SmW when the front light output isSmW.Fig. 1165~ 4E~&.'5Q'50.E~32aLight output vs. monitoring output currentv////Va 0.25 0.5(0) (0.5) (1.0)Monitoring output 1m (mA)(Monitoring light output Pm (mW))2-'176


<strong>MITSUBISHI</strong> LASER DIODESML9XX3 SERIESFOR OPTICAL COMMUNICATION SYSTEMSSAMPLE CHARACTERISTICSI Light output VB. forward current characteristicFig. 1. shows the typical light output vs. forwardcurrent characteristic of ML9XX3. The thresholdcurrent Ith at room temperature is about 25mA.Above the threshold. the light output increaseslinealy with current. and no kinks are observed inthe curves. An optical output of about 25mw canbe obtained at Ith + 95mA.Fig. 1 Light output vs. forward current (CW)30 Tc=25'C///// Vo o/50 100Forward current IF (rnA)150Fig. 2. shows the typical light output vs. forwardcurrent characteristic of ML9XX3 under pulseoperation. Pulse conditions are pulse width t p = 1 J1.sec and duty = 1 %. More than 120mW is obtainedat IF = aOOmA.Fig. 2 Pulse light output vs. forward current (Pulse)150~T~c-=~2~5'C~----'------r----'~E~~ 100SCoS0tp=1~sec1:,!i Duty = 1 "50~::J0..o~ __ ~ ____ ~ ____ ~ __ ~o 200 400 600 800Pulse forward current IF (rnA)2-179


<strong>MITSUBISHI</strong> LASER DIODESML9XX5 SERIESFOR OPTICAL COMMUNICATION SYSTEMSTYPENAMEML9925DESCRIPTIONML9XX5 series are DFB (Distributed Feedback) laserdiodes emitting light beam around 1550nm.They are well suited for light source in longdistanceanalog transmission system for examplecable television (CATV). The ML9925 are speciallydesigned for in fiber modules and mount on flatopen packages. Rear output can be used forautomatic control of the operating current or casetemperature of the laser.FEATURES• Excellent distortion characteristic.42- channel transmission testcsa (composite second order) typical - 57dBcCTB (composite triple beat) typical - 65dBc• Low relative intensity noise characteristic• Low threshold current(typical -(typical 20mA)155dB/Hz)• High - side mode suppression ratio (typical 40dB)• High speed of response (typical O.2ns)APPLICATIONLong - distance analog transmission systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitPo Light output power CW 20 mWVRL Reverse voltage (laser diode) - 2 VVRD Reverse voltage CPhotodiode) - 20 VIFD Forward current CPhotodiode) - 2 mATc Case temperature - + 20-+ 30 'cT5t9 Storage temperature - -40-+ 100 'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)SymbolIthlopVop7)A PelleJtr.tf-SMSRPmCSOCTBParameterThreshold currentOperating currentOperating voltageSlope efficiencyPeak wavelengthBeam divergence angle (parallel)Beam divergence angle (perpendicular)Rise and fall timesSide mode suppression ratioMonitoring outputComposite second orderComposite triple beatTest conditionsCWCWo Po = 10mWCWo Po = 10mWCWo Po = 10mWCWo Po = 10mWCWo Po = 10mWCWo Po -10mWIF = !th. Po = 10mW.10-90 %CWo Po = 10mWCWo Po = 10mW42 - channel transmission testmodulation depth D. M = 0.035.average light output = 10mW to 20mWLimitsMin. Typ. Max.Unit- 20 40 mA- 45 90 mA- 1.2 1.8 V- 0.25 - mW/mA- 1550 - nm- 30 - deg.- 35 - deg.- 0.2 0.4 ns30 40 - dB- 1 - mW- -57 - dBc- -65 - dBcRINRelative intensity noiseCWo Po = 10mW to 20mW.measuring frequency fm = 550MHz- - 155 - dB/ Hz2 -180.. • ..<strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> LASER DIODESML9XX5 SERIESFOR OPTICAL COMMUNICATION SYSTEMSOUTLINE DRAWINGSDimensions in mm(Chip carrier typepackage)Ceramic~~--;.dli~---~ , 0t+1 II). , -....: ...: '~'I I I +1 It) :::t, -:,.---:.I I 10 It) 0~ d(Luminous point)~(1)0 ~ 0(2)Case.2-181


LIGHT EMITTING DIODES


HIGH RADIANCE LIGHT EMITTING DIODESME1XX3 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEME1013L-______________________________________________________I~DESCRIPTIONME1 XX3 are AIGaAs double heterostructure lightemitting diodes (LED) emitting light beams around850nm wavelength. A spherical micro - lens· ismounted on the light emitting area to provide ahighly optical coupling efficiency from LED to fiber.ME1 XX3 is suitable for such applications as thelight sources for data links and optical communicationsystems.FEATURES• Low operating current (50mA)* Easy drive with conventional transistors and IC's• With if> 100 If. m spherical lens• High radiance and narrow beam angle* High optical coupling efficiency from LED tofiber• High speed response and high modulationfrequency (30MHz, - 1.5dB)• High linearity in light output vs. currentcharacteristicAPPLICATIONOptical data link, optical communication systems,and other optical information systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsForward IDC Tc:S:50'CIFcurrent (Note 1) J Pulse (Note 2) Tc;;;; 50'CVR Reverse voltage -Tc Case temperature -T.tg Storage temperature -( TCmaX-TC)Note 1: Forward current derating (Tc > 50 'C) : IF (Tc) = IFmax Tcmax- 502 : Duty ratio;;;; 50 %. repetition;;; 100kHzRatings Unit75120mA3 V- 40-+ 100 'C- 55-+ 125 'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsA P Peak wavelength IF= 50mALd Spectral half width IF- 50mAIDC IF = 50mA .Po Light outputI Pulse (Note 3) IF = 100mAf) Beam diverging angle IF -50mAfc Cut- off frequencyIF = 25mA, IRF = 4mAp-p,- 1.5dB (optical signal)VF Forward voltage IF -50mAIR Reverse current VR-3V. .Note 3 : Duty ratio = 50 %, repetitiOn = 100kHz .LimitsMin. Typ. Max.Unit820 850 880 nm- 45 - nm1.0 1.5 -2.0 3.0 -mW- 40 deg.15 30 - MHz1.6 2.2 V10 /.lA.• .<strong>MITSUBISHI</strong>.... ELECTRIC3-3


HIGH RADIANCE LIGHT EMITTING DIODESME1XX3 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGSDimensions in mm(I)~c.sef(2)3-4• . <strong>MITSUBISHI</strong>.... ELECTRIC


HIGH RADIANCE LIGHT EMITTING DIODESME1XX3 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSa Light output va. forward currentTypical current dependence of the light output isshown in Fig.l. Light power of typical 1.5mW isobtained at 50mA. Over the forward current of10mA, excellent linearity in light output vs. currentis obtained and enables the LED to be applicablein analog systems.Fig. 1 Light output VS.Tc = 25"C4.0~/,5 "0Cl. /'5c.'50 2.0.E:.J '"V V"/"forward current"/,/50 100 150Forward current IF (rnA)ITemperature dependence of light outputFig.2 shows typical relative light output vs. casetemperature characteristics when the light output isnormalized for Tc = 25 "C. As the case temperaturerises, the relative light output decreases at a rateof - 0.01 5dB/oC.Fig. 2 Temperature dependence of light output1. 1'5 1.0c.'5o.r.~.,~.0.9.,~I'.r"-I'o.IF-50m~1normalizedfor Tc=25"Cr"- r"- r"-" r'--O. 80 10 20 30 40 50 60 70 80Case temperature Tc ("C)II Emission spectraTypical emission spectra is shown in Fig.3. Thespectral half width is typically 45nm. Peakwavelength are in a range from 820 to 880nmdepending on production lots at room temperature.Tc = 25°CIF.50mA1.0~13-'50.8::>o0.60.40.20Fig. 3 Typical emission spectra1\L 1/ 1I 1V~~..-'800 850 900Wavelength A (nm)• <strong>MITSUBISHI</strong>.... ELECTRIC 3-5


HIGH RADIANCE LIGHT EMITTING DIODESME1XX3 SERIESFOR OPTICAL COMMUNICATIONII Case temperature dependence· of the peak wavelengthshiftFig. 4. shows typical case temperature dependenceof the peak wavelength shift with the light emittingpeak wavelength being 0 at forward current of50mA and case temperature of 25 ·C.As the case temperature rises. the peakwavelength shift to the long wavelength side at arate of about 0.29nm/·C.Fig. 4 Temperature dependence of peak wavelength shift14 t- IF =50mA ~ ~12 t- normalized for To = 25 "CE 10-5 8:f 6L:'"L:42Lt;,c: 0.Sl -2..L././io""Li-". O.29nm/'C typ_> -4~ -6L-" -8V"~ -10 ./-12 ./'-14-20-10 0 10 20 30 40 50 60Case temperature T c ("C)II Modulation characteristicsTypical frequency modulation characteristics areshown in Fig.5. A bandwidth of 30MHz is typicallyobtained when it is defined as the frequency rangewith in which the modulated light output does notdrop to the - 1.5d8 level.In pulsed operation. response time of the lightoutput is typically 12ns.Fig. 5 Typical frequency modulatin characteristicsiil;:gS 0c.So~-1.5c:.2~-3.0~E~-4.5jc'E-6.01IF=25mAdc+4mAp • p"- ~1\I' I'1 I I 1 I I2 5 10 20 50 100Frequency f (MHz)m Far- field patternTypical far- field pattern is shown in Fig.6. Fullangle of the beam at half maximum intensity istypically 40 deg.Diameters of the light emitting region and thelens are 35 IL m and 100 IL m respectively..t '"c:-e "~.~(/)c:$.5E.!ll"" a: '"Fig. 6 Typical far-field radiation patternr1.0\0.5JI ,~~Vo ./-90 -60 -30 0 30 60 90Angle (deg)3-6• <strong>MITSUBISHI</strong>..... ELECTRIC


HIGH RADIANCE LIGHT EMmlNG DIODESME1XX4 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS> 5. 6MAX>4.7±0.2Dimensions in mm(2)+1 '".... 2->0.45+. m .. ~(1) 2.54±0.25 (2)>5.6MAXDimensions in mm'"d+10M'" +1::;£!d+1"' '"d(1)f(2)• MlTSUBlSHIIA.ELECTRIC3-9


HIGH RADIANCE LIGHT EMITTING DIODESME1XX4 SERIESFOR OPTICAL COMMUNICATIONIII Case temperature dependence of the peakwavelength shiftFig. 4. shows the case temperature dependence ofthe peak wavelength shift with the light emittingpeak wavelength being 0 at forward current of50mA and a case temperature of 25°C.As the case temperature rises, the peak wavelengthshifts to the long wavelength side at a rate ofabout 0.29nm/oC.Fig. 4 Temperature dependence of peak wavelength shiftE5 8,;:6J: 4(/)2-S 0'"t: -2~>-4;: '"-6-" -8l -10-12-14I I J14 IF =50A12 normalized for T c ; 25 "C10./ VV/'....... VV/'V 0.29nm/"C typ-20 -10 0 10 20 30 40 50 60Case temperature Tc ("C)&I Modulation characteristics·Typical frequency modulation characteristics areshown in Fig. 5. A bandwidth of 30MHz is typicallyobtained when it is defined as the frequency rangewith in which the modulated light output does notdrop to the 1.5d8 level.In pulsed operation, response time of the lightoutput is typically 12ns.Fig. 5 Typical frequency modulation characteristicsS "o "a10 -1.5~t:.~ -3.0:;" oE., -4.5>jrI. -6.01~ 1'\ 1\r\IF=25mAdc+4mAp _p2 5 10 20 50 100Frequency f (MHz)iii Far - field patternTypical far- field pattern is shown in Fig. 6.Full angle of the beam at half maximumintensity is typically 20 deg.Diameters of the light emitting region and thelens are 35 I.t m and 200 I.t m respectively.'iii.t:t:"-e~~·iiit:.~E.!1!" 0:: '"1.00.5oFig. 6 Typical far- field pattern_b-"V(\,'t--t-..-60 40 20 a 20 40 60Angle (deg)• <strong>MITSUBISHI</strong>.... ELECTRIC 3 - 11


HIGH RADIANCE LIGHT EMITTING DIODESME7XX2 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEME7022,ME7032DESCRIPTIONME7XX2 are InGaAsP /lnP double heterostructurelight emitting diodes (LED) emitting light beamaround 1310nm.A spherical micro - lens is mounted on the lightemitting area to provide a highly optical couplingefficiency from LED to fiber.ME7XX2 provides a high radiance, narrow beamangle characteristic. Providing ring grooves from theP - side area to the junction to form the mesashapedlight emitting area, thus reducing theparasitic capacitance and realizing a high speedresponse. ME7022 and ME7032 have high reliabilityand long operating life. and are suitable for suchshort-distance communication systems as LAN anddata links.FEATURES• High cut-off frequency, typically 150MHz• High coupling power, typically - 17dBm• Pulse rise and fall times: typical 3ns and 4nsAPPLICATIONFiber - optic communication systems, local areanetworks, CATV trunks, industrial control, data linkABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitIF Forward current - 120 mAVR Reverse voltage - 2.0 VTc Case temperature - -30-+ 80 °CTstg Storage temperature - - 40-+ 100 °CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)LimitsSymbol Parameter Test conditions ME7022 ME7032Min. Typ. Max. Min. Typ. Max.A P Peak wavelength IF - 100mA 1280 1310 1340 1280 1310 1340td Spectral half width IF - 100mA - 130 160 - 130 160PI Fiber coupled power (Note 1) IF = 1 OOmA, G150/ 125. NA = 0.2 15 20 - 10 14 -fc Cut - off frequency IF = 100mA. IRF = 4mAp· P. - 1.5dB - 150 - - 150 -tr / tl Rise and fali times Ip= 100mA. VF= 1V.10%-90% - 3/4 - - 3/4 -VF Forward voltage IF - 100mA - 1.5 2.0 - 1.5 2.0Notel: PI IS the maxImum avaolable power coupled into a fiber CG150/125, NA = 0.2)• ME7022 optimum distance between the top of the spherical micro-lens and the fiber end is d.:::200 /1. m• ME7032 optimum distance between the top of the cap lens and the fiber end is d.:::l mmUnitnmnm/1.WMHznsV3 - 12• <strong>MITSUBISHI</strong>.... ELECTRIC


HIGH RADIANCE LIGHT EMITTING DIODESME7XX2 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGSDimensions in mm(1)f(2)p.e.o.4>2.54Dimensions in mmti'"t--~~~:e.(1 )f(2)Case3- '" O. 45(1) (2)'" 2. 54P.C.D• MITSUBISH. I"'ELECTRIC3 -13


HIGH RADIANCE LIGHT EMITTING DIODESME7XX2 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Fiber coupled power vs. currentTypical current dependence of the fiber output inthe ME7022 is shown ,in Fig.1. when the fiber ofG150/125, NA = 0.2 is used. The optimum distancebetween the top of the spherical micro -lens andthe fiber end is about 200 /.l m. At a casetemperature of 25·C, fiber coupled power is 20 /.l Wat 1 OOniA.· At a case temperature 50 -C, it istypically 17 /.l W.Fig. 1 Fiber co~pled power VS. current in the ME702220r----.---,r----.---,--~G150/125NA=0.2~-3 151---+~-1-__;i"f"__;ii"""91_LED d,,=,200ttm~er51--J'>'I---1-20 40 100Forward current IF (mA)Typical current dependence of the fiber output inthe ME7032 shown in Fig.2. when the fiber of GI50/125, NA = 0.2 is used. Light output from the fiberis typically 14 /.l Wand 12 /.l W at 100mA and casetemperature of 25·C and 50·C, respectively.Fig. 2 Fiber 'coupled power VS.current in the ME703220r----r--~r_---r----r_~G150/125NA=0.2151---+--1---+--1-~Forward current IF (mA)11 Emission spectraTypical emission spectra of the ME7XX2 is shownin Fig.3. The spectral width at half maximum atroom temperature and a forward current of 100mAis about 130nm. The peak wavelength depends onthe light output and the operating casetemperature. The peak wavelength ranges from1 280 to 1340nm at room temperature.2c::::l.c:iFig. 3 Emission spectraTc=25°CIF=100mA1. Ol----,.,----t-----;""-+_----_I~>-'ii.~0.51----Ti~-~+_---_I,~j1~L.OO-""'---~':"""--I.---:-:'::-..-.'"--:1-:600Wavelength A (nm)3 -14• 'MITSUEISHI.... ELECmIC


HIGH RADIANCE LIGHT EMITTING DIODESME7XX2 SERIESFOR OPTICAL COMMUNICATIONI Temperature dependence of 1-VTypical temperature dependence of the forwardcurrent vs. voltage characteristics is shown in Fig.4. In general. the voltage VF decreases slightly forthe constant IF when the case temperature rises.As the case temperature rises. VF decreasestypically at a rate of -1.1mV/"C and -O.7mV/"Cfor IF = 5mA and 50mA. respectively.Fig. 4 Forward current vs. voltage10025'C75~----~----+-----~~--~50C50~----r-----+---~H-----,25~----~----+-~~1-----'0.5 2.0Forward voltage VF (V).. Modulation characteristicsTypical frequency modulation characteristics areshown in Fig.5. A bandwidth of 150MHz is typicallyobtained when it is defined as the frequency rangewithin which the modulated light output does notdrop to the - 1.5d8 level.43@;S 25%0 01:g -1c: -2.2; -3::l"."0 -4::!!-5Fig. 5 Modulation characteristicsIF =100mAIRF=4mAp • pr--.'\.-610 20 30 50 100 200300 500Frequency f (MHz)I Pulse response characteristicsTypical pulse response characterisics at an inputpulse current of 100mA and 1 V pre - bias areshown in Fig.6. The rise and fall times are as quickas about 3ns and 4ns respectively.0690-- I- - --/Fig. 6 Pulse responseVb=lVIp =100mA- -- --- - - --- - - --- --J \.I. .\.1 '\I ~10- - - - - - - --- - - -- - -- ---~0%r-rTime (nsec) .2ns/div• <strong>MITSUBISHI</strong>.... ELECTRIC 3-15


PHOTODIODES


<strong>MITSUBISHI</strong> SILICON Pin PHOTODIODESPD2XX1 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSOUTLINE DRAWINGS+5. 35±O, 1H7~g:65+3, o±o, 1Dimensions in mm¥(1)(2), 'iZ34-4• "MI1SUBISHI..... ELECTRIC


<strong>MITSUBISHI</strong> SILI(;UN AVALAN\,;Mt: t"'MU I UUIUUt:.,PD1XX2 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSTYPENAMEt1PD1002, PD1032·DESCRIPTIONPDl XX2 is a silicon avalanche photodiode (Si-APD)having a light receiving area of 200 /.l m indiameter. Mitsubishi Si - APD realizes the P - sideincidence method having a deep junction of planarmesa structure, increasing the gain band width areaand decreasing the noise generated by themultiplication mechanism.FEATURES• High speed response (pulse rise time l50ps)• Flat frequency characteristics (cutoff frequency2GHz)• High gain- bandwidth product (800GHz)• Low noise index in multiplication process « M0 3 )• Active diameter 200 /.l mAPPLICATIONLight receiving element for optical fiber communicationsystems and optical telemetry systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsIR Reverse currentIF Forward currentTopr;:OSO'CTc Case temperature -Tstg Storage temperature -Ratings Unit200 J.lA10 mA-40-+ 110 'c- 55-+ 150 'cELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 'C)Symbol Parameter Test conditionsV (SR) RBreakdown voltage10 = 100 J.l ALimitsUnitMin. Typ. Max.100 150 200 V{3 Temp.coeff.of V(SR) R - 0.12 - %/'CCt Total capacitance VR = 0.9V (SR) R - 1.5 2 pFID Dark current Va = 50V - 0.3 1 nAR Responsivity Va - 50V, A - SOOnm 0.4 0.45' - A/WMmax Maximum multiplication rate Ipo = 10nA, RL = 1k Q - 1000 - -fc Cutoff frequency M = 100, RL = 50 Q, - 3dB - 2 - GHzNEP Noise equivalent power A -SOOnm - 1 x 10- 1• - W/HzF Excess noise factor M -100 - M025 - -With PD1032, the minimum coupling response is 0.3A/W and the typical coupling response is O.4A/W against G150/125outgoing light.• <strong>MITSUBISHI</strong>JJTt&ELECTRIC 4-5


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODESPD1XX2 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSOUTLINE DRAWINGSv.S.4±O.2';4.7±O.2 .Dimensions in mmCeramicWindow(1)f(2)(2)PD1032"5. 4±O. 2"4. 7±O. 2Dimensions in mm~.,;+1"­.,;:;Jh;::::::2tktl:!l- tl"'CaseI I I "0.45(1) (2),,2.54P.C. D.(I)f(2)4-6•. MrrSUBISH. . I..... ELECTRIC


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODE5PD1XX2 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSSAMPLE CHARACTERISTICSI Responslvlty under no multiplication conditionFigure I shows POI XX2 's typical responsecharacteristic against wavelength at a 50Vbias.POI XX2 is a PIN structure APO suitable forreceiving the lights having a wavelength band of600 to 900nm like He - Ne laser (633nm) andAIGaAs laser (750 to 900nm). At a wavelength of750nm, the response becomes about 0.5A/W atpeak. The dashed lines indicate quantum efficiencylevels.~:scr:. >-.,0.80.60.4.~


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODESPD1XX2 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMS.. Gain - bandwidth productThe gain - bandwidth product of anAPD is aproduct of the multiplication rate and the cutofffrequency. GB. It increases with M and approachesan asymptote which is determined by the GB ofmultiplication process. Fig. 4. shows the GB of thePDl XX2. The multiplication limited GB of thedevices is approximately 800GHz. Such a large GBis required particul~rlyand very wideband signals.in detection of very weakFig. 4 Multiplication rate dependence of cutoff frequency'N:r:~,j,!>c:.."0-"~:::0Su100 a10010,IV'\, , , ~\i+- J ':>,_'>: r"'ooo. '


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODESPD1XX5 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSTYPENAMEPD1005DESCRIPTIONPD1XX5 is a silicon avalanche photodiode(Si-APD)having a light receiving area of 500 It m indiameter. Mitsubishi Si - APD realizes the P - sideincidence method having a deep junction of planarmesa structure. increasing the gain band width areaand decreasing the noise generated ,by themultiplication mechanism.FEATURES• High speed response (pulse rise time 750ps)• Very low multiplication noise « MO')• Flat frequency characteristic (cutoff frequency400MHz)• Very high gain - bandwidth product (400GHz)• Active diameter 500 It mAPPLICATIONLight receiving element for optical fiber communicationsystems and optical telemetry systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsIR' Reverse currentIF Forward currentTopr;;;; 80°CTc Case temperature -Tstg Storage temperature -Ratings Unit200 JJ.A10 mA- 40-+ 110 °C- 55-+ 150 °CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25°C)SymbolParameterV (BR) R 8reakdown voltage(3 Temp. coeff. of V(BR) RCt Total capacitance10 Dark currentR ResponsivityMmax Maximum multiplicationfc Cutoff frequencyNEP Noise equivalent powerF Excess noise factorrateIR= 100 JJ. ATest conditionsVR = 0.9V (BR) RVR= 50VVR = 50V, A = 800nmIpo -10nA. RL -lk nM = 100. RL = 50 n, - 3dBA = 800nmM = 100Min.100---0.4----LimitsTyp. Max.Unit150 200 V0.12 - %rC5 7 pF0.3 1 nA0.45 - A/W1000 - -0.4 - GHz1 x 10 ,. - W/HzMo.25 - -• <strong>MITSUBISHI</strong>"'ELECTRIC4-9


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODESPD1 XX5 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSOUTLINE DRAWINGSif> 5.4 ± 0.2if> 4.7 ± 0.2Dimensions in mmCeram'lc¥(I)(2)Case(I)p.e.D.(2)4-10• <strong>MITSUBISHI</strong>"'ELECTRIC


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODE5PD1 XX5 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSSAMPLE CHARACTERISTICI Responslvlty under no multiplication conditionFigure I shows POI XX5 's typical responsecharacteristic against wavelength at a 50V bias.PO I XX5 is a PIN structure APO suitable forreceiving the lights having a wavelength band of600 to 900nm like He- Ne laser (633nm) and AIGaAslaser (750 to 900nm). At a wavelength of 750nm,the response becomes about 0.5A/W at peak. Thedashed lines indicate quantum efficiency levels.0.8Fig. 1 Spectral responseQuantum efficiency 100% .... .........~ 0.6"- ~a:..... ............~ 0.440%,~c:... ~~0/-C>a: '"" 0.2;( K.... ..... .... 80%.... ..... ......... .........60%-::::- ~~~--~....- -~---- 20%-- - --\ ---'" --f\:- ----- -- -- --~.o500 600 700 800 900 1000 1100Wavelength i\ (nm)II Multiplication characteristicsTypical voltage dependence of the multiplicationrate at various wavelengths is shown in Fig. 2.Multiplication rate as high as 1000 is obtainablewhen the output voltage (product of multipliedphotocurrent and load resistance) is smaller than100mV.Practically available responsivity is a product ofthe value in Fig. I and the multiplication rate M.A value as high as 300A/W can be easily obtained.Because of the PIN structure, the POI XX5 havemuch smaller scattering of the multiplication ratefrom device to device. more uniform multiplicationrate throughout the detecting area as comparedwith reach through devices.1000500::i:$ 100!!!c: 50....110.." :; 10::i:5Fig. 225"CMultiplication characteristics.2 /'/A =800nm /,:,.A =600nm.)II ,. ,./" ,.....I-" -~/-"~~ A =1000nm~IiI/1/0.6 O. 7 O. 8 O. 9 1. 0Relative bias voltage (VR/V (BR) R)II Frequency responseFigure 3 shows POI XX5 's typical frequencyresponse characteristic. The cutoff frequency ( thefrequency at output being - 3dB) at a 50-ohm loadis 400MHz or higher.iii'3 0~C>':5~ -10oFig. 3 Frequency response,----3dB-.-M=100-20 A =890nm106 10' 10810 9 10'0Frequency f (Hz)• <strong>MITSUBISHI</strong>"ElECTRIC 4 - 11


<strong>MITSUBISHI</strong> SILICON AVALANCHE PHOTODIODESPD1XX5 SERIESFOR OPTICAL COMMUNICATION AND RADAR SYSTEMSIII Gain -.bandwldth productThe gain - bandwidth product of an APOis aproduct of the multiplication rate and the cutofffrequency, GB. It increases with M and approachesan asymptote which is determined by the GB ofmultiplication process. Fig. 4. shows the GB of thePOl XX5. The multiplication limited GB of thedevices is approximately 400GHz. Such a large GBis required particularly in detection of very weakand very wideband signals.Fig. 4 Multiplication rate dependence of cutoff frequency, , , ,, ~~~ , ".I,?o


MITSUBISHllnGaAs PHOTODIODESPD7XX5 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEPD7005, PD7035DESCRIPTIONPD7XX5 is an InGaAs pin photodiode having alight receiving diameter of 80 f.J. m, which is suitablefor receiving the light having a wavelength band of1000 to 1600nm. This photodiode features a highQuantum efficiency and a very small dark currentis suitable for the light receiving element for lo()g- distance optical communications.FEATURES• High Quantum efficiency• Very small dark current• High speed response• Active diameter 80 f.J. m• Wavelength range 1000-1600nm• High reliability, long operation lifeAPPLICATIONFiber- optic communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitVR Reverse voltage - 20 VIR Reverse current - 500 pAIF Forward current - 2 mATc Case temperature - - 30~+ 80 'cTstg Storage temperature - -40~+ 100 'CELECTRICAL/OPTICAL CHARACTERISTICS(Tc = 25 'C)Symbol Parameter Test conditionsCt Total capacitance VR = 10V, f = 1 MHz10 Dark current VR= 10VR Responsivity VR= 10V. ). = 1300nmfc Cutoff frequency VR = 10V, ). = 1300nm. RL = 50 Q, - 3dBtr. tl Rise and fall time VR = 10V, ). = 1300nm. RL = 50 Q* Coupling response is typical 0.7 AI W to light output (GI 50/ 125) about PD7035.Min.LimitsTyp.- 1- 0.050.6 O.g'1 -- 0.3UnitMax.2 pF1 nA- A/W- GHz- ns• . <strong>MITSUBISHI</strong>..... ELECTRIC4 -13


MITSUBISHllnGaAs PHOTODIODESPD7XX5 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS~ 5. 4±O. 2I>4.7±O.2Dimensions in mm~3.0±O.245"(1)f(2)Dimensions in mmLens(2)p.e.D., .4-14. • . MlTSUBlSHI.... ElECTRIC


MITSUBISHllnGaAs PHOTODIODESPD7XX5.SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICI Spectral responseTypical spectral response at VR = 10V is shown inFig. 1. The PD7XX5 are suitable for detection ofthe spectral region between 1000 and 1600nm. Ata wavelength of 1300nm , the responsivity istypically about 0.9A/W.~5a:..c...~.~&r!Fig. 1 Spectral response1.0,., .....-VR =10V..",0.5/Vo1000 11 00 1200 1300 1400 1500 1600Wevelength A (nm)I Dark currentFigure 2 shows PD7XX5's typical dark current vs.reverse voltage characteristics at Tc = 25"C, 50"C,and 80 "C. The dark current at VR = 10V, Tc = 25"Cis typically 50pA.Fig. 2 Dark current vs. reverse voltageat case temperatures of 25. 50 and 80-c1o-8r-----.-----.-----r---~~10-9~~~~----~----+---~&!~0lD-10 1-::= ...... ~~----t_----+::.",...5_i~10- 11 1F-----t_---:-t_----+_-----ja 5 10 15 20Reverse voltage VR (V)I Total capacitanceTypical capacitance vs. reverse bias characteristicsare shown in Fig. 3. The total capacitance istypically 1 pF at VR = 10V.Fig. 3 Total capacitance vii.reverse voltage at frequency of 1 MHz2~1f=lMHza o 1020Reverse voltage VR M4-15


MITSUBISHllnGaAs PHOTODIODESPD7XX5 SERIESFOR OPTICAL COMMUNICATION• Frequency responseTypical frequency response is shown in Fig. 4. Forthe light' source, ML7XXI (.l. = 1300nm) was used.The cutoff frequency (- 3dB) is higher than 1 GHz.otil -4;SI -8sc.So -12Fig. 4 Frequency responseVR=10V--........~------- ------"-16o0.5 1.0 1.5Frequency f (GHz)I Pulse responseTypical pulse response is shown in Fig'. 5. TheML7XXI series (wavelength: 1300nm. rise/fall time:O.3ns) are used as light sources. Rise and fall timesIFig. 5 Pulse responseI,. I- V~=lOV0090- - -- -/-- --- ----'of about O.3ns are typically obtained. I1\.I'/I10--- -- -- -- -0%I-- --- ------.\.'\i\-- -- -- -~-- --v --Time (ns.) •0.2ns/div4-16. .' '<strong>MITSUBISHI</strong> ;..... ELE.CTRIC.


MITSUBISHllnGaAs PHOTODIODESPD7XX6 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEPD7006DESCRIPTIONPD7XX6 is an InGaAs pin photodiode having alight receving diameter of 300/.l m, which is suitablefor receiving the light having a wavelength band of1000 to 1600nm. This photodiode features a highQuantum efficiency and a very small dark currentand is suitable for the light receiving elements formonitor and long-distance optical communications.FEATURES• High Quantum efficiency• Very small dark current• Active diameter 300 /.l m• Wavelngth range 1000-1600nm• High reliability, long operation life• Wide effective areaAPPLICATIONFiber- optic communication systems. Light receivingelement for monitor.ABSOLUTE MAXIMUM RATINGSSymbol Parameter ConditionsVR Reverse voltage -IR Reverse current -IF Forward current -Tc Case temperature -Tst9 Storage temperature -Ratings Unit20 V3000 /LA2 mA- 30-+ 80 "C-40-+ 100 "CELECTRICAUOPTICAL CHARACTERISTICS (Tc = 25 "C)Symbol Parameter Test conditionsMin. Typ. Max.Ct Total capacitance VR = 10V, f = 1 MHz - 10 15 pF10 Dark current VR= 10V - 0.2 3 nAR Responsivity VA = 10V, A = 1300nm 0.6 0.9 - A/Wfc Cutoff frequency VA = 10V, A = 1300nm, RL = 50 C, - 3dB 0.2 0.4 - GHztr, tf Rise and fall times VR = 10V, A = 1300nm, RL = 50 C - 1 - nsLimitsUnit4-17


MITSUBISHllnGaAs PHOTODIODESPD7XX6 SERIES.FOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS1>S.4±O.21>4.7±O.2Dimensions in mm45"¥(1)(2)4-18


MITSUBISHllnGaAs PHOTODIODESPD7XX6 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Spectral responseTypical spectral response at VR = 10V is shown inFig. 1. The PD7XX6 are suitable for detection ofthe spectral region between 1000 and 1600nm. Ata wavelength of 1300nm, the responsivity istypically about 0.9A/W.~5rr::{c0c...rr:'"Fig. 1 Spectral response1.0,.-0.5/V A -10V........ ~~o1000 11 00 1200 1300 1400 1500 1600Wavelength ~(nm)II Dark currentFigure 2 shows PD7XX6's typical dark current vs.reverse voltage characteristics at Tc = 25 ·C, 50·C,and SO·C. The dark current at VR = 10V, Tc = 25·Cis typically 0.2nA.Fig. 2 Dark current vs. reverse voltage at casetemperatures of 25, 50 and 80 "C510-8~----~~~+-----~----4.Q ,~~10-9~----~~~+-----~----4'"~o 5 10 15 20Reverse voltage VR (V)II Total capacitanceTypical capacitance vs. reverse bias characteristicsare shown in Fig. 3. The total capacitance istypically 6pF at VR = 10V.u.-9Fig, 3 Total capacitance vs.reverse voltage at frequency of 1 MHz3020i~10-f=lMHzo o10Reverse voltage VR (V)204-19


MITSUBISHllnGaAs PHOTODIODESPD7XX6 SERIESFOR OPTICAL COMMUNICATIONI Frequency responseTypical frequency response is shown in Fig. 4. TheML7XXl (wavelength: 1300nm) are used as lightsources. The cutoff frequency (- 3dB) is higher thanO.4GHz.Ii>;S -4! c. -8e ""0-12Fig. 4 Frequency responsea----- ---1---- ~ K--'"-16o0.1 0.2 0.3 0.4 0.5Frequency f (GHz).. Pulse responseTypical pulse response is shown in Fig. 5. TheML 7XXl (wavelength: 1300nm, rise! fall time: O.3ns)are used as light sources. Rise and fall times ofabout 1 ns are typically obtained.10090 --7VI5!c 7.0c.(I)CD Ia::Fig. 5 Pulse response--\\T\10 --- ------ ------ --0%1 ns/divTime (ns)4-20• <strong>MITSUBISHI</strong>.... ELECTRIC


MITSUBISHllnGaAs PHOTODIODESPD7XX7 SERIESFOR OPTICAL COMMUNICATIONTYPENAME~P_D_7_0_0_A_7~________________ ~1DESCRIPTIONPD7XX7 is an InGaAs pin photodiode having alight receiving diameter of 40 /.l m, which is suitablefor receiving the light having a wavelength band of1000 to 1600nm. This photodiode features a highquantum efficiency and a very small dark currentis suitable for the light receiving element for long- distance optical communications.FEATURES• High quantum efficiency• Very small dark current• High speed response• Active diameter 40 /.l m• Wavelength range 1000-1600nm• High reliability, long operation lifeAPPLICATIONFiber- optic communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions Ratings UnitVR Reverse voltage - 20 VIR Reverse current - SOO JiAIF Forward current - 2 mATc Case temperature - - 30-+ 80 °CTstg Storage temperature - -40-+ 100 °CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 2S °C)SymbolCtIDRfctr, tfParameterTotal capacitanceDark currentResponsivityCutoff frequencyRise and fall timeTest conditionsVR = SV. f = 1 MHzVR= SVVR = SV, .l. = 1300nmVR = SV • .l. = 1300nm. RL = SO Q, -VR = SV, .l. = 1300nm, RL = SO Q3dBMin.--0.61.S-limitsTyp.0.6O.OS0.930.1Max.Unit1 pF0.3 nA- A/W- GHz0.3 ns•.... <strong>MITSUBISHI</strong>..... ELECTRIC4 - 21


MITSUBISHllnGaAs PHOTODIODESPD7XX7 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGSDimensions in mmWindowChip;Jtr~*~+1"!Nt-E==iili==itr=r1;:='3- +1"'Case(1 (2)¢~:'~~03(I)¥(2)4-22• <strong>MITSUBISHI</strong>.... ELECTRIC


MITSUBISHllnGaAs PHOTODIODESPD7XX7 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICI Spectral responseTypical spectral response at VR = 5V is shown in. Fig. 1. The PD7XX7 are suitable for detection ofthe spectral region between 1000 and 1600nm. Ata wavelength of 1300nm , the responsivity istypically about 0.9A/W.1.0~~a:.~ 0.5>·iiicjFig. 1 Spectral responseVR=5V./ VVV~01000 11 00 1200 1300 1400 1500 1600Weveleng1h • (nm)II Dark currentFigure 2 shows PD7XX7's typical dark current vs.reverse voltage characteristics at Tc = 25 ·C, 50"C,and 80 ·C. The dark current at VR = 5V, Tc = 25·Cis typically 50pA.Fig. 2 Dark current vs. reverse voltageat case temperatures of 25. 50 and 80·C10~8r-----'------r----~--~~~ 10~9~~~+------r-----+----~.Qo 10 15 20Reverse voltage VR (V)I Total capacitanceTypical capacitance vs. reverse bias characteristicsare shown in Fig. 3. The total capacitance istypically 0.6pF at VR = 5V.Fig. 3 Total capacitance vs.reverse voltage at frequency of 1 MHz2r----------,----~f=~1M-H-z-,°O~--------~1~O----------~20Reverse vol1age VR (V)• <strong>MITSUBISHI</strong>"'ELECTRIC 4-23


MITSUBISHllnGaAs PHOTODIODESPD7XX7 SERIESFOR OPTICAL COMMUNICATIONII Frequency responseTypical frequency response is shown in Fig. 4. Forthe light source. ML7XX1 (,l. = 1300nm) was used.The cutoff frequency (- 3dB) is typically 3GHz.CD:3a;;:0 0c.5 -3c.5a -6-gFig. 4 Frequency responseVR=5V.LlIph = O.25mA\~-12 \13 .2 .5 .7 1 2 5 7 10Frequency f (GHz)II Pulse responseTypical pulse response is shown in Fig. 5. Rise andfall times of about 0.1 ns are typically obtained.Fig. 5Pulse responsen _VR';5V90---- ---- ---- - --v-- ---- ---- ---- ---- ----10 ...0"""",110---- ---- --- ---- ---- ---- ---- --\-k--- ----.O%ir--r-4~~--~~~~~~-~u~~-4Time (ns)0.2ns/div4- 24'. <strong>MITSUBISHI</strong>..... ELECTRIC


MITSUBISHllnGaAs PHOTODIODESPD8XX2 SERIESFOR OPTICAL COMMUNICATIONTYPENAMEPD805A2DESCRIPTIONPD8XX2 is an InGaAs avalanche photodiodesuitable for receiving the light having a wavelengthband of 1000 to 1600nm. This photodiode featuresa high Quant,um efficiency and a very small darkcurrent and is suitable for the light' receivingelement for long - distance optical communications.FEATURES• High Quantum efficiency• Very small dark current• High speed response• Active diameter 50 Ii- m• Low noiseAPPLICATIONFiber- optic communication systemsABSOLUTE MAXIMUM RATINGSSymbol Parameter Conditions RatingsIR Reverse current - 500IF Forward current - 2Tc Case temperature - - 30~+80Tstg Storage temperature - - 40~+ 100UnitJ.l,AmA'C·CELECTRICAL/OPTICAL CHARACTERISTICS (Tc = 25 ·C)SymbolParameterV (SR) R Breakdown voltageCt Total capacitanceID Dark currentT/ Quantum efficiencyfc Cutoff frequencyF Excess noise factorTest conditionsIR= 100 ~ AVR - 0,9V (SR) R. f = 1 MHzVR = 0.9V (SR) RM = 1. A = 1300nmM = 1 O. RL = 50 Q. - 3dBM -10Min,LimitsTyp,40 70- 0,7- 10- 801 3- MO.,Max,Unit90 V0,9 pF30 nA- %- GHz- -• <strong>MITSUBISHI</strong>.... ELECTRIC4-25


MITSUBISHllnGaAs PHOTODIODESPD8XX2 SERIESFOR OPTICAL COMMUNICATIONOUTLINE DRAWINGS¢ 5.4± 0.2¢ 4.7±0.2Dimensions in mm~I45'¥(1 )(2)4-26.• <strong>MITSUBISHI</strong>.... ELECTRIC


MITSUBISHllnGaAs PHOTODIODESPD8XX2 SERIESFOR OPTICAL COMMUNICATIONSAMPLE CHARACTERISTICSI Spectral responseFigure 1 shows PD8XX2's typical spectral response.Dashed curves indicate quantum efficiency levels.PD8XX2 is suitable for receiving the light havinga wavelength of 1000 to 1600nm. The typicalquantum efficiency in this area is 80 %.~~a:>.".~c:0Q


CANCELED PRODUCTS


<strong>MITSUBISHI</strong> OPTICAL SEMICONDUCTORSPRODUCTS TO BE DISCONTINUEDLIST OF PRODUCTS TO BE DISCONTINUEDYear indata bookProduct to bediscontinuedReplacementRemarksML3401 ML3411 Package "40" .... "41", same chipML4014C ML40115C Same package, chip improved.ML4014R ML40115R Same package, chip improved.ML401SN - To be out of production.ML401SC - To be out of production.ML401SR - To be out of production.ML440S - To be out of production.ML444SN - To be out of production.ML470SN - To be out of production.ML4011QC ML40110R Pin connection "C" .... "R", same package.ML40115N ML40115R Pin connection "N" .... "R", same package.ML40117C ML44114C Package "01" .... "41", chip improved.ML40117R ML40114R Same package, chip improved.ML5704F ML57S4F Package "70" .... "7S", same chip.MLS701A MLS411A Package "70" .... "41", same chip.MLS705N To be out of production.MLS70SN To be out of production.'90 MLS41SN - To be out of production.MLS418R - To be out of production.MLS41SC - To be out of production.MLS70SE - To be out of production.ML7701A ML77S1A Package "70" .... "78", same chip.ML77S1 ML77S81F Package "7S" .... "7S8", same chip.ML7702 ML774A2F Package "70" .... "74A", same chip.ML7912 ML7922 Package "91" .... "92", same chip.ML9701A ML97S1A Package "70" .... "7S", same chip.ML9702 ML974A2F Package "70" .... "74A", same chip.ML9912 ML9922 Package "91" .... "92", same chip.ME7522 ME7032 Package "52" .... "03", same chip.PD7935 PD7035 Package "93" .... "03", same chip.PD793S PD700S Package "93" .... "00", same chip.PDS001 PDS05A2 Package "00" - "05A", chip improved.PDS931 PDS05A2 Package "93" .... "05A", chip improved.PDS002 PDS05A2 Package "00" .... "05A", same chip.PDS932 PDS05A2 Package "93" .... "05A", same chip.Note: The- user is recommended not to use the products to be discontinued in new desIgns.• <strong>MITSUBISHI</strong>..... ELECTRIC 5-3


OPTICAL-FIBER COMPONENTS GUIDANCE .,


LIST OF PRODUCTSLD Module for Singlemode Fiber (Receptacle Type)Light. etJiissiol1 OptiCal outPut.. P~t~Nu:tnber Wavel:un~th power... , :.;., (run) .'. (mW)J~ackagetypeFU-OllSLD-N2 780 0.4 ReceptacleFU-16SLD-Nl 1300 1.5 ReceptacleFU - 16SLD - N3 1300 0.2 ReceptacleFU-17SLD-Nl 1300 1.5 ReceptacleFU-17SLD- N3 1300 0.2 ReceptacleFiberConnector Disbrete . DeviceType Type No.Page- FC ML40116R 7-3- FC ML776BIF 7-5- FC ML776BIF 7-8- FC ML776BIF 7-5- FC ML776BIF 7-8LD Module for Singlemode Fiber (Coaxial Type). Ligllt emission Optical outputParts Numb~L Wave\unf!1h power Package type'. (nm) • (mW) IFU-411SLD 1300 1.8 CoaxialFU -411SLD- 20 1300 20 CoaxialFU-611SLD 1550 1.5 CoaxialDU-611SLD-15 1550 15 CoaxialFiber.Connector Discrete DeviceType:. Type No..P~e.10/125 - ML776BIF 7 - 1110/125 - ML7XX1A 7 - 1410/125 - ML9XX1 7 - 1610/125 - ML9XX1A 7 - 19LD Module for Singlemode Fiber (DIP Type/Butterfly Type)Light emission Optical. outputI Parts .Number Wavelun~ll power '. .Pac~etYP~. (nnij ..(mW)FU-43SLD-1 1300 2 DIPFU-43SLD-2 1300 0.2 DIPFU-44SLD-1 1300 2 DIP w / coolerFU-44SLD-7 1300 10mW. Pulsed DIP w / coolerFU-45SLD 1300 2 Butterfly. w / coolerFU-64SLD-l 1550 1.5 DIP w / cooler-FU-64SLD-7 1550 10mW. Pulsed DIP w / coolerFiberConnector. Discrete DeviceType Type No .Page10/125 - ML7701 7 - 2110/125 - ML7701 7 -2410/125 - ML7XXI 7 -2710/125 -ML7XXIScreened7 -3010/125 - ML7XXI 7 -3310/125 - ML9XX1 7 - 36ML9XXI10/125 -Sccreened7 -39DFB·LD Module for Singlemode Fiber (DIP Type/Butterfly Type)Patts NumberiLight emissionWavelungth(run)·FU-41SDF 1300FU-44SDF 1300FU-45SDF-38 1300FU-45SDF-4 1300FU-48SDF-l 1300FU-61SDF 1550FU-64SDF 1550FU-65SDF-3 1550FU-65SDF-4 1550FU-68SDF-2 1550Optical outputpower. (mW)1.51.53.623.51.51.5223.5Package typeDIP w / coolerButterfly. w / coolerButterfly.w / isolator coolerButterfly.w /isolator coolerButterfly.w / isolator coolerDIP w / coolerButterfly. w / coolerButterfly.w / isolator coolerButterfly.w / isolator coolerButterfly.w / isolator coolerFiberConnector Discrete OeviceType Type No.Page10/125 - ML7XX2 7 -4210/125 - ML7XX2 7 -4210/125 -ML7XX2Screened7 -4510/125 - ML7XX2 7 - 4810/125 - ML7XX2 7 - 5110/125 - ML9XX2 7 -5410/125 - ML9XX2 7 -5410/125 -ML9XX2Screened7 - 5710/125 - ML9XX2 7 - 6010/125 - ML9XX2 7 -63•. MITSUSISHI...... ELECTRIC6-3


LIST OF PRODUCTSLD Module for Multimode FiberLED ModulePD ModuleAPD ModuleDlgltal·Optical Transceiver Module (3R Type)1300 155.521300/1550 622.08MF-156DS-TR124- 0021 003MF-622DF-T12-007-011MF-622DS-R13-002 1300/1550 622.08R14-002l00340/1515/40/601540/60EeLEeLEeLLD APD FC -108LD,DFB LD FePD,APD Fe6-4.• <strong>MITSUBISHI</strong>.... ELECTRIC·


LIST OF PRODUCTSDlgltal·Optlcal Transceiver Module (2R Type)MF-32DF-T01/R03840 32 4ECL LED/PD FCOptlcal.Flber ConnectorOptical- fiberconnector plug(Singlemode fiber)Optical- fiberconnector plug(Multimode fiber)AdaptorFC-01PN-(L)-SMFFC-01PNW-(L)-SMFFC-01PN-(L) • PC-SMFFC-01PNW-(L) • PC-SMFFC-01PN-(L) • SPC-SMFFC-01PNW-(L) • SPC-SMFFC-OIPN-(L)FC-01PNW-(L)FC-01PN-(L) • PCFC-01PNW~(L) • PCFC-01PN-(L) • SPCFC-01PNW-(L) • SPCFC-01RN(S)FC-01RN0.3dB Typ.0.3dB Typ.0.3dB Typ.·0.05dB Typ.0.05dB Typ.Silica fiber(singlemode fiber 10/125)Silica fiber(GI 50/125)7 - 1217 -123for singlemode fiber 7 - 121for multimode fiber 7 -123• <strong>MITSUBISHI</strong>"ELECTRIC6-5


MAP OF PRODUCTSLOlLED Module3020[LZ]: For Multimode FiberE:SSl: For Singlemode Fiber~FU-411SLD-20~FU-611SLD-153 10-5~FU-44SLD-7~ FU-64SLD-7""CCC1>Cii 5.0:;::E"e"""'50.'50-.;"" E-O2~,"C23,".,"C","C'FU-27LDFU-11LD-NFU-1XSLD- N1FU-4XSLD-1FU-411SLDFU-4XSDF~ FU-.64SLD-1FU-611SLDFU-6XSDF~0.5FU-011SLD-N2W#/%l~~:m~-N0'1' II I I0.7 0.8 0.9 1.0 1.1 1.2FU-1XSLD-N3~ FU-43SLD-2E222I FU-13LE- N/FU-34LEI I I1.3 1.4 1.5 1.6PD/APD ModulefA,--------------------~~\f A~ __________ ~~------------------~.~\V PDModqle 1'0 Module ..~ FU-04PD-N FU-1XPD-NFU- 21 PD FU- 35PD •flA ____--__--~----~--~~\f A~ ____ ~------__ ~~ ______ ~ ____---.~'\APPModule ..".....vFU-05AP-NFU-1XAP-NFU-25APFU-310AP0.70.8 0.9 1.0 1.1 1.2Wavelength ( ~ m)1.3 1.41.56-6• <strong>MITSUBISHI</strong>..... ELECTRIC


PRODUCT DESIGNATION CODEPRODUCT DESIGNATION CODELD, LED, PO, APD MODULEF U - 42 S L 0 - 0I"" -- - -I""r-1""-1""--FiberModuleWavelength & PackageWavelengthPackage0 O.78,um or O.85/Lm Band Receptacle1.3/Lm BandReceptacle2 O.78,um or O.85/Lm Band Pigtail (MMF)3 1.3,um Band Pigtail (MMF)4 1.3/Lm Band Pigtail ( SMF)6 l.55,um Band Pigtail ( SMF)Development rankS : For Singlemode FiberNO MARK : For Multimode FiberDevice LD : Laser DiodeDF : DFB Laser DiodeLE : Surface Emitting Light Emitting DiodePD : Photo DiodeAP : Avalanche Photo DiodeIn . Case of Receptacle type,Connector Type N: NTT - FC Type In Case of Pigtail type.Optical power rankMETHOD FOR ORDERING OTHER THAN STANDARD PRODUCTS(ONLY FOR FU - 42SLD TYPE LD MODULE)Please. advise whether with sheath of optical fiber. for optical connector, and the length of optical fiber. as shown below.FU-42LD-D -- c:=J -- ~ -- ~i- Sh~~th of optical fiber~- - - ¢ 0.9mm (Nylon jacket)B--- ¢3mm(PVC code),i Optical connectorq---Without connector____ ..J : 1.. ___ •1---With FC- 01 PN----I Optical fiber lengthL----L (m)• <strong>MITSUBISHI</strong>"'ELECTRIC6-7


SAFETY CONSIDERATION FOR LD MODULESAFETY CONSIDERATION FOR LD MODULE(1) The maximum rating of LD module, is basedon optical output. For LD module application.it should be handled carefully in order thatthe output from the optical-fiber: cable willnot exceed the maximum rating.(2) As a laser diode is delicate. it can be damagedby surge current caused when ,power issupplied or interrupted. To prevent generationof surge current. for example. a slow-starterunit shown in Fig. 1 should be used.(3) As a laser diode can be damaged by staticelectricity, appropriate precautions should betaken to prevent static electricity.(4) When the LD module is driven constantly.if the temperature varies. the optical outputvaries inversely. If the temperature lowers.the optical output of LD module may exceedthe maximum rating. For obtaining stabilizedoptical output, and at the saine time forprotecting a laser diode. using an APC(Automatic Power Control) circuit for exampleas shown in Fig. 2 is strongly recommended.(5) The beam emitted from the laser diode isinvisible and may be harmful to the humaneye. A void any possibility of looking intothe laser package or the collimated beamalong its optical axis when the device isin operation. Operation over the maximumratings may cause failure of the device ora safety hazard. Power supplies for the devicemust be such that the maximum rating ofthe right output cannot be exceeded. Becauseof the size of each module. the labels shownbelow are attached to the individual lasercontainer. They are illustrated to complywith the requirements of DHHS standardsunder the Radiation Control for Health andSafety Act of 1968.sw+ 12Vr --- - - - --.... - ----........--..........---------........................------.......,, ,1mH0.068 0.068~F ~F10kQ,, ,L .......... __ .......... __ ............ __ ........ ____ .. __ ............................ __ .............. ....Fig. 1 Example of Circuit for Slow Starter50C 470pF~------------------------------~Mr~~RF Input10mHFig. 2 Example of Circuit for APC CircuitTlT2/\ 1\;;\.1 \1 \J0.~~ ..1-0j1112CurrentFig. 3 Optical Output for APC DriveTr(2SC1324)AVOID EXPOSURE-InvisibleLaser Radiation is emitted fromfiber.• <strong>MITSUBISHI</strong> D.ECTRIC CORP.""2.3. M •• unouch 2chor\lle, Chlyoda.-kll. T


MEASURING PROCEDURESFOR OPTOELECTRONIC COMPONENTS1. Optical Output of Light-emission Module (LED, LD Modules)(1) Receptacle typeRLED. LD moduleOptical connector OPtical connector_i ... i ..'.61------r--~O--


MEASURING PROCEDURESFOR OPTOELECTRONIC COMPONENTS4. Insertion Loss of Optical Compornents(1) Receptacle typeOptical- fiber cord Standard optical connector Optical connectorInsertion loss = - lOlog ~~ (dB)(2) Pigtail typeStandard optical connectorOptical-fiber cordOptical-fiber"---"--'-...:I


OPTICAL-FIBER COMPONENTS OAT A SHEET


FU-011 SLD-N20.781..1 m Connectorlzed LD Module for Singlemode FiberLD module type FU - 0 11 SLD- N2 contains selfpulsationAIGaAs LD (Laser diode) for O.78ttmband and is used as light source for use inintermediate and high speed local area networksystems.FEATURES• High - speed response• Emission wavelength is in O.78ttm wavelengthband• Connectorized package for FC connector• With photodiode for optical output monitor• Diodes are hermetically sealedFU-011 SLD-N2ABSOLUTE MAXIMUM RATINGS (Tc=25"C)Items Symbols Conditions RatingsOptical output power fromLaser diode fiber end (Note 1)Reverse VoltagePFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOperating case temperatureStorage temperatureTcTstgNote 1) Singlemode fiber master plug with mode field diameter lOpmCW-----121510- 20-60-40-70UnitsmWVVrnA"C"COUTLINE DRAWINGS Unit (mm)2- .p2. 6 x .p4. 4 Depth1Reverse sideM8XO. 75 Threadco~~I~I~;1 LDiA---i f(Case) 26FU-011 SLD-N21. -=-5 -t--+---=-5 -----l19•. <strong>MITSUBISHI</strong>...... ElECTRIC7-3


FU~011 SLD-N20.781..1 m Connectorlzed. LD Module for Singlemode FiberCHARACTERISTICS (Tc=25°C, unless otherwise noted)Items Symbols ConditionsMin. Typ. Max. UnitsThreshold current Ilh CW - 45 70 rnAOperating current lop CW - 55 85 rnAOperating voltage Vop CW,IF = lop (Note 1) - 1.8 2.3 VOptical output power from fiber endPFCW,IF = lop(Note 2)0.25 0.4 - mWCentral wavelength AC CW,IF = lop785 780 800 nmRise and fall times tr, tf Ie = Ilh, 10-90 % (Note 3) - 0.5 - nsTracking error (Note 4) Er Tc = - 20-60 "C, APeDifferential efficiency (Note 2) 1/-Monitor .currentlmon CW, IF = lop, VRO = 5VDark current (Photodiode) 10VRo=5VCapacitance (Photodiode)CIVRO = 5V, f = 1MHzOptical connector type --Note I) IF: Forward current (LD)Note 2) Singlemode fiber master plug with mode field diameter lOpm. Note 3) lB: Bias current (LD)Note 4) Er=MAX!IO'!Og I'F r:s'C) !EXAMPLE OF CHARACTERISTICS0.5,----------------,> 0.8.1::..c::-20·e.~ 0.625·e ·i.!!! 0.4(l;;::: .2l 0.3we0.2E,.g0 786 788'AAJ790~A792 794 796Wavelength (nrn)~Co 0.2Light-emission spectrum:;a:::IoI 00.1OL-__ L_~'_~~_L_ __ L__~o 20 40 60 80 100Forward current (rnA)Forward current vs. Optical output power~§..,5i~E.g~0~SCoS0]li00.750.500.25- 0.5 - dB- 0.04 - mW/rnA0.1 0.4 - rnA- - 1 p.A- 7 - pFFC ---0.2 0.4 0.6 0.8 1.0 10 20 30 40 50 60 70Monitor current (mA)Case temperature ("C)Monitor current va. Case temperature vs.Optical output powerThreshold currentfrom fiber end-7-4


FU-16SLD-N1, FU-17SLD-N11.31.l m Connectorlzed LD Module for Singlemode FiberModule type FU-16SLD-Nl and FU-17SLD­Nl have been developed for coupling a singlemodeoptical fiber and a 1.3,um wavelength InGaAsPLD (Laser diode).FU -16SLD-Nl and FU:'17SLD-Nl are suitableto light source for use in medium haul digitaloptical comm~nication systems.FEATURES• High optical output• Emission wavelength is in 1.3.um band• Low threshold current (lOrnA typ.)• Connectorized package for FC connector• With photodiode for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (Tc=25°C)ItemsOptical output power fromLaser diode fiber end (Note 1)Reverse VoltageSymbolsPFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward. current IFDOperating case temperatureStorage temperatureNote 1)TcTstgSinglemode fiber master plug with mode field diameter lOpmOUTLINE DRAWINGS Unit (mm)FU-16SLD-N1ConditionsCW-----FU-17SLD-N1RatingsFU -16SLD-Nl FU-17SLD- NlUnits2.5 2.5 mW2 2 V15 15 V2 2 rnA- 20-65 -20-65 'C-40-85 -40-85 'C2 - 4>2. 6 x 4>4.4 Depth1 M8 x O. 75 ThreadReverse side en"" a-G-1""24>2.6 x 4>4. 4 Depth1 M8 x O. 75 ThreadReverse side4PD ~fr3g191 (Case)FU-16SLD-N1l.5 519 Ma+1enM8.8e~f~l.519 193 1 (Case)FU-17SLD-N1. • <strong>MITSUBISHI</strong>.... ELECTRIC7-5


FU-16SLD-N1, FU-17SLD-N11.311 m Connectorlzed LD Module for Singlemode FiberCHARACTERISTICS (Tc=25 cc, unless otherwise noted)Items Symbols ConditionsMin.Threshold current Ith CW -Operating current lop' CW -Operating voltage Vop CWo IF = lop (Note 1) -Optical output power from fiber enc(Note 2)PFCW.IF = lop 1Central wavelength .l.c CW.IF = lop 1270Rise and fall times tr. tf III = Ilh.1O-90 %(Note 3) -Tracking error (Note 4) Er Tc = - 20-65 "C. APC -Differential efficiency(Note 2)1/ - -Monitor current Imon CWo IF ,,;, lop. VRD = 5V 0.25Dark current (Photodiode) ID VRD=5V -Capacitance (Photodiode) Cl VRD = 5V. f = IMHz -Optical connector type - -Note 1) IF: Forward current (LD)Note 2) Singlemode fiber master plug with ,mode field diameter 10llmNote 3) Is : Bias current (LD)Note 1) Er = ~AX 110 . log PF IPF (25"C)FU -16SLD-N1Typ.Max.10 2030 651.2 1.61.5 -1300 13300.3 -0.5 -0,07 -1 -0.1 110 -FCFU-17SLD-N1Min. Typ. Max.Units- 10 20 rnA- 30 65 rnA- 1.2 1.6 V1 1.5 - mW1270 1300 1330 nm- 0.3 - ns- 0.5 - dB- 0,07 - mW/mA0.25 1 - rnA- 0.1 1 /lA- 10 - pFFC -7-6• ' MlTSUBISHI"ELECTRIC


FU-16SLD-N1, FU-17SLD-N11.31..1 m Connectorlzed LD Module for Singlemode FiberEXAMPLE OF CHARACTERISTICSTc=Z5'CIF=Iop3-5"0


FU-16SLD-N3, FU-17SLD-N31.31..1 m Connectorlzed LD Module for Singlemode FiberModule type FU-16SLD-N3 and FU-17SLD-N3have been developed for coupling a singlemodeoptical fiber and a 1.3tlm wavelength InGaAsPLD (Laser diode).FU-16SLD-N3 and FU-17SLD-N3 are suitableto light source for use in medium haul digitaloptical communication systems.FEATURES• Wide operating temperature range• Emission wavelength is in 1.3tlm band• Low threshold current (lOrnA typ.)• Connectorized package for FC connector• With photodiode for optical output monitor• Diodes are hermetically sealed FU-16SLD-N3 FU-17SLD-N3ABSOLUTE MAXIMUM RATINGS (Tc=25°C)Items Symbols ConditionsOptical output power fromLaser diode fiber end (Note 1)Reverse VoltagePpVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOperating case temperatureStorage temperatureTcrstgNote 1) Singlemode fiber master plug with mode field diameter lOpmCW-----RatingsFU -16SLD- N3 FU-17SLD-NS0.52152-30-85-40-85Units0.5 mW2 V15 V2 rnA-30-85 "C-40-85 "COUTLINE DRAWINGS Unit (mm)2 - "'2. 6 x ",4. 4 Depth1Reverse side '""" d-e.1MBXO. 75 Thread4PD ~~I3g9. 5±O. 3151 (Case)FU-16SLD-N31. -"..5-+-+--,5"-1f------,1-"..9 ~f--__ -,-,19,,--__..j Md+1pr l~l32- "'2. 6x ",4. 4 Depth 1Reverse sideB.B11D~191 (Case) FU-17SLD-N3MBxO. 75 Thread~ill1.."-5 -I-1-'5=--l197-8',<strong>MITSUBISHI</strong>.... ELECTRIC.


FU-16SLD-N3, FU-17SLD-N31.31.1 m Connectorlzed LD Module for Singlemode FiberCHARACTERISTICS (Tc=25°C, unless otherwise noted)ItemsSymbolsConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vap CWo IF '" lop (Note 1)Optical output power from fiber end(Note 2)PFCW.IF = lopCentral wavelength i\c CW.IF = lopRise and fall times tr. tf 18 = Ilh.1O-90 %(Note 3)Tracking error (Note 4) Er Tc = - 30-85 'C. APCDifferential efficiency (Note 2) T/ -Monitor current Iman CW.IF = lop, VRO = 5VDark current (Photodiode) 10 VRo=5VCapacitance (Photodiode) Ct VRO = 5V. f = IMHzOptical connector type - -Note 1) IF : Forward current (LD)Note 2)· Sing1emode fiber master plug with mode field diameter 10llmNote 3) 18: Bias current (LD)Note 4) Er = MAXI 10 • log PF IPF (25"


FU-16SLD-N3, FU-17SLD-N31.31l m Connectorlzed LD Module for Singlernode FiberEXAMPLE OF CHARACTERISTICS0.3.---------------------------~Tc=25'CIF=Iop~5"0c .,~..c­.


FU-411SLD1.3 \.I m LD Module with Singlemode Fiber PigtailModule type FU-411SLD has been developedfor coupling a singlemode optical fiber and a1.3tlm wavelength InGaAsP LD (Laser diode).FU-411SLD is suitable to light source for highspeedlong haul digital optical communicationsystems and measuring instruments.FEATURES• High - speed response• Emission wavelength is in 1.3tlm band• Low threshold current (lOrnA typ.)• With photo diode for optical output monitor• Diodes are hermetically sealed1000+5 00 2017.7FU-411SLDABSOLUTE MAXIMUM RATINGS (TC=25"C)Items Symbols ConditionsRatingsUnitsOptical output power fromLaser diodefiber endPFCW3 mWReverse VoltageVRL-2 VPhotodiode for Reverse VoltageVRD-15 VmonitoringForward Current1m-2 rnAOperating case temperatureStorage temperatureTcTstg--O~65-40~70oc;oc;OUTLINE DRAWINGS Unit (mm)2-2.4)I


FU-411SLD1.31..l m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, unless otherwise noted)Items Symbols ConditionsThreshold current llh CWOperating current lop CWOperating voltage .' Vop CW.IF = lop (Note 1)Optical output power from fiber end PF CW.IF = lopCentral wavelength .l.c CW.IF = lopSpectral width (FWHM) LU CW.IF = lopRise and fall times tr. tf 18 = Ilh.10-90 % (Note 2)Tracking errorDifferen tial efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF : Forward current (LD)Note 2) Is: Bias current (LD)(Note 3) Er Tc = 0-65 "C. APCTJ -lmonNote 3) E, = MAxi 10 • log PFPF (25"C)* Module up to 85"C in operating case temperature (Tc) is also available.Please consult with sales office about specification and so on. if necessary.CW.IF = lop. VRO = 5V10 VRo=5VCtVRO = 5V. f = IMHzMin. Typ. Max. Units- 10 30 rnA- 25 45 rnA- 1.2 1.6 V1 2 - mW1270 1300 1330 nm- 3 - nm- 0.3 - ns- 0.4 - dB- 0.13 - mW/mA0.1 0.6 - rnA- 0.1 1 /lA- 10 - pFFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9Units-/lm/lmmm7 -12• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-411SLD1.31.1 m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS3r-----------------------------~Tc=25'CiF=iop~.§"0c:CD1i;;:::-~Ee0a5a...:I0«i.Il0.02Forward current (rnA)Forward current VS. OptIcal output power0.8>.~IIIc:S 0.6.5.~0.4.!!!~0.2O'C0 ~ !25'C 1300 1305 1310 1315 1320 1325Wavelength (nrn)65'CLlght-emlsslon spectrumf\ i8=ith100/---+--t--/-+I1...,...+--±--t-__._t---t---t----190 ------ -I-I --=-Ii~,80 100 . \~~/oI-----_+_---..... -'l_---+----_+_----±_---_+-----_+_----'\-,..t-----;___;\Pulse response500ps/div. '·MlTSUBlSHI.... B.ECTRIC7-13


FU-411 SLO-201 .. 3 ~ m LD Module with Singlemode Fiber PigtailModule type FU-411SLD-20 has been developedfor coupling. a singlemode optical fiber and a1.3.um wavelength InGaAsP high power LD (Laserdiode).FU-411SLD-20 is suitable to light source formeasuring instruments. (especially. OTDR)FEATURES• High optical output power• Emission wavelength is in ~ .3.um band• Laser diode are hermetically sealedFU-411 SLD·20ABSOLUTE MAXIMUM RATINGS (Tc=25"C)ItemsSymbolsLaser diodeForward CurrentIFLReverse VoltageVRLOperating case temperatureTcStorage temperatureTstgNote 1) Pulse condition: Pulse width"" lOllS. Duty ratio"" 5 %ConditionsRatingsCW 150Pulse (Note1) 700- 2- 0-60- -40-70UnitsrnAV"C"COUTLINE DRAWINGS Unit (mm)2-.p2.4Jr~: I I-I I"" u-i-e.


FU-411SLD-201.31..1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthSpectral width (FWHM)Rise and fall timesSymbolsIthlopVopPFACt-Atr, ttConditions-Pulse (Note 1)IF = lop. Pulse (Note 1,2)IF = lop, Pulse (Note 1. 2)IF = Iop,Pulse (Note 1,2)IF = lop, Pulse (Note 1,2)IB = lth, 10-90 % (Note 3)Min.---201270--Typ. Max. Units25 100 rnA500 650 rnA1.8 3.5 V80 - mW1300 1330 nm6 - nm- 3 nsNote 1) Pulse condition: Pulse width,. 10115, Duty ratio" 5 %Note 2) IF : Forward current (LD)Note 3) Ie : Bias current (LD)FIBER PIGTAIL SPECIFICATIONSTypeItemsSpecificationsSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9Units-/.lm/.lmmmEXAMPLE OF CHARACTERISTICSPulseTe =25°cIF=Ioppulse~-5'0c: .,BO1;;.0''iii O.Bc:.~ 0.6..,~OJ~ 0.40.2OL-____ ~~ __ ~ ____ ~ ____ ~ ____ ~.1270 12BO 1290 1300 1310 1320·Wavelength (nm)Light-emission spectrumForward current (rnA)BOO 1000Forward current (Pulse) vs. Optical output power• <strong>MITSUBISHI</strong>..... ELECTRlc- 7 -15


FU-611SLD1.55 iJ. m LD Module with Singlemode Fiber PigtailModule type FU-611SLD has been developedfor coupling a singlemode optical fiber and a1.55tlm wavelength InGaAsP LD (Laser diode).FU-611SLD is suitable to light source for highspeedlong haul digital optical communicationsystems and measuring instruments.FEATURES• High - speed response• Emission wavelength is in 1.55tlm band• Low threshold current (14mA typ.)• With photo diode for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (Tc=25"C)Laser diodePhotodiode formonitoringOperating case temperatureStorage temperatureItems Symbols ConditionsOptical output power fromfiber endReverse VoltageReverse VoltageForward CurrentPrVRLVRD1mTcTstgCW-----FU·611SLDRatingsUnits2.4 mW2 V15 V2 rnA0-65 "C-40-70 "COUTLINE DRAWINGS Unit (mm)2-.p2.4Fiber11FU·611SLD7 -16'.. <strong>MITSUBISHI</strong>"'-ELECTRIC


FU-611SLD1.551.1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 °C, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthSpectral width (FWHM)Rise and fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF: Forward current (LD)Note 2) Is: Bias current (LD)Note 3) Er = MAXi 10 • logPFPF (25'C)FIBER PIGTAIL SPECIFICATIONSSymbols ConditionsIthCWlopCWVop CW.IF=Iop (Note 1)PFCW.IF= lopAcCW.IF = lopLl)'CW.IF = loptr. tf IB = Ith. 10-90 % (Note 2)(Note 3) Er Tc = 0-65 "C. APCT/ -Imon CWo IF = lop. VRO = 5V10 VRo=5VCtVRO = 5V. f = 1MHzMin. Typ. Max. Units- 14 35 rnA- 40 60 rnA- 1.2 1.7 V1 1.5 - mW1520 1550 1580 nrn- 4 - nm- 0.3 - ns- 0.4 - dB- 0.06 - rnW/mA0.1 0.6 - rnA- 0.1 1 IJ-A- 10 - pFItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ±2Jacket dia. 0.9Units-/.lm/.lmmm'.. <strong>MITSUBISHI</strong>.... ELECTRIC7 -17


FU-611SLD1.55 Il m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS3r-----------------------------,Tc=25'C[F=[OP3,5"0c:CD~""E.gli;;;:0Co...:JCoS0"iii.\,215.02O'c25'cForward ,current (mA)Forward current vs. Optical output power>-·iii 0.8c:.~ 0.6~~O.4a:0.2o15~30~--~~~~~~~~~--~15~7~0----·~1580Wavelength (nm)Light-emission spectrum100 1\90 -------,- ------.~ IIIIc:. ~~.'".!!l~--- ---t'---1\1\ .I'B=lth\10 --- --- --------- ------ --\;, --- ---0%r--+--~--+_~~~--4---~~~~~Pulse response500ps/div7 -18. '" <strong>MITSUBISHI</strong>.... ELECTRIC


FU-611SLD-151.551.1 m LD Module with Singlemode Fiber PigtailModule type FU-611SLD-15 has been developedfor coupling a single mode optical fiber and a1.55.um wavelength InGaAsP high power LD (Laserdiode).FU-611SLD-15 is suitable to light source formeasuring instruments. (especially, OTDR)FEATURES• High optical output power• Emission wavelength is in 1.55.um band• Laser; diode are hermetically sealedFU-611SLD-15ABSOLUTE MAXIMUM RATINGS (Tc=25"C)Items Symbols Conditions RatingsCW 150Forward CurrentIFLLaser diode Pulse (Note 1) 700Operating case temperatureStorage temperatureReverse VoltageNote 1) Pulse condition: Pulse width ~ lOllS, Duty ratio" 5 9t;VRLTcTstg- 2- 0-60- -40-70UnitsrnAV"C"COUTLINE DRAWINGS Unit (mm)-I -- ~ u-i 01- I II I--


FU-611 SLD-151.55 Il m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, unless otherwise noted)ItemsSymbolsThreshold current , llhOperating currentOperaitng voltageOptical output power from fiber endCentral wavelengthSpectral width (FWHM)Rise and fall timeslopVopPF.l.ct..l.tr. tfConditions-Pulse (Note 1)IF = lop. Pulse (Note 1.2)IF = lop. Pulse (Note 1.2)IF = lop. Pulse (Note 1.2)IF = lop, Pulse (Note 1.2)In = Ilh.lO-90 % (Note 3)Min. Typ. Max.- 30 100- 500 650- - 3.515 30 -1520 1550 1580- 9 -- - 3UnitsrnArnAVmWnmnmnsNote 1) Pulse condition: Pulse width';; lOllS, Duty ratio" 5 %Note 2) IF : Forward current (LD)Note 3) In : Bias current (LD)FIBER PIGTAIL SPECIFICATIONSTypeItemsSpecificationsSMMode field dia. 10 ± 1Units-pmCladding dia. 125 ± 2pmJacket dia. 0.9mmEXAMPLE OF CHARACTERISTICSPulseTc=25'CIF=Ioppulse~-5"0c: 25'C'"II 30


FU-43SLD-11.3\.1 m LD Module with Singlernode Fiber PigtailModule type FU -43SLD-l has been developedfor coupling a singlemode optical fiber and a1.3t(m wavelength InGaAsP LD (Laser diode).Thepackage is incorporated with dual-in-line pinsfor electrical connection.This module is suitable to light source forhigh-speed long haul digital optical communicationsystems and measuring instruments.FEATURES• High - speed response• Emission wavelength is in 1.3t(m band• Low threshold current (lOrnA typ,)• Dual- in -line package• With photodiode for optical output monitor• Diodes are hermetically sealedFU-43SLD-1ABSOLUTE MAXIMUM RATINGS (Tc=25"C)Laser diodeItems Symbols Conditions RatingsOptical output power fromfiber endReverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current IFD -Operating case temperature TcStorage temperature Tstg--PFCW321520-65-40-70UnitsmWVVrnA"C"COUTLINE DRAWINGS Unit (mm)21.8LJ------j.12.5 ~15.427MAXX 3.2 19±O.33.8PIN 14.IFU-43SLD-1FiberFUNCTIONNCNCCASE GRAND. LASER ANODE6 NC7 DETECTOR CATHODE8 DETECTOR ANODE9 LASER CATHODE10 CASE GRAND. LASER ANODE11 NC12 NC13 NC14· NC• <strong>MITSUBISHI</strong>..... ELECTRIC7-21


FU-43SLD-11.3 1..1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=2SoC, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthSpectral width ( FWHM)Rise and fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (PhotodiodelNote 1) IF : Forward current (LD)Note 2) In: Bias current (LD)(Note 3)Symbols - ConditionsIthCWlopCWVop CWo IF = lop (Note 1)PFCW.IF = lop,lcCW.IF = lopt.,lCW.IF = loptr. tf IB = lth. 10-90 % (Note 2)Er Tc = 0-65"C.APC11 -lmon CW.IF = lop. VRO = 5V10 VRo=5VCtVRO = 5V. f = 1MHzMin. Typ. Max. Units- 10 30 rnA- 25 45 rnA- 1.2 1.6 V1 2 - mW1270 1300 1330 nm- 3 - nm- 0.3 - ns- 0.4 - dB- 0.13 - mW/mA0.1 0.6 - rnA- 0.1 1 /.LA- 10 - pFNote 3) E, = MAXI 10 • log PF r:5"C)FIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9Units-/.Lm/.Lmmm7 - 22. '. . <strong>MITSUBISHI</strong>.... ELECTRIC


FU-43SLD-11.31.1 m LO Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICSTc=25°GIF=lop'5c.'5 1o].~o0~0~~~~--~~---~60~--~8~0----~100DOGForward current (mA)Forward current vs. Optical output power,~0.8t:$,5 O. 6'.,Q)>~0.410090>-,-t='" t:Q).£Q)'.,>coOia:o :1'=29::-:0---:-;:12~95°-----"13;!;;0:;!'OJU1JJll.lJ1~3#05!--J~.l.---;-1+'31C;;-0----;1~31510 --0%----Wavelength (nm)Light-emission spectrum(\"~l-Is=Ith-- ------1\1\,'\\-- -- -- -- -- -\:------..Pulse response500ps/div" <strong>MITSUBISHI</strong>..... ELECTRIC7 - 23


1FU-43SLD-21,31.1 m LD Module with Singlemode Fiber PigtailModule type FU-43SLD-2 has been developedfor coupling a singlemode optical fiber and a1.3.um wavelength InGaAsP LD (Laser diode).The package is incorporated with dual- in -linepins for electrical connection.This module is suitable to. light source forshort and medium haul digital local area networksystems.FEATURES• High - speed response• Emission wavelength is in 1.3.um band• Low threshold current (lOrnA typ.)• Dual- in -line package• With photodiode for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (Tc=25°C)Laser diodeItemsOptical output power fromfiber endReverse VoltageSymbolsPFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOperating case temperatureStorage temperatureTcTstgFU-43SLD-2ConditionsRatingsCW 0.3- 2- 15- 2- 0-65- -40-70UnitsmWVVrnA'C°COUTLINE DRAWINGS Unit (mm)I' 21.8 'I27MAX 3.2I-IT____,rh""12_.5_-I-_~+~::>


FU-43SLD-21.31..1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, unless otherwise noted)Threshold currentOper a ting currentOperating voltageItemsOptical output power from fiber endCentral wavelengthSpectral width (FWHM)Rise and fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)(Note 3)Symbols ConditionsIthCWlopCWVopCWo IF = lop (NotePFCW.IF = lopACCW.IF = lopldCW.IF = loptr. tr 18 = Ith.lO-90 % (NoteEr Tc = 0-65 "C. APCT/ -Imon CW.IF = lop, VRO = 5V10 VRo=5VCtVRD = 5V. f = IMHzMin. Typ. Max. Units- 10 30 rnA- 25 45 rnA1) - 1.2 1.6 V0.1 0.2 - mW1270 1300 1330 nm- 3 - nm2) - 0.3 - ns- 0.4 - dB- 0.013 - mW/mA0.1 0.6 - rnA- 0.1 1 /.lA- 10 - pFNote 1) IF: Forward current (LD)Note 2) Is: Bias current (LD)Note 3) E, = MAX 110 • log PF T:S "C)FIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ±2Jacket dia. 0.9Units-/.lm/.lmmm• <strong>MITSUBISHI</strong>.... ELECTRIC7 - 25


FU-43SLD-21.31.1 m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS0.3r---------------------------~Tc=25'CIF=Iop~"0c:~ 0.2.... ~E.... e....:>CogO.l]15.oO'C25'C65'C.~0.8c:.s '"0.6..,'" >~ 0.4a:0.21290 1295 1300 1305 1310Wavelength (nm). light-emission spectrum100~-+--+-~~~~~+_~r__+--~--r__+~90 -- -f-\ -- -- -- -- -- -----r-~--~_+--+_~--~-4r-~~--~Forward current (mA)Forward current vs. Optical output power\.\\10 -- --- -- --- - -- --- -- --\ --0%~-+--4_--~_+--~--+-_4--_F--+_~Pulse response500ps/div7 -26'. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-44SLD-11.3 iJ m LD Module with Singlemode Fiber PigtailModule type FU-44SLD-i has been developedfor coupling a singlemode optical fiber. and a 1.3.u mwavelength InGaAsP LD (Laser diode).nie packageis incorporated with dual-in-line pins for electricalconnection.This module is suitable to light source for usein high-speed long haul digital optical communicationsystems and use in measuring instruments.FEATURES• High - speed response• Emission wavelength is in 1.3.um band• Low threshold current (lOrnA tyP.)• Built-in thermal electric cooler• Dual- in - line package• With photodiode for optical output monitor• Diodes are hermetically sealedFU-44SLD-1ABSOLUTE MAXIMUM RATINGS (TLo=25'C)Items Symbols ConditionsOptical output power fromCWPFLaser diode fiber end Pulse (Note 1)Reverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current Im -Operating case temperature Tc -Storage temperature Tstg -..Note 1) Pulse condltlOn : Pulse wldth,. IllS. Duty ratlO" 50 %RatingsUnits36mW2 V15 V2 rnA- 20-65 'C- 40-70 'COUTLINE DRAWINGS Unit (mm)25.422.8 25 3.2 19 ±O.3~-~ ~000000, G:d000000'0-.2.... Prl I-------~ +200-r- 1":j K~J t ~M=-;~ ~l 1000 0:1 U~~ :-.ho!BOTTOM VIEW;1


FU-44SLD-11.3 1.1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 DC, TLo=25 DC, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiberCentral wavelengthSpectral bandwidth (RMS)Rise and fall timesTracking errorDifferential, efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF . Forward current (LD)Note 2) In : Bias current (LD)Note 4) E, = MAX 110 • log Pc (~~"C)end(Note 3)(Note 4)~ote 3)Symbols Conditions Min. Typ. Max. UnitsllhlopVopPFACt.Atr, tfEr1/ImonIDClCW - 10 30 rnACW - 25 45 rnACWo IF = lop (Note 1) - 1.2 1.6 VCW,IF = lop 1 2 - mWCW,IF = lop 1270 1300 1330 nmCW,IF = lop - 1.4 - nm18 = llh, 10-90 % (Note 2) - 0.3 - nsTc = - 20-65OC, APC, ATC - 0.2 - dB- - 0.13 - mW/mACW,IF = lop, VRD = 5V 0.1 0.6 - rnAEai (Ai - ~c) 2Eai(ai '" 8p x 0.01)VRD=5V - 0.1 1 /lAVRD = 5V, f = IMHz - 10 - pFai : Relative intensity of laser spectral emission modesap : Peak of laser spectral emission modesTHERMAL CHARACTERISTICS (TLo=25DC Tc= - 20DC-65°C)ItemsThermistor resistanceB constant of thermistor resistanceCooling capacityCooler currentCooler voltageFIBER PIGTAIL SPECIFICATIONSItemsSpecifica tionsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9SymbolsConditionsRlhTLD = 250CB -t.TlpeVpeUnits-/lm/lmmmTc=65OCt.T=40OCt.T=40OCMin. Typ. Max. Units9.5 10 10.5 kQ- 3250 - K40 - - OC- 0.6 1 A- 1.6 2 V7.- 28.',<strong>MITSUBISHI</strong>"-ELECTRIC


FU-44SLD-11.3 IJ m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS:;0.:;o"iii';'"aTlO=25"C30Forward current (mA)40 50Forward current vs. Optical output power>- 1.'=enai 0.8E.- 0.6Q)>.~ 0.4~0.2100;: 90'enc;!l.SQ)>.'"C\l~ 1000/00TLD=25'CJF=lop°I L 29-0 ~1,L295 ...... l.ltlJJ130lLJO WLUl!l!\30~5 --13LIO~.,.,J1315Wavelength (nm)Light-emission spectrum--IB=lth-- -~"""""- - - - - ---I1,/ 1\If 1'\\- - ------ - -\ --"--Pulse response500ps/div• ,<strong>MITSUBISHI</strong>.... ELECTRIC 7 - 29


FU-44SLD-71.31..l m LD Module with Singlemode Fiber PigtailModule type FU - 44SLD-7 has. been developedfor coupling a singlemode optical fiber and a1.3tlm wavelength InGaAsP LD (Laser diode).The package is incorporated with dual- in -linepins for electrical connection.This module is suitable to light source for use inhigh - speed long haul digital optical communicationsystems and use in measuring instruments.FEATURES• High - speed response• High optical output• Emission wavelength is in 1.3tlm band• Low threshold current (lOrnA typ.)• Built - in thermal electric cooler• Dual- in -line package• With photo diode lor optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (TLD=25°e)ItemsOptical output power fromfiber endLaser diodeReverse VoltageForward CurrentPhotodiode for Reverse VoltagemonitoringForward CurrentOpera ting case temperatureStorage temperatureNote 1) Pulse condition: Pulse width'" 1115. Duty ratio'" 1 %SymbolsPFVRL1FLVRD1FDTcTstgFU-44SLD-7ConditionsRatingsCW 4.8Pulse (Note 1) 11- 2Pulse (Note 1) 270- 15- 2- - 20-65- -40-70UnitsmWVrnAVrnA"C"COUTLINE DRAWINGS Unit (mm)3.8 15.24PIN 1400000002.54Fiber/PINFUNCTION1 COOLER ANODE2 NC3 NC4 NC5 LD ANODE, GND6 NC7 PD CATHODE~0.458 PD ANODE9 LD CATHODE7.6210 LD ANODE, GND11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEUBOTTOM VIEW1000 +200oFU-44SLD-7BOTTOM VIEW7 - 30• MITSUBISH. I.... ELECTRIC


FU-44SLD-71.31.1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 "C, TLo=25 ee, unless otherwise noted)Items Symbols ConditionsThreshold current Ilh CWOperating currentlopCWPulse (Note 1)Operating voltage Vop CWo IF = lop (Note 2)Optical output power from fiber endPFCW.IF = lopPulse (Note 1)Central wavelength AC CW.IF = lopRise and fall times tr, tf IB = Ilh, 10-90 % (Note 3)Tracking error (Note 4) Er Tc = - 20-65'C, APC,ATCDifferen tial efficiency TJ -Monitor current Imon CW,IF = lop, VRO = 5VDark current (Photodiode) Io VRo=5VCapacitance (Photodiode) Ct VRO = 5V, f = 1MHzNote 1) Pulse condition: Pulse width", 4ps, Duty ratio'" 1 %Note 2) IF : Forward current (LD)Note 3) IB : Bias current (LD)Min. Typ. Max. Units- 10 30 mA- 45 90- 80 250mA- 1.3 1.7 V2 3.6 -10 - -mW1270 1300 1330 nm- 0.3 - ns- 0.2 - dB- 0.11 - mW/mA0.2 1.2 - mA- 0.1 1 /LA- 10 - pFNote 4) Er = MAX 1 10 'log PC' (~~ 'C)THERMAL CHARACTERISTICS (TLo=25°C, Tc= - 20°C_65°C)ItemsThermistor resistanceB constant of thermistor resistanceCooling capacityCooler currentCooler voltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9SymbolsConditionsRlhTLD = 25'CB -ATlpeVpeUnits-/Lm/LmmmTc = 65'CAT =40'CAT =40'CMin. Typ. Max. Units9.5 10 10.5 kQ- 3250 - K40 - - 'C- 0.6 1 A- 1.6 2 V6.<strong>MITSUBISHI</strong>...... ELECTRIC7 - 31


FU-44SLD-71.3 iJ m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICSTLO=25'CIF~Iop3 30.8-5 .~enC-0C'".~0.6Iii.0.., '" >*'0.4.!!!Z~E..... eIii::00.:;0.:;0"iii'E-"o0.20 If\~1290 1295 1300 1305 1310 1315I~Wavelength (nm)Light-emission spectrum60 80 100Forward current (mA)Forward current vs. Optical output power7 - 32• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-4SSLD1.3 ~ m LD Module with Singlemode Fiber Pigtail·Module type FU - 45SLD has been developedfor coupling a singlemode optical fiber and aL3f,lm wavelength InGaAsP LD (Laser diode).The package is incorporated with butterflypins for electrical connection.This module is suitable to light source for usein high-speed long ·hat4 digital optical communicationsystems.FEATURES• High - speed response• Emission wavelength is in 1.3f,lm band• Low threshold current (lOrnA typ.)• Built - in thermal electric cooler• Butterfly package• With photodiode for optical output monitor• Diodes are hermetically sealedFU-45SLDABSOLUTE MAXIMUM RATINGS (TLD=25 "C)Items Symbols Conditions Ratings UnitsOptical output power fromPFCW 3mWLaser diode fiber end Pulse (Note 1) 6Reverse Voltage VRL - 2 VPhotodiode for Reverse Voltage VRD - 15 Vmonitoring Forward Current IFD - 2 mAOperating case temperature Tc - -20-65 "CStorage temperature Tstg - -40"':"70 "CNote 1) Pulse condition: Pulse width .. IllS. Duty ratio::;; 50 %OUTLINE DRAWINGS Unit (mm)3023.8526+0.222.3 257.38ThermistorFiberL, n n 1~ [jIN FUNCTION/.O::-r-;uHi--tI-!g~ I-!HI EO~t~ol 1 COOLER ANODE2 THERMISTORPO'F 3 PDANODEO Case ,.,. LD ~ J J 4 PD CATHODE=--YHI-+fHl+9-f-~O~5 THERMISTOR. GND. S 14 L 1000+~oo I--';-~+':~:;'~---------iTOP VIEWf--i:-8+7.N~C -'--------19 NC10 LD ANODE. GND11 LD CATHODE12 NC13 GND14 COOLER CATHODEFU-45SLD• <strong>MITSUBISHI</strong>"'ELECTRIC 7-33


FU-45SLD1.31-1 m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 CC, TLD=25 ce, unless otherwise noted)Items Symbols Conditions Min. Typ. Max. UnitsThreshold current lth CW - 10 30 rnAOperating current lop CW - 25 45 rnAOperating voltage Vop CWo IF = lop (Note 1) - i.2 1.6 VOptical output power from fiber end PF CW.IF = lop 1 2 - mWCentral wavelength AC CW.IF = lop 1270 1300 1330 nmSpectral bandwidth (RMS) (Note 3) LU CW.IF = lop - 1.4 - nmRise and fall times tr. tf 16 = lth. 10-90 % (Note 2) - 0.3 - nsTracking error (Note 4) Er Tc = - 20-65 'C. APC. ATC - 0.2 - dBDifferential efficiency T/ - - 0.13 - mW/mAMonitor current Imon CWo IF = lop. VRD = 5V 0.1 0.6 - rnADark current (Photodiode) 10 VRo=5V - 0.1 1 pACapacitance (Photodiode) Ct VRO = 5V. f = 1MHz - 10 - pFNote 1) IF : Forward current (LD)ai : Relative intensity of laser spectral emission modes~ai (Ai- ~c) 2Note 2) In : Bias current (LD) Note 3) 6'


FU-45SLD1.31.1 m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS~-5"0 2c:CD.8;;:::E.g~0.S0.S0~~000 30 40 50Forward current (rnA)Forward current vs. Optical output power>-.1:$'" c: 0.8.5 0.6CD>.0.4~~0.2100~ 9O· -'iii~.5...,~OJ~ 10 -091 ,TLO=25"CiF=iopa1290 1295 1300 1305 1310Wavelength (nm)Light-emission spectrum- --/IJI- -'"Is=Jth- - - - - -1\\- --- - -\ --500ps/dlvPulse response1315---• <strong>MITSUBISHI</strong>"'ELECTRIC 7-35


FU-64SLD-11.551..l m LD Module with Singlemode Fiber PigtailModule type FU - 64SLD -1 has been developedfor coupling a singlemode optical fiber and a1.55,um wavelength InGaAsP LD (Laser diode).The package is incorporated with dual- in -linepins for electrical connection.This module is suitable to light source for usein high-speed long haul digital optical communicationsystems and use in measuring instruments.FEATURES• High - speed response• Emission wavelength is in 1.55,um band• Low threshold current C14mA typ.)• Built - in thermal electric cooler• Dual- in -line package• With photodiode for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (TLo=25"C)FU·64SLD·lItems Symbols ConditionsOptical output power fromCWPFLaser diode fiber endPulse (Note 1)Reverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current IFD -Operating case temperature Tc -Storage temperature Tstg -)late 1) Pulse condltlOn: Pulse wldth s: IllS, Duty rat to '" 50 %RatingsUnits2.44.8mW2 V15 V2 rnA- 20-65 "C- 40-70 'COUTLINE DRAWINGS Unit (mm)22.8 25~l25 4 PIN 14Fiber3.2 19 ±0.3 ~0000000-------2-~3.2IT.:PH I~J t ~~~ ~lUBOTTOM VIEW~0.4~iT"'a 8wGy:0000 0 0'~ +2001000 0tLPIeYPD ~ LD Thermistor7o 1: 0 0BOTTOM VIEW°11-Of- +1PINFUNCTION1 COOLER ANODE2 NC3 NC4 NC5 LO ANODE, GND6 NC7 PO CATHODE8 PO ANODE9 LD CATHODE10 LD ANODE, GND11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEFU·64SLD·l7- 36• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-64SLD-11.551-1 m LO Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, TLo=25°C, unless otherwise noted)Th~esholdcurrentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthSpectral bandwidth (RMS)Rise and fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF . Forward current (LD)Note 2) Is: Bias current (LD)Note 4) Er = MAX 110 • log Pi' ~ 'C)(Note 3)(Note 4)Note 3)Symbols Conditions Min. Typ. Max. UnitsIth CW - 14 35 rnAlop CW - 40 60 rnAVop CW.lF = lop (Note 1) - 1.2 1.7 VPF CW.IF = lop 1 1.5 - mWAC CW.IF = lop 1520 1550 1580 nmDoA CW.IF = lop - 2.2 - nmtr. tf 18 = Ith.1O-90 % (Note 2) - 0.3 - nsEr Tc = - 20-65 "C. APC. A TC - 0.2 - dB1/ - - 0.06 - mW/mAlmon CW.lF = lop, VRO = 5V 0.1 0.6 - rnA10 VRo=5V - 0.1 1 /.lACt VRO = 5V. f = IMHz - 10 - pFjEaI (AI - A c) 2 81. Relatlve IntensIty of laser spectral emISSIon modesI:J. A = Eai ap : Peak of laser spectral emission modes(ai", ap X 0.01)THERMAL CHARACTERISTICS (TLo=25°C, Tc= - 20°C_65°C)ItemsThermistor resistanceB constant of thermistor resistanceCooling capacityCooler currentCooler voltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ±2Jacket dia. 0.9SymbolsConditionsRth Tw = 25"CB -DoT Tc = 65"ClpeVpeUnits-/.lm/.lmmmDoT = 4O"CDoT =40"CMin. Typ. Max. Units9.5 10 10.5 kQ- 3250 - K40 - - "C- 0.6 1 A- 1.6 2 V• . <strong>MITSUBISHI</strong>.... ELECTRIC7-37


FU-64SLD-11.55 1..1 m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS35"0c:'"Q;.0;;::E.gQ;;:0c.....:JC.S0rou0E.02.0,--------------,TLD=25"C1.51.00.560 80 100Forward current (mA)Forward current vs. Optical output power~.~ 0.8'" .S 0.6~.~ 0.4'" &! 0.210090~. iiic:'" .~'" >TLO",,25"CIF=lop015""30"--'1 d540"""'ll.!.!;115""'50 1560 1570 1580'gQ)a: 10 -0%Wavelength (nm)Light-emission spectrum--h.Is=lth-~ -- -- - --'IIIIT\- - -- --r- -\500ps/divPulse response7 -38.' <strong>MITSUBISHI</strong>.... ELECTRIC


FU-64SLD-71.551.1 m LD Module with Singlemode Fiber PigtailModule type FU - 64SLD-7 has been developedfor coupling a singlemode optical fiber and a1.55tLm wavelength InGaAsP LD (Laser diode).The package is incorporated with dual- in -linepins for electrical connection.This module is suitable to light source for usein high-speed long haul digital optical communicationsystems and use in measuring instruments.FEATURES• High - speed response• High optical output• Emission wavelength is in 1.55tLm band• Low threshold current (15mA typ.)• Built - in thermal electric cooler• Dual- in -line package• With photodiodes for optical output monitor• Diodes are hermetically sealedFU·64SLD·7ABSOLUTE MAXIMUM RATINGS (TLo=25°C)Laser diodeItemsOptical output power fromfiber endReverse VoltageForward CurrentSymbolsPFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current 1FDOperating case temperatureStorage temperatureNote 1) Pulse conditlOn : Pulse wIdth;;; 4/ls, Duty ratio;;; 1 %1FLTcTstgConditions Ratings UnitsCW 6mWPulse (Note 1) 15- 2 VPulse (Note 1) 400 rnA- 15 V- 2 rnA- -20-65 "C- -40-70 "COUTLINE DRAWINGS Unit (mm) .25.4~22.8 25Jrs ::3.2 19 ±0.3000000'0 L..2-_ ---~ ~PIN FUNCTION1 COOLER ANODEDOOOOOi'IGTj2 NC~ +200IT T:j1000 03 NC4 NCBOTTOM VIEW5 LD ANODE. GNDI 2-n26 NC7 PD CATHODE2.548 PD ANODE3.8 15.24 .9 LD CATHODE10 LD ANODE. GND11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEFU-64SLD·7BOTTOM VIEWFiber• <strong>MITSUBISHI</strong>..... ELECTRIC7 - 39


FU-64SLD-71.55 IJ m LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 °C, TLo=25 °C, unless otherwise noted)Items Symbols ConditionsThreshold current lth CWOperating currentlopCWPulse (Note 1)Operating voltage Vap CWo IF = lop (Note 2)Optical output power from fiber endPFCW.IF = lopPulse (Note 1)Central wavelength AC CW,IF = lopRise and fall times tr, tf IB = Ith, 10-90 % (Note 3)Tracking error (Note 4) Er Tc = - 20-65 'C. APC,A TCDifferential efficiency 1} -Monitor current Iman CWo IF = lop. VRO = 5VDark current (Photodiode) 10 VRo=5VCapacitance (Photodiode) Ct VRO = 5V. f = 1MHzNote 1) Pulse cond,tlOn : Pulse wIdth,. 41ls, Duty raho,. 1 %Note 2) IF : Forward current (LD)Note 3) IB : Bias current (LD)PFNote 4) Er = MAX I 10 ·log PF (25"C)Min. Typ. Max. Units- 15 35 rnA- 55 90- - 380rnA- 1.2 1.7 V2 3.6 -10 - -mW1520 1550 1580 nm- 0.3 - ns- 0.2 - dB- 0.1 - mW/mA0.1 0.4 - rnA- 0.1 1 IlA- 10 - pFTHERMAL CHARACTERISTICS (TLo=25 °C, Tc= - 20°C_65°C)ItemsThermistor resistanceB constant of thermistor resistanceCooling capacityCooler currentCooler voltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9Symbols ConditionsTLD= 25'CB -RlhL'iTTc=65'ClpeL'iT = 4O'CVpeL'iT = 40'CUnits-pmpmmmMin. Typ. Max. Units9.5 10 10.5 kQ- 3250 - K40 - - 'C- 0.6 1 A- 1.6 2 V1- 40• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-64SLD-71.55 \.l. m LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICSTLD=25'CIF= lop~5"tlc:'"1ii.!);;::E.gs:~OJ0c.se:;)0ro()'-g03~'iiic:'".~'" >'.,Q) '"0:0.80.60.40.201530 1540 1560Wavelength (nm)light-emission spectrum, 1570 158000 60 80 100Forward current (rnA)Forward current vs. Optical output power•. <strong>MITSUBISHI</strong>..... ELECTRIC 7 - 41


FU-41SDF, FU-44SDF1.31..1 m DFB-LD Module with Singlemode Fiber PigtailModule type FU-41SDF and FU-44SDF havebeen developed for coupling a singlemode opticalfiber and a 1.3#m wavelength InGaAsP DFB LD(Laser diode).They are suitable to light source for use inlong haul and high capacity optical fibercommunication systems.FEATURES• Distributed Feedback (DFB) Laser diode• High - speed response• Emission wavelength is in 1.3 #m band• Built - in thermal electric cooler• Dual-in-line package (FU-41SDF)• Butterfly package (FU - 44SDF)• With photo diodes for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (TLD=2SoC)ItemsSymbolsConditionsRatingsFU-41SDF FU-44SDFUnitsLaser diodePhotodiode formonitoringOperating case temperatureStorage temperatureOptical output power fromfiber endReverse VoltageReverse VoltageForward CurrentPFVRLVRDIFDTcTstgCW-----2.5 2.5 mW2 2 V20 20 V2 2 rnA-20-65 - 20-65 "C-40-70 - 40-70 "COUTLINE DRAWINGS Unit (mm)25.4IPIN 14 Fiber ....o:Jo~~ lOoo+~ool PD-1-- - 18BOTTOM ViEW ~FU-41SDF10 LD ANODE, GNO11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEI h Ie1 °i1 "-~ 1IT Thermistor Jo 1: 0 0 01-- +7 1BOTTOM VIEWpIN FUNCTIoN1 COOLER ANODE2 THERMISTORTOP VIEW 7 NC8 NC9 NC10 LD ANODE, GND11 LD CATHODE12 NC13 GND14 COOLER CATHODEFU-44SDF7-42.•. ·<strong>MITSUBISHI</strong>.... ELECTRIC


FU-41 SDF, FU-44SDF1.3 iJ m DFB-LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Te=25 °C, TLo=25 °C, unless otherwise noted)ItemsThreshold currentOperating currentOperaitng voltageOptical output power fromfiber endCentral wavelengthSide mode suppression ratioRise and fall timesTracking error (Note 3)Differential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF : Forward current (LD)Note 2) In : Bias current (LD)Note 3) E, = MAX 110 . logPFPF (25"C)SymbolslthlopConditionsCWCWVop CW.IF = lop (Note 1)PFACSrCW.IF = lopCW.IF = lopCW.IF = loptr. tf Is = lth. 10-90 % (Note 2)Er Tc = - 20-65 'C. APC. ATC1/ -lmonIDCtCWo IF = lop, VRD = 5VVRD=5VVRD = 5V.f = 1MHzTHERMAL CHARACTERISTICS (TLo=25°C, Te= - 20°C-+65°C)FU-41SDFMin. Typ. Max.- 15 40- 31 80- 1.2 1.61 1.5 -1290 1310 133030 35 -- 0.3 -- 0.2 -- 0.09 -0.1 0.6 -- 0.1 1- 10 -FU-44SDFUnitsMin. Typ. Max.- 15 40 rnA- 31 80 rnA- 1.2 1.6 V1 1.5 - mW1290 1310 1330 nm30 35 - dB- 0.3 - ns- 0.2 - dB- 0.09 - mW/mA0.1 0.6 - rnA- 0.1 1 /.LA- 10 - pFItemsSymbolsThermistor resistanceRthB constant of thermistor resistancE BCooling capacityLl.TCooler currentlpeCooler voltageVpeConditionsTLD = 25'C-Tc=65'CLl.T=40'CLl.T=40'CFU-41SDFMin. Typ. Max.9.5 10 10.5- 3250 -40 - -- 0.6 1- 1.5 2FU-44SDFMin. Typ. Max.Units9.5 10 10.5 kQ- 3250 - K40 - - 'C- 0.6 1 A- 1.5 2 VFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMModefield dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9Units-/.Lm/.Lmmm.• <strong>MITSUBISHI</strong>.... ELECTRIC7-43


FU-41 SDF, FU-44SDF1.31J m DFB-LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS~-5~Q.SQ.S0-.;0.~03r-----~-------------------.TLO=25"C2o~~~~--~----~--~~--~.o 40 60 80 100Forward current (rnA)Forward current vs. optical output power@ 10r---------------------~;s TLO=2S·CIF=lopcw~.8.'5Co -30~]15.o\A",.~ -70~ 1·~30~0--------~1+.31~0--------~13W·Wavelength (nm)Light-emission spectrumlOa f-+--+--II--r--.~"""~-I--.-I-IB+-~_Ith+--1.~ 90 1--+--f--f.I-+---+---.:r-----f--+-+-+---I.~.~j10 -- ---- -- --0%\\-- - -\--Pulse response(FU-41SDF)500ps/div7-44• <strong>MITSUBISHI</strong>"ELECTRIC.


FU-45SDF-38(CATV Application)1.31.1 m DFB-LD Module with Singlemode Fiber PigtailModule type FU-45SDF-38 has been developedfor coupling a single - mode optical fiber anda 1.3#m wavelength InGaAsP LD (Laser diode).The module is suitable to light source for usein multi-channel long haul AM CATV systems.FEATURES• Distributed Feedback (DFB) L'aser diode• Excellent linearity• High - speed response• Emission wavelength is in 1.3#m band• Built - in optical isolator• Built- in thermal electric cooler• Butterfly package• With photodiodes for optical output monitor• Diodes are hermetically sealedFU-45SDF-38ABSOLUTE MAXIMUM RATINGS (TLD=25°C)Items Symbols Conditions Ratings UnitsLaser diodePhotodiode formonitoringOperating case temperatureStorage temperatureOptical output power fromfiber endForward CurrentReverse VoltageReverse VoltageForward CurrentPFIFVRLVRDIFOTcTstgCW 15 mWCW 150 rnA- 2 V- 20 V- 2 rnA- -20-65 "C- -40-70 "COUTLINE DRAWINGS Unit. (mm)7.38 15.24~541 PIN 1.----:-:13,---+.::-:51-n_~ ~ III ~ 2.6ToHH" ....!IH ~~I H ~


FU-45SDF-38(CATV Application)1.3 J..l m DFB-LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 CC, TLo=25 CC, unless otherwise noted)Items Symbols Conditions Min. Typ. Max. UnitsThreshold current Ith CW - 15 40 rnAOperating current lop CW - 50 100 rnAOperating voltage Vop CW.IF=lop (Note 1) - 1.3 1.8 VOptical output power from fiber end PF CW.IF = lop 4 6 - mWLight- Emission central wavelength .l.c CW.IF = lop 1290 1310 1330 nmSide mode suppression ratio Sr CW.IF = lop 30 35 - dBCutoff frequency (- 1.5dB) fc IF = lop 2 - - GHzComposite second order79 channel test (Note 2) (Note 3)CS02 CS02 ; f=54MHz - -.57 -50CSOL41 CSOL41 ; f = 324MHz - -57 -50CSOH41 CSOH41; f = 326.5MHz - -64 -55CS078 CS078 ; f = 548.5MHz - -55 -50dBc(Note 3)CTB2 CTB2 ; f = 55.25MHz -63 -53Composite triple beatdBcCTB41 CTB41 ; f = 325.25MHz -60 -50CTB78 CTB78 ; f = 547.25MHz - -61 -51CW.IF = lopRelative intensity noise (Note 4) Nr2 Nr2 ; f = 55.25MHz - -160 -155 dB/HzNr78 Nr78 ; f = 547.25MHz -157 -152 dB/HzTracking error (Note 5) Er TC = - 20-65 'C. APC. A TC - 0.3 - dBDifferential efficiency 1/ - 0.08 0.17 0.35 mW/mAMonitor current Imon CWo IF = lop. VRD = 5V 0.2 - - rnADark current (PD) Io VRD=5V - 0.1 1 IJ.ACapacitance (PD) Ct VRD = 5V. f = 1MHz - 10 - pFNote 1) IF : LD forward currentNote 2) 79 channel test: Distortion performances are tested under 79 channel loading.Channel frequency ; 55.25-547.25MHz (6MHz spacing)Optical modulation depth; m = 0.035/ chIf (average) = lopRmodule > 40dBRmodule : Optical return loss from fiber to LD moduleRmodule = - lO . log PFRPFwhere PFR: Reflected optical power to LD moduleNote 3) Typical values are no more than the reference values. Please contact Mitsubishi Electric for any specific requirements.Note 4) Relative intensity noise does not include shot noise of rec~iver.Note 5) E, = MAX IlO . log PF IPF (25 'C)THERMAL CHARACTERISTICS (TLo=25 CC, Tc= - 20-65 OC)ItemsThermistor resistanceB constant of thermistor resistanceCooling capacityCooler currentCooler voltageSymbols ConditionsRthTLD =25'CB -~T Tc=65'CIpe~T = 4O'CVpe~T = 4O'CMin. Typ. Max. Units9.5 10 10.5 kQ- 3950 - K40 - - 'C- 0.6 1 A- 1.2 2 V7-46. '.. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-4SSDF-38(CATV Application)1.31..1 m DFB-LD Module with Singlemode Fiber PigtailFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode- field dia. 1O± 1Cladding dia. 125±2Jacket dia. 0.9uriits-tlmtlmmmEXAMPLE OF CHARACTERISTICS~,5~0c.'5c....:J0~15.010r---------------------------~Tc=25'CTLD=25'C8~42$ 10r---------------------------~3t~~. -30~15.oTLO=25'CiF=iopcw~~.~ -70L-__________ ~~----------~~1305 1310 1315Wavelength (nm)LIght-emission spectrum-50 79 channel testO~~~~---±----~----~----~.o 60 80 100Forward current (rnA)Forward current vs. optical output powerS3CDl- e..>c5CIle..>-55-60-65CTB41-70 L-__ --L ____ ---l.,,--L __ ....,L,------!2.5 3 3.5 4 4.5 5Optical modulation depth (%)Distortion vs. optical modulation depth" MITSUBlSH, I"'-ELECTRIC 7-47


FU-45SDF-4(Digital Application)1,31..1 m DFB-LD Module with Singlemode Fiber PigtailModule type FU-45SDF-4 has been developedfor coupling a singlemode optical fiber and a1.3,um wavelength InGaAsP DFB- LD.The module is suitable to light source for usein high capacity long haul digital opticalcommunication systems.FEATURES• Distributed Feedback (DFB) Laser diode• High - speed response• Emission wavelength is in 1.3,um band• Built - in. optical isolator• Built - in thermal electric cooler• Butterfly package• With photodiodes for optical output monitor• Diodes and T.E cooler are hermetically sealedFU-45SDF-4ABSOLUTE MAXIMUM RATINGS (TLo=25°C)Laser diode.Photodiode formonitoringOperating case temperatureStorage temperatureItems Symbols ConditionsOptical output power fromfiber endReverse VoltageReverse VoltageForward CurrentPFVRLVRD1FDTcTstgCW-----RatingsUnits4 mW2 V20 V2 rnA- 20-65 °C-40-70 °COUTLINE DRAWINGS Unit (mm)7.38 15.24 PIN 1-.----[ --+----i,T 254 Ii~I;~~6 2-¢2.1PINFUNCTION1 'COOLER ANODE2 THERMISTOR3 PD ANODE4 PD CATHODE5 GND6 NC7 NC8 NC9 NC10 GND11 LD CATHODE12 NC13 LD ANODE, GND14 COOLER CATHODEFU-45SDF-47-48. • <strong>MITSUBISHI</strong>.... ELECTRIC


FU-45SDF-4(Digital Application)1.3 ~ mDFB-LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 °C, TLD=25 °C, unless otherwise noted)Items Symbols ConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vop CWo IF = lop (Note 1)Optical output power from fiber end PF CW.IF = lopLight-emission central wavelength AC CW.IF= lop2.5G bps NRZMark ratio 50 %Spectral width (- 20dB full width) Co), IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Side mode suppression ratio Sr . CW.lF = lopCutoff frequency (- 1.5dB)Rise and Fall time (10-90 %)fetr. tfIF = lop2.5G· bps NRZMark ratio 50 %IF peak = lopExtinction ratio 8 %Rmodule >40dB (Note 2)Relative intensity noise Nr CW.lF= lopTracking error (Note 3) Er Tc = - 20-65 "C. APC. ATCDifferential efficiency 1/ -Monitor current Imon CWo IF = lop, VRD = 5VDark current (PD) ID VRD=5VCapacitance (PD) . Ct VRD = 5V. f = 1MHzNote 1) IF' LD forward currentNote 2) Rmodule : Optical return loss from fiber to LD moduleRmodule = - 10 • log ~Where PFR: Reflected optical power to LD module.Note 3) E, = maxi 10 • log Pr IPF (25"C)THERMAL CHARACTERISTICS (TLD=25 ee, Tc= - 20-65°C)Min. Typ. Max. Units- 15 40 rnA- 46 80 rnA- 1.3 1.8 V1 2 - mW1290 1310 1330 nm- 0.7 - nm30 35 - dB3 - - GHz- - 200 ps- -155 -145 dB/Hz- 0.3 - dB0.02 0.06 0.2 mW/rnA0.2 - - rnA- 0.1 1 pA- 10 - pFParametersThermistor resistanceB Constant of thermistor resistanceCooling CapacityCooler CurrentCooler VoltageFIBER PIGTAIL SPECIFICATIONSItemsSpecifiCationsTypeSMMode-field dia. 1O± 1Cladding dia. 125±2Jacket dia. 0.9SymbolsConditionsRth TLD = 25"CB -CoT Tc = 65"ClpeVpeUnits-pmpmmmCoT = 4O"CCoT = 4O"CMin. Typ. Max. Units9.5 10 10.5 kQ- 3950 - K40 - - "C- 0.6 1 A- 1.2 2 V• MlTSUBlSHI.... ELECTRIC7-49


FU-45SDF-4(Digital"Application)1.31..l m DFB-LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS'5Co'5o~.EoTc=25°CTLD=25°Cttl Dr------;;.---------,;s 2.5Gbps NRZ1~ -20o.~.it/. -40 1309 1310Wavelength (nm)Light-emission spectrum1311°O~~2~O--4*O-~60~~8~O--1~OOForward current (mA)!=orward current vs. optical output power200ps/divPulse response characteristics7-50'. . <strong>MITSUBISHI</strong>.... ELECTRIC,


FU-48SDF-1(for 2.5Gbps Digital Application)DFB-LD Module with Single-mode Fiber PigtailModule type FU-48SDF-l is a 1.31#m DFB­LD module with single-mode optical fiber. Thisproduct is based on FU - 45SDF - 4 and hasimprovement on high speed modulation characteristicsby separating LD bias pin from RF inputpin. It also has a RF termination circuit to matchto characteristic impedance of LD drive signal.MAIN FEATURES• Input impedance is 25 g• Distributed Feedback (DFB) Laser diode module• Single-mode optical fiber pig-tail• Emission wavelength is in 1.31#m band• Butterfly package• Built-in thermal electric cooler• Built-in optical isolator• High - speed responseFU-48SDF-1ABSOLUTE MAXIMUM RATINGS (TLD=25°C)Laser diodeItemsOptical output power fromfiber endForward currentReverse VoltageSymbolsPFIFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward 'Current IFDOperating case temperatureStorage temperatureTcTstgConditions Ratings UnitsCW 4 mWCW 150 rnA- 2 V- 20 V- 2 rnA- -20-65 "C- -40-70 "COUTLINE DRAWINGS Unit (mm)6.1 17.84.6 . 20.826±O.330PIN 1FiberPINFUNCTION1 THERMISTOR2 THERMISTOR3 LD BIAS( )4 PO ANODE5 PO CATHODE6 COOLER ANODE7 COOLER CATHODE8 GND9 GND10 NC11 LD ANODE,GND12 LD RF13 LD ANODE,GND14 NCFU-48SDF-17-51


FU-48SDF-1(for 2.5Gbps Digital Application)DFB-LD Module with Single-mode Fiber PigtailCHARACTERISTICS (Tc=25°C, TLo=25°C, unless otherwise noted)Items Symbols ConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vop CWo IF = lop (Note 1)Input impedance Zin IF = lopOptical output power· from fiber end PF CW.IF = lopLight- emission central wavelength I.e CW.IF = lop2.5G bps NRZMark ratio 50 %Spectral width (- 20dB full width) td IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Side mode suppression ratio Sr CW.IF = lopCutoff frequency (- 1.5dB) fc IF = lop2.5G bps NRZMark ratio 50 %Rise and Fall time (l0-90 %) tr. tf IF peak = lopExtinction ratio 8 %Rmodule >40dB (Note 2)Relative intensity noise Nr CWo IF = lopTracking error (Note 3) Er Tc = - 20-65 "C. APC. ATCDifferential efficiency TJ -Monitor current Imon CWo IF = lop. VRO = 5VDark current (PD) 10 VRo=5VCapacitance (PD) Ct VRO = 5V. f = 1MHzNote 1) IF : LD forward currentNote 2) Rmodule : Optical return loss from fiber to LD moduleRmodule = - 10 • log ~PFWhere Pm : Reflected optical power to LD module.Note 3) Er = maxi 10 • log PF IPF (25"C)Min. Typ. Max. Units- 15 40 rnA- 46 80 rnA- 1.3 1.8 V- 25 - Q2 3.5 - mW1290 1310 1330 nm- 0.4 - nm33 40 - dB3.5 - - GHz- - 150 ps- -155 -145 dB/Hz- 0.3 - dB0.05 0.11 0.25 mW/mA0.1 - - rnA- 0.1 1 fJ.A- 10 - pFTHERMAL CHARACTERISTICS (TLo=25° C, Tc= - 20_65° C)ParametersThermistor resistanceB Constant of thermistor resistanceCooling CapacityCooler CurrentCooler VoltageSymbolsConditionsRth Tw = 25"CB -~T Tc =65"ClpeVpc~T=40"C~T=40"CMin. Typ. Max. Units9.5 10 10.5 kQ- 3950 - K40 - - "C- 0.6 1 A- 1.2 2 VFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode-field dia. 10 ± 1Cladding dia. 125 ±2Jacket dia. 0.9Units-fJ.mfJ.mmm7 - 52• <strong>MITSUBISHI</strong>.... ELECTRIC


· FU-48SDF-1(for 2.5Gbps Digital Application)DFB-LD Module with Single-mode Fiber PigtailEXAMPLE OF CHARACTERISTICS~ 2j8.i oITc=25"CTLD=25"Cin 0,----------...---------,:s 2. 5Gbps NRZ~E. o -40 L-.,c.. ___-l.,----_~___:_::'.1309 1310 1311Wavelength (nm)L1ght-emlsslon spectrum°O~~~-7.40~~6~O-~OO~~100·Forward current (rnA),Forward current vs. optical output powerjtl. 10 ____ _0%200ps/divPulse response characteristics• MrTSUBISHI.... ELECTRIC 7-53


FU-61 SDF ,FU-64SDF1.551-1 m DFB-LD Module with Singlemode Fiber PigtailModule type FU-61SDF and FU-64SDF havebeen developed for coupling a singlemode opticalfiber and a 1.55.um wavelength InGaAsP DFBLD (Laser diode).They. are suitable to light source for use in longhaul and high capacity optical fiber communicationsystems.FEATURES• Distributed Feedback (DFB) Lase.r diode• High - speed response• Emission wavelength is in 1.55.um band• Built- in thermal electric cooler• Dual-in-line package (FU-61SDF)• Butterfly package (FU - 64SDF)• With photodiodes for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (TLo=25°C)ItemsSymbolsConditionsRatingsFU-61SDF FU-64SDFUnitsLaser diodeOptical output power fromfiber endReverse VoltagePFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOperating case temperatureStorage temperatureTcTstgCW-----2.52202- 20-65-40-702.52202- 20-65- 40-70mWVVrnA"C"COUTLINE DRAWINGS Unit (mm)3.857.38fUNCTIONCOOLER ANODENCFU-61SDFf h U °ii14~ '" Thermistor ~o 1; 0 0 O~ 1+BOTTOM VIEW .-FU-64SDFpIN1234567 NC8 NC9 NC10 LO ANODE GND11 LD CATHODE12 NC13 GND14 COOLER CATHODE7 - 54• <strong>MITSUBISHI</strong>"ELECTRIC


FU-61 SDF,FU-64SDF1.55 ~ m DFB-LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25°C, TLD=25°C, unless otherwise noted)ItemsThreshold currentOperating currentOperating voltageOptical output power fromfiber endCentral wavelengthSide mode suppression ratioRise and fall timesTracking error (Note 3)Differential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF: Forward current (LD)Note 2) IB: Bias current (LD)Note 3) Er=MAXjlO'10iPF ~"C)SymbolsIthlopVapPFACSrtr. tfErTJImon10CtConditionsCWCWCW.IF = lop (Note 1)CW.IF= lopCW.lF = lopCW.IF = lop18 = Ith. 10-90 % (Note 2)Tc = - 20-65 "C. APC. ATC-CWo IF = lop, VRO = 5VVRD=5VVRO = 5V. f = 1MHzFU-61SDFMin. Typ. Max.- 23 40- 43 90- 1.2 1.61 1.5 -1530 1550 157030 35 -- 0.3 -- 0.2 -- 0.08 -0.1 0.5 -- 0.1 1- 10 -FU-64SDFUnitsMin. Typ. Max.- 23 40 rnA- 43 90 rnA- 1.2 1.6 V1 1.5 - mW1530 1550 1570 nm30 35 - dB- 0.3 - ns- 0.2 - dB- 0.08 - mW/mA0.1 0.5 - rnA- 0.1 1 fJ.A- 10 - pFTHERMAL CHARACTERISTICS (TLD=25°C, Tc= - 20°C~+65°C)ItemsSymbolsThermistor resistanceRthB constant of thermistor resistance BCooling capacityllTCooler currentIpeCooler voltageVpeConditionsTLO = 25"C-Tc = 65"CII T = 40"CllT = 4O"CFU-61SDFMin. Typ. Max.9.5-40--10 10.53250 -- -0.6 11.5 2FU-64SDFMin. Typ. Max.Units9.5 10 10.5 kQ- 3250 - K40 - - "C- 0.6 1 A- 1.5 2 VFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode-field dia. 10± 1Cladding dia. 125 ±2Jacket dia. 0.9Units-fJ.mfJ.mmm• <strong>MITSUBISHI</strong>.... ELECTRIC7-55


FU-61 SDF,FU-64SDF1.551..1 m DFB-LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS....:JS:JoC6.~ 1o3r----------------,TLD = 25"CO~O--------2~O~--4~O---6~O--~8~O--~lOOForward current (rnA)Forward current vs. optical output powertil:sI'59- -305~c;o!'I10,..--------------,Teo = 25'CIF-lopcw~ -70 '-------...,-,1------~fP. 1540 1550 1560Wavelength (nm)Light-emission spectrum00 - --9010- --%Ir-. ~--/is=Ith- -- - - -- - -f T\- - -- - - r-\; - --Pulse response(FU-61SDF),\500ps/div7 - 56• <strong>MITSUBISHI</strong>"ELECTRIC


FU-65SDF-3(Analog Application)1.551.l m DFB-LD Module with Singlemode Fiber PigtailModule type FU-65SDF-3 has been developedfor coupling a singlemode optical fiber and a1.55ttm wavelength InGaAsP LD (Laser diode).The module is suitable to light source for usein high capacity long haul analog opticalcommunication systems.FEATURES• Distributed Feedback (DFB) Laser diode• High - speed response• Emission wavelength is in 1.55ttm band• Built-in optical isolator• Built-in thermal electric cooler• Butterfly package• With photodiodes for optical output monitor• Diodes are hermetically sealedFU-65SDF-3ABSOLUTE MAXIMUM RATINGS (TLo=25"C)Laser diodeItemsOptical output power fromfiber endForward CurrentReverse VoltageSymbolsPFIFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOpera ting case temperatureStorage temperatureTcTstgConditionsRatingsCW 10CW 150- 2- 20- 2- - 20-65- - 40-70UnitsmWrnAVVrnA"C"COUTLINE DRAWINGS Unit (mm)7.38 15.24 PIN 1-~.,; 21354.7 --li-O.3 1000+~oo2 2l~g3- ~h--30~r:-Fiber~1(0The~Tistor7 I ~8c~e~H!pyLDTOP VIEWE =}~PINFUNCTION1 COOLER ANODE2 THERMISTOR3 PD ANODE4 PD CATHODE5 GND6 NC7 NC8 NC9 NC10 GND11 LD CATHODE12 NC13 LD ANODE, GND14 COOLER CATHODEFU-65SDF-3• <strong>MITSUBISHI</strong>.... ELECTRIC7 -57


FU-65SDF-3(Analog ApplicatiOn)1.551..1 m DFB-LD Module with Singlemode Fiber PigtailCHARACTERISTICS (Tc=25 oC, TLD=25 °C,unless otherwise noted)Items Symbols ConditionsThreshold current Ilh CWOperating current lop CWOperating voltage Vop CWo IF = lop (Note 1)Optical output power from fiber end PF CWo IF = lopCentral wavelength AC CWo IF = lopSide mode suppression ratio Sr CWo IF = lopCutoff frequency (- 1.5dB) fe IF = lop2nd order distortionD22 tone test (Note 2)3rd order distortionRelative intensity noiseTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)(Note 3)DaNrErTJImonIDClf1 = 244MHzf2 = 250MHzm = 0.35 (each)IF (average) = lopRmodule > 40dBTc = - 20-65"C APC. ATC-CWo IF = lop. VRD = 5VVRD=5VVRD = 5V. f = IMHzMin. Typ. Max. Units- 12 40 rnA- 55 90 rnA- 1.3 1.8 V2 4 - mW1530 1550 1570 nrn30 35 - dB2 - - GHz- -40 -30 dBc- -60 -45 dBc- -155 -150 dB/Hz- 0.3 - dB0.04 0.1 0.2 mW/mA0.2 - - rnA- 0.1 1 pA- 10 - pFNote I) IF : Forward current (LD)Note 2) ft. f2 : Modulation frequencym : Optical modulation depth! CarrierRmodule : Optical return loss from fiber to LD moduleRmodule = - 10 • log PFRPFwhere PFR: Reflected optical power to LD moduleTHERMAL CHARACTERISTICS (TLo=25 °c, Tc= - 20-65OC)ItemsThermistor resistanceB Constant of thermistor resistanceCooling CapacityCooler CurrentCooler VoltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode- field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9SymbolsConditionsRlh TLD = 25"CB -ll.T Tc = 65"C[pe ll.T = 40"CVpe ll.T = 40"CUnits-pmpmmmMin. Typ. Max. Units9.5 10 10.5 kQ- 3950 - K40 - - "C- 0.6 1 A- 1.2 2 V7 - 58'. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-65SDF-3(Analog Application)1.551..1 m DFB-LD Module with Singlemode Fiber PigtailEXAMPLE OF CHARACTERISTICS4I5S-:Jo 2~0.o6.--------------------.Tc=25'CTLD=25'C@3 10.-----------------~__.I....S. -30:Jo~0.oTc=25'C[F=[OP_~ -70 '-------------'-'-------------'~ 1545 1550 1555~ Wavelength (nm) \Light-emission spectrum°0~--~--~--~6~0---OO~--~100Forward current (mA)Forward current vs, optical output power• <strong>MITSUBISHI</strong>"'ELECTRIC- 7-59


FU-65SDF-41.55 tJ. m DFB-LD Module with Singlemode Fiber Plgtall(Digltal Application)Module type FU - 65SDF - 4 has been developedfor coupling a singlemode optical fiber and a1.55,um wavelength InGaAsP DFB- LD.The module is suitable to light source for usein high capacity long haul digital opticalcommunication systems.FEATURES• Distributed Feedback (DFB) Laser diode• High - speed response• Emission wavelength is in 1.55,um band• Built - in optical isola tor• Built - in thermal electric cooler• Butterfly package• With photodiodes for optical output monitor• Diodes and T.E.cooler are hermetically sealedABSOLUTE MAXIMUM RATINGS (TLD=25"C)FU-65SDF-4Laser diodePhotodiode formonitoringOperating case temperatureStorage temperatureItems Symbols Conditions'Optical output power fromfiber endReverse VoltageReverse VoltageForward CurrentVRLVRDIFDTcTstgCWRatingsUnits4 mW2 V20 V2 rnA- 20-65 'C-40-70 'COUTLINE DRAWINGS Unit (mm)7.38 15.24 PIN 1-~354.7 -lI--O.3 1000'82 002l~g3- ~f---30-Thermistorni' ~PINFUNCTION1 COOLER ANODE2 THERMISTOR3 PO ANODE4 PD CATHODE5 GND6 NC7 NC8 NC9 NC10 GND11 LD CATHODE12 NC13 LD ANODE, GND14 COOLER CATHODE"-FU-65SDF-47 - 60• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-65SDF-41.55 \.I m dFB-LD Module with Singlemode Fiber Pigtall(Dlgltal Application)CHARACTERISTICS (Tc=25 DC, TLo=25 DC, unless otherwise noted)Items Symbols ConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vop CWo IF = lop (Note 1)Optical output power from fiber end PF CW.IF = lopLight- emission central wavelength .l.c CW.IF = lop2.5G bps NRZMark ratio 50 %Spectral width (- 20dB full width) ll.J. IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Side mode suppression ratio Sr CW.IF = lopCutoff frequency (- 1.5dB) fc IF = lop2.5G bps NRZMark ratio 50 %Rise and Fall time (10-90 %) tr. tl IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Relative intensity noise Nr CWo IF = lopTracking error (Note 3) Er Tc = - 20-65 'C. APC. ATCDifferential efficiency 11 -Monitor current Imon CWo IF = lop, VRD = 5VDark current (PD) ID VRD=5VCapacitance (PD) Ct VRD = 5V. f = 1MHzNote 1) IF: LD forward currentNote 2) Rmodule: Optical return loss from fiber to LD moduleRmodule = - 10 . log ~PFWhere PFR : Reflected optical power to LD module.Note 3) Er = max 110 . log PF 1PF (25"C)THERMAL CHARACTERISTICS (TLo=25 "C, Tc= - 20-65 "C)Min. Typ. Max. Units- 12 40 rnA- 55 90 rnA- 1.3 1.8 V1 2 - mW1530 1550 1570 nm- 0.7 - nm30 35 - dB3 - - GHz- - 200 ps- -155 -145 dB/Hz- 0.3 - dB0.02 0.05 0.2 mW/mA0.2 - - rnA- 0.1 1 /.LA- 10 - pFParametersThermistor resistanceB Constant of thermistor resistanceCooling CapacityCooler CurrentCooler VoltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode- field dia. 10 ± 1Cladding dia. 125 ± 2Jacket dia. 0.9SymbolsConditionsRthTw=25'CB -ll.TIpeVpeUnits-/.Lm/.LmmmTc=65'Cll.T =40'Cll.T =40'CMin. Typ. Max. Units9.5 10 10.5 kQ- 3950 - K40 - - 'C- 0.6 1 A- 1.2 2 V• <strong>MITSUBISHI</strong>..... ELECTRIC7 - 61


FU-65SDF~41.551..l m DFB-LD Module with Slngfemode Fiber Plgtall(Dlgltal Application)EXAMPLE OF CHARACTERISTICSTc~2S'CTLD~25'Cen 0,-------;..,-------,~ 2. 5Gbps NRZ~ -20~o1550Wavelength (nm)Light-emission spectrum1551°0~~2~0--4~0-~60~~8~0-~100Forward current (mA)Forward current vs. optical output power.~1ii~ 10. __O%---+-£-+~-+--+-~--~200ps/divPulse response characteristics7-62J..~HI


, :--{~\~~~ FU-68SDF-2~\\~\..\ (for 2.5Gbps Digital Application)DFB-LD Module with Single-mode Fiber PigtailModule type FU-68SDF-2 is a 1.55tlm DFB­LD module with single-mode optical fiber. Thisproduct is based on FU-65SDF-4 and has improvementon high speed modulation characteristicsby separating LD bias pin from RF input pin.It also has a RF termination circuit to matchto characteristic impedance of LD drive signal.MAIN FEATURES• Input impedance is 25 Q• Multi quantum wells(MQW)DFB Laser diode module• Single - mode optical fiber pig- tail• Emission wavelength is in 1.55tlm band• Butterfly package• Built-in thermal electric cooler• Built- in optical isolator• High - speed responseABSOLUTE MAXIMUM RATINGS (TLD=25'C)Laser diodePhotodiode formonitoringOperating case temperatureStorage temperatureItems Symbols ConditionsOptical output power fromfiber endForward currentReverse VoltageReverse VoltageForward CurrentPFIFVRLVRDIFDTcTstgCWCW-----FU-68SDF-2RatingsUnits4 mW150 rnA2 V20 V2 rnA-20-65 "C-40-70 "COUTLINE DRAWINGS Unit (mm)4.62 26 ± 0.330Fiber;-PINFUNCTION1 THERMISTCJl2 THERMISTOR3 LD BIAS( -)4 PO ANODE5 PO CATHODE6 COOLER ANODE7 COOLER CATHODE8 GND9 GND10 NC11 LD ANODE,GND '12 LD RF13 LD ANODE,GND14 NC'FU-68SDF-2• MlTSUBlSHI"'B.ECTRIC7-63


FU-68SDF-2DFB-LD Module with Single-mode Fiber PigtailCHARACTERISTICS (Tc=25 DC, TLo=25 DC, unless otherwise noted)·Items Symbols ConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vop CWo IF = lop (Note 1)Input impedance Zin IF = lopOptical output power from fiber end PF CWo IF = lopLight - emission central wavelength AC CWo IF = lop2.5G bps NRZMark ratio 50 %Spectral width (- 20dB full width) ilA IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Side mode suppression ratio Sr CWo IF = IopCutoff frequency (- 1.5dB) fc IF = Iop2.5G bps NRZMark ratio 50 %Rise and Fall time (10-90 %) tr. tl IF peak = lopExtinction ratio 8 %Rmodule > 40dB (Note 2)Relative intensity noise Nr CWo IF = lopTracking error (Note 3) Er Tc = - 20-65 "C. APC. ATCDifferential efficiency TJ -Monitor current Imon CWo IF = lop, VRD = 5VDark current (PD) ID VRD=5VCapacitance (PD) Ct VRD = 5V. f = 1MHzNote 1) IF : LD forward currentNote 2) Rmodule : Optical return loss from fiber to LD moduleRmodule = - 10 • log ~PFWhere Pm: Reflected optical power to LD module.Note 3) E, = maxi 10 • log PF IPF (25"C)Min. Typ. Max. Units- 12 40 rnA- 55 90 rnA- 1.3 1.8 V- 25 - Q2 3.5 - mW1530 1550 1570 nm- 0.2 - nm33 40 - dB3.5 - - GHz- - 150 ps- -155 -145 dB/Hz- 0.3 - dB0.02 0.05 0.2 mW/mA0.1 - - rnA- 0.1 1 /LA- 10 - pFTHERMAL CHARACTERISTICS (TLo=25 "c, Tc= - 20-65 DC)ItemsThermistor resistanceB Constant of thermistor resistanceCooling CapacityCooler CurrentCooler VoltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeSMMode-field dia. 10 ± 1Cladding dia. 125 ±.2Jacket dia. 0.9SymbolsConditionsRth TLD = 25"CB -ilTlpeTc =65"CilT = 4O"CVpe ! ilT = 4O"CUnits-/Lm/LmmmMin. Typ. Max. Units9.5 10 105 kQ- 3950 - K40 - - "C- 0.6 1 A- 1.2 2 V7-64. • . <strong>MITSUBISHI</strong>.... ELECTRIC


FU-68SDF-2DFB-LD Module with Single-mode Fiber Plgtall(for 2.5Gbps Digital Application)EXAMPLE OF CHARACTERISTICS1'i0EoTc=2S·CTLD=2S·CI...~o-202.5Gbps NRZExtinctionratio 8%~~ -40'''S4-9""-----..,550'---~---,...SS,~ Wavelength (nm)Light-emission spectrum°0~~~20~-~~~~6~0-~M~-~'OO·Forward current (mA)Forward current vs. optical output power~.~CD '0 ___ _a: 0%-...... -200ps/divPulse response characteristicsThis product is under development. and indicated specifications in this sheet may be changeable without any notification.Could you please inquire of sales office about the latest specification. before it is purchased.• <strong>MITSUBISHI</strong>.... aECTRIC 7-65


FU-01 LD-N (O.78),FU-27LD{O.78)O.781.1m LD Module for Multimode FiberLD Module types FU-OILD-N (0.78) and FU-27LD (0.78) co~tain AlGaAs LDs (Laser diodes)for O.78tlm band and are used as light sourcefor intermediate and high speed local area networksystems.FEATURES• High - speed response• Emission wavelength is in O.78tlm wavelengthband• Connectorized package for FC connector(FU-OILD-N (0.78))• With photodiode for optical output monitor• Diodes are hermetically sealedFU·01 LO·N (0.78)FU·27LO (0.78)ABSOLUTE MAXIMUM RATINGS (TC=25'C)ItemsSymbolsConditionsRatingsiFU-01LD-N(0.78) FU - 27LD ( 0.78)UnitsOptical output power fromLaser diode fiber end (Note 1)Reverse VoltagePFVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IFDOpera ling case temperatureStorage temperatureTcTstgCW-----321510- 20-60-40-70321510-20-60-40-70mWVVrnA"C"CNote 1) Fiber: GI type with core dia. 50llffi and N.A.O.2OUTLINE DRAWINGS Unit (mm)9.5±O.32 1polb~h3 (Case)2 1PD~D j.'lFiber3 (Case)FU·01 LO·N (0.78)FU·27LO (0.78)7 - 66•. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-01 LD-N (O.78),FU-27LD{O.78)0.781.1 m LD Module for Multlmode FiberCHARACTERISTICS (Tc=25°C, unless otherwise notQd)ItemsSymbolsConditionsThreshold current Ith CWOperating current lop CWOperaitng voltage Vop CWo IF = lop (Note 1)Optical output power from fiberend (Note 2)PFCW.IF= lopCentral wavelength Ac CW.IF = lopRise and fall times tr. tf In = Ith.1O-00 % (Note 3)Tracking error (Note 4) Er Tc = - 20-60 "C. APCDifferential efficiency (Note 2) n -Monitor current Imon CWo IF = lop, VRO = 5VDark current (Photodiode) 10 VRo=5VCapacitance (Photodiode) Ct VRO = 5V. f = 1MHzOptical connector type (Note 5) - -Note 1) IF: Forward current (LD)Note 2) Fiber: GI type with core dia. 50llm and N.A.O.2Note 3) 18 : Bias current (LD)Note 4) E, = MAXI 10 • log PF IPF (25'C)Note 5) FU-01LD-N (0.78) onlyFIBER PIGTAIL SPECIFICATIONS (FU-27LD (0.78) only)FU-01LD-N (0.78)Min. Typ. Max.- 40 60- 50 70- 1.5 2.51765---0.15--1.8 -785 7950.4 -0.2 -0.18 -0.4 -- 0.57 -FCFU-27LD (0.78)Min. Typ. Max.Units- 40 60 rnA- 50 70 rnA- 1.8 2.5 V1 1.8 - mW765 780 795 nm- 0.4 - ns- 0.2 - dB- 0.18 - mW/mA0.15 0.4 - rnA-' - 0.5 /lA- 7 - pF- -ItemsTypeCore dia.N.A.Cladding dia.Jacket dia.SpecificationsGI50t30.2125 ±30.9Units-/lm-/lmmm• <strong>MITSUBISHI</strong>"ELECTRIC7-67


FU-01 LD-N (O.78),FU-27LD{O.78)0;781.1 m I.D Module for Multimode FiberEXAMPLE OF CHARACTERISTICS3'5"0., c:~t;:::E,g!Co...:::lCo'5.0~Q.02.o,----------------,1.51.00.5-....r---.- ------20'c~ 25'C60'CTc=25"CIF=IOP>-.1Ji 0.8.~- 0.6.~. i 0.4a:0.2 .Jo~ __ ~ __ ~~~~~~~I.A~~~~774 776 778 780 782 784Wavelength (nm)Light-emission spectrum°0~---2~O-~~4~0~~-6LO---OO~-~100Forward current (mA)Forward current vs. Optical output power2 3Time (nsec.)Pulse response7-68. .' <strong>MITSUBISHI</strong>"'ELECTRIC


FU-01 LD-N (o.a5), FU-27LD (o.a5)0.851.1 m LD Module for Multlmode FiberLD Module types FU-OILD-N (0.85) and FU-27LD (0.85) contain AIGaAs LDs (Laser diodes)for 0.85,um band and are used as light sourcefor intermediate and high speed local area networksystems.FEATURES• High - speed response• Emission wavelength is in O.85,um wavelengthband• Connectorized package for FC connector(FU-OILD-N (0.85))• With photodiode. for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (Tc=25 "C)Items Symbols ConditionsOptical output power fromLaser diode fiber end (Note 1)Reverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current IFD -Operating case temperature Tc -Storage temperature Tstg -Note 1) Fiber: GI type with core dia. 50pm and N.A.O.2PFCWRatingsFU-01LD-N(0.85) FU-27LD (0.85)321510- 20-60-40-70321510-20-60-40-70UnitsmWVVrnA'c'COUTLINE DRAWINGS Unit (mm)15.5 1.5pol2 Ib~K(Case)2 IPO~D~~3 (C •• e)FU-01 LO-N (0.85)1522d~15!O.~II I IIIII 1;-111 ~2.5 If 187 5i.37l000+~FU-27LO (0.85)•. <strong>MITSUBISHI</strong>.... ELECTRIC7 - 69


FU-01 LD~N{O.85), FU-27LD (O.85)0.851.1 m LD Module for Multlmode FiberCHARACTERISTICS. (Tc=25 °c, unless otherwise noted)Items Symbols· ConditionsThreshold current Ith CWOperating current lop CWOperating voltage Vap CW, IF = lop (Note 1)Optical output power from fiberend (Note 2)PFCW, IF = lopCentral wavelength .I.e CW, JF = lopRise and fall times tr, tf 18 = Ith, 10-90 % (Note 3)Tracking error . (Note 4) Er TC = - 20-60 "C,APCDifferential efficiency (Note 2) 1/ -Monitor current Imon CW, IF = lop, VRO = 5VDark current (Photodiode) 10 VRo=5VCapacitance (Photodidde) Ct VRO = 5V, f = 1MHzOptical connector type (Note 5) - -..Note 1) IF • Forward current (LD)Note 2) Fiber: GI type with core dia. 50pm and N.A.0.2Note 3) IB : Bias current (LD)Note 4) Er = MAX 110 . log _P_F_. _IPF (25'C)Note 5) FU-01LD-N (0.85) onlyFIBER PIGTAIL SPECIFICATIONS (FU-27LD (0,85) only)FU-OILD-N (0.85)Min.---1800---0.1--Typ.Max.18 3025 401.5 21.8 -850 9000.40.2--0.25 -0.3 -- 0.57 -FCFU-27LD (0.85)UnitsMin. Typ. Max.- 18 30 rnA- 25 40 rnA- 1.5 2 V1 1.8 - mW800 850 900 nm- 0.4 - ns- 0.2 - dB- 0.25 - mW/mA0.1 0.3 - rnA- - 0.5 JJ.A- 7 - pF- -ItemsTypeCore dia.N.A.Cladding dia.Jacket dia.SpecificationsGI50±30.2125 ±30.9Units-JJ.m-JJ.mmm7.-70• <strong>MITSUBISHI</strong>"'ELECTRlC


FU-01 LD-N (O.8S), FU-27LD (O.8S)0.851.1 m LD Module for Multlmode FiberEXAMPLE OF CHARACTERISTICS2.or---------------------------__1.5>- 1.~


FU-23LD0.85 1.1 m LD Module with Multlmode Fiber PigtailModule type FU-23LD has been developed forcoupling a multimode optical fiber and a 0.85.urn wavelength AlGaAs LD (Laser diode). Thepackage is incorporated with dual-in-line pinsfor electrical connection.This module is suitable to light source foruse in short and medium haul digital or analogoptical communication systems.FEATURES• High - speed response• High optical output• Emission wavelength is in 0.85.um band• Built - in thermal electric cooler• Dual- in -line package• With photo diode for optical output monitor• Diodes are hermetically sealedFU-23LDABSOLUTE MAXIMUM RATINGS (TLD=25'C)Items Symbols ConditionsOptical output power fromCWPFLaser diode fiber end Pulse (Note 1)Reverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current IFD -Operating case temperature Tc -Storage temperature Tstg -Note 1) Pulse condition: Pulse width"" IllS, Duty ratio"" 50 %Ratings69UnitsmW3 V15 V10 rnA-20-65 "C-40-70 "COUTLINE DRAWINGS Unit (mm)25.4~22.8 25 3.2 19+0.3 a DOOOOb-------t--~0>2.54~~I3.8 15.24~~ ~ 000000" ~~.~ 1000+ 200r-r- '~1 ~J t ~~~1~12-¢3.2~ ;+:, ::lJ dlU¢0.457.62BOTTOM VIEW 01PD ~ LD Thermistor ~ ..Fiber~-tj.1eI airo -'6 0 0 o~ +7 1PINFUNCTION1 COOLER ANODEZ NC3 NC4 NC5 LD ANODE. GND6 NC7 PD CATHODE8 PD ANODE .9 LD CATHODE10 LD ANODE. GND11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEBOTTOM VIEWFU·23LD7-72. • <strong>MITSUBISHI</strong>.... ELECTRIC


FU-23LD0.851.1 m LD Module with Multlmode Fiber PigtailCHARACTERISTICS (Tc=25 °C, TLD=25 "C, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthRise and Fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF : Forward current (LD)Note 2) IB: Bias current (LD)Note 3) Er = MAXi 10 • log PFPF (25"C)(Note 3)SymbolsIthlopVapPFAetr. tlEr1/ImonIDCtConditionsCWCWCW.IF= lop (Note 1)CW.IF = lopCW.IF = lopIs = Ith. 10-90 % (Note 2)Tc = - 20-65 'C. APC. A TC-CWo IF = lop. VRD = 5VVRD=5VVRD = 5V. f = 1MHzMin. Typ. Max. Units- 16 50 rnA- 35 65 rnA- 1.8 - V2.5 4 - mW795 850 905 nm- 0.4 - ns- 0.2 - dB- 0.2 - mW/mA0.3 1 - rnA- - 0.5 fJ.A- 7 - pFTHERMAL CHARACTERISTICS (TLD=25 °C, Tc= - 20 OC-65 'C)ItemsThermistor resistanceB Constant of thermistor resistanceCooling capacityCooler currentCooler voltageFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeGICore dia. 50±3N.A. 0.2Cladding dia. 125 ±3Jacket dia. 0.9Symbols ConditionsRthTLD = 25'CB -t.TTc == 65'CIpet.T = 4O'CVpet.T = 4O'CUnits-fJ.m-fJ.mmmMin. Typ. Max. Units9.5 10 10.5 kQ- 3250 - K40 - - 'C- 0.6 1 A- 1.6 2 V.•. <strong>MITSUBISHI</strong>"'ELECTRIC7 -73


FU-23LD0.851.1 m LD Module with Multlmode Fiber PigtailEXAMPLE OF CHARACTERISTICS34-5"0CQ)~E,g~00.:;S:J0mu''5.02TLD=25°C.~II)ji 0.8.51 0.6~ 0.40.2TLD=25°CIF=lop846 848 850 852 854Wavelength (nrn)Light-emission spectrum0 0 10 40Forward current (rnA)50Forward current VS. Optical output power7-74• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-11LD-N1.31.1 m Connectorlzed LD Module for Multlmode FiberModule type FU-llLD-N has been developedfor coupling a multimode optical fiber and a1.3.um wavelength InGaAsP LD (Laser Diode).This module is the optimum light source foruse in medium haul digital optical communicationsystems.FEATURES• High optical output• Emission wavelength is in 1.3.um band• Low threshold current (lOrnA typ.)• Connectorized package for FC connector• With photodiode for optical output monitor• Diodes are hermetically sealedABSOLUTE MAXIMUM RATINGS (Tc=25 't)Items Symbols ConditionsOptical output power fromLaser diode fiber end (Note 1)Reverse VoltagePrVRLPhotodiode for Reverse Voltage VRDmonitoring Forward Current IrDOperating case temperatureStorage temperatureNote 1) Fiber: GI type w:ith core dia. 50# m and N.A.O.2TcTstgCW-----FU-11LD-NRatingsUnits7.5 mW2 V15 V2 rnA-20-65 -c-40-70 -cOUTLINE DRAWINGS Unit (mm)9.5±O.3M8XO.75 Thread1515.522L53 1 (Case)FU-11LD-N• MlTSUBlSHI..... ELECTRIC7-75


FU-11LD-N1.31J m Connectorlzed LD Module for Multlmode FiberCHARACTERISTICS (1c=25°C, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power from fiber endCentral wavelengthRise and fall times(Note 2)Tracking error (Note 4)Differential efficiency (Note 2)Monitor currentDark current (Photodiode)Capacitance (Photodiode)Optical connector typeNote 1) IF: Forward current (LD)Note 2) Fiber: GJ type with core dia. 50pm and N.A.O.2Note 3) IB : Bias current (LD)Note 4) E, = MAXj 10 • log PF'';::;..!l!~O.B0.60.40.2...::IS-::Io4] 20.o°0~~~~--~~----6~0~--~OOO---~100Forwatd current (rnA)Forward current vs. Optical output power°1~2=90~~12~95~LL~~~~~--~1~31~0--~1~3151 do90--10,--o %[-----1'\-l-\Wavelength (nrn)Llght-emlsslon spectrum~le=Ith-- -- -- -- --r--1\\.'\\-- --r-"';: f---r--\: ~--Pulse response500ps/div7-76


FU-33LD1.31J1T'1 LD Module with Multlrnode Fiber PigtailModule type FU-33LD has been developed forcoupling a multimode optical fiber and a 1.3ttmwavelength InGaASP LD (Laser diode). The packageis incorporated with dual-in-line pins for electricalconnection.This module is suitable to light source foruse in high-SPeed long haul digital optical communicationsystems and use in measuring instruments.FEATURES• High - speed response• High optical output• Emission wavelength is in 1.3ttm band• Low threshold current (10mA typ.)• Built- in thermal electric cooler• Dual-in -line package• With photo diode for optical output monitor• Diodes are hermetically sealedFU-33LDABSOLUTE MAXIMUM RATINGS (TLD=25"C)Items Symbols ConditionsOptical output power fromfiber endLaser diode Pulse (Note 1)Reverse Voltage VRL -Photodiode for Reverse Voltage VRD -monitoring Forward Current IFD -Operating case temperature Tc -Storage temperature T.tg -..Note) Pulse condlllon: Pulse Wldth,. 1 /is, Duty ratIO:; 50 %PFCWRatings3.67.2UnitsmW2 V15 V2 rnA-20-65 "C-40-70 "COUTLINE DRAWINGS Unit (mm)25.422.8 25 3.2 19 ±O.3..l- ~~oooooob ~- ---f ~~ -~OOOOO"'~rr T;::! ~~] t ~~ h g ~ ~ 1000 +200 0I ~ ~ ~ ~ ~ ~ BOTTOM VIEWij:~ il"3.8 15.242.54U7.62#J,4~ 0~ ~ CO Them ... , iFibert °l hP leYo boo 01- +7 IPINFUNCTION1 COOLER ANODE2 NC3 NC4 NC5 LD ANODE, GND6 NC7 PD CATHODE8 PD ANODE9 LD CATHODE10 LD ANODE, GND11 THERMISTOR12 THERMISTOR13 NC14 COOLER CATHODEBOTTOM VIEWFU-33LD• <strong>MITSUBISHI</strong>"'ELECTRIC7-77


FU-33LD1.3 iJIt1 LD Module with Multlmode Fiber PigtailCHARACTERISTICS (Tc=25 "C, TLD=25 "C, unless otherwise noted)Threshold currentOperating currentOperating voltageItemsOptical output power· from fiber endCentral wavelengthSpectral bandwidth (RMS)Rise and fall timesTracking errorDifferential efficiencyMonitor currentDark current (Photodiode)Capacitance (Photodiode)Note 1) IF: Forward current (LD)Note 2) 18 : Bias current (LD)Note 1) Er=MAXIIO'IOgPF r~"C)ISymbols Conditions Min. Typ. Max.Ith CW - 10 30lop CW - 25 45Vop CWo IF = lop (Note 1) - 1.2 1.6PF CW.IF= lop 1.5 2.5 -).c CW.IF= lop 1270 1300 1330(Note 3) A). CW.IF = lop - 1.4 -tr. tf IB = Ith. lO-90 % (Note 2) - 0.3 -(Note 4) Er Tc = - 20-65 "C APC. ATC - 0.2 -TJ - - 0.17 -Imon CWo IF = lop, VRD = 5V 0.1 0.6 -ID VRD=5V - 0.1 1Ct VRD = 5V. f = 1MHz - 10 -Note 3) ~ l = V Eal (AI - A c) 2E81(ai


FU-33LD1.3 iJrtl LD Module with Multlmode Fiber PigtailEXAMPLE OF CHARACTERISTICS~-5"0 2cQ)l;;..c~E.g~0a.~:Ja.:;0(ij,\,10.0TLD=25°C00 10 20 30 40 50Forward current (mA)Forward current vs. Optical output power~'iiicQ).SQ)> 0,4''::;.,CD 0,2a:0,80,6TLD=2S·CIf'=Iopo lL.29:-:-0 ----,,12:'::954NS~1300 1305 1310 1315Wavelength (nm)light-emission spectrumJo90 -10%[~is=!th-- --/- -- - ---- - -IIt\\- -r-x-Pulse response500ps!dlv• <strong>MITSUBISHI</strong>.... ELECTRIC7 -79


FU-02LE-N,FU-23LE0.851-1 m LED Module for Multlmode FiberLED Module, FU-OZLE-Nand FU-Z3LE containa highly-reliable O.85/1m band AlGaAs/Ga Lightemittingdiode and are used as light source forboth digital and analog optical communicationsystems.FEATURES• High optical output power• High - speed modulation• Superior linearity between current and opticaloutput• High reliabilityFU·02LE·NABSOLUTE MAXIMUM RATINGS (Tc=25 °C)Items Symbols ConditionsForward currentIFITc~50"C(Note 1)I PulseReverse voltage VR -Operating casetemperatureTc -Storage temperature TSlg -Note 1) Forward current at Tc > 50"(;IF(Tc)= Ir(Tc;'; 50,,(;) • 100-Tc- 50Note 2) Frequency> 100kHz, Duty ratio < 50 %RatingsFU-02LE-N FU-23LECW 75 75(Note 2) 120 1203 3-20-65 - 20-65-40-70 -40-70UnitsrnAV"C"COUTLINE DRAWINGS Unit (mm)FiberC1000+200o,\1~2FU·02LE·NFU·23LE7-80•.. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-02LE-N, FU-23LEO.85j..l m LED Module for Multlmode FiberCHARACTERISTICS (Tc=25°C, unless otherwise noted)Items Symbols ConditionsCentral wavelength lc IF=50mASpectral bandwidth (FWHM) Lll IF=50mAMin.780-FU-02LE-NTyp.84045Max.880-FU-23LEMin. Typ. Max.780 840 880- 45 -UnitsnmnmOptical output power from fiberend (Note 1)PFIF = 75mACutoff frequency (- 1.5dB) fc IF = 25mA + 4mAp- PForward voltageVFReverse currentIROptical connector type (Note 2) -IF = 50mAVR=3.0V-4010--65301.6-FC--2.21040 65 -10 30 -- 1.6 2.2- - 10-/lWMHzV/lA-Note 1) Fiber: GI type with core dia. 50ltID and N.A.O.2Note 2) FU-02LE-N onlyFIBER PIGTAIL SPECIFICATIONS (FU-23LE only)Items Specifications UnitsType GI -Core dia. 50±3 /lmN.A. 0.2 -Cladding dia. 125.± 3 /lmJacket dia. 0.9 mmEXAMPLE OF CHARACTERISTICS3 100::L"0t:Q) 80li;;:::E,g~0....:>0.S0a;,!.!Q.025'C80 100Forward current (mA)Forward current vs. Optical output power1.0~ 0.8'iiit:j!l,!; 0.6~'."..!ll£ 0.40.2Tc=25'CI,=50mAWavelength (nm)Light-emission spectrum..• <strong>MITSUBISHI</strong>.... ELECTRIC 7 - 81


FU-02LE-N, FU-23LE0.8511 m LED Module for Multlmode FiberO~--------__ ~-~--------------@;g -2.551c:8. -5.0~-7.5Tc=25'CI,=25mA+4mA,.,-10; 0 ':--1 -~2;----75---:;1"'0 --c2t,,0--+'50;---:;;'.100Frequency (MHz)Frequency response7-82. • <strong>MITSUBISHI</strong> .... ELECTRIC .


FU-13LE-N,FU-34LE1.3 ~ m LED Module for Multimode FiberLED Module, FU -13LE-Nand FU -34LE containa highly-reliable 1.3J,tm band InGaAsP /InP Lightemittingdiode and are used as light source fordigital optical communication systems.FEATURES• High optical output power• High-speed modulation (fe = 150MHz)• High reliabilityFU-13LE-NABSOLUTE MAXIMUM RATINGS (Tc=25 ·C)FU-34LEItems Symbols ConditionsForward currentIF Tc ~ 5O"C I(Note 1)IReverse voltageVROperating casetemperatureStorage temperatureTcTstgNote 1) Forward current at Te > 5O'Cl00-TcIF(Tc)= IF (Tc" 50'C) '----so-Note 2) Frequency> 100kHz, Duty ratio < 50 %---FU-13LE-NRatingsFU-34LECW 120 120Pulse (Note 2) 150 1502-20-65-40-702-20-65-40-70UnitsrnAV"C"COUTLINE DRAWINGS Unit (mm)M8xO.75 Thread 3FiberC1000+200o .111FU-13LE-N1~2'J'3 (Case),-"If1~2",I,"3 (Case)FU-34LE•. <strong>MITSUBISHI</strong>"'ELECTRIC 7-83


FU-13LE-N,FU-34LE1.31..1 m LED Module for Multimode FiberCHARACTERISTICS (Tc=25°C, unless otherwise noted)Items Symbols ConditionsCentral wavelength .l.c IF= 100mASpectral bandwidth (FWHM) t..:I IF= loomAOptical output power from fiberend (Note 1)PFIF = loomACutoff frequency (- 1.5dB) fc IF = lOOmA + 4mAp- PForward voltageVFReverse current .. IROptical connector type (Note 2) -Note 1) Fiber: GI type with core dia. 501lm· and N.A.O.2Note 2) FU-13LE-N onlyFIBER PIGTAIL SPECIFICATIONS (FU-34LE only)IF = lOOmAVR=2V-Min.1260-10---FU-13LE~NTyp. Max.1300 1340130 15015 -150 -1.5 2300 -FCFU-34LEMin. Typ. Max.Units1260-13001301340150nmnm10---15 - /.lW150 - MHz1.5 2 V300 - /.lA- -ItemsSpecificationsTypeGICore dia. 50±3N.A. 0.2Cladding dia, 125 ±3Jacket dia. 0.9Units-/.lm-/.lm·mmEXAMPLE OF CHARACTERISTICS3::1. Tc=Z5"C-g 20Q)il""Ee ....~'iiic.~1.0g!';; 0.5~Tc=25'CIF=100mAForward current (rnA)Forward current VS. Optical output powerOL-~~ __ ~ __-L__ ~~~~ __ ~1000 1200 1600Wavelength (nm)Llght.emlsslon spectrum7-84•. <strong>MITSUBISHI</strong>.... ELECTRIC


FU-13LE-N,FU-34LE1.31..1 m LED Module for Multimode Fiber@;gII>~..&d!0-2-4Tc=2S·CIF=100mAdc+4mAp-p1020 30 50 100Frequency (MHz)Frequency response200 3007-85


FU-04PO-N, FU-21 POPO Module for Short Wavelength BandFU-04PD-N and FU-21PD are detector modulescontaining highly reliable Si photodiode' for shortwavelength band (O.5-1,ILm).These modules are used as light-receiving devicesfor short and medium haul optical communicationsystems.FEATURES• High-responsivity• High - speed response• Easy handling• Receptacle type (FU - 04PD- N)ABSOLUTE MAXIMUM RATINGS (Tc=25"C)FU-04PD-NFU-21POItems SymbolsRatingsFU-04PD-NReverse voltage VR 50:Power consumption Pm 50Operating casetemperatureTc - 20-60Storage temperature Tstg - 40-70FU-21PD5050- 20-60-40-70UnitsVmW'C'COUTLINE DRAWINGS Unit (mm)M8xO.75 Thread 2-2.6Tightening torque < OAKgf.cm >2- M2.6 Threaden~Metal mount1.32.21215.5 9\\1~2I3 (Case)FiberFU-04PD-NFU-21PO7-86'" " ' <strong>MITSUBISHI</strong>.... ELECTRIC


FU-04PD-N, FU-21 PDPO Module for Short Wavelength BandCHARACTERISTICS (Tc=25°C, unless otherwise noted)Items Symbols ConditionsDetection range - -Responsivity (Note 1) R .l. =850nmNoise equivalent power NEP VR = 5V, .l. = 850nmDark current 1D VR=5VCutoff frequency (- 3dB) fc RL=50Q, VR=40VCapacitance Ct f = 1MHz, VR = 5VOptical connector type (Note 2) - -. ,Note 1) Floer: GI type with core dla. 50llm and N.A. 0.2Note 2) FU -04PD-N onlyFIBER PIGTAIL SPECIFICATIONS (FU-21 PO'only)TypeItemsSpecificationsG1Core dia. 50±3N.A. 0.2Cladding dia. 125 ± 3Jacket dia. 0.9EXAMPLE OF CHARACTERISTICS0,70.63 0.5......~ 0.4~.s:'iiit: 0.300-w(1)a: 0.20.10/VI///400 600 800/ /\Wavelength (nm)Wavelength responslvlty\1\\\\1000Units-/.lm-/.lmmmFU-04PD-NFU-21PDMin. Typ. Max. Min. Typ. Max.Units430-1060 430-1060 nm0.45 0.55 - 0.45 0.55 - A/W- 5X 10-16 - - 5 X 10-16 - W/.(Hz- 0.1- 150- 32 - 0.1 2 nA- - 150 - MHz- - 3 - pFFC- -10-510-610-7././../../VR 40V"- ./../y././././ .... VR 5V10-1110-12-20 ././-'"8 10- 10o 20 40 60Temperature CC)Temperature vs. Dark current80•. <strong>MITSUBISHI</strong>.... ELECTRIC 7 - 87


FU-04PO-N, FU-21 POPO Module for Short Wavelength Band,-........ P~.-c:.!!!.~~0u1.51.00.50~::l -0.5~~E -1 0~ .i../ /./RL=50n400 600 800 1000Wavelength (nm)a100 200Frequency (MHz)300Temperature responslvlty coefficientFrequency response7-88'. MITSUBISH. I..... ELECTRIC


FU-15PD-N, FU-16PD-NPO Module for Long Wavelength BandFU - 15PD - Nand FU - 16PD - N are detectormodules containing highly reliable InGaAsphotodiode for long wavelength band (l-1.6tLm).InGaAs photo diode has very low dark current.These modules are used as detector for highspeedand long haul optical communication systems.FEATURES• High - responsivity• Low dark current (lnA max)• High - speed response• Easy handling• Receptacle typeABSOLUTE MAXIMUM RATINGS (Tc=25"C)FU·15PD·NFU·16PD·NUnitsItems SymbolsRatingsFU-15PD-N FU-16PD-N3 (Case)Reverse voltage VR 2020VReverse current IR 500500f,lAForward current IF 22rnAOperating casetemperatureTc -30-70 -30-70"CStorage temperature Tstg -40-70 -40-70"COUTLINE DRAWINGS Unit (mm)2-",2.6 x ",4. 4 Depth 1Reverse sideM8xO.75M8xO.75Thread1-'---,l:-~1.55 1.514.5 20\\l0--fDt+---02r14.5209. 5±0. 315\\1~2'[3 (Case)Mci- +1 ~enenFU·15PD·NFU·16PD·N• <strong>MITSUBISHI</strong>"'ELECTRIC7-89


0.65FU-15PD-N, FU-16PD-NPO Module for Long Wavelength BandCHARACTERISTICS (Tc=2S q C, unless otherwise noted)FU-15PD-N FU-16PD-NItems Symbols Conditions UnitsMin. Typ. Max. Min. Typ. Max.Detection range - - 1000-1600 1000-1600 nmResponsivity (Note 1) R A = 1300nm 0.65 0.8~0.8 - A/WDark current ID VR=5V - - 1 - - 1 nACutoff frequency (- 3dB) fe RL=50Q. VR=5V 1 1.5 - 1. 1.5 - GHzCapacitance Ct VR = 5V. f = IMHz - 1 2 - 1 2 pFOptical connector type - - FC FC -Note 1) FIber: GI type wIth core dla. 50llm and N.A. 0.2EXAMPLE OF CHARACTERISTICS1. o.-----------------,10-10:;(S...c~:::J10- 11


FU-35PDPD Module for Long Wavelength BandFU-35PD is detector module containing highlyreliableInGaAs photodiode for long wavelengthband (l-1.6.um).InGaAs photodiode has very low dark current.This module is used as detector for high-speedand long haul optical communication systems.FEATURES• High - responsivity• Low dark current (lnA max)• High - speed response• Easy handling• Compact packageFU·35PDABSOLUTE MAXIMUM RATINGS (Tc=25°C)Items Symbols RatingsReverse voltage VR 20Reverse current IR 500Forward current IF 2Operating casetemperatureTc - 30-70Storage temperature Tstg -40-70UnitsVf.lArnA"C"COUTLINE DRAWINGS Unit (mm)~~~~.~I>It ~ 1 ~CD"El-~ t(JLD""d """El-en, "El-MVIIIIend"El-FiberI0.7 4.51120 11.71000+6 00 7 - 911/)j~3 (Case)1 -02FU·35PD• <strong>MITSUBISHI</strong>..... ELECTRIC


FU-35PDPO Module for Long Wavelength BandCHARACTERISTICS (Tc=25 'C, unless otherwise noted)Items Symbols ConditionsDetection range - -Responsi vity (Note 1) R A = 1300nm. VR = 5VDark current ID VR=5VCutoff frequency (- 3dB) fc RL = 50 Q, VR = 5VCapacitance Ct VR = 5V, f = IMHzNote 1) FIber: GI type wah core dla. 50 f.lm and N.A. 0.2Min. Typ. Max. Units1000-1600 nm0.65 0.8 - A/W- - 1 nA1 1.5 - GHz- 1 2 pFFIBER PIGTAIL SPECIFICATIONSItems Specifications UnitsType GI -Core dia. 50±3 .urnN.A. 0.2 -Cladding dia. 125 ± 3 .urnJacket dia. 0.9 mmEXAMPLE OF CHARACTERISTICS1.0...---------------,10-10~SE\':! 10- 11:;U.>.t.ro010-12o~_~_~ __ ~_~_~_~1000 1100 1200 1300 1400 1500 1600Wavelength (nm)Wavelength responslvltyTemperature (OC)Temperature VB. Dark current7-92• . <strong>MITSUBISHI</strong>"'ELECTRIC


FU-35PDPO Module for Long Wavelength Band2r-----------.-----------~f=IMHzVR=5vVR=5VRL=50nO~------+-----=_~~------~------- ------- ------~-4~-------+--------~-------~-8~-------+--------~------~-12 f-----+-------+----~o~ ____________ ~----------~.o 10 20Reverse voltage (V)Reverse voltage vs. capacitance-16 ~------_+--------~------___jo 0.5 1.0 1.5Frequency (GHz)Frequency response• <strong>MITSUBISHI</strong>.... ELECTRIC7 - 93


FU-05AP-N, FU-25APAPD Module for Short Wavelength BandFU-05AP-N and FU-25AP are detector modulescontaining highly reliable Si APD (Avalanchephotodiode) with high - speed response.These modules are used as detector for highspeedoptical communication systems.FEATURES• High - speed response (fe = 2GHz)• Low noise level• Can be connected to optical fiber with highefficiency• Compact packageABSOLUTE MAXIMUM RATINGS (Tc=25°C)FU·05AP·NFU·25APItems Symbols ConditionsReverse current IR Tc;:;;70"CForward current IF Tc;:;; 70"COperating casetemperatureTc -Storage temperature TSlg -RatingsFU-05AP-NFU-25AP200 20010 10- 20-70 - 20-70- 40-70 -40-70Units/lArnA"C"COUTLINE DRAWINGS Unit (mm)M8x O. 75Thread2-",2.6 x ",4. 4 Depth 1Reverse1.514.5 20\\10--@-02r3 (Case)31 (Case)1~2/'~/FU·05AP-NFU·25AP7 - 94• <strong>MITSUBISHI</strong>.... ELECTRIC


FU-05AP-N, FU-25APAPD Module for Short Wavelength BandCHARACTERISTICS (Tc=25 "C, unless otherwise noted)FU-05AP-N FU-25APItems Symbols Conditions UnitsMin. Typ. Max. Min. Typ. Max.Detection range - -500-1000 500-1000 nmResponsivity (Note 1) R ,1, = 850nm, VR = 50VBreakdown voltage VBR 1D = 100 I/.ATemperature coefficient ofbreakdown voltage{3 -Dark current 1D VR=50VNoise equivalent power NEP ,1, =800nmExcess noise factor F M = 100 (Note 2)Maximum multiplication rate Mmax 100 = 10nA, RL = 1k QCutoff frequency (- 3dB) fc M= 100,RL=50QCapacitance Ct VR = O.9VBR, f = 1MHzOptical connector type (Note 3) - -Note I) Fiber: GI type with core dla. 50 11m and N.A. 0.2Note 2) M. Multiplication rateNote 3) FU-05AP-N only0.33 0.4 - 0.33 0.4 - A/W100 150 200 100 150 200 V- 0.12 - - 0.12 - %/'C- 0.3 1 - 0.3 1 nA- Ix 10-14 - - IX 10- 1 ' - W/-JRz- MQ.25 - - MO." - -- 1000 - - 1000 - -~2 - - 2 - GHz- 1.5 2 - 1.5 2 pFFC - -FIBER PIGTAIL SPECIFICATIONS (FU-25AP only)ItemsSpecificationsTypeG1Core dia. 50±3N.A. 0.2Cladding dia. 125 ±3Jacket dia. 0.9Units-I/.m-pmmm'" . <strong>MITSUBISHI</strong>"'ELECTRIC7 - 95


FU-05AP-N, FU-25APAPD Module for Short Wavelength BandEXAMPLE OF CHARACTERISTICS0.8.----------------,Tc=25°C3~ 0.61000,.----Tc-=-25-0C--------y--,500~:~ 0.4c:o0.C/)&. 0.2o 500 600 700 800 900 10001100Wavelength (nm)Wavelength responsivlty,....,OJ;gCDC/)c:o~ -10&.-3d8M=100-1.=890nmTc=25°C0.6 0.7 0.8 0.9Normalized bias voltageMultiplication rate1.0-20 "1------.J\o;-----:1:-!:-00;:-----:1=-. *00"'0--1=-'0. 000Frequency (MHz)Frequency response7-96• <strong>MITSUBISHI</strong>...... ELECTRIC


FU-12AP-N, FU-32APAPD Module for Long Wavelength BandFU-12AP-N and FU-32AP are deteCtor modulecontaining highly reliable Ge APD (Avalanchephoto diode) for long wavelength band (0.8-1.5.urn) and has high - speed response.These modules are used as detector for high-speedlong and medium haul optical communicationsystems.FEATURES• High-responsivity• High - speed response (1 GH~• Low capacitance• Easy handlingtyp.)ABSOLUTE MAXIMUM RATINGS (Tc=25 "C)FU-32APItemsSymbolsFU-12AP-NReverse current IR 1Forward current IF 100Operating casetemperatureTc -30-70Storage temperature Tstg -40-70RatingsFU-32AP1100-30-70-40-70UnitsrnArnA"C"COUTLINE DRAWINGS Unit (mm).C;I;i-2·¢2.61.3Ll>Nc::i"$.22.8 10FU·12AP·Nc.c....== '== II13 20.6I'L//1~2 FU·32API 14I207~1000+2000• MlTSUBlSHI.... ELECTRIC 7 - 97


FU-12AP-N, FU-32APAPD Module for Long Wavelength Band·CHARACTERISTICS (Tc=25 °C, unless otherwise noted)Items Symbols ConditionsDetection range - -Responsivity (Note 1) R A =1300nm. VR=IOVBreakdown voltage VBR 1D = 100l1ATemperature coefficient ofbreakdown voltage (Note 2)/3 -Dark current 1D VR=0.9VBRExcess noise factorFA = 1300nm. M = 101po=2I1A. B=IMHz (Note 3)Cutoff frequency (- 3dB) fc A =1300nm. M=IO. Rl=50QCapacitance Ct VR = 20V. f = lMHzOptical connector type (Note 4) - -Note 1) FIber: GI type wIth core dla. 50llm and N.A. 0.2Note 2) fJVBR (25"C + l>T) - Vim (25"C)VBR(25"C) • l>TNote 3) M: Multiplication rateNote 1) FU -12AP- N onlyx 100 (%/"C)FU-12AP-NFU-32APMin. Typ. Max. Min. Typ. Max.800-1500 800-15000.68 0.72 - 0.68 0.72 -25 30 40 25 30 40- 0.1 - - 0.1 -- 0.3- MO•95800 1000- 2FC0.5--2.5- 0.3- MO•95800 1000- 2-0.5--2.5UnitsnmA/WV%/"CI1A-MHzpF-FIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeG1Core dia. 50±3N.A. 0.2Cladding dia. 125 ± 3Jacket dia. 0.9Units-11m-11mmmEXAMPLE OF CHARACTERISTICS~'-:s>.t::>'


FU-12AP-N, FU-32APAPD Module for Long Wavelength Bandu::3CD100" c 10~Tiro0.ro()f lMHzTo 25"6,! II'-..10 100Reverse voltage (V)Reverse voltage vs. Capacitance~10-410-5 Tc 75"C...C~:; 10-6"~roCl10-7145"C ./25"C ./~/~ I10- 8 0 10 20 30Reverse voltage (V)Reverse voltage vs. Dark current• <strong>MITSUBISHI</strong>"'ELECTRIC 7 - 99


FU-13AP-NAPD Module for Long Wavelength BandFU-13AP-N is detector module containing highlyreliableInGaAs APD (Avalanche photodiode) modulefor the long wavelength band (l-1.6.um) and hashigh - speed response.This module is used as detector for high-speed.long haul optical communication systems.FEATURES• High - responsivity• High - speed response (> 1 GHz)• Low capacitance• Easy handlingABSOLUTE MAXIMUM RATINGS (Tc=25"C)FU·13AP·NItems Symbols RatingsReverse current IR 500Forward current IF 2Operating casetemperatureTc - 30-70Storage temperaturE Tstg - 40-70UnitsI1ArnA'c'COUTLINE DRAWINGS Unit (mm)2-2.6--M8 x O. 75 Threadr-'S-\eo'S-~~'---'- -168.81.3 15.823.8\\1 o-----@-o 2'r3 (Case)FU·13AP·N7 -100., MlTSUBISHI..... ELECTRIC


FU-13AP-NAPD Module for Long Wavelength BandCHARACTERISTICS (Tc=25°C, unless otherwise noted)ItemsSymbolsDetection range -Responsivity (Note 1) RBreakdown voltageBreakdown voltage at case temperatureVDRVBRtDark current 10Excess noise factorCutoff frequency (- 3dB)CapacitanceCtOptical connector type -Note 1) Fiber: GI type with core dia. 50 I'm and N.A. 0.2Note 2) ,,!: Multiplication ratioEXAMPLE OF CHARACTERISTICS1. 2 r-------------------------------, 10-31.035 0. 8>-.~ 0.6'00c:og 0.4~0.2Tc=25"CM=l41\\\Wavelength (nm)Wavelength responslvlty~ ........---f=lMHZvR=0.9v.RFfcConditions Min. Typ.- 1000-1600). = 1300nm. M = 1 (Note 2) - 0.8,1. = 1550nm. M = 1 (Note 2) - 0.9310 = 100IlA - 7010 = 100IlA. Tc = - 30-70"C - 0.17VR =0.9VDR - -,1. 1300nmM=10 - MO.,f= 10MHz,1. -l300nmM=lO 1 3RL = 50 QVR = O.9VBR. f = 1MHz - 1- FC~E~:;(JQ)VlQ;>Q)a:10-'10-510-610-710-8Max.----100---Photo ~rel1 ~arkr- //~~.-Z--current10-9 0 20 40 60 80 100Reverse bias (V)Dark current, Photo current andMultiplication factor vs. Reverse bias1 001 0UnitsnmA/WV%/"CnA-GHzpF-0t~.,c:. 0.\,2 '". a. .,:;~o20 40 60 80 100 120Reverse Voltage (V)Reverse voltage capacitance• <strong>MITSUBISHI</strong>.... ELECTRIC7 -101


FU-310APAPO Module for Long Wavelel:1gth BandFU-31OAP is detector module containing highlyr~liableInGaAs APD (Avalanche photodiode) modulefor the long wavelength band (l-1.6ttm) and hashigh:" speed response.This module is used as detector for high-speed.long haul optical communication systems.FEATURES• High - responsivity• High-speed response (> IGHz)• Low capacitance• Easy handlingFU·310APABSOLUTE MAXIMUM .RATINGS (Tc=25'C)UnitsItems Symbols Ratings2Reverse current IR 500fJ.AForward current IF 2rnAOperating casetemperatureTc - 30-70"CStorage temperature Tstg - 40-70"COUTLINE DRAWINGS Unit (mm)7CD-e.u-i-e.~== :::::::\I r,= = \I ~0.4 8.320 15\\3 o------B>&--o 1r11md-e.1000+6 00rFiberFU·310AP7 -102,. <strong>MITSUBISHI</strong>"'ELECTRIC


FU-310APAPD Module for Long Wavelength BandCHARACTERISTICS (Tc=25°C, unless otherwise noted)ItemsSymbolsDetection range -Responsivity (Note 1) RBreakdown voltageBreakdown voltage at case temperatureVSRVBRtDark current 10Excess noise factorCu toff frequency (- 3dB)CapacitanceNote 1) Flber. GI type wlth core dla. 50 11m and N.A. 0.2Note 2) M: Multiplication ratioFfcCtConditions-A = 1300nm. M = 1 (Note 2)A = 1550nm, M = 1 (Note 2)10 = 100tlA10 = 1ootlA, Tc = - 30-70'CVR =0.9VBRA -1300nmM=lOf = 10MHzA -l300nmM= 10RL=50QVR = 0.9VBR, f = 1MHzMin. Typ. Max.1000-1600- 0.8 -- 0.93 -- 70 -- 0.17 -- - 100-M~7 -1 3 -- 1 -UnitsnmA/WV%/'CnA-GHzpFFIBER PIGTAIL SPECIFICATIONSItemsSpecificationsTypeGICore dia. 50±3N.A. 0.2Cladding dia. 125 ± 3Jacket dia. 0.9Units-tim-,urnmmEXAMPLE OF CHARACTERISTICS~"-S1.2,------------------, 10-3Tc=25"C1.0M=l10-4O.S.s;~0.6'iiic00.40.VJQ)a:0.20Wavelength (nm)Wavelength responsivity1.S~~C~:;"Q)V>Q;>Q)a:10-510-610-710-8Photo c:::renj ~arkV~'""Z-1f--~current~10- 9 0 20 40 60 SO 100. Reverse bias (V)Dark current, Photo current andMultiplication factor vs. Reverse biasB~ "c.;:; a.!.1 '".;:; Ci100:;::;:1 01• <strong>MITSUBISHI</strong>.... ELECTRIC7 -103


FU-310APAPD Module for Long Wavelength Band4321\\ "-.. ..........--f=lMHZVR=0.9VBRo20 40 60 80 100 120Reverse Voltage (V)Reverse voltage vs. Capacitance7 -104• <strong>MITSUBISHI</strong>.... ELECTRIC


MF-12SDS-TR113-006Digital Optical Transceiver Module with Clock RecoveryMF-125DS-TR1l3-006 contains 1300nm lensedsurface-emitting LED and InGaAs PIN photodetector.This transceiver combines both transmitting andreceiving functions in a single module with 50micron core Fe-type fiber optic connectors. The125 Mb / s (NRZ) data link offers clock recoveryand alarm output for link monitoring.FEATURES• High power 1300nm LED transmitter• Wide dynamic range (16dB) receiver• Loss budget of lldB (10- 10 BER)• 125 Mb/s operation (NRZ~MF·125DS· TR113·006ABSOLUTE MAXIMUM RATINGS (T A=+25 °C)ItemsPower supply voltageInput signal voltageOperating temperatureStorage temperatureHumidityI temperatureSolderingI timeSymbolsVEEViTATstgHTstsMin.000-3010--RatingsMax.-6.0VEE+50+709026010UnitsVV"C"C%"CSecCHARACTERISTICS (Tc=25 °C)ItemsSymbolsConditions Min. Typ. Max.Signal bit rate BR 4B5B NRZI125Mb/ s ± 50ppmPeak valueOptical output power PF Fiber : core 50um -20 - -15NA 0.21Wavelength ).p -1270 1300 1380Spectral width D., -- 140 -Optical receiving level (peak value) PRBER < 2.5 x 10- 10DATA: PRBS2 1 °-1-31 - -15Input/ output interface - -DIFF. ECL (lOKH)Power supply voltage VEE --5.46 -5.2 -4.94Power supply current lEE VEE = - 5.2V- 650 750Optical device - InGaAsP /InP LED/InGaAs PDUnits-dBmnmnmdBm-VrnA-• <strong>MITSUBISHI</strong>.... ELECTRIC7 -105


MF-12SDS-TR113-006Digital Optical Transceiv~r Module with Clock RecoveryOUTLINE DRAWINGS Unit (mm)0=F"""==~~ 2!~1-00s; cO+111'" en1-~ i ;0S:: 00(92) (4.8)00cO+1~;0dN0-HI-encO+1


MF-12S0S-TR113-006Digital Optical Transceiver Module with Clock RecoveryBLOCK DIAGRAMOPT.II'Jj1--- -----1I---i -5.2V----1 GNDMONITOR-OUTOPT.od:= d lEDIlEDDRV I:I--I-----~~ elK-OUTR-OUT.I':~:'INL ____________ --.-l• <strong>MITSUBISHI</strong>.... ELECTRIC 7 -107


MF-156DS-TR124-002/003Dlgltal Optical Transceiver Module ytlth Clock RecoveryMF-156DS-TRI24-002/003 is a highJ>erformancetransceiver for CCITT SDH and ANSI SONETapplication. It combines both transmitting' andreceiving function. and its optical devices areInGaAsP LD and Ge APD.This transceiver can operate with, single - 5.2Vpower supply and offer "ENABLE" input toshutdown the laser. "REC ALM" for opticalinput signal detection and clock recovery.FEATURES• Operation I55.52Mb/ s (NRZ)• CCITT SDH (STM - 1) compliant• Transmitter and Receiver combines in onepackage• Compact package by monolithic specific ICtechnology• Transmitter- disable option• Receiver failed alarm option• Single - 5.2V power supply• ECL logic interfaceMF-1 56DS-TR124-003ABSOLUTE MAXIMUM RATINGS (T A=+25°C)ItemsPower supply voltageInput signal voltageI temperatureSolderingI timeOperating ambient temperatureStorage temperatureRelative Humidity ** wi thou t making dropsSymbolsVEEVITstsTATstgRHMin.00--+10-2010RatingsMax.Units-6 VVEEV260 "C10 Sec+55 "C+70 "C90 %7 -108• <strong>MITSUBISHI</strong>.... ELECTRIC


MF-1560S-TR124-002/003Digital Optical Transceiver Module with Clock RecoveryOUTLINE DRAWINGS Unit (mm)PIN ASSIGNMENTPIN No.1.29.31.36.38.39.40 NCFUNCTIONPCFC TYPE100~~5POLISHING CONNECTOR 0_~~ +1i~~~~~~r--------------',_o+~~ . I 380±25 38.3±2 Jtf.54±03'--t-- ::;;-e. f-'---=---+--.:!2.:.:?:::..-~148. 26+0 .3--t;o. 64±0 I2-13.15.16.19.20.21.24.26.30.32.33.35.37141718222325272834GNDREC AlMVEE 1DATA OUTClK OUTVEE 3ClK iNDATA INENABLE(00002040 21(00 0 0 00)MF·156DS· TR124·002/003'.<strong>MITSUBISHI</strong>.... ELECTRIC7 -109


M:F-156DS-TR124-002/003Digital Optical Transceiver Module with Clock RecoveryBLOCK DIAGRAMDATA INClK INENABLE282734LDDriverf t 1~~*?lD·APCCircuitDATA OUTClK OUTREC ALM222314 RECAlMCircuitf--DATARecoveryCircuittCLOCKRecoveryCircuitjReceiverAmp.*APD7 -110.' . <strong>MITSUBISHI</strong>.... ELECTRIC


MF-1560S-TR124-002/003Digital Optical Transceiver Module with Clock RecoveryCHARACTERISTICS~meItemsSignal bit rateOptical modulationLine pattern/ codeOptical device (transmitter)Center wavelengthMF-I56DS-TRI24-()()2155.52Mb / s ± 20ppmIntensity ModulationPN2 23 -1 unipolar NRZLD1285-1335mmMF-I56DS-TRI24-003Spectral width 4nm (rms) 7.7nm (rms)Optical output power -1--4dBm -9--12dBmOptical device (receiver)Receiver Sensitivity(average value) PRBS 2 23 - 1-16dBm--37dBmAPD- 9dBm- - 35dBmBit error rate ~ 1 x 10-' :;; 1 X 10-'Electrical interface * 1 unipolar NRZ /ECL (lOKH compatible)Optical interface FC connector SMlOI125Power supply *2 -5.2V±5%Power consumption* I. Electrical input and output interface condition.550mA max (TYP 460mA)DATAIN~~I I II I IClK IN r t---l r-~ : ~ ~.JL td:;;±lnsDATAOUT~~I I II I IClK OUTSULJ-LjL td:;; ±1.5nS• 680 Q / - 5.2V pun down resistance is built in for DATA IN and CLK IN.• 680 Q / - 5.2V pun down resistance is built in for E~ABLE input.(ECL "H" disables the optical output power.)• pun down resistance is not built in for DATA OUT, CLK OUT or REC ALM OUT. Please prepare 680 Q/- 5.2V for each signal bycustomer's side.(When optical input signal shuts down, REC ALM OUT changes from "L" to "H".)* 2. Please reduce noise or ripple less than 10mVp· p at power supply input.• <strong>MITSUBISHI</strong>.... ELECTRIC 7 - 111


MF-622DF-T12-007 -011Optical Transmitter and Receiver ModuleFEATURESMF-622DF- T12- 007• 1.3,um multi-mode laser• Application for interconnect distances lessthan 2km• 1-4 Standard• Without coolerMF-622DF-T12-008• 1.3,um multi-mode laser• Application for interconnect distances ofapproximately 15km• S-4.1 Standard• Without coolerMF- 622DF- T12- 009 (without cooler)MF-622DF-T12-010(with cooler)• 1.3,um single-mode laserCDFB laser)• Application for interconnect distances ofapproximately 40km• L-4.1a StandardMF- 622DF- T12- 011• 1.55,um single-mode laserCDFB laser)• Application for interconnect distances ofapproximately 60km• L - 4.2 Standard• With coolerMF·622DF· T12·007ABSOLUTE MAXIMUM RATINGS (T A=+25°C)ItemsPower supply voltageInput signal voltageSolderingStorage temperatureRelative Humidity ** wIthout makmg dropsI temperatureI timeSymbolsVEEVITstsTstgRHMin.00---2010RatingsMax.Units-6 VVEEV260 "C10 Sec+70 'c90 %7 -112• . MITSUBISH. I"'ELECTRIC


M F-622DF-T12-007 -011Optical Transmitter and Receiver ModuleCHARACTERISTICSBit RateCodeSourceItemsOptical Output Power ave.Center WavelengthSpectral WidthOptical FiberExtinction RatioMask PatternMax Dispersion PenaltyDispersionOperating TemperatureMF-622DF-T12-010 MF-622DF-Il2-011MF-622DF -T12-007 MF -622DF-T12-008 MF-622DF-Tl2-009 Units(with Isolator) (with Isolator)622.08 Mb/sNRZ -MLM-LD MLM-LD DFB DFB DFB --15-- 8 -15--8 -4-0 -4-0 -4-+ 1 dBm1270-1355 1270-1355 1270-1335 1270-1335 1530-1570 nm;>;35 ;>;2.5 - - - nmSMF -dBCCITT Recommended Mask -E!; 101 dB11 80 110 110 250 ps/nm0-55 0-55 0-55 0-55 0-55 OCPower SupplyFunctions-5.2±5% -5.2±5% -5.2±5% -5.2±5% -5.2±5% V200 max. 200 max. 200 max. 200max. 200 max. rnA± 2 (for cooler) ± 2 (for cooler) V1000 max. 1000 max. rnALaser Bias Current Monitor. Laser Backface Monitor. Signal Disable. Optical Loss of Output -• . <strong>MITSUBISHI</strong>..... ELECTRIC 7 - 113


~8~~MF-622DF-T12-007-011Optical Transmitter and Receiver ModuleOUTLINE DRAWINGS Unit (mm)PIN ASSIGNMENT16.2 63 Pin No. Paramete'r1 GND2 GND3 -5.2Vp= 4 -5.2Vr==== =f= =5 OPEN+ 1 12 6 GND® 7 DATA1~GNDcO tEl 9 . GND~~{~r- M10 GND11 GND®+ 24 13 1 + 12 GNDf= = 13 GND'== = = '== 14 LASER BIAS CURRENT MONITOR(.)l "co 15 LASER B I AS CURRENT MON I TOR (-)12.5416 LASER BACKFACE MONITOR (+)17 LASER BACKFACE MONITOR (-)27.94 18 SIGNAL DISABLE...,119 GNDl20 ALARM OUTPUTlijijllij~lllll~ ~l21 TEMPERATURE MON I TOR (.) , /OPEN '22 TEMPERATURE MONITOR(-)' /OPEN'EBf1/ ~23 COOLER (+)' /GND'24 COOLER (-)' /GND'MF-622DF-T12-007 /008/0091 With cooler2 Without cooler1t~=@I:iF~['dr.. .col-~ ==4:101.596.51 1224 13Z.54 II27.94 36.83DWDmDm2.5 5.5 ",3.5rM2.5V-]~11=0cocO cD en co~M ...,cor--M1l~;":N1-¢...,MF-622DF-T12-01 0/0117 -114. • ... <strong>MITSUBISHI</strong>"'ELECTRIC


MF-622DS-R13-002/R14-002,003Optical Transmitter and Receiver ModuleFEATURESMF-622DS- R13-002• Operation is the 1.3 /.I. m wavelength window• Low cost InGaAs PIN PD• 1-4.1 StandardMF-622DS-RI4-002• Operation is the 1.3 /.I. m wavelength window• Low cost Ge APD and wide dynamic range• Both S-4.1 and L-4.1a StandardMF-622DS- R14- 003• Operation is the 1.55 f.l m wavelength window• High sensitivity InGaAs APD• L-4.2 StandardABSOLUTE MAXIMUM RATINGS (T A=+25 DC)ItemsPower supply voltageInput signal voltageSolderingStorage temperatureRelative Humidity ** without makmg dropsSymbolsVEEVeeMin.VI 0I temperature Ts -I time ts -Tstg -20RH 100RatingsMax.Units-6+6VVEEV260 'C10 Sec+70 'C90 %CHARACTERISTICSItemsBit RateLine PatternCodeWavelength WindowOptical FiberSensitivity "Jitter ToleranceOperating TemperaturePower SupplyFunctionMF-622DS-R13-002-5.2±5%500 maxIMF-622DS- R14-002I622.08 ± 20ppmPN2 23 -1NRZ1310 I 1310 IMMF(GI501125)-23--8I-29--8ICCITT Recommended Mask0-55+ 5.0 ±5% I -5.2±5%100 max 750maxLoss of Signal StatusMF-622DS- R14-003UnitsMb/s--1550 nm- 33--17 dBm-'C+5.0±5% V100 max rnA-• <strong>MITSUBISHI</strong>""ELECTRIC7 -115


MF-622DS-R13-002/R14-002,003Optical Transmitter and Receiver ModuleOUTLINE ORA WINGS Unit (mm)PIN ASSIGNMENTF=~i=='i==''==10.9:.--{=l~281061 1122 12II 5.08~ 50.8 ~_~nHHHI.r-en"~enCDr-I~=F=Pin No.Parameter1 GND2 LOSS OF SIGNAL3 GND4 OPENSGND.6 DATA OUTPUT7 GND8 OPEN9 GND10 CLOCK OUTPUT11 GND12 GND13 OPEN14 GND= 15 -S.2V16 GND= 17 OPEN18 GND19 +S.OV20 GND21 OPEN22 OPENMF-622DS-R13-002==MF-622DS-R14-002,0037 - 116• <strong>MITSUBISHI</strong>"ELECTRIC .


MF-20DF-TR014-002Digital Optical TransciverMF-20DF-TR014-002 is a fiber optic transciverdesigned for operation at data rate 5-10Mb/ s(Manchester code). It combines both transmittingand resciving function.FEATURES• Transmitter and Receiver combines in onepackage• 5-10Mb/s operation (Manchester code. packetdata)• High power 850nm LED optical output• Wide dynamic renge (16dB)• High Sensitivity (MIN-46dBm average value)• Single + 5V power supply• TTL input/output interfaceABSOLUTE MAXIMUM RATINGS (T A=+2S ee)ItemsPower supply voltageInput signal voltageOperating ambient temperatureStorage temperatureRelative HumiditySolderingOptical input powerNOTES:* 1. without making drops* 2. average value*1I temperatureI time*2OUTLINE DRAWINGS Unit (mm)SymbolsVeeViTaTstRHTstsPAMin.000-3010---MF-20DF-TR014-002RatingsMax.Units+6.0 VVeeV+60 "C+70 "C85 %260 "C10 Sec-24 dBmPIN ASSIGNMENTPIN No. FUNCTION13.17-24 RX GND16 TX DATA15 Vee (TX)14 TX GND4.6 N/C7-12 RX GND5 RX DATA2.3 Vee (RX)1 CASE GNDFC Type CONNECTOR13 24..----t-++- -------+----+AMF-20DF-TR014-002'. <strong>MITSUBISHI</strong>;"ELECTRIC 7 -117


MF-20DF-TR014-002Digital Optical TransclverCHARACTERISTICS (Tc::;25 °C)ItemsSymbolsSignal bit rate (Manchester code)BrOptical modulation· -Center wavelengthSpectral widthOptical output power (average value)* 1 PIReceiver Sensitivity (average value)Bit error rateAeAI.PrBERPulse distortionAWOptical connector type -Electrical interfacePower supply *2 VeePower consumptionNOTES:* 1. Test Optical Fiber: core dia. 50 11m. Clad dia. 125 11m. N.A.0.2. length 1m.* 2. Please reduce noise or ripple less than 50mVp- P at power supply input.VileeMin. Typ. Max. Units5 - 10 Mb/sIntensity modulation -800 850 910 nm- 45 60 nm-17 -15.5 -14 dBm-46 - -30 dBm10-' -- - ± 15% %FC -OIPN (PC connector) -TTL -+4.75 +5.0 +5.25 V- 250 340 rnAAPPLICATIONS CASE FOR LOCAL AREA NETWORKapplication case to use optical star couplerapplication case to use optical DividerLAN nodeOptical DividerLAN node(Repeeter)7 -118• <strong>MITSUBISHI</strong>"'ELECTRIC .


MF-32DF-T01 /R03Digital Optical Transmitter/Receiver ModuleThe MF - 32DF - TO 1 / R03 is a fiber optictransmitter / receiver pair designed for operationat data rates from 3 to 32Mb/ s. The transmitterincludes a 850nm lensed LED. The receiver usesan Si PIN photo detector . Both LED andphotodetector are coupled to a standard 50 microncore FC - type connector.FEATURES• Dual- in -line - package• High power 850nm LED transmitter• Wide dynamic range receiver• ECL input/ output interface• 3Mb / s to 32Mb / s operation (NRZ)MF·32DF·T01ABSOLUTE MAXIMUM RATINGS (T A=25°C)ItemsPower supply voltageInput signal voltageOperating temperatureStorage temperatureI temperatureSolderingI time* Transm!lter* * ReceiverSymbolsVEEl*VCCI**VEE2**ViTcTstgTstsMin.RatingsMax.0 -60 +60 -6VEE 00 +50-30 +70- 260- 10UnitsVVVV"C"C"CSecMF·32DF·R03OUTLINE DRAWINGS Unit (mm)!(O~13.1 (R03)MF·32DF· T01/R03• <strong>MITSUBISHI</strong>.... ELECTRIC7 - 119


MF-32DF-T01/R03Digital Optical Transmitter/Receiver ModulePIN ARRANGEMENTn010 "" 0GND 0 00 00 0BIN 0 0BiN 0BOUT 0SIN 0S~ 0GND 0 "·5 2V 012 130"ONDAINAmAOUTAOUTBOUTVeeGNDa IDc_{ " DJI/tonltQr OUTGND-52Va" an"}"""GNDR·OUT" aR-OUTGNDa 12 13 + 5 V"(TOP VIEW)(TOP VIEW)MF-32DF-T01MF-32DF-R03CHARACTERISTICS (TC=25 DC)Signal bit rateItemsOptical output powerWavelengthSpectral widthOptical receiving levelInput/ output interfacePower supply current* TransmItter* * ReceiverSymbolsBRPFAP6.J.PR-IEEl"Icel""IEE2""ConditionsNRZ(Duty ratio 40~60 %)Peak valueFiber: core 50 {.tmNAO.2--BER < 10-'DATA: PRBS2!O-1PEAK VALUEVEE! = - 5.2VVeel = 5VVEE2 = - 5.2VMin. Typ. Max. Units3 - 32 Mb/s-16 -14 -12 dBm780 840 880 nrn- 45 - nrn- 31 - -13 dBmDifferentialECL OR ECLlOK- 200 240- 60 70 rnA- 60 707 -120• <strong>MITSUBISHI</strong>..... ELECTRIC


FC-01 PN-SMF, FC-01 PN·PC-SMF,FC-01 PN·SPC-SMF,FC-01 RN{S)Optical Connector with Singlemode FiberThe optical fiber connector is used for optical fiber connections and also connections of optical fiberand various components.FEATURES• Low coupling loss• High reliabilit>:FC-01 PN-(L)-SMF, FC-01 PNW-(L)-SMF, FC-01 PN-(L)'PC-SMF, FC-01 PNW-(L)'PC-SMFFC-01 PN-(L)'SPC-SMF, FC-01 PNW-(L)'SPC-SMF, FC-01 RN(S)CHARACTERISTICS. Optical fiber connector plug with singlemode fiberAdapter~FC-OIPN-(L) FC-OIPNW- FC-OIPN-(L) FC-OIPNW- IF'C-OIPN-(L) FC-OIPNW- FC-OIRN(S)-SMF (L)-SMF 'PC-SMF (L)'PC-SMF 'SPC-SMF (L)'SPC-SMFItems(Note 2)(Note 3)Coupling lossIdB Max.(Note 1)IdB Max.(Note 1)IdB Max.(Note 1)-Return loss - 27dB Max. 40dB Max.-Number of times forconnectionTemperature> 1,000 times- 20-60"CHumidity


; FC~01PN-SMF, FC-01 PN-PC-SMF,FC-D1 PN-SPC-SMF,FC-01RN(S)Optical Connector with Singlemode FiberORDERING METHODDetails for ordering are shown below. Please. advise the length of optical fiber cord and the number of units.Model No.FC-01PN -(l)SMFFC-01PN-(3)SMFFC-01PN -(5)SMFFC-01PN -(L)SMFFC-01PNW-(J)SMFFC-01PNW -(3)SMFFC-01PNW -(5)SMFFC-01PNW -(L)SMFFC-01PN-(1)- PC-SMFFC-01PN-(3)- PC-SMFFC-01PN-(5)' PC-SMFFC-01PN -(L)- PC-SMFFC-01PNW-(J)- PC-SMFFC-01PNW-(3)- PC-SMFFC-01PNW-(5)- PC-SMFFC-01PNW-(L)- PC-SMFFC-01PN-(1)- SPC-SMFFC-01PN-(3)- SPC-SMFFC-01PN-(5)- SPC-SMFFC-OIPN-(L)- SPC-SMFFC-01PNW-(J)· SPC-SMFFC-01PNW-(3)· SPC-SMFFC-01PNW-(5)· SPC-SMFFC-OIPNW-(LY· SPC-SMFOptical fiber cord length'.1m3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length LmKinds of 'optical fiberIf not assigned. single-modefiber with mode field dia.10 J.l m standard will besupplied.End surface of ferruleFlatSphere(PC connector)Sphere(Super-PC connector)7-122. .•. <strong>MITSUBISHI</strong>"'ELECTRIC


FC-01 PN, FC-01 PN·PC,FC-01 PN·SPC, FC-01 RNOptical Connector with Multlmode FiberThe optical fiber connector is used for optical fiber connections and also connections of optical fiberand various components.FEATURES• Low coupling loss• High reliabilityCHARACTERISTICSFC.01 PN·(L), FC·01 PNW·(L), FC·01 PN·(L)·PC, FC·01 PNW-(L)'PCFC-01 PN-(L)'SPC, FC-01 PNW-(L)·SPC, FC-01 RNOptical fiber connector plug with GI50/125 optical fiber~fC-OIPN-(L) FC-OIPNW- iFc-OlPN-(L) FC-OIPNW- FC-OIPN-(L) FC-OIPNW-Items (Note 2) (L) • PC (L) • PC • SPC (L) • SPCCoupling loss IdB Max. 0.25dB Max. 0.25dB Max.(Note 1) (Note 1) (Note 1)Return loss - 27dB Max. 40dB Max.Number of times forconnectionTemperature> 1.000 times- 20-6O"CHumidity


FC-01 PN, FC-01 PN-PC, FC-01 PN-SPC, FC-01 RNOptical Connector with Multimode FiberORDERING METHODDetails for ordering are shown below. Please. advise the length of optical fiber cord and the number of units.Model No.FC-01PN-(1)FC-01PN-(3)FC-01PN-(5)FC-01PN-(L)FC-OIPNW-(l)FC- OlPNW -(3)FC-01PNW-(5)FC-01PNW-(L)FC-01PN-(1)- PCFC-01PN-(3)- PCFC-01PN -(5)- PCFC-01PN-(L)- PCFC-01PNW-(l)- PCFC-01PNW-(3)- PCFC-01PNW-(5)- PCFC-OIPNW-(L)- PCFC-01PN -(1)- SPCFC-01PN-(3)- SPCFC-01PN-(5)- SPCFC-01PN-(L)- SPCFC-01PNW-(l)- SPCFC-01PNW-(3)- SPCFC-01PNW-(5)- SPCFC-01PNW-(L)- SPCOptical fiber cord length Kinds of optical fiber1m3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length Lm If not assigned. type GI - 50/1m125 standard will be supplied3m5mAssigned length Lm1m3m5mAssigned length Lm1m3m5mAssigned length LmEnd surface of ferruleFlatSphere(PC connector)Sphere(Super- PC connector)• <strong>MITSUBISHI</strong>.... ELECTRIC


CONTACT ADDRESSES FOR FURTHER INFORMATIONJAPAN====================Overseas Marketing DivisionElectronics ProductsMitsubishi Electric Corporation2-3, Marunouchi 2-chomeChiyoda-ku, Tokyo 100, JapanTelephone: (03) 3218-2676(03) 3218-2863Facsimile: (03) 3218-2852HONG KONG ===============Mitsubishi Electric (H.K.) Ltd.41st fl., Manulife Tower, 169,Electric Road, North Point, Hong KongTelex: 60800 MELCO HXTelephone: 510-0555Facsimile: 510-9830,510-9822,510-9803SINGAPORE .=========MELCO SALES SINGAPORE PTE,LTD.307 Alexandra Road # 05-01 /02Mitsubishi Electric BuildingSingapore 0315Telex: RS 20845 MELCOTelephone: 4732308Facsimile: 4738944TAIWAN==========MELCO-TAIWAN CO., Ltd.1 st fl., Chung-Ling Bldg.,363, Sec. 2, Fu-Hsing S Road,Taipei R.O.C.Telephone: (02) 735-3030Facsimile: (02) 735-6771Telex: 25433 CHURYO "MELCO­TAIWAN"U.S.A.==========NORTHWESTMitsubishi Electronics America, Inc.1050 Ellst Arque,s AvenueSunnyvale, CA 94086Telephone: (408) 730-5900Facsimile: (408) 730-4972SAN DIEGOMitsubishi Electronics America, Inc.16980 Via Tazon, Suite 220San Diego, CA 92128Telephone: (619) 451-9618Facsimile: (619) 592-0242DENVERMitsubishi Electronics America, Inc,4600 South Ulster StreetMetropoint Building, 7th FloorDenver, CO 80237Telephone: (303) 740-6775Facsimile: (303) 694-0613SOUTHWESTMitsubishi Electronics America, Inc.991 Knox StreetTorrance, CA 90502Telephone: (213) 515-3993Facsimile: (213) 217-5781SOUTH CENTRALMitsubishi Electronics America, Inc.1501 Luna Road, Suite 124Carrollton, TX 75006Telephone: (214) 484-1919Facsimile: (214) 243-0207NORTHERNMitsubishi Electronics America, Inc.15612 Highway 7 # 243Minnetonka, MN 55345Telephone: (612) 938-7779Facsimile: (612) 938-5125NORTH CENTRALMitsubishi Electronics America, Inc.800 N. Bierman CircleMt. Prospect, I L 60056Telephone: (312) 298-9223Facsimile: (312) 298-0567NORTHEASTMitsubishi Electronics America, Inc.200 Unicorn Park DriveWoburn, MA 01801Telephone: (617) 932-5700Facsimile: (617) 938-1075MID-ATLANTICMitsubishi Electronics America, Inc.800 Cottontail LaneSomerset, NJ 08873Telephone: (201) 469-8833Facsimile: (201) 469-1909SOUTH ATLANTICMitsubishi Electronics America, Inc.2500 Gateway Center Blvd., Suite 300Morrisville. NC 27560Telephone: (404) 368-4850Facsimile: (404) 662-5208SOUTHEASTMitsubishi Electronics America, Inc.Town Executive Center6100 Glades Road # 21 0Boca Raton, FL 33433Telephone: (407) 487-7747Facsimile: (407) 487-2046CANADA===============Mitsubishi Electronics America, Inc.6185 Ordan Drive, Unit # 110Mississauga, Ontario, Canada L5T 2E1Telephone: (416) 670-8711Facsimile: (416) 670-8715Mitsubishi Electronic Sales Canada,Inc.340 March Road, Suite 502Kanata, Ontario, Canada K2K 2E4Telephone: (613) 591-3348Facsimile: (613) 591-3948GERMANY==========Mitsubishi Electric Europe GmbHHeadquartersGothaer Str. 84030 Ratingen 1, GermanyTelephone: 2102-486-0Facsimile: 2102-486-367Mitsubishi Electric Europe GmbHMunich OfficeFraunhoferstr. 98045 Ismaning, GermanyTelephone: 89-96079430Facsimile: 89-96 07 94 11Mitsubishi Electric Europe GmbHStuttgart Office 'Zettachring 127000 Stuttgart 80, GermanyTelephone: 711-728 74 70Facsimile: 711-72 47 21Mitsubishi Electric Europe GmbHHeppenheim Office(Power Semiconductors)M ozartstr. 80a6148 Heppenheim, GermanyTelephone: 62 52-730 66Facsimile: 62 52-730 68FRANCE==========Mitsubishi Electric France S. A.55, Avenue de Colmar92563 Rueil Malmaison Cedex, FranceTelephone: 1-47. 08. 78. 00Facsimile: 1-47. 51. 36, 22ITALY============Mitsubishi Electric Europe GmbHMilano Branch OfficeCentro Direzionale ColleoniPalazzo Perseo 220041 Agrate BrianzaMilano, ItalyTelephone: 39-605 31Facsimile: 39-605 32 12SWEDEN============Mitsubishi Electric Europe GmbHStockholm OfficeLastbilsvagen 6b19149 Sollentuna, SwedenTelephone: 8-96 04 60Facsimile: 8-92 76 97U.K. =============Mitsubishi Electric (U.K.) Ltd.Travellers LaneHatfieldHerts AL10 8XB, England, U.K.Telephone: 707-27 61 00Facsimile: 707 -27 86 92AUSTRALIA =========Mitsubishi Electric Australia Pty. Ltd.348 Victoria RoadRydalmere Nsw 2116, AustraliaPrivate Bag No,2 Rydalmere Nsw 2116Telex: MESYDAA 126614Telephone: (02) 684-7200Facsimile: (02) 638-7072• <strong>MITSUBISHI</strong>.... ELECTRIC


<strong>MITSUBISHI</strong> OPTOELECTRONICSOPTICAL SEMICONDUCTOR DEVICES andOPTICAL-FIBER COMMUNICATION SYSTEMSDATA BOOKAugust. First Edition 1992Editioned byCommittee of editing of Mitsubishi Semiconductor Data BookPublished byMitsubishi Electric Corp., Semiconductor Marketing DivisionThis book, or parts thereof, may not be reproduced in any form without permission ofMitsubishi Electric Corporation.© 1992 <strong>MITSUBISHI</strong> ELECTRIC CORPORATION Printed in Japan


<strong>MITSUBISHI</strong> OPTOELECTRONICSOPTICAL SEMICONDUCTOR DEVICES andOPTICAL-FIBER COMMUNICATION SYSTEMSA <strong>MITSUBISHI</strong> ELECTRIC CORPORATIONHEA D OFFI CE <strong>MITSUBISHI</strong> DENKI BLDG MARUNOUCHI. TOKYO 100 TELEX J24 532 CAB LE MELCO TOKYOIf these products or technologiesfall under Japanese and/or COCOMstrategic restricti ons. diversioncontrary thereto IS prohibitedH-OB026-A KI-9208 Printed in Japan (TOT)New publication, effective Aug. 1992.Specifications subject to change Without notice.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!