26.11.2012 Views

Criticality Assessment- Identification of Critical Quality Attributes ...

Criticality Assessment- Identification of Critical Quality Attributes ...

Criticality Assessment- Identification of Critical Quality Attributes ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong><strong>Critical</strong>ity</strong> <strong>Assessment</strong>- <strong>Identification</strong> <strong>of</strong> <strong>Critical</strong><br />

<strong>Quality</strong> <strong>Attributes</strong> (CQA) & <strong>Critical</strong> Process<br />

Parameter (CPP) for a MR Dosage form (DP)<br />

Shailesh Singh, Nirdosh Jagota, T.G. Venkateshwaran, &<br />

Richard Saunders<br />

AAPS Annual Meeting, November 2009<br />

Pfizer • 0


Outline<br />

� Define product goal via establishment <strong>of</strong> <strong>Quality</strong> target product<br />

Pr<strong>of</strong>ile (QTPP)<br />

� Determination <strong>of</strong> <strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong> (CQAs)-Identify the<br />

CQAs based on prior knowledge and QTPP<br />

� Use prior knowledge and risk assessment to identify the critical<br />

parameters or attributes. Establish link between CPP & CQAs. Use<br />

risk management techniques to prioritize the parameters to study.<br />

� Establishment <strong>of</strong> <strong><strong>Critical</strong>ity</strong>- CPP & CQA<br />

� Provide key learning from company experience and future<br />

directions<br />

1<br />

Pfizer • 1


QbD Road Map – FDA Interpretation<br />

<strong>Quality</strong><br />

by<br />

Design<br />

Continually<br />

monitor and<br />

update process to<br />

assure consistent<br />

quality<br />

Identify and<br />

control critical<br />

attributes in<br />

material and<br />

process<br />

*: Based on slides by Dr. Nasr, FDA, Feb 07<br />

Product & process design and development<br />

Define desired<br />

product performance<br />

upfront;<br />

identify product CQAs<br />

QRM and Knowledge Management<br />

Design formulation<br />

and process to meet<br />

product CQAs<br />

QRM and Knowledge Management<br />

Understand impact <strong>of</strong><br />

material attributes<br />

and process<br />

parameters on<br />

product CQAs<br />

Pfizer • 2


<strong>Quality</strong> Target Product Pr<strong>of</strong>ile – Beginning<br />

with the end in mind<br />

� Natural extension <strong>of</strong> the Target Product pr<strong>of</strong>ile for product quality<br />

� Prospective summary <strong>of</strong> the quality characteristics <strong>of</strong> the drug product taking<br />

into account the safety, efficacy (and manufacturability) <strong>of</strong> the drug product<br />

� Factors to be considered<br />

– Identify <strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong> <strong>of</strong> the Drug Product<br />

– Route <strong>of</strong> Administration (Oral versus Intravenous drug product)<br />

– Type <strong>of</strong> dosage form (Immediate versus modified release)<br />

– High dose versus low dose<br />

– Target population<br />

– Type <strong>of</strong> therapy (life saving versus quality <strong>of</strong> life)<br />

� Consideration should also be given to:<br />

– Clinical usage Setting<br />

– Supply chain requirements<br />

– Special region/market requirements (e.g.) Japanese requirements for<br />

appearance<br />

Pfizer • 3


Example <strong>of</strong> a <strong>Quality</strong> Target Product Pr<strong>of</strong>ile<br />

<strong>Quality</strong> Attribute<br />

Target Product Pr<strong>of</strong>ile<br />

Target <strong><strong>Critical</strong>ity</strong><br />

Dosage form ER, Film coated Tablet (


Prior Knowledge<br />

� Summarize all Prior Knowledge<br />

– Include all sources <strong>of</strong> knowledge :Literature, patents,<br />

notes, company and personal experience with projects.<br />

– Knowledge from experience with (similar) prior projects<br />

with reference to API, drug product, material properties<br />

<strong>of</strong> components, manufacturing process, equipments,<br />

test methods, deviations, etc.<br />

Pfizer • 5


<strong><strong>Critical</strong>ity</strong> Analysis<br />

�<strong><strong>Critical</strong>ity</strong> is used to describe any feature or<br />

material attribute, property or characteristic <strong>of</strong> a<br />

drug substance, component, raw material, drug<br />

product or device and/or any process attribute,<br />

parameter, condition, variable or factor in the<br />

manufacture <strong>of</strong> a drug product.<br />

ISPE: <strong><strong>Critical</strong>ity</strong> paper in JPI, 2008<br />

Pfizer • 6


Decision Tree to decide CQAs<br />

Prior<br />

Knowledge<br />

<strong>Quality</strong><br />

Attribute not<br />

a CQA<br />

<strong>Quality</strong> Attribute may not<br />

be a CQA but still be<br />

critical from a business<br />

perspective e.g. tablet<br />

thickness, appearance<br />

No<br />

Start<br />

Brainstorm list <strong>of</strong><br />

<strong>Quality</strong> <strong>Attributes</strong><br />

(potential CQAs)<br />

Is this a CQA<br />

(from a<br />

patient<br />

perspective)?<br />

Yes<br />

Apply suitable<br />

QRA tool to rank<br />

CQAs<br />

List <strong>of</strong> CQAs<br />

Unsure<br />

QTPP<br />

Experimental<br />

work to<br />

increase<br />

knowledge<br />

<strong>Critical</strong> <strong>Quality</strong> Attribute (CQA):<br />

A physical, chemical, biological or microbiological property<br />

or characteristic that should be within an appropriate limit,<br />

range, or distribution to ensure the desired product quality.<br />

Pfizer • 7


<strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong> (CQA)<br />

Manufacturability<br />

<strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong><br />

Safety & Efficacy<br />

Drug Product CQA’s<br />

Drug Substance CQA’s<br />

Raw Material CQA’s<br />

Identity; Assay;<br />

Microbiology; UDU;<br />

Mechanical & Physical<br />

Props.; Description;<br />

Purity; Dissolution;<br />

Taste; Odor<br />

Closely interlinked but not be identical<br />

Identity; Assay;<br />

Description; Purity;<br />

Physical Properties<br />

Material & Functional<br />

Properties<br />

Pfizer • 8


Input (Raw) Material Characterization<br />

� Understanding the impact <strong>of</strong> raw materials on product<br />

performance.<br />

� Sources <strong>of</strong> variability in excipients<br />

� Functionality or functional properties <strong>of</strong> excipients<br />

� Important excipient properties and associated physical<br />

test methods.<br />

� Potential impacts <strong>of</strong> excipient properties against tests<br />

that might be carried out<br />

Pfizer • 9


Impact <strong>of</strong> raw material variability to <strong>Quality</strong> <strong>of</strong><br />

product<br />

Fixed process<br />

Feed forward<br />

approach<br />

Flexible process<br />

<strong>Quality</strong> = f (Raw material , Process parameters,..)<br />

T. Kourti, A. Phar. Rev., 2008.<br />

Pfizer • 10


ISPE :PQLI Model for <strong>Quality</strong> <strong>Attributes</strong><br />

Continuum <strong>of</strong> <strong><strong>Critical</strong>ity</strong><br />

QTPP<br />

Potential<br />

Impact to Safety<br />

Efficacy &<br />

<strong>Quality</strong>?<br />

YES<br />

*A Severity Scale is used to assess<br />

relative magnitude <strong>of</strong> impact. A<br />

change in criticality only occurs w/<br />

a change in severity.<br />

ISPE <strong><strong>Critical</strong>ity</strong> Sub-team<br />

Severity*<br />

*Continual Improvement Iteration<br />

NO<br />

LOW RISK<br />

HIGH RISK<br />

Non-<strong>Critical</strong><br />

C<br />

R<br />

I<br />

T<br />

I<br />

C<br />

A<br />

L<br />

Pfizer • 11


Mapping the Linkage<br />

M1<br />

P2<br />

Inputs:<br />

P1<br />

M2<br />

Material <strong>Attributes</strong><br />

P3<br />

Process<br />

Parameters<br />

Outputs:<br />

CQA1<br />

CQA2<br />

CQA3<br />

Relationships:<br />

CQA1 = function (M1)<br />

CQA2 = function (P1, P3)<br />

CQA3 = function (M1, M2, P1)<br />

<strong>Critical</strong><br />

<strong>Quality</strong><br />

<strong>Attributes</strong><br />

P2 might not be needed in the<br />

establishment <strong>of</strong> design space<br />

Pfizer • 12


Prior Knowledge & Risk <strong>Assessment</strong><br />

� Summarize all Prior Knowledge<br />

– Include all sources <strong>of</strong> knowledge :Literature, patents, notes, company and<br />

personal experience with projects.<br />

– Knowledge from experience with (similar) prior projects with reference to<br />

API, drug product, material properties <strong>of</strong> components, manufacturing<br />

process, equipments, test methods, deviations, etc.<br />

� Risk assessment (ICH Q9)<br />

– Perform Initial risk assessment<br />

– Ensure all forms <strong>of</strong> risk are acceptable<br />

– Reduce potential variables to a manageable number.<br />

– Limited risk assessments, important to prevent bias; systematic risk<br />

analysis<br />

– Should be clear, concise and current, basis for defining criticality.<br />

� Prior knowledge and Risk assessment help in identifying the (knowledge<br />

gaps) potential variables & prioritize them for further studies.<br />

Pfizer • 13


Risk <strong>Assessment</strong> Tool Considerations<br />

Product<br />

Development<br />

Process<br />

Development<br />

Process Scale-up<br />

& Tech Transfer<br />

Manufacturing<br />

Platform / Prior Knowledge Specific Product Knowledge<br />

General Risks Specific Risks<br />

Qualitative Tools Quantitative Tools<br />

More Simple Tools More Complex Tools<br />

• Fishbone / Ishikawa<br />

• PHA<br />

• Risk Ranking & Filtering<br />

• Fault Tree Analysis (FTA)<br />

• HAZOP<br />

• FMEA / FMECA<br />

• HACCP<br />

Pfizer • 14


Potential<br />

Impact to<br />

CQA?<br />

Process Parameters<br />

Continuum <strong>of</strong> <strong><strong>Critical</strong>ity</strong><br />

NO<br />

YES LOW RISK<br />

Probability<br />

Detectability<br />

CQA = f (PP 1, PP 2, …PP i)<br />

ISPE <strong><strong>Critical</strong>ity</strong> sub-team<br />

HIGH RISK<br />

Non-<strong>Critical</strong><br />

C<br />

R<br />

I<br />

T<br />

I<br />

C<br />

A<br />

L<br />

Continual Improvement Iteration<br />

15<br />

Pfizer • 15


<strong><strong>Critical</strong>ity</strong>: Linkage between CPP & CQAs<br />

� <strong><strong>Critical</strong>ity</strong> is based on the impact <strong>of</strong> quality attribute/ parameter on the<br />

safety, efficacy & quality (manufacturability) <strong>of</strong> the product.<br />

– Establish a link between CPP & CQAs: <strong>Identification</strong> <strong>of</strong> attribute or<br />

parameters that can be used as a surrogate for clinical safety &<br />

efficacy (important to patient).<br />

– Manufacturability is also an attribute (important to business) that is<br />

critical to quality.<br />

– The level <strong>of</strong> criticality may differ for an API manufacturing process<br />

relative to a drug product manufacturing process<br />

• API is one component <strong>of</strong> a drug product and one step further away<br />

from the patient<br />

� Continuum <strong>of</strong> <strong><strong>Critical</strong>ity</strong><br />

– Several levels <strong>of</strong> criticality may be used to describe multiple levels <strong>of</strong><br />

risk<br />

• As attribute or parameter boundaries approach edges <strong>of</strong> failure, the<br />

level <strong>of</strong> criticality increases with the level <strong>of</strong> risk<br />

Pfizer • 16


Risk <strong>Assessment</strong> Process Applied to Product<br />

Development<br />

Develop<br />

Design Space<br />

&<br />

Control Strategy<br />

(Risk Mitigation)<br />

Perform<br />

Experiments<br />

Risk <strong>Assessment</strong><br />

Prioritize<br />

Experiments<br />

Experimentation<br />

Prioritization<br />

Product<br />

&<br />

Process<br />

Understanding<br />

Risk<br />

<strong>Assessment</strong><br />

Experimental<br />

Planning<br />

ID Experiments<br />

Understand<br />

CQA =f(CPP)<br />

DOE PAT Modelling<br />

Identify <strong>Quality</strong><br />

<strong>Attributes</strong><br />

and How Measured<br />

<strong>Quality</strong><br />

Risk <strong>Assessment</strong><br />

Identify and Prioritize<br />

Process Parameters<br />

Pfizer • 17


Summary <strong>of</strong> Pharmaceutical Development – Case<br />

Study<br />

� Characteristics <strong>of</strong> Compound (Product “X”)<br />

� Relatively High Dose Compound (extremely stable)<br />

� High Water Solubility, Moderate Permeability (BCS Class 3)<br />

� Extended Release Formulation Required for Once-a-Day Dosing<br />

� Process Development<br />

�Formulation Initially Developed as a Wet Granulation Process<br />

�During late phase development, Densification by Roller Compaction<br />

Process Introduced<br />

�Mitigated risk by risk assessment and through understanding <strong>of</strong> factors<br />

controlling drug release<br />

�Level A IVIVC has been established for all dose strengths – establish<br />

clinical pharmacokinetic design space<br />

� Potential <strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong><br />

� Dissolution-----Clinical Relevance<br />

� Hardness <strong>of</strong> Tablets---Manufacturability<br />

Pfizer • 18


Target Product Pr<strong>of</strong>ile – <strong>Quality</strong> Planning<br />

Roadmap<br />

Patient<br />

Patient<br />

needs<br />

Easily<br />

consumable<br />

dosage form,<br />

once a day<br />

dosing,<br />

Minimal nausea<br />

�Assay – 90-110% LC<br />

Patient<br />

Needs<br />

Product<br />

Features<br />

Tablet,<br />

Sustained<br />

Release, Dose<br />

optimized<br />

to minimize<br />

nausea<br />

Target Product Pr<strong>of</strong>ile for Operations<br />

�Impurities – Extremely stable compound – control <strong>of</strong> API impurities<br />

is sufficient<br />

�Dissolution – Extended release dosage form (based on IVIVC)<br />

�Microbial limits – solid dose – low risk – non-critical<br />

�Content Uniformity – USP criteria for UDU<br />

Joseph M. Juran, “<strong>Quality</strong> by Design – The New Steps for Planning <strong>Quality</strong> into<br />

Goods and Services,” pages 14-22, Free Press, 1992<br />

Product<br />

Features<br />

Process<br />

Features<br />

Process<br />

Features<br />

Roller<br />

Compaction to<br />

achieve desired<br />

bulk density<br />

Process<br />

Controls<br />

Process controls<br />

to ensure<br />

operation is<br />

within<br />

CPP design space<br />

Pfizer • 19


Preliminary Risk Analysis: Ishikawa or Fish bone<br />

Diagram<br />

Pfizer • 20


Case Study-Dry Granulation: Initial Risk<br />

<strong>Assessment</strong><br />

Potential Parameters : During initial Development on Severity & probability<br />

Pfizer • 21


Product X Development – Knowledge Gained<br />

� Mechanistic understanding <strong>of</strong> formulation gained through product<br />

development study design<br />

– Product Performance is influenced by tablet surface area to volume ratio<br />

and polymer concentration<br />

– Small Variation in concentration yields acceptable performance<br />

– Variation <strong>of</strong> polymer viscosity, particle size, moisture levels, Substitution<br />

ratio has no impact on dissolution performance<br />

– Dissolution performance is independent <strong>of</strong> API particle size distribution<br />

– Dissolution is independent <strong>of</strong> manufacturing process (roller compaction<br />

versus wet granulation)<br />

� Coating is non-functional and had no impact on Dissolution<br />

� Formulation Performance is Robust and Resistant to Variability in API<br />

and Excipient Inputs<br />

Pfizer • 22


Risk <strong>Assessment</strong><br />

Process and Control Parameters<br />

Process Parameter <strong>Quality</strong> <strong>Attributes</strong><br />

Raw Material<br />

<strong>Attributes</strong><br />

Bin Blend<br />

Roller Compaction<br />

Bin Blend<br />

Compression<br />

Film Coating<br />

Polymer Viscosity,<br />

Polymer Functionality<br />

Blending time/end point<br />

Roll force<br />

Roll gap<br />

Roll speed<br />

Feed screw rate<br />

Milling conditions<br />

Blend time/end point<br />

Compression force<br />

Press speed<br />

Feeder speed<br />

Pan Speed<br />

Environmental<br />

Efficiency Factor (EEF)<br />

Blend Uniformity<br />

Ribbon <strong>Attributes</strong><br />

• Porosity<br />

Granule <strong>Attributes</strong><br />

• psd<br />

Tablet Hardness<br />

Blend Uniformity<br />

Tablet <strong>Attributes</strong><br />

• hardness<br />

• dissolution<br />

Appearance,<br />

Tablet weight gain<br />

Clinical relevance<br />

Pfizer • 23


Risk <strong>Assessment</strong>: <strong><strong>Critical</strong>ity</strong> Vs Non- <strong><strong>Critical</strong>ity</strong>:<br />

(dry granulation)<br />

� CPP’s defined on the basis <strong>of</strong> a risk analysis<br />

(rank order)<br />

– Parameters having high risk <strong>of</strong> affecting<br />

Safety/Efficacy & Product <strong>Quality</strong> and therefore high<br />

probability <strong>of</strong> product failure – <strong>Critical</strong><br />

– Parameters having low risk <strong>of</strong> affecting<br />

Safety/Efficacy & Product <strong>Quality</strong> and therefore low<br />

probability <strong>of</strong> product failure – Non-critical<br />

Pfizer • 24


<strong>Quality</strong> Risk <strong>Assessment</strong> : Failure Mode Effect<br />

Analysis (FMEA)<br />

� Team <strong>of</strong> experienced people from the organization<br />

– R & D (Product Development, Analytical Development)<br />

– Operations (Manufacturing, Technology, Process Engineering,<br />

QA/QC)<br />

� Review <strong>of</strong> the Process-Use flow chart & identify each component<br />

� Structured evaluation <strong>of</strong> the process<br />

– What can go wrong? Areas <strong>of</strong> failure<br />

– What are the consequences? Failure modes<br />

– Severity ? Probability (Occurrence) ? Detectability ?<br />

� Preventive and corrective actions, Risk Mitigation<br />

– Avoid failure modes; Increase Detectability; Decrease<br />

Consequences<br />

Pfizer • 25


<strong>Quality</strong> Risk <strong>Assessment</strong> (QRA): FMEA<br />

Evaluation & Criteria<br />

� Evaluation and quantification <strong>of</strong> risks<br />

– Probability(P)= Probability <strong>of</strong> a certain failure to occur<br />

– Severity (S) = Magnitude <strong>of</strong> the impact <strong>of</strong> such a failure<br />

– Detectability (D) = The level or ability to measure such a<br />

failure<br />

– Risk Priority Number, RPN<br />

– RPN = P x S x D<br />

– Values can range from 1-125. (for 1-5 scale)<br />

� Criteria for Risk Mitigation (is there a risk to product quality?)<br />

– What is an acceptable RPN? For e.g. RPN > 60<br />

– How do we define criticality? For e.g. <strong><strong>Critical</strong>ity</strong> > 15<br />

– If any individual factor get highest ranking. For e.g. 5<br />

Pfizer • 26


Risk <strong>Assessment</strong>: FMEA for Roller Compaction Unit<br />

Operation<br />

Potential Failure Potential Effect Of<br />

Failure<br />

No Roll Gap Control - Not be able to achieve<br />

cannot maintain control compression parameters<br />

Not be able to achieve<br />

compression parameters<br />

Not be able to achieve<br />

compression parameters<br />

Mill Unit Failure<br />

material sticking<br />

Not be able to achieve<br />

compression parameters<br />

large particles, foreign<br />

matter, contamination,<br />

incompressibility<br />

Severity<br />

Potential Causes<br />

Occurance<br />

Controls<br />

3 Failure <strong>of</strong> Gap<br />

control system<br />

2 particle size PAT 2 12 6<br />

3 API particle size; 2 Raw material physical 1 6 6<br />

morphology<br />

characteristics<br />

3 Flow <strong>of</strong> blend, 2 Raw material<br />

2 12 6<br />

material bridging characteristics, rotary<br />

valve, gap safety<br />

shut<strong>of</strong>f, particle size<br />

PAT<br />

3 Improper set up, 2 training, tolerance and 2 12 6<br />

preventive<br />

maintenance,<br />

equipment failure<br />

feedback control loops<br />

3 screen breakage 1 Particle Size PAT 2 6 3<br />

burn granulation 3 clog <strong>of</strong> screen 1 Particle Size PAT,<br />

material backup<br />

Flow issues <strong>of</strong> blend; excess<br />

fines<br />

large particles,<br />

incompressibility,<br />

eventually damage<br />

equipment<br />

2 milling speed<br />

incorrect,<br />

computer failure<br />

1 control loops rpm,<br />

particle Size PAT<br />

3 improper setup 1 training, particle size<br />

PAT<br />

Detection<br />

RPN<br />

2 6 3<br />

2 4 2<br />

2 6 3<br />

Change in porosity, 3 Material sticking to 1 visual observation, 2 6 3<br />

the kerning<br />

scraper set up<br />

Reduce Throughput 1 Material sticking to 1 visual observation, 2 2 1<br />

the kerning<br />

scraper set up<br />

Total Risk Priority Number= 72<br />

Pfizer • 27<br />

<strong><strong>Critical</strong>ity</strong>


Risk <strong>Assessment</strong> :Individual risks (Roller<br />

compaction)<br />

RPN Numbers<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Roller Compaction<br />

Failure <strong>of</strong> Gap control system Flow <strong>of</strong> blend, material bridging Improper set up, preventive<br />

maintenance, equipment failure<br />

Potential Cause<br />

Pfizer • 28


RPN Numbers<br />

Risk <strong>Assessment</strong>: Individual risks (Tablet<br />

compression)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

over<br />

compression<br />

during roller<br />

compaction<br />

Equipment<br />

setup,<br />

mechanical<br />

issues<br />

w eight<br />

variation, flow<br />

issues<br />

particle size<br />

distribution,<br />

too many<br />

fines<br />

Tablet Compression<br />

flow ability <strong>of</strong><br />

blend<br />

mechanical<br />

issues -<br />

paddles<br />

Potential Causes<br />

mechanical<br />

issues -rotary<br />

valve<br />

segregation<br />

<strong>of</strong> particle<br />

size<br />

tooling w ear failure <strong>of</strong><br />

w eight<br />

checking<br />

control loop<br />

Pfizer • 29


Risk <strong>Assessment</strong>: Risk Prioritization Matrix<br />

Risk Prioritization Matrix<br />

QUALITY ATTRIBUTES POLYMER CONCENTRATION<br />

POROSITY/ROLL FORCE/ ROLL GAP<br />

COMPRESSION MACHINE SPEED<br />

ROLLER COMPACTOR FEEDER SPEED<br />

COMPRESSING FORCE<br />

FINAL BLEND LUBRICATION TIME<br />

API PARTICLE SIZE<br />

PSD OF INTRA-GRANULAR BLEND<br />

PRIMARY BLEND TIME<br />

EXCIPIENT PARTICLE SIZE<br />

PRE-COMPRESSION FORCE<br />

DISSOLUTION 10 1 1 1 1 2 1 1 1 2 1 10 3<br />

ASSAY/ POTENCY 5 7 1 1 1 5 5 1 3 2 1 10 2<br />

UNIFORMITY 2 7 5 7 1 2 5 5 8 4 1 7 2<br />

HARDNESS 6 9 7 7 10 10 6 5 6 5 8 3 10<br />

THICKNESS 3 2 3 1 10 1 1 1 1 2 7 2 5<br />

FLOW 7 5 4 7 2 2 5 8 5 5 2 1 4<br />

APPEARANCE 5 5 3 5 5 3 3 5 1 5 3 6 4<br />

STABILITY 1 1 1 1 1 1 1 1 1 1 1 6 1<br />

YIELD 2 4 10 4 1 1 2 3 1 1 1 6 10<br />

TOTALS (<strong>Quality</strong> ) 243 225 170 159 121 148 156 134 139 134 97<br />

% IMPORTANCE 14.08% 13.04% 9.85% 9.21% 7.01% 8.57% 9.04% 7.76% 8.05% 7.76% 5.62%<br />

rank 1 2 3 4 10 6 5 8 7 8 11<br />

TOTALS (Manufacturing ) 188 212 229 183 196 156 141 153 125 129 153<br />

% IMPORTANCE 10.08% 11.37% 12.28% 9.81% 10.51% 8.36% 7.56% 8.20% 6.70% 6.92% 8.20%<br />

rank 4 2 1 5 3 6 9 7 11 10 7<br />

where:<br />

Priority = Importance <strong>of</strong> the Process Parameter (column) to the <strong>Quality</strong> Attribute (row) as determined<br />

by the FMEA Team<br />

QUALITY COMPLIANCE PRIORITY<br />

Totals = the Sum <strong>of</strong> Each Priority in the specific column x Weighted Average for the <strong>Quality</strong> attribute<br />

Percent Importance = the Total result for the column / sum <strong>of</strong> all totals<br />

Rank = the rank <strong>of</strong> each parameter in respect to other parameters<br />

MANUFACTURING PRIORITY<br />

Pfizer • 30


Risk <strong>Assessment</strong>: Pareto Chart-Relative Importance<br />

<strong>of</strong> Inputs<br />

Percent Importance<br />

16.00%<br />

14.00%<br />

12.00%<br />

10.00%<br />

8.00%<br />

6.00%<br />

4.00%<br />

2.00%<br />

0.00%<br />

POLYMER<br />

CONCENTRATION<br />

POROSITY/ ROLL<br />

FORCE/ ROLL GAP<br />

COMPRESSION<br />

MACHINE SPEED<br />

ROLLER<br />

COMPACTOR<br />

FEEDER SPEED<br />

COMPRESSING<br />

FORCE<br />

<strong>Quality</strong> Compliance Priority<br />

Manufacturing Priority<br />

FINAL BLEND<br />

LUBRICATION TIME<br />

API PARTICLE SIZE<br />

PSD OF INTRA-<br />

GRANULAR BLEND<br />

PRIMARY BLEND<br />

TIME<br />

EXCIPIENT PARTICLE<br />

SIZE<br />

PRE-COMPRESSION<br />

FORCE<br />

Pfizer • 31


Risk <strong>Assessment</strong> Results: FMEA Vs Risk<br />

Prioritization Matrix<br />

� FMEA helped in identification <strong>of</strong> relative risks<br />

associated within each unit operation. Based on the<br />

RPN & <strong><strong>Critical</strong>ity</strong> we were able to identify the<br />

individual risks with highest impact.<br />

� Based on process understanding Risk Prioritization<br />

Matrix was used to identify and prioritize both process<br />

parameters (Inputs) and quality attributes(Outputs)<br />

� Overall, both tools resulted in similar outcome.<br />

Pfizer • 32


Risk <strong>Assessment</strong>: Conclusions<br />

<strong>Identification</strong> <strong>of</strong> CPP & CQA<br />

Process Parameter <strong>Quality</strong> <strong>Attributes</strong><br />

Raw Material<br />

<strong>Attributes</strong><br />

Bin Blend<br />

Roller Compaction<br />

Bin Blend<br />

Compression<br />

Film Coating<br />

Polymer Viscosity,<br />

Polymer Functionality<br />

Blending time / end point<br />

Roll force<br />

Roll gap<br />

Roll speed<br />

Feed screw rate<br />

Milling conditions<br />

Blend time/end point<br />

Compression force<br />

Press speed<br />

Feeder speed<br />

Pan Speed<br />

Environmental<br />

Efficiency Factor (EEF)<br />

Blend Uniformity<br />

Ribbon <strong>Attributes</strong><br />

• Porosity<br />

Granule <strong>Attributes</strong><br />

• psd<br />

Tablet Hardness<br />

Blend Uniformity<br />

Tablet <strong>Attributes</strong><br />

• Hardness<br />

• Dissolution<br />

Appearance,<br />

Tablet weight gain<br />

Clinical relevance<br />

Pfizer • 33


B mm<br />

A mm<br />

Roll gap<br />

Case Study-Dry Granulation Design Space:<br />

<strong>Critical</strong> Process Parameters<br />

Roll<br />

force<br />

x bar y bar<br />

low<br />

<strong>Critical</strong> Process Parameter<br />

Polymer<br />

Roll Gap<br />

Roll Force<br />

high<br />

<strong>Critical</strong> <strong>Quality</strong> <strong>Attributes</strong><br />

Hardness<br />

Dissolution<br />

Pfizer • 34


Case Study- Takeaways<br />

� Important to understand the properties <strong>of</strong> the Drug Substance and its<br />

influence on Drug Product.<br />

� Raw materials characterization-Functionality <strong>of</strong> excipients. Rationale for<br />

excipients based on formulation dictated by the QTPP<br />

� Identify the CQAs based on prior knowledge and QTPP.<br />

� Use prior knowledge and risk assessment to identify the critical<br />

parameters or attributes. Establish link between CPP & CQAs. Use risk<br />

management techniques to prioritize the parameters to study.<br />

� Primary assessment and designation <strong>of</strong> criticality is based on the impact<br />

the quality attribute or parameter has on the safety, efficacy and quality <strong>of</strong><br />

the product.<br />

� <strong><strong>Critical</strong>ity</strong>- can be viewed as a continuum.<br />

� Selection <strong>of</strong> the CQAs and the CPPs is an important outcome that lays the<br />

foundation for what is included in the design space and control strategy.<br />

� Polymer is the primary driver <strong>of</strong> clinical performance<br />

� Enhanced understanding <strong>of</strong> the product & process thus building product <strong>of</strong><br />

desired quality.<br />

Pfizer • 35


Key Learnings and Challenges<br />

� Basis for criticality should be clear and concise. <strong><strong>Critical</strong>ity</strong> can be a continuum.<br />

Operationalization <strong>of</strong> QRM.<br />

� Harmonize QbD concepts including terminology for risk management and its<br />

understanding<br />

– Enable common understanding <strong>of</strong> risk management between<br />

industry/regulatory authorities<br />

– Submission <strong>of</strong> risk assessment to dossiers- Need consistent process across<br />

industry Raw material<br />

� Characterization and functionality <strong>of</strong> excipients. Incorporate the variability <strong>of</strong> raw<br />

materials in the DoE’s. Understanding on the limitations <strong>of</strong> the type <strong>of</strong> studies.<br />

� Primary goal <strong>of</strong> QbD is to have an enhanced process and product<br />

understanding.<br />

� Based on the case study- Process understanding and control indicate the<br />

potential <strong>of</strong> product release without dissolution- Opportunity for RTRT<br />

� Some <strong>of</strong> the key challenges for implementation <strong>of</strong> control strategy in RTRT -<br />

– Disaster recovery plans in the event <strong>of</strong> PAT failure, sample plan justification<br />

– Model Maintenance, Handling <strong>of</strong> exceptions.<br />

– Batch release process in the RTR environment.<br />

36<br />

Pfizer • 36


Acknowledgements<br />

Parimal Desai<br />

Syd Shah<br />

Arwinder Nagi<br />

Dominic Ventura<br />

Loren Wrisley<br />

Carl Longfellow<br />

Chris Diorio<br />

Ashwin Jain<br />

Carlos Conde Reyes<br />

Steve Simmons<br />

Ferdinando Aspesi<br />

ISPE-PQLI<br />

Pfizer • 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!