10.03.2015 Views

17 Chelating Agents of a New Generation as an Alternative to ...

17 Chelating Agents of a New Generation as an Alternative to ...

17 Chelating Agents of a New Generation as an Alternative to ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>17</strong><strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong><strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy MetalIons Removal from Different W<strong>as</strong>te WatersDorota KołodyńskaMaria Curie-Skłodowska University,Pol<strong>an</strong>d1. IntroductionIn the aqueous media free metal ions catalyze m<strong>an</strong>y reactions disadv<strong>an</strong>tageous for m<strong>an</strong>.Therefore it is necessary <strong>to</strong> control accessibility <strong>an</strong>d a number <strong>of</strong> metal ions both duringtechnological processes <strong>an</strong>d in their final products. This aim could be achieved owing <strong>to</strong>metal ions complexation by the compounds characterized by complex formation ability.Therefore, the chelating agents belonging predomin<strong>an</strong>tly <strong>to</strong> two different groups i.e.aminopolycarboxylates (APCAs) <strong>an</strong>d polyphosphonates are commonly used (Nowack,2007; Knepper, 2003). APCAs containing carboxylic groups connected <strong>to</strong> one or a fewa<strong>to</strong>ms <strong>of</strong> nitrogen are able <strong>to</strong> complex metal ions by formation around them one or a fewstable heteroa<strong>to</strong>m rings. This phenomenon is called chelating. Forming <strong>of</strong> stablecomplexes with metal ions is the b<strong>as</strong>e <strong>of</strong> their application for <strong>an</strong>alytical <strong>an</strong>d industrialpurposes. The complexes formed due <strong>to</strong> chelation are dissolved in water <strong>an</strong>d metal ionsfound in them do not exhibit such chemical activity <strong>as</strong> uncomplexed ions. Because <strong>of</strong>the import<strong>an</strong>ce <strong>of</strong> chelating agents they are produced <strong>an</strong>d used in large qu<strong>an</strong>tities <strong>an</strong>dtheir behaviour <strong>as</strong> well <strong>as</strong> their effect on the environment have received considerableattention.2.Traditional chelating agents <strong>an</strong>d their complexes with heavy metal ions2.1 EDTA <strong>an</strong>d NTAThe first synthesis <strong>of</strong> a compound from the group APCAs i.e. NTA (nitrilotriacetic acid) w<strong>as</strong>described by Heintz in 1862 (Heintz, 1862). Much later in 1935 I.G. Farbenindustrie carriedout the synthesis <strong>of</strong> EDTA (ethylenediaminetetraacetic acid) which consisted in the reaction<strong>of</strong> monochloroacetic acid with ethylenediamine in the presence <strong>of</strong> sodium hydroxide.Another way <strong>to</strong> obtain EDTA is the reaction <strong>of</strong> ethylenediamine with sodium cy<strong>an</strong>ide <strong>an</strong>dformaldehyde in the presence <strong>of</strong> sodium hydroxide. Depending on the amine used alsoother APCAs c<strong>an</strong> be obtained using this method. Since that time, on a worldwide scale over100,000 <strong>to</strong>ns <strong>of</strong> aminopolycarboxylic acids have been produced <strong>an</strong>nually. It w<strong>as</strong> estimatedthat 65,000 <strong>to</strong>ns <strong>of</strong> EDTA <strong>an</strong>d DTPA would be used up a year by the pulp <strong>an</strong>d paperindustry in the USA (Tucker, et al. 1999). Its <strong>an</strong>nual consumption in West Europe w<strong>as</strong> about


340Exp<strong>an</strong>ding Issues in Desalination30,000 <strong>to</strong>ns in 1987. However, in 1998 this amount w<strong>as</strong> doubled <strong>an</strong>d reached 64,000 <strong>to</strong>ns. In1996 the amount <strong>of</strong> EDTA in Germ<strong>an</strong>y w<strong>as</strong> 3,686 <strong>to</strong>ns <strong>an</strong>d in 1999 – 3,894 <strong>to</strong>ns. The pulp <strong>an</strong>dpaper industry is a major user <strong>of</strong> EDTA. It w<strong>as</strong> estimated that about 15,000-20,000 <strong>to</strong>ns <strong>of</strong>EDTA are used in pulp processing each year (Jones & Williams, 2002). From the late 1960s,NTA generally replaced phosphates in commercial detergents due <strong>to</strong> the incre<strong>as</strong>ing surfacewater eutrophication <strong>an</strong>d its dis<strong>as</strong>trous effect on natural environment (Anderson, et al.1985). The Environmental Protection Agency (EPA) estimated that 35,000 <strong>to</strong> 38,000 <strong>to</strong>ns <strong>of</strong>NTA were produced in the United States, <strong>an</strong>d 27,000 <strong>to</strong> 30,000 <strong>to</strong>ns were exported.However, in March 2006, the Commission’s Working Group on the Cl<strong>as</strong>sification <strong>an</strong>dLabelling <strong>of</strong> D<strong>an</strong>gerous Subst<strong>an</strong>ces decided <strong>to</strong> cl<strong>as</strong>sify NTA, trisodium salt <strong>as</strong> a Category 3Carcinogen with <strong>an</strong> R40 label (limited evidence <strong>of</strong> a carcinogenic effect) with a specificconcentration limit <strong>of</strong> 5%.2.2 PhosphonatesAs for the second group <strong>of</strong> chelating agents, according <strong>to</strong> (Nowack, 1998, 2003) in 1998 theworldwide consumption <strong>of</strong> phosphonates w<strong>as</strong> 40,000 - 56,000 <strong>to</strong>ns in the USA, 15,000 <strong>to</strong>ns inEurope <strong>an</strong>d less th<strong>an</strong> 800 <strong>to</strong>ns in Jap<strong>an</strong>. The dem<strong>an</strong>d for phosphonates grows steadily at 3%<strong>an</strong>nually. Besides DTPPH (diethylenetriaminepenta(methylenephosphonic acid)) <strong>an</strong>d NTMP(nitrilotris(methylenephosphonic acid)), HEDP (1-hydroxyeth<strong>an</strong>e-1,1-diphosphonic acid) isthe most import<strong>an</strong>t in this group. HEDP is widely used in a broad variety <strong>of</strong> applications,among others, <strong>as</strong> ingredients <strong>of</strong> detergents. Bonding Ca(II) ions, which deactivate thesurfact<strong>an</strong>ts improves their cle<strong>an</strong>ing process. Its ability <strong>to</strong> prevent precipitation <strong>of</strong> calciumsalts (called the threshold effect) finds also wide application in water treatment for scaleinhibition in circulating cool water system, oil field <strong>an</strong>d low-pressure boilers in such fields<strong>as</strong> electric power, chemical industry, metallurgy, fertilizer production, etc.2.3 Degradation <strong>of</strong> EDTA <strong>an</strong>d NTADegradation <strong>of</strong> EDTA <strong>an</strong>d NTA in natural conditions proceeds due <strong>to</strong> growth <strong>of</strong> specificbacteria from the subcl<strong>as</strong>s <strong>of</strong> Procteobacteria. Several bacteria strains such <strong>as</strong> the gramnegativestrain BNC1 were also found <strong>to</strong> be able <strong>to</strong> degrade EDTA. It w<strong>as</strong> found thatM(II)-EDTA complexes with the stability const<strong>an</strong>ts below 10 12 such <strong>as</strong> Ba(II), Mg(II), Ca(II)<strong>an</strong>d Mn(II) were degraded where<strong>as</strong> chelates with higher stability const<strong>an</strong>ts such <strong>as</strong> Fe(III),Co(II), Cd(II), Pb(II), Ni(II) or Cu(II) (Table 1) were not metabolized (Nörtem<strong>an</strong>n, 2005).The system <strong>of</strong> EDTA tr<strong>an</strong>sport is b<strong>as</strong>ed on its extracellular evolution with metal ionsfound in the solution <strong>an</strong>d intracellular absorption <strong>an</strong>d precipitation <strong>of</strong> metals combinedwith EDTA <strong>to</strong> form complexes (Witschel, 1999). It should be noticed that probably onlythe complexes <strong>of</strong> stability const<strong>an</strong>ts


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 341M(II) EDTA NTA DTPA NTMPAl(III) 16.5 11.4 18.6 Ba(II) 7.9 4.8 8.7 Ca(II) 10.7 6.4 10.8 5.75Cd(II) 16.5 9.8 6.4Co(II) 16.5 10.4 18.8 7.5Cu(II) 18.8 12.9 21.2 10.7Fe(II) 14.3 8.3 16.2 Fe(III) 25.1 15.9 28.0 Hg(II) 21.5 26.4 Mg(II) 8.8 5.5 9.3 4.3Mn(II) 13.9 7.5 15.2 Ni(II) 18.4 11.5 20.1 7.1Pb(II) 18.0 11.4 18.8 Zn(II) 16.5 10.6 18.2 8.2Table 1. Comparison <strong>of</strong> the stability const<strong>an</strong>ts <strong>of</strong> M(II)-L=1:1 complexes with EDTA, NTA,DTPA <strong>an</strong>d NTMP (Martell & Smith, 1982). ( data not available)2.4 Application <strong>of</strong> APCAsAminopolycarboxylic acids are used <strong>as</strong> components or process chemicals in a wide variety<strong>of</strong> applications, however, according <strong>to</strong> Fig.1 only pulp <strong>an</strong>d paper, cle<strong>an</strong>ing, chemicalprocessing, agriculture <strong>an</strong>d water treatment constitute 80% <strong>of</strong> their consumption.APCAs are used for:- pulp <strong>an</strong>d paper production – stabilization <strong>of</strong> ozone <strong>an</strong>d hydrogen peroxide actionon pulp by complexing with metal ions (especially Fe, Cu <strong>an</strong>d Mn that catalyse theirdecomposition), prevention from brightness reversion <strong>an</strong>d protection <strong>of</strong> bleachpotency;- household <strong>an</strong>d industrial cle<strong>an</strong>ing – removal <strong>of</strong> hard water scale, soap film <strong>an</strong>dinorg<strong>an</strong>ic scales, for example <strong>to</strong> improve the bottle cle<strong>an</strong>ing in the beverage industry;detergents, soaps processing – prevention from precipitation <strong>of</strong> calcium <strong>an</strong>d magnesiumsalts (deliming action) <strong>an</strong>d their deposition on clothes, prevention soaps frombecoming r<strong>an</strong>cid, intensification <strong>of</strong> the adhesion <strong>of</strong> dirty surface <strong>an</strong>d the cohesion <strong>of</strong>dirt particles <strong>to</strong> each other due <strong>to</strong> complexing metal ions (<strong>to</strong> better soil removalduring laundering), <strong>to</strong> prevent from decomposition <strong>of</strong> bleaching agents such <strong>as</strong>sodium perborate, inhibition <strong>of</strong> colour ch<strong>an</strong>ges, stabilization <strong>of</strong> hydrogen peroxide inliquid detergents for special requirements; <strong>to</strong> enh<strong>an</strong>ce the <strong>an</strong>tibacterial effect,cosmetics industry – stabilization <strong>of</strong> creams, lotions <strong>an</strong>d emulsions, reduction <strong>of</strong>allergic reactions <strong>to</strong> nickel <strong>an</strong>d chromium, hair preparations, shampoos <strong>an</strong>d almostevery type <strong>of</strong> personal care formulation, blue colour <strong>of</strong> the [Cu(edta)] 2- complex isused in m<strong>an</strong>y shampoos;- agrochemicals - full utilization <strong>of</strong> micronutrients by pl<strong>an</strong>ts (complexing agents are used<strong>to</strong> complex the microelements, which are then gradually rele<strong>as</strong>ed <strong>to</strong> the relev<strong>an</strong>t ionic


342Exp<strong>an</strong>ding Issues in Desalinationform, the micronutrient chelates protect metal cations against reduction in soil <strong>an</strong>dfacilitate their uptake by leaves <strong>an</strong>d roots);- water treatment – <strong>to</strong> scale control; control water hardness <strong>an</strong>d scale-forming calcium<strong>an</strong>d magnesium ions;- pho<strong>to</strong>graphic industry - prevention from precipitation <strong>of</strong> calcium <strong>an</strong>d magnesium saltson<strong>to</strong> the pho<strong>to</strong>sensitive layer, [NH 4 Fe(edta)] complex is used <strong>as</strong> <strong>an</strong> oxidizing agent forAg in bleach baths;- textile industry - <strong>to</strong> remove trace metal impurities in all ph<strong>as</strong>es <strong>of</strong> textile processing,particularly the scouring, dyeing <strong>an</strong>d color stripping stages;- consumer products – food industry by complexing metal ions <strong>to</strong> prevent from oxidationprocesses leading <strong>to</strong> colour ch<strong>an</strong>ges especially in the c<strong>as</strong>e <strong>of</strong> c<strong>an</strong>ned food, for examplevegetables; pharmaceuticals - stabilize formulations, <strong>an</strong>tioxid<strong>an</strong>ts <strong>an</strong>d <strong>an</strong>ticoagul<strong>an</strong>tsadded <strong>to</strong> s<strong>to</strong>red blood in blood b<strong>an</strong>ks ([K 2 (H 2 edta)] <strong>to</strong> prevent clotting; [NaFe(edta)]<strong>an</strong>d [Na 2 (H 2 edta)] added <strong>to</strong> typical iron fortification compounds in cereals incre<strong>as</strong>ingthe adsorption <strong>of</strong> iron in adult hum<strong>an</strong>s, Gd(III) complex with DTPA is used <strong>as</strong> acontr<strong>as</strong>t agent in diagnosis by nuclear magnetic reson<strong>an</strong>ce imaging;- metalworking – for surface preparation, metal cle<strong>an</strong>ing, metal plating <strong>an</strong>d inmetalworking fluids;- Othersnuclear industry - formation <strong>of</strong> water soluble complexes with radionuclides in thedecontamination <strong>of</strong> reac<strong>to</strong>rs; adhesives productions – production <strong>of</strong> latex-b<strong>as</strong>ed coatingcompounds; dispers<strong>an</strong>ts – prevention from scale build up in industrial water h<strong>an</strong>dlingprocesses which results in reduced water flow though pipes, reduced heat tr<strong>an</strong>sfer inboilers <strong>an</strong>d condensers, causes pump failures; dispers<strong>an</strong>ts in paints <strong>an</strong>d coatings production– <strong>to</strong> disperse solid pigments such <strong>as</strong> tit<strong>an</strong>ium dioxide, sunscreen pigments during them<strong>an</strong>ufacture <strong>of</strong> chemical dyes; fuel g<strong>as</strong> cle<strong>an</strong>ing <strong>an</strong>d oil production – <strong>to</strong> stabilize Na 2 SO 3solution used for adsorption <strong>of</strong> SO 2 ; components <strong>of</strong> cle<strong>an</strong>ers for platforms <strong>an</strong>d scaleinhibi<strong>to</strong>rs especially for platforms which are not <strong>to</strong>o deep; in drilling, production, <strong>an</strong>drecovery <strong>of</strong> oil; biodiesel production - it w<strong>as</strong> found that the addition <strong>of</strong> APCAs <strong>to</strong> biodiselFig. 1. The percentage contribution <strong>of</strong> different applications <strong>of</strong> APCAs.


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 343reduces the humidity <strong>an</strong>d kinematic viscosity; polymerization – for suspension,emulsion, <strong>an</strong>d solution polymers, both in polymerization reactions <strong>an</strong>d for finishedpolymer stabilization, electroplating – <strong>to</strong> control the level <strong>of</strong> Cu(II) ions <strong>an</strong>d improve thequality <strong>of</strong> the Cu layer formed in copper plating, where<strong>as</strong> in nickel <strong>an</strong>d gold plating – <strong>to</strong>prevent from co-precipitation <strong>of</strong> other metals; <strong>an</strong>tiscal<strong>an</strong>ts <strong>to</strong> prevent from scaleformation. On the other h<strong>an</strong>d, aminopolycarboxylates which act <strong>as</strong> dispers<strong>an</strong>ts areable<strong>to</strong> keep the scale particles suspended in the bulk fluid by imparting a negativecharge <strong>to</strong> the particles, soil remediation <strong>an</strong>d chel<strong>an</strong>t-enh<strong>an</strong>ced phy<strong>to</strong>remediation – chelateshave been shown <strong>to</strong> signific<strong>an</strong>tly incre<strong>as</strong>e metal concentrations in soil solution, theenh<strong>an</strong>cement <strong>of</strong> pl<strong>an</strong>t uptake varies greatly, depending on the specific metal, chelate,pl<strong>an</strong>t combination <strong>an</strong>d on soil conditions.2.5 Heavy metal complexes with EDTA <strong>an</strong>d NTAEDTA includes six donor a<strong>to</strong>ms <strong>an</strong>d acts <strong>as</strong> a hexadentate lig<strong>an</strong>d where<strong>as</strong> NTA includesfour donor a<strong>to</strong>ms so it is a tetradentate lig<strong>an</strong>d. EDTA <strong>an</strong>d NTA form the complexes withmetal ions <strong>of</strong> the molar ratio M(II):L=1:1. The complexes possess the octahedral structure. Inthe c<strong>as</strong>e <strong>of</strong> EDTA octahedral coordination is possible only with small size cations. With largecations limitations in the EDTA structure do not allow for such ideal structure <strong>an</strong>d thecomplexing metal ion c<strong>an</strong> be accessible for other lig<strong>an</strong>ds such <strong>as</strong> water molecules. X-rayinvestigations show that the structures <strong>of</strong> most metal complexes are different fromoctahedral ones <strong>an</strong>d the cations coordination numbers are <strong>of</strong>ten larger th<strong>an</strong> six. On the otherh<strong>an</strong>d, in some complexes such <strong>as</strong> with Cu(II) or Ni(II), EDTA does not make full use <strong>of</strong>donor possibilities leaving one carboxyl group uncoordinated. To octahedral system iscompleted by a water molecule.3. Characterization <strong>of</strong> chelating agents <strong>of</strong> a new generation <strong>an</strong>d theircomplexes with heavy metal ionsDespite obvious adv<strong>an</strong>tages, the conventional complexing agents, due <strong>to</strong> some undesiredfeatures such <strong>as</strong> their persistence or slow tr<strong>an</strong>sformation in the environment, remobilization<strong>of</strong> <strong>to</strong>xic metal ions mainly from sediments <strong>an</strong>d soils <strong>as</strong> well <strong>as</strong> radionuclides fromradioactive w<strong>as</strong>te <strong>an</strong>d their implication in eutrophication <strong>of</strong> natural water systems, are <strong>of</strong>great concern, therefore their replacement <strong>an</strong>d the use <strong>of</strong> chelating agents with improvedbiodegradability is necessary (Reinecke, et al. 2000). It should be stressed that most <strong>of</strong> theAPCAs (such <strong>as</strong> EDTA – ethylenediaminetetraacetic acid, IDA – iminodiacetic acid, DTPA –diethylenetriaminepentaacetic acid) are resist<strong>an</strong>t <strong>to</strong> conventional biological <strong>an</strong>dphysicochemical methods <strong>of</strong> w<strong>as</strong>te water treatment <strong>an</strong>d purification <strong>of</strong> drinking water.During the l<strong>as</strong>t few years complexing agents <strong>of</strong> a new generation have appeared on market<strong>as</strong> a solution <strong>to</strong> this problem. Their biodegradability is <strong>an</strong> import<strong>an</strong>t focus because <strong>of</strong> therenewed attention <strong>to</strong>wards environmental protection issues. They are also proposed <strong>as</strong> aresponse <strong>to</strong> the ch<strong>an</strong>ges in terms <strong>of</strong> legislation i.e. BREF documents, (EU EDTA riskreduction strategy documents, 2004, IPPC Directive 96/61/EC, BAT - Best AvailableTechniques Reference documents or OSPAR documents). For example, in the c<strong>as</strong>e <strong>of</strong>Austri<strong>an</strong> w<strong>as</strong>te water emission legislations for the pulp <strong>an</strong>d paper industry, the use <strong>of</strong>chelating agents with biodegradation levels below 70% or 80% is forbidden using the 28-dayEN ISO (International St<strong>an</strong>dards Org<strong>an</strong>ization) 7827 test. Nowadays, DTPA <strong>an</strong>d EDTA arewidely used in modern, <strong>to</strong>tal chlorine-free w<strong>as</strong>hing (TCF) <strong>an</strong>d bleaching steps <strong>of</strong> pulps


344Exp<strong>an</strong>ding Issues in Desalinationusing hydrogen peroxide for complexing metals such <strong>as</strong> Mn(II) <strong>an</strong>d Fe(III). As a result <strong>of</strong>their practical non-degradability, the attempts were made <strong>to</strong> find the alternative products(Matzinger, et al. 2007). <strong>New</strong> developed lig<strong>an</strong>ds <strong>to</strong> be used in practice should form strongcomplexes with the minimal content <strong>of</strong> nitrogen. The presented below biodegradablelig<strong>an</strong>ds <strong>of</strong> a new generation contain a b<strong>as</strong>ic nitrogen a<strong>to</strong>m or two a<strong>to</strong>ms (in the c<strong>as</strong>e <strong>of</strong>EDDS) with <strong>an</strong> electron pair capable <strong>of</strong> interacting with metal ions <strong>an</strong>d acidic carboxylicgroups capable <strong>of</strong> coordinating metal ions through the oxygen. The b<strong>as</strong>ic properties <strong>of</strong> theIDS (N-(1,2-dicarboxyethyl)-D,L-<strong>as</strong>partic acid also known <strong>as</strong> iminodisuccinic acid), DS(poly<strong>as</strong>partic acid), EDDS (ethylenediamine-N,N’-disuccinic acid), GLDA (N,Nbis(carboxymethyl)glutamicacid) <strong>an</strong>d MGDA (methylglycinediacetic acid) <strong>an</strong>d theircomplexes with heavy metal ions are described in detail in the next paragraphs.3.1 IDSIminodisuccinic acid (N-1,2-dicarboxyethyl)-D,L-<strong>as</strong>partate acid, (CAS No. 144538-83-0) alsodenoted <strong>as</strong> IDS h<strong>as</strong> been commercialized since 1998 by the L<strong>an</strong>xess (Germ<strong>an</strong>y, formerlyBayer AG) <strong>to</strong> the name Baypure CX 100. Its production is b<strong>as</strong>ed on the reaction <strong>of</strong> maleic<strong>an</strong>hydride with ammonia <strong>an</strong>d sodium hydroxide (Fig.2):OOOOOOH 2 OFig. 2. Scheme <strong>of</strong> IDS production.OOHOHNaOHNH 3The process is extremely environment-friendly <strong>an</strong>d does not generate <strong>an</strong>y <strong>of</strong>f-g<strong>as</strong>es oreffluents contaminating the environment. The sodium salts <strong>of</strong> iminodisuccinic acid (>32%),<strong>as</strong>partic acid (


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 345IDS exhibits extremely rapid biodegradation, which equals approx. 80% after just 7 days. Itis characterized by excellent calcium binding properties, stability in a wide pH, goodcomplexation <strong>of</strong> heavy metal ions <strong>an</strong>d low environmental impact due <strong>to</strong> low <strong>to</strong>xicity <strong>an</strong>dgood biodegradability according <strong>to</strong> the OECD (Org<strong>an</strong>ization <strong>of</strong> Economic Cooperation <strong>an</strong>dDevelopment) tests (OECD 301E i.e. modified OECD-screening test: > 78%, OECD 302 B i.e.Zahn-Wellens test: >89%). IDS undergoes ly<strong>as</strong>ed dependent degradation. The end product<strong>of</strong> tr<strong>an</strong>sformation <strong>of</strong> [S,S]-IDS <strong>an</strong>d [R,S]-IDS isomers by Rals<strong>to</strong>nia sp. SLRS7 is fumaric acid.However, in the c<strong>as</strong>e <strong>of</strong> the [S,S]-IDS <strong>an</strong>d [R,S]-IDS isomers <strong>as</strong> metabolites L-<strong>as</strong>partic acid<strong>an</strong>d D-<strong>as</strong>partic acid were found. As further stages fumaric acid <strong>an</strong>d ammonia are supposed(Cokesa, et al. 2004a). As for IDS the following pKs values were found: pK 1 =2.8, pK 2 =3.6,pK 3 =4.7 <strong>an</strong>d pK 4 =10.2 the reaction <strong>of</strong> complexes formation with M(II) ions c<strong>an</strong> besummarized <strong>as</strong>:M 2+ + H n ids n-4 ⇄ [M(H n ids)] n-2 , where n=0,1,2,3 (1)The comparison <strong>of</strong> the stability const<strong>an</strong>ts <strong>of</strong> metal complexes with IDS in the M(II):IDS=1:1system is presented in Table 3 (Hyvönen & Aksela, 2010, V<strong>as</strong>ilev, et al. 1996, V<strong>as</strong>ilev, et al.1998).M(II) IDS DS EDDS GLDA MGDAAg(I) 3.9 Al(III) 14.1 Ba(II) 2.1 3.0 3.5 4.9Ca(II) 5.2 2.7 4.6 5.2 7.0Cd(II) 8.4 1.7 16.4 9.1 Co(II) 10.5 13.6 10.0 Cr(III) 9.6 7.5 Cu(II) 13.1 4.8 18.4 13.1 13.9Fe(II) 8.2 10.0 8.7 8.1Fe(III) 15.2 18.5 22.0 11.7 16.5Hg(II) 14.9 2.8 14.3 Mg(II) 6.1 2.0 6.0 6.1 5.8Mn(II) 7.7 2.1 7.6 8.4Ni(II) 12.2 16.7 10.9 12.0Zn(II) 10.8 2.2 13.4 10.0 10.9Pb(II) 11.0 12.7 10.5 Table 3. Comparison <strong>of</strong> the stability const<strong>an</strong>ts <strong>of</strong> M(II)-L=1:1 complexes with IDS, DS, EDDS,GLDA <strong>an</strong>d MGDA ( data not available).In the paper (Hyvönen, et al. 2003) it w<strong>as</strong> found that in the dilute solutions <strong>of</strong> IDS more th<strong>an</strong>90% <strong>of</strong> metal ions are bound over a wide pH r<strong>an</strong>ge. The percentage distribution <strong>of</strong>copper(II) complexes with IDS <strong>as</strong> a function <strong>of</strong> pH w<strong>as</strong> presented in (Kołodyńska, 2009b).


346Exp<strong>an</strong>ding Issues in DesalinationFor Cu(II) ions the effective complexation region w<strong>as</strong> at the pH values from 3 <strong>to</strong> 12, forZn(II) from 5 <strong>to</strong> 11 <strong>an</strong>d for Mn(II) from 7 <strong>to</strong> 11. According <strong>to</strong> (Cokesa, et al. 2004b) somemetal complexes with IDS satisfy the criteria <strong>of</strong> ready biodegradability. In this group Ca(II)-IDS <strong>an</strong>d Fe(II)-IDS were found. Mn(II)-IDS <strong>an</strong>d Cu(II)-IDS complexes revealed only 55% <strong>an</strong>d40% biodegradation after 28 days, respectively.In perspective IDS c<strong>an</strong> be used in oxidative bleaching <strong>of</strong> cot<strong>to</strong>n with H 2 O 2 , <strong>as</strong> a component <strong>of</strong>detergents – very good results were achieved for spinach <strong>an</strong>d tea removal by detergentscontaining Baypure CX 100, for cle<strong>an</strong>ing <strong>of</strong> membr<strong>an</strong>es blocked by diesel oil, silicon fluid,floors <strong>an</strong>d gl<strong>as</strong>s. Baypure CX 100 brings good results in cutlery cle<strong>an</strong>ing (Brochure <strong>of</strong> BaypureCX 100). A new proposal for the use <strong>of</strong> IDS is its application for coating seeds <strong>to</strong> enh<strong>an</strong>ce theadherence <strong>of</strong> trace metals <strong>an</strong>d nutrient salts (Aksela, et al. 2004). IDS c<strong>an</strong> be also applied forproduction <strong>of</strong> fertilizers. In Pol<strong>an</strong>d the leader in the production <strong>of</strong> micronutrient fertilizersb<strong>as</strong>ed on IDS is the Production-Consulting Firm ‘ADOB’. It h<strong>as</strong> been producingiminodisuccinic acid since 2005. They also proposed a new Fe(III) chelates with N,N’-bis(2-hydroxy-5-methylbenzyl)ethylenediamine-N,N’-diacetic acid (HJB) <strong>an</strong>d N,N’-di(2-hydroxybenzyl)ethylenediamine-N,N’-diacetic acid (HBED) (Stegient-Nowicka & Michałek,2010).3.2 DSPoly<strong>as</strong>partic acid (CAS No. 181828-06-8) is accessible on a commercial scale <strong>as</strong> BaypureDS 100 (denoted <strong>as</strong> DS), the commercial product <strong>of</strong> L<strong>an</strong>xess (Germ<strong>an</strong>y). However, theDonlar Corporation were the first <strong>to</strong> develop <strong>an</strong> economical way <strong>to</strong> producepoly<strong>as</strong>partates in high yield <strong>an</strong>d with little or no w<strong>as</strong>te products from L-<strong>as</strong>partic acid, <strong>an</strong>atural amino acid. The way <strong>of</strong> the synthesis is presented in Fig. 4 (Wheeler & Kosk<strong>an</strong>,1993). In the first reaction, polysuccinimide (poly(<strong>an</strong>hydro<strong>as</strong>partate)) is synthesized bydry thermal polycondensation <strong>of</strong> powdered <strong>as</strong>partic acid. Subsequently, the polyimiderings are hydrolyzed with s<strong>to</strong>ichiometric qu<strong>an</strong>tities <strong>of</strong> b<strong>as</strong>e <strong>to</strong> form poly(<strong>as</strong>partate).Typically, the resulting polyamide contains a racemic mixture <strong>of</strong> D- <strong>an</strong>d L-<strong>as</strong>partic acid<strong>an</strong>d is a copolymer in which the amide bonds are formed from either the - or -carboxylgroups (Mosig, et al. 2000).Fig. 4. Scheme <strong>of</strong> DS production.Baypure DS 100 is characterized by excellent calcium(II) <strong>to</strong>ler<strong>an</strong>ce, corrosion inhibitionproperties, stability in a wide pH r<strong>an</strong>ge <strong>as</strong> well <strong>as</strong> low environmental impact by low <strong>to</strong>xicity<strong>an</strong>d good biodegradability (OECD 301E: > 60%, OECD 302 B: >75%). It is also <strong>an</strong> effectivechelating agent <strong>of</strong> a new generation which c<strong>an</strong> be applied for heavy metal ions removal(Freem<strong>an</strong>, et al. 1996). As follows from the structure, it consists <strong>of</strong> polymerized - <strong>an</strong>d -


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 347<strong>as</strong>partyl residues, each containing carboxylic functional groups that c<strong>an</strong> combine with metalions <strong>to</strong> form M(II)-DS complexes. In paper (Wu & Gr<strong>an</strong>t, 2002) it w<strong>as</strong> found that <strong>as</strong>partylresidues undergo pro<strong>to</strong>nation, depro<strong>to</strong>nation <strong>an</strong>d complexation in solution. For sodiumpoly<strong>as</strong>partate with a molecular weight <strong>of</strong> 10 000, 72 repeated units <strong>of</strong> <strong>as</strong>partyl residues c<strong>an</strong>be recognized <strong>as</strong> 18 independent hypothetical poly<strong>as</strong>partic acid molecules (denoted <strong>as</strong>H 4 ds) for which the pKs <strong>of</strong> DS are equal <strong>to</strong>: pK 1 =2.27, pK 2 =3.60, pK 3 =4.09, pK 4 =5.<strong>17</strong>, AtpH 1 about 100 % <strong>of</strong> DS occurs <strong>as</strong> H 4 ds, at pH 3 about 70 % occurs <strong>as</strong> H 3 ds - , at pH 4 about48 % occurs <strong>as</strong> H 2 ds 2- , at pH 4,8 about 65 % occurs <strong>as</strong> Hds 3- <strong>an</strong>d at pH above 7 100% occurs<strong>as</strong> ds 4- (Burns, et al. 2003). The formation <strong>of</strong> metal complexes with DS c<strong>an</strong> be summarized<strong>as</strong>:M 2+ + H n ds n-4 ⇄ [M(H n ds)] n-2 , where n=0,1,2,3 (2)The stability const<strong>an</strong>ts <strong>of</strong> M(II)-DS=1:1 complexes are presented in Table 3 (Brochure <strong>of</strong>Baypure DS 100). It should be also stressed that the theoretical capacity <strong>of</strong> poly<strong>as</strong>partic acidfor heavy metal ions is about 7.2 meq/g, where<strong>as</strong> EDTA is only 6.0 meq/g. Althoughpoly<strong>as</strong>partic acid h<strong>as</strong> also a quite high capacity, it shows poor efficiency at a low ionconcentration (Sun, et al. 2005, Kołodyńska, et al. 2008a, 2008b).Poly<strong>as</strong>partates are used <strong>as</strong> corrosion <strong>an</strong>d scale inhibi<strong>to</strong>rs, dispersing agents, w<strong>as</strong>te wateradditives, superabsorbers, <strong>an</strong>d also <strong>as</strong> agricultural polymers. It should be mentioned aboutpoly<strong>as</strong>partic resins obtained by modification <strong>of</strong> poly<strong>as</strong>partic acid. They are characterized byhigh water absorbency <strong>an</strong>d used <strong>as</strong> soil amendments, m<strong>an</strong>ufacturing <strong>of</strong> diapers, s<strong>an</strong>itarynapkins, medicals, cosmetics, fabrics, metal absorbent materials <strong>an</strong>d etc. (Zhao, et al. 2005).Among their other import<strong>an</strong>t properties super-absorption, fluid retention capacity <strong>an</strong>dstability c<strong>an</strong> be included (Zhao, et al. 2006). For example, AmiSorb is the Donlar’s br<strong>an</strong>dname polymer used <strong>to</strong> enh<strong>an</strong>ce the growth <strong>an</strong>d yield <strong>of</strong> corn, wheat, cot<strong>to</strong>n, soybe<strong>an</strong> <strong>an</strong>dother crops. It contains poly<strong>as</strong>partates which cause that mineral nutritions are moreavailable <strong>an</strong>d efficiently sorbed by pl<strong>an</strong>ts. Recently it w<strong>as</strong> proven that the overall yieldch<strong>an</strong>ge from the addition <strong>of</strong> AmiSorb w<strong>as</strong> equal <strong>to</strong> +1.75 bu/a for corn <strong>an</strong>d +1.07 bu/a forwheat (Goos & Catt<strong>an</strong>ach, 1996).In June 2001 L<strong>an</strong>xess w<strong>as</strong> awarded with the Presidential Green Chemistry Award by the USEnvironmental Protection Agency (US EPA) for the best product in the field <strong>of</strong> industrialenvironment protection promotion. The product awarded w<strong>as</strong> the Baypure CX 100. In 2002Baypure DS 100 w<strong>as</strong> given a prestigious award by the Germ<strong>an</strong> Industry Federation (BDI).The Baypure b<strong>as</strong>ed D<strong>an</strong>ish product Groen Linie M<strong>as</strong>kinv<strong>as</strong>k Color/Ultra became the firstlaundry detergent in the world <strong>to</strong> receive the ‘EU Flower’ ecolabel.3.3 EDDSEthylenediamine-N,N’-disuccinic acid (H 4 edds, EDDS) (CAS No. 144538-83-0) is a structuralisomer <strong>of</strong> EDTA. On a commercial scale this complexing agent is produced, among others,by Innospec Inc., UK (formerly Octel) <strong>as</strong> Enviomet TM . It forms four isomers: S,S- (25%), R,R-(25%), R,S- (50%), S,R- (50%). The S,S-isomer <strong>of</strong> EDDS, b<strong>as</strong>ed on the naturally occurringamino acid i.e. L-<strong>as</strong>partic acid, is readily biodegradable. According <strong>to</strong> the OECD 83% <strong>of</strong> S,S-EDDS convert <strong>to</strong> CO 2 within 20 days (Jaworska, 1999). However, the others are partly orcompletely non-biodegradable (T<strong>an</strong>dy, et al. 2006a). The chemical structure <strong>of</strong> EDDSisomers is presented in Fig.5.


348Exp<strong>an</strong>ding Issues in DesalinationFig. 5. The structural isomers <strong>of</strong> EDDS.The S,S-EDDS isomer is produced by the actinomycete strain Amycola<strong>to</strong>psis orientalis(Zwicker, et al. 1997). It c<strong>an</strong> be also obtained in the reaction between 1,2-dibromoeth<strong>an</strong>e <strong>an</strong>dL-<strong>as</strong>partic acid (Fig.6).Fig. 6. Scheme <strong>of</strong> EDDS production.The isomeric mixture <strong>of</strong> EDDS c<strong>an</strong> be also synthesized from etyhylenediamine <strong>an</strong>d maleic<strong>an</strong>hydride. On the contrary <strong>to</strong> the other biodegradable complexing agents like NTA,gluconic acid or citric acid it is characterized by high capacity for complexing cations <strong>as</strong> well<strong>as</strong> low <strong>to</strong>xicity (<strong>to</strong> fish <strong>an</strong>d daphnia EC 50 > 1000 mg/L).As follows from the speciation diagram <strong>of</strong> EDDS at pH > 10 the predomin<strong>an</strong>t form <strong>of</strong>H 4 edds is edds 4- presented in 62% where<strong>as</strong> the Hedds 3- form is present in 38%(Crouch, et al.2001). The appropriate lig<strong>an</strong>d pro<strong>to</strong>nation const<strong>an</strong>ts pKs are <strong>as</strong> follows: 3.03, 3.92, 7.01, <strong>an</strong>d9.70 (Loonen, et al. 1999). They are very close <strong>to</strong> the data for EDTA. The process <strong>of</strong> heavymetal ions complexation by EDDS is characterized by the formation <strong>of</strong> stable 1:1 metal <strong>to</strong>lig<strong>an</strong>d complexes <strong>as</strong> the major species according <strong>to</strong> the reaction:M 2+ + H n edds n-4 ⇄ [M(H n edds)] n-2 , where n=0,1,2,3 (3)Metal ions in the formed complexes were bound <strong>to</strong> two nitrogen a<strong>to</strong>ms <strong>an</strong>d one oxygena<strong>to</strong>m <strong>of</strong> each <strong>of</strong> the four carboxylate groups. For example, for Cu(II) ions there w<strong>as</strong><strong>as</strong>sumed formation <strong>of</strong> the following complexes: [Cu(H 2 edds)], [Cu(Hedds)] - ,[Cu(edds)] 2- , [Cu(OH)(edds)] 3- , [Cu(H 2 edds) 2 ] 2- , [Cu(H 2 edds)(Hedds)] 3- , [Cu(Hedds) 2 ] 4- ,[Cu(Hedds)edds] 5- <strong>an</strong>d [Cu 2 edds] where<strong>as</strong> for Zn(II) they are <strong>as</strong> follows: [Zn(H 2 edds)],


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 349[Zn(Hedds)] - , [Zn(edds)] 2- , [Zn(OH)(edds)] 3- (Knepper , et al, 2005). It w<strong>as</strong> shown that undersome conditions <strong>of</strong> pH EDDS is more efficient th<strong>an</strong> EDTA <strong>as</strong> far <strong>as</strong> chelation <strong>of</strong> metal ions isconcerned. For example, in the c<strong>as</strong>e <strong>of</strong> Cs(I), Mg(II), Sr(II) they are not well complexed byEDDS at acidic <strong>an</strong>d neutral pH <strong>an</strong>d for them EDTA appears <strong>to</strong> be superior <strong>to</strong> EDDS (Jones &Williams, 2002), for Cr(III), Mn(II) their <strong>to</strong>tal amount is almost equal where<strong>as</strong> in the c<strong>as</strong>e <strong>of</strong>Fe(III), Co(II), Ni(II) the complexation occurs in <strong>an</strong> identical m<strong>an</strong>ner. The obtainedcomplexes are mostly not biodegradable (Loonen, et al. 1999; V<strong>an</strong>devivere, et al. 2001). Forexample, Pb(II) <strong>an</strong>d Zn(II) complexes with EDDS (Kos & Lěst<strong>an</strong>, 2003; Neal & Roshe, 1973)have practically the same stability const<strong>an</strong>ts but the Pb(II)-EDDS complex is much morereadily biodegradable th<strong>an</strong> Zn(II) one (Orama, et al. 2002). For M(II) complexes with EDDSthe stability const<strong>an</strong>ts are presented in Table 3 (V<strong>an</strong>devivere, et al. 2001) <strong>an</strong>d compared <strong>to</strong>IDS, DS, GLDA <strong>an</strong>d MGDA.According <strong>to</strong> the literature data EDDS showed good chelation properties <strong>to</strong>wards heavymetal ions. As mentioned earlier, it is also characterized by better extraction efficiency in theex situ w<strong>as</strong>hing tests <strong>an</strong>d phy<strong>to</strong>extraction process <strong>of</strong> heavy metals from contaminated soilsth<strong>an</strong> EDTA (T<strong>an</strong>dy, et al. 2004; T<strong>an</strong>dy, et al. 2006b). It c<strong>an</strong> be also used <strong>as</strong> the H 2 O 2 stablizerin the pulp <strong>an</strong>d paper industry.In 2002 EDDS production achieved 10,000 <strong>to</strong>ns. Nowadays EDDS is a chelating reagentavailable in Europe on a large scale. The dem<strong>an</strong>d for ethylenediaminedisuccinic acid h<strong>as</strong>been growing at the rate <strong>of</strong> 15 % per year. Also Innospec, the producer <strong>of</strong> EDDS w<strong>as</strong>awarded by RoSPA (Royal Society for the Prevention <strong>of</strong> Accidents). Moreover, theEnviomet TM w<strong>as</strong> the winner <strong>of</strong> the UK Green Chemical Technology Award in 2003 <strong>as</strong> achemical product <strong>an</strong>d then awarded by CRYSTAL Faraday Partnership (Institute <strong>of</strong>Chemical Engineers, Royal Society <strong>of</strong> Chemistry, Chemical Industry Association) (Brochure<strong>of</strong> Enviomet TM ).3.4 GLDAA novel readily biodegradable chelating agent, tetr<strong>as</strong>odium <strong>of</strong> N,N-bis(carboxymethyl)glutamic acid (also denoted <strong>as</strong> Dissolvine GL-38 or GLDA, CAS No. 51981-21-6) w<strong>as</strong> alsointroduced on the commercial scale by AkzoNobel Functional Chemicals (The Netherl<strong>an</strong>ds).Its production process is b<strong>as</strong>ed on the flavour enh<strong>an</strong>cer monosodium glutamate (MSG) fromthe fermentation <strong>of</strong> readily available corn sugars <strong>an</strong>d according <strong>to</strong> the following reaction(Fig.7) (Hauthal, 2009):Fig. 7. Scheme <strong>of</strong> GLDA production.In contr<strong>as</strong>t <strong>to</strong> the m<strong>an</strong>ufacture <strong>of</strong> EDTA whose carbon content is fossil b<strong>as</strong>ed, the carbonsource <strong>of</strong> GLDA is primarily biob<strong>as</strong>ed. Therefore, GLDA is the only chelating agent with‘green’ carbon a<strong>to</strong>ms. The biodegradation <strong>of</strong> GLDA is initiated by mono-oxygen<strong>as</strong>es


350Exp<strong>an</strong>ding Issues in Desalinationcatalysing the removal <strong>of</strong> carboxymethyl groups. According <strong>to</strong> the Swedish Society forNature Conservation GLDA is 86% b<strong>as</strong>ed on natural, raw materials. It also possesses goodsolubility at both low <strong>an</strong>d high pH. Greater th<strong>an</strong> 60% <strong>of</strong> L-GLDA degrades within 28 days.Dissolvine GL-38 consists only <strong>of</strong> the L-form. This is signific<strong>an</strong>t, because the D-form is notbiodegradable. The thermal stability <strong>of</strong> GLDA is surprisingly high. When tested attemperatures above 573 K it showed no signific<strong>an</strong>t decomposition. This property h<strong>as</strong> beenused <strong>to</strong> develop water treatment systems for operating boilers <strong>to</strong> reduce the effect <strong>of</strong> hardwater. Tests have also shown up <strong>to</strong> 10 times higher solubility <strong>of</strong> GLDA in 25% NaOHsodium hydroxide solution compared <strong>to</strong> EDTA <strong>an</strong>d NTA. It is also characterized byexcellent solubility at low pH (Seetz, 2007; Seetz & St<strong>an</strong>itzek, 2008).GLDA possesses complexing properties comparable <strong>to</strong> EDTA <strong>an</strong>d NTA. In the c<strong>as</strong>e <strong>of</strong>GLDA 1:1 metal <strong>to</strong> lig<strong>an</strong>d complexes are formed according <strong>to</strong> the reaction:M 2+ + H n glda n-4 ⇄ [M(H n glda)] n-2 , where n=0,1,2,3 (4)The stability const<strong>an</strong>ts for this type <strong>of</strong> complexes are presented in Table 3 (Brochure <strong>of</strong>Dissolvine GL-38). Therefore, it c<strong>an</strong> be <strong>an</strong> alternative <strong>to</strong> EDTA <strong>an</strong>d NTA. The benefit <strong>of</strong>GLDA in such formulations is its broad effective pH r<strong>an</strong>ge for the chelation <strong>of</strong> calcium <strong>an</strong>dmagnesium ions equal <strong>to</strong> 4-12.GLDA is directly used in all ordinary industrial cle<strong>an</strong>ing applications. It h<strong>as</strong> furtherpotential uses in the production <strong>of</strong> micronutrient fertilizers (Borowiec & H<strong>of</strong>fm<strong>an</strong>n, 2005;Borowiec, et al. 2007).3.5 MGDAMethylglycinediacetic acid (MGDA) also known <strong>as</strong> glycine-N,N-diacetic acid ism<strong>an</strong>ufactured by BASF the Chemical Comp<strong>an</strong>y <strong>as</strong> a br<strong>an</strong>d name Trilon M. MGDA <strong>an</strong>d itsderivatives are prepared by reacting glycine with formaldehyde <strong>an</strong>d alkali metal cy<strong>an</strong>ide inthe aqueous alkaline medium (Schneider, et al. 1999).The BASF started the new production line in 2008, which c<strong>an</strong> supply over 120,000 <strong>to</strong>ns <strong>of</strong>this complexing agent after 2010.MGDA is readily biodegradable >68% <strong>an</strong>d does not require adapted bacteria fordecomposition, but instead is degraded under the st<strong>an</strong>dard conditions. Consequently, theEU does not require <strong>an</strong>y safety or hazard labelling for MGDA. In the c<strong>as</strong>e <strong>of</strong> MGDA highstability throughout the entire pH r<strong>an</strong>ge <strong>an</strong>d even at elevated temperatures is found (Table3). This sets Trilon M apart from the chemicals like EDDS or IDS which show much lowerstability. Furthermore, the metal complexing power <strong>of</strong> MGDA is stronger th<strong>an</strong> that <strong>of</strong>citrates. The complexes formed by it are characterized by high stability over a wide r<strong>an</strong>ge <strong>of</strong>both pH <strong>an</strong>d temperature. In the c<strong>as</strong>e <strong>of</strong> MGDA the reaction <strong>of</strong> complexes formation c<strong>an</strong> be<strong>as</strong> follows:M 2+ + H n mgda n-3 ⇄ [M(H n mgda)] n-2 , where n=0,1,2 (5)MGDA c<strong>an</strong> be applied <strong>as</strong> <strong>an</strong> excellent ingredient <strong>of</strong> products used for lime scale removing<strong>an</strong>d for CIP (cle<strong>an</strong>ing in place) cle<strong>an</strong>ing processes (due <strong>to</strong> its dissolving power for fattyacids containing stains) (Brochure <strong>of</strong> Trilon M ; Jachuła, et al. 2011).Owing <strong>to</strong> its properties it c<strong>an</strong> be a perfect substitute for phosphates (STPP) in detergents <strong>an</strong>dcle<strong>an</strong>ers <strong>as</strong> well <strong>as</strong> complexing agent used in phy<strong>to</strong>remediation (Cao, et al. 2007, Jachuła, etal. 2011).


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 351The properties <strong>of</strong> the above-described chelating agents are summarised in Table 3.Name Schematic structure Physicochemical characteristicmolecular weight: 337.1appear<strong>an</strong>ce: colourless <strong>to</strong> lightIDSHOOCCOOHyellowN-(1,2-pH: 10.3-11.4dicarboxyethylene)-density: 1.32-1.35 g/mLHOOC N COOHD,L-<strong>as</strong>paragine acidHsolubility in H 2 O: in <strong>an</strong>y ratiobiodegradability: > 80%DSpoly<strong>as</strong>partic acidOONHOHnmolecular weight: [C 4 H 4 NO 3 Na] xappear<strong>an</strong>ce: clear reddishpH: 9.5-10.5density: 1.3 g/mLsolubility in H 2 O: in <strong>an</strong>y ratiobiodegradability: > 60%EDDSethylenediaminedisuccinicacidHOOCCOOHNHHNCOOHCOOHmolecular weight: 358.1appear<strong>an</strong>ce: colourless <strong>to</strong> yellowishpH: 9.2density: 1.26 g/mLsolubility in H 2 O: in <strong>an</strong>y ratiobiodegradability: > 60%GLDAN,N-bis(carboxylmethyl)-L-glutamic acidHOOCCOOHNCOOHCOOHmolecular weight: 351.1appear<strong>an</strong>ce: colourless <strong>to</strong> yellowishpH: 13.5density: 1.38 g/mLsolubility in H 2 O: in <strong>an</strong>y ratiobiodegradability: > 83%MGDAmethylglycinediaceticacidHOOCCOOHNCOOHmolecular weight: 271.0appear<strong>an</strong>ce: clear yellowishpH: 11.0density: 1.31 g/mLsolubility in H 2 O: in <strong>an</strong>y ratiobiodegradability: > 68%Table 3. Physicochemical properties <strong>of</strong> IDS, DS, EDDS, GLDA <strong>an</strong>d MGDA.4. Determination <strong>of</strong> aminopolycarboxylic acidsIt should be mentioned that speciation determination <strong>of</strong> the above presented chelatingagents c<strong>an</strong> be done by the g<strong>as</strong> chroma<strong>to</strong>graphic method using the international st<strong>an</strong>dardISO 16588:2002. According <strong>to</strong> this norm the EDTA, NTA, DTPA, -ADA (-al<strong>an</strong>inediaceticacid) <strong>an</strong>d 1,3-PDTA (1,3-propylenedinitrilotetraacetic acid) <strong>as</strong> well <strong>as</strong> MGDA c<strong>an</strong> bedetermined in drinking, ground, surface <strong>an</strong>d w<strong>as</strong>te water samples. In w<strong>as</strong>te waters <strong>an</strong>d


352Exp<strong>an</strong>ding Issues in Desalinationespecially in pulp <strong>an</strong>d paper w<strong>as</strong>tes EDTA <strong>an</strong>d DTPA c<strong>an</strong> be determined by the liquidchroma<strong>to</strong>graphy method in the form <strong>of</strong> Fe(III) complexes. The high perform<strong>an</strong>ce liquidchroma<strong>to</strong>graphy <strong>an</strong>d electrophoresis methods c<strong>an</strong> be used <strong>to</strong> determine Fe(III)-IDScomplexes in cosmetic products (Sill<strong>an</strong>pää, et al. 1995; Katata, et al. 2006). The rapid UV-Vismethod <strong>of</strong> determination <strong>of</strong> IDS w<strong>as</strong> described in (Reinecke, et al. 2000). The samplescontaining IDS should be contacted with <strong>an</strong> appropriate amount <strong>of</strong> CuSO 4 in order <strong>to</strong> formblue [Cu(ids)] 2- complexes. Their absorption w<strong>as</strong> me<strong>as</strong>ured at 305 nm <strong>an</strong>d 710 nm. Thefound absorption coefficients were equal <strong>to</strong> 327.7 <strong>an</strong>d 67.5 for IDS concentrations in ther<strong>an</strong>ge from 2 mM <strong>to</strong> 16 mM. It w<strong>as</strong> also stated that the absorption <strong>of</strong> the [Cu(ids)] 2-complexes w<strong>as</strong> almost const<strong>an</strong>t at pH values between 4 <strong>an</strong>d 9. The modification <strong>of</strong> thismethod w<strong>as</strong> also proposed <strong>an</strong>d pH <strong>of</strong> the samples w<strong>as</strong> adjusted at 1.3 by phosphoric acid <strong>to</strong>avoid Cu(OH) 2 precipitation. The obtained detection limit w<strong>as</strong> 0.075 mM. The IDS c<strong>an</strong> bealso <strong>an</strong>alysed by the ion chroma<strong>to</strong>graphy (IC) method with isocratic elution (meth<strong>an</strong>ol informate buffor) on the Purospher RP18 column. The method allows separation <strong>of</strong> [R,S]-IDSfrom [R,R]- <strong>an</strong>d [S,S]-IDS isomers. In the paper by (Knepper , et al. 2005) the determination<strong>of</strong> EDTA <strong>an</strong>d DTPA in aqueous solutions by the IC-MS method using the A Supp5 <strong>an</strong>ionexch<strong>an</strong>ge column w<strong>as</strong> described. The adv<strong>an</strong>tages <strong>of</strong> the method are: simple samplepreparation, <strong>an</strong>alysis without derivatization <strong>an</strong>d possibility <strong>of</strong> determination <strong>of</strong> chelatingagents in complex matrices (with high salt content). Qu<strong>an</strong>tification <strong>to</strong> a concentration down<strong>to</strong> the level <strong>of</strong> 1 g/L w<strong>as</strong> achieved by applying the 13 C marked internal st<strong>an</strong>dards.5. Sorption <strong>of</strong> heavy metal ions in the presence <strong>of</strong> IDS, EDDS <strong>an</strong>d GLDA5.1 ExperimentalIn the presented paper the results <strong>of</strong> the sorption <strong>of</strong> heavy metal ions such <strong>as</strong>, Cd(II), Pb(II),Cu(II), Zn(II) <strong>as</strong> well <strong>as</strong> Cr(VI) <strong>an</strong>d As(V) in the presence <strong>of</strong> the above-mentionedcomplexing agents on commercially available <strong>an</strong>ion exch<strong>an</strong>gers <strong>an</strong>d chelating ionexch<strong>an</strong>gers are presented. It provides overview <strong>of</strong> the information obtained using batch <strong>an</strong>dcolumn studies <strong>an</strong>d descriptions <strong>of</strong> various sorption mech<strong>an</strong>isms. The obtained sorptionresults were fitted using the L<strong>an</strong>gmuir, Freundlich, Dubinin-Radushkevich (D-R) or Temkinsorption isotherm models, where<strong>as</strong> the kinetic data were <strong>an</strong>alysed using the sorption kineticLagergren, Ho <strong>an</strong>d McKay, Elovich, Weber <strong>an</strong>d Morris (W-B) <strong>as</strong> well <strong>as</strong> Boyd models. Itshould be stressed that the choice <strong>of</strong> a particular chelating agent is dependent on severalfac<strong>to</strong>rs, including the pH <strong>an</strong>d temperature r<strong>an</strong>ge <strong>of</strong> the system in which they are used,which metal ions are <strong>to</strong> be controlled <strong>an</strong>d the overall economy <strong>of</strong> the system. Therefore, thestudies were carried out considering the effects <strong>of</strong> some import<strong>an</strong>t parameters such <strong>as</strong> ph<strong>as</strong>econtact time, initial concentration, pH <strong>an</strong>d temperature. The aim <strong>of</strong> the presented studiesw<strong>as</strong> <strong>to</strong> compare sorption <strong>of</strong> heavy metal ions in the presence <strong>of</strong> the biodegradable chelatingagents IDS, EDDS <strong>an</strong>d GLDA. After comparison the most suitable treatment ways <strong>of</strong> w<strong>as</strong>tewaters containing heavy metal ions <strong>an</strong>d the complexing agents <strong>of</strong> a new generation will bediscussed. The literature lacks the data concerning sorption <strong>of</strong> heavy metal ions in thepresence <strong>of</strong> biodegradable complexing agents <strong>of</strong> a new generation on ion exch<strong>an</strong>gers.In the investigations the following strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers were used: AmberliteIRA 900, Amberlite IRA 910, Amberjet 4200, Amberjet 4400, Amberjet 4600 <strong>an</strong>d PuroliteA520 E. In the chapter they were also denoted <strong>as</strong>: IRA 900, IRA 910, 4200, 4400, 4600 <strong>an</strong>dA520E. For comparison the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> Lewatite group: Lewatit MonoPlus M 500,Lewatit MonoPlus M 600 <strong>an</strong>d Lewatit MonoPlus MP 500 <strong>as</strong> well <strong>as</strong> the chelating ion


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 353exch<strong>an</strong>gers: Dowex M 4195 <strong>an</strong>d Diphonix were also used (denoted <strong>as</strong> M 500, M 600, MP500, M 4195 <strong>an</strong>d Diphonix, respectively). The physicochemical properties <strong>of</strong> ion exch<strong>an</strong>gersused are summarized in Table 4.Anion exch<strong>an</strong>gerM<strong>an</strong>ufacturerAmberliteIRA 900Rohm <strong>an</strong>dHa<strong>as</strong>, Fr<strong>an</strong>ceAmberliteIRA 910Rohm <strong>an</strong>dHa<strong>as</strong>, Fr<strong>an</strong>ceAmberjet4200Rohm <strong>an</strong>dHa<strong>as</strong>, Fr<strong>an</strong>ceAmberjet4400Rohm <strong>an</strong>dHa<strong>as</strong>, Fr<strong>an</strong>ceAmberjet4600Rohm <strong>an</strong>dHa<strong>as</strong>, Fr<strong>an</strong>cePuroliteA520EPuroliteInternational,Ltd., UKFunctionalNNgroups(CH3)2CN(CH3)3NH2CH2OH(CH3)3 N + (CH3)2C(CH3)3H2CH2OHN + (CH3)3Matrix PS-DVB PS-DVB PS-DVB PS-DVB PS-DVB PS-DVBStructure macroporous macroporous gel gel gel macroporousCapacity[eq/L]1.0 1.0 1.3 1.4 1.25 0.9Bead size[m]650-800 530-800 600-800 530-630 600-800 300-1200100 [%]0,00 0,2 0,4 0,6 0,8 1,0Zinggcl<strong>as</strong>sification80604020100 [%]80604020806040208060402080604020100 [%]80604020100 [%]0,00 0,2 0,4 0,6 0,8 1,0100 [%]0,00 0,2 0,4 0,6 0,8 1,0100 [%]0,00 0,2 0,4 0,6 0,8 1,000,00 0,2 0,4 0,6 0,8 1,000,00 0,2 0,4 0,6 0,8 1,00000pH r<strong>an</strong>ge 0-14 0-14 0-14 0-14 0-14 0-14Max.temp.r<strong>an</strong>ge[K]350 350 350 350 350 350BET surface area[m 2 /g]36.00 39.25 5.27 1.96 1.47 23.52Aver. porediameter[nm]15.45 16.02 9.03 6.14 <strong>17</strong>.53 16.37Table 4. Physicochemical properties <strong>of</strong> used <strong>an</strong>ion exch<strong>an</strong>gers.The detailed characteristics <strong>of</strong> Lewatit MonoPlus M 500, Lewatit MonoPlus M 600 <strong>an</strong>dLewatit MonoPlus MP 500 <strong>as</strong> well <strong>as</strong> Dowex M4195 <strong>an</strong>d Diphonix were presented in(Kołodyńska, 2009a, 2010b, 2011b). The metals chosen for the evaluation were Cu(II), Zn(II),Pb(II), Cd(II) <strong>as</strong> well <strong>as</strong> Cr(VI) <strong>an</strong>d As(V) due <strong>to</strong> their occurrence <strong>an</strong>d abund<strong>an</strong>ce in w<strong>as</strong>tewater streams. The sorption tests included: evaluation <strong>of</strong> the rate <strong>an</strong>d extent <strong>of</strong> complexessorption on ion exch<strong>an</strong>gers (%S), single vs. multi-component sorption, pH <strong>an</strong>d temperatureeffects, interfering ions influence <strong>as</strong> well <strong>as</strong> exposition <strong>to</strong> UV light. The rate <strong>of</strong> metalcomplexes sorption w<strong>as</strong> me<strong>as</strong>ured under the batch <strong>an</strong>d the column conditions.The objectives <strong>of</strong> the isotherm studies were <strong>to</strong> describe <strong>an</strong>d qu<strong>an</strong>tify the partition <strong>of</strong> metalsbetween the liquid ph<strong>as</strong>e <strong>an</strong>d the ion exch<strong>an</strong>ger ph<strong>as</strong>es with varying concentrations, <strong>an</strong>d <strong>to</strong>determine the equilibrium capacity <strong>of</strong> the ion exch<strong>an</strong>gers for the metal complexes. In order<strong>to</strong> compare the surface morphologies <strong>of</strong> the studied ion exch<strong>an</strong>gers before <strong>an</strong>d after thesorption process AFM (A<strong>to</strong>mic Force Microscopy) sc<strong>an</strong>s were made. The infraredspectroscopy w<strong>as</strong> used <strong>to</strong> identify the ch<strong>an</strong>ges after the sorption process. The details for theexperimental procedures were presented in (Kołodyńska, et al. 2009; Kołodyńska, 2009ab;2010a-c; 2011a-d).


354Exp<strong>an</strong>ding Issues in Desalination5.2 Sorption <strong>of</strong> heavy metal complexes with IDS, EDDS <strong>an</strong>d GLDA – the batch studies5.2.1 pH effectThe chelating ability <strong>of</strong> IDS, EDDS <strong>an</strong>d GLDA depends on the pH value, however, in thec<strong>as</strong>e <strong>of</strong> the use <strong>of</strong> <strong>an</strong>ion exch<strong>an</strong>gers <strong>as</strong> potential materials for heavy metal ions removal onlycomplexes with more negative charge will be sorbed effectively. As h<strong>as</strong> already been shown,IDS, EDDS <strong>an</strong>d GLDA form 1:1 complexes with M(II). The effective regions for forming thistype <strong>of</strong> complexes are above 4. As sorption <strong>of</strong> <strong>an</strong>ionic complexes on<strong>to</strong> the selected ionexch<strong>an</strong>gers depends on the acidity <strong>of</strong> the medium, pH <strong>of</strong> the metal complexes solution mustbe rigorously controlled. Therefore, <strong>to</strong> determine the optimum working conditions forsorption <strong>of</strong> the [ML] 2- <strong>an</strong>d [ML] - complexes by Lewatit MonoPlus M 500, Lewatit MonoPlusM 600, Lewatit MonoPlus MP 500, Amberlite IRA 900, Amberlite IRA 910, Amberjet 4200,Amberjet 4400, Amberjet 4600 <strong>an</strong>d Purolite A520E, the effect <strong>of</strong> acidity w<strong>as</strong> studied. Theexemplary results for the Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS <strong>an</strong>d EDDSsorption on Amberlite IRA 900 (<strong>an</strong>ion exch<strong>an</strong>ger <strong>of</strong> type 1) <strong>an</strong>d Amberlite IRA 910 (<strong>an</strong>ionexch<strong>an</strong>ger <strong>of</strong> type 2) are presented in Fig.8a-d.Fig. 8. a-d Effect <strong>of</strong> pH on the sorption capacities <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II)complexes with IDS <strong>an</strong>d EDDS on the Amberlite IRA 900 (a, b) <strong>an</strong>d Amberlite IRA 910 (c, d)(c 0 110 -3 mol/L for IDS <strong>an</strong>d c 0 210 -3 mol/L for EDDS complexes, shaking time 180 min,shaking speed 180 rpm, room temperature).It w<strong>as</strong> found that the sorption capacity incre<strong>as</strong>ed in the pH r<strong>an</strong>ge from 4.0 <strong>to</strong> 9.0 for IDS <strong>an</strong>dGLDA (not presented) complexes <strong>an</strong>d achieved the maximum values at pH >6.0. For EDDS


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 355complexes the sorption effectiveness slightly decre<strong>as</strong>es with the incre<strong>as</strong>ing pH <strong>an</strong>d theoptimal sorption conditions were at pH >4.0. The pHs <strong>of</strong> the metal complex solutions werealso me<strong>as</strong>ured during the sorption process. For the initial pH values from 4 <strong>to</strong> 12 thedecre<strong>as</strong>e in the equilibrium pH w<strong>as</strong> observed due <strong>to</strong> the rele<strong>as</strong>e <strong>of</strong> the Cl - ions from theresin. Therefore, for the studied strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers from the Lewatite,Amberjet <strong>an</strong>d Amberlite groups the following reactions <strong>of</strong> the process c<strong>an</strong> be written:the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1:the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 2:2RN + (CH 3 ) 3 Cl - + [ML] 2- ⇄ [RN + (CH 3 ) 3 ] 2 [ML] 2- + 2Cl - (6)RN + (CH 3 ) 3 Cl - + [MHL] - ⇄ [RN + (CH 3 ) 3 ][MHL] - + Cl - (7)2RN + (CH 3 ) 2 CH 2 CH 2 OHCl - + [ML] 2- ⇄ [RN + (CH 3 ) 2 CH 2 CH 2 OH] 2 [ML] 2- + 2Cl - (8)RN + (CH 3 ) 2 CH 2 CH 2 OHCl - + [MHL] - ⇄ [RN + (CH 3 ) 2 CH 2 CH 2 OH][MHL] - + Cl - (9)where R is the resin matrix.The highest values <strong>of</strong> the pH decre<strong>as</strong>e were found for the initial pH equal <strong>to</strong> 11-12 <strong>an</strong>d for theIDS complexes. For these values the decre<strong>as</strong>e <strong>of</strong> the complexes removal w<strong>as</strong> also observed. Inthe system containing, for example Cu(II) ions without the presence <strong>of</strong> complexing agents,their precipitation in the form <strong>of</strong> Cu(OH) 2 should be observed at pH > 6.5. However, in thepresence <strong>of</strong> complexing agents the hydrolysis accomp<strong>an</strong>ied by precipitation <strong>of</strong> metalhydroxides does not occur. It is obviously connected with the stability const<strong>an</strong>ts <strong>of</strong> formedcomplexes (Table 3), which are the lowest for IDS. For Lewatit MonoPlus M 500, LewatitMonoPlus M 600, Lewatit MonoPlus MP 500, Amberlite IRA 900 <strong>an</strong>d Amberlite IRA 910 theobtained results were almost <strong>an</strong>alogous <strong>to</strong> those for Amberjet 4200, Amberjet 4400, Amberjet4600 <strong>an</strong>d Purolite A520E <strong>an</strong>ion exch<strong>an</strong>gers <strong>an</strong>d presented in (Kołodyńska, et al. 2009,Kołodyńska, 2011d). However, in the c<strong>as</strong>e <strong>of</strong> the chelating ion exch<strong>an</strong>gers Dowex M 4195 <strong>an</strong>dDiphonix a slight decre<strong>as</strong>e <strong>of</strong> the sorption effectiveness with the incre<strong>as</strong>ing pH values w<strong>as</strong>observed. Additionally, it w<strong>as</strong> also found that at lower initial concentrations the amount <strong>of</strong> thesorbed complexes decre<strong>as</strong>es while the pH incre<strong>as</strong>es. At higher concentrations, the sorbedamount does not incre<strong>as</strong>e (up <strong>to</strong> 210 -2 mol/L) due <strong>to</strong> the low concentration <strong>of</strong> free functionalgroups near the saturation stage. On the other h<strong>an</strong>d, the incre<strong>as</strong>e <strong>of</strong> the concentration <strong>of</strong> thesolution is accomp<strong>an</strong>ied by further pH decre<strong>as</strong>ing. Since Cl - ions are less competitive withrespect <strong>to</strong> the metal complexes with IDS, EDDS <strong>an</strong>d GLDA in the ion exch<strong>an</strong>ge process, the ionexch<strong>an</strong>ge incre<strong>as</strong>es or stays const<strong>an</strong>t in spite <strong>of</strong> pH lowering.5.2.2 Effect <strong>of</strong> interfering ionsBesides the effect <strong>of</strong> pH, the sorption <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS,GLDA <strong>an</strong>d EDDS is strongly affected by the interfering ions presence. In the c<strong>as</strong>e <strong>of</strong> the systemwithout interfering ions, strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers have high affinity for <strong>an</strong>ioniccomplexes <strong>of</strong> [ML] 2- or [MHL] - types. At the initial concentration <strong>of</strong> 1x10 -3 M, almost 100 % <strong>of</strong>the sorption percentage (%S) <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) in the presence <strong>of</strong> IDS w<strong>as</strong>observed for the studied <strong>an</strong>ion exch<strong>an</strong>gers. However, only 55-60% removal w<strong>as</strong> found in thepresence <strong>of</strong> SO 42- ions, while sorption in the presence <strong>of</strong> Cl - ions w<strong>as</strong> reduced minimally whichconfirms the results obtained for pH ch<strong>an</strong>ges. In the presence <strong>of</strong> NO 3- interfering ions S%


356Exp<strong>an</strong>ding Issues in Desalinationch<strong>an</strong>ges in the r<strong>an</strong>ge <strong>of</strong> 81-92% depending on the <strong>an</strong>ion exch<strong>an</strong>ger used. The described resultsfor the IDS complexes presented in Fig.9, show the general trend which is consistent withthose obtained for other complexing agents. The %S values are also in agreement with theaffinity <strong>of</strong> the <strong>an</strong>ion exch<strong>an</strong>gers for <strong>an</strong>ions (Helfferich, 1962; Minczewski et al. 1982):the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1:ClO 4- > I - > HSO 4- > NO 3- > Br - > NO 2- > Cl - > HCO 3- > CH 3 COO - > OH - > F - ,the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 2:ClO 4- > I - > HSO 4- > NO 3- > Br - > NO 2- > Cl - > HCO 3- > OH - > CH 3 COO - > F - .Fig. 9. Effect <strong>of</strong> interfering ions on the sorption percentage (%S) <strong>of</strong> Cu(II) complexes withIDS on the Lewatit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP 500,Amberlite IRA 900, Amberlite IRA 910, Amberjet 4200, Amberjet 4400, Amberjet 4600 <strong>an</strong>dPurolite A520E (c 0 110 -3 mol/L for IDS complexes, shaking time 180 min, shaking speed 180rpm, room temperature).The multi-component studies <strong>of</strong> sorption <strong>of</strong> metal complexes on the selected <strong>an</strong>ionexch<strong>an</strong>gers are also very import<strong>an</strong>t for <strong>as</strong>sessing the degree <strong>of</strong> interferences in w<strong>as</strong>te waterstreatment. In the c<strong>as</strong>e <strong>of</strong> the binary (Cu(II)-Zn(II)) <strong>an</strong>d quaternary (Cu(II)-Zn(II)-Cd(II)-Pb(II)) sorption studies <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS, EDDS <strong>an</strong>dGLDA, their co-sorption induces a decre<strong>as</strong>e in equilibrium sorption capacity. However, thepercentage <strong>of</strong> decre<strong>as</strong>e depends on co-metal ion present in the system. Other authors alsopresented such competitive sorption in the multi-component systems. This c<strong>an</strong> be connectedwith the structure <strong>of</strong> the sorbed complexes <strong>an</strong>d the e<strong>as</strong>e with which they are formed. Itshould be stated that the ionic radius <strong>of</strong> Pb(II) equal <strong>to</strong> 1.12Å is greater th<strong>an</strong> that for Cd(II)0.97Å, Zn(II) 0.83Å <strong>an</strong>d Cu(II) 0.72Å. Pb(II) h<strong>as</strong> also the maximum hydrated radius <strong>an</strong>dmolecular weight in comparison <strong>to</strong> Cd(II), Zn(II) <strong>an</strong>d Cu(II). Therefore, its connection withsuch lig<strong>an</strong>ds <strong>as</strong> EDDS or DS may be difficult taking in<strong>to</strong> account the spatial re<strong>as</strong>ons. This isevidenced, among others by large values <strong>of</strong> the maximum sorption capacity <strong>of</strong> the chelatingion exch<strong>an</strong>ger Diphonix <strong>to</strong>wards Pb(II) ions (357 mg/g) in the presence <strong>of</strong> EDDS compare <strong>to</strong>those obtained for Amberjet 4200 (216 mg/g), Amberjet 4400 (159 mg/g), Amberjet 4600(164 mg/g) <strong>an</strong>d much higher <strong>to</strong> the Lewatit MonoPlus M 500 (128 mg/g), Lewatit MonoPlusM 600 (139 mg/g) <strong>an</strong>d Lewatit MonoPlus MP 500 (120 mg/g).


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 3575.2.3 Anion exch<strong>an</strong>ger properties - particle size, cross-linking, type <strong>of</strong> functionalgroupsThe size <strong>of</strong> the polymer droplets formed during polymerisation <strong>an</strong>d thus the size <strong>of</strong> thebeads depend on the polymerisation technique, the suspension medium <strong>an</strong>d the monomerconcentration. Several producers now <strong>of</strong>fer ion exch<strong>an</strong>ge resins with a very uniform sizedistribution. The example <strong>of</strong> this type <strong>of</strong> resins are Amberjets (Rohm <strong>an</strong>d Ha<strong>as</strong>) or LewatitMonoPlus m<strong>an</strong>ufactured by L<strong>an</strong>xess. St<strong>an</strong>dard ion exch<strong>an</strong>ge resins have the me<strong>an</strong> particlesizes <strong>of</strong> 500-800 m. In the presented studies the used <strong>an</strong>ion exch<strong>an</strong>gers possess thefollowing bead sizes: 650-800 m – Amberlite IRA 900, 530-800 m – Amberlite IRA 910,600-800 m – Amberjet 4200, 530-630 m – Amberjet 4400, 600-800 m – Amberjet 4600 <strong>an</strong>d300-1200 m – Purolite A520E. The sc<strong>an</strong>s <strong>of</strong> the Amberjet 4200 <strong>an</strong>d Amberjet 4400 <strong>an</strong>ionexch<strong>an</strong>gers with the uniform size are presented in Fig.10a-b.(a)(b)Fig. 10. The sc<strong>an</strong>s <strong>of</strong> the Amberjet 4200 (a) <strong>an</strong>d Amberjet 4400 (b) <strong>an</strong>ion exch<strong>an</strong>gers(http://dardel.info/IX/).Using AWK 3D Analyser (Kamika Instruments, Pol<strong>an</strong>d) for determining size <strong>an</strong>d shape <strong>of</strong>particles b<strong>as</strong>ed on the Zingg cl<strong>as</strong>sification the gr<strong>an</strong>ulometric <strong>an</strong>alysis w<strong>as</strong> performed (Zingg,1935). The Zingg cl<strong>as</strong>sification is b<strong>as</strong>ed on the proportions between three dimensions <strong>of</strong> ionexch<strong>an</strong>ger beads a – the longest, b – me<strong>an</strong> <strong>an</strong>d c – the shortest. However, the following<strong>as</strong>sumptions should be made: (i) beads with the proportions b/a > 0.67 <strong>an</strong>d c/b > 0.67 aresimilar <strong>to</strong> spheres, (ii) for b/a = c/b = 1 beads are spheres (iii) for b/a > 0.67 <strong>an</strong>d c/b < 0.67beads are similar <strong>to</strong> discs, (iv) for b/a < 0.67 <strong>an</strong>d c/b > 0.67 beads are similar <strong>to</strong> cylinders, <strong>an</strong>d(v) for b/a < 0.67 <strong>an</strong>d c/b < 0.67 beads are similar <strong>to</strong> blades. Volume fractions <strong>of</strong> beads for b/a= 1 were shown in the figures in Table 4 (in these figures x axis presents c/b). As follows fromthe obtained results the bead size <strong>of</strong> the ion exch<strong>an</strong>gers used h<strong>as</strong> <strong>an</strong> approximately theGaussi<strong>an</strong> distribution. It w<strong>as</strong> found that with the incre<strong>as</strong>e <strong>of</strong> beads dimensions, the volumefractions <strong>of</strong> disc-similar beads decre<strong>as</strong>e <strong>an</strong>d the beads are more spherical. For example, forAmberlite IRA 900 it is 45% at c/b=0.6-0.7; for Amberlite IRA 910 38%, for Amberjet 420036,5% <strong>an</strong>d 40% at c/b=0.7-0.8; for Amberjet 4400 48% <strong>an</strong>d 32% at c/b=0.7-0.8; for Amberjet 460038,8% <strong>an</strong>d 28.6 at c/b=0.5-0.6; for Purolite A520E 47% <strong>an</strong>d 27.5% at c/b=0.5-0.6. Moreover, forchelating ion exch<strong>an</strong>gers these values are <strong>as</strong> follows: for Dowex M4195 43% at c/b=0.6-0.7 <strong>an</strong>d33% at c/b=0.5-0.6; for Diphonix 44% at c/b=0.6-0.7. The ideal spheres do not occur.The particle size <strong>of</strong> the ion exch<strong>an</strong>ger material <strong>an</strong>d its uniformity are the most import<strong>an</strong>tparameters influencing on hydraulics <strong>an</strong>d kinetics <strong>of</strong> the ion exch<strong>an</strong>ge process especially inthe column mode technique. It is also obvious that the flow rate decre<strong>as</strong>es with thedecre<strong>as</strong>ing particle size, however, smaller particles have larger outer surface, but cause


358Exp<strong>an</strong>ding Issues in Desalinationlarger head loss in the column processes. In the investigations the influence <strong>of</strong> size <strong>an</strong>dshape <strong>of</strong> the used <strong>an</strong>ion exch<strong>an</strong>gers on sorption effectiveness w<strong>as</strong> compared b<strong>as</strong>ed on theresults <strong>of</strong> sorption <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS. To this aim,Amberjet 4200 <strong>an</strong>d Amberjet 4400 strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1 were used. Theobtained results are presented in Fig. 11a-b <strong>an</strong>d for the complexes with GLDA in Fig.12.Fig. 11. a-b Breakthrough curves <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS onthe Amberjet 4200 (a) <strong>an</strong>d Amberjet 4400 (b) <strong>an</strong>ion exch<strong>an</strong>gers (c 0 110 -3 mol/L for IDScomplexes, bed volume 10 mL, flow rate 0.6 mL/min)Fig. 12. Comparison <strong>of</strong> the m<strong>as</strong>s distribution coefficients (D g ) for sorption <strong>of</strong> Cu(II), Zn(II),Cd(II) <strong>an</strong>d Pb(II) complexes with GLDA on the Amberjet 4200 <strong>an</strong>d Amberjet 4400 <strong>an</strong>ionexch<strong>an</strong>gers.It w<strong>as</strong> found that the <strong>an</strong>ion exch<strong>an</strong>ger with a large size <strong>of</strong> beads <strong>an</strong>d moreover,high percentage <strong>of</strong> spherical beads is characterized by better sorption properties <strong>to</strong>wardthe GLDA complexes with Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II). Both <strong>an</strong>ion exch<strong>an</strong>gers exhibithigher affinity for the Cu(II) complexes with IDS th<strong>an</strong> for the corresponding Zn(II) one(Fig.11a-b). These breakthrough curves indicate also that their affinity for the Cu(II)complexes is higher in the c<strong>as</strong>e <strong>of</strong> Amberjet 4200 (c/c o =0,5; V= about 5560 mL) th<strong>an</strong>Amberjet 4400 (c/c o =0,5; V= about 5400 mL). The affinities for the complexes with GLDAare arr<strong>an</strong>ged in a similar order which is confirmed by the m<strong>as</strong>s distribution coefficients (D g )(Fig.12). The obtained breakthrough curves have typical S-shape. As follows from Fig.11a-bthe UV exposition does not have a signific<strong>an</strong>t effect on the decomposition <strong>of</strong> the complexesin the resin ph<strong>as</strong>e.In the w<strong>as</strong>te water treatment polystyrene ion exch<strong>an</strong>gers usually have a DVB (divinylbenzene)concentration <strong>of</strong> ca. 8 %. Ion exch<strong>an</strong>gers with a higher degree <strong>of</strong> cross-linking (10-12%) areused <strong>to</strong> obtain water <strong>of</strong> very high purity, <strong>an</strong>d with a lower degree <strong>of</strong> cross-linking (5-7%) fors<strong>of</strong>tening. In the presented studies the <strong>an</strong>ion exch<strong>an</strong>gers have probably the same %DVB (thisparameter is not given by the m<strong>an</strong>ufacturers) <strong>an</strong>d therefore it is difficult <strong>to</strong> estimate.


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 359Among the fac<strong>to</strong>rs, which strongly affect selectivity <strong>of</strong> <strong>an</strong>ion exch<strong>an</strong>gers are type <strong>of</strong>functional groups, active site spacing <strong>an</strong>d hydrophobic or hydrophilic nature <strong>of</strong> the resinmatrix. The resins with the quaternary ammonium groups –N + (CH 3 ) 3 are strongly b<strong>as</strong>ic(Lewatit MonoPlus M 500, Lewatit MonoPlus MP 500, Amberlite IRA 900, Amberjet 4200,Amberjet 4400, Purolite A520E). These are also known <strong>as</strong> type 1. The strongly b<strong>as</strong>ic <strong>an</strong>ionexch<strong>an</strong>gers possessing –N + (CH 3 ) 2 CH 2 CH 2 OH groups (Lewatit MonoPlus M 600, AmberliteIRA 910, Amberjet 4600,) are denoted <strong>as</strong> type 2. The behaviour <strong>of</strong> the above-mentionedgroups depends mainly on the acidity <strong>of</strong> the solution. The <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1 aremore strongly b<strong>as</strong>ic compared <strong>to</strong> type 2 <strong>an</strong>d have the greatest affinity for weak acids.However, the efficiency <strong>of</strong> their regeneration <strong>to</strong> the hydroxide form is lower. Taking thisparameter in<strong>to</strong> account the effect <strong>of</strong> this type <strong>of</strong> functional groups w<strong>as</strong> compared for Cu(II),Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes(II) with IDS, EDDS <strong>an</strong>d GLDA. As expected, under theseconditions the most effective results were obtained for the <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1. Forexample, the amount <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexes with IDS sorbed onAmberlite IRA 900 w<strong>as</strong> 4.32 mg/g; 3.25 mg/g; 18.51 mg/g <strong>an</strong>d 24.35 mg/g where<strong>as</strong> only4.26 mg/g; 3.68 mg/g; <strong>17</strong>.96 mg/g <strong>an</strong>d 21.35 mg/g on Amberlite IRA 910. The <strong>an</strong>alogousresults were obtained in the c<strong>as</strong>e <strong>of</strong> EDDS <strong>an</strong>d GLDA complexes. Comparing the stronglyb<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers supplied by different m<strong>an</strong>ufacturers, it w<strong>as</strong> found that only in somec<strong>as</strong>es Amberlite <strong>an</strong>ion exch<strong>an</strong>gers are slightly less effective th<strong>an</strong> Amberjet <strong>an</strong>ion exch<strong>an</strong>gers(4.32 mg/g <strong>an</strong>d 5.<strong>17</strong> mg/g for Amberlite IRA 900 <strong>an</strong>d Amberjet 4200 in the c<strong>as</strong>e <strong>of</strong> Cu(II)-IDS sorption, respectively). However, the strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers from Lewatitgroup are characterized by the highest sorption capacities for these complexes. For example,for Cu(II)-EDDS complexes at the initial concentration 2x10 -3 M the obtained sorptioncapacities for Lewatit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP500 <strong>an</strong>d Amberjet 4200, Amberjet 4400, Amberjet 4600 are <strong>as</strong> follows: 12.66 mg/g; 12.58mg/g; 12.72 mg/g <strong>an</strong>d 12.14 mg/g; 11.85 mg/g; 11.43 mg/g, respectively. On the otherh<strong>an</strong>d, taking in<strong>to</strong> account the matrix <strong>of</strong> the used <strong>an</strong>ion exch<strong>an</strong>gers (gel or macroporous)such <strong>as</strong> for Lewatit MonoPlus M 500 <strong>an</strong>d Lewatit MonoPlus MP 500, the <strong>an</strong>ion exch<strong>an</strong>gers<strong>of</strong> macroporous type are slightly more effective th<strong>an</strong> the gel ones.5.3 Kinetic evaluationFrom the industrial point <strong>of</strong> view, where a solution flows through the ion exch<strong>an</strong>ger theequilibrium is not necessarily reached <strong>an</strong>d the results are influenced by kinetic consideration.Therefore, the experimental data for the M(II)-L=1:1 complexes sorption on the <strong>an</strong>ionexch<strong>an</strong>gers were fitted with the pseudo first-order (PF-order), pseudo second-order (PS-order)models proposed by Lagergren <strong>an</strong>d Ho <strong>an</strong>d McKay according (Bl<strong>an</strong>chard, et al. 1984;Lagergren, 1898) <strong>as</strong> well <strong>as</strong> the intraparticle Webber <strong>an</strong>d Morris (W-B) model (Weber &Morris, 1963). The kinetic parameters c<strong>an</strong> be obtained by both linear <strong>an</strong>d non-linear regression<strong>an</strong>alysis. Linear regression is frequently used <strong>to</strong> determine the best fitting kinetic model, <strong>an</strong>dthe method <strong>of</strong> le<strong>as</strong>t squares is used for finding the parameters <strong>of</strong> the kinetic models. In the c<strong>as</strong>e<strong>of</strong> PS-order kinetic const<strong>an</strong>t, q e <strong>an</strong>d k 2 , they were calculated from the following plots: t/qt vs. t(PS-order <strong>of</strong> type 1), 1/q t vs. 1/t (PS-order <strong>of</strong> type 2), qt vs. qt/t (PS-order <strong>of</strong> type 3), qt/t vs. qt(PS-order <strong>of</strong> type 4), respectively. However, <strong>as</strong> w<strong>as</strong> stated taking in<strong>to</strong> account the sum <strong>of</strong> thesquares <strong>of</strong> errors (SSE), except for the PS-order equation <strong>of</strong> type 1, no other model provided abetter fit <strong>to</strong> the experimental kinetic data. In these c<strong>as</strong>es the SSE values were for the PS-ordermodel lower th<strong>an</strong> for the PF-order one. Moreover, in the c<strong>as</strong>e <strong>of</strong> the intraparticle kinetic model<strong>of</strong> Weber <strong>an</strong>d Morris, the linear part <strong>of</strong> the plot <strong>of</strong> q t vs. t 1/2 does not p<strong>as</strong>s through the origin.


360Exp<strong>an</strong>ding Issues in DesalinationOn the plots three different regions: before the equilibrium, the intraparticle diffusion <strong>an</strong>d thestage <strong>to</strong> the final equilibrium c<strong>an</strong> be distinguished. Therefore, it could be stated that theintraparticle diffusion is not the only rate controlling step. Similar results were obtainedapplying the Boyd model (Boyd, et al. 1947; Reichenberg, 1953). B<strong>as</strong>ed on it, two rate limitingsteps for ion exch<strong>an</strong>ge kinetics – intradiffusion <strong>of</strong> counter-ions within the ion exch<strong>an</strong>ger <strong>an</strong>dinterdiffusion <strong>of</strong> counter-ions in the adherent films c<strong>an</strong> be distinguished. In this c<strong>as</strong>e thecalculated diffusion rate const<strong>an</strong>ts B t , which are related <strong>to</strong> the internal diffusion processplotted vs. t, do not give the lines which p<strong>as</strong>s through the origin. This indicates that the ratelimiting process is connected with film diffusion. It is well known that the film diffusion is arate controlling step for the value <strong>of</strong> film diffusion coefficient D f in the r<strong>an</strong>ge 10 -6 –10 -8 cm 2 /s.On the other h<strong>an</strong>d, the pore diffusion is rate controlling, the pore diffusion coefficient D p is inthe r<strong>an</strong>ge 10 -11 –10 -13 cm 2 /s. For sorption processes <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) complexeswith IDS, EDDS <strong>an</strong>d GLDA, the values <strong>of</strong> film D f <strong>an</strong>d pore D p diffusion coefficients werefound <strong>to</strong> be in the r<strong>an</strong>ge 10 -6 –10 -7 cm 2 /s <strong>an</strong>d 10 -8 –10 -9 cm 2 /s, respectively which indicates thefilm diffusion h<strong>as</strong> some influence in the rate determining step. In order <strong>to</strong> establish affinity <strong>of</strong><strong>an</strong>ion exch<strong>an</strong>gers for the above-mentioned complexes, the q 2 values for the PS-order model <strong>of</strong>type 1 were compared <strong>an</strong>d presented in Fig.13a-c.Fig. 13. a-c Comparison <strong>of</strong> sorption capacities q 2 (mg/g) <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II)complexes with IDS (a), EDDS (b) <strong>an</strong>d GLDA (c) on the studied <strong>an</strong>ion exch<strong>an</strong>gers (c 0 110 -3mol/L for IDS <strong>an</strong>d GLDA complexes <strong>as</strong> well <strong>as</strong> c 0 210 -3 mol/L for EDDS complexes,shaking speed 180 rpm, shaking time 1-60 min, room temperature).


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 361Kinetic sorption experiments were also carried out with the incre<strong>as</strong>ed complexesconcentrations from 110 -3 mol/L <strong>to</strong> 210 -2 mol/L, with the ion exch<strong>an</strong>ger amount <strong>of</strong> 10 g/L,time 120 min, pH without adjustment, at room temperature. With <strong>an</strong> incre<strong>as</strong>e <strong>of</strong> metalcomplexes concentrations a continuous incre<strong>as</strong>e in the amount adsorbed per unit m<strong>as</strong>s <strong>of</strong>ion exch<strong>an</strong>ger w<strong>as</strong> observed till the equilibrium w<strong>as</strong> achieved. The amount <strong>of</strong> Cu(II)-IDScomplexes sorbed on Dowex M4195 <strong>an</strong>d Diphonix at different initial concentrations isshown in Fig.14a-b.Fig. 14. a-b Effect <strong>of</strong> the ph<strong>as</strong>e contact time on the sorption capacities <strong>of</strong> Cu(II)-IDScomplexes at different initial concentrations on the Dowex M 4195 (a) <strong>an</strong>d Diphonix (b) (c 0110 -3 mol/L-210 -2 mol/L, shaking speed 180 rpm, shaking time 1-120 min, roomtemperature).The sorption kinetics data <strong>of</strong> these complexes at different initial concentrations fitted <strong>to</strong>different kinetic models are presented in Fig. 15a-f. As follows from the obtained results forthe most suitable kinetic model, the rate k 2 values decre<strong>as</strong>e with the incre<strong>as</strong>ing initialconcentrations, while h incre<strong>as</strong>es.In the c<strong>as</strong>e <strong>of</strong> the chelating resin Dowex M 4195 possessing the bis(2-pyridylmethyl)amine(BPMA) functional groups, depending on the pH value, nitrogen a<strong>to</strong>ms are capable <strong>of</strong>coordinating metal ions. B<strong>as</strong>ed on the pK a values <strong>of</strong> bis(2-pyridylmethyl)amine (pK 1 =0.5,pK 2 =2.2, pK 3 =3.4), it c<strong>an</strong> be stated that at low pH values three nitrogen a<strong>to</strong>ms would bepro<strong>to</strong>nated, while in the middle r<strong>an</strong>ge <strong>of</strong> pH only one:RN(BPMA) 2 + H + ⇄ RNH + (BPMA) 2 (10)Therefore, in the presence <strong>of</strong> complexing agents decomposition <strong>of</strong> the complexes should betaken in<strong>to</strong> account:[ML] 2- ⇄ M 2+ + L 4- (11)[MHL] - ⇄ M 2+ + HL 3- (12)[ML] - ⇄ M 2+ + L 3- (13)RNH + (BPMA) 2 + M 2+ ⇄ [RN(BPMA) 2 ] 2 →M 2+ + H + (14)The ionic interaction mech<strong>an</strong>ism between the pro<strong>to</strong>nated amines <strong>an</strong>d the <strong>an</strong>ionic complexes<strong>of</strong> the [ML] 2- , [MHL] - <strong>an</strong>d [ML] - is also possible. The appropriate reaction c<strong>an</strong> be <strong>as</strong> follows:


362Exp<strong>an</strong>ding Issues in Desalination2RNH + (BPMA) 2 Cl - + [ML] 2- ⇄ [RNH + (BPMA) 2 ] 2 [ML] 2- + 2Cl - (15)orRNH + (BPMA) 2 Cl - + [MHL] - ⇄ [RNH + (BPMA) 2 ][MHL] - + Cl - (16)RNH + (BPMA) 2 Cl - + [ML] - ⇄ [RNH + (BPMA) 2 ][ML] - + Cl - (<strong>17</strong>)The <strong>an</strong>alogous mech<strong>an</strong>ism <strong>of</strong> sorption is in the c<strong>as</strong>e <strong>of</strong> Diphonix chelating ion exch<strong>an</strong>ger:R(PO 3 H 2 ) 22- + M 2+ ⇄ R(PO 3 H 2 ) 2- →M 2+ (18)Fig. 15. a-f The comparison <strong>of</strong> the PS-order, Weber <strong>an</strong>d Morris <strong>as</strong> well <strong>as</strong> Elovich kineticmodels for the sorption <strong>of</strong> Cu(II)-IDS complexes at different initial concentrations on theDowex M 4195 (a-c) <strong>an</strong>d Diphonix (d-f) (c 0 110 -3 mol/L-210 -2 mol/L, shaking speed 180rpm, room temperature).As for sorption <strong>of</strong> As(V) ions, the obtained results reveal that rapid sorption <strong>of</strong> As(V) onstrongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers, similarly <strong>to</strong> the Cr(VI) sorption, is attributed <strong>to</strong> the surfacesites initially available <strong>an</strong>d is very large compare <strong>to</strong> the concentration <strong>of</strong> sorbed ions. However,the effect <strong>of</strong> the complexing agent added is neglectable (the obtained results are not presented).


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 3635.4 Adsorption isothermTo investigate the sorption capacity, various concentrations <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>dPb(II) complexes with IDS, EDDS <strong>an</strong>d GLDA were contacted with the studied ionexch<strong>an</strong>gers. For interpretation the L<strong>an</strong>gmuir, Freundlich, Dubinin-Radushkevich (D-R) <strong>an</strong>dTemkin sorption isotherm models were used. The sorption data were drawn <strong>as</strong> the plots <strong>of</strong>c e /q e vs. c e (L<strong>an</strong>gmuir model); log q e vs. log c e (Freundlich model); ln q e vs. 2 (D-R model)<strong>an</strong>d q e vs. ln c e (Temkin model). The exemplary results for the Cu(II)-IDS, EDDS or GLDAsystems for Amberjet 4200 <strong>an</strong>d Lewatit MonoPlus M 600 <strong>an</strong>ion exch<strong>an</strong>gers are presented inFig. 16a-c <strong>an</strong>d e-f, respectively.Fig. 16. a-f The isotherm <strong>of</strong> Cu(II)-IDS, EDDS <strong>an</strong>d GLDA complexes sorption on Amberjet4200 (a-c) <strong>an</strong>d Lewatit MonoPlus M 600 (d-f) fitted by the L<strong>an</strong>gmuir, Freundlich, D-R <strong>an</strong>dTemkin models (c 0 110 -3 M–210 -2 M, shaking speed 180 rpm, shaking time 120 min, roomtemperature).As follows from the obtained results the L<strong>an</strong>gmuir equation better fit the experimental datath<strong>an</strong> the Freundlich, D-R or Temkin equations. However, <strong>to</strong> the removal <strong>of</strong> the heavy metal


364Exp<strong>an</strong>ding Issues in Desalinationions in the presence <strong>of</strong> IDS, EDDS or GLDA under industrial condition fitting <strong>of</strong> theobtained results by D-R equation should be also taken in<strong>to</strong> account.5.5 Effect <strong>of</strong> temperatureAnion exch<strong>an</strong>gers are temperature sensitive. When heated, the H<strong>of</strong>m<strong>an</strong>n degradationoccurs tr<strong>an</strong>sforming quaternary ammonium functional groups in<strong>to</strong> tertiary amines or evendestroing the functional groups completely. The strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 1such <strong>as</strong> Lewatit MonoPlus M 500, Lewatit MonoPlus MP 500, Amberlite IRA 900, Amberjet4200, Amberjet 4400 or Purolite A520E are the most stable. However, for the strongly b<strong>as</strong>ic<strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> type 2 such <strong>as</strong> Lewatit MonoPlus M 600, Amberlite IRA 910 <strong>an</strong>dAmberjet 4600 the degradation undergoes more readily. Therefore, in the presented paperthe effect <strong>of</strong> the temperature w<strong>as</strong> studied in the r<strong>an</strong>ge from 293 K <strong>to</strong> 333 K. The evaluatedme<strong>an</strong> free energy value (G o ) indicated that the sorption <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II)complexes with IDS, EDDS <strong>an</strong>d GLDA on<strong>to</strong> Lewatit MonoPlus M 500, Lewatit MonoPlus M600, Lewatit MonoPlus MP 500, Amberlite IRA 900, Amberlite IRA 910, Amberjet 4200,Amberjet 4400, Amberjet 4600 <strong>an</strong>d Purolite A520E proceeded by <strong>an</strong>ion exch<strong>an</strong>ge. Thecalculated thermodynamic parameters, G o , H o <strong>an</strong>d S o showed that the sorption w<strong>as</strong>favourable, spont<strong>an</strong>eous <strong>an</strong>d endothermic under the examined conditions.6. ConclusionsHeavy metal complexes <strong>of</strong> Cu(II), Zn(II), Cd(II) <strong>an</strong>d Pb(II) with IDS, EDDS <strong>an</strong>d GLDA wereremoved from aqueous solution using the commercially available strongly b<strong>as</strong>ic <strong>an</strong>ionexch<strong>an</strong>gers Lewatit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP 500,Amberlite IRA 900, Amberlite IRA 910, Amberjet 4200, Amberjet 4400, Amberjet 4600 <strong>an</strong>dPurolite A520E <strong>as</strong> well <strong>as</strong> chelating ion exch<strong>an</strong>gers Dowex M 4195 <strong>an</strong>d Diphonix. Theinfluence <strong>of</strong> ph<strong>as</strong>e contact time (1-180 min), <strong>an</strong>ion exch<strong>an</strong>ger dosage (0.25-1.0g), solution pH(1-12), initial concentration (110 -3 mol/L–210 -2 mol/L), temperature (293-333K) <strong>an</strong>dinterfering ions (Cl - , NO 3-, SO 42-) in the single <strong>an</strong>d multi-component systems w<strong>as</strong> studied bythe batch method. Additionally, the obtained results were compared with those for thecolumn studies. The amounts <strong>of</strong> complexes sorbed at equilibrium using the strongly b<strong>as</strong>ic<strong>an</strong>ion exch<strong>an</strong>gers were differentiated <strong>an</strong>d the following affinity series were found:in the M(II)-IDS=1:1 system:Cu(II):MP500>M500>M600>M4195>IRA910>IRA900>A520E4200>4400>Diphonix4600,Zn(II):IRA900>IRA910>M500>M600>MP500>M4195>420044004600>A520E>Diphonix,Cd(II):M500>MP500>M600>IRA900>Diphonix>IRA910>M4195>4200>4400>4600>A520E,Pb(II):Diphonix>M600>M500>MP500>M4195>4200>IRA9104400>IRA9004600>A520E;in the M(II)-EDDS=1:1 system:Cu(II):M4195M500>M600>MP500>A520E>Diphonix>IRA900>IRA910>4200>4600>4400,Zn(II):Diphonix>M4195>MP500>M500>M600>A520E>IRA900>IRA910>4400>46004200,Cd(II):Diphonix>MP500>4200>M500>M600>4400>IRA900>IRA910>4600>M4195>A520E,


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 365Pb(II):Diphonix>4200>A520E>4600>4400>M600>M500>MP500>IRA900>IRA910>M4195;in the M(II)-GLDA=1:1 system:Cu(II):MP500>M500>M600>Diphonix>IRA900>IRA910>M4195>4200>A520E>4400>4600,Zn(II):M600MP500M500>Diphonix>4200>M41954400IRA9104600>IRA900>A520E,Cd(II):M500>M600>Diphonix>4200>4400>4600>A520E>MP500>IRA900>IRA910>M4195,Pb(II):M500M600>MP500>Diphonix>42004400M41954600A520E>IRA900IRA910.Comparing the types <strong>of</strong> the used <strong>an</strong>ion exch<strong>an</strong>gers, the strongly b<strong>as</strong>ic ones <strong>of</strong> type 1 werefound <strong>to</strong> <strong>of</strong>fer much greater capacities for the sorbed complexes th<strong>an</strong> the <strong>an</strong>ion exch<strong>an</strong>gers<strong>of</strong> type 2. Also <strong>an</strong>ion exch<strong>an</strong>gers <strong>of</strong> macroporous type are slightly better th<strong>an</strong> gel ones. Forthem the <strong>an</strong>ion exch<strong>an</strong>ge process occurs. However, for Dowex M 4195 <strong>an</strong>d Diphonix thedecomposition <strong>of</strong> the M(II)-IDS, EDDS <strong>an</strong>d GLDA complexes should be taken in<strong>to</strong> account.It w<strong>as</strong> also found that the equilibrium sorption capacity incre<strong>as</strong>ed when the temperature <strong>of</strong>solutions incre<strong>as</strong>ed from 293 <strong>to</strong> 333 K. The L<strong>an</strong>gmuir, Freundlich, Temkin <strong>an</strong>d Dubinin-Radushevish (D-R) models <strong>of</strong> adsorption were used for <strong>an</strong>alysis <strong>of</strong> the experimental data.The L<strong>an</strong>gmuir isotherm model w<strong>as</strong> found <strong>to</strong> be the most appropriate. The kinetic data werefitted using the PF-order, PS-order, W-M <strong>as</strong> well <strong>as</strong> Boyd equations. The experimental datawere well described by the PS-order kinetic model.The <strong>an</strong>ion exch<strong>an</strong>gers c<strong>an</strong> be regenerated very efficiently using 1 M HCl. They c<strong>an</strong> be usedin multiple cycles <strong>of</strong> operation without loss in capacity.7. AcknowledgmentsAuthor is th<strong>an</strong>kful <strong>to</strong> Pr<strong>of</strong>. Z. Hubicki for his valuable suggestions.8. ReferencesAksela, R.; Pel<strong>to</strong>nen, J. & Weckm<strong>an</strong>, A. WO 2004110961, 2004.Anderson, R.L.; Bishop, E.B. & Campbell, R.L. (1985). A review <strong>of</strong> the environmental <strong>an</strong>dmammali<strong>an</strong> <strong>to</strong>xicology <strong>of</strong> nitrilotriacetic acid, Critical Revievs in Toxicology, Vol. 15,pp. 1-102.Bl<strong>an</strong>chard, G.; Maunaye, M. & Martin, G. (1984). Removal <strong>of</strong> heavy metals from waters byme<strong>an</strong>s <strong>of</strong> natural zeolites, Water Research, Vol. 18, pp. 1501-1507.Borowiec, M. & H<strong>of</strong>fm<strong>an</strong>n, J. (2005). <strong>New</strong> Biodegradable chelating compounds formicronutricient fertilizers. In: Development in Production <strong>an</strong>d use <strong>of</strong> new agrochemicals(eds.: Górecki, H.; Dobrzański, Z. & Kafarski, P.) Czech-Pol Trade, Prague, Brussels,pp. 38-41.Borowiec, M.; Polańska, P. & H<strong>of</strong>fm<strong>an</strong>n, J. (2007). Biodegradability <strong>of</strong> the compoundsintroduced with microelement fertilizers in<strong>to</strong> the environment, Polish Journal <strong>of</strong>Chemical Technology, Vol. 9, pp. 38-41.Boyd, G.E.; Adamson, A.W. & Myers, L.S. Jr. (1947). The exch<strong>an</strong>ge adsorption <strong>of</strong> ions fromaqueous solutions by org<strong>an</strong>ic zeolites. II. Kinetics, Journal <strong>of</strong> Americ<strong>an</strong> ChemicalSociety, Vol. 69, pp. 2836-2848.


366Exp<strong>an</strong>ding Issues in DesalinationBrochure <strong>of</strong> Baypure CX 100. Baypure CX 100 a new environmentally friendly alternative <strong>to</strong>conventional complexing agents – product guide <strong>of</strong> L<strong>an</strong>xess,http://www.baypure.com/bp/en/Brochure <strong>of</strong> Baypure DS 100. Poly<strong>as</strong>partic acid sodium salt. A new biodegradable dispers<strong>an</strong>t– product guide <strong>of</strong> L<strong>an</strong>xess, http://www.baypure.com/bp/en/Brochure <strong>of</strong> Enviomet TM . Biodegradable chelat Enviomet TM – product guide <strong>of</strong> InnospecInc., 2009.Brochure <strong>of</strong> Dissolvine GL-38. M<strong>as</strong>ter the element – product guide <strong>of</strong> Akzo NobelFunctional Chemicals, 2007.Brochure <strong>of</strong> Trilon M , Trilon M liquid chelating agent – product guide <strong>of</strong> BASF Co., 2008.Burns, K.; Wu, Y.T. & Gr<strong>an</strong>t, Ch. (2003). Mech<strong>an</strong>isms <strong>of</strong> calcite dissolution usingenvironmentally benign poly<strong>as</strong>partic acid: a rotating disk study, L<strong>an</strong>gmuir, Vol. 19,pp. 5669-5679.Cao A.; Carucci, A.; Lai, T.; La Colla, P. & Tamburini, E. (2007). Effect <strong>of</strong> biodegradablechelating agents on heavy metals phy<strong>to</strong>extraction with Mirabilis jalapa <strong>an</strong>d on its<strong>as</strong>sociated bacteria, Europe<strong>an</strong> Journal <strong>of</strong> Soil Biology, Vol. 43, pp. 200-206.Crouch, A.M.; Khotseng, L.E.;. Polhuis, M. & Williams, D.R. (2001). Comparative study <strong>of</strong>cyclic voltammetry with potentiometric <strong>an</strong>alysis for determining formationconst<strong>an</strong>ts for polyaminocarboxylate–metal ion complexes, Analytica Chimica Acta,Vol. 48, pp. 231–237.Cokesa, Ž.; Lakner, S.; Knackmuss, H.J. & Rieger, P.G. (2004a). A stereoselective carbonnitrogenly<strong>as</strong>e from Rals<strong>to</strong>nia sp. SLR7 cleaves two <strong>of</strong> three isomers <strong>of</strong>iminodisuccinate, Biodegratadion, Vol. 15, pp. 229-239.Cokesa, Ž.; Knackmuss, H.J. & Rieger, P.G. (2004b). Biodegradation <strong>of</strong> all stereoisomers <strong>of</strong>the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires <strong>an</strong>epimer<strong>as</strong>e <strong>an</strong>d a stereoselective C-N Ly<strong>as</strong>e, Applied <strong>an</strong>d Environmental Microbiology,Vol. 70, pp. 3941-3947.Freem<strong>an</strong>, M.B.; Paik, Y.H.; Wilczynski, R.; Wolks, S.K. & Yocom, K.M. (1996).Biodegradability <strong>of</strong> polycarboxylates: structure-activity studies. In: Hydrogels <strong>an</strong>dbiodegradable polymers for bioapplications, (eds.: Ottenbrite, R.M.; Hu<strong>an</strong>g, S.J. & Park,K.) Americ<strong>an</strong> Chemical Society, W<strong>as</strong>hing<strong>to</strong>n, DC, chapter 10.Goos, J. R. & Catt<strong>an</strong>ach, A. (1996). Effect <strong>of</strong> “Amisorb” on spring wheat <strong>an</strong>d sugarbeet.Sugarbeet Recearch <strong>an</strong>d Extention Reports, Vol. 27, pp.143-145.Helfferich, F. Ion exch<strong>an</strong>ge, McGraw-Hill, <strong>New</strong> York 1962.Hauthal, H.G. (2009). Suit<strong>an</strong>able detergents <strong>an</strong>d cle<strong>an</strong>ers. Progress in ingredients,n<strong>an</strong>oparticles, <strong>an</strong>alysis, environment, Tenside Surfact<strong>an</strong>t Detergents, Vol. 46, pp. 53-62.Heintz, W. (1862) Uber dem amoniaktypus <strong>an</strong>gehorige suren. Analitical Chemistry <strong>an</strong>dPharmacy, Vol. 122, pp. 257-294.Hyvönen, H.; Orama, M.; Saarinen, H. & Aksela, R. (2003) Studies on biodegradablechelating lig<strong>an</strong>ds: complexation <strong>of</strong> iminodisuccinic acid (ISA) with Cu(II), Zn(II),Mn(II) <strong>an</strong>d Fe(III) ions in aqueous solution, Green Chemistry, Vol. 5, pp. 410–414.Hyvönen, H. & Aksela, R. (2010). Complexation <strong>of</strong> 3-hydroxy-2,2'-iminodisuccinic acid(HIDS) with Mg 2+ , Ca 2+ , Mn 2+ , Fe 3+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , <strong>an</strong>d Zn 2+ ions in aqueoussolution, Journal <strong>of</strong> Coordination Chemistry, Vol. 63, pp.2013-2025.


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 367ISO 16588:2002, Water quality - Determination <strong>of</strong> six complexing agents – g<strong>as</strong>chroma<strong>to</strong>graphic method. International Org<strong>an</strong>ization for St<strong>an</strong>dardization, Geneva,2002.Jachuła, J.; Kołodyńska, D.; Hubicki, Z. (2011). Sorption <strong>of</strong> Cu(II) <strong>an</strong>d Ni(II) ions in presence<strong>of</strong> novel chelating agent methylglycinediacetic acid by microporous ion exch<strong>an</strong>gers<strong>an</strong>d sorbents from aqueous solutions, Central Europe<strong>an</strong> Journal <strong>of</strong> Chemistry, Vol. 9,pp. 52-65.Jaworska, J.S.; Schow<strong>an</strong>eck, D. & Feitzel, T.C.J. (1999). Environmental risk <strong>as</strong>sessment fortrisodium [S, S]-ethylene diaminedisuccinate, a biodegradable chela<strong>to</strong>r used indetergent applications, Chemosphere, Vol. 38, pp. 3597-3625.Jones, P.W. & Williams, D.R. (2002). Chemical speciation simulation used <strong>to</strong> <strong>as</strong>sess theefficiency <strong>of</strong> environment-friendly EDTA alternatives for use in the pulp <strong>an</strong>d paperindustry, Inorg<strong>an</strong>ica Chimica Acta, Vol. 339, pp. 41-50.Katata, L.; Nagaraju, V. & Crouch, A.M. (2006). Determination <strong>of</strong> ethylenediaminetetraaceticacid, ethylenediaminedisuccinic acid <strong>an</strong>d iminodisuccinic acid in cosmetic productsby capillary electrophoresis <strong>an</strong>d high perform<strong>an</strong>ce liquid chroma<strong>to</strong>graphy,Analytica Chimica Acta, Vol. 579, pp. <strong>17</strong>7-184.Knepper, T.P. (2003). Synthetic <strong>Chelating</strong> <strong>Agents</strong> <strong>an</strong>d Compounds Exhibiting ComplexingProperties in the Aquatic Environment. Trends in Analytical Chemistry, Vol. 22, pp.708-724.Knepper, T.P. ; Werner, A. & Bogenschütz, G. (2005). Determination <strong>of</strong> synthetic chelatingagents in surface <strong>an</strong>d w<strong>as</strong>te water by ion chroma<strong>to</strong>graphy–m<strong>as</strong>s spectrometry,Journal <strong>of</strong> Chroma<strong>to</strong>graphy A, Vol. 1085, pp. 240-246.Kołodyńska, D.; Hubicki, Z. & Gęca, M. (2008a). Application <strong>of</strong> a new generationcomplexing agent in removal <strong>of</strong> heavy metal ions from aqueous solutions, Industrial& Engineering Chemistry Research, Vol. 47, pp. 3192-3199.Kołodyńska, D.; Hubicki, Z. & Gęca, M. (2008b). Poly<strong>as</strong>partic acid <strong>as</strong> a new complexingagent in removal <strong>of</strong> heavy metal ions on polystyrene <strong>an</strong>ion exch<strong>an</strong>gers, Industrial& Engineering Chemistry Research, Vol. 47, pp. 6221-6227.Kołodyńska, D.; Hubicka, H. & Hubicki, Z. (2009). Studies <strong>of</strong> application <strong>of</strong> monodisperse<strong>an</strong>ion exch<strong>an</strong>gers in sorption <strong>of</strong> heavy metal complexes with IDS, Desalination, Vol.239, pp. 216-228.Kołodyńska, D. (2009a). Polyacrylate <strong>an</strong>ion exch<strong>an</strong>gers in sorption <strong>of</strong> heavy metal ions withthe biodegradable complexing agent, Chemical Engineering Journal, Vol. 150, pp. 280-288.Kołodyńska, D. (2009b). Iminodisuccinic acid <strong>as</strong> a new complexing agent for removal <strong>of</strong>heavy metal ions from industrial effluents, Chemical Engineering Journal, Vol. 152,pp. 277-288.Kołodyńska, D. (2010a). Biodegradable complexing agents <strong>as</strong> <strong>an</strong> alternative <strong>to</strong> chela<strong>to</strong>rs insorption <strong>of</strong> heavy metal ions, Desalination <strong>an</strong>d Water Treatment. Science <strong>an</strong>dEngineering, Vol. 16, pp. 146-155.Kołodyńska, D. (2010b). Diphonix Resin ® in sorption <strong>of</strong> heavy metal ions in the presence <strong>of</strong>biodegradable complexing agents <strong>of</strong> a new generation, Chemical Engineering Journal,Vol. 159, pp. 27-36


368Exp<strong>an</strong>ding Issues in DesalinationKołodyńska, D. (2010c). The effect <strong>of</strong> the novel complexing agent in removal <strong>of</strong> heavy metalions from waters <strong>an</strong>d w<strong>as</strong>tewaters, Chemical Engineering Journal, Vol. 165, pp. 835-845.Kołodyńska, D. (2011a). Cu(II), Zn(II), Co(II) <strong>an</strong>d Pb(II) removal in the presence <strong>of</strong> thecomplexing agent <strong>of</strong> a new generation, Desalination, Vol. 267, pp. <strong>17</strong>5-183.Kołodyńska, D. (2011b). The effects <strong>of</strong> the treatment conditions on metal ions removal in thepresence complexing agents <strong>of</strong> a new generation, Desalination, doi:10.1016/j.desal.2010.06.053Kołodyńska, D. (2011c). Application <strong>of</strong> strongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers for removal <strong>of</strong> heavymetals in the presence <strong>of</strong> green chelating agent, Chemical Engineering Journal,doi:10.1016/j.cej.2011.01.073.Kołodyńska, D. (2011d). Green complexing agent - EDDS in removal <strong>of</strong> heavy metal ions onstrongly b<strong>as</strong>ic <strong>an</strong>ion exch<strong>an</strong>gers, Desalination, in press.Kos, B. & Lěst<strong>an</strong>, D. (2003). Influence <strong>of</strong> a biodegradable ([S,S]-EDDS) <strong>an</strong>d nondegradable(EDTA) chelate <strong>an</strong>d hydrogel modified soil water sorption capacity on Pbphy<strong>to</strong>extraction <strong>an</strong>d leaching, Pl<strong>an</strong>t <strong>an</strong>d Soil, Vol. 253, pp. 403-411.Lagergren, S. (1898). Zur Theorie der sogen<strong>an</strong>nten adsorption gelöster. St<strong>of</strong>fe, KungligaSvenska Vetenskapsakademiens, H<strong>an</strong>dlingar , Vol. 24, 1-39.Loonen, H.; Lindgren, F.; H<strong>an</strong>sen, B.; Karcher, W.; Niemelä, J.; Hiromatsu, K.; Takatsuki, M.;Peijnenburg, W.; Rorije, E. & Struijs, J. (1999). Prediction <strong>of</strong> biodegradability fromchemical structure: Modeling <strong>of</strong> ready biodegradation test data, EnvironmentalToxicology <strong>an</strong>d Chemistry, Vol. 18, pp. <strong>17</strong>63-<strong>17</strong>68.Martell A.E. & Smith R.M. (1982). Critical Stability Const<strong>an</strong>ts, Vol. 5: First Supplement,Plenum Press, <strong>New</strong> York.Matzinger, I.; Brunthaler, J.; Fürhapper, C.; Pollak, U. & Aschacher, G. (2007).Biodegradation <strong>of</strong> new complexing agents in compli<strong>an</strong>ce with Austri<strong>an</strong> w<strong>as</strong>tewater emission legislation for the pulp & paper industry. In: Complexing <strong>Agents</strong>between Science, Industry, Authorities <strong>an</strong>d Users. (eds.: Nowack, B. & Giger, W.)Monte Verità, Ascona, Switzerl<strong>an</strong>d, March 11-16, 2007, pp. 19.Minczewski, J.; Chw<strong>as</strong><strong>to</strong>wska, J. & Dybczyński. R. Separation <strong>an</strong>d preconcentration methods ininorg<strong>an</strong>ic trace <strong>an</strong>alysis. John Wiley & Sons, <strong>New</strong> York 1982.Mosig, J.; Gooding, C.H. & Wheeler, A.P. (2000). Kinetic <strong>an</strong>d thermal characterization <strong>of</strong> thehydrolysis <strong>of</strong> polysuccinimide, Industrial <strong>an</strong>d Engineering Chemistry Research, Vol.36, pp. 2163-2<strong>17</strong>0.Neal, J.A. & Roshe, N.J. (1973). Further studies <strong>of</strong> the coordination <strong>of</strong>ethylenediaminedisuccinic acid, <strong>an</strong> isomer <strong>of</strong> ethylenediaminetetraacetic acid,Inorg<strong>an</strong>ic Chemistry, Vol. 12, pp. 1226-1232.Nowack, B. (1998). The behaviour <strong>of</strong> phosphonates in w<strong>as</strong>tewater treatment pl<strong>an</strong>ts <strong>of</strong>Switzerl<strong>an</strong>d, Water Research, Vol. 32, pp. 1271-1279.Nowack, B. (2003). Environmental chemistry <strong>of</strong> phosphonates, Water Research, Vol. 37, pp.2533-2546.Nowack, B. (2007). <strong>Chelating</strong> agents – overview <strong>an</strong>d his<strong>to</strong>rical perspective, In: Complexing<strong>Agents</strong> between Science, Industry, Authorities <strong>an</strong>d Users. (eds.: Nowack, B. & Giger,W.) Monte Verità, Ascona, Switzerl<strong>an</strong>d, March 11-16, 2007, pp. 25.


<strong>Chelating</strong> <strong>Agents</strong> <strong>of</strong> a <strong>New</strong> <strong>Generation</strong> <strong>as</strong> <strong>an</strong> <strong>Alternative</strong> <strong>to</strong>Conventional Chela<strong>to</strong>rs for Heavy Metal Iions Removal from Different W<strong>as</strong>te Waters 369Nörtem<strong>an</strong>n, B. (2005). Biodegradation <strong>of</strong> chelating agents: EDTA, DTPA, PDTA, NTA, <strong>an</strong>dEDDS. In: Biogeochemistry <strong>of</strong> <strong>Chelating</strong> <strong>Agents</strong>, (eds.: Nowak, B. & V<strong>an</strong>Briesen, J.M.)ACS Symposium Series, Vol. 910, pp. 150-<strong>17</strong>0.Orama, M.; Hyvönen, H.; Saarinen, H. & Aksela, R. (2002). Complexation <strong>of</strong> [S,S] <strong>an</strong>d mixedstereoisomers <strong>of</strong> N,N’-ethylenediaminedisuccinic acid (EDDS) with Fe(III), Cu(II),Zn(II) <strong>an</strong>d Mn(II) ions in aqueous solution, Dal<strong>to</strong>n Tr<strong>an</strong>sactions, pp. 4644-648.Reichenberg, D. (1953). Properties <strong>of</strong> ion-exch<strong>an</strong>ge resins in relation <strong>to</strong> their structure. III.Kinetics <strong>of</strong> exch<strong>an</strong>ge, Journal <strong>of</strong> Americ<strong>an</strong> Chemical Society, Vol. 75, pp. 589-597.Reinecke, F.; Groth, T.; Heise, K.P.; Joentgen, W.; Müller, N. & Steinbüchel, A. (2000)Isolation <strong>an</strong>d characterization <strong>of</strong> <strong>an</strong> Achromobacter xylosoxid<strong>an</strong>s strain B3 <strong>an</strong>d otherbacteria capable <strong>to</strong> degrade the synthetic chelating agent iminodisuccinate, FEMSMicrobiology Letters, Vol. 188, pp. 41-46.Schneider, J.; Potth<strong>of</strong>f-Karl, B.; Kud, A.; Baur, R.; Oftring, A. & Greindl, T. (1999). Use <strong>of</strong>glycine-N,N-diacetic acid derivatives <strong>as</strong> biodegradable complexing agents foralkaline earth metal ions <strong>an</strong>d heavy metal ions, United States Patent 6,008,<strong>17</strong>6.Seetz, J. (2007). Bound by biodegradability, Soap Perfumery <strong>an</strong>d Cosmetics, Vo. 4, pp. 75-76.Seetz, J. & St<strong>an</strong>itzek, T. (2008). GLDA: The new green chelating agent for detergents <strong>an</strong>dcosmetics. SEPAWA Congress <strong>an</strong>d Europe<strong>an</strong> Detergents Conference Proceedings, 15-<strong>17</strong>Oc<strong>to</strong>ber 2008, pp. <strong>17</strong>-22.Sill<strong>an</strong>pää, M.; Kokkonen, R.; Sihvonen, M. (1995). Determination <strong>of</strong> EDTA <strong>an</strong>d DTPA <strong>as</strong>their Fe(III) complexes in pulp <strong>an</strong>d paper mill process <strong>an</strong>d w<strong>as</strong>te waters by liquidchroma<strong>to</strong>graphy, Analytica Chimica Acta, Vol. 303, pp. 187-192.Stegient-Nowicka, J. & Michałek, B. (2010). Fe(III)HJB <strong>an</strong>d Fe(III) HBED chelates <strong>as</strong> efficientmicroelement fertilizers, Przemysł Chemiczny, Vol. 89, pp. 1520-1522 (in Polish).Sun, B.; Mi, Z.T.; Ouy<strong>an</strong>g, J.; An, G. & Song, X.K. (2005). Pb 2+ binding by poly<strong>as</strong>partylpolymers <strong>an</strong>d their application <strong>to</strong> Pb 2+ removal from glycyrrhizin, Journal <strong>of</strong> AppliedPolymer Science, Vol. 97, pp. 2215-2220.T<strong>an</strong>dy, S; Bossart, K.; Mueller, R.; Ritschel, J.; Hauser, L.; Schulin, R. & Nowack, B. (2004).Extraction <strong>of</strong> heavy metals from soils using biodegradable chelating agents,Environmental Science <strong>an</strong>d Technology, Vol. 38, pp. 937-944.T<strong>an</strong>dy, S.; Amm<strong>an</strong>n, A.; Schulin, R. & Nowack, B. (2006a). Biodegradation <strong>an</strong>d speciation <strong>of</strong>residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soilw<strong>as</strong>hing, Environmental Pollution, Vol. 142, pp. 191-199.T<strong>an</strong>dy, S.; Schulin, R. & Nowack, B. (2006b). Uptake <strong>of</strong> metals during chel<strong>an</strong>t-<strong>as</strong>sistedphy<strong>to</strong>extraction with EDDS related <strong>to</strong> the solubilized metal concentration,Environmental Science <strong>an</strong>d Technology, Vol. 40, pp. 2753-2758.Tucker, M.D.; Bar<strong>to</strong>n, L.L.; Thomson, B.M.; Wagener, B.M. & Aragon. A. (1999). Treatment<strong>of</strong> w<strong>as</strong>te containing EDTA by chemical oxidation, W<strong>as</strong>te M<strong>an</strong>agement, Vol. 19, pp.477-482.V<strong>as</strong>ilev, V.P.; Katrovtseva, A.V.; Gorelov, I.P. & Tukumova, N.V. (1996). Stability <strong>of</strong>complexes <strong>of</strong> Ni(II) with iminodisuccinic acid, Journal <strong>of</strong> Inorg<strong>an</strong>ic Chemistry, Vol.41, pp. 1320-1323 (in Russi<strong>an</strong>).V<strong>as</strong>ilev, V.P.; Katrovtseva, A.V.; Bychkova, S.A. & Tukumova, N.V. (1998) Stability <strong>of</strong>complexes <strong>of</strong> Co(II) <strong>an</strong>d Cu(II) with iminodisuccinic acid, Journal <strong>of</strong> Inorg<strong>an</strong>icChemistry, Vol. 43, pp. 808-809 (in Russi<strong>an</strong>).


370Exp<strong>an</strong>ding Issues in DesalinationV<strong>an</strong>devivere, P.C.; Saveryn, H.; Verstraete, W.; Feijtel, T.C.J. & Schow<strong>an</strong>ek, D.R. (2001).Biodegradation <strong>of</strong> metal-[S,S]-EDDS complexes, Environmental Science <strong>an</strong>dTechnology, Vol. 35, pp. <strong>17</strong>65-<strong>17</strong>70.Weber W.J. Jr. & Morris, J.C. (1963). Kinetics <strong>of</strong> adsorption on carbon from solution, Journal<strong>of</strong> the S<strong>an</strong>itary Engineering Division, Vol. 89, pp. 31-59.Wheeler, A.P. & Kosk<strong>an</strong>, L.P. (1993). Large scale thermally synthesized poly<strong>as</strong>partate <strong>as</strong> <strong>as</strong>ubstitute in polymer applications, Materials Research Society Symposium Proceedings,Vol. 292, pp. 277-283.Witschel, M.; Egli, T.; Zehnder, A.J.B.; Wehrli, E. & Spyeher, M. (1999). Tr<strong>an</strong>sport <strong>of</strong> EDTAin<strong>to</strong> cells <strong>of</strong> the EDTA degradingstrain DSM 9103, Microbiology, Vol. 154, pp. 973-983.Wu, Y.T. & Gr<strong>an</strong>t, Ch. (2002). Effect <strong>of</strong> chelation chemistry <strong>of</strong> sodium poly<strong>as</strong>partate on thedissolution <strong>of</strong> calcite, L<strong>an</strong>gmuir, Vol. 18, pp. 6813-6820.Yu<strong>an</strong>, Z.; V<strong>an</strong>Briesen J.M. (2008). Bacterial growth yields on EDTA, NTA, <strong>an</strong>d theirbiodegradation intermediates, Biodegratadion, Vol. 19, pp. 41-52.Zhao, Y.; Su, H.; F<strong>an</strong>g, L. & T<strong>an</strong>, T. (2005). Superabsorbent hydrogels from poly(<strong>as</strong>particacid) with salt-,temperature- <strong>an</strong>d pH-responsiveness properties, Polymer, Vol. 46,pp. 5368-5376.Zhao, Y.; K<strong>an</strong>g, J. & T<strong>an</strong>, T. (2006). Salt-, pH- <strong>an</strong>d temperature-responsive semiinterpenetratingpolymer network hydrogel b<strong>as</strong>ed on poly(<strong>as</strong>partic acid) <strong>an</strong>dpoly(acrylic acid), Polymer, Vol. 47, pp. 7702-7710.Zingg, T., (1935). Beitrag zur schotter<strong>an</strong>alyse. Schweizerische Mineralogische und PetrologischeMitteilungen, Vol. 15, pp. 39-140Zwicker, N.; Theobald, U.; Zähner, H. & Fiedler, H.P. (1997) Optimization <strong>of</strong> fermentationconditions for the production <strong>of</strong> ethylenediaminedisuccinic acid by Amycola<strong>to</strong>psisorientalis, Journal <strong>of</strong> Industrial Microbiology <strong>an</strong>d Biotechnology, Vol. 19, pp. 280-285.http://dardel.info/IX/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!