11.07.2015 Views

Recent developments in the research of shape memory alloys

Recent developments in the research of shape memory alloys

Recent developments in the research of shape memory alloys

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

514 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528for {001}h1 10i shear. Fig. 4 shows a structural relationshipbetween B2 parent and B19 martensite, and B19 0martensite. By compar<strong>in</strong>g Fig. 4(a) and (b), it is clearthat {110}h1 10i shear is necessary to create B19 structurefrom B2 parent structure. Thus, <strong>the</strong> s<strong>of</strong>ten<strong>in</strong>g <strong>in</strong> c 0 assists<strong>the</strong> structure change from B2 to B19. However, for <strong>the</strong>structural change from B2 to monocl<strong>in</strong>ic B19 0 ,{110}h1 10i shear above is not enough. Instead{001}h1 10i shear is also necessary, as seen from Fig. 4(c).Thus, <strong>the</strong> simultaneous s<strong>of</strong>ten<strong>in</strong>g <strong>in</strong> c 0 and c 44 assists <strong>the</strong>transformation from B2 to B19 0 monocl<strong>in</strong>ic martensite.Thus <strong>the</strong> present authors recently proposed that <strong>the</strong>appearance <strong>of</strong> B19 0 monocl<strong>in</strong>ic martensite is due to <strong>the</strong>s<strong>of</strong>ten<strong>in</strong>g <strong>in</strong> c 44 , as described above [31]. However, youwill notice soon that although c 44 s<strong>of</strong>tens with decreas<strong>in</strong>gtemperature both <strong>in</strong> Ti±50Ni and Ti±30Ni±20Cu,only <strong>the</strong> former transforms <strong>in</strong>to monocl<strong>in</strong>ic martensiteand <strong>the</strong> latter <strong>in</strong>to orthorhombic one. This po<strong>in</strong>t isrationalized as follows. Accord<strong>in</strong>g to Fig. 4(c), <strong>the</strong> anisotropyfactor A=c 44 /c 0 decreases with decreas<strong>in</strong>g temperature<strong>in</strong> Ti±50Ni, while it <strong>in</strong>creases with decreas<strong>in</strong>gtemperature <strong>in</strong> Ti±30Ni±20Cu. i.e. c 0 and c 44 becomecomparable <strong>in</strong> <strong>the</strong> former, while c 0 becomes dom<strong>in</strong>ant <strong>in</strong><strong>the</strong> latter with decreas<strong>in</strong>g temperature. The authorsth<strong>in</strong>k that this di€erence makes <strong>the</strong> di€erence <strong>in</strong> martensitestructures between monocl<strong>in</strong>ic and orthorhombic[31]. In short, <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> unique monocl<strong>in</strong>icmartensite <strong>in</strong> Ti±Ni <strong>alloys</strong> are due to <strong>the</strong> very low anisotropyfactor and its temperature dependence, where Adecreases with decreas<strong>in</strong>g temperature toward M s . Some<strong>in</strong>terest<strong>in</strong>g results are be<strong>in</strong>g obta<strong>in</strong>ed on <strong>the</strong> relationbetween phonon s<strong>of</strong>ten<strong>in</strong>g and <strong>the</strong> structural change.See also Ref. [26,32] for elastic constants behavior <strong>in</strong> b-phase <strong>alloys</strong>.2.4. Ti±Ni±X (X=Cu, Nb etc.) ternary <strong>alloys</strong>To change transformation temperature, physicalproperties or mechanical properties, various ternary<strong>alloys</strong> are be<strong>in</strong>g developed. Among <strong>the</strong>se, Ti±(50x)Ni±xCu and Ti±Ni±Nb <strong>alloys</strong> are most important from <strong>the</strong>reasons described below.The addition <strong>of</strong> Cu exhibits various <strong>in</strong>terest<strong>in</strong>g e€ectsas shown <strong>in</strong> Figs. 5 and 6 [33]. Firstly, <strong>the</strong>re is noappreciable change <strong>in</strong> <strong>the</strong> transformation temperaturewith change <strong>in</strong> Cu content. Secondly, <strong>the</strong> transformationtype changes with <strong>in</strong>creas<strong>in</strong>g Cu content; Cu47.5:Fig. 4. Structural relationship among cubic parent phase (B2) and twok<strong>in</strong>ds <strong>of</strong> martensites B19 and B19 0 . (a) The parent B2 cells with a FCTcell outl<strong>in</strong>ed, where close-packed planes or basal planes are <strong>in</strong>dicatedwith th<strong>in</strong> dashed l<strong>in</strong>es; (b) orthorhombic martensite B19, formed byshear/shu‚e <strong>of</strong> <strong>the</strong> basal plane (110) B2 along [110] B2 direction; (c)monocl<strong>in</strong>ic B19 0 martensite <strong>of</strong> Ti±Ni, formed by a non-basal shear(001)[110] B2 to <strong>the</strong> B19 structure to produce a monocl<strong>in</strong>ic b angle [31].Fig. 5. E€ect <strong>of</strong> Cu content on <strong>the</strong> martensitic transformations <strong>of</strong> Ti±(50x)Ni±xCu <strong>alloys</strong> [33].


516 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528Table 1Tw<strong>in</strong>n<strong>in</strong>g modes <strong>of</strong> Ti±Ni martensite [40]Tw<strong>in</strong>n<strong>in</strong>g mode K 1 Z 1 K 2 Z 2 s Sol. a{111} (111) [0.54043 0.45957 1] (0.24695 0.50611 1) [211] 0.30961 yesType I ( 111) [0.54043 0.45957 1] (0.24695 0.50611 1) [ 211] 0.30961 yes{111} (111) [1.51172 0.51172 1] (0.66875 0.33750 1) [211] 0.14222 noType I (111) [1.51172 0.51172 1] (0.66875 0.33750 1) [211] 0.14222 no{011} (011) [1.57271 1 1] (0.72053 1 1) [011] 0.28040 yesType I (011) [1.57271 1 1] (0.72053 1 1) [011] 0.28040 yesh011i (0.72053 1 1) [011] (011) [1.57271 1 1] 0.28040 yesType II (0.72053 1 1) [011] (011) [1.57271 1 1] 0.28040 yesCompound (001) [100] (100) [001] 0.23848 no(100) [001] (001) [100] 0.23848 noa Existence <strong>of</strong> a solution for <strong>the</strong> phenomenological crystallographic <strong>the</strong>ory.Fig. 7. High resolution electron micrograph <strong>of</strong> h011i Type II tw<strong>in</strong>boundary taken from <strong>the</strong> Z 1 (//[011]) unique axis. See text for details[42].Fig. 8. Tensile stress±stra<strong>in</strong> curves <strong>of</strong> Ti±50.6Ni alloy deformed at243 K (>A f ). Dotted l<strong>in</strong>es represent <strong>the</strong> recovered stra<strong>in</strong> upon heat<strong>in</strong>gto 373 K. The symbol (x) represents <strong>the</strong> fracture po<strong>in</strong>t [44].5. The critical tensile stress for slip is very low at M s(less than 50 MPa), while that <strong>in</strong> <strong>the</strong> parent phasefor <strong>the</strong> same s<strong>in</strong>gle crystal is about 400 MPa [45].In fact, <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong>se factors make <strong>the</strong> Ti±Ni very ductile, e.g. If only <strong>the</strong> item 1 is important, <strong>the</strong>nwe can expect that all b-phase <strong>alloys</strong> exhibit<strong>in</strong>g <strong>the</strong>Fig. 9. Temperature dependence <strong>of</strong> <strong>the</strong> elongation <strong>of</strong> Ti±51Ni alloy[45].martensitic transformation are ductile. However, most<strong>of</strong> <strong>the</strong> b-phase <strong>alloys</strong> are quite brittle, because <strong>the</strong> anisotropyfactor is usually as high as 10±15, <strong>the</strong> gra<strong>in</strong> sizeare large and <strong>the</strong> critical stress for slip are usually high.Thus, we can now understand that <strong>the</strong> ductility <strong>of</strong> Ti±Nialloy system is based on <strong>the</strong> availability <strong>of</strong> <strong>the</strong>se variousfactors.Accord<strong>in</strong>g to Fig. 9, <strong>the</strong> ductility decreases at hightemperatures <strong>in</strong> <strong>the</strong> parent phase signi®cantly, but it isstill higher (20%) compared to those <strong>of</strong> most <strong>in</strong>termetallics.S<strong>in</strong>ce stress-<strong>in</strong>duced transformations andtw<strong>in</strong>n<strong>in</strong>g <strong>in</strong> martensites do not contribute to ductility atsuch high temperatures <strong>the</strong> high ductility may beexpla<strong>in</strong>ed as follows. Firstly, items 3 and 4 are still validat high temperatures. Secondly, we focus attention on<strong>the</strong> low value <strong>of</strong> elastic constant c 44 <strong>in</strong> Ti±Ni based<strong>alloys</strong>, which was shown <strong>in</strong> Fig. 3(b). In fact, c 44 <strong>in</strong> Ti±Ni based <strong>alloys</strong> are smaller than 1/3 <strong>of</strong> that <strong>of</strong> o<strong>the</strong>r B2type <strong>in</strong>termetallics with similar melt<strong>in</strong>g po<strong>in</strong>t such asNi±Al. The abnormally low c 44 leads to a low Peierlsstress for {110}h001i slip system, which is <strong>the</strong> operat<strong>in</strong>gsystem <strong>in</strong> Ti±Ni alloy [46]. Thus, <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong>items 3 and 4, and <strong>the</strong> low value <strong>of</strong> c 44 may be <strong>the</strong> orig<strong>in</strong>for <strong>the</strong> high ductility at high temperatures. Besides,<strong>the</strong>re is a report that {112} and {114} tw<strong>in</strong>n<strong>in</strong>g modes


K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 517are present even <strong>in</strong> <strong>the</strong> parent phase [47], which <strong>in</strong>crease<strong>the</strong> available deformation modes. Apparently <strong>the</strong>se alsoassist to <strong>in</strong>crease <strong>in</strong> ductility <strong>in</strong> <strong>the</strong> parent phase. However,<strong>the</strong>re may be a possibility that <strong>the</strong>se tw<strong>in</strong>s were<strong>in</strong>troduced by stress-<strong>in</strong>duced transformation, s<strong>in</strong>cemechanical tw<strong>in</strong>n<strong>in</strong>g <strong>in</strong> ordered <strong>alloys</strong> do usually notoperate easily [48,49]. These po<strong>in</strong>ts should be exam<strong>in</strong>edmore carefully.2.7. Ti±Ni th<strong>in</strong> ®lmsBy <strong>the</strong> expected applications for microactuators andmicromach<strong>in</strong>es, various techniques were tried for <strong>the</strong>fabrication <strong>of</strong> Ti±Ni th<strong>in</strong> ®lms, <strong>in</strong>clud<strong>in</strong>g rapid quench<strong>in</strong>gtechnique [50], and it is now possible to make th<strong>in</strong>®lms ra<strong>the</strong>r easily by magnetron sputter<strong>in</strong>g technique[51±65]. Thus active <strong>in</strong>vestigations are be<strong>in</strong>g done on <strong>the</strong>microstructures and mechanical properties. In <strong>the</strong> magnetronsputter<strong>in</strong>gtechnique, Ti±Ni <strong>alloys</strong> are used as atarget, and <strong>the</strong> composition is adjusted by plac<strong>in</strong>g Tiplates on <strong>the</strong> target, and <strong>the</strong> substrate is ei<strong>the</strong>r a glass ora quartz plate. The characteristic <strong>of</strong> <strong>the</strong> Ti±48.7 at%Ni®lm thus made is shown <strong>in</strong> Fig. 10, as an example. Theas-sputtered ®lm on a glass substrate at 523 k is <strong>in</strong>amorphous state. When <strong>the</strong> ®lm is heated to a temperatureabove <strong>the</strong> crystallization temperature (723 k),it crystallizes, and <strong>the</strong>n it exhibits <strong>the</strong> martensitic transformation.In <strong>the</strong> present case, <strong>the</strong> crystallization treatmentwas done at 973 k for 1 h. The data <strong>in</strong> <strong>the</strong> ®gureare temperature-elongation curves under constantstress, e.g. Under 30 MPa, 1% elongation is obta<strong>in</strong>ed by<strong>the</strong> martensitic transformation between M s and M f .Upon heat<strong>in</strong>g this stra<strong>in</strong> is recovered. This is <strong>the</strong> <strong>shape</strong><strong>memory</strong> e€ect. We notice that <strong>the</strong> stra<strong>in</strong> <strong>in</strong>creases with<strong>in</strong>creas<strong>in</strong>g stress. This is because particular variantsfavorable to <strong>the</strong> stress are stress-<strong>in</strong>duced under higherstress. Under high stresses, <strong>the</strong> stra<strong>in</strong> upon cool<strong>in</strong>g andthat upon heat<strong>in</strong>g becomes unequal. This is due to <strong>the</strong><strong>in</strong>troduction <strong>of</strong> slip <strong>in</strong> <strong>the</strong> reverse transformations [66],i.e. SME becomes <strong>in</strong>complete under higher stresses. The<strong>shape</strong> <strong>memory</strong> characteristics and <strong>the</strong> transformationbehavior <strong>in</strong> th<strong>in</strong> ®lms are similar to those <strong>in</strong> bulk materials.However, <strong>the</strong> ®lms crystallized from amorphousstate have very small gra<strong>in</strong> size (mm to sub-mm), andthus have good mechanical properties. Fur<strong>the</strong>rmore,s<strong>in</strong>ce <strong>the</strong> as-sputtered ®lms are <strong>in</strong> amorphous state, <strong>the</strong>ycan absorb solute atoms more than <strong>the</strong> solubility limit.Thus, it is possible to control microstructures by precipitationon Ti-rich side also. We will <strong>in</strong>troduce an<strong>in</strong>terest<strong>in</strong>g case <strong>in</strong> that respect as follows.Accord<strong>in</strong>g to <strong>the</strong> phase diagram <strong>of</strong> Fig. 1, <strong>the</strong> solubilitylimit <strong>of</strong> Ni <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g temperature onNi-rich side. Thus, it was possible to streng<strong>the</strong>n <strong>the</strong>parent phase <strong>of</strong> Ti±Ni by utiliz<strong>in</strong>g <strong>the</strong> metastable Ti 3 Ni 4precipitate, and this technique was practically utilized toimprove <strong>the</strong> <strong>shape</strong> <strong>memory</strong> characteristic <strong>of</strong> Ni-rich Ti±Ni<strong>alloys</strong> <strong>in</strong> bulk [13,14]. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> precipitationharden<strong>in</strong>g could not be used on Ti-rich side, s<strong>in</strong>ce <strong>the</strong>solubility limit does not change with temperature. However,s<strong>in</strong>ce it is possible to absorb Ti freely (i.e. morethan <strong>the</strong> concentration <strong>of</strong> <strong>the</strong> solubility limit <strong>in</strong> crystall<strong>in</strong>estate) <strong>in</strong> amorphous state, it is possible to use <strong>the</strong>precipitation harden<strong>in</strong>g even on Ti-rich side, if <strong>the</strong> Tirichalloy is solidi®ed <strong>in</strong> amorphous state, followed bycrystallization and age<strong>in</strong>g. Fur<strong>the</strong>rmore, it was foundrecently that Ti-rich GP zones precipitate along{100} B2 planes [56,61,62] (Fig. 11), if <strong>the</strong> ®lms are crystallizedat low temperatures, although <strong>the</strong> equilibriumprecipitate is Ti 2 Ni phase, and <strong>the</strong> <strong>shape</strong> <strong>memory</strong> characteristicsimprove greatly by that precipitation harden<strong>in</strong>g[61]. As an example, <strong>the</strong> case for Ti±48.2 at%Nialloy is shown <strong>in</strong> Fig. 12, which is to be compared withFig. 10. It is easy to see that <strong>the</strong> <strong>shape</strong> <strong>memory</strong> stra<strong>in</strong>and <strong>the</strong> stress, for which SME is observed, is improvedgreatly. Although <strong>the</strong>re are more <strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>ts forFig. 10. Stra<strong>in</strong>-temperature curve <strong>of</strong> Ti±48.7Ni th<strong>in</strong> ®lm under variousconstant loads. Crystallization and solution-treatment were carriedout at 973 K for 3.6 Ks [53].Fig. 11. High resolution TEM image <strong>of</strong> a sputter-deposited Ti±48.5 at%Ni th<strong>in</strong> ®lm annealed at 773 K for 600 s, observed along [001]direction <strong>of</strong> B2 parent phase. GP zones coherent to <strong>the</strong> B2 matrix arepresent along (100) and (010) planes [67].


518 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528Fig. 12. Stra<strong>in</strong>-temperature curves <strong>of</strong> Ti-±48.2Ni th<strong>in</strong> ®lm under variousconstant stresses conta<strong>in</strong><strong>in</strong>g GP zone precipitates. The specimenwas heat-treated at 745 K for 1 h, which is slightly above <strong>the</strong> crystallizationtemperature 737 K [61].this precipitation on Ti-rich side, refer to <strong>the</strong> orig<strong>in</strong>alpapers for those.Thus, it has become possible to make Ti±Ni th<strong>in</strong> ®lmswith good mechanical properties, but one problem forpractical use is <strong>the</strong> control <strong>of</strong> <strong>the</strong> composition <strong>of</strong> th<strong>in</strong>®lms [65]. S<strong>in</strong>ce it seems that <strong>the</strong> composition is di€erenteven on <strong>the</strong> same substrate and <strong>the</strong> transformationtemperature is very sensitive to composition, compositioncontrol will be an important problem <strong>in</strong> <strong>the</strong> future.Fur<strong>the</strong>rmore, for <strong>the</strong> application to micromach<strong>in</strong>es, <strong>the</strong>substrate must be Si chips. Thus, how to avoid <strong>the</strong> constra<strong>in</strong>tdue to <strong>the</strong> large di€erence <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal expansioncoecient <strong>of</strong> <strong>the</strong> th<strong>in</strong> ®lm and substrate will be <strong>the</strong>second problem [65]. As <strong>the</strong> third, we expect fur<strong>the</strong>rdevelopment <strong>of</strong> applications <strong>of</strong> th<strong>in</strong> ®lms, s<strong>in</strong>ce manyapplications are not disclosed as yet [68].3. Developments <strong>in</strong> <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong> <strong>in</strong> general3.1. Defect densities <strong>in</strong> <strong>in</strong>termetallicsÐare <strong>the</strong>re anyconstitutional vacancies <strong>in</strong> <strong>in</strong>termetallics?As mentioned earlier, most <strong>of</strong> SMAs are <strong>in</strong> fact<strong>in</strong>termetallic compounds (<strong>shape</strong> <strong>memory</strong> <strong>in</strong>termetallics)because <strong>the</strong>y are ordered <strong>alloys</strong> and many <strong>of</strong> <strong>the</strong>mrema<strong>in</strong> ordered near to <strong>the</strong> melt<strong>in</strong>g temperature (e.g.Ti±Ni, Au±Cd, etc.). Therefore, po<strong>in</strong>t defects we discusshere <strong>in</strong>clude both vacancy and anti-site defect (ASD).In comparison to <strong>the</strong> relatively recent knowledgeabout <strong>the</strong> role <strong>of</strong> po<strong>in</strong>t defects on mechanical properties<strong>of</strong> structural <strong>in</strong>termetallics for high temperature applications[69], <strong>the</strong> important role <strong>of</strong> po<strong>in</strong>t defects <strong>in</strong> <strong>shape</strong><strong>memory</strong> <strong>in</strong>termetallics has been widely known for manydecades, because <strong>the</strong>y strongly a€ect nearly all aspects<strong>of</strong> martensitic transformation. This is evidenced by <strong>the</strong>strong dependence <strong>of</strong> M s temperature, transformationhysteresis, and even <strong>the</strong> structure <strong>of</strong> martensite, on <strong>the</strong>concentration <strong>of</strong> po<strong>in</strong>t defects, which can be variedei<strong>the</strong>r by composition change or by heat-treatment (e.g.quench<strong>in</strong>g). For example, <strong>in</strong> many <strong>alloys</strong> (e.g. Cu±Zn, Ti±Ni, Cu±Al, Fe±Pd,...) only 1 at% change <strong>in</strong> compositionvaries <strong>the</strong> M s temperature by as much as tens <strong>of</strong> or evenover a hundred degrees. Sometimes a very small change<strong>in</strong> composition can even change <strong>the</strong> resultant martensitestructure (e.g., Au±47.5Cd and Au±49.5Cd have di€erentmartensite structure). Quench<strong>in</strong>g also gives rise tostrong change <strong>in</strong> transformation temperature and evenchange <strong>in</strong> martensite structure, as well as an <strong>in</strong>crease <strong>in</strong>transformation hysteresis. Po<strong>in</strong>t defects also play a centralrole <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> puzzl<strong>in</strong>g martensite ag<strong>in</strong>ge€ect, which will be discussed <strong>in</strong> <strong>the</strong> next section.Lattice dynamics plays a key role <strong>in</strong> martensitictransformations, as manifested by frequently observedlattice s<strong>of</strong>ten<strong>in</strong>g prior to martensitic transformation[70,71] Therefore, we expect that <strong>the</strong> e€ect <strong>of</strong> po<strong>in</strong>tdefects on MT must stem from <strong>the</strong>ir <strong>in</strong>¯uence on latticedynamics through chang<strong>in</strong>g elastic constants and phononenergies, as well as anharmonic energies. A typical example<strong>of</strong> this has been given <strong>in</strong> Section 2.3, which showedhow an addition <strong>of</strong> Cu to Ti±Ni changes <strong>the</strong> elastic constantsand ultimately <strong>the</strong> structure <strong>of</strong> martensite.Despite <strong>the</strong> importance <strong>of</strong> po<strong>in</strong>t defects, quantitative<strong>in</strong>formation about <strong>the</strong>ir concentrations and compositiondependence <strong>in</strong> SMAs (<strong>in</strong>termetallics) is rare. Thismay be due to <strong>the</strong> experimental diculty <strong>in</strong> measur<strong>in</strong>gdefect concentrations. Only Au±Cd furnace-cooled b 2alloy has been measured systematically <strong>in</strong> its wholehomogeneity range (Cd=4652 at%) [72], as shown <strong>in</strong>Fig. 13. The vacancy concentration is determ<strong>in</strong>ed by acomb<strong>in</strong>ation <strong>of</strong> density measurement and x-ray latticeparameter determ<strong>in</strong>ation, and <strong>the</strong> concentrations <strong>of</strong>o<strong>the</strong>r defects (Au±ASD and Cd±ASD) are determ<strong>in</strong>edby best-®tt<strong>in</strong>g <strong>the</strong> experimental vacancy-compositionrelation with a <strong>the</strong>oretical model. A notable fact fromthis result is that vacancy concentration <strong>in</strong> slow-cooledAu-Cd is ra<strong>the</strong>r high (>10 3 ), and is extremely high onCd-rich side (10 2 ), compared with that <strong>in</strong> pure metalsor disordered <strong>alloys</strong> even <strong>in</strong> <strong>the</strong>ir quenched state. Thisfeature is common to many <strong>in</strong>termetallics with <strong>the</strong> openB2 structure.


K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 519Fig. 13. Composition dependence <strong>of</strong> po<strong>in</strong>t defect (vacancy/ASD) concentrations for Au±Cd <strong>alloys</strong> [77]. Experimentally measured vacancy concentrationsare shown with square symbol [72].Intermetallics are usually divided <strong>in</strong>to three dist<strong>in</strong>cttypes accord<strong>in</strong>g to <strong>the</strong>ir defect types [73]: triple defect(TRD) type, ASD type and hybrid type. For TRD type<strong>in</strong>termetallics (e.g. Ni±Al, Co±Al, Fe±Al) vacancy isthought to be a necessary constituent to stabilize <strong>the</strong> B2structure, thus a very high concentration <strong>of</strong> vacancy isconsidered to be stable down to absolute zero. Them<strong>in</strong>imum vacancy concentration z for TRD <strong>in</strong>termetallicsis z ˆ 2x on one side from stoichiometry(where x is <strong>the</strong> composition deviation from stoichiometry)as shown by <strong>the</strong> Bradley±Taylor (BT) [87] l<strong>in</strong>e <strong>in</strong>Fig. 1. Such stable vacancy is usually called `constitutionalvacancy'. On <strong>the</strong> o<strong>the</strong>r hand, <strong>in</strong> ASD type andhybrid <strong>in</strong>termetallics vacancy is unstable at low temperatures,thus its concentration is below BT l<strong>in</strong>e. Au±Cdapparently belongs to <strong>the</strong> hybrid type and it conta<strong>in</strong>s alarge amount <strong>of</strong> frozen-<strong>in</strong> vacancy.For over 60 years it has been widely believed thatTRD <strong>in</strong>termetallics such as Ni±Al, Co±Al and Fe±Alconta<strong>in</strong> constitutional vacancies. However, recent carefulmeasurements on <strong>the</strong>se <strong>in</strong>termetallics found thateven <strong>the</strong>se `typical' TRD <strong>in</strong>termetallics have vacancyconcentration appreciably below <strong>the</strong> BT-l<strong>in</strong>e [74±76],which is <strong>the</strong> lower limit for constitutional vacancy toexist. This behavior is qualitatively similar to <strong>the</strong> case <strong>of</strong>Au±Cd. This clearly suggests that vacancy is unstable atlow temperature, thus gives a strong challenge to <strong>the</strong>notion <strong>of</strong> constitutional vacancy. Based on <strong>the</strong>seexperimental ®nd<strong>in</strong>gs, we showed that no constitutionalvacancy exists <strong>in</strong> any <strong>in</strong>termetallics, and <strong>the</strong> di€erence <strong>in</strong>vacancy-frozen temperature (which depends on order<strong>in</strong>genergy) gives rise to three apparently di€erent types <strong>of</strong><strong>in</strong>termetallics [77].3.2. Martensite ag<strong>in</strong>g e€ectÐstabilization and rubber-likebehaviorMartensite ag<strong>in</strong>g e€ect is a puzzl<strong>in</strong>g phenomenonunclear for over 60 years, and has been found <strong>in</strong> Au±Cd,Au±Cu±Zn, Cu±Zn±Al, Cu±Al±Ni, and In±Tl. It <strong>in</strong>volvestwo time-dependent phenomena dur<strong>in</strong>g martensiteag<strong>in</strong>g. One is called martensite stabilization, <strong>the</strong> o<strong>the</strong>r iscalled rubber-like behavior (RLB). Martensite stabilizationrefers to <strong>the</strong> phenomenon that martensiteappears to be more stable with respect to <strong>the</strong> parentphase dur<strong>in</strong>g ag<strong>in</strong>g so that <strong>the</strong> reverse transformationtemperature is <strong>in</strong>creased. The rubber-like behaviorrefers to <strong>the</strong> phenomenon that martensite exhibits arecoverable or pseudo-elastic deformation behaviorafter ag<strong>in</strong>g toge<strong>the</strong>r with an <strong>in</strong>crease <strong>in</strong> critical stress, asexempli®ed <strong>in</strong> Fig. 14(A). The most puzzl<strong>in</strong>g problemwith <strong>the</strong> RLB is why <strong>the</strong>re should exist a restor<strong>in</strong>g force,because martensite deformation <strong>in</strong>volves only tw<strong>in</strong>n<strong>in</strong>gand <strong>the</strong>re is no phase transformation <strong>in</strong>volved, unlikethat <strong>of</strong> superelasticity <strong>of</strong> <strong>the</strong> parent phase due to stress<strong>in</strong>ducedmartensitic transformation. The microstructurechange underly<strong>in</strong>g <strong>the</strong> RLB is a reversible one, that is,<strong>the</strong> orig<strong>in</strong>al martensite doma<strong>in</strong> pattern is recovered after


520 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528unload<strong>in</strong>g Fig. 14(B) (The term `variant' is more commonthan `doma<strong>in</strong>' <strong>in</strong> <strong>the</strong> ®eld <strong>of</strong> martensite. However,<strong>the</strong> former is used <strong>in</strong> <strong>the</strong> present paper for easy understand<strong>in</strong>g<strong>of</strong> non-specialists.). This is even true for s<strong>in</strong>gledoma<strong>in</strong>martensite which does not conta<strong>in</strong> tw<strong>in</strong> boundaries,[78], suggest<strong>in</strong>g that <strong>the</strong> RLB is not a boundarye€ect. The central question concern<strong>in</strong>g <strong>the</strong> martensiteag<strong>in</strong>g e€ect is: what is occurr<strong>in</strong>g dur<strong>in</strong>g martensiteag<strong>in</strong>g, which gives rise to stabilization and <strong>the</strong> RLB?In past decades, <strong>the</strong>re have been numerous studiestry<strong>in</strong>g to clarify <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> martensite ag<strong>in</strong>g e€ect(see Ref. [79] for a recent review). However, a generalmechanism applicable to all martensites was not found.For example, <strong>the</strong> existence <strong>of</strong> ag<strong>in</strong>g e€ect <strong>in</strong> s<strong>in</strong>gledoma<strong>in</strong> martensite [80,81] (i.e. without tw<strong>in</strong> boundary)proved that <strong>the</strong> boundary-p<strong>in</strong>n<strong>in</strong>g mechanism is <strong>in</strong>appropriate.Many previous studies us<strong>in</strong>g Cu-based <strong>alloys</strong>concluded that some structure change (more or lessdepend<strong>in</strong>g on model) dur<strong>in</strong>g ag<strong>in</strong>g <strong>in</strong> martensite isnecessary to cause <strong>the</strong> ag<strong>in</strong>g e€ect. However, martensites<strong>of</strong> <strong>the</strong>se <strong>alloys</strong> are unstable (i.e. not equilibriumphases), and thus <strong>the</strong>y have an <strong>in</strong>born tendency todecompose simultaneously dur<strong>in</strong>g ag<strong>in</strong>g. Therefore, <strong>the</strong>observed structure change may be just due to <strong>the</strong> <strong>in</strong>advertentdecomposition, while ag<strong>in</strong>g itself may be <strong>in</strong>dependent<strong>of</strong> <strong>the</strong> decomposition. <strong>Recent</strong> extensiveexperiments on stable martensites Au±Cd [78,82] andAu±Cu±Zn [83] (without decomposition problem) provedthat ag<strong>in</strong>g develops even without any detectable change<strong>in</strong> average martensite structure (Fig. 15). This seem<strong>in</strong>glyperplex<strong>in</strong>g result is <strong>in</strong> fact very natural, s<strong>in</strong>ce <strong>the</strong> averagestructure <strong>of</strong> an equilibrium or stable phase is notexpected to depend on time (ag<strong>in</strong>g). Then <strong>the</strong> rema<strong>in</strong><strong>in</strong>gpuzzle is how a signi®cant change <strong>in</strong> mechanical propertiesand transformation behavior can be realizedwithout lend<strong>in</strong>g to average structure change. Ahlers etal. tried to expla<strong>in</strong> <strong>the</strong> ag<strong>in</strong>g e€ect by a short rangeorder<strong>in</strong>g (SRO) model [84] which was later extendedfur<strong>the</strong>r by Marukawa and Tsuchiya [85], but <strong>the</strong> occurrence<strong>of</strong> such SRO would necessarily lead to someatomic exchange between di€erent sublattices <strong>of</strong> martensiteand thus lead to appreciable change <strong>in</strong> longrange order or average structure <strong>of</strong> martensite.Obviously, this contradicts experimental results.The answer to this puzzle was given very recently byRen and Otsuka [86]. They showed that <strong>the</strong> ag<strong>in</strong>g phenomenastem from a general tendency that <strong>the</strong> symmetry<strong>of</strong> short-range order con®guration <strong>of</strong> po<strong>in</strong>tdefects tries to conform or follow <strong>the</strong> symmetry <strong>of</strong> <strong>the</strong>crystal. This is named symmetry-conform<strong>in</strong>g shortrangeorder pr<strong>in</strong>ciple (or SC±SRO pr<strong>in</strong>ciple) <strong>of</strong> po<strong>in</strong>tdefects, and is applicable to any crystal conta<strong>in</strong><strong>in</strong>g po<strong>in</strong>tdefects.The SC±SRO pr<strong>in</strong>ciple gives a general and simpleexplanation to <strong>the</strong> ag<strong>in</strong>g phenomena. Fig. 16(a) shows atwo-dimensional A±B b<strong>in</strong>ary imperfectly-ordered parentphase with four-fold symmetry. Because <strong>of</strong> <strong>the</strong> four-foldsymmetry <strong>of</strong> <strong>the</strong> structure, <strong>the</strong> probability <strong>of</strong> ®nd<strong>in</strong>g a Batom about <strong>the</strong> A atom (or B atom) must possess <strong>the</strong>Fig. 14. Demonstration <strong>of</strong> <strong>the</strong> rubber-like behavior. (A) Represents<strong>the</strong> change <strong>of</strong> stress±stra<strong>in</strong> curves <strong>of</strong> a furnace-cooled Au±47.5Cd alloy(a s<strong>in</strong>gle crystal <strong>in</strong> <strong>the</strong> parent phase) after ag<strong>in</strong>g <strong>in</strong> martensite for varioustimes t. (B) Represents <strong>the</strong> change <strong>in</strong> tw<strong>in</strong> patterns <strong>of</strong> <strong>the</strong> martensitedur<strong>in</strong>g load<strong>in</strong>g and unload<strong>in</strong>g <strong>of</strong> <strong>the</strong> martensite after ag<strong>in</strong>g formore than 24 h.Fig. 15. X-ray pro®les <strong>of</strong> (242) Bragg re¯ection <strong>of</strong> Au±47.5 at%Cdmartensite after ag<strong>in</strong>g for short (1.15 h) and long (28.45 h) time,respectively. No perceptible change <strong>in</strong> peak position and <strong>in</strong>tegrated<strong>in</strong>tensity was found dur<strong>in</strong>g ag<strong>in</strong>g. However, a delicate change <strong>in</strong> <strong>the</strong>symmetry <strong>of</strong> <strong>the</strong> pro®le was found to develop dur<strong>in</strong>g ag<strong>in</strong>g, as manifestedby <strong>the</strong> di€erence <strong>of</strong> <strong>the</strong> two pro®les [82].


K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 521Fig. 16. Mechanism <strong>of</strong> <strong>the</strong> rubber-like behavior and martensite stabilization phenomenon. The illustrations show <strong>the</strong> statistical atomic con®guration(conditional probabilities around an A atom) <strong>of</strong> an imperfectly-ordered AB compound <strong>in</strong>, (a) equilibrium parent phase; (b) martensite immediatelyafter transformed from (a); (c) equilibrium martensite; (d) stress-<strong>in</strong>duced martensite doma<strong>in</strong> (tw<strong>in</strong>) immediately formed from (c); (e) equilibriumstate <strong>of</strong> <strong>the</strong> stress-<strong>in</strong>duced doma<strong>in</strong>; and (f) parent immediately transformed from (c), respectively. P: <strong>the</strong> parent phase, and M: martensite. P i B (orP i A ) is <strong>the</strong> conditional probability <strong>of</strong> B atom (or A atom) occupy<strong>in</strong>g i-site (i=1,2,3,...8) if an A atom is at O-site. The relative values <strong>of</strong> P i B and P iAare <strong>in</strong>dicated by <strong>the</strong> black and grey areas, respectively [86].same four-fold symmetry accord<strong>in</strong>g to SC-SRO pr<strong>in</strong>ciple,i.e., P 1 B =P 2 B =P 3 B =P 4 B , and P 5 B =P 6 B =P 7 B =P 8 B ,etc., where P i B (i=1,2,3,...) are conditional probabilities,as de®ned <strong>in</strong> Fig. 16.When <strong>the</strong> parent phase shown <strong>in</strong> Fig. 16(a) transformsdi€usionlessly <strong>in</strong>to martensite, all <strong>the</strong> probabilitiesmust rema<strong>in</strong> unchanged despite <strong>the</strong> symmetrychange, as shown <strong>in</strong> Fig. 16(b). That is, P 1 B =P 2 B =P 3 B =P 4 B , and P 5 B =P 6 B =P 7 B =P 8 B , etc.. However, thishigh-symmetry con®guration is no longer a stable con-®guration for <strong>the</strong> lower symmetry martensite structureaccord<strong>in</strong>g to <strong>the</strong> SC±SRO pr<strong>in</strong>ciple. Then dur<strong>in</strong>g ag<strong>in</strong>g,such a con®guration gradually changes <strong>in</strong>to a stable onethat conforms to martensite symmetry, as shown <strong>in</strong>Fig. 16(c). Because <strong>the</strong> equilibrium martensite structureshould be ma<strong>in</strong>ta<strong>in</strong>ed (for stable martensite), this processproceeds by atomic rearrangement or relaxationwith<strong>in</strong> <strong>the</strong> same sublattice. This is <strong>the</strong> only way that amartensite can lower its free energy without alter<strong>in</strong>g <strong>the</strong>average structure (equilibrium phase).When <strong>the</strong> stabilized (or aged) martensite [Fig. 16(c)] isdeformed, it changes <strong>in</strong>to ano<strong>the</strong>r doma<strong>in</strong> (or tw<strong>in</strong>) as aresult <strong>of</strong> <strong>the</strong> accommodation <strong>of</strong> <strong>the</strong> stra<strong>in</strong>. Because thistw<strong>in</strong>n<strong>in</strong>g process is also di€usionless, <strong>the</strong> atomic occupationprobabilities shown <strong>in</strong> Fig. 16(c) is <strong>in</strong>herited to<strong>the</strong> new doma<strong>in</strong>, as shown <strong>in</strong> Fig. 16(d). Such a con®guration,however, is not <strong>the</strong> stable one for <strong>the</strong> newdoma<strong>in</strong>, which is shown <strong>in</strong> Fig. 16(e). Therefore, adriv<strong>in</strong>g force that tries to restore <strong>the</strong> orig<strong>in</strong>al doma<strong>in</strong>[Fig. 16(c)] engenders. When <strong>the</strong> external stress isreleased immediately after <strong>the</strong> load<strong>in</strong>g, this restor<strong>in</strong>gforce reverts <strong>the</strong> new doma<strong>in</strong> [Fig. 16(d)] to <strong>the</strong> orig<strong>in</strong>alone [Fig. 16(c)] by detw<strong>in</strong>n<strong>in</strong>g. This is <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong>rubber-like behavior. If <strong>the</strong> stress is held for some time,atomic con®guration <strong>in</strong> Fig. 16(d) have enough time tochange <strong>in</strong>to a stable con®guration [Fig. 16(e)], <strong>the</strong>n noRLB will occur.When <strong>the</strong> stabilized martensite [Fig. 16(c)] is heatedup and transforms back (di€usionlessly) <strong>in</strong>to <strong>the</strong> parent,<strong>the</strong> stable SRO con®guration for <strong>the</strong> martensite is<strong>in</strong>herited <strong>in</strong>to <strong>the</strong> parent [Fig. 16(f)]. From <strong>the</strong> abovementionedsymmetry-conform<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> SRO, it isobvious that Fig. 16(f) is not a stable con®guration for<strong>the</strong> parent. From a <strong>the</strong>rmodynamic po<strong>in</strong>t <strong>of</strong> view, thiscorresponds to an <strong>in</strong>creased reverse transformationtemperature. This is <strong>the</strong> orig<strong>in</strong> <strong>of</strong> martensite stabilization.The SC±SRO model can be easily extended <strong>in</strong>to disordered<strong>alloys</strong> by consider<strong>in</strong>g <strong>the</strong> existence <strong>of</strong> only onesublattice. In this case, <strong>the</strong> present model reduces toChristian's model [88], which was later elaborated byOtsuka and Wayman [6]. This model expla<strong>in</strong>ed <strong>the</strong>rubber-like elasticity <strong>in</strong> disordered <strong>alloys</strong> such as In±Tl.The largest advantage <strong>of</strong> <strong>the</strong> SC±SRO model comparedwith previous models is its generality. It not onlyexpla<strong>in</strong>s why ag<strong>in</strong>g does not cause a change <strong>of</strong> averagestructure <strong>of</strong> martensite, but also uni®ed <strong>the</strong> orig<strong>in</strong> <strong>of</strong>ag<strong>in</strong>g e€ect for both ordered and disordered martensites.


522 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528The generality <strong>of</strong> <strong>the</strong> model lies <strong>in</strong> that it makes use <strong>of</strong>only two general features <strong>of</strong> martensitic transformationand ag<strong>in</strong>g: di€usionless symmetry-change upon martensitictransformation and (short-range) di€usion <strong>of</strong>po<strong>in</strong>t defects dur<strong>in</strong>g ag<strong>in</strong>g. In l<strong>in</strong>e with this reason<strong>in</strong>g, itcan be deduced that <strong>the</strong> existence <strong>of</strong> po<strong>in</strong>t defects andpossibility <strong>of</strong> di€usion <strong>in</strong> martensite are two necessaryconditions for ag<strong>in</strong>g phenomena. The existence <strong>of</strong> po<strong>in</strong>tdefect is generally satis®ed by <strong>alloys</strong>, but <strong>the</strong> possibility<strong>of</strong> di€usion <strong>in</strong> martensite depends on <strong>the</strong> reduced martensitictransformation temperature M s =T m , where M sand T m are martensite start temperature and melt<strong>in</strong>gpo<strong>in</strong>t <strong>of</strong> <strong>the</strong> alloy. The higher this reduced temperatureis, <strong>the</strong> faster di€usion <strong>in</strong> martensite becomes. If thisvalue is too low, ag<strong>in</strong>g phenomena are too slow to beobserved; if this value is too high, ag<strong>in</strong>g is so fast thatag<strong>in</strong>g actually completes immediately after <strong>the</strong> martensitictransformation, thus <strong>the</strong> time-dependence <strong>of</strong> ag<strong>in</strong>gmay not be observed. As shown <strong>in</strong> Table 2 [79], Ti±Nialloy belongs to <strong>the</strong> former case, and In±Tl belongs to<strong>the</strong> latter. O<strong>the</strong>r <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong> are <strong>in</strong>-between.Thus we give an answer to an important problem as towhy some <strong>alloys</strong> show strong ag<strong>in</strong>g e€ect, while o<strong>the</strong>rsshow little. The absence <strong>of</strong> martensite ag<strong>in</strong>g e€ect <strong>in</strong> Ti±Ni <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong> [91] is very <strong>in</strong>terest<strong>in</strong>g, becausethis property is desirable for most applications <strong>of</strong>SMAs. The reason, as stated above, is very simple. Thisrem<strong>in</strong>ds us that <strong>the</strong> most e€ective way to develop SMAwithout ag<strong>in</strong>g e€ect is to choose <strong>alloys</strong> with low M s =T mvalue. This can be realized by (i) us<strong>in</strong>g SMA with a lowM s , or (ii) us<strong>in</strong>g SMA with high T m . S<strong>in</strong>ce <strong>the</strong> ®rstmethod are usually restricted by application purpose,us<strong>in</strong>g <strong>alloys</strong> with high melt<strong>in</strong>g temperature becomes <strong>the</strong>most e€ective method. Therefore, <strong>the</strong> development <strong>of</strong>SMA without ag<strong>in</strong>g e€ect should focus on <strong>alloys</strong> withhigh T m , because it is not possible to stop di€usion <strong>in</strong>martensite for <strong>alloys</strong> with low T m . From Table 2, wesuggest that a low M s =T m ratio (


K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 523s<strong>in</strong>ce <strong>the</strong> specimen becomes multi-variant upon <strong>the</strong> secondcool<strong>in</strong>g. In <strong>the</strong> case <strong>of</strong> polycrystall<strong>in</strong>e specimen, <strong>the</strong>stra<strong>in</strong>s can not be released from <strong>the</strong> surface. Instead <strong>the</strong>stra<strong>in</strong>s are released by <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> slip, but <strong>the</strong>process can be expla<strong>in</strong>ed <strong>in</strong> a similar manner. Pleaserefer to <strong>the</strong> orig<strong>in</strong>al paper for more details [36]. In short,when a specimen is deformed <strong>in</strong> <strong>the</strong> martensitic state, A sand A f <strong>in</strong>crease, but when it experiences a completereverse transformation upon heat<strong>in</strong>g, A s and A f returnto <strong>the</strong> orig<strong>in</strong>al value upon <strong>the</strong> subsequent cool<strong>in</strong>g. Theunderstand<strong>in</strong>g this e€ect will be useful <strong>in</strong> <strong>the</strong> discussion<strong>of</strong> <strong>the</strong> next section.3.4. High temperature <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong>Although Ti±Ni <strong>alloys</strong> exhibit <strong>the</strong> best <strong>shape</strong> <strong>memory</strong>characteristics among many SMAs, as discussed <strong>in</strong> Section2.6, <strong>the</strong>y can be used up to 373 K at most. However, ifSMAs, which can be used at higher temperatures, aredeveloped, applications <strong>of</strong> SMAs will be much widenedsuch as <strong>in</strong> eng<strong>in</strong>es <strong>of</strong> automobiles and <strong>in</strong> turb<strong>in</strong>es <strong>of</strong> airplanes etc. As such possible SMAs, we can raise CubasedSMAs such as Cu±Zn±Al and Cu±Al±Ni, Ni±Al,Ti±Ni (Zr, Hf) and Ti±Pd <strong>alloys</strong>. Among <strong>the</strong>se, Cu-based<strong>alloys</strong> are not easy to keep <strong>the</strong> stable parent phase, s<strong>in</strong>ceCu-based <strong>alloys</strong> tend to decompose <strong>in</strong>to o<strong>the</strong>r phaseseasily. Ni±Al <strong>alloys</strong> are attractive, s<strong>in</strong>ce <strong>the</strong>y are notexpensive and <strong>the</strong> M s temperature may be raised up to1200 K, depend<strong>in</strong>g upon <strong>the</strong> composition [93]. However,<strong>the</strong>y are brittle, and <strong>the</strong> martensite tend to transform<strong>in</strong>to <strong>the</strong> Ni 5 Al 3 phase <strong>in</strong>stead <strong>of</strong> reverse transform<strong>in</strong>g<strong>in</strong>to <strong>the</strong> parent phase upon heat<strong>in</strong>g [94]. On <strong>the</strong> o<strong>the</strong>rhand, <strong>the</strong>re are some reports to improve <strong>the</strong> ductility byprecipitat<strong>in</strong>g a ductile FCC phase by <strong>the</strong> addition <strong>of</strong> Feas a ternary element [95]. The addition <strong>of</strong> Zr or Hf toTi±Ni <strong>alloys</strong> to raise <strong>the</strong> transformation temperature isalso attractive, s<strong>in</strong>ce Zr or Hf are relatively less-expensive.However, a brittle phase easily appear depend<strong>in</strong>gupon <strong>the</strong> composition, and thus it is not certa<strong>in</strong> whe<strong>the</strong>r<strong>the</strong>y can be used as practical SMA or not [96]. On <strong>the</strong>o<strong>the</strong>r hand, a Ti±50Pd alloy has M s as high as 823 K,and <strong>the</strong> M s temperature can be changed widely byreplac<strong>in</strong>g Pd with Ni, as shown <strong>in</strong> Fig. 18. Thus, Ti±Pd±Ni alloy system has been expected to be a hopeful candidatefor high temperature SMA [98±100]. From thisreason, we <strong>in</strong>troduce <strong>the</strong> development <strong>of</strong> Ti±Pd±NiSMAs <strong>in</strong> some detail <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.Although Ti±Pd±Ni <strong>alloys</strong> were expected as possiblecandidates for high temperature SMAs for many years,<strong>the</strong> actual assessments <strong>of</strong> SM characteristics at hightemperature were very few until recently, s<strong>in</strong>ce <strong>the</strong>assessment <strong>of</strong> SM characteristics at high temperature isnot easy. Fig. 19 shows one example <strong>of</strong> stress-stra<strong>in</strong>curves at various temperatures for a Ti±50Pd alloy, and<strong>the</strong> dotted l<strong>in</strong>es <strong>in</strong> <strong>the</strong> ®gure represent <strong>the</strong> recovery <strong>of</strong>stra<strong>in</strong> due to heat<strong>in</strong>g above A f (i.e. SM stra<strong>in</strong>). Surpris<strong>in</strong>gly,it shows that practically no SM stra<strong>in</strong>s areobta<strong>in</strong>ed at high temperatures, although reasonablygood SM stra<strong>in</strong>s are obta<strong>in</strong>ed at room temperature[101,102]. It was also con®rmed that <strong>the</strong> poor SM characteristicsat high temperature were due to <strong>the</strong> rapiddecrease <strong>of</strong> <strong>the</strong> critical stress for slip at high temperaturesFig. 17. Electrical resistance vs temperature curves <strong>of</strong> a Cu±13.8Al±4.0Ni (mass%) s<strong>in</strong>gle crystal. (a) Before tensile test; (b) ®rst cycle aftertensile test <strong>in</strong> martensitic state; (c) after <strong>the</strong> cycle <strong>in</strong> (b). See text fordetails [36]. Fig. 18. Phase diagram <strong>of</strong> TiPd±TiNi <strong>alloys</strong> [97].


524 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528[101]. Thus, to improve <strong>the</strong> SM characteristics at hightemperature, we can consider <strong>the</strong> follow<strong>in</strong>g three methods.1. <strong>the</strong>rmomechanical treatment (cold work<strong>in</strong>g followedby suitable anneal<strong>in</strong>g);2. precipitation harden<strong>in</strong>g;3. addition <strong>of</strong> quaternary element.First we discuss <strong>the</strong> results for (i) <strong>the</strong>rmomechanicaltreatment for Ti±(50x)Pd±xNi <strong>alloys</strong> [103]. In short, wefound that <strong>the</strong> anneal<strong>in</strong>g at 673 K for 1 h after coldwork<strong>in</strong>g was very e€ective for <strong>the</strong> <strong>alloys</strong> for x430, asshown <strong>in</strong> Fig. 20. The recovery rate by SME is goodonly up to 2% total stra<strong>in</strong> for a solution-treated specimen,but it is good up to 5.5% total stra<strong>in</strong>, if <strong>the</strong> specimen isannealed at 673 K for 1 h after cold work<strong>in</strong>g. Thesuperelasticity was also obta<strong>in</strong>ed for <strong>the</strong> specimens subjectedto <strong>the</strong> above heat-treatment.As <strong>the</strong> (ii) precipitation harden<strong>in</strong>g, we tried to utilizeTiB 2 by <strong>the</strong> addition <strong>of</strong> B, s<strong>in</strong>ce <strong>the</strong> melt<strong>in</strong>g po<strong>in</strong>t <strong>of</strong>TiB 2 is very high, and <strong>the</strong> addition <strong>of</strong> B may be useful toavoid gra<strong>in</strong> boundary fracture. In fact, we could obta<strong>in</strong>TiB 2 precipitates by <strong>the</strong> homogenization treatment <strong>of</strong>1273 K for 5 h, and we could con®rm that <strong>the</strong> compositionis TiB 2 and <strong>the</strong> structure is PdSi 2 type by EDS(energy dispersive spectroscopy) and electron di€ractionFig. 19. Stress±stra<strong>in</strong> curves <strong>of</strong> a Ti±50Pd alloy, tensile tested at varioustemperatures. Dotted l<strong>in</strong>es with arrows <strong>in</strong>dicate <strong>the</strong> stra<strong>in</strong> recoveredupon heat<strong>in</strong>g to 923 K [101].[104]. However, <strong>the</strong> precipitates were too big (1 mm)for precipitation harden<strong>in</strong>g, although <strong>the</strong> addition <strong>of</strong> Bwas con®rmed to be e€ective for improv<strong>in</strong>g toughnessand elongation. The next problem is how to obta<strong>in</strong>small TiB 2 precipitates <strong>in</strong> a ®nely dispersed manner.The result for <strong>the</strong> precipitation <strong>of</strong> TiB 2 was discussedabove, and ®nely dispersed TiB 2 were not obta<strong>in</strong>ed asyet. Thus, <strong>the</strong> precipitation harden<strong>in</strong>g was tried fromano<strong>the</strong>r approach described below. We tried to <strong>in</strong>troduceprecipitates by shift<strong>in</strong>g <strong>the</strong> Ti composition fromstoichiometry such as (50+x)Ti±30Pd±(20x)Ni. As aresult, it was con®rmed that by age<strong>in</strong>g <strong>the</strong> above alloywith Ti>50 at% at 773 K for 3.6 ks, ®nely dispersedprecipitates appear and SM characteristics areimproved [105]. However, more details await fur<strong>the</strong>rstudies.Dur<strong>in</strong>g <strong>the</strong> course <strong>of</strong> <strong>the</strong> above study, it becamenecessary to study <strong>the</strong> recovery. recrystallization process<strong>of</strong> cold rolled Ti±(50x)Pd±xNi <strong>alloys</strong>, and <strong>in</strong>terest<strong>in</strong>gresults were obta<strong>in</strong>ed [106], as shown <strong>in</strong> Fig. 21. The®gure shows <strong>the</strong> s<strong>of</strong>ten<strong>in</strong>g start (T s ) and s<strong>of</strong>ten<strong>in</strong>g ®nish(T f ) temperatures <strong>in</strong> Vickers hardness for isochronallyannealed specimens for 1 h, along with A s and A f temperatures.We immediately notice a close correlationbetween <strong>the</strong> two, except for <strong>the</strong> compositions on bo<strong>the</strong>nds, and this correlation can be expla<strong>in</strong>ed as follows.In this alloy system, <strong>the</strong> martensite (B19 type orderedstructure) has a close-packed structure, while <strong>the</strong> parent(B2) has an open structure. Thus, di€usion is much faster<strong>in</strong> parent than <strong>in</strong> martensite. Thus, s<strong>of</strong>ten<strong>in</strong>g due torecovery-recrystallization occurs so as to follow <strong>the</strong>reverse transformation. Besides, we believe that recovery.recrystallization occurs dom<strong>in</strong>antly at parent-martensite<strong>in</strong>terface, where atoms are unstable and mobile. Theabove result clearly shows that <strong>the</strong> reverse transformationcontrols recovery. recrystallization processes <strong>in</strong> this <strong>alloys</strong>ystem, <strong>in</strong> which martensite has a closepacked structure,while parent has an open one. We now discuss <strong>the</strong> deviations<strong>of</strong> <strong>the</strong> behavior on both ends <strong>of</strong> <strong>the</strong> composition.Fig. 20. Recovery rate, plotted aga<strong>in</strong>st total stra<strong>in</strong> for <strong>the</strong> solutiontreatedand <strong>the</strong>rmomechanically treated (673 K) alloy. Tensile testswere carried out at 443 K. See text for details [103].Fig. 21. Plots <strong>of</strong> reverse transformation temperatures and recovery.Recrystallization temperatures vs composition for Ti±(50x)Pd±xNi<strong>alloys</strong>. T s -,start temperature <strong>of</strong> s<strong>of</strong>ten<strong>in</strong>g stage; T f -,®nish temperature<strong>of</strong> <strong>the</strong> s<strong>of</strong>ten<strong>in</strong>g [106]. See text for details.


When Pd content is 20 at%, <strong>the</strong> temperature itself is toolow even after <strong>the</strong> reverse transformation. Thus, recoveryrecrystallization awaits for higher temperatures. On<strong>the</strong> contrary, at 50 at% Pd, <strong>the</strong> temperature itself is highenough before reach<strong>in</strong>g A s . Thus, s<strong>of</strong>ten<strong>in</strong>g starts evenbelow A s , s<strong>in</strong>ce <strong>the</strong> <strong>the</strong>rmal energy is high enough. Infact, we found recrystallization <strong>in</strong> <strong>the</strong> martensitic state<strong>in</strong> a Ti±50Pd alloy [107]. The recrystallization process <strong>in</strong><strong>the</strong> martensitic state is useful for <strong>the</strong> study <strong>of</strong> nucleationprocess <strong>of</strong> recrystallization, s<strong>in</strong>ce <strong>the</strong> latter developsvery slowly. See Refs. [107,108] for more details.The above observations are useful from technologicalpo<strong>in</strong>t <strong>of</strong> view also. We stated <strong>in</strong> <strong>the</strong> above that anneal<strong>in</strong>gat 673 K for 1 h is good for improv<strong>in</strong>g SM characteristics.However, this does not apply for Ti±40Pd±10Ni alloy, which is <strong>in</strong> <strong>the</strong> martensitic state, where diffusionis slow. In this case, if <strong>the</strong> alloy is ¯ash heated to<strong>the</strong> parent phase for a very short time, and is <strong>the</strong>nannealed at 673 K for 1 h, good SM characteristics areobta<strong>in</strong>ed. See Ref. [109] for more details.K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 5254. Applications <strong>of</strong> <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong>S<strong>in</strong>ce SMAs have unique properties which ord<strong>in</strong>arymetals do not have, <strong>the</strong>y have high potentiality formany applications. In fact, more than 10,000 patentshave been proposed <strong>in</strong> <strong>the</strong> past, and it is dicult toclassify all <strong>the</strong> applications. Thus, <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g we<strong>in</strong>troduce only successful applications utiliz<strong>in</strong>g <strong>shape</strong><strong>memory</strong> e€ect and superelasticity, respectively.4.1. Applications us<strong>in</strong>g <strong>shape</strong> <strong>memory</strong> e€ectThis type <strong>of</strong> applications may be summarized as follows.1. coupl<strong>in</strong>gs;2. actuators;3. smart materials.Coupl<strong>in</strong>gs are <strong>the</strong> ®rst most successful applications <strong>of</strong>SMAs, which were developed by Raychem Corp. tohydraulic systems <strong>of</strong> F-14 jet ®ghters. Electric connectorsfor IC developed by <strong>the</strong> same company belongto <strong>the</strong> same category.Applications as actuators were carried out <strong>in</strong> various®elds such as <strong>in</strong> electric appliances, automobile devices,robotics etc. We <strong>in</strong>troduce one recent example <strong>of</strong> applicationfor a <strong>the</strong>rmostatic mix<strong>in</strong>g value <strong>in</strong> Fig. 22. Theapparatus consists <strong>of</strong> a SMA coil spr<strong>in</strong>g and a biasspr<strong>in</strong>g, which are oppos<strong>in</strong>g to each o<strong>the</strong>r. When <strong>the</strong>temperature <strong>of</strong> mixed water is too high, <strong>the</strong> SMAexpands and <strong>the</strong> bias spr<strong>in</strong>g shr<strong>in</strong>ks, s<strong>in</strong>ce SMA spr<strong>in</strong>gis stronger than <strong>the</strong> bias spr<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> a smalleropen<strong>in</strong>g for hot-water and a larger open<strong>in</strong>g for coolwater,while when <strong>the</strong> temperature <strong>of</strong> mixed water isFig. 22. The new mix<strong>in</strong>g valve us<strong>in</strong>g SMA and bias<strong>in</strong>g coil spr<strong>in</strong>gs. (a)Represents <strong>the</strong> structure. The spool position and <strong>the</strong> mixed watertemperature is controlled by vary<strong>in</strong>g <strong>the</strong> total length <strong>of</strong> <strong>the</strong> actuatorl<strong>in</strong>early with <strong>the</strong> set temperature by <strong>the</strong> control knob. (b) Schematicrepresentation <strong>of</strong> <strong>the</strong> temperature-de¯ection characteristic <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear<strong>shape</strong> <strong>memory</strong> component used <strong>in</strong> <strong>the</strong> new mix<strong>in</strong>g valve. (c) Appearance<strong>of</strong> <strong>the</strong> new mix<strong>in</strong>g valve [110].low, vice versa. In fact, it is possible to control <strong>the</strong> temperaturel<strong>in</strong>early due to <strong>the</strong> Clausius-Clapeyron relationship,as shown <strong>in</strong> Fig. 22(b). Fig. 22(c) shows <strong>the</strong>appearance <strong>of</strong> this type <strong>of</strong> mix<strong>in</strong>g value. For <strong>the</strong> abovepurpose, wax type actuators were used <strong>in</strong> <strong>the</strong> past, but<strong>the</strong> <strong>the</strong>rmal conductivity <strong>of</strong> wax is very bad, thusresult<strong>in</strong>g <strong>in</strong> slow response and overshoot<strong>in</strong>g. On <strong>the</strong>o<strong>the</strong>r hand, <strong>the</strong>rmal conductivity <strong>of</strong> SMA is good,result<strong>in</strong>g <strong>in</strong> excellent <strong>the</strong>rmal response. Thus, <strong>the</strong> superiority<strong>of</strong> SM actuator over wax one is apparent. Formore details on <strong>the</strong>rmostatic mix<strong>in</strong>g valve us<strong>in</strong>g SMA,see Ref. [110].SMA used as an actuator described <strong>in</strong> <strong>the</strong> above has arole as a sensor as well as an actuator. Thus, SMAs aresmart (or <strong>in</strong>telligent) materials. The possession <strong>of</strong> <strong>the</strong>dual function leads to <strong>the</strong> m<strong>in</strong>iaturization <strong>of</strong> actuators,and th<strong>in</strong> ®lms are expected from this po<strong>in</strong>t <strong>of</strong> view, asdescribed <strong>in</strong> Section 2.7. Ano<strong>the</strong>r type <strong>of</strong> smart materialsare composites <strong>of</strong> Ti±Ni SMAs with polymer or metalmatrix. The Ti±Ni wires embedded <strong>in</strong> polymers may beused for vibration control <strong>of</strong> space vehicles, s<strong>in</strong>ce <strong>the</strong>elastic constants can be changed widely by chang<strong>in</strong>g <strong>the</strong>temperature <strong>in</strong> <strong>the</strong> transformation temperature range


526 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528[111]. The Ti±Ni wires embedded <strong>in</strong> Al matrix may beused to streng<strong>the</strong>n Al matrix by <strong>the</strong> same mechanism <strong>of</strong>prestressed concrete. For more details, see Ref. [112].4.2. Applications us<strong>in</strong>g superelasticitySuperelasticity, which is a non-l<strong>in</strong>ear pseudoelasticityas much as 7±8%, was also successfully applied <strong>in</strong> various®elds. The ®rst application was to orthodontic archwire, which made <strong>the</strong> orthodontic <strong>the</strong>rapy much easierand e€ective. The second quite successful one was tobrassieres for women. The third one is to <strong>the</strong> antennasfor cellular phones as shown <strong>in</strong> Fig. 23. This is quitepopular all over <strong>the</strong> world now, s<strong>in</strong>ce superelastic wire isquite ¯exible and is not subject to damage. The fourth,which is actually <strong>the</strong> third <strong>in</strong> time sequence, is guidewires for ca<strong>the</strong>ters <strong>in</strong> medical use, as shown <strong>in</strong> Fig. 24.A ca<strong>the</strong>ter, which is a tube made <strong>of</strong> plastics, is a standardtool for diagnos<strong>in</strong>g <strong>the</strong> circulatory system by<strong>in</strong>ject<strong>in</strong>g a contrast medium <strong>in</strong>to vessels or for medicaltreatment by dilat<strong>in</strong>g a lumen <strong>of</strong> blood vessel at <strong>the</strong> site<strong>of</strong> <strong>the</strong> obstruction. To <strong>in</strong>troduce <strong>the</strong> ca<strong>the</strong>ter <strong>in</strong> arequired place <strong>of</strong> <strong>the</strong> vessel <strong>in</strong> bra<strong>in</strong>, heart, lever etc., aguide wire is necessary. Previously a th<strong>in</strong> sta<strong>in</strong>less steelwire was used for this purpose. However, it is be<strong>in</strong>govertaken by Ti±Ni superelastic wire recently, s<strong>in</strong>ce <strong>the</strong>latter is more ¯exible and is not permanently bent.Thus, this application is expand<strong>in</strong>g rapidly. The abovedescriptions on applications <strong>of</strong> SMAs were ra<strong>the</strong>r sketchy.Those who are <strong>in</strong>terested <strong>in</strong> more details, see Ref.[8].In <strong>the</strong> above, we tried to review most <strong>of</strong> <strong>the</strong> recent<strong>developments</strong> <strong>of</strong> SMAs, but we omitted some, s<strong>in</strong>ce one<strong>of</strong> <strong>the</strong> purposes <strong>of</strong> <strong>the</strong> present overview is to <strong>in</strong>troducethis ®eld to <strong>the</strong> readers <strong>of</strong> Intermetallics <strong>in</strong> general.`Model<strong>in</strong>g <strong>of</strong> SMAs' is such a missed topic. We alsoomitted <strong>the</strong> <strong>developments</strong> on Fe-based and Cu-basedFig. 24. Superelastic guide wire for a ca<strong>the</strong>ter <strong>in</strong> medical use. (a)Applications for bra<strong>in</strong>; (b) appearance <strong>of</strong> a guide wire. See text fordetails. (Courtesy <strong>of</strong> Terumo Corp.).SMAs. Please see Ref. [8] for those. We also omittedtechnological details even for Ti±Ni and Ti±Ni based<strong>alloys</strong>. For those problems, conference proceed<strong>in</strong>gs areuseful listed <strong>in</strong> Ref. [113±131].As stated at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g, most <strong>of</strong> SMAs are <strong>in</strong>termetallics,i.e. functional <strong>in</strong>termetallics. We hope that <strong>the</strong>readers will have <strong>in</strong>terest on <strong>in</strong>termetallics from thisaspect as well.AcknowledgementsFig. 23. Superelastic antenna for a cellular phone. (Courtesy <strong>of</strong>Fujitsu Corp.)The authors are grateful to Pr<strong>of</strong>essor Tetsuro Suzukifor useful discussions on pretransformation phenomenaand ductility <strong>of</strong> Ti±Ni <strong>alloys</strong>. They also appreciate <strong>the</strong>useful discussions with Mr. T. Tateishi at Terumo Corp.on medical applications. The present work was supportedby Grant-<strong>in</strong>-Aid for Scienti®c Research onPriority, and partly supported by Project Research Afrom University <strong>of</strong> Tsukuba. Area on Phase Transformations(1997-9) from <strong>the</strong> M<strong>in</strong>istry <strong>of</strong> Education, Scienceand Culture <strong>of</strong> Japan.


K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528 527References[1] Nishiyama Z. Martensitic Transformations. New York: AcademicPress, 1978.[2] Christian JW. The <strong>the</strong>ory <strong>of</strong> transformations <strong>in</strong> metals and<strong>alloys</strong>. Oxford: Pergamon Press, 1965.[3] Wayman CM. Introduction to crystallography <strong>of</strong> martensitictransformations. New York: MacMillan, 1964.[4] Warlimont H, Delaey L. Prog Mater Sci Vol.18, Oxford: PergamonPress, 1974.[5] Otsuka K, Shimizu K. Int Metals Rev 1986;31(3):93.[6] Otsuka K, Wayman CM. In: Feltham P, editor. Deformationbehavior <strong>of</strong> materials, vol. II. Israel: Freund Publish<strong>in</strong>g House,1977: 151.[7] Funakubo H. editor. Shape <strong>memory</strong> <strong>alloys</strong>. New York: GordonBreach Sci Pub 1987.[8] Otsuka K, Wayman CM. editor. Shape <strong>memory</strong> materials.Cambridge: Cambridge University Press, 1998.[9] Massalski TB, Okamoto H, Subramanian PR, Kacprzak L.editors. B<strong>in</strong>ary alloy phase diagrams, 2nd ed., vol. 3. Ohio:ASM International, 1990:2875.[10] Duez P, Taylor JL. Trans AIME, 1950;188:1173.[11] Nishida M, Wayman CM, Honma T. Met Trans1986;17A:1505.[12] Honma T, Matsumoto T, Shugo Y, Nishida M. Res Rep NuclSci Lab Tohoku Univ 1979;12(2):183.[13] Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y. J de Phys ColloqueC4, Suppl. No. 12, 1982;43:C4±255.[14] Saburi T, Tatsumi T, Nenno S. ibid. C4±261.[15] Tadaki T, Nakata Y, Shimizu K, Otsuka K. Trans Jpn InstMetals 1986;27:731.[16] Saburi T, Nenno S, Fukuda T. J Less-Com Metals1986;125:157.[17] Hara T, Ohba T, Otsuka K. Mater Trans JIM 1997;38:277.[18] Kudoh Y, Tokonami M, Miyazaki S, Otsuka K. Acta Metall1985;33:2049.[19] Matsumoto M, Honma T. New aspects <strong>of</strong> martensitic transformations.First Jpn. Inst. Metals Int. Symp. on Martensite,Kobe, Japan. Jpn Inst Metals Sendai 1976: 199.[20] Hwang CM, Wayman CM. Scripta Metall 1983;17:381.[21] Miyazaki S, Otsuka K. Met Trans 1986;17A:53.[22] Miyazaki S, Otsuka K. Phil Mag A48;1984:393.[23] Hara T, Ohba T, Okunishi E, Otsuka K, Mater Trans JIM1997;38:11.[24] Ohba T, Emura Y, Otsuka, K. Mater Trans JIM 1992;33:29.[25] Hwang CM, Meichle M, Salamon MB, Wayman CM. Phil Mag1983;47:9.[26] Nakanishi N. Prog Mater Sci, Pergamon Press 1980;24:143.[27] Mercier O, Melton KN, Gremaud G, Hagi J. J Appl Phys1980;51:1833.[28] Khach<strong>in</strong> VN, Muslov SA, Push<strong>in</strong> VG, Chumlyakov Yu.I. SovPhys Dokl 1987;32:606.[29] Brill TM, Mittelbach SM, Assmus W, MuÈ llner M, LuÈ thi B. JPhys Condens Matter 1991;3:9621.[30] Ren X, Taniwaki K, Otsuka K, Suzuki T, Tanaka K, ChumlyakovYu.I, Ueki T. Phil Mag A 1998; <strong>in</strong> press.[31] Ren X, Otsuka K. Scripta Mater 1998;38:1669.[32] Planes A, Manosa L, Vives E. Phys Rev 1996;53B:3039.[33] Nam TH, Saburi T, Shimizu K. Mater Trans JIM 1990;31:959.[34] Melton KN, Simpson J, Duerig TW. Proc Int Conf on MartensiticTransformations (ICOMAT-86). Jpn Inst Metals1986:1053.[35] Zhao LC, Duerig TW, Wayman CM. Proc MRS Int Mtg onAdv Mats, Tokyo 1989:171.[36] Piao M, Otsuka K, Miyazaki S, Horikawa H. Mater Trans JIM1993;34:919.[37] Matsumoto O, Miyazaki S, Otsuka K, Tamura H. Acta Metall1987;35:2137.[38] Miyazaki S, Otsuka K, Wayman CM. Acta Metall1989;37:1873.[39] Fukuda T, Saburi T, Doi K, Nenno S. Mater Trans JIM1992;33:271.[40] Onda T, Bando Y, Ohba T, Otsuka K. Mater Trans JIM1992;33:354.[41] Knowles KM, Smith DA. Acta Metall 1981;29:101.[42] Nishida M, Ohgi H, Itai I, Chiba A, Yamauchi K. Acta MetallMater 1995;43:1219.[43] Hara T, Ohba T, Otsuka K, Bando Y, Nenno S. Proc ICO-MAT-92, Monterey 1992:257.[44] Miyazaki S, Otsuka K, Suzuki Y. Scripta Metall 1981;15:287.[45] Miyazaki S, Kohiyama Y, Otsuka K. Proc Int Symp on IntermetallicCompounds JIMIS-6, Sendai, 1991:691.[46] Miyazaki S, Matsumoto O, Otsuka K. ibid.:269.[47] Goo E, Duerig T, Melton K, S<strong>in</strong>clair R. Acta Metall1985;33:1725.[48] Laves F. Naturwissenschaften 1952;39:546.[49] Cahn RW, Coll JA. Acta Metall 1961;9:138.[50] Furuya Y, Matsumoto M, Kimura HS, Aoki K, Masumoto T.Mater Trans JIM 1990;31:504.[51] Busch AD, Johnson AD, Lee CH, Stevenson DA. J Appl Phys1990;68:6224.[52] Miyazaki S, Ishida A, Takei A. Proc ICOMAT-92 1993:893.[53] Miyazaki S, Hash<strong>in</strong>aga T, Yumikura H, Horikawa H, Ueki T,Ishida S. Smart Materials. SPIE Proc Series 2441 1995:156.[54] Miyazaki S, Nomura K, Ishida A. J de Physique Colloque IV.Proc. ICOMAT-95. C8, 1995;5:677.[55] Kawamura Y, Gyobu, S, Horikawa H, Saburi T. J de PhysiqueColloque IV. Proc. ICOMAT-95. C8, 1995;5:683.[56] Nakata Y, Tadaki T, Sakamoto H, Tanaka A, Shimizu, K. J dePhysique Colloque IV. Proc ICOMAT-95. C8, 1995;5:671.[57] Kohl M, Shrobanek KD, Quandt E, Schlossmacher P,Schussler A, Allen DM. J de Physique Colloque IV. (Proc.ICOMAT-95). C8, 1995;5:1187.[58] Hou Li, Grummon DS. Scripta Metall et Mater 1995;33:989.[59] Ishida A, Sato M, Takei A, Miyazaki S. Mater Trans JIM1995;36:1349.[60] Gyobu A, Kawamura Y, Horikawa H, Saburi T. Mater TransJIM 1996;37:697.[61] Kajiwara S, Kikuchi T, Ogawa K, Matsunaga T. Phil Mag Lett1996;74:137.[62] Kajiwara S, Ogawa K, Kikuchi T, Matsunaga T, Miyazaki S.Phil Mag Lett 1996;74:395.[63] Ishida A, Takei A, Sato M, Miyazaki, S. Th<strong>in</strong> Solid Films1996;281±282:337.[64] Ishida A, Sato M, Takei A, Nomura K, Miyazaki S. MetallTrans Mater A 1996;27A:3753.[65] Grummon DS, Pence TL. MRS Symp Proc 1997;459:331.[66] Tan S. Ph.D. <strong>the</strong>sis, University <strong>of</strong> Tsukuba 1998:98.[67] Nakata Y, Tadaki T, Hirotsu Y, Sakamoto H, Shimizu K.Collected Abstracts <strong>of</strong> <strong>the</strong> Annual Fall Meet<strong>in</strong>g <strong>of</strong> Jpn InstMetals, Sapporo 1996:165.[68] Kahn H, Benard WL, Hu€ MA, Heuer AH. MRS Symp Proc1997;444:227.[69] Nagpal P, Baker I. Met Trans 1990;21A:2281.[70] Zener C. Phys Rev 1947;71:846.[71] Krumhansl JA. Sol Stat Comm 1992;84:251.[72] Ren X, Kawano T, Otsuka K, Kogachi M. CollectedAbstracts <strong>of</strong> Annual Spr<strong>in</strong>g Meet<strong>in</strong>g <strong>of</strong> Jpn Inst Metals,Tokyo 1997:81.[73] Neuman JP. Acta Metall 1980;28:1165.[74] Kogachi M, Tanahashi T, Shirai Y, Yamaguchi M. ScriptaMater 1996;34:243.[75] Kogachi M, Tanahashi T. Scripta Mater 1996;35:849.


528 K. Otsuka, X. Ren/Intermetallics 7 (1999) 511±528[76] Kogachi M, Haraguchi T, Kim SM. Intermetallics 1998;6:499.[77] Ren X, Otsuka K, Kogachi M. Collected Abstracts <strong>of</strong> AnnualFall Meet<strong>in</strong>g <strong>of</strong> Jpn. Inst. Metals, Sendai 1997:401.[78] Murakami Y, Nakajima Y, Otsuka K. J de Phys III 1995;5:C8±1071.[79] Ren X, Otsuka K. Phase Transitions 1998 (<strong>in</strong> press).[80] Barcelo G, Rapacioli R, Ahlers M. Scripta Metall 1978;12:1069.[81] Murakami Y, Nakajima Y, Otsuka K, Ohba T. J de Phys III1995;5(C8):1071.[82] Ohba T, Otsuka K, Sasaki S. Mater Sci Forum 1990;56±58:317.[83] Ohba T, F<strong>in</strong>layson T, Otsuka K. J de Phys III 1995;5(C8):1083.[84] Ahlers M, Barcelo G, Rapacioli R. Scripta Metall 1978;12:1075.[85] Marukawa K, Tsuchiya K. Scripta Metall 1995;32:77.[86] Ren X, Otsuka K. Nature 1997;389:579.[87] Bradley AJ, Taylor A. Proc Roy Soc London 1937;A159:56.[88] Christian JW. The <strong>the</strong>ory <strong>of</strong> transformations <strong>in</strong> metals and<strong>alloys</strong>. Oxford: Pergamon Press, 1965:789.[89] Ahlers M. Proc ICOMAT'86. Jpn Inst Met 1986:786.[90] Tadaki T, Otsuka K., Shimizu K. Ann Rev Mater Sci1988;18:25.[91] Kozuma M, Murakami Y, Otsuka, K. Proc Int Conf on DisplacivePhase Transformations and Their Applications <strong>in</strong>Materials Eng<strong>in</strong>eer<strong>in</strong>g, TMS 1998:233.[92] Olson GB, Cohen M. Scripta Metall 1975;9:1247.[93] Smialek JL, Hchemann RF. Met Trans 1973;4:1571.[94] Yang JH, Wayman CM. Intermetallics 1994;2:111.[95] Ka<strong>in</strong>uma R, Ishida K, Nishizawa T. Met Trans1992;23A:147.[96] Mulder JH, Maas JH, Beyer J. Proc. ICOMAT-92. Monterey,1992 869.[97] Matveeva NA, Kovneristyi Yu.K, Sav<strong>in</strong>ov AS, Sivokha VP,Khach<strong>in</strong> VN. J Phys 1982;43:Suppl. 12 C4±249.[98] Donkersloot HC, Van Vucht JHN. J. Less-Com Metals1970;20:83.[99] Khach<strong>in</strong> VN, Matveeva NA, Sivokha VP, Chernov DV. AcadNauk SSSR 1981;257:167.[100] Enami K, Hoshiya T. Proc Mat Tech `90, 1990:1.[101] Otsuka K, Oda K, Ueno Y, Piao M, Ueki T, Horikawa H.Scripta Metall & Mater 1993;29:1355.[102] Hoshiya T, Enami K, Yamauchi K. Advanced Materials `93V/B: Shape Memory Materials and Hydrides (editors. Otsuka,K. et al.) Trans MRS-Japan 18B. Amsterdam: Elsevier Science,1013.[103] Golberg D, Xu Ya, Murakami Y, Morito S, Otsuka K, Ueki T,Horikawa H. Scripta Metall et Mater 1994;30:1349.[104] Suzuki Y, Xu Ya, Morito S, Otsuka K, Mitose K. Mater Lett1998;36:85.[105] Shimizu S, Xu Ya, Okunishi E, Tanaka S, Otsuka K, Mitose K,Mater Lett 1998;34:23.[106] Xu Ya, Shimizu S, Suzuki S, Otsuka K, Ueki T, Mitose K. ActaMater 1997;45:1503.[107] Xu Ya, Otsuka K, Furubayashi E, Ueki T, Mitose K. MaterLett 1997;30:189.[108] Xu Ya, Otsuka K, Furubayashi E, Mitose K. Mater Lett1998;34:14.[109] Golberg D, Xu Ya, Murakami Y, Otsuka K, Ueki T,Horikawa H. Mater Lett 1994;22:241.[110] Ohkata H, Tamura H. MRS Symp Proc 1997;459:345.[111] Schetky L. McD. MRS Symp Proc 1992;246:299.[112] Furuya Y, Sasaki A, Taya M. Trans. JIM, 1993; 34: 224.[113] Suzuki H. editor, Proc Ist JIM Int Symp on New Aspects <strong>of</strong>Martensitic Transformations. ICOMAT-76, Jpn Inst MetSendai 1976.[114] Owen WS. et al. editor, Proc Int Conf on Martensitic Transformations.ICOMAT-79, Cambridge, Massachusetts, 1979.[115] Delaey L, Chandrasekaran S. J de Phys. Proc. ICOMAT-82, 43,Suppl. 12, 1982.[116] Tamura I, editor, Proc Int Conf on Martensitic Transformations.ICOMAT-86, Jpn. Inst. Met., Sendai, 1987.[117] Muddle BC, editor, Martensitic Transformations. Proc ICO-MAT-89, Mater Sci Forum 1990:56±8.[118] Wayman CM, Perk<strong>in</strong>s J. editor, Proc Int Conf on MartensiticTransformations. ICOMAT-92, Monterey Institute <strong>of</strong>Advanced Studies, Carmel, CA, 1993.[119] Gotthardt R, Van Humbeeck J. Proc Int Conf on MartensiticTransformations. ICOMAT-95, Suppl J de Phys, 1995:III, No.12.[120] Otsuka K, Shimizu K. editors, Proc MRS Int Meet<strong>in</strong>g on AdvMater 9. Tokyo, 1988, MRS, Pittsburgh, 1989.[121] Liu CT, Kunsmann H, Otsuka K, Wuttig M. editors, Shape<strong>memory</strong> materialsÐFundamental aspects and applications.MRS Symp Proc 1992:246.[122] Otsuka K, Fukai Y. editors, Shape <strong>memory</strong> materials andhydrides, advanced materials `93/B, 18B (Elsevier, Amsterdam,1994).[123] George EP, Takahashi S, McK<strong>in</strong>stry ST, Uch<strong>in</strong>o K, Wum-Fogle M. editors, Materials for Smart Systems. MRS SympProc 1995:360.[124] George EP, Gotthardt R, Otsuka K, Troiler-McK<strong>in</strong>stry S,Wun-Fogle M. editors, Materials for Smart Systems II. MRSSymp Proc 1997:459.[125] Perk<strong>in</strong>s J. editor, Shape <strong>memory</strong> e€ect <strong>in</strong> <strong>alloys</strong>. New York:Plenum Press, 1975.[126] Duerig TW, Melton KN, Stockel D, Wayman CM, editors,Eng<strong>in</strong>eer<strong>in</strong>g aspects <strong>of</strong> <strong>shape</strong> <strong>memory</strong> <strong>alloys</strong>. London, Butterworth-He<strong>in</strong>emann,1990.[127] Hornbogen E, Jost N, editors, The Martensitic Transformation<strong>in</strong> Science and Technology. Oberursel, Informazionsgesellschaft:1989.[128] Chu Youyi, Hsu TY, Ko T, editors, Proc Int Symp on ShapeMemory Alloys (Guil<strong>in</strong>, 1986), (Ch<strong>in</strong>a Academic Pub., 1986).[129] Chu Youyi, Tu Hail<strong>in</strong>g ed., Proc. Int. Symp. on Shape MemoryMaterials. Beij<strong>in</strong>g, 1994, International Academic Pub., Beij<strong>in</strong>g,1994.[130] Pelton AR, Hodgson D, Duerig T, editors, Proc 1st Int Conf onShape Memory and Superelastic Technologies. NDC, Inc., Fremont,California, 1995.[131] Inoue K, Mukherjee K, Otsuka K, Chen H. Proc Int Conf onDisplacive Phase Transformations and <strong>the</strong>ir Applications <strong>in</strong>Materials Eng<strong>in</strong>eer<strong>in</strong>g, TMS, 1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!