26.11.2012 Views

Design of arsenic removal plant by coagulation, sedimentation

Design of arsenic removal plant by coagulation, sedimentation

Design of arsenic removal plant by coagulation, sedimentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CeTAmb<br />

Università degli Studi di Brescia<br />

Facoltà di Ingegneria<br />

EXERCISE<br />

DESIGN OF ARSENIC REMOVAL<br />

PLANT BY COAGULATION,<br />

SEDIMENTATION AND<br />

FILTRATION<br />

FAUSTA PRANDINI<br />

International Summer School - VI Refresher Course<br />

“Appropriate Technologies for Environmental Management in Developing Countries”<br />

20th – 24th June 2011<br />

Faculty <strong>of</strong> Engeneering – University <strong>of</strong> Brescia


ARSENIC WATER CONTAMINATION<br />

WHO guideline: 10 μg/L<br />

Some countries retain the older WHO<br />

guideline <strong>of</strong> 50 μg/L<br />

Arsenic concentrations in<br />

some cases as high as<br />

2,500 μg/L<br />

B. Petrusevski, S.Sharma -IRC, 2007


ARSENIC REMOVAL PROCESSES<br />

• Arsenic oxidation states in natural<br />

waters: inorganic form as<br />

oxyanions <strong>of</strong> trivalent arsenite (As<br />

(III)) or pentavalent arsenate (As<br />

(V))<br />

• Redox potential (Eh) and pH are<br />

the most important chemical<br />

factors controlling the <strong>arsenic</strong><br />

speciation<br />

• Removal efficiency for As (V) is<br />

usually better than <strong>removal</strong> for As<br />

(III)<br />

• So, reduced inorganic As (III)<br />

should be oxidized to As (V) to<br />

improve its <strong>removal</strong> Eh-pH diagram for aqueous As species in<br />

the system As–O 2–H 2O at 25 C and 1 bar<br />

Oxidation step<br />

As(III)<br />

uncharged<br />

total pressure (Smedley and Kinniburg,<br />

2002)


ARSENIC REMOVAL PROCESSES<br />

Technologies<br />

Technologies for removing <strong>arsenic</strong> from<br />

drinking water include:<br />

• Precipitation processes: alum or<br />

ferric salts, …<br />

• Adsorptive processes: activated<br />

alumina, iron/manganese oxide, …<br />

• Ion exchange processes: specifically<br />

anion exchange<br />

• Membrane filtration: nano-filtration,<br />

reverse osmosis and electrodialysis<br />

reversal, …<br />

• Biological <strong>arsenic</strong> <strong>removal</strong><br />

– Community scale<br />

treatment <strong>plant</strong>s<br />

– Household treatment<br />

units


• 10 villages<br />

• 20,000 inhabitants<br />

• 20 km 2 <strong>of</strong> Area<br />

CONTEXT<br />

Rural community in the South <strong>of</strong> Calcutta (India)<br />

5


�School: 600 students<br />

�Ambulatory<br />

�Bank<br />

Hand pumps<br />

Analysed hand pumps<br />

Analysed<br />

surface water


WATER USES<br />

• Human uses: drinking and food preparation � groundwater<br />

• Human uses: hygiene � groundwater and/or superficial water<br />

• Animal uses � superficial water<br />

CONTEXT<br />

Rural community in the South <strong>of</strong> Calcutta (India)


Rural community in the South <strong>of</strong> Calcutta (India)<br />

� GROUNWATER QUALITY<br />

• Arsenic: 100 mg/L<br />

• Turbidity: about 0 NTU<br />

• Microbiological: good quality<br />

� DATA<br />

• 1200 inhabitants<br />

• D = 20 L/inh/d<br />

• Sodium hypochlorite and Alum (aluminum<br />

sulfate, Al 2(SO 4) 3 • 14H 20) availability<br />

CONTEXT<br />

DESIGN OF ARSENIC REMOVAL PLANT BY OXIDATION,<br />

COAGULATION, SEDIMENTATION AND FILTRATION<br />

Q = 1200 inh x 20 L/inh/d = 24,000 L/d = 24 m 3 /d<br />

� > 90% → As OUT = 10% * 100 mg/L = 10 mg/L<br />

8


CONTEXT<br />

Rural community in the South <strong>of</strong> Calcutta (India)<br />

� CHEMICALS<br />

• Oxidants: sodium hypochlorite, NaClO<br />

• Coagulant: Alum (aluminum sulfate), Al 2(SO 4) 3 • 14H 20<br />

9


DESIGN OF OXIDATION and<br />

COAGULATION TANKS<br />

OXIDANT DOSAGE: NaClO<br />

• T ox= 1-2 min • V ox = Q x T ox = 24 m 3 /d x 2 min =<br />

= 24 m 3 /(24 x 60 min) x 2 min = 0.033 m 3 =<br />

• Oxidation test<br />

Dosage = 1-2 mg/L<br />

• 15% solution<br />

= 33.3 L<br />

= 0.3 kg/d<br />

ALUM DOSAGE: Al2(SO4) 3 • 14H20 • Tc = 1-2 min<br />

• Jar test<br />

Dosage=10-50<br />

mg/L<br />

• 12% solution<br />

• D NaClO = 2 mg/L = 2 g/m 3<br />

• C NaClO = Q x D/0.15 = 24 m 3 /d x 2 mg/L/0.15 =<br />

= 24 m 3 /d x 2 g/m 3 /0.15 = 320 g/d =<br />

• Vc = Q x Tc = 24 m 3 /d x 2 min =<br />

= 24 m 3 /(24 x 60 min) x 2 min = 0.033 m 3 =<br />

= 33.3 L<br />

• D Alum = 30 mg/L = 30 g/m 3<br />

• C coag = Q x D/0.12 = 24 m 3 /d x 30 mg/L/0.12 =<br />

= 24 m 3 /d x 30 g/m 3 /0.12 = 6,000 g/d =<br />

= 6 kg/d


DESIGN OF FLOCCULATION TANK<br />

FLOCCULATION<br />

DESIGN OF OXIDATION and<br />

COAGULATION TANKS<br />

Total Volume <strong>of</strong> the mixing tank<br />

• V = 33.3 L x 2 ~ 70 L<br />

• T f = 15-20 min • V f = Q x T f = 24 m 3 /d x 15 min = 25 m 3 /(24<br />

x 60 min) x 15 min = 0.25 m 3 = 250 L


DESIGN OF<br />

SEDIMENTATION TANK<br />

• T sed = 2-3 h • V sed = Q x T sed = 24 m 3 /d x 2 h =<br />

24/24 m 3 /h x 2 h = 2.0 m 3<br />

• Hydraulic loading<br />

rate: R h = 0.8 –<br />

1.5 m/h<br />

• Ased = Q/R h = 24/24 m 3 /h / 0.8 m/h = 1.25 m 2<br />

• fsed = (4 x Ased/∏) 0,5 = 1.3 m<br />

• Hsed = Vsed/Ased = 1.6 m


• Hydraulic loading<br />

rate: R h = 6 – 7 m/h<br />

• H = 1 – 2 m • H sf = 1 m<br />

FILTER BACKWASHING<br />

• R h = 15 – 30 m 3 /(m 2 x h)<br />

• Tc = 5 – 10 min<br />

DESIGN OF<br />

SAND FILTRATION<br />

• A sf = Q/ R h = 24/24 m 3 /h / 7 m/h = 0.17 m 2<br />

• f sf = (4 x A sf/∏) 0,5 = 0.46 m = 46 cm<br />

• Q = R h x A sf = 20 m/h x 0,14 m 2 = 2.8 m 3 /h<br />

• V = Q x Tc = 2.8 m 3 /h x 5 min = 2.8 m 3 /h x<br />

5/60 h = 0.23 m 3<br />

Backwashing frequency: from 1 time/d to 1 time/week (in relation with water<br />

quality and quantity)


ALUM SLUDGE<br />

• 1 mg alum produces<br />

0.44 mg sludge<br />

ALUM SLUDGE<br />

• Sludge = Q x 0.44 kg sludge/kg alum x D Alum =<br />

24 m 3 /d x 0.44 g sludge/g alum x 30 g/m 3 =<br />

= 316.8 g/d = 0.32 kg/d


PLANT EXAMPLE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!