26.11.2012 Views

ACME Governor MAN B&W 9K90MC-VI - Laboratory of Marine ...

ACME Governor MAN B&W 9K90MC-VI - Laboratory of Marine ...

ACME Governor MAN B&W 9K90MC-VI - Laboratory of Marine ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ADAPTIVE CONTROL OF MARINE ENGINES<br />

BRITE-EURAM CT95-0091 - STARTING DATE: 1.1.1996<br />

DG XII Scientific Officer: F. Sgarbi (E. Campogrande)<br />

<strong>ACME</strong><br />

FINAL PROJECT MEETING<br />

ATHENS, 24 FEBRUARY 2000


Outline <strong>of</strong> presentation<br />

• PART 1: Introduction and background<br />

• PART 2: The Consortium<br />

• PART 3: Project outline<br />

• PART 4: Technical achievements<br />

• PART 5: Conclusions and exploitation plan<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


PART 1<br />

INTRODUCTION AND BACKGROUND<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Introduction - State-<strong>of</strong>-art<br />

<strong>Marine</strong> propulsion propulsion units for new new ships ships are specified specified<br />

relying relying on power requirements for for calm calm water ship<br />

resistance adding empirical “service” “service” margins margins for<br />

actual operation<br />

Ship delivery trials are are also conducted conducted in calm<br />

waters waters<br />

Propulsion system is loaded <strong>of</strong>f-design point under<br />

transient conditions on the first voyage in heavy<br />

weather


Background - Pre-<strong>ACME</strong> history<br />

1994: DANAOS containership accident in the Pacific<br />

DANAOS requested the advise <strong>of</strong> NTUA/LME for<br />

operation <strong>of</strong> the ship powerplant in extreme conditions<br />

Extended discussions with the engine manufacturer<br />

<strong>MAN</strong>-B&W<br />

Consortium formed with the required expertise to<br />

study the problem


PART 2<br />

THE CONSORTIUM<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


The <strong>ACME</strong> Consortium<br />

Danaos Shipping Co. Ltd.<br />

<strong>MAN</strong>-B&W Diesel A/S<br />

ABB A/S<br />

HSVA GmbH<br />

LIPS B.V.<br />

Hapag Lloyd Linie GmbH<br />

NTUA


PART 3<br />

PROJECT OUTLINE<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Objectives<br />

To develop methods based on mathematical modelling<br />

and process simulation, enabling to examine the<br />

dynamic behaviour <strong>of</strong> the propulsion installation in<br />

advance, during the ship design stage<br />

To develop engine adaptive control schemes and<br />

governor algorithms allowing maximum exploitation<br />

<strong>of</strong> powerplant capabilities in all ship operating<br />

conditions<br />

To verify verify the proposed methods and schemes by<br />

full-scale ship-board testing


Approach<br />

To consider the dynamic behaviour <strong>of</strong> all all the units<br />

in the propulsion system and especially the intimate<br />

coupling <strong>of</strong> the propeller-engine-turbocharger units<br />

Methodology<br />

1. Systematic self propulsion<br />

<strong>Governor</strong><br />

Propeller<br />

ship model tests inTurbocharger waves<br />

2. Propeller transient behaviour model<br />

3. Simulation <strong>of</strong> engine<br />

dynamic/thermodynamic behaviour<br />

?<br />

4. Control schemes<br />

5. Prototype and Engine full-scale<br />

testing


Work Packages<br />

W.P.1 Specification and Detailed Planning<br />

W.P.2 Model Tank Tests and Analysis<br />

W.P.3 Propeller Transient Behaviour Model<br />

W.P.4 Engine Dynamic Loading Predictions<br />

W.P.5 Propulsion System Simulation<br />

W.P.6 Definition <strong>of</strong> Adaptive Control Options<br />

W.P.7 Test-Bed Evaluation <strong>of</strong> Control Schemes<br />

W.P.8 On Board Installation and Trials<br />

W.P.9 Full Scale Sea-Passage Tests<br />

W.P.10 Analysis <strong>of</strong> Results-Recommendations


Work Packages<br />

<strong>ACME</strong> PROJECT CALENDAR<br />

YEAR 1- 1996 YEAR 2 - 1997 YEAR 3 - 1998 YEAR 4 - 1999 PARTNERS<br />

M onth nr. 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46<br />

Work Package WP M anager<br />

1. PLANNING NTUA<br />

2. M ODEL TANK TESTS HSVA<br />

3. PROPELLER M ODEL LIPS<br />

4. ENGINE DYNAM I CS M AN-B& W<br />

5. PROPULSION SI M ULATION NTUA<br />

6. CONTROL SCHEM ES M AN-B& W<br />

7. TEST BED TRIALS M AN-B& W<br />

8. ON BOARD INST. & TRIAL HAPAG-LLOYD<br />

9. FULL SEA TRI ALS HAPAG-LLOYD<br />

10. RECOM M ENDATIONS NTUA


PART 4<br />

TECHNICAL<br />

ACHIEVEMENTS<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


WORK PACKAGE 1<br />

SPECIFICATION AND DETAILED PLANNING<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


WORK PACKAGE 2<br />

MODEL TANK TESTS AND ANALYSIS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Objective<br />

To determine determine the propeller torque demand variations<br />

in regular and and irregular waves, in head and following seas<br />

Procedure<br />

Open water tests in calm water<br />

Open water tests in waves<br />

Nominal wake measurements in waves<br />

Self-propulsion tests in regular waves<br />

Self-propulsion tests in irregular head and following seas


Open water tests<br />

Self-propulsion tests


Open water tests<br />

Self-propulsion tests


Video <strong>of</strong> tank test measurements


WORK PACKAGE 3<br />

PROPELLER TRANSIENT BEHA<strong>VI</strong>OUR MODEL<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Objective<br />

• To predict the propeller torque demand a few seconds<br />

ahead <strong>of</strong> time<br />

Procedure<br />

• Observation <strong>of</strong> correlation between maximum <strong>of</strong> aft<br />

vertical acceleration and minimum in propeller torque<br />

demand from HSVA experiments.<br />

• Based on HSVA measurements, develop a simple<br />

model for the prediction <strong>of</strong> propeller torque demand


Analytical model (LIPS)<br />

Input:<br />

Geometry <strong>of</strong> submerged blade and<br />

detailed wake distribution<br />

Geometry <strong>of</strong> the partially emerged blade<br />

The aim <strong>of</strong> the research <strong>of</strong> LIPS was to model the partial<br />

submergence problem with the aid PUF-3a <strong>of</strong> numerical code lifting<br />

surface theory in order to predict:<br />

Empirical • Unsteady model blade forces (HSVA)<br />

• Thrust<br />

• Torque<br />

Model is computationally<br />

demanding and input data<br />

difficult to obtain at full-scale<br />

irregular sea conditions<br />

Statistical model (NTUA)


Torque prediction method<br />

Analytical model (LIPS)<br />

Input:<br />

• Continuously measured torque<br />

• Propeller speed<br />

• Propeller relative motion<br />

Empirical Output: model (HSVA)<br />

•Torque approx. 1 sec ahead in time<br />

Statistical NOTE: model (NTUA)<br />

• Accurate prediction <strong>of</strong> the relative<br />

motion <strong>of</strong> the propeller is essential


• Head Seas<br />

Analytical model (LIPS)<br />

-3,0<br />

-4,0<br />

Empirical model (HSVA)<br />

-5,0<br />

-1,0<br />

Statistical model (NTUA)<br />

-3,0<br />

Vertical acceleration aft.<br />

(m/s^2)<br />

5,0<br />

3,0<br />

1,0<br />

-5,0<br />

-7,0<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

0,5<br />

150<br />

-1,0<br />

155 160 165 170 175 180 185 190 195 200<br />

0,4<br />

-2,0<br />

t (sec)<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,3<br />

0,2<br />

0,1<br />

Torque coefficient*10<br />

0,0<br />

AcAf (m/s2)<br />

10*Kq<br />

170 175 180 185 190 195 200 205 210 215 2200,5<br />

t (sec)<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

AcAf (m/s2)<br />

10*Kq


4000<br />

3500<br />

Q(kNt*m)<br />

Acceleration<br />

amplitude<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

A Model output: Torque prediction<br />

Torque QA<br />

Max. acceleration<br />

t<br />

tB-delay<br />

tC-delay<br />

tD-delay<br />

Torque QB<br />

B<br />

Torque QC<br />

C<br />

Torque QD<br />

D<br />

Propeller<br />

Torque<br />

Demand<br />

approx. 4-8 sec ahead in time<br />

Vertical<br />

Acceleration<br />

time<br />

Events<br />

Model input: Aft vertical acceleration, Torque and Torque slope<br />

• Torque increases to a<br />

max value QB at tB • Torque decreases Series2 to a<br />

min value QC at tC • Torque returns to a<br />

value Q D at t D , where<br />

the next acceleration<br />

max occur<br />

100 200 300 400 500 600 700<br />

t(sec)<br />

Series1


Acceleration unit testing<br />

Objective<br />

• To calibrate the acceleration unit by on-board ship tests<br />

Procedure<br />

• Use an accelerometer hooked to a portable PC and record<br />

measurements <strong>of</strong> hull aft vertical acceleration<br />

• Test arrangement on a model ship


Planned on-board installation


On-board measurements<br />

Input signals:<br />

• Propeller shaft torque<br />

• Propeller shaft speed<br />

• Aft vertical acceleration<br />

Signal processing and torque<br />

prediction algorithm<br />

Output signal:<br />

• Torque demand approx.<br />

4-8 sec ahead in time


A1<br />

Torque/Power Meter<br />

Vertical<br />

Acceleration<br />

A: INPUT SIGNALS<br />

A2<br />

On-board measurements<br />

DAQ<br />

S<strong>of</strong>tware<br />

Propeller<br />

Model<br />

B: PROCESSING BOARD<br />

Torque<br />

Demand<br />

C: OUTPUT


1<br />

0<br />

-1<br />

3500<br />

3000<br />

2500<br />

Vertical Acceleration<br />

2000<br />

0 30 60<br />

30<br />

Torque<br />

60<br />

2800<br />

2750<br />

2700<br />

2650<br />

2600<br />

2550<br />

2500<br />

2450<br />

2800<br />

2750<br />

2700<br />

2650<br />

TORQUE PREDICTION 6 SEC<br />

TORQUE PREDICTION 10 SEC<br />

2600<br />

30 32 34 36 38 40<br />

2400<br />

50 52 54 56 58 60


Hardware:<br />

• Kistler K-Beam 8304A2 Capacitive Accelerometer<br />

• Accelerometer Interface Kistler 1572<br />

• Signal Terminal Box<br />

• Portable PC with DAQ board (NI DAQCard-700)<br />

S<strong>of</strong>tware:<br />

• In-house LABView based


Video <strong>of</strong> acceleration measurements


WORK PACKAGE 4<br />

ENGINE DYNAMIC LOADING PREDICTIONS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Turbocharger: ABB VTR 714


Compressor surge model<br />

extended compressor characteristic<br />

deep surge<br />

pressure<br />

ratio<br />

mild surge<br />

surge line<br />

• Unsteady flow compressor model developed<br />

• Implemented in the ABB simulation code (SiSy)<br />

• Further improvements needed<br />

mass<br />

flow


Video <strong>of</strong> compressor surge


WORK PACKAGE 5<br />

PROPULSION SYSTEM SIMULATION<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Objective<br />

• To develop a model for the propulsion simulation in<br />

transient conditions (variable load) to be used in testing<br />

various engines control scenarios<br />

Procedure<br />

• Use the MoTher, TAPCODE and SiSy engine<br />

performance codes to perform steady-state simulation<br />

<strong>of</strong> the <strong>ACME</strong> engine<br />

• Tune sub-models where necessary<br />

• Develop control schemes based on simulation results<br />

• Perform engine transient simulations


<strong>MAN</strong>-B&W<br />

NTUA<br />

ABB<br />

MOTHER<br />

SiSy<br />

TAPCODE<br />

Load variation with high amplification<br />

and low damping. Compressor is surging !!


WORK PACKAGE 6<br />

DEFINITION OF ADAPTIVE CONTROL OPTIONS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Conventional Engine Layout<br />

TACHO<br />

PROPELLER<br />

LOAD<br />

NORD<br />

SPEED SETPOINT<br />

PI<br />

GOVERNOR<br />

<strong>9K90MC</strong><br />

FUEL INDEX PUMPS


Objective<br />

• To propose improved control scenarios also<br />

considering the propeller torque prediction availability<br />

Procedure<br />

• Identification <strong>of</strong> control issues<br />

• Investigation <strong>of</strong> possible control options through<br />

simulation


Control Schedule Test Environment<br />

Aft Ship Vertical<br />

Acceleration<br />

HSVA DATA<br />

Propeller Torque<br />

Coefficient, K Q<br />

PROPELLER<br />

MODEL<br />

Predicted Torque Demand<br />

~(t+5sec)<br />

Shaft Speed<br />

LOAD MODEL ENGINE MODEL<br />

Shaft Torque<br />

CONTROL<br />

SYSTEM<br />

Engine Status<br />

Engine<br />

Control


Control issues<br />

• Overspeed protection during fast load drops<br />

• Excessive speed during slow load fluctuation<br />

• Heavy running due to weak load variations<br />

• Compressor stall during acceleration <strong>of</strong> the<br />

propulsion plant


Overspeed protection<br />

•<br />

•<br />

Reduction Load<br />

Combination<br />

prediction <strong>of</strong> I-term<br />

<strong>of</strong><br />

feedforward<br />

the<br />

gain<br />

above<br />

for<br />

strategies<br />

positive acceleration<br />

for wider<br />

protection range<br />

Max Speed d<br />

Relative Kq, Engine Speed and Fuel Rack Position<br />

1.4<br />

Relative Kq, Engine Speed and Fuel Rack Position<br />

Max Speed 1.3 with Feed Forward<br />

Min Index with Feed Forward<br />

Gain <strong>of</strong> 40, 60 and 80% Speed<br />

Gain <strong>of</strong> 40, 60 and Rel. 80% Kq<br />

Rel. Speed(s)<br />

Rel. Kq<br />

1.2<br />

1.2<br />

110%<br />

1.1 1.07 1.07<br />

80%<br />

108%<br />

1<br />

1<br />

70%<br />

106%<br />

104%<br />

102%<br />

100%<br />

98%<br />

0<br />

0.8 0.9<br />

0.8<br />

0.6<br />

0.7<br />

Fuel Rack<br />

Position<br />

0.4 0.6<br />

Rel. Fuel Rack Position(s)<br />

20%<br />

0.5<br />

0.2<br />

0.4<br />

10%<br />

Rel. Kq<br />

Rel. Kq<br />

WITH High Speed Limiter<br />

WITHOUT<br />

WITH Load<br />

High<br />

Feed<br />

Speed<br />

Forward<br />

Limiter 0%<br />

WITHOUT Load Feed Forward<br />

0<br />

0.350<br />

Prediction 55 Time 60<br />

50 55 60<br />

65<br />

65<br />

70<br />

70<br />

75<br />

75<br />

Seconds<br />

Seconds<br />

80<br />

80<br />

85Prediction 90 Time 95<br />

85 90 95<br />

100<br />

100<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

1<br />

Min INdex<br />

60%<br />

50%<br />

40%<br />

30%<br />

0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

1


Control issues<br />

• Overspeed protection during fast load drops<br />

• Excessive speed during slow load fluctuation<br />

• Heavy running due to weak load variations<br />

• Compressor stall during acceleration <strong>of</strong> the<br />

propulsion plant


Excessive speed<br />

• Adaptive speed setpoint<br />

1.03<br />

1.02<br />

1.01<br />

1<br />

0.99<br />

0.98<br />

0.97<br />

0.96<br />

0.95<br />

0.94<br />

Rel. Speed WITH Adaptive Setpoint<br />

Rel. Effective Speed Setpoint<br />

Rel. Speed WITHOUT Adaptive Setpoint<br />

0.93<br />

0 50 100 150<br />

Seconds<br />

200 250


Control issues<br />

• Overspeed protection during fast load drops<br />

• Excessive speed during slow load fluctuation<br />

• Heavy running due to weak load variations<br />

• Compressor stall during acceleration <strong>of</strong> the<br />

propulsion plant


Heavy running<br />

• Raised fuel index limiters in combination with s<strong>of</strong>t<br />

limiters for speed setpoint conditioning<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Rel. Speed<br />

Rel. Fuel Index<br />

WITH Algorithm<br />

0.5<br />

0 50 100 150 200 250 300<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Rel. Speed<br />

Rel. Fuel Index<br />

WITHOUT Algorithm<br />

0.5<br />

0 50 100 150<br />

Seconds<br />

200 250 300


Control issues<br />

• Overspeed protection during fast load drops<br />

• Excessive speed during slow load fluctuation<br />

• Heavy running due to weak load variations<br />

• Compressor stall during acceleration <strong>of</strong> the<br />

propulsion plant


Turbocharger<br />

• Fuel index gradient limiter as a function <strong>of</strong> outlet<br />

temperature time derivative<br />

• Speed Significant setpoint load increase fluctuation<br />

1.3 1.4<br />

1.2<br />

1.2<br />

1.1<br />

1<br />

1<br />

0.9<br />

0.8<br />

0.8<br />

0.6<br />

0.7<br />

0.4<br />

0.6<br />

0.2<br />

0.5<br />

Relative Kq, Engine Speed and Fuel Rack Position<br />

Compr. Flow / Compr. Flow on Surge Compr. Line Flow / Compr. Flow on Surge Line<br />

Fuel Rack<br />

Position<br />

Rel. Kq<br />

Speed<br />

Rel. Fuel KqRack<br />

Speed Setpoint<br />

WITH Position Surging Protection WITH Surging Protection<br />

WITHOUT Surging Protection WITHOUT Surging Protection<br />

0.40<br />

1550 55 2060 65 2570 75<br />

Seconds<br />

3080 85 3590 95 40 100


Torque Prediction Based Control<br />

Schemes<br />

• Generic optimal control scheme using performance<br />

indices including load tracking<br />

• Preventive Control Action that adjusts speed setpoint<br />

to avoid excessive overspeed


Optimal control<br />

Choice <strong>of</strong> desired cost function<br />

(including speed error and fuel index displacement)<br />

Solution <strong>of</strong> constrained optimization problem<br />

(system dynamics)<br />

Calculation <strong>of</strong> full fuel index schedule<br />

for the prediction time interval


Torque Prediction Based Control<br />

Schemes<br />

• Generic optimal control scheme using performance<br />

indices including load tracking<br />

• Preventive Control Action that adjusts speed setpoint<br />

to avoid excessive overspeed


Preventive control<br />

Propulsion system dynamics<br />

(Expected max. overspeed) α (Expected max. undertorque)<br />

Calculation <strong>of</strong> “safe” fuel index value


Simulation <strong>of</strong> control schedules<br />

TACHO<br />

ESPD2<br />

PROPELLER<br />

LOAD<br />

ESPD<br />

SPEED NORD<br />

SETPOINT<br />

ESPD1<br />

PI<br />

GOVERNOR<br />

RPM LIMITER<br />

SCAVENGING LIMITER<br />

FUEL RACK LIMITER<br />

LIMITER BLOCK<br />

AND DEAD BANDS<br />

••ORDERED ORDERED SPEED: SPEED: 89.0 89.0 RPM RPM<br />

••INITIAL INITIAL FUEL FUEL RACK RACK POSITION: POSITION: 0.85<br />

0.85<br />

<strong>9K90MC</strong><br />

ACTUATOR<br />

FUEL INDEX PUMPS


CONTROL STRATEGY<br />

• PI controller<br />

• Adjustable P and I gains dependent on the engine<br />

speed error range interval<br />

• Control action gain discrimination dependent on<br />

the sign <strong>of</strong> the differential<br />

CONTROL STRATEGY WITH<br />

engine speed error<br />

PREVENTIVE ACTION<br />

• Linear overspeed penalty function<br />

• Superimpose knowledge <strong>of</strong> the<br />

• Engine speed and scavenging limiters<br />

propeller future torque demand<br />

• Low-pass filtering <strong>of</strong> the required speed command<br />

on the controller actions, to avoid<br />

signal<br />

engine overspeeds and generate<br />

smoother rack movements


SIMULATIONS<br />

• Fixed rack position 0.85<br />

• PI controller without torque prediction<br />

• PI controller with torque prediction<br />

• Clean vs. “dirty” compressor<br />

ENGINE LOAD (taken from HSVA data)<br />

10 Kq<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time ( sec )<br />

10Kq variation used for the simulation tests


Engine Speed (RPM)<br />

Torque (KN m)<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

Propeller<br />

Engine<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (sec)<br />

Variation <strong>of</strong> engine speed and torque and load torque (fixed rack position at 0.85)<br />

Compressor map (fixed rack position at 0.85)<br />

Pressure Ratio<br />

Fixed rack position 0.85<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

5 10 15 20 25 30 35<br />

Corrected air volumetric flow rate (m^3/s)


Rack Position<br />

Engine Speed (RPM)<br />

Torque (KN m)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

Propeller<br />

Engine<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (sec)<br />

Simulation Results (PI control without load prediction)<br />

PI controller without torque prediction<br />

Pressure Ratio<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

5 10 15 20 25 30 35<br />

Corrected air volumetric flow rate (m^3/s)<br />

Compressor map (PI control)


Rack Position<br />

Engine Speed (RPM)<br />

Torque (KN m)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

Propeller<br />

Engine<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (sec)<br />

Simulation Results (PI control with load prediction)<br />

PI controller with torque prediction<br />

Pressure Ratio<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

5 10 15 20 25 30 35<br />

Corrected air volumetric flow rate (m^3/s)<br />

Compressor map (PI control with load prediction)


Mass Flow Rate (kg/s)<br />

T/C Speed ( RPM )<br />

Rack Position<br />

Engine Speed (RPM)<br />

Torque (KN m)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

12000<br />

11000<br />

10000<br />

9000<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

Clean Compressor<br />

Dirty Compressor<br />

Clean Compressor<br />

Dirty Compressor<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (sec)<br />

Propeller<br />

Engine<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (sec)<br />

Clean vs. “dirty” compressor<br />

Pressure Ratio<br />

Pressure Ratio<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

5 10 15 20 25 30 35<br />

Corrected air volumetric flow rate (m^3/s)<br />

5 10 15 20 25 30 35<br />

Corrected air volumetric flow rate (m^3/s)


Evaluation <strong>of</strong> results<br />

• Sensitive PI governor results to small engine speed<br />

fluctuation<br />

• Speed setpoint adjustment adaptation<br />

• Determination <strong>of</strong> unique set <strong>of</strong> constants for the PI<br />

governor<br />

• Proper utilization <strong>of</strong> propeller torque prediction can lead<br />

to a reduction <strong>of</strong> overspeed risk in near MCR engine<br />

operation


Project Mid-term<br />

Handling <strong>of</strong> ‘management crises’<br />

Redestribution Withdrawal <strong>of</strong> <strong>of</strong> budget from to cover the consortium engineering in installation month 18, and<br />

electrical following Cancellation Four joined month work completion<br />

the<br />

<strong>of</strong> to project the be<br />

consortium<br />

performed <strong>of</strong> extension WP3,<br />

from<br />

due newbuilding on-board to to<br />

month accommodate internal the<br />

18<br />

due Hapag-Lloyd<br />

<strong>of</strong>fering<br />

staffing to Gdansk vessel a similar<br />

containership<br />

containership<br />

problems. shipyard schedule bankruptsy Remaining (Third ‘Shanghai<br />

for on-board Contract peripheral Express’<br />

tests Amendment (First<br />

by work STN<br />

Contract<br />

redistributed April Atlas 1999). Elektronik<br />

Amendment<br />

within<br />

(Second<br />

September<br />

the consortium Contract<br />

1997).<br />

and Amendment related task November fully completed 1998). as planned<br />

(First Contract Amendment September 1997).


Engine and shipbuilding


<strong>MAN</strong> B&W <strong>9K90MC</strong> engine<br />

Power: 55980 Bhp<br />

94 RPM<br />

Pmax: 141 bar<br />

PE: 18 bar<br />

SFOC: 128g/Bhph<br />

SHANGHAI EXPRESS<br />

4600 TEU Container Vessel<br />

Length: 281.6 m<br />

Breadth: 32.5 m<br />

Deadweight: 66771 MT<br />

Service speed: 24 kts


<strong>9K90MC</strong> - SHOP TEST<br />

Verification <strong>of</strong>:<br />

• Engine Performance<br />

• SFOC<br />

• Turbocharger performance<br />

• Turbocharger efficiency<br />

• Thermal load on engine<br />

• IMO Regulations<br />

Atomizers tested for:<br />

• Minimum thermal load on engine<br />

• Fuel optimization<br />

• NOx optimization for expected<br />

IMO regulation


Video <strong>of</strong> shop trials


WORK PACKAGE 7<br />

TEST-BED EVALUATION OF CONTROL SCHEMES<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Objectives<br />

To design the <strong>ACME</strong> governor through simulation <strong>of</strong><br />

the complete propulsion system under rapidly varying<br />

load (heavy weather conditions)


Control system integration<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


The <strong>ACME</strong> <strong>Governor</strong><br />

Hardware platform specifically developed by <strong>MAN</strong> B&W for<br />

marine use<br />

• CPU 32-bit 16MHz Motorola 68332 microprocessor<br />

• Built-in Time Processing Unit (TPU) for speed tracking<br />

• Serial RS232/485 interface<br />

Embedded s<strong>of</strong>tware in two layers<br />

• Basic Electronic System (BES) incorporating the Real Time<br />

Operating System (RTXC)<br />

• Algorithms for main engine speed regulation


<strong>ACME</strong> governor integration<br />

L ˆ<br />

Existing<br />

<strong>Governor</strong><br />

PID<br />

Controller<br />

Prediction-based<br />

Controller<br />

TP System<br />

<strong>ACME</strong><br />

GOVERNOR<br />

y PID<br />

+<br />

y PBC<br />

y<br />

PROPULSION<br />

SYSTEM<br />

L<br />

N


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


TP system functionality<br />

• Data acquisition<br />

• Data processing processing - Speed setpoint conditioning<br />

• Data logging logging - Database update


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


TP system functionality<br />

• Data acquisition<br />

• Data processing processing - Speed setpoint conditioning<br />

• Data logging logging - Database update


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


TP system functionality<br />

• Data acquisition<br />

• Data processing processing - Speed setpoint conditioning<br />

• Data logging logging - Database update


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


TP system<br />

functional diagram<br />

Accelerometer<br />

AFT BULKHEAD<br />

KISTLER AID-4<br />

Vertical Ship<br />

Acceleration<br />

(analog, -/+2 V)<br />

INTERFACE<br />

MODULE 1<br />

SHAFTING<br />

SYSTEM<br />

Shaft<br />

Speed<br />

(analog,<br />

4-20 mA)<br />

HOPPE<br />

Torque/Power Meter<br />

Typ MIP<br />

RS-485<br />

Serial Link<br />

Shaft<br />

Torque<br />

(analog,<br />

4-20 mA)<br />

SIGNAL<br />

PROCESSING<br />

UNIT<br />

Industrial<br />

Single-board<br />

PC<br />

LOG<br />

Hard<br />

Disk<br />

Drive<br />

AID-4<br />

AC POWER SOURCE<br />

MAIN SWITCHBOARD ROOM<br />

INTERFACE MODULE 2<br />

Validation<br />

Signal<br />

(digital,<br />

0-24 V)<br />

Requested<br />

Fuel Rack<br />

Position<br />

(analog, 4-20 mA)<br />

RS-485<br />

Serial Link<br />

AID-4<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Speed setpoint<br />

decrease rate<br />

(analog, 4-20 mA)<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Speed setpoint<br />

decrease rate<br />

Boost Pressure<br />

(analog, 4-20 mA )<br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Engine Speed setpoint<br />

(analog, 4-20 mA)<br />

Engine Fuel Rack Position<br />

(analog, 4-20 mA)<br />

Existing<br />

<strong>Governor</strong>


Signal processing unit (SPU)<br />

Hardware<br />

• Industrial single-board PC<br />

• CPU 5x86/133MHz<br />

• 4 Mbytes DRAM<br />

• 1.4 Gbytes hard disk<br />

S<strong>of</strong>tware<br />

• Embeddable version <strong>of</strong> the TP algorithm<br />

• DAQ, pre-processing and communications<br />

s<strong>of</strong>tware<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong>


DAQ and transmission<br />

system (AID-4)<br />

Hardware<br />

•CPU AT90S8515/11 MHz with watchdog timer<br />

• 512 Kbytes RAM<br />

S<strong>of</strong>tware<br />

•Programmable low pass filter and gain amplifier<br />

• DAQ and communications s<strong>of</strong>tware<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong>


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Existing<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


WORK PACKAGE 8<br />

ON BOARD INSTALLATION AND TRIALS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

Scenario I<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

Scenario I<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

Scenario I<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

Scenario II<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

Scenario II<br />

Possible Installation Scenarios


Scenario III<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

Scenario I<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

Scenario I<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

Scenario II<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

Scenario IV<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

ACTIVE<br />

INTERVENTION<br />

Possible Installation Scenarios<br />

Scenario IV<br />

Selected Installation Scenarios<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

ACTIVE<br />

INTERVENTION<br />

Scenario III<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

<strong>9K90MC</strong><br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Torque<br />

Prediction<br />

System<br />

PASSIVE<br />

RECORDING<br />

PASSIVE<br />

RECORDING<br />

ACTIVE<br />

INTERVENTION<br />

ACTIVE<br />

INTERVENTION<br />

Scenario IV<br />

ACTIVE<br />

INTERVENTION


Control system integration<br />

Aft Ship<br />

Acceleration<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

Shaft Speed<br />

Shaft Torque<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

Standard<br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong>


STN installation drawings


I / F<br />

1<br />

S<br />

P<br />

U<br />

Interface Module 1:<br />

Data acquisition<br />

- Acceleration<br />

- Torque<br />

- (RPM)<br />

Shaft<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong><br />

Aft bulkhead


I / F<br />

1<br />

Interface Module 2:<br />

S<br />

P<br />

U<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong><br />

- Data acquisition/transmission<br />

Signal Processing Unit (SPU)<br />

I / F<br />

2<br />

- TP algorithm<br />

- Storage<br />

Main switchboard room<br />

TP system


I / F<br />

1<br />

Interface Module 2:<br />

S<br />

P<br />

U<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

Data acquisition<br />

- Boost pressure<br />

- Actual fuel rack position<br />

- Engine speed setpoint<br />

- <strong>ACME</strong> governor rack setpoint<br />

Data transmission<br />

- Speed setpoint decrease rate<br />

- Validation signal<br />

Signal Processing Unit (SPU)<br />

- TP algorithm<br />

- Storage<br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong><br />

Main switchboard room<br />

TP system


Main switchboard room<br />

<strong>ACME</strong> governor<br />

I / F<br />

1<br />

S<br />

P<br />

U<br />

<strong>ACME</strong><br />

<strong>Governor</strong><br />

I / F<br />

2<br />

<strong>MAN</strong> B&W<br />

<strong>9K90MC</strong>-<strong>VI</strong><br />

Existing<br />

<strong>Governor</strong>


Engine room overview


WORK PACKAGE 9<br />

FULL SCALE SEA-PASSAGE TESTS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Shanghai Express route<br />

Antwerp<br />

Bremerhaven<br />

Port Said<br />

Hong Kong<br />

Singapore<br />

Pusan


Engine prototype system testing<br />

Main Engine


Engine prototype system testing<br />

Shaft tunnel


Shanghai Express route<br />

• Eight months total logging period with more than 90%<br />

unattended operation <strong>of</strong> the Data Acquisition system.<br />

• Total data logged amount to more than 3.5GB disk<br />

space in binary compressed format.


Objectives<br />

•• Acquire on-line measurements <strong>of</strong> both aft ship ship vertical<br />

acceleration and shaft torque and other engine variables<br />

• Determine speed setpoint decrease rate


Recorded variables<br />

Manual log<br />

Weather conditions - Sea condition<br />

Real time data acquisition<br />

Propeller shaft torque<br />

Propeller shaft speed<br />

Aft ship vertical acceleration<br />

Engine boost pressure<br />

Engine boost pressure<br />

Engine speed setpoint<br />

Requested fuel rack position<br />

Actual fuel rack position at fuel pump


Bridge video


-0.15<br />

Recorded variables<br />

Manual log<br />

-0.21<br />

Weather conditions - Sea condition<br />

Real time data acquisition<br />

-0.25<br />

Propeller shaft torque<br />

-0.27<br />

Propeller shaft speed<br />

1600.00<br />

1400.00<br />

Aft ship vertical acceleration<br />

1200.00<br />

Engine boost pressure<br />

1000.00<br />

Engine speed setpoint<br />

800.00<br />

Requested fuel rack position<br />

Acc. [m/sec 2 ]<br />

-0.17<br />

-0.19<br />

-0.23<br />

0.0<br />

8.8<br />

600.00<br />

Actual fuel rack position at fuel pump<br />

Torque [kN*m]<br />

17.6<br />

26.4<br />

400.00<br />

35.2<br />

44.0<br />

0.0<br />

9.2<br />

52.8<br />

18.4<br />

61.6<br />

70.4<br />

27.6<br />

Speed [RPM]<br />

36.8<br />

55.00<br />

50.00<br />

79.2<br />

88.0<br />

45.00<br />

40.00<br />

35.00<br />

30.00<br />

46.0<br />

55.2<br />

96.8<br />

105.6<br />

64.4<br />

114.4<br />

123.2<br />

73.6<br />

82.8<br />

92.0<br />

29-05-99<br />

11:45-11:50<br />

132.0<br />

140.8<br />

101.2<br />

149.6<br />

110.4<br />

158.4<br />

167.2<br />

Time [sec]<br />

119.6<br />

128.8<br />

29-05-99<br />

29-05-99 11:45-11:50<br />

11:45-11:50<br />

176.0<br />

184.8<br />

0.0<br />

8.4<br />

16.8<br />

25.2<br />

33.6<br />

42.0<br />

50.4<br />

58.8<br />

67.2<br />

75.6<br />

84.0<br />

92.4<br />

100.8<br />

109.2<br />

117.6<br />

126.0<br />

134.4<br />

142.8<br />

151.2<br />

159.6<br />

168.0<br />

176.4<br />

184.8<br />

193.2<br />

201.6<br />

210.0<br />

218.4<br />

226.8<br />

235.2<br />

243.6<br />

252.0<br />

260.4<br />

268.8<br />

277.2<br />

285.6<br />

294.0<br />

138.0<br />

147.2<br />

193.6<br />

202.4<br />

156.4<br />

Time [sec]<br />

Time [sec]<br />

165.6<br />

211.2<br />

220.0<br />

174.8<br />

184.0<br />

228.8<br />

237.6<br />

193.2<br />

202.4<br />

246.4<br />

255.2<br />

211.6<br />

220.8<br />

264.0<br />

272.8<br />

230.0<br />

239.2<br />

281.6<br />

290.4<br />

248.4<br />

257.6<br />

299.2<br />

266.8<br />

276.0<br />

Acc<br />

285.2<br />

294.4<br />

Speed<br />

Torque


Recorded variables<br />

1.18<br />

1.16<br />

56.00<br />

Manual log<br />

1.14<br />

29-05-99<br />

52.00 Weather conditions - Sea condition<br />

Fuel rack Requested [%] Fuel Setpoint Rack [%] speed Boost [%] pressure [bar]<br />

54.00<br />

59,00<br />

57,00<br />

1.12<br />

50.00<br />

52.00<br />

55,00<br />

48.00<br />

50.00<br />

1.10 Real time data acquisition<br />

46.00 53,00<br />

48.00<br />

1.08<br />

44.00 Propeller 51,00 shaft torque<br />

46.00<br />

42.00<br />

Propeller shaft speed<br />

1.06 44.00 49,00<br />

40.00<br />

Aft ship vertical acceleration<br />

0.0<br />

42.00<br />

47,00<br />

38.00<br />

8.8<br />

17.6<br />

26.4<br />

Engine 40.00 boost pressure<br />

45,00<br />

0.0<br />

38.00 Engine speed setpoint<br />

0,0<br />

8.6<br />

9,2<br />

0.0<br />

9.0<br />

17.2<br />

18,4<br />

25.8<br />

27,6<br />

18.0<br />

27.0<br />

35.2<br />

34.4<br />

36,8<br />

44.0<br />

43.0<br />

46,0<br />

36.0<br />

45.0<br />

52.8<br />

Requested fuel rack position<br />

51.6<br />

55,2<br />

61.6<br />

60.2<br />

64,4<br />

70.4<br />

54.0<br />

63.0<br />

68.8<br />

73,6<br />

79.2<br />

77.4<br />

82,8<br />

29-05-99<br />

11:45-11:50<br />

Actual fuel rack position at fuel pump<br />

88.0<br />

86.0<br />

72.0<br />

81.0<br />

92,0<br />

96.8<br />

105.6<br />

94.6<br />

103.2<br />

101,2<br />

110,4<br />

90.0<br />

99.0<br />

114.4<br />

123.2<br />

111.8<br />

120.4<br />

119,6<br />

128,8<br />

108.0<br />

117.0<br />

132.0<br />

29-05-99<br />

11:45-11:50<br />

140.8<br />

149.6<br />

129.0<br />

137.6<br />

29-05-99<br />

11:45-11:50<br />

158.4<br />

167.2<br />

Time [sec]<br />

138,0<br />

147,2<br />

146.2<br />

154.8<br />

Time [sec]<br />

156,4<br />

165,6<br />

Time [sec]<br />

126.0<br />

135.0<br />

11:45-11:50<br />

144.0<br />

153.0<br />

176.0<br />

184.8<br />

163.4<br />

172.0<br />

174,8<br />

184,0<br />

162.0<br />

Time [sec]<br />

180.6<br />

189.2<br />

193.6<br />

202.4<br />

193,2<br />

202,4<br />

171.0<br />

180.0<br />

197.8<br />

206.4<br />

211.2<br />

220.0<br />

211,6<br />

220,8<br />

189.0<br />

198.0<br />

215.0<br />

223.6<br />

228.8<br />

237.6<br />

230,0<br />

239,2<br />

207.0<br />

216.0<br />

232.2<br />

240.8<br />

246.4<br />

255.2<br />

248,4<br />

257,6<br />

225.0<br />

234.0<br />

249.4<br />

258.0<br />

264.0<br />

272.8<br />

266,8<br />

276,0<br />

243.0<br />

252.0<br />

266.6<br />

275.2<br />

281.6<br />

290.4<br />

285,2<br />

294,4<br />

261.0<br />

270.0<br />

299.2<br />

283.8<br />

292.4<br />

279.0<br />

288.0<br />

Boost pres.<br />

Setpoint<br />

Req. Fuel Rack<br />

297.0<br />

Fuel Rack


On board testing<br />

Main switchboard room video


Typical logged signal fragments<br />

Disk #1 24/2/1999 23:45 - 23:59<br />

Shaft Speed (rpm)<br />

Shaft Torque (kNm)<br />

95<br />

94<br />

93<br />

92<br />

91<br />

90<br />

3400<br />

3300<br />

3200<br />

3100<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Vertical Acc. (m/s/s) 3000<br />

Shaft Torque<br />

Shaft Speed<br />

Vertical Acceleration<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Sample Number


Typical logged signal fragments<br />

Disk #2 4/3/1999 17:00 - 17:15<br />

Shaft Speed (rpm)<br />

Shaft Torque (kNm)<br />

80<br />

79<br />

78<br />

77<br />

76<br />

75<br />

74<br />

3000<br />

2500<br />

2000<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

1500<br />

Vertical Vertical Acc. (m/s/s)<br />

Shaft Torque<br />

Shaft Speed<br />

Vertical Acceleration<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Sample Number


Typical logged signal fragments<br />

Disk #3 4/5/1999 12:15 - 12:31<br />

Shaft Speed (rpm)<br />

Shaft Shaft Torque Torque (kNm) (kNm)<br />

Vertical Vertical Acc. (m/s/s)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.0<br />

-0.1<br />

-0.2<br />

Shaft Torque<br />

Shaft Speed<br />

Vertical Acceleration<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Sample Number<br />

Reversal


Typical logged signal fragments<br />

Disk #3 4/5/1999 12:15 - 12:31<br />

Speed Setpoint (rpm)<br />

Fuel Rack (%)<br />

Boost Pressure (bar)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1.2<br />

1.1<br />

Speed Setpoint<br />

Fuel Rack Position<br />

Boost Pressure<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Sample Number<br />

Actual<br />

Requested


Typical logged signal fragments<br />

Disk #4 5/7/1999 23:35 - 23:51<br />

Shaft Speed (rpm)<br />

Shaft Torque (kNm)<br />

Vertical Acc. (m/s/s)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

Shaft Torque<br />

Shaft Speed<br />

Vertical Acceleration<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Sample Number


Typical logged signal fragments<br />

Disk #4 5/7/1999 23:35 - 23:51<br />

Speed Setpoint (rpm)<br />

Fuel Rack (%)<br />

Boost Pressure (bar)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1.1<br />

Speed Setpoint<br />

Fuel Rack Position<br />

Boost Pressure<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Sample Number<br />

Actual<br />

Requested


Typical logged signal fragments<br />

Disk #5 13/10/1999 05:25 - 05:41<br />

Shaft Speed (rpm)<br />

Shaft Torque (kNm)<br />

87<br />

86<br />

85<br />

84<br />

83<br />

82<br />

81<br />

80<br />

2800<br />

2600<br />

2400<br />

2200<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

Vertical Acc. (m/s/s) 2000<br />

Shaft Torque<br />

Shaft Speed<br />

Vertical Acceleration<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Sample Number


Typical logged signal fragments<br />

Disk #5 13/10/1999 05:25 - 05:41<br />

Speed Setpoint (rpm)<br />

Fuel Rack (%)<br />

Boost Pressure (bar)<br />

95<br />

90<br />

85<br />

90<br />

80<br />

70<br />

60<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

2.1<br />

2.0<br />

Fuel Rack Position<br />

Speed Setpoint<br />

Boost Pressure<br />

0 500 1000 1500 2000 2500 3000 3500 4000<br />

Sample Number<br />

Actual<br />

Requested


Typical torque prediction analysis<br />

2 March 1999<br />

Event Max<br />

Error<br />

Average StDev Duration Weight Cor. Avg Cor. StDev<br />

1 16.63% 7.8% 6.4% 10.9 3.9% 3.7% 3.0%<br />

2 16.39% 8.5% 6.0% 10.9 3.9% 4.0% 2.9%<br />

3 8.21% 3.3% 3.0% 12.7 4.6% 1.8% 1.6%<br />

4 7.66% 4.8% 2.2% 12.9 4.6% 2.7% 1.2%<br />

5 5.10% 2.1% 1.5% 9.9 3.6% 0.9% 0.6%<br />

6 9.65% 5.1% 2.8% 19.9 7.2% 4.4% 2.5%<br />

7<br />

8<br />

5.98%<br />

17.95%<br />

1.6%<br />

7.3%<br />

1.8% 12.7 4.6%<br />

03/03/99<br />

7.8% Event 4 77.9 - Duration 8.38 sec 28.2%<br />

0.9% 02/03/99 1.0%<br />

Event 24.7% 10 - Duration: 8.8 sec 26.4%<br />

9<br />

10<br />

14.31%<br />

3160.0<br />

14.37%<br />

7.4%<br />

8.7%<br />

4.0%<br />

3300.0<br />

4.8%<br />

34.7<br />

8.8<br />

12.5%<br />

3.2%<br />

11.1%<br />

3.3%<br />

6.0%<br />

1.8%<br />

11 12.64% 3140.0 3.9% 2.8% 3200.0 56.7 20.5% 9.6% 6.8%<br />

12 13.44% 5.5% 4.9% 8.8 3.2% 2.1% 1.9%<br />

3120.0<br />

3100.0 11.86% 5.5% 4.0% 3000.0 276.6 5.8% 4.6%<br />

Torque [kN*m]<br />

3080.0<br />

3060.0<br />

3040.0<br />

3020.0<br />

3000.0<br />

6.60<br />

7.04<br />

7.48<br />

7.92<br />

8.36<br />

Torque [kN*m]<br />

8.80<br />

3100.0<br />

2900.0<br />

2800.0<br />

2700.0<br />

2600.0<br />

2500.0<br />

9.24<br />

2400.0<br />

9.68<br />

2767.6<br />

10.12<br />

2768.1<br />

10.57<br />

11.01<br />

Time [sec]<br />

2768.5<br />

2769.0<br />

11.45<br />

2769.4<br />

11.89<br />

12.33<br />

2769.9<br />

12.77<br />

2770.4<br />

13.21<br />

2770.8<br />

13.65<br />

2771.3<br />

14.09<br />

2771.8<br />

14.53<br />

2772.2<br />

14.98<br />

Time [sec]<br />

2772.7<br />

Mes<br />

Prd<br />

2773.1<br />

2773.6<br />

2774.1<br />

2774.5<br />

2775.0<br />

2775.4<br />

2775.9<br />

2776.4<br />

Prd<br />

Mes


Achievements<br />

• Successful <strong>ACME</strong> prototype governor integration.<br />

• Data Acquisition system installation and operation .<br />

• Extensive on-board measurements


WORK PACKAGE 10<br />

RECOMMENDATIONS<br />

WP <strong>MAN</strong>AGER<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


TP algorithm improvement<br />

• TP system only partially successful in predicting<br />

propeller demand load.<br />

• New methodology, implementing neural nets<br />

technology, proposed for propeller torque<br />

demand prediction.


TP algorithm improvement<br />

Vessel’s structural vibration bandwidth<br />

Interference to Aft Vertical Acceleration Signal<br />

Advanced signal<br />

pre-filtering


TP algorithm extension<br />

Advanced pre-filtering


TP algorithm improvement<br />

Vessel’s structural vibration bandwidth<br />

Interference to Aft Vertical Acceleration Signal<br />

Advanced signal<br />

pre-filtering<br />

Extension to<br />

“acceleration-free” version


TP algorithm extension<br />

Artificial Neural Nets<br />

3800<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

2400<br />

5000 5100 5200 5300 5400 5500 5600 5700 5800


PART 5<br />

CONCLUSIONS AND<br />

EXPLOITATION PLAN<br />

FINAL PROJECT MEETING, ATHENS 24 FEBRUARY 2000


Project conclusions<br />

• <strong>ACME</strong> project fully completed contractually.<br />

• Managerial crises were successfully handled.<br />

• Project was especially successful in<br />

�� developing hardware for on-board installation installation.<br />

�� conducting a complete range <strong>of</strong> full-scale<br />

shipboard tests.


Technical achievements<br />

•• Adaptive control strategies developed for large<br />

marine marine engines. engines.<br />

•• Novel Novel control strategies strategies were were implemented on the<br />

<strong>ACME</strong> prototype governor which after extensive<br />

testing to Class standards was installed on-board<br />

ships. ships.<br />

• Long term on-board operation with the <strong>ACME</strong><br />

governor resulted in large amount <strong>of</strong> validation data.


Exploitation items<br />

• A new Electronic Control Unit (ECU), developed<br />

by <strong>MAN</strong>-B&W, leading to enhanced marine<br />

diesel engine control.<br />

• S<strong>of</strong>tware and associated hardware for real<br />

time propeller load prediction on-board ship.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!