Schaarste van micronutriënten in bodem, voedsel en minerale ... - Clm
Schaarste van micronutriënten in bodem, voedsel en minerale ... - Clm
Schaarste van micronutriënten in bodem, voedsel en minerale ... - Clm
- No tags were found...
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
<strong>Schaarste</strong> <strong>van</strong> micronutriënt<strong>en</strong><strong>in</strong> <strong>bodem</strong>, <strong>voedsel</strong><strong>en</strong> m<strong>in</strong>erale voorrad<strong>en</strong>Achtergrondrapport<strong>en</strong>I. Micronutri<strong>en</strong>ts <strong>in</strong> agriculture and the world food systemII. Suppletie <strong>van</strong> micronutriënt<strong>en</strong> <strong>van</strong>uit de mijnbouwIII. Micronutriënt<strong>en</strong> <strong>in</strong> de landbouw <strong>en</strong> beschikbaarheid <strong>in</strong> de <strong>bodem</strong>
Toelicht<strong>in</strong>g bij de foto’s op de omslagOp de voorkant <strong>van</strong> l<strong>in</strong>ksbov<strong>en</strong> met de klok mee:• Biet<strong>en</strong>blad met z<strong>in</strong>ktekort• Rammelsbergmijn nabij Goslar <strong>in</strong> de Harz, Duitsland. Belangrijke product<strong>en</strong> war<strong>en</strong> zilver-erts, koper <strong>en</strong> lood.De mijn is geslot<strong>en</strong> <strong>in</strong> 1988.• Runder<strong>en</strong> met koperdeficiëntie• Kopermijn <strong>in</strong> Arizona• Bijvoed<strong>in</strong>g <strong>van</strong> schap<strong>en</strong> met m<strong>in</strong>eral<strong>en</strong> <strong>in</strong>clusief micronutriënt<strong>en</strong>• Gebied<strong>en</strong> <strong>in</strong> de wereld waar z<strong>in</strong>kdeficiënties <strong>in</strong> belangrijke gewass<strong>en</strong> voorkom<strong>en</strong>.Op de achterkant:• Baby met z<strong>in</strong>kdeficiëntieCLM_achtergrondrapport<strong>en</strong>.<strong>in</strong>dd 2 20-06-12 10:35
<strong>Schaarste</strong> <strong>van</strong> micronutriënt<strong>en</strong> <strong>in</strong> <strong>bodem</strong>,<strong>voedsel</strong> <strong>en</strong> m<strong>in</strong>erale voorrad<strong>en</strong>Urg<strong>en</strong>tie <strong>en</strong> opties voor beleidAchtergrondrapport<strong>en</strong>blzI R.L. Voortman (2012) 1Micronutri<strong>en</strong>ts <strong>in</strong> agriculture and the world food system –future scarcity and implicationsC<strong>en</strong>tre for World Food Studies (SOW-VU), Vrije Universiteit,AmsterdamII T. Baste<strong>in</strong> <strong>en</strong> T. <strong>van</strong> Bree (2012) 61Suppletie <strong>van</strong> micronutriënt<strong>en</strong> <strong>van</strong>uit de mijnbouwTNO, DelftIII D.W. Buss<strong>in</strong>k (2012) 95Micronutriënt<strong>en</strong> <strong>in</strong> de landbouw <strong>en</strong> beschikbaarheid <strong>in</strong> de<strong>bodem</strong>: focus op koper <strong>en</strong> z<strong>in</strong>kNutriënt<strong>en</strong> Managem<strong>en</strong>t Instituut NMI, Wag<strong>en</strong><strong>in</strong>g<strong>en</strong>Achtergrondrapport<strong>en</strong> bij:Udo de Haes, H.A., R.L. Voortman, T. Baste<strong>in</strong>, D.W. Buss<strong>in</strong>k, C.W. Rougoor,W.J. <strong>van</strong> der Weijd<strong>en</strong> (2012) <strong>Schaarste</strong> <strong>van</strong> micronutriënt<strong>en</strong> <strong>in</strong> <strong>bodem</strong>,<strong>voedsel</strong> <strong>en</strong> m<strong>in</strong>erale voorrad<strong>en</strong>. Urg<strong>en</strong>tie <strong>en</strong> opties voor beleidPlatform Landbouw, Innovatie & Sam<strong>en</strong>lev<strong>in</strong>g, juni 2012 1
Micronutri<strong>en</strong>ts <strong>in</strong> agriculture and the world food systemFuture scarcity and implicationsRoelf L. VoortmanC<strong>en</strong>tre for World Food Studies (SOW-VU)VU University, Amsterdam 1
Cont<strong>en</strong>ts1 Introduction 52 The ess<strong>en</strong>tiality of m<strong>in</strong>eral nutri<strong>en</strong>ts and plant and human defici<strong>en</strong>cy symptoms 93 M<strong>in</strong>eral nutri<strong>en</strong>t requirem<strong>en</strong>ts of plants and humans 114 Soil and human micronutri<strong>en</strong>t defici<strong>en</strong>cies and associated disease burd<strong>en</strong> 135 Available m<strong>in</strong>eral resources and requirem<strong>en</strong>ts of the world food system 256 Nutri<strong>en</strong>ts <strong>in</strong> soils and their managem<strong>en</strong>t 317 Nutri<strong>en</strong>t use effici<strong>en</strong>cy <strong>in</strong> agriculture; theory and practice 378 Conclud<strong>in</strong>g remarks 45Annex 1: Sel<strong>en</strong>ium 49Refer<strong>en</strong>ces and bibliography 53 3
1 IntroductionOne of the problems Humanity is fac<strong>in</strong>g is how to produce suffici<strong>en</strong>t good qualityfood for a grow<strong>in</strong>g population at affordable prices. The world population is still to <strong>in</strong>creaseby about 35 perc<strong>en</strong>t, to peak at about 9.5 billion around 2050. Furthermore, ris<strong>in</strong>g <strong>in</strong>comes<strong>in</strong> develop<strong>in</strong>g countries are expected to <strong>in</strong>crease demand for livestock products and,consequ<strong>en</strong>tly, for animal feeds as well. To meet the <strong>in</strong>creased demand for food and feed,agricultural production will have to be stepped up, <strong>in</strong>clud<strong>in</strong>g roughly an <strong>in</strong>crease of 70% ofagricultural production by 2050 (Bru<strong>in</strong>sma, 2009). Meat and milk production are projectedto double by 2050 (Ste<strong>in</strong>field et al., 2006). Produc<strong>in</strong>g the food for the global population,by itself, may already seem a formidable task ahead. However, the world food system isnot a stand-alone issue as it has many ramifications <strong>in</strong>to other global issues such as climatechange/gre<strong>en</strong>house gas emissions, <strong>en</strong>ergy scarcity/biofuel production, scarcity of land and<strong>in</strong>puts (e.g. water, phosphorus), and last but not least biodiversity. As will be shown, thereare <strong>in</strong>tricate ‘l<strong>in</strong>kages of susta<strong>in</strong>ability’ (various authors <strong>in</strong> Graedel and Van der Voet,2010) betwe<strong>en</strong> these issues that need to be considered jo<strong>in</strong>tly so as to develop a properperspective on the problematique at hand.Naturally, agricultural production can be <strong>in</strong>creased either through area expansion orthrough improved yields per hectare or both. The option of area expansion raises thequestion if there is suffici<strong>en</strong>t land available that is suitable <strong>en</strong>ough to allow agriculture soas to satisfy the area expansion requirem<strong>en</strong>ts for crops, feeds and biofuels comb<strong>in</strong>ed.Indeed, there is evid<strong>en</strong>ce to suggest that curr<strong>en</strong>tly unused land has greater, and sometimesoverrul<strong>in</strong>g, constra<strong>in</strong>ts for agricultural production (e.g. Young, 1999). Moreover, annuallyproductive land is lost to urbanization, erosion and sal<strong>in</strong>ization. At the same time, clear<strong>in</strong>gnaturally vegetated land for cultivation obviously reduces biodiversity, but also <strong>in</strong>evitablyresults <strong>in</strong> gre<strong>en</strong>house gas emissions (carbon, nitrog<strong>en</strong>) <strong>in</strong>to the atmosphere, the magnitudeof which dep<strong>en</strong>ds on vegetation and soil characteristics. In case of biofuel crops, <strong>in</strong>t<strong>en</strong>dedto be a low carbon <strong>en</strong>ergy source to displace fossil fuels, land clear<strong>in</strong>g <strong>in</strong> fact causes that acarbon-debt is <strong>in</strong>curred to the ext<strong>en</strong>t that it may take many years to comp<strong>en</strong>sate for theeffect of land clear<strong>in</strong>g (Fargione et al., 2008; Tilman et al., 2009).The higher crop yield pathway usually is based on <strong>in</strong>creased use of <strong>in</strong>puts likewater and fertilizers, but also here there are complicat<strong>in</strong>g issues of scarcity, <strong>en</strong>vironm<strong>en</strong>talissues and susta<strong>in</strong>ability. Fresh water is an important production factor <strong>in</strong> agriculture asabout 70% of the fresh water on earth is used by it. Water is also becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>glyscarce (e.g. Rijsberman, 2006), while desal<strong>in</strong>ation of seawater is technically possible, but<strong>en</strong>ergy <strong>in</strong>t<strong>en</strong>sive, result<strong>in</strong>g <strong>in</strong> gre<strong>en</strong>house gas emissions. Fertilizer application is one of thema<strong>in</strong> vehicles to improve crop yields, but the known reserves of for <strong>in</strong>stance phosphaterock are also limited (Cordell et al., 2009; Smit et al., 2009; Udo de Haes et al., 2009).Moreover, high nitrog<strong>en</strong> fertilizer doses <strong>in</strong>evitably lead to emissions of nitrous oxides, apowerful gre<strong>en</strong>house gas (Crutz<strong>en</strong> et al., 2007). Furthermore, high doses of nitrog<strong>en</strong> andphosphorus are also likely to <strong>in</strong>crease pollution of surface and ground waters, as well ascoastal zones (hypoxia). In addition to the impact of arable farm<strong>in</strong>g, the expansion of thelivestock sector may equally be expected to <strong>in</strong>crease gre<strong>en</strong>house gas emissions. Curr<strong>en</strong>tly,this sector is already responsible for 18 perc<strong>en</strong>t of global emissions, notably methane(Ste<strong>in</strong>field et al., 2006). From the po<strong>in</strong>t of view of gre<strong>en</strong>house gas emissions, ideally noadditional land would be cleared from vegetation and high production levels would beachieved with lower gre<strong>en</strong>house gas emissions and pollution. This amounts to develop<strong>in</strong>gan <strong>en</strong>tirely new agricultural technology, notably where fertilizer use is concerned. Also <strong>in</strong> 5
the livestock sector low-carbon technologies have to be developed, if emissions are to bem<strong>in</strong>imized. Clearly, comb<strong>in</strong><strong>in</strong>g the production of suffici<strong>en</strong>t food and <strong>en</strong>ergy for a grow<strong>in</strong>gand more afflu<strong>en</strong>t global population <strong>in</strong> a low-carbon manner seems a daunt<strong>in</strong>g chall<strong>en</strong>ge,unless new agricultural technologies can be developed that pave the way.Further add<strong>in</strong>g to the concern are a number of uncerta<strong>in</strong>ties around the future worldfood system. It is for <strong>in</strong>stance highly uncerta<strong>in</strong> what gre<strong>en</strong>house gas <strong>in</strong>duced climatechange will imply for crop yield pot<strong>en</strong>tials and global agricultural production. Also theoutcome of pot<strong>en</strong>tial competition for land and <strong>in</strong>puts betwe<strong>en</strong> food and biofuel productionis uncerta<strong>in</strong>. What will it imply for food and fuel prices and consequ<strong>en</strong>tly accessibility offood for the poor? The rec<strong>en</strong>t price volatility of cereals and food riots due to higher pricesmay be tak<strong>en</strong> as a notification of what may happ<strong>en</strong> <strong>in</strong> the future. Furthermore, what willhumanity have to face wh<strong>en</strong> the <strong>in</strong>tegrity of the biosphere is seriously disturbed?Unfortunately, the answers to these questions will rema<strong>in</strong> highly uncerta<strong>in</strong>.Above we have se<strong>en</strong> that ev<strong>en</strong> basic production factors such as land, water andfertilizers may <strong>in</strong>creas<strong>in</strong>gly constra<strong>in</strong> the possibilities to produce the grow<strong>in</strong>g global foodand <strong>en</strong>ergy requirem<strong>en</strong>ts. At the same time though, the opportunities for improvedeffici<strong>en</strong>cies <strong>in</strong> agricultural production seem amply available. For <strong>in</strong>stance, the curr<strong>en</strong>tphosphorus use effici<strong>en</strong>cy <strong>in</strong> agriculture is still very low (10-30%), thus leav<strong>in</strong>g room forsubstantial improvem<strong>en</strong>t. It has also be<strong>en</strong> suggested that sizeable improvem<strong>en</strong>ts <strong>in</strong> cropproductivity are possible based on the curr<strong>en</strong>t water availability (Rockström et al., 2007).Improved technologies, therefore, can possibly also counteract on the scarcities of theseproduction factors.The preced<strong>in</strong>g paragraphs have shown that the world food system is only one of anumber of issues of global concern that are <strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a complex system with forwardand backward loops betwe<strong>en</strong> them and that must be looked <strong>in</strong>to <strong>in</strong> its <strong>en</strong>tirety wheresusta<strong>in</strong>ability is concerned (various authors <strong>in</strong> Graedel and <strong>van</strong> der Voet, 2010). A largebody of literature deals with the above-described land-food-feed-fuel-<strong>in</strong>puts-biodiversitynexus, though usually with only parts thereof. Remarkably, to date, imm<strong>in</strong><strong>en</strong>t metalscarcities and how these could possibly affect agriculture, the world food system andhuman health are practically never considered. As will be shown, this constitutes a seriousomission.A number of metals are ess<strong>en</strong>tial micronutri<strong>en</strong>ts for crops and humans. They arerequired <strong>in</strong> m<strong>in</strong>or quantities only, but if pres<strong>en</strong>t at defici<strong>en</strong>t levels with<strong>in</strong> plants andhumans, disease and poor growth will follow, and ultimately death. Conversely, if soils aredefici<strong>en</strong>t <strong>in</strong> a certa<strong>in</strong> micronutri<strong>en</strong>t, its application as fertilizer will improve crop health,<strong>in</strong>crease crop yields and ameliorate food quality for humans, thus <strong>in</strong> turn reduc<strong>in</strong>g humandisease and ev<strong>en</strong> death toll. Curr<strong>en</strong>t use of micronutri<strong>en</strong>t fertilizers is low though. Thefertilizers now applied to crops mostly conta<strong>in</strong> N, P and K, and for the micronutri<strong>en</strong>tscrops rely on the amounts naturally available <strong>in</strong> the soil (and manure, if applied). Longduration cropp<strong>in</strong>g with high yields, therefore, <strong>in</strong>evitably results <strong>in</strong> micronutri<strong>en</strong>t defici<strong>en</strong>cyand, consequ<strong>en</strong>tly, lower crop yields. Indeed, stagnat<strong>in</strong>g and ev<strong>en</strong> decl<strong>in</strong><strong>in</strong>g yields <strong>in</strong> theGre<strong>en</strong> Revolution areas of India are attributed to unbalanced fertilization with N, P and K,result<strong>in</strong>g <strong>in</strong> micronutri<strong>en</strong>t defici<strong>en</strong>cies (M.V. S<strong>in</strong>gh, 2009). At the same time, it has be<strong>en</strong>argued that for <strong>in</strong>stance <strong>in</strong> Africa, curr<strong>en</strong>tly unused land is likely to suffer frommicronutri<strong>en</strong>t defici<strong>en</strong>cies (Voortman et al., 2000; Voortman, 2010). Metal micronutri<strong>en</strong>tsthus may prove ess<strong>en</strong>tial to susta<strong>in</strong> land productivity <strong>in</strong> cultivated land and they may be 6
<strong>in</strong>strum<strong>en</strong>tal <strong>in</strong> op<strong>en</strong><strong>in</strong>g up new land. As such, these micronutri<strong>en</strong>ts may prove crucial toachieve the goal to produce suffici<strong>en</strong>t food of good quality as well as <strong>en</strong>ergy for the globalpopulation.Although, metal micronutri<strong>en</strong>ts pot<strong>en</strong>tially can contribute significantly to<strong>in</strong>crease and susta<strong>in</strong> global food production, the po<strong>in</strong>t is that most of these m<strong>in</strong>ed metalsare used for non-agricultural applications. Ev<strong>en</strong> for these purposes alone, a number of themicronutri<strong>en</strong>ts such as copper and z<strong>in</strong>c are g<strong>en</strong>erally expected to become scarce <strong>in</strong> a nottoo distant future. Op<strong>in</strong>ion varies on how severe metal scarcity will be, what impact it willhave on society and how humanity will cope with it (Gordon et al., 2006). However,whether optimist or pessimist, most authors agree that metals such as copper and z<strong>in</strong>c will<strong>in</strong>deed <strong>in</strong> a foreseeable future become scarce and/or exp<strong>en</strong>sive (e.g. McK<strong>in</strong>sey, 2011;Price, Waterhouse, Coopers, 2011). This report, therefore, considers pot<strong>en</strong>tial scarcity ofmetals specifically <strong>in</strong> relation to agriculture, human nutrition and the world food systemwith emphasis on pot<strong>en</strong>tial societal impacts and possible cop<strong>in</strong>g mechanisms. Copper andz<strong>in</strong>c are mostly used as examples. In an annex to this report att<strong>en</strong>tion is giv<strong>en</strong> to sel<strong>en</strong>ium.Sel<strong>en</strong>ium is ess<strong>en</strong>tial for cattle and for humans, but not for plants. Giv<strong>en</strong> the ext<strong>en</strong>sivedefici<strong>en</strong>cies of sel<strong>en</strong>ium <strong>in</strong> the food supply for both cattle and man and giv<strong>en</strong> the fact thatwe can regard sel<strong>en</strong>ium as repres<strong>en</strong>tative for the important micronutriënts which areess<strong>en</strong>tial for cattle and man but not for plants, sel<strong>en</strong>ium will be dealt with <strong>in</strong> an annex tothis report.The report proceeds as follows. Section 2 gives an overview which elem<strong>en</strong>ts areess<strong>en</strong>tial, and discusses what ess<strong>en</strong>tiality of m<strong>in</strong>eral nutri<strong>en</strong>t <strong>en</strong>tails together with thesymptoms and diseases related to micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> plants and humans. Section3 pres<strong>en</strong>ts the quantitative m<strong>in</strong>eral nutri<strong>en</strong>t requirem<strong>en</strong>ts of plants and humans. Section 4deals with the curr<strong>en</strong>tly known spatial ext<strong>en</strong>t of soil micronutri<strong>en</strong>t defici<strong>en</strong>cies and howthis translates <strong>in</strong>to human defici<strong>en</strong>cies. It also pres<strong>en</strong>ts an example of the global diseaseburd<strong>en</strong> result<strong>in</strong>g from human micronutri<strong>en</strong>t defici<strong>en</strong>cies. In section 5, first a brief overviewis pres<strong>en</strong>ted of curr<strong>en</strong>tly known reserves of m<strong>in</strong>eral nutri<strong>en</strong>ts. In conjunction somecautionary remarks are made on the quality of the available data on the reserves ofm<strong>in</strong>eable metal ores. What follows is an approximation of micronutri<strong>en</strong>t requirem<strong>en</strong>ts <strong>in</strong>agriculture and cautionary remarks to suggest that biofuel crops are likely to compete withfood crops for nutri<strong>en</strong>t <strong>in</strong>puts. Next to m<strong>in</strong><strong>in</strong>g operations, soils themselves can be animportant source of micronutri<strong>en</strong>ts. Section 6, therefore quantifies the total amounts ofmicronutri<strong>en</strong>t pres<strong>en</strong>t <strong>in</strong> the soil and the proportion thereof that can be tak<strong>en</strong> up by plants.The gap betwe<strong>en</strong> the two appears to be very large, thus suggest<strong>in</strong>g that possibly withimproved technologies a greater part of the nutri<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the soil can be exploited.Time and aga<strong>in</strong> this report emphasizes guid<strong>in</strong>g pr<strong>in</strong>ciples for the nature of futureagricultural activities, notably the requirem<strong>en</strong>ts for effici<strong>en</strong>t nutri<strong>en</strong>t use. These pr<strong>in</strong>ciplesare further developed <strong>in</strong> section 7 on the basis of theoretical considerations <strong>in</strong> comb<strong>in</strong>ationwith the realities of the ecological diversity of soils, as expressed <strong>in</strong> soil chemicalproperties, so as to def<strong>in</strong>e what m<strong>in</strong>eral scarcity is likely to imply for the agriculture of thefuture. It is further shown with examples that curr<strong>en</strong>t fertilizer practice is remotely distantfrom what the guid<strong>in</strong>g pr<strong>in</strong>ciples would require. F<strong>in</strong>ally, this def<strong>in</strong>es an ext<strong>en</strong>sive <strong>in</strong>-depthresearch ag<strong>en</strong>da. Section 8 pres<strong>en</strong>ts the conclusions.In any case, cop<strong>in</strong>g with m<strong>in</strong>eral scarcity <strong>in</strong> agriculture, human nutrition and the globalfood system is a major task ahead. 7
2 The ess<strong>en</strong>tiality of m<strong>in</strong>eral nutri<strong>en</strong>ts and plant andhuman defici<strong>en</strong>cy symptomsAn array of m<strong>in</strong>eral nutri<strong>en</strong>ts is ess<strong>en</strong>tial for growth, function<strong>in</strong>g and health ofplants, animals and human be<strong>in</strong>gs (see Table 1). This section describes, by means ofexamples, what the function of copper and z<strong>in</strong>c is <strong>in</strong> the growth and function<strong>in</strong>g of plantsand humans, and what disease symptoms develop <strong>in</strong> case of defici<strong>en</strong>cy.G<strong>en</strong>erally speak<strong>in</strong>g, if the level of uptake of a particular elem<strong>en</strong>t is <strong>in</strong>suffici<strong>en</strong>t <strong>in</strong>humans, it causes retardation of growth and developm<strong>en</strong>t and, dep<strong>en</strong>d<strong>in</strong>g on the defici<strong>en</strong>telem<strong>en</strong>t and the severity of the defici<strong>en</strong>cy, particular disease symptoms may develop,<strong>in</strong>clud<strong>in</strong>g <strong>in</strong> some cases ev<strong>en</strong> m<strong>en</strong>tal retardation. Consumption of too high levels ofess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts equally affects growth and health (toxicity). In ess<strong>en</strong>ce, to leada healthy and productive life, humans need a balanced supply of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts(stoichiometric requirem<strong>en</strong>t). The same applies to plants, and wh<strong>en</strong> uptake of one or mor<strong>en</strong>utri<strong>en</strong>ts from the soil is restricted, their physiology is equally disturbed, nutri<strong>en</strong>t-specificdiseases develop and ultimately the plant may die or reproduction may be affected. In thecase of crops this results <strong>in</strong> lower economically useful yields. Human nutri<strong>en</strong>t defici<strong>en</strong>ciesand toxicities ess<strong>en</strong>tially result from soil nutri<strong>en</strong>t defici<strong>en</strong>cies and toxicities, s<strong>in</strong>ce mosthuman food directly or <strong>in</strong>directly derives from plants grown <strong>in</strong> soils. In the follow<strong>in</strong>g wema<strong>in</strong>ly consider nutri<strong>en</strong>t defici<strong>en</strong>cies, notably regard<strong>in</strong>g copper and z<strong>in</strong>c.In plants, copper, among others, is <strong>in</strong>volved <strong>in</strong> photosynthesis, production ofprote<strong>in</strong> and the developm<strong>en</strong>t of reproductive organs such as flowers and seeds. Plantsdiffer very much <strong>in</strong> their s<strong>en</strong>sitivity to Cu defici<strong>en</strong>cy, which f<strong>in</strong>ds expression <strong>in</strong> stuntedgrowth, distortion of young leaves, necrosis of the apical meristem and bleach<strong>in</strong>g of youngleaves called ‘white tip’. Z<strong>in</strong>c, among others, is <strong>in</strong>volved <strong>in</strong> many <strong>en</strong>zymatic reactions,carbohydrate metabolism, ma<strong>in</strong>t<strong>en</strong>ance of <strong>in</strong>tegrity of biomembranes and prote<strong>in</strong>synthesis. Z<strong>in</strong>c defici<strong>en</strong>t plants have low rates of prote<strong>in</strong> synthesis and consequ<strong>en</strong>tly theprote<strong>in</strong> cont<strong>en</strong>t of edible crop parts is low. Visible symptoms of Zn defici<strong>en</strong>cy <strong>in</strong> plants arestunted growth due to short<strong>en</strong><strong>in</strong>g of <strong>in</strong>ternodes, drastic decreases of leaf size, die-back ofapices and leaf chlorosis (Marschner, 1995).In humans, copper is a critical functional compon<strong>en</strong>t of many <strong>en</strong>zyme reactions.Copper conta<strong>in</strong><strong>in</strong>g <strong>en</strong>zymes are, among others, <strong>in</strong>volved <strong>in</strong> <strong>en</strong>ergy production (ATPsynthesis), iron metabolism <strong>in</strong>volved <strong>in</strong> red blood cell formation, bra<strong>in</strong> function,neurotransmitter synthesis, immune system <strong>in</strong>tegrity, antioxidant functions and regulationof g<strong>en</strong>e expression. Cl<strong>in</strong>ically evid<strong>en</strong>t copper defici<strong>en</strong>cy is rather uncommon, but it maycause anemia, low numbers of white blood cells (<strong>in</strong>creased susceptibility to <strong>in</strong>fection),abnormalities of bone developm<strong>en</strong>t, loss of pigm<strong>en</strong>tation and g<strong>en</strong>erally impaired growth.Mild copper defici<strong>en</strong>cy lowers resistance to <strong>in</strong>fections, and causes reproductive problems,g<strong>en</strong>eral fatigue and impaired bra<strong>in</strong> function (e.g. L<strong>in</strong>us Paul<strong>in</strong>g Institute, 2011).Z<strong>in</strong>c <strong>in</strong> humans is <strong>in</strong>volved <strong>in</strong> neurotransmission and also has a catalytic and structural role<strong>in</strong> <strong>en</strong>zyme reactions (various sources quoted <strong>in</strong> Alloway, 2009). Z<strong>in</strong>c is further an elem<strong>en</strong>t<strong>in</strong> 9
Table 1. Ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> plant and human nutrition.Nutri<strong>en</strong>t Plants 1) Humans 2) Nutri<strong>en</strong>t Plants 1) Humans 2)Nitrog<strong>en</strong> + + Z<strong>in</strong>c + +Potassium + + Alum<strong>in</strong>ium ± -Calcium + + Chlor<strong>in</strong>e ± +Magnesium + + Cobalt ± +Phosphorus + + Nickel ± (+)Sulphur + + Sel<strong>en</strong>ium ± +Boron + - Silicon ± +Copper + + Sodium ± +Iron + + Chromium - +Manganese + + Iod<strong>in</strong>e - +Molybd<strong>en</strong>um + +1) ‘+’:ess<strong>en</strong>tial; ‘-‘: not required; ‘±’ :ess<strong>en</strong>tiality not established, but considered b<strong>en</strong>eficial2)‘+’:ess<strong>en</strong>tial; ‘-‘: not required; ‘(+)’: ess<strong>en</strong>tiality not established, but possibly requiredSource: Nubé and Voortman, 2006; based on Marschner 1995; Garrow et al, 2000; Wiseman, 2002.prote<strong>in</strong> molecules <strong>in</strong>volved <strong>in</strong> DNA replication. Z<strong>in</strong>c defici<strong>en</strong>cy, among others, causesgrowth retardation, delayed sexual maturation, <strong>in</strong>creased <strong>in</strong>fection susceptibility, immunesystem defici<strong>en</strong>cies, sk<strong>in</strong> rashes and chronic diarrhea. Mild Z<strong>in</strong>c defici<strong>en</strong>cy is particularlycommon <strong>in</strong> childr<strong>en</strong> <strong>in</strong> develop<strong>in</strong>g countries and contributes to impaired physical andneuropsychological developm<strong>en</strong>t and <strong>in</strong>creased susceptibility to life-threat<strong>en</strong><strong>in</strong>g <strong>in</strong>fections(e.g. L<strong>in</strong>us Paul<strong>in</strong>g Institute, 2011).The examples of copper and z<strong>in</strong>c clearly demonstrate what ess<strong>en</strong>tiality <strong>en</strong>tails andwhat defici<strong>en</strong>t plant uptake and human <strong>in</strong>gestion of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts may cause.All other ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> Table 1 perform many functions, which are equallyess<strong>en</strong>tial for the physiological function<strong>in</strong>g of plants, animals and humans. There is nosubstitute for these m<strong>in</strong>eral nutri<strong>en</strong>ts that are ess<strong>en</strong>tial for life on earth, because thes<strong>en</strong>utri<strong>en</strong>ts cannot be synthesized by plants. 10
3 M<strong>in</strong>eral nutri<strong>en</strong>t requirem<strong>en</strong>ts of plants and humansAlthough the nutri<strong>en</strong>ts m<strong>en</strong>tioned <strong>in</strong> the previous section are all ess<strong>en</strong>tial, they arerequired <strong>in</strong> differ<strong>en</strong>t amounts for plant and human physiology to function properly. Eachspecies, and <strong>in</strong> crops ev<strong>en</strong> each variety, has its own specific stoichiometric requirem<strong>en</strong>ts:i.e. the relative quantities of nutri<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the various tissues. It is, therefore, difficultto pres<strong>en</strong>t precise figures, but ev<strong>en</strong> so, some broad g<strong>en</strong>eralizations on the quantity ofess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts required can be made. These are briefly pres<strong>en</strong>ted <strong>in</strong> thissection.In the case of the plant regnum, but ma<strong>in</strong>ly based on agronomic and cropphysiological research (e.g. Marschner, 1995), commonly a dist<strong>in</strong>ction is made betwe<strong>en</strong>macro-, meso- and micronutri<strong>en</strong>ts, which obviously implies that plant requirem<strong>en</strong>ts arehigh, medium and low respectively (Table 2). To grow properly, plants need relativelylarge amounts of nitrog<strong>en</strong> and potassium. The plant’s requirem<strong>en</strong>ts for calcium,magnesium, phosphorus and sulphur are g<strong>en</strong>erally lower, h<strong>en</strong>ce the term meso-nutri<strong>en</strong>t. Inthis context, it is rele<strong>van</strong>t to m<strong>en</strong>tion that phosphorus is oft<strong>en</strong> considered a macronutri<strong>en</strong>t,notably <strong>in</strong> the agronomic literature. However, because the phosphorus cont<strong>en</strong>t of plants isoft<strong>en</strong> similar or ev<strong>en</strong> lower than Ca, Mg and S, it seems more appropriate to classify P as amesonutri<strong>en</strong>t. F<strong>in</strong>ally, micronutri<strong>en</strong>ts, also called trace elem<strong>en</strong>ts, <strong>in</strong>deed are required <strong>in</strong>very low amounts, or traces, and yet they are ess<strong>en</strong>tial. Table 3 provides a g<strong>en</strong>ericquantification for these nutri<strong>en</strong>t group<strong>in</strong>gs <strong>in</strong> terms of plant nutri<strong>en</strong>t cont<strong>en</strong>t. These figuresare not necessarily repres<strong>en</strong>tative for the relative nutri<strong>en</strong>t cont<strong>en</strong>ts of the edible parts ofcrops due to specialized functions of particular plant tissues and the implied elem<strong>en</strong>talrequirem<strong>en</strong>ts (e.g. the conc<strong>en</strong>tration of chlorophyll <strong>in</strong> leaves).The three groups of plant nutri<strong>en</strong>ts considered and the differ<strong>en</strong>ces <strong>in</strong> amountsrequired also have agronomic implications. If an ess<strong>en</strong>tial plant nutri<strong>en</strong>t is seriouslydefici<strong>en</strong>t <strong>in</strong> the soil, th<strong>en</strong> the application of the elem<strong>en</strong>t concerned is expected to <strong>in</strong>creaseyields. The yield <strong>in</strong>crem<strong>en</strong>ts on the basis of per kilogramme applied nutri<strong>en</strong>t are th<strong>en</strong> likelyto be highest <strong>in</strong> the case of micronutri<strong>en</strong>ts (Table 2). In addition to that, it is commonlyobserved <strong>in</strong> the agronomic literature that the application of micronutri<strong>en</strong>ts has a residualyield <strong>in</strong>creas<strong>in</strong>g effect <strong>in</strong> the follow<strong>in</strong>g years. However, this should not come as a surprise,because the ratio of application dose and plant requirem<strong>en</strong>ts is usually higher <strong>in</strong> micronutri<strong>en</strong>tsthan <strong>in</strong> macronutri<strong>en</strong>ts. Such practices reflect the difficulties of spread<strong>in</strong>g veryth<strong>in</strong>ly the m<strong>in</strong>or amounts of nutri<strong>en</strong>ts required.Human requirem<strong>en</strong>ts for the ess<strong>en</strong>tial macro- and mesonutri<strong>en</strong>ts for plants are alsofar higher than the trace elem<strong>en</strong>ts. However, as might be expected, based on physiologicand, subsequ<strong>en</strong>tly, stoichimetric requirem<strong>en</strong>ts the ratios betwe<strong>en</strong> nutri<strong>en</strong>ts are to someext<strong>en</strong>t differ<strong>en</strong>t (Table 3). A major differ<strong>en</strong>ce is that sodium and chlor<strong>in</strong>e that are possiblyb<strong>en</strong>eficial for plants only, are ess<strong>en</strong>tial for animals and humans and required <strong>in</strong> relativelarge amounts, if compared to trace elem<strong>en</strong>ts. One may also observe that the Ca and Pcont<strong>en</strong>t <strong>in</strong> humans is far higher than <strong>in</strong> plants. This is ma<strong>in</strong>ly due to the accumulation ofthese elem<strong>en</strong>ts <strong>in</strong> the bone tissue of the skeleton. The figures for Ca and P, if compared tothose of other elem<strong>en</strong>ts, are therefore not repres<strong>en</strong>tative for daily <strong>in</strong>take requirem<strong>en</strong>ts. Yetanother major differ<strong>en</strong>ce betwe<strong>en</strong> plants and animals is that the latter require organicmicronutri<strong>en</strong>ts, such 11
Table 2. Plant m<strong>in</strong>eral nutri<strong>en</strong>ts classified on the basis of the amounts required by plants,the yield <strong>in</strong>crease per kg <strong>in</strong> case of strong defici<strong>en</strong>cy and residual effect duration.*Nutri<strong>en</strong>t group Elem<strong>en</strong>ts ∆ Yield per kg Residual effectMacronutri<strong>en</strong>ts N, K Low Short-mediumMesonutri<strong>en</strong>ts Ca, Mg, P, S Medium Medium (-long)Micronutri<strong>en</strong>ts B, Cu, Fe, Mn, Mo, Zn High LongAccessory? Al, Cl, Co, Na, Ni, Se, Si ?? ??*Requirem<strong>en</strong>ts differ with species and plant parts that form the economic yieldTable 3. G<strong>en</strong>eric nutri<strong>en</strong>t cont<strong>en</strong>t of plants and humans as perc<strong>en</strong>tages of dry weight(Sources: Markert (1992) for plants; human micronutri<strong>en</strong>ts from Iy<strong>en</strong>gar (1998,except molybd<strong>en</strong>um); others: compilation of various <strong>in</strong>ternet sources).Nutri<strong>en</strong>t Plants Humans Nutri<strong>en</strong>t Plants HumansNitrog<strong>en</strong> 2.5 9 Z<strong>in</strong>c 0.005 0.003Potassium 1.9 0.75 Alum<strong>in</strong>ium 0.008 0.0001Calcium 1.0 4.2 Chlor<strong>in</strong>e 0.2 0.45Magnesium 0.2 0.15 Cobalt 0.00002 0.000002Phosphorus 0.2 3.3 Nickel 0.00015 0.000007Sulphur 0.3 0.75 Sel<strong>en</strong>ium 0.000002 0.00002Boron 0.004 0.00002 Silicon 0.1 0.0036Copper 0.001 0.0002 Sodium 0.015 0.45Iron 0.015 0.007 Chromium 0.00015 0.000001Manganese 0.02 0.000016 Iod<strong>in</strong>e 0.0003 0.00002Molybd<strong>en</strong>um 0.00005 0.000039*The nutri<strong>en</strong>t cont<strong>en</strong>t of whole plants is not necessarily repres<strong>en</strong>tative for the harvested or consumed part.as vitam<strong>in</strong>s, which they are unable to synthesize themselves. However, organicmicronutri<strong>en</strong>ts are beyond the scope of this report, s<strong>in</strong>ce it considers only ess<strong>en</strong>tial m<strong>in</strong>eralnutri<strong>en</strong>ts.In sum, the availability of m<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> the soil, <strong>in</strong> proportions that matchthe stoichiometric requirem<strong>en</strong>ts of crop plants, and how this transmits to human nutrition,is crucial for susta<strong>in</strong><strong>in</strong>g the world food system and humanity at large, through the effectthese ess<strong>en</strong>tial nutri<strong>en</strong>ts can have on crop yields and nutritional quality of food. 12
However, sel<strong>en</strong>ium is an ess<strong>en</strong>tial micronutri<strong>en</strong>t <strong>in</strong> human nutrition, and there are twowell-def<strong>in</strong>ed disorders that are caused by or at least associated with sel<strong>en</strong>ium defici<strong>en</strong>cy:Keshan disease and Kasch<strong>in</strong>-Beck disease. Keshan disease occurs ma<strong>in</strong>ly <strong>in</strong> childr<strong>en</strong> andwom<strong>en</strong> of child-bear<strong>in</strong>g age, and impairs cardiac function<strong>in</strong>g. Kasch<strong>in</strong>-Beck disease is anosteo-arthropathy, caus<strong>in</strong>g deformity of jo<strong>in</strong>ts (Tan et al., 2002). Figures 1 and 2 show thestrong geographical l<strong>in</strong>kages betwe<strong>en</strong> soil sel<strong>en</strong>ium defici<strong>en</strong>cy and the occurr<strong>en</strong>ce ofhuman sel<strong>en</strong>ium defici<strong>en</strong>cy as expressed <strong>in</strong> disease preval<strong>en</strong>ce. For Ch<strong>in</strong>esecircumstances, the areas where these diseases occur have low population d<strong>en</strong>sities. In thepast, people possibly stayed clear of areas with overt disease symptoms due tomicronutri<strong>en</strong>t defici<strong>en</strong>cies. The ph<strong>en</strong>om<strong>en</strong>on that historically people have avoided areaswith micronutri<strong>en</strong>t defici<strong>en</strong>cies has also be<strong>en</strong> observed <strong>in</strong> Africa (Voortman and Spiers,2010). The Ch<strong>in</strong>a case study thus shows that the occurr<strong>en</strong>ce of human micronutri<strong>en</strong>tdefici<strong>en</strong>cies can be directly l<strong>in</strong>ked to soil conditions if knowledge on micronutri<strong>en</strong>tdefici<strong>en</strong>cies is available <strong>in</strong> comb<strong>in</strong>ation with overt disease symptoms. Oft<strong>en</strong> though soilmicronutri<strong>en</strong>t levels are not known and cl<strong>in</strong>ical symptoms may not be as obviouslyexpressed. Nevertheless, as we will see later, micronutri<strong>en</strong>t defici<strong>en</strong>cies may bewidespread, and severe to the ext<strong>en</strong>t that the function<strong>in</strong>g of humans is impaired.Soil micronutri<strong>en</strong>t defici<strong>en</strong>cies; the cases of India and Ch<strong>in</strong>aNumerous publications have reported soil micronutri<strong>en</strong>t defici<strong>en</strong>cies worldwide,but these also usually refer to spot observations, without an <strong>in</strong>dication for what larger areasthey are applicable (e.g. Sillanpää, 1982). Estimates of the spatial ext<strong>en</strong>t of micronutri<strong>en</strong>tdefici<strong>en</strong>cies for large areas that are clearly data-driv<strong>en</strong> are available for India and Ch<strong>in</strong>a.These data are based on soil sample analysis and use earlier established threshold levels toestablish defici<strong>en</strong>cy/suffici<strong>en</strong>cy on the basis of absolute levels of available plant nutri<strong>en</strong>tspres<strong>en</strong>t <strong>in</strong> the soil. In both countries micronutri<strong>en</strong>t defici<strong>en</strong>cies occur widespread. Figure 3shows the perc<strong>en</strong>tage of soils that are z<strong>in</strong>c defici<strong>en</strong>t <strong>in</strong> India by adm<strong>in</strong>istrative divisions.Z<strong>in</strong>c defici<strong>en</strong>cies have be<strong>en</strong> established for 49% of the farmland (S<strong>in</strong>gh 2011). In India,furthermore Boron, Molybd<strong>en</strong>um, Manganese and Iron defici<strong>en</strong>cies were 33, 13, 12, and 5perc<strong>en</strong>t of farmland respectively, not mutually exclusive (see Table 4). Moreover, sulphurdefici<strong>en</strong>cies occur <strong>in</strong> 46 perc<strong>en</strong>t of the Indian farmland (A.K. S<strong>in</strong>gh, 2011). Copperdefici<strong>en</strong>cies have only rec<strong>en</strong>tly surfaced <strong>in</strong> India and are estimated to exist <strong>in</strong> 3% of thefarmland. In India micronutri<strong>en</strong>t defici<strong>en</strong>cies have successively become evid<strong>en</strong>t s<strong>in</strong>ce1960, wh<strong>en</strong> the Gre<strong>en</strong> Revolution started, and are attributed to unbalanced nutri<strong>en</strong>tapplication, focus<strong>in</strong>g on N, P and K only (S<strong>in</strong>gh, 2008; A.K. S<strong>in</strong>gh, 2011; M.V. S<strong>in</strong>gh,2011).For Ch<strong>in</strong>a, z<strong>in</strong>c levels by natural units are pres<strong>en</strong>ted <strong>in</strong> Figure 4. In the early n<strong>in</strong>eties 51.1perc<strong>en</strong>t of Ch<strong>in</strong>a’s farmland was defici<strong>en</strong>t <strong>in</strong> z<strong>in</strong>c (L<strong>in</strong> and Li, 1997 quoted <strong>in</strong> Zou et al.,2008). Boron, molybd<strong>en</strong>um, manganese and iron defici<strong>en</strong>cies were 34.5, 46.8, 21.3, and5.0 perc<strong>en</strong>t of farmland, respectively, not mutually exclusive (L<strong>in</strong> and Li, 1997 quoted <strong>in</strong>Zou et al., 2008). In Ch<strong>in</strong>a the ext<strong>en</strong>t of copper defici<strong>en</strong>cy was 6.9% of farmland (seeTable 4). It particularly occurs <strong>in</strong> the southern parts of the country where z<strong>in</strong>c levels arehigh. This co<strong>in</strong>cid<strong>en</strong>ce may be an expression of the well-known Cu-Zn antagonism,whereby high z<strong>in</strong>c levels <strong>in</strong>hibit the uptake of copper by plants, and vice-versa. 14
Figure 1. Grades of sel<strong>en</strong>ium pres<strong>en</strong>t <strong>in</strong> Ch<strong>in</strong>a soils; reddish colors are low (SourceTan, 2004).Figure 2. Preval<strong>en</strong>ce of Keshan and Kasch<strong>in</strong>-Beck disease (and comb<strong>in</strong>ations) <strong>in</strong>Ch<strong>in</strong>a (source Tan, 2004). 15
Table 4. Micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> India and Ch<strong>in</strong>a as % of the farm land (For sourcessee text).Micronutri<strong>en</strong>t India (%) Ch<strong>in</strong>a (%)Boron 33 34.5Iron 5 5.0Copper 3 6.9Manganese 12 21.3Molybd<strong>en</strong>um 13 46.8Z<strong>in</strong>c 49 51.1Sulphur 46 ?Other sources <strong>in</strong>dicate 30% copper and 40% iron for Ch<strong>in</strong>a.It is unclear whether the relative m<strong>in</strong>or ext<strong>en</strong>t of iron and copper defici<strong>en</strong>cy are reliableestimates, s<strong>in</strong>ce other sources suggest defici<strong>en</strong>cy levels of about 40 and 30 perc<strong>en</strong>t,respectively (Yang et al., based on Liu, 1991, 1993 and 1994). In any case, <strong>in</strong> Ch<strong>in</strong>avarious micronutri<strong>en</strong>t defici<strong>en</strong>cies occur on a very significant portion of its farmland.Although not reported as such, the large-scale micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> Ch<strong>in</strong>a areprobably also <strong>in</strong>duced by the Gre<strong>en</strong> Revolution technology and, because the data quotedare relatively old, the situation may have wors<strong>en</strong>ed ever s<strong>in</strong>ce.Other countries with a large proportion of z<strong>in</strong>c defici<strong>en</strong>t arable land are Turkey, Iran andPakistan with 50, 60 and 70 perc<strong>en</strong>t, respectively. Most of the Cerrado region of Brazilalso appears to be z<strong>in</strong>c defici<strong>en</strong>t (various sources quoted <strong>in</strong> Alloway, 2009). Spot-wisemicronutri<strong>en</strong>t defici<strong>en</strong>cies have be<strong>en</strong> recorded widespread <strong>in</strong> Sub-Sahara Africa(Sillanpää, 1982; Kang and Os<strong>in</strong>ame, 1985; Davies 1997), but systematic analysis basedon soil chemical analysis as <strong>in</strong> India and Ch<strong>in</strong>a is lack<strong>in</strong>g. Wh<strong>en</strong> specifically researched,micronutri<strong>en</strong>ts oft<strong>en</strong> have giv<strong>en</strong> large yield <strong>in</strong>creases: z<strong>in</strong>c <strong>in</strong> Ghana, Malawi, Nigeria andZimbabwe (Abunyewa and Mercer-Quarshie, 2004; W<strong>en</strong>dt and Rijpma, 1997; Kayode andAgboola, 1985; Rodel and Hopley, 1973), copper <strong>in</strong> Nigeria and Tanzania (Oj<strong>en</strong>iyi andKayode, 1993: Lisuma et al, 2006), boron <strong>in</strong> Malawi and Zimbabwe (W<strong>en</strong>dt and Rijpma,1997; Rodel and Hopley, 1973) and iron <strong>in</strong> Nigeria (Kayode and Agboola, 1985). Targetedresearch is likely to reveal widespread micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> Sub-Sahara Africa aswell, among others due to the nature of the soil par<strong>en</strong>t material (Voortman et al., 2003)In sum, India and Ch<strong>in</strong>a are large countries and together harbor about 1/3 of theglobal population. Both countries have further <strong>in</strong> common that a large amount of researchis dedicated to soil micronutri<strong>en</strong>t defici<strong>en</strong>cies. This research reveals that a broad spectrumof micronutri<strong>en</strong>ts can be defici<strong>en</strong>t and some of these at very ext<strong>en</strong>sive scales. In bothcountries Z<strong>in</strong>c defici<strong>en</strong>cy occurs <strong>in</strong> about 50 perc<strong>en</strong>t of the farmland and boron defici<strong>en</strong>cyis pres<strong>en</strong>t <strong>in</strong> 30 perc<strong>en</strong>t. Moreover, <strong>in</strong> Ch<strong>in</strong>a molybd<strong>en</strong>um defici<strong>en</strong>cy affects almost 50perc<strong>en</strong>t of the farmland. Although India and Ch<strong>in</strong>a cannot be held repres<strong>en</strong>tative for therest of the world, the data pres<strong>en</strong>ted must be tak<strong>en</strong> as a sign of how ext<strong>en</strong>sive and serioussoil micronutri<strong>en</strong>t defici<strong>en</strong>cies can be. In the case of z<strong>in</strong>c, this is confirmed by data fromTurkey, Iran and Pakistan. Z<strong>in</strong>c and other micronutri<strong>en</strong>t defici<strong>en</strong>cies have also be<strong>en</strong>recorded widely across Sub-Sahara Africa. 17
Human micronutri<strong>en</strong>t defici<strong>en</strong>ciesThere are two common ways of assess<strong>in</strong>g human micronutri<strong>en</strong>t defici<strong>en</strong>cies. First,the food <strong>in</strong>take can be recorded and, <strong>in</strong> comb<strong>in</strong>ation with the m<strong>in</strong>eral cont<strong>en</strong>t of thediffer<strong>en</strong>t foods, the <strong>in</strong>take of the various m<strong>in</strong>eral nutri<strong>en</strong>ts can be calculated. S<strong>in</strong>ce analysisof food is time consum<strong>in</strong>g and costly, mostly standard food tables are used for thispurpose, which makes the method less precise. A second method is the analysis of bloodserum for the various m<strong>in</strong>eral nutri<strong>en</strong>ts. For each elem<strong>en</strong>t specificallydefici<strong>en</strong>cy/suffici<strong>en</strong>cy can be assessed while us<strong>in</strong>g earlier established threshold levels.Although this method fairly precisely measures conditions <strong>in</strong>side the human body, it isusually not implem<strong>en</strong>ted at large scales. Serum-based micronutri<strong>en</strong>t studies, therefore, aremostly of a local nature. An exception is aga<strong>in</strong> Ch<strong>in</strong>a where estimates of human z<strong>in</strong>cdefici<strong>en</strong>cy at national level are available. It appears that about 60 perc<strong>en</strong>t of the ruralpopulation of Ch<strong>in</strong>a suffers from sub-cl<strong>in</strong>ical z<strong>in</strong>c defici<strong>en</strong>cy (various sources quoted <strong>in</strong>Yang et al., 2007). More rec<strong>en</strong>tly such figures have be<strong>en</strong> confirmed through consumptiondata: <strong>in</strong>suffici<strong>en</strong>t z<strong>in</strong>c <strong>in</strong>take was observed <strong>in</strong> 2/3rds of the people below age 17 <strong>in</strong> Jiangsuprov<strong>in</strong>ce (Q<strong>in</strong> et al., 2009). Ext<strong>en</strong>sive soil z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> Ch<strong>in</strong>a thus co<strong>in</strong>cides withwidespread human z<strong>in</strong>c defici<strong>en</strong>cy.To illustrate how serious micronutri<strong>en</strong>t defici<strong>en</strong>cies can be, some spot-wise datawill be pres<strong>en</strong>ted for India and Africa. For <strong>in</strong>stance <strong>in</strong> Haryana, India, serum-basedanalysis <strong>in</strong> pregnant wom<strong>en</strong> revealed multiple micronutri<strong>en</strong>t defici<strong>en</strong>cies: serum levels forZn, Fe and Cu were too low <strong>in</strong> 73.5, 73.4 and 2.7 perc<strong>en</strong>t, respectively (Pathak et al.,2004). It must be observed though that serum analysis of pregnant wom<strong>en</strong> is likely tooverestimate the perc<strong>en</strong>tages of defici<strong>en</strong>cies of the population at large. In Burk<strong>in</strong>a Faso itwas established that 72 perc<strong>en</strong>t of childr<strong>en</strong> were z<strong>in</strong>c defici<strong>en</strong>t (Müller et al., 2003). SouthAfrican primary school childr<strong>en</strong> were z<strong>in</strong>c defici<strong>en</strong>t <strong>in</strong> 46 perc<strong>en</strong>t of the cases (Samuel etal., 2010). Large food <strong>in</strong>take studies <strong>in</strong> Rwanda, Uganda and Tanzania, revealed at thelevel of households 87, 80 and 56 perc<strong>en</strong>t iron defici<strong>en</strong>cy and 54, 50 and 26 perc<strong>en</strong>t z<strong>in</strong>cdefici<strong>en</strong>cy, respectively <strong>in</strong> these three countries (Ecker et al., 2010). These defici<strong>en</strong>ciesreflect a common ph<strong>en</strong>om<strong>en</strong>on <strong>in</strong> Africa where diets are very monotonous and heavilyrely<strong>in</strong>g on locally produced staple foods. Because of such prevail<strong>in</strong>g situations, one maysuspect widespread occurr<strong>en</strong>ces of micronutri<strong>en</strong>t disorders <strong>in</strong> Sub-Sahara Africa. In sum,nationwide data for Ch<strong>in</strong>a and spot-wise data from India and Sub-Sahara Africa show thatlarge portions of rural populations may be affected by micronutri<strong>en</strong>t defici<strong>en</strong>cies andfrequ<strong>en</strong>tly this refers ev<strong>en</strong> to multiple ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts.Worldwide soil and human z<strong>in</strong>c defici<strong>en</strong>cy and preval<strong>en</strong>ce of human stunt<strong>in</strong>gThe cases of India and Ch<strong>in</strong>a have shown how widespread soil z<strong>in</strong>c defici<strong>en</strong>cy canbe. More local studies have also revealed the occurr<strong>en</strong>ce of broad-based humanmicronutri<strong>en</strong>t defici<strong>en</strong>cies, notably <strong>in</strong> develop<strong>in</strong>g countries. At the global scale only forz<strong>in</strong>c there is a spatially explicit repres<strong>en</strong>tation of its defici<strong>en</strong>cy <strong>in</strong> soils with somereliability as depicted <strong>in</strong> Figure 5 (Alloway, 2008). The map is a heroic attempt to pres<strong>en</strong>tthe ext<strong>en</strong>t of Zn defici<strong>en</strong>cies worldwide. Z<strong>in</strong>c defici<strong>en</strong>cies <strong>in</strong> India and Ch<strong>in</strong>a are wellrepres<strong>en</strong>ted <strong>in</strong> the map and the less ext<strong>en</strong>sive z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> Southern Ch<strong>in</strong>a is alsopres<strong>en</strong>t. Ext<strong>en</strong>sive z<strong>in</strong>c defici<strong>en</strong>cies <strong>in</strong> Turkey, Iran and Pakistan are also show up <strong>in</strong> themap and areas with z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> Australia reflect Australian research (Holloway etal., 2008). Zones with widespread z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> the USA are equally well repres<strong>en</strong>ted(ILZRO, 1975). Particularly <strong>in</strong> the case of Africa the reliability may be questioned, s<strong>in</strong>celittle systematic work has be<strong>en</strong> done on micronutri<strong>en</strong>t defici<strong>en</strong>cies. However, as earlier 18
<strong>in</strong>dicated, wh<strong>en</strong> explicitly tested, z<strong>in</strong>c defici<strong>en</strong>cy surfaced most frequ<strong>en</strong>tly. So, althoughthe sources used are not m<strong>en</strong>tioned, for the map scale concerned the <strong>in</strong>formation seemssuffici<strong>en</strong>tly reliable, certa<strong>in</strong>ly while the category ‘widespread defici<strong>en</strong>cy’ does not implythat all soils <strong>in</strong> the areas concerned are z<strong>in</strong>c defici<strong>en</strong>t.A human z<strong>in</strong>c defici<strong>en</strong>cy risk <strong>in</strong> childr<strong>en</strong> under 5 years is depicted <strong>in</strong> Figure 6. Thehigh-risk areas practically all co<strong>in</strong>cide with areas show<strong>in</strong>g soil z<strong>in</strong>c defici<strong>en</strong>cy. Thecountries <strong>in</strong>volved are ma<strong>in</strong>ly develop<strong>in</strong>g countries. It also appears that human z<strong>in</strong>cdefici<strong>en</strong>cy risks are lower <strong>in</strong> developed countries, ev<strong>en</strong> where soils are z<strong>in</strong>c defici<strong>en</strong>t (e.g.USA, Europe). This is likely due to the fact that <strong>in</strong> developed countries the food eat<strong>en</strong> ismore varied and of differ<strong>en</strong>t geographic orig<strong>in</strong>, while also <strong>in</strong>clud<strong>in</strong>g animal-basedproducts. Remarkably, the risks of human z<strong>in</strong>c defici<strong>en</strong>cy are medium <strong>in</strong> Ch<strong>in</strong>a and someLat<strong>in</strong> American countries, while soil z<strong>in</strong>c defici<strong>en</strong>cy is widespread. In the case of Ch<strong>in</strong>athis contradicts local sources of <strong>in</strong>formation on the preval<strong>en</strong>ce of human z<strong>in</strong>c defici<strong>en</strong>cy.Human z<strong>in</strong>c defici<strong>en</strong>cy is frequ<strong>en</strong>tly l<strong>in</strong>ked to the preval<strong>en</strong>ce of stunt<strong>in</strong>g for whichspatially explicit actually measured global data are available. Record<strong>in</strong>g child age, heightand weight on a sample basis is standardly conducted <strong>in</strong> all countries under the umbrella ofthe WHO. Data on the preval<strong>en</strong>ce of stunt<strong>in</strong>g is based on the height for age ratio forchildr<strong>en</strong> under 5 years of age. A child is considered stunted if the score is below m<strong>in</strong>us twostandard deviations from the median value of a global refer<strong>en</strong>ce population as specified <strong>in</strong>the WHO child growth standards. From the outset it must be doubted if stunt<strong>in</strong>g cansubstitute for z<strong>in</strong>c defici<strong>en</strong>cy, ev<strong>en</strong> though it is well known that low z<strong>in</strong>c <strong>in</strong>take results <strong>in</strong>growth retardation <strong>in</strong> humans (and plants). S<strong>in</strong>ce only the measurem<strong>en</strong>t of height is usedand many other variables can contribute to stunt<strong>in</strong>g it supposedly is more of a synoptic<strong>in</strong>dicator, signall<strong>in</strong>g chronic under-nutrition. However, the data are quantitative and z<strong>in</strong>cdefici<strong>en</strong>cy is likely to be <strong>in</strong>volved <strong>in</strong> stunt<strong>in</strong>g. Indeed, the co<strong>in</strong>cid<strong>en</strong>ce of z<strong>in</strong>c defici<strong>en</strong>cy(Figure 6) and stunt<strong>in</strong>g (Figure 7) is strik<strong>in</strong>g.From Figure 7 we can further observe that practically all high-<strong>in</strong>come countrieshave a low perc<strong>en</strong>tage of stunt<strong>in</strong>g <strong>in</strong>cid<strong>en</strong>ces, which is co<strong>in</strong>cid<strong>en</strong>t with abs<strong>en</strong>ce of humanz<strong>in</strong>c defici<strong>en</strong>cy, ev<strong>en</strong> wh<strong>en</strong> soil z<strong>in</strong>c defici<strong>en</strong>cy is pres<strong>en</strong>t as for <strong>in</strong>stance is the case <strong>in</strong> theUSA (Figure 5). Very high levels of stunt<strong>in</strong>g occur ma<strong>in</strong>ly <strong>in</strong> Sub-Sahara Africa and Southand South-East Asia 1 with a spatial co<strong>in</strong>cid<strong>en</strong>ce of soil z<strong>in</strong>c defici<strong>en</strong>cy (Figure 5) andassociated human defici<strong>en</strong>cy symptoms (Table 5). Relatively high stunt<strong>in</strong>g levels furtheroccur <strong>in</strong> some isolated pockets.1 In this context it is rele<strong>van</strong>t to m<strong>en</strong>tion that adult people of South Asian desc<strong>en</strong>t possibly have apredisposition for a low Body Mass Index (Nubé, 2008). Whether or not this would also imply high stunt<strong>in</strong>g<strong>in</strong>cid<strong>en</strong>ces <strong>in</strong> childr<strong>en</strong> is uncerta<strong>in</strong>. Anyway, low birth weights accord<strong>in</strong>g to UNICEF (2006) <strong>in</strong> South Asiaoccur <strong>in</strong> 31 perc<strong>en</strong>t as opposed to 14 perc<strong>en</strong>t <strong>in</strong> Sub-Sahara Africa. 19
Figure 5. Global areas with soil z<strong>in</strong>c defici<strong>en</strong>cies (Source: Alloway, 2008).Figure 6. National risk of z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> childr<strong>en</strong> under 5 years (source: Black et al.,2008). 20
Figure 7. Preval<strong>en</strong>ce of stunt<strong>in</strong>g <strong>in</strong> childr<strong>en</strong> under 5 years (source: Black et al., 2008).Table 5. Estimated preval<strong>en</strong>ce of iron and z<strong>in</strong>c defici<strong>en</strong>cies and annual death tolls for under 5age childr<strong>en</strong> by geographic region (Source: Caulfield et al., 2006).RegionIron defici<strong>en</strong>cyAnemia (%)Z<strong>in</strong>cDefici<strong>en</strong>cy (%)Deaths Iron(thousands)Deaths Z<strong>in</strong>c(thousands)East Asia and the pacific 40 7 18 15Eastern Europe and C<strong>en</strong>tral Asia 22 10 3 4Lat<strong>in</strong> America and the Carribean 46 33 10 15Middle East and North Africa 63 46 10 94South Asia 76 79 66 252Sub-Sahara Africa 60 50 21 400High-<strong>in</strong>come countries 7 5 6 0Ch<strong>in</strong>a and parts of South America aga<strong>in</strong> deviate from this pattern: soil z<strong>in</strong>c defici<strong>en</strong>ciesoccur widespread while stunt<strong>in</strong>g levels are low. Yet, as earlier observed, human z<strong>in</strong>cdefici<strong>en</strong>cy is widespread <strong>in</strong> Ch<strong>in</strong>a (Yang et al., 2007) and sizeable <strong>in</strong> Lat<strong>in</strong> America(Caulfield et al., 2006). It thus appears that <strong>in</strong> low-<strong>in</strong>come countries soil z<strong>in</strong>c defici<strong>en</strong>ciesg<strong>en</strong>erally translate <strong>in</strong> human defici<strong>en</strong>cies, while high stunt<strong>in</strong>g preval<strong>en</strong>ce rates practicallyalways co<strong>in</strong>cide with soil z<strong>in</strong>c defici<strong>en</strong>cies, but z<strong>in</strong>c defici<strong>en</strong>cy does not necessarily alwayslead to stunt<strong>in</strong>g.More quantitative data on the preval<strong>en</strong>ce and impact of z<strong>in</strong>c defici<strong>en</strong>cy is onlyavailable <strong>in</strong> tabular form for broad regions of the world. Table 5 pres<strong>en</strong>ts data on the<strong>in</strong>cid<strong>en</strong>ce of Fe and Zn defici<strong>en</strong>cy <strong>in</strong> under 5 years old childr<strong>en</strong> and the result<strong>in</strong>g annualdeath toll (Source: Caulfield et al., 2006). The data are mere estimates and though obta<strong>in</strong>edus<strong>in</strong>g a consist<strong>en</strong>t methodology, they can be considered as plausible orders of magnitudeonly. Table 5 first of all confirms that micronutri<strong>en</strong>t defici<strong>en</strong>cy preval<strong>en</strong>ce is low only <strong>in</strong>high-<strong>in</strong>come countries. Human z<strong>in</strong>c defici<strong>en</strong>cies are particularly frequ<strong>en</strong>t <strong>in</strong> South Asia 21
and Africa, but it also occurs ext<strong>en</strong>sively <strong>in</strong> the Middle East and North Africa and withconsiderable <strong>in</strong>cid<strong>en</strong>ce <strong>in</strong> Lat<strong>in</strong> America and the Caribbean as well. The latter twoobservations to some ext<strong>en</strong>t confirm the earlier reported soil z<strong>in</strong>c defici<strong>en</strong>cies. However,the co<strong>in</strong>cid<strong>en</strong>ce of soil and human defici<strong>en</strong>cies as reported for Ch<strong>in</strong>a is not evid<strong>en</strong>t <strong>in</strong> thedata for East Asia. Lett<strong>in</strong>g prevail the Ch<strong>in</strong>ese national data on sub-cl<strong>in</strong>ical z<strong>in</strong>cdefici<strong>en</strong>cy, and while exclud<strong>in</strong>g high-<strong>in</strong>come countries, the areas with high <strong>in</strong>cid<strong>en</strong>ce ofhuman z<strong>in</strong>c defici<strong>en</strong>cy thus do correspond with the areas of soil z<strong>in</strong>c defici<strong>en</strong>cy (Figure 5).The death tolls due to z<strong>in</strong>c defici<strong>en</strong>cy are particularly large <strong>in</strong> South Asia and Sub-SaharaAfrica. The total number of deaths amounts to about 800,000 per year, an order ofmagnitude similar to malaria victims. The ext<strong>en</strong>t of iron defici<strong>en</strong>cy anemia is <strong>in</strong> g<strong>en</strong>eralev<strong>en</strong> greater than z<strong>in</strong>c defici<strong>en</strong>cy, but the number of deaths is oft<strong>en</strong> far less. The set ofmaps, and the quantitative data on z<strong>in</strong>c defici<strong>en</strong>cy pres<strong>en</strong>ted here, thus <strong>in</strong>dicate that humanmicronutri<strong>en</strong>t defici<strong>en</strong>cies appear to be a typical condition of many develop<strong>in</strong>g countriesand result regionally <strong>in</strong> a very high disease and death burd<strong>en</strong>.Summ<strong>in</strong>g up and outlookThe previous paragraphs have shown that sometimes there is an evid<strong>en</strong>trelationship betwe<strong>en</strong> low soil micronutri<strong>en</strong>t levels and certa<strong>in</strong> diseases: the case ofSel<strong>en</strong>ium <strong>in</strong> Ch<strong>in</strong>a, and the case of z<strong>in</strong>c <strong>in</strong> develop<strong>in</strong>g countries <strong>in</strong> g<strong>en</strong>eral. For othermicronutri<strong>en</strong>ts such straightforward l<strong>in</strong>kages have not be<strong>en</strong> <strong>en</strong>countered. Next, it could beassessed how widespread soil defici<strong>en</strong>cies for a number of ess<strong>en</strong>tial plant nutri<strong>en</strong>ts are,us<strong>in</strong>g the examples of India and Ch<strong>in</strong>a. Thereafter, the severity of human micronutri<strong>en</strong>tdefici<strong>en</strong>cies was shown with examples from Ch<strong>in</strong>a, India and Sub-Sahara Arica. Lastly,the co<strong>in</strong>cid<strong>en</strong>ce of soil z<strong>in</strong>c defici<strong>en</strong>cy, human z<strong>in</strong>c defici<strong>en</strong>cy and stunt<strong>in</strong>g of childr<strong>en</strong> hasbe<strong>en</strong> analyzed at the global scale. It appeared that such relationships do not exist <strong>in</strong> high<strong>in</strong>comecountries, but <strong>in</strong> develop<strong>in</strong>g and emerg<strong>in</strong>g countries soil z<strong>in</strong>c defici<strong>en</strong>ciescommonly translate <strong>in</strong> human z<strong>in</strong>c defici<strong>en</strong>cies and stunt<strong>in</strong>g, but not always so.Furthermore the magnitude of the disease burd<strong>en</strong> of z<strong>in</strong>c defici<strong>en</strong>cy has be<strong>en</strong> discussed.Disease and death rates are particularly large <strong>in</strong> Sub-Sahara Africa, South Asia, NorthAfrica and the Middle East, at some distance followed by South America and theCarribean. Human z<strong>in</strong>c defici<strong>en</strong>cies, and more g<strong>en</strong>erally malnutrition are thus conc<strong>en</strong>trated<strong>in</strong> low-<strong>in</strong>come countries. It reflects a monotonous staple food diet with low micronutri<strong>en</strong>td<strong>en</strong>sities, obta<strong>in</strong>ed from z<strong>in</strong>c defici<strong>en</strong>t soils. As such human micronutri<strong>en</strong>t defici<strong>en</strong>cies ar<strong>en</strong>ot only a result of under-developm<strong>en</strong>t, but also a cause, s<strong>in</strong>ce the diseases deriv<strong>in</strong>g fromit, impair the work<strong>in</strong>g capacity or ev<strong>en</strong> may result <strong>in</strong> m<strong>en</strong>tal retardation.Although the problem at hand may seem imm<strong>en</strong>se <strong>in</strong> terms of severity of humansuffer<strong>in</strong>g and its spatial ext<strong>en</strong>t, the solution is relatively simple and straightforward, at leasttheoretically. Micronutri<strong>en</strong>ts can be applied as fertilizers to defici<strong>en</strong>t soils. In the abs<strong>en</strong>ceof other major soil constra<strong>in</strong>ts, theoretically this will raise both crop yields and micronutri<strong>en</strong>td<strong>en</strong>sities of food. Higher yields can liberate land and labour for diversificationtowards vegetables, fruits, fuel and livestock, thus produc<strong>in</strong>g a w<strong>in</strong>-w<strong>in</strong> situation, as it<strong>in</strong>creases food availability and improves dietary quality. However, there are someconstra<strong>in</strong>ts as well. First it must be known which soils are defici<strong>en</strong>t for which nutri<strong>en</strong>ts.Moreover, nutri<strong>en</strong>ts <strong>in</strong> the soil <strong>in</strong>teract where uptake by plants is concerned and soil biotacan play a role <strong>in</strong> plant nutrition as well. Therefore, micronutri<strong>en</strong>t application technologieshave to be developed that are effective giv<strong>en</strong> the total chemical and biotic constellation ofsoils. Both issues are knowledge <strong>in</strong>t<strong>en</strong>sive. Lastly, <strong>in</strong> cases such as copper and z<strong>in</strong>c,alternative uses have to be weighed. For <strong>in</strong>stance, is copper to be used for mobile phonesfrom which it can be recycled or for a dissipative use such as apply<strong>in</strong>g it to land as 22
fertilizer, where recycl<strong>in</strong>g is only possible to a limited ext<strong>en</strong>t. These issues will be furtherelaborated <strong>in</strong> follow<strong>in</strong>g sections. 23
5 Available m<strong>in</strong>eral resources and requirem<strong>en</strong>ts of theworld food systemEss<strong>en</strong>tial micronutri<strong>en</strong>ts can be applied to soils if these are defici<strong>en</strong>t with theobjective to <strong>in</strong>crease crop yields and improve the quality of human nutrition. The qualityof <strong>in</strong>gested food can obviously also be improved by food fortification or supplem<strong>en</strong>tation,but it is g<strong>en</strong>erally expected that food-based approaches through the crop medium <strong>en</strong>suregreater bioavailability and consequ<strong>en</strong>tly absorption <strong>in</strong> the human body (Nubé andVoortman 2011). Moreover, by us<strong>in</strong>g these more artificial methods, the ad<strong>van</strong>tages of<strong>in</strong>creased crop yields and global food production would be forgone. The most <strong>in</strong>dicatedsource of micronutri<strong>en</strong>ts to be applied <strong>in</strong> agriculture are pure nutri<strong>en</strong>ts as obta<strong>in</strong>ed frommetal m<strong>in</strong><strong>in</strong>g operations. However, most metals are curr<strong>en</strong>tly by and large used for otherpurposes than agriculture (e.g. metal <strong>in</strong>dustry, construction, electrical applications, andautomotive <strong>in</strong>dustry). Metal use <strong>in</strong> agriculture thus would be a compet<strong>in</strong>g use. Thissection, therefore, first briefly summarizes known available metal reserves <strong>in</strong> ore depositsand curr<strong>en</strong>t consumption levels (ma<strong>in</strong>ly outside agriculture) to assess how strongcompetition betwe<strong>en</strong> differ<strong>en</strong>t uses possibly will be. Second, the requirem<strong>en</strong>ts for ess<strong>en</strong>tialm<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> global agriculture will be estimated. Although metals are also requiredfor agricultural <strong>in</strong>puts such as pesticides and feed supplem<strong>en</strong>tation <strong>in</strong> livestock systems,this section will conc<strong>en</strong>trate on fertilizers, s<strong>in</strong>ce these will be the most demand<strong>in</strong>g use. Th<strong>en</strong>utri<strong>en</strong>t requirem<strong>en</strong>ts are discussed separately for the world food system and for thepurpose of grow<strong>in</strong>g biofuels, because betwe<strong>en</strong> these two uses there will be compet<strong>in</strong>gclaims for land, but also <strong>in</strong>puts such as plant nutri<strong>en</strong>ts. This section concludes with adiscussion of susta<strong>in</strong>ability issues <strong>in</strong> relation to micronutri<strong>en</strong>t use <strong>in</strong> global agriculture.M<strong>in</strong>eable reserves, annual consumption and estimated duration of availabilityOccurr<strong>en</strong>ces of m<strong>in</strong>eral deposits are classified on the basis of whether they haveactually be<strong>en</strong> established or not (geological assurance) and the likely economic viability ofexploitation. Reserves consist of the category of id<strong>en</strong>tified resources (measured, <strong>in</strong>dicatedand <strong>in</strong>ferred), which are considered economically exploitable with curr<strong>en</strong>t technologies atcurr<strong>en</strong>t price levels and available data on these reserves will be used <strong>in</strong> the follow<strong>in</strong>g.The data used to assess the known m<strong>in</strong>eable reserves derive from the USGeological Survey (USGS, 2011), g<strong>en</strong>erally considered the most compreh<strong>en</strong>sive source of<strong>in</strong>formation (e.g. Dieder<strong>en</strong>, 2010). Table 6 pres<strong>en</strong>ts for a number of ess<strong>en</strong>tial plantnutri<strong>en</strong>ts the reserves, the reserve base (for def<strong>in</strong>ition see observations with Table 6),annual production/consumption and the years left of reserves at curr<strong>en</strong>t consumption levels(please note that quantities are expressed <strong>in</strong> differ<strong>en</strong>t units). Nitrog<strong>en</strong> is an ess<strong>en</strong>tialnutri<strong>en</strong>t but not <strong>in</strong>cluded <strong>in</strong> Table 6 s<strong>in</strong>ce it is not m<strong>in</strong>ed and derives from atmosphericsources <strong>in</strong> which it is amply available. Reserves of m<strong>in</strong>eable Ca and S are not giv<strong>en</strong>, butthese are very large and set no limitation. Reserves of phosphate are based on IFDC (2010)as <strong>en</strong>dorsed by USGS (2010). However, reserves of phosphate rock <strong>in</strong>clude largequantities <strong>in</strong> Ch<strong>in</strong>a that are suspected to be low-grade ore (i.e. have a low perc<strong>en</strong>tage ofP 2 O 5 ). Indeed, at curr<strong>en</strong>t levels of use, the high -rade P reserves would be exhaustedalready by 2014 (Zhang et al. 1985, quoted <strong>in</strong> Ma et al., 2011). Cobalt is not considered asan ess<strong>en</strong>tial plant nutri<strong>en</strong>t and yet <strong>in</strong>cluded <strong>in</strong> Table 6, as it is ess<strong>en</strong>tial <strong>in</strong> animal andhuman nutrition and is also required for biological nitrog<strong>en</strong> fixation by legumes. 25
Table 6. M<strong>in</strong>eral nutri<strong>en</strong>t resources: reserves, consumption and years left at curr<strong>en</strong>tconsumption levels <strong>in</strong> 2010.Elem<strong>en</strong>t Formula Unit Reserve Reserve Production Years leftBase 2008 2010 on reserveMacro-meso-nutri<strong>en</strong>ts:Phosphate rock variable 1000 tons 65,000,000 50,000,000 176,000 369Potash K 2 O 1000 tons 9,500,000 17,000,000 33,000 287Magnesium Mg 1000 tons 2,400,000 3,600,000 5,580 430Micronutri<strong>en</strong>ts:Boron B 2 O 3 1000 tons 210,000 410,000 3,500 60Cobalt Co 1 ton 7,300,000 13,000,000 88,000 83Copper Cu 1000 tons 630,000 940,000 16,200 39Iron Fe million tons 180,000 370,000 2,400 75Manganese Mn 1000 tons 630,000 5,200,000 13,000 48Molybd<strong>en</strong>um Mo 1 ton 9,800,000 19,000,000 134,000 41Z<strong>in</strong>c Zn 1000 tons 250,000 460,000 12,000 21Possibly ess<strong>en</strong>tial:Nickel Ni 1 ton 76,000,000 140,000,000 1,550,000 49Source: USGS, 2011.Observations regard<strong>in</strong>g Table 6:• Reserves are id<strong>en</strong>tified and considered economically exploitable with curr<strong>en</strong>t technologiesand price levels• Reserve bases are expected resources and those id<strong>en</strong>tified but not economically exploitablewith curr<strong>en</strong>t technologies and price levels. Figures for the reserve base were discont<strong>in</strong>uedafter 2008 because the data are ‘not curr<strong>en</strong>t <strong>en</strong>ough to support def<strong>en</strong>sible reserve baseestimates’.• Reserves of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts Ca and S not giv<strong>en</strong> but these are very large• Reserves of phosphate rock are larger than the reserve base due to among others a revisionby IFDC (2010) that was <strong>en</strong>dorsed by USGS (2011). The reserve base was not revised.Instead the much less certa<strong>in</strong> resources were estimated at 290 billion tons (IFDC, 2000).Reserves and reserve base of Phosphate rock <strong>in</strong>clude large quantities <strong>in</strong> Ch<strong>in</strong>a that aresuspected to be low grade ore i.e. have a low perc<strong>en</strong>tage of P 2 O 5 .• Cobalt is not considered as an ess<strong>en</strong>tial plant nutri<strong>en</strong>t, but is ess<strong>en</strong>tial <strong>in</strong> animal nutritionand is also required for biological nitrog<strong>en</strong> fixation by legumes.• Reserves of iron refer to crude ore, production refers to usable ore but it <strong>in</strong>cludes figuresfor crude ore <strong>in</strong> the case of Ch<strong>in</strong>a.Table 6 and Figure 8 repres<strong>en</strong>t a mere static evaluation only of demand and supply ofm<strong>in</strong>eral nutri<strong>en</strong>ts. It calculates the number of years that curr<strong>en</strong>tly known reserves canproduce the curr<strong>en</strong>t use levels. The picture emanat<strong>in</strong>g from this static evaluation is that P,K and Mg reserves are suffici<strong>en</strong>t for a number of c<strong>en</strong>turies, while the lifetime of virtuallyall micronutri<strong>en</strong>t sources is less than 100 years. Most critical are z<strong>in</strong>c, copper andmolybd<strong>en</strong>um with 21, 39 and 41 years of reserve life left, respectively. Assum<strong>in</strong>g anannual <strong>in</strong>crease <strong>in</strong> demand gives lower figures of course (e.g. Dieder<strong>en</strong>, 2010), but a moredynamic approach would also have to consider developm<strong>en</strong>ts <strong>in</strong> technology, <strong>in</strong>clud<strong>in</strong>gm<strong>in</strong><strong>in</strong>g. The results show that, under static assumptions, scarcity of a number of ess<strong>en</strong>tialm<strong>in</strong>eral nutri<strong>en</strong>ts is imm<strong>in</strong><strong>en</strong>t <strong>in</strong> the foreseeable future, suggest<strong>in</strong>g that stiff competitionfor alternative uses may be expected and, consequ<strong>en</strong>tly, that prices may <strong>in</strong>crease. 26
Figure 8. Number of years of supply for ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts (vertical axis)based on curr<strong>en</strong>t reserves and consumption levels (data source: USGS,2011).Although simple calculations, from the outset it must be emphasized that the aboveoutcomes are prone to error due to <strong>in</strong>her<strong>en</strong>t problems <strong>in</strong> the data (e.g. Ros<strong>en</strong>au-Tornow etal., 2009). First, the use of term<strong>in</strong>ology for classify<strong>in</strong>g resource categories such as reservesis <strong>in</strong>consist<strong>en</strong>t among countries and companies and lack transpar<strong>en</strong>cy (IFDC, 2010;Gordon et al., 2007). Second, m<strong>in</strong>eral <strong>in</strong>v<strong>en</strong>tory determ<strong>in</strong>ation <strong>en</strong>tails great <strong>in</strong>her<strong>en</strong>tuncerta<strong>in</strong>ties due to <strong>in</strong>terpretation of a limited number of observations (poor sampl<strong>in</strong>g) andprobabilistic estimation, but oft<strong>en</strong> based on wide variations <strong>in</strong> (sometimes <strong>in</strong>appropriate)methodologies (e.g. Morley et al., 1999; Dom<strong>in</strong>y et al., 2004; Emery et al., 2006; S<strong>in</strong>ger,2010). Third, the figures are compiled by USGS while us<strong>in</strong>g governm<strong>en</strong>t sources,<strong>in</strong>dividual companies and ‘<strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t’ sources. There are various reasons of a strategicnature why governm<strong>en</strong>ts and companies would over- or under-report. For <strong>in</strong>stancecompanies may under-report with the objective to ma<strong>in</strong>ta<strong>in</strong> high price levels. On the otherhand they may over-report <strong>in</strong> order to avoid <strong>in</strong>terfer<strong>en</strong>ce of politicians <strong>in</strong> the productionprocess on the basis of the notion of scarcity. Bleischwitz (2006), <strong>in</strong> the case of oil, <strong>in</strong>deedsuggests that figures are deliberately manipulated. More g<strong>en</strong>erally, the figures may beunreliable because governm<strong>en</strong>ts consider them as strategic <strong>in</strong>formation as well. And lastly,it has be<strong>en</strong> observed that the ‘the USGS M<strong>in</strong>erals Information Team activities are lessrobust than they might be’ (NRC, 2008). Yet, there is no choice other th<strong>en</strong> to use theUSGS data, as these are the only compreh<strong>en</strong>sive source of <strong>in</strong>formation (pers. comm., Prof.Peter <strong>van</strong> Straat<strong>en</strong>).Despite these data problems, it is clear though that, ev<strong>en</strong> at curr<strong>en</strong>t use levels only, metalssuch as copper and z<strong>in</strong>c will become scarce and exp<strong>en</strong>sive, and would ev<strong>en</strong>tually be<strong>en</strong>tirely <strong>in</strong> use for non-agricultural purposes <strong>in</strong> the near future, unless appreciable newexploitable reserves will be located. Obviously exist<strong>in</strong>g reserves are likely to <strong>in</strong>creasethrough m<strong>in</strong>eral exploration. Higher metal prices may also make it possible to m<strong>in</strong>e oredeposits curr<strong>en</strong>tly considered uneconomical, thus add<strong>in</strong>g to m<strong>in</strong>eable reserves. In addition,m<strong>in</strong>eable reserves may also be <strong>in</strong>creased due to technological developm<strong>en</strong>ts <strong>in</strong> m<strong>in</strong><strong>in</strong>g andb<strong>en</strong>eficiation, which, for <strong>in</strong>stance, would allow to use lower grades of ore, or wherebym<strong>in</strong><strong>in</strong>g under difficult conditions would become technically feasible (e.g. ocean floors). 27
Ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> the global food systemEss<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts are widely used <strong>in</strong> agriculture as fertilizers to food, feed,oil and fiber crops. Geographically though, there is great variation <strong>in</strong> the <strong>in</strong>t<strong>en</strong>sity offertilizer use. High-dose fertilizers are commonly used <strong>in</strong> high-<strong>in</strong>come countries, but also<strong>in</strong> emerg<strong>in</strong>g economies like Ch<strong>in</strong>a, while <strong>in</strong> Sub-Sahara Africa fertilizer <strong>in</strong>puts ar<strong>en</strong>egligible. The elem<strong>en</strong>ts used as fertilizer are ma<strong>in</strong>ly N, P and K, but the fertilizer typesused may also conta<strong>in</strong> some ess<strong>en</strong>tial micronutri<strong>en</strong>ts as ‘impurities’. This micronutri<strong>en</strong>tcont<strong>en</strong>t varies strongly with the type of fertilizer and the orig<strong>in</strong> and nature of the sourcematerial. In the abs<strong>en</strong>ce of fertilizer use, as <strong>in</strong> Africa, crops rely for their growth on nativelevels of all macro-, meso- and micronutri<strong>en</strong>ts as pres<strong>en</strong>t <strong>in</strong> the soil be<strong>in</strong>g cultivated.Transport<strong>in</strong>g crop yields (and residues) away from the field th<strong>en</strong> leaves the soilimpoverished <strong>in</strong> terms of the <strong>en</strong>tire spectrum of ess<strong>en</strong>tial nutri<strong>en</strong>ts (nutri<strong>en</strong>t m<strong>in</strong><strong>in</strong>g). Bycontrast, for <strong>in</strong>stance <strong>in</strong> the <strong>in</strong>t<strong>en</strong>sive agriculture of Ch<strong>in</strong>a, large doses of nitrog<strong>en</strong> andphosphorus are usually applied. Notably phosphate fertilizers may <strong>in</strong>clude some otheress<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts as impurities. Otherwise, the crops draw on non-NP nutri<strong>en</strong>ts aspres<strong>en</strong>t <strong>in</strong> the soil (or manure, if applied). These will have to be replaced ev<strong>en</strong>tually <strong>in</strong>order to susta<strong>in</strong> high yields. Indeed, as earlier <strong>in</strong>dicated, <strong>in</strong>creas<strong>in</strong>gly micronutri<strong>en</strong>tdefici<strong>en</strong>cies are observed <strong>in</strong> South and East Asia, notably of z<strong>in</strong>c, but also of S, Fe, Mn, B,Mo and Cu (S<strong>in</strong>gh, 2011). Susta<strong>in</strong><strong>in</strong>g yields <strong>in</strong> this case thus requires application of theseess<strong>en</strong>tial micronutri<strong>en</strong>ts as fertilizers. In the African case though, the first objective wouldbe to improve crop yields and the empirical evid<strong>en</strong>ce suggests that, next to macronutri<strong>en</strong>ts,micronutri<strong>en</strong>ts may well play a key-role <strong>in</strong> this respect (Voortman, 2010; Chapter 2).To obta<strong>in</strong> an impression of the requirem<strong>en</strong>ts we make simple on the back of an<strong>en</strong>velope calculations. Suppose that half of the pres<strong>en</strong>t crop and pastureland is z<strong>in</strong>cdefici<strong>en</strong>t (source: FAO) and requires an application of 10 kg of z<strong>in</strong>c per hectare. Whereastotal crop and pastureland is about 5 billion hectares 2 such corrective applications wouldamount to 25 million tons of z<strong>in</strong>c or about twice the curr<strong>en</strong>t annual production.Ma<strong>in</strong>t<strong>en</strong>ance fertilization with z<strong>in</strong>c at crop yields of 5 ton/ha thereafter would be 0.15 kgper year for all land, total<strong>in</strong>g 750 thousand tons, or 6% of the curr<strong>en</strong>t annual primaryproduction of z<strong>in</strong>c. By itself these figures appear modest, but they must be appliedannually for ever and spread<strong>in</strong>g z<strong>in</strong>c very th<strong>in</strong>ly over arable land is a very dissipative useof a scarce resource. The curr<strong>en</strong>t reserves of z<strong>in</strong>c, if applied <strong>in</strong> the described manner <strong>in</strong>agriculture only, would last for 330 years provided crop residues are left <strong>in</strong> the field. Thelatter is unlikely to occur, but if used as animal feed, removal of crop residues can bepartly comp<strong>en</strong>sated through manure application.In sum, new land tak<strong>en</strong> <strong>in</strong>to use usually has particular soil fertility problems,cultivation without fertilizer use leads to nutri<strong>en</strong>t m<strong>in</strong><strong>in</strong>g, while fertilizer application on<strong>in</strong>t<strong>en</strong>sively cultivated land is unbalanced <strong>in</strong> regard of the stoichiometric requirem<strong>en</strong>ts ofplants. Thus, under virtually all conditions micronutri<strong>en</strong>ts will have to be applied to susta<strong>in</strong>crop yields. The annual amounts of for <strong>in</strong>stance z<strong>in</strong>c fertilizer to be applied at the globallevel may seem modest, but these amounts have to be applied perpetually, while at thesame time repres<strong>en</strong>t<strong>in</strong>g a very dissipative use of a scarce resource. Moreover, all thecurr<strong>en</strong>tly m<strong>in</strong>ed micronutri<strong>en</strong>ts are practically <strong>in</strong> total used for non-agricultural purposes2 This figure possibly overestimates <strong>in</strong>t<strong>en</strong>sively used land as the FAO category pastures appar<strong>en</strong>tly also<strong>in</strong>cludes rangelands. 28
and such uses are likely to cont<strong>in</strong>ue and further expand. The use of nutri<strong>en</strong>ts <strong>in</strong> agriculturethus will have to face stiff competition with other uses <strong>in</strong>deed and is likely to result <strong>in</strong>either lower land productivity or higher food prices. No matter what the outcome, therewill be impacts on the world food system, which are difficult to quantify as yet.Nutri<strong>en</strong>t requirem<strong>en</strong>ts and biofuel production 3The <strong>in</strong>terest <strong>in</strong> the production of biofuels is driv<strong>en</strong> by the expected scarcity ofliquid fuels, and also because it is se<strong>en</strong> as a possible pathway to arrive at a low-carboneconomy. Moreover, biofuel production could reduce the dep<strong>en</strong>d<strong>en</strong>cy of <strong>in</strong>dustrializedcountries on a few oil-rich countries (geopolitics). From the outset it is natural to suspectthat biofuel production will compete with food and feed crops for land, and also for<strong>in</strong>organic fertilizers. However, this is po<strong>in</strong>t of <strong>in</strong>t<strong>en</strong>sive discussion <strong>in</strong> the literature andsome sources mistak<strong>en</strong>ly suggest that biofuels can be grown susta<strong>in</strong>ably on marg<strong>in</strong>al landswithout fertilizer <strong>in</strong>puts. These discrepancies, therefore, require clarification.The advocates of biofuels t<strong>en</strong>d to concede that curr<strong>en</strong>t first g<strong>en</strong>eration bio-fuels<strong>in</strong>deed do compete with food and feed for land and <strong>in</strong>puts. But, they expect technologicalchange <strong>in</strong> bio-fuel production us<strong>in</strong>g so-called second g<strong>en</strong>eration feed stocks. Suchtechnologies would make it possible to harvest and use biomass, rang<strong>in</strong>g from desertshrubs, to tall sa<strong>van</strong>nah grasses and tropical forests, from land unsuitable to grow food andfeed crops. The impression is created that <strong>in</strong> this way competition for land and m<strong>in</strong>eral<strong>in</strong>puts can be avoided. However, this may be the case for <strong>in</strong>stance <strong>in</strong> remote areas wheresmall scale bio-fuel production takes place to satisfy local demand and where restproducts, conta<strong>in</strong><strong>in</strong>g the ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts, are also locally re-cycled. However,large-scale bio-fuel production has particular requirem<strong>en</strong>ts. To be effective as little aspossible <strong>en</strong>ergy should be used <strong>in</strong> produc<strong>in</strong>g and process<strong>in</strong>g the bio-fuel. To achieve therequired effici<strong>en</strong>cy, large volumes of biomass need to be produced <strong>in</strong> the proximity of abiofuel production plant, so as to <strong>en</strong>sure the m<strong>in</strong>imization of <strong>en</strong>ergy losses for <strong>in</strong>stance <strong>in</strong>transportation of the feed stock. This pr<strong>in</strong>ciple is precisely the reason why ethanolproduction from sugarcane <strong>in</strong> Brazil is particularly effici<strong>en</strong>t. Obviously, the production ofbiomass with large yields <strong>in</strong> short distances requires good soils and fertilizer <strong>in</strong>puts.Therefore, large-scale bio-fuel production, no matter what feedstock is used, can beexpected to compete for land, labour and <strong>in</strong>puts such as <strong>in</strong>organic fertilizers.With respect to harvest<strong>in</strong>g biomass from marg<strong>in</strong>al land, first of all it must beconsidered that net primary production is usually lower under such conditions. It istherefore unlikely that the above requirem<strong>en</strong>t for short distances betwe<strong>en</strong> process<strong>in</strong>g plantand location of feedstock production can be met. Moreover, also on marg<strong>in</strong>al land thepr<strong>in</strong>ciples of production ecology apply: without replac<strong>in</strong>g the nutri<strong>en</strong>ts exported from theland with the feedstock, yields will <strong>in</strong>evitably decl<strong>in</strong>e over time. In fact, be<strong>in</strong>g marg<strong>in</strong>al islikely to imply that greater quantities of fertilizers are needed or a broader spectrum ofess<strong>en</strong>tial nutri<strong>en</strong>ts, so as to <strong>en</strong>sure high yields.With respect to nutri<strong>en</strong>t cycl<strong>in</strong>g, however, there may be some promis<strong>in</strong>gopportunities <strong>in</strong> the case of large scale bio-fuel production with high yields from goodsoils, aga<strong>in</strong> provided some requirem<strong>en</strong>ts are met. In ess<strong>en</strong>ce the bio-fuel product consistsof carbohydrates only. Therefore, the rest product, conta<strong>in</strong><strong>in</strong>g ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>tscan be used to repl<strong>en</strong>ish soil fertility on the harvested land, thus clos<strong>in</strong>g the nutri<strong>en</strong>t cycle.3 Largely based on Keyzer et al., 2009. 29
However, such options are viable only, if process<strong>in</strong>g the crop residues and transportationof nutri<strong>en</strong>ts back to the fields do not compromise the balance of <strong>en</strong>ergy produced and used.In the case of large-scale biofuel production on marg<strong>in</strong>al land such possibilities are lessevid<strong>en</strong>t, s<strong>in</strong>ce the larger distances <strong>in</strong>volved imply that the redistribution of nutri<strong>en</strong>ts willearlier compromise the balance of <strong>en</strong>ergy ga<strong>in</strong>s and exp<strong>en</strong>ses. A pot<strong>en</strong>tial solution couldconsist of mobile process<strong>in</strong>g plants, whereby rather than the feedstock, the fuel istransported, while nutri<strong>en</strong>ts can be immediately locally re-cycled. Such technologies arecurr<strong>en</strong>tly not ev<strong>en</strong> <strong>en</strong>visaged.In sum, large scale CO 2 -effici<strong>en</strong>t biofuel production, whether based on crops orsecond g<strong>en</strong>eration feedstocks, while us<strong>in</strong>g curr<strong>en</strong>tly <strong>en</strong>visaged technologies, will<strong>in</strong>evitably lead to competition for land and <strong>in</strong>puts, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>organic fertilizers. Biofuelproduction on marg<strong>in</strong>al lands will also <strong>in</strong>evitably require fertilizer nutri<strong>en</strong>ts. Nutri<strong>en</strong>tneutral biofuel production seems a useful option on fertile soils, but its feasibility stillneeds to be verified.Summary and outlookThis section merely reported on known m<strong>in</strong>eable reserves of metals and therequirem<strong>en</strong>ts <strong>in</strong> the world food (and <strong>en</strong>ergy) system. With respect to m<strong>in</strong>eable reserves, thereliability of data is <strong>in</strong> question, but accept<strong>in</strong>g this as a fact of live, suggests that m<strong>in</strong>eralreserves for quite a number of ess<strong>en</strong>tial nutri<strong>en</strong>ts will be depleted with<strong>in</strong> a number ofdecades, at least while us<strong>in</strong>g the static fixed-stock approach assessm<strong>en</strong>t. At the same time,mere population growth and <strong>in</strong>creas<strong>in</strong>g afflu<strong>en</strong>ce will dramatically <strong>in</strong>crease metalrequirem<strong>en</strong>ts, unless we accept a lower per capita metal <strong>in</strong>t<strong>en</strong>sity. Remarkably, thepot<strong>en</strong>tial impact of an imm<strong>in</strong><strong>en</strong>t metal scarcity, result<strong>in</strong>g <strong>in</strong> high fertilizer prices, on theworld food system is rarely considered. High micronutri<strong>en</strong>t prices obviously are likely toresult <strong>in</strong> higher food prices, while at the same time, cash-constra<strong>in</strong>ed poor farmers may notev<strong>en</strong> avail of the resources to afford micronutri<strong>en</strong>t fertilizers. Admittedly, this section hasalso shown that address<strong>in</strong>g soil micronutri<strong>en</strong>t defici<strong>en</strong>cies followed by ma<strong>in</strong>t<strong>en</strong>ancemicronutri<strong>en</strong>t applications does require quantities of metals that are not extravagant, yetthey are sizeable. The dissipative use of metals <strong>in</strong> the world food system will have tocompete with more conv<strong>en</strong>tional applications <strong>in</strong> more conc<strong>en</strong>trated forms that offer greateropportunities for recycl<strong>in</strong>g. Thus, if metals are to be used as fertilizers to susta<strong>in</strong> the worldfood system, th<strong>en</strong> from the outset this def<strong>in</strong>es the guid<strong>in</strong>g pr<strong>in</strong>ciple that the fertilizertechnologies that have to be developed are highly effici<strong>en</strong>t <strong>in</strong> rais<strong>in</strong>g crop yields and globalagricultural production. These issues will be addressed <strong>in</strong> the follow<strong>in</strong>g sections. 30
6 Nutri<strong>en</strong>ts <strong>in</strong> soils and their managem<strong>en</strong>tEarlier it has be<strong>en</strong> observed that the application of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts tosoils used for cropp<strong>in</strong>g may <strong>in</strong>crease yields and improve the quality of the food produced,<strong>in</strong> case such nutri<strong>en</strong>ts are pres<strong>en</strong>t at defici<strong>en</strong>t levels <strong>in</strong> the soil. However, the previoussection has shown that the quantities of these nutri<strong>en</strong>ts required to correct all defici<strong>en</strong>cies<strong>in</strong> the global agricultural lands are sizeable, while at the same time m<strong>in</strong>eable sourcematerials may become scarce and also have compet<strong>in</strong>g uses. The high prices of nutri<strong>en</strong>tsthat may follow from this situation possibly result <strong>in</strong> non-application, thus compromis<strong>in</strong>gglobal food production or, alternatively will lead to food price <strong>in</strong>creases. Therefore, thissection explores alternative nutri<strong>en</strong>t sources, notably those already pres<strong>en</strong>t <strong>in</strong> soils and howthese possibly can be managed more effectively. These nutri<strong>en</strong>ts <strong>in</strong> soils occur <strong>in</strong> differ<strong>en</strong>tforms, some of which are available to plants, while others are not. G<strong>en</strong>eric figures on bothwill be used to calculate how long cropp<strong>in</strong>g can be susta<strong>in</strong>ed on these bases and what thepot<strong>en</strong>tial use duration could be if agricultural technologies were to be developed that closethe gap betwe<strong>en</strong> plant-available and unavailable nutri<strong>en</strong>ts as pres<strong>en</strong>t <strong>in</strong> the soil. However,nutri<strong>en</strong>t availability for plants is not only determ<strong>in</strong>ed by the absolute level of a certa<strong>in</strong>nutri<strong>en</strong>t <strong>in</strong> the soil itself. Other factors and processes are also <strong>in</strong>volved, such as nutri<strong>en</strong>t<strong>in</strong>teractions and the function<strong>in</strong>g of soil biota. These will be briefly summarized so as to<strong>en</strong>d up with some guid<strong>in</strong>g pr<strong>in</strong>ciples for research aim<strong>in</strong>g at <strong>in</strong>creased availability of plantnutri<strong>en</strong>ts already pres<strong>en</strong>t <strong>in</strong> the soil.Sources of nutri<strong>en</strong>ts, the factors of soil formation and human <strong>in</strong>flu<strong>en</strong>ces.To beg<strong>in</strong> with, human land use obviously can affect the nutri<strong>en</strong>t cont<strong>en</strong>t of soils <strong>in</strong>many ways, either co<strong>in</strong>cid<strong>en</strong>tally or purposely. Losses may be <strong>in</strong>curred throughvolatilization (for <strong>in</strong>stance at plough<strong>in</strong>g, as is the case for nitrog<strong>en</strong>) or wh<strong>en</strong> crops areremoved from the field without returns of fertilizer, manure or biomass (nutri<strong>en</strong>t m<strong>in</strong><strong>in</strong>g).Human <strong>in</strong>duced erosion can also cause large losses of nutri<strong>en</strong>ts where fertile land isconcerned. On the other hand, soil nutri<strong>en</strong>t levels may be <strong>in</strong>creased by cultivat<strong>in</strong>gnitrog<strong>en</strong>-fix<strong>in</strong>g legumes. Large-scale <strong>in</strong>creases of nutri<strong>en</strong>t levels, notably of N and P,obviously derive from the systematic and frequ<strong>en</strong>t use of <strong>in</strong>organic fertilizers and manuresat high doses. Such practices though, <strong>in</strong> turn may lead to losses aga<strong>in</strong>, result<strong>in</strong>g <strong>in</strong>eutrophication of surface water and pollution of groundwater. It proves difficult tog<strong>en</strong>eralize on the outcome of human <strong>in</strong>flu<strong>en</strong>ces on soil-nutri<strong>en</strong>t cont<strong>en</strong>t as they are highlysite and managem<strong>en</strong>t specific. However, <strong>in</strong> the case of develop<strong>in</strong>g countries, human<strong>in</strong>flu<strong>en</strong>ces frequ<strong>en</strong>tly result <strong>in</strong> mere slight modifications of the natural conditions. Thefollow<strong>in</strong>g paragraph, therefore, briefly summarizes the natural sources of soil nutri<strong>en</strong>ts andthe processes that alter their levels as pres<strong>en</strong>t <strong>in</strong> soils, thus provid<strong>in</strong>g the context for therema<strong>in</strong>der of this section.Soils obviously are the primary source of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts for plants,<strong>in</strong>clud<strong>in</strong>g for crops. The levels of ess<strong>en</strong>tial plant nutri<strong>en</strong>ts <strong>in</strong> the soil vary with the cont<strong>en</strong>t<strong>in</strong> the orig<strong>in</strong>al soil par<strong>en</strong>t material (e.g. Mitchell 1972), soil formation processes and landuse history. The ma<strong>in</strong> natural source of ess<strong>en</strong>tial soil nutri<strong>en</strong>ts on Earth is the weather<strong>in</strong>gof soil par<strong>en</strong>t rock by which nutri<strong>en</strong>ts become available for plants from the result<strong>in</strong>g soil.This process is ongo<strong>in</strong>g as long as weatherable m<strong>in</strong>erals are pres<strong>en</strong>t <strong>in</strong> the root<strong>in</strong>g zone ofthe soil. The type and amount of ess<strong>en</strong>tial plant nutri<strong>en</strong>ts that become available <strong>in</strong> this way,is closely related to the m<strong>in</strong>eralogy of the par<strong>en</strong>t rock concerned. Other sources ofnutri<strong>en</strong>ts are biological nitrog<strong>en</strong> fixation and atmospheric deposition. On the other hand,nutri<strong>en</strong>ts may be lost from the soil under high ra<strong>in</strong>fall conditions, or with less ra<strong>in</strong> but 31
longer exposure (soil age), through leach<strong>in</strong>g and subsequ<strong>en</strong>t discharge to rivers. Becauseleach<strong>in</strong>g rates differ with the nutri<strong>en</strong>t concerned, over time, with <strong>in</strong>creas<strong>in</strong>g soil age, th<strong>en</strong>utri<strong>en</strong>t stoichiometry of the soil may be altered. Ess<strong>en</strong>tially the natural soil stoichiometryis determ<strong>in</strong>ed by the factors of the equation of soil formation (J<strong>en</strong>ny, 1941) with the mostprom<strong>in</strong><strong>en</strong>t role for soil par<strong>en</strong>t material, followed by the jo<strong>in</strong>t effect of soil age, relief andclimate (leach<strong>in</strong>g), the effect of each of which is difficult to s<strong>in</strong>gle out (Voortman, 2011).These variables and processes <strong>in</strong>volved <strong>in</strong> soil formation govern the ecological diversity ofsoils, the patterns of distribution of natural vegetation as related to ecosystem function<strong>in</strong>g,as well as the <strong>in</strong>her<strong>en</strong>t primary production pot<strong>en</strong>tials and land suitability for crops.Total plant nutri<strong>en</strong>t supplies <strong>in</strong> agricultural soils from natural sourcesThe total level of chemical elem<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the soil, deriv<strong>in</strong>g from naturalsources, at any one site, obviously varies <strong>in</strong> dep<strong>en</strong>d<strong>en</strong>ce of the <strong>in</strong>teraction of the earlierm<strong>en</strong>tioned factors of soil formation. For our purpose, therefore, a g<strong>en</strong>eric approach mustbe used, while the analysis is also restricted to copper and z<strong>in</strong>c (for an overview of allnutri<strong>en</strong>ts see Table 7). The average abundance of Cu and Zn <strong>in</strong> the earth’s crust asmeasured <strong>in</strong> rock exposures is 28 and 67 ppm, respectively (e.g. Rudnick and Gao, 2003).It is unclear how these figures have be<strong>en</strong> arrived at, giv<strong>en</strong> the fact that the elem<strong>en</strong>talcont<strong>en</strong>t naturally varies with rock lithology (e.g. Yaroshevskii, 2007), which <strong>in</strong> large partsis not ev<strong>en</strong> exposed. Nevertheless, many sources pres<strong>en</strong>t figures that are remarkablysimilar, albeit with some spread <strong>in</strong> the case of copper.Clearly, surface soils are unlikely to neatly reflect the average m<strong>in</strong>eral cont<strong>en</strong>t of the rockfrom which they derive. Yet, a quick perusal of the literature confirms the order ofmagnitude. Us<strong>in</strong>g the above figures, while assum<strong>in</strong>g a soil bulk d<strong>en</strong>sity of 1.2, shows thatthe 20 and 50 cm of topsoil would conta<strong>in</strong> about 70 and 175 kg of Cu, respectively.Copper removal by crops is estimated at 0.005 kg per ton yield only. Thus, provided thatall the copper <strong>in</strong> the <strong>in</strong> the upper 50 cm of soil could be accessed by crops, an annual crop,yield<strong>in</strong>g 5 tons, could be susta<strong>in</strong>ed for 6720 years, that is, if crop residues were to be<strong>in</strong>corporated <strong>in</strong> the soil. For z<strong>in</strong>c the 20 and 50 cm of topsoil would conta<strong>in</strong> 160 and 400kg, respectively. Z<strong>in</strong>c removal by crops is larger than copper and estimated at 0.03 kg perton yield. Us<strong>in</strong>g the same assumptions implies that, on the basis of the total z<strong>in</strong>c levelspres<strong>en</strong>t <strong>in</strong> the soil, a 5 ton annual crop could be susta<strong>in</strong>ed for 2680 years. Under moremodest assumptions, where only the nutri<strong>en</strong>ts <strong>in</strong> the top 20 cm can be assessed, the totalelem<strong>en</strong>tal cont<strong>en</strong>t under the same other assumptions would still suffice for 2700 and 1070years for copper and z<strong>in</strong>c, respectively. Clearly the assumptions used, notably the po<strong>in</strong>tthat all of a nutri<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the soil could be accessed and used up by plants, areunrealistic (as will be discussed <strong>in</strong> the follow<strong>in</strong>g paragraphs). Nevertheless, thesecalculations show that the m<strong>in</strong>or requirem<strong>en</strong>ts for micronutri<strong>en</strong>ts of crops, <strong>in</strong> comb<strong>in</strong>ationwith large reservoirs pres<strong>en</strong>t <strong>in</strong> the soil, pot<strong>en</strong>tially could support high crop yields for quitean ext<strong>en</strong>ded period of time. 32
Table 7. Pres<strong>en</strong>ce of elem<strong>en</strong>ts <strong>in</strong> the earth’s crust (source: Rudnick and Gao, 2003; (o) is:expressed as oxide).Nutri<strong>en</strong>t ppm Nutri<strong>en</strong>t ppmPhosphorus (o) 1500 Cobalt 17Potassium (o) 28000 Chromium 92Sodium (o) 32700 Boron 17Calcium (o) 35900 Molybd<strong>en</strong>um 1.1Magnesium(o) 24800 Nickel 47Sulphur 621 Alum<strong>in</strong>ium (o) 15400Manganese (o) 1000 Chlor<strong>in</strong>e 370Iron (o) 50400 Iod<strong>in</strong>e 1.4Z<strong>in</strong>c 67 Silicon (o) 666200Copper 28 Sel<strong>en</strong>ium 0.09Available plant nutri<strong>en</strong>t supplies <strong>in</strong> agricultural soils from natural sourcesAlthough <strong>in</strong>formative by themselves, the calculated figures <strong>in</strong> the previousparagraph on how long the total elem<strong>en</strong>tal cont<strong>en</strong>t of soils could possibly susta<strong>in</strong> theproduction of crops are mislead<strong>in</strong>g, simply because the assumptions used are not supportedwith curr<strong>en</strong>tly available knowledge. The total elem<strong>en</strong>tal cont<strong>en</strong>t of soils consists for eachnutri<strong>en</strong>t of the sum of differ<strong>en</strong>t forms (chemical bonds), pres<strong>en</strong>t <strong>in</strong> differ<strong>en</strong>t pools (e.g. <strong>in</strong>soil water, organically bound, adsorbed to clay particles). Usually the largest portion ofthis total soil cont<strong>en</strong>t of a particular nutri<strong>en</strong>t is not available for plant uptake, that is withcurr<strong>en</strong>tly available technology. In soil chemistry, therefore, differ<strong>en</strong>t analyses are made toestablish total and available nutri<strong>en</strong>t levels. The total elem<strong>en</strong>tal cont<strong>en</strong>t is established withvery aggressive reag<strong>en</strong>ts, while for available nutri<strong>en</strong>ts weaker reag<strong>en</strong>ts are used, whichextract only the more loosely bonded portion of the total nutri<strong>en</strong>ts pres<strong>en</strong>t. The lattermethods have be<strong>en</strong> developed empirically: wh<strong>en</strong> values obta<strong>in</strong>ed are low, crops usuallyrespond to addition of the nutri<strong>en</strong>t concerned, and wh<strong>en</strong> the values are high there is usuallyno yield <strong>in</strong>crease.Table 8 pres<strong>en</strong>ts ‘available’ values for P, Cu, Zn and Fe for topsoils and subsoils of theAngonia district <strong>in</strong> NW Mozambique (Voortman and Spiers, unpublished). This districtcomb<strong>in</strong>es an exceptional diversity of par<strong>en</strong>t materials with a large variation <strong>in</strong> climaticconditions, thus result<strong>in</strong>g <strong>in</strong> a wide variety of <strong>en</strong>tirely differ<strong>en</strong>t soils. Moreover, the datareflect truly natural conditions, s<strong>in</strong>ce the soil samples were tak<strong>en</strong> <strong>in</strong> 1978 wh<strong>en</strong> there waslittle <strong>in</strong>dustrial activity <strong>in</strong> the neighbourhood (little atmospheric deposition) and fertilizershad not be<strong>en</strong> used yet. The data first of all confirm the very large variation of nativeavailable nutri<strong>en</strong>t levels (the m<strong>in</strong>imum and maximum values <strong>in</strong> Table 8). Cursory analysisof the literature has shown that the order of magnitude of means and ranges <strong>in</strong> this district,are <strong>in</strong> accordance with observations made elsewhere. Table 9 uses these average values foravailable Cu and Zn (of Angonia) <strong>in</strong> comb<strong>in</strong>ation with the earlier pres<strong>en</strong>ted g<strong>en</strong>eric totalelem<strong>en</strong>tal values (Table 7) to compare how long crop production could be susta<strong>in</strong>ed (onthe basis of the earlier made assumptions). 33
Table 8. Available P, Cu, Zn and Fe <strong>in</strong> the topsoil and subsoil of soils <strong>in</strong> Angonia district,Mozambique (values <strong>in</strong> ppm; topsoil 0-20 cm, subsoil 20-50 cm; tr = traces orpractically 0) (Source: Voortman and Spiers, unpublished data).Variable N Mean Std Dev M<strong>in</strong>imum MaximumP (topsoil) 115 21.7 23.7 tr 109.00Cu (topsoil) 114 1.5 1.1 0.08 6.24Zn (topsoil) 114 1.0 0.5 0.22 2.84Fe (topsoil) 114 2.2 1.3 0.70 6.40P (subsoil) 111 11.5 27.7 tr 192.00Cu (subsoil) 111 1.3 1.3 0.04 7.96Zn (subsoil) 111 0.6 0.3 0.16 2.00Fe (subsoil) 111 1.1 1.1 0.30 9.00Table 9. Total and available soil nutri<strong>en</strong>ts and result<strong>in</strong>g years of nutri<strong>en</strong>t supply.*Category Copper Z<strong>in</strong>cTotal elem<strong>en</strong>tal cont<strong>en</strong>t (g<strong>en</strong>eric) 28 67Topsoil available nutri<strong>en</strong>ts (Angonia) 1.5 1.0Subsoil available nutri<strong>en</strong>ts (Angonia) 1.3 0.6Years of supply: Total elem<strong>en</strong>ts 6720 2680Years of supply: Available nutri<strong>en</strong>ts 276 30*Assumptions: root<strong>in</strong>g depth is 50 cm; all nutri<strong>en</strong>ts can be accessed and used; annual yield 5 tonnes;crop residues are <strong>in</strong>corporated; per ton harvest: 0.005 kg Cu and 0.03 kg of Zn; soil bulk d<strong>en</strong>sity 1.2The data <strong>in</strong> Table 9 are an example of the g<strong>en</strong>erally very large differ<strong>en</strong>ce betwe<strong>en</strong>total elem<strong>en</strong>tal cont<strong>en</strong>t and plant-available nutri<strong>en</strong>ts <strong>in</strong> soils. The result<strong>in</strong>g trem<strong>en</strong>dous gap<strong>in</strong> terms of years that cultivation could be susta<strong>in</strong>ed suggests an alternative for theapplication of m<strong>in</strong>ed micronutri<strong>en</strong>ts <strong>in</strong> case these become scarce and/or exp<strong>en</strong>sive. Thedata <strong>in</strong>dicate that land productivity can possibly be ma<strong>in</strong>ta<strong>in</strong>ed on the basis of nutri<strong>en</strong>tsalready pres<strong>en</strong>t <strong>in</strong> the soil, provided that nutri<strong>en</strong>t managem<strong>en</strong>t technologies can bedeveloped that close the gap betwe<strong>en</strong> total and available plant nutri<strong>en</strong>ts <strong>in</strong> the soil.Achiev<strong>in</strong>g this, is a major sci<strong>en</strong>tific chall<strong>en</strong>ge ahead, but must be se<strong>en</strong> as a mechanism ofbuy<strong>in</strong>g time only.Soil factors affect<strong>in</strong>g plant availabilityThusfar, for the sake of simplicity, while deal<strong>in</strong>g with plant nutrition, only absolutelevels of ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts <strong>in</strong> the soil have be<strong>en</strong> considered. However, actualuptake of nutri<strong>en</strong>ts is not only governed by the absolute level of <strong>in</strong>dividual availabl<strong>en</strong>utri<strong>en</strong>ts pres<strong>en</strong>t themselves. Indeed, the relationship betwe<strong>en</strong> actual plant nutri<strong>en</strong>t uptakeand soil chemistry is considerably more complex. For <strong>in</strong>stance, the uptake of a particularnutri<strong>en</strong>t is also <strong>in</strong>flu<strong>en</strong>ced by the levels of other nutri<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the soil. Suchrelationships may be synergetic as well as antagonistic. A well-known antagonism is thathigh P levels <strong>in</strong> the soil <strong>in</strong>duce a Zn defici<strong>en</strong>cy, and vice-versa. Plant nutrition/uptakestudies could account for such <strong>in</strong>teractions by us<strong>in</strong>g the ratios betwe<strong>en</strong> <strong>in</strong>dividual nutri<strong>en</strong>ts<strong>in</strong> the analyses. To date, however, little is known on how such ratios need to be <strong>in</strong>terpreted<strong>in</strong> the multi-dim<strong>en</strong>sional space of the levels of all the ess<strong>en</strong>tial nutri<strong>en</strong>ts pres<strong>en</strong>t <strong>in</strong> the soilsimultaneously (its stoichiometry). Adequate knowledge, yet to be developed, would,based on these mechanisms, allow manipulat<strong>in</strong>g the availability of one nutri<strong>en</strong>t through theapplication of another. For <strong>in</strong>stance, there is <strong>in</strong>deed evid<strong>en</strong>ce that calcium application canimprove availability and uptake of micronutri<strong>en</strong>ts (e.g. Sanik et al., 1952). Thus, 34
pot<strong>en</strong>tially the plant availability of scarce and exp<strong>en</strong>sive nutri<strong>en</strong>ts, rather than by apply<strong>in</strong>gthese themselves, could be improved through application of less scarce and cheaperelem<strong>en</strong>ts such as calcium, magnesium and sulphur.Next to <strong>in</strong>teractions among available nutri<strong>en</strong>ts <strong>in</strong> the soil, actual nutri<strong>en</strong>t uptakepossibilities for plants are also <strong>in</strong>flu<strong>en</strong>ced by the size and nature of the various pools <strong>in</strong>which <strong>in</strong>dividual elem<strong>en</strong>ts are pres<strong>en</strong>t <strong>in</strong> the soil. It may be suspected that, throughequilibria betwe<strong>en</strong> the differ<strong>en</strong>t pools, some of the available pool withdrawn by crops willbe replaced from other pools. However, long-term dedicated research to assess thispossibility is scarce and <strong>in</strong>conclusive. Asymptotic decreases of available plant nutri<strong>en</strong>ts <strong>in</strong>the soil have be<strong>en</strong> observed under cont<strong>in</strong>uous cropp<strong>in</strong>g (Ma, 2009), but some of theseresults can also readily be described as l<strong>in</strong>ear decreases. In any case, these f<strong>in</strong>d<strong>in</strong>gs suggestthat replacem<strong>en</strong>t rates of available nutri<strong>en</strong>ts which are removed by crops from strongerbonded pools, is very modest, at most. Clearly, the <strong>in</strong>teractions betwe<strong>en</strong> the differ<strong>en</strong>tnutri<strong>en</strong>t pools, the mechanisms <strong>in</strong>volved <strong>in</strong> these equilibria, and how these can be<strong>in</strong>flu<strong>en</strong>ced so as to <strong>in</strong>crease the plant-availability, requires major sci<strong>en</strong>tific att<strong>en</strong>tion if thegap betwe<strong>en</strong> total elem<strong>en</strong>t cont<strong>en</strong>t and plant-available nutri<strong>en</strong>ts <strong>in</strong> soils is to be closed.Apart from nutri<strong>en</strong>t stocks and chemical processes <strong>in</strong> the soil, nutri<strong>en</strong>t availabilityfor higher plants can also be <strong>in</strong>flu<strong>en</strong>ced by soil biota. For <strong>in</strong>stance, crops may obta<strong>in</strong> scarc<strong>en</strong>utri<strong>en</strong>ts through a mutualistic relationship with mycorrhizeae (soil fungi) whereby thehigher plant supplies the fungus with assimilates <strong>in</strong> return. These fungi have access to alarger volume of soil than plant roots do and can also take up nutri<strong>en</strong>ts from pools that areunavailable to higher plants. The ext<strong>en</strong>t to which these soil fungi can transfer nutri<strong>en</strong>ts,however, also dep<strong>en</strong>ds on the chemical composition of the soil medium. For <strong>in</strong>stance, tofunction properly these mycorrhizeae require calcium and copper (Lévy et al., 2004;Hagerberg et al., 2011; see also: Jarstfer et al, 1998). H<strong>en</strong>ce, <strong>in</strong>organic fertilizers may beused to promote such mutualistic mechanisms and to <strong>in</strong>crease the transfer of nutri<strong>en</strong>ts fromthe soil to higher plants. Of particular importance <strong>in</strong> this case is calcium, as it is amplyavailable on earth, while it <strong>en</strong>hances mycorrhiza function<strong>in</strong>g and improves micronutri<strong>en</strong>tuptake directly. On the other hand though, fertilizer applications may also affectpreval<strong>en</strong>ce and function<strong>in</strong>g of mycorrhizeae: the application of N or P frequ<strong>en</strong>tly reducesthe abundance and activity of the fungi (e.g. Mäder et al., 2000). Both mechanisms call forcomb<strong>in</strong>ed nutri<strong>en</strong>t and mycorrhizeae research under real (non-laboratory) conditions.However, mycorrhizeae research is difficult under field conditions. Curr<strong>en</strong>t sci<strong>en</strong>tificknowledge, therefore, is <strong>in</strong>suffici<strong>en</strong>t to allow g<strong>en</strong>eralized quantitative statem<strong>en</strong>ts on theirpossible b<strong>en</strong>eficial effects on plant growth and the role mycorrhizeae play <strong>in</strong> nutri<strong>en</strong>tcycl<strong>in</strong>g, perhaps with the exception of the effects of calcium. This situation thus def<strong>in</strong>es aspearhead research ag<strong>en</strong>da with the objective to develop biota-based technologies toimprove availability of nutri<strong>en</strong>ts already pres<strong>en</strong>t <strong>in</strong> the soil.Beyond mycorrhizeae, there is additional great wealth of life <strong>in</strong> the soil, where, <strong>in</strong>fact most of the biodiversity on earth exists. This <strong>in</strong>cludes, among others, bacteria,protozoa, nematodes, mites, collembola’s, earthworms, termites etc. All these <strong>in</strong>teract witheach other, with soil chemical properties and also with higher plants such as crops notably<strong>in</strong> the crop rhizosphere. For several species (-groups), such as growth <strong>en</strong>hanc<strong>in</strong>g bacteria,it has also be<strong>en</strong> established that they <strong>in</strong>flu<strong>en</strong>ce the rate of growth of higher plants.However, g<strong>en</strong>erally speak<strong>in</strong>g very little is known on the function<strong>in</strong>g of biota <strong>in</strong> therhizosphere, let alone on how their function<strong>in</strong>g relates to the total soil chemicalconstellation and the availability of nutri<strong>en</strong>ts to higher plants. In short, ‘we (…) have an 35
extraord<strong>in</strong>ary ignorance about how best we can manipulate it (the rhizosphere function<strong>in</strong>g)to our ad<strong>van</strong>tage’ (H<strong>in</strong>siger et al, 2009: see also Andrén et al., 2008 and Fierer et al.,2009). These observations obviously further add to the research ag<strong>en</strong>da of the future.Assessm<strong>en</strong>tSoils naturally vary <strong>in</strong> their cont<strong>en</strong>ts of <strong>in</strong>dividual ess<strong>en</strong>tial plant nutri<strong>en</strong>ts due tothe impact of the factors of soil formation, <strong>in</strong> turn be<strong>in</strong>g subject to nutri<strong>en</strong>t managem<strong>en</strong>t <strong>in</strong>agriculture. Invariably though, there is a very large gap betwe<strong>en</strong> the total amount pres<strong>en</strong>t<strong>in</strong> the soil and the part that is available for plant uptake. Narrow<strong>in</strong>g this gap, by <strong>in</strong>creas<strong>in</strong>gthe proportion of nutri<strong>en</strong>ts that is available, could be an important step to ma<strong>in</strong>ta<strong>in</strong> landproductivity under conditions of scarcity of m<strong>in</strong>eable ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts. But thiscalls for novel technologies of nutri<strong>en</strong>t managem<strong>en</strong>t <strong>in</strong> agriculture. Four possible pathwayshave be<strong>en</strong> discussed, two of which are ma<strong>in</strong>ly of a chemical nature (referr<strong>in</strong>g tomanipulation of nutri<strong>en</strong>t pools as well as nutri<strong>en</strong>t <strong>in</strong>teractions) and two are soil biota-based(use and manipulation of mycorrhizeae and other soil biota), while comb<strong>in</strong>ations are likelyto be most b<strong>en</strong>eficial. Guid<strong>in</strong>g pr<strong>in</strong>ciples for such technologies are that they use m<strong>in</strong>imalamounts of nutri<strong>en</strong>ts that are likely to become scarce, and that non-scarce nutri<strong>en</strong>ts areused wherever possible. Such practices should liberate defici<strong>en</strong>t and non-available formsof nutri<strong>en</strong>ts so as to maximize crop growth and to optimize the nutritional value of food.At the same time though, they should prev<strong>en</strong>t nutri<strong>en</strong>t losses through luxury uptake bycrops and losses through leach<strong>in</strong>g of nutri<strong>en</strong>ts from the root zone. Research to developsuch <strong>in</strong>novative agricultural technologies and land managem<strong>en</strong>t pr<strong>in</strong>ciples amounts to an<strong>en</strong>tirely novel av<strong>en</strong>ue <strong>in</strong> sci<strong>en</strong>tific discourse. 36
7 Nutri<strong>en</strong>t use effici<strong>en</strong>cy <strong>in</strong> agriculture; theory and practiceBecause ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts are likely to become scarce and more exp<strong>en</strong>siveit is rele<strong>van</strong>t <strong>in</strong> this context to verify how nutri<strong>en</strong>t applications can be m<strong>in</strong>imized whilema<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high productivity levels. To this effect the underly<strong>in</strong>g basic pr<strong>in</strong>ciples offertilizer application and their implications will be discussed. Thereafter, curr<strong>en</strong>t practicewill be described and the ext<strong>en</strong>t to which the basic fertilizer pr<strong>in</strong>ciples are actually applied<strong>in</strong> the field, while us<strong>in</strong>g examples from Africa and Ch<strong>in</strong>a. By means of examples someimplications will be shown notably on how the application of N and P <strong>in</strong>duces Cu and Zndefici<strong>en</strong>cies, thus actually <strong>in</strong>creas<strong>in</strong>g the need for application of Cu and Zn, rather thanm<strong>in</strong>imiz<strong>in</strong>g requirem<strong>en</strong>ts.Fertilizer pr<strong>in</strong>ciples; theoretical considerationsThe first pr<strong>in</strong>ciple <strong>in</strong> fertilizer use is Liebig’s law of the m<strong>in</strong>imum (Figure 9). Thisillustration of the pr<strong>in</strong>ciples <strong>in</strong>volved is obviously an oversimplification, giv<strong>en</strong> the many<strong>in</strong>teractions betwe<strong>en</strong> nutri<strong>en</strong>ts and biota that may occur <strong>in</strong> actual soils. Nevertheless, itillustrates very well the pr<strong>in</strong>ciples <strong>in</strong>volved. The basic pr<strong>in</strong>ciple is that the ceil<strong>in</strong>g ofatta<strong>in</strong>able crop yield is determ<strong>in</strong>ed by the most limit<strong>in</strong>g nutri<strong>en</strong>t. Application of thatnutri<strong>en</strong>t th<strong>en</strong> br<strong>in</strong>gs certa<strong>in</strong> yield improvem<strong>en</strong>t until another nutri<strong>en</strong>t becomes limit<strong>in</strong>g.Apply<strong>in</strong>g a comb<strong>in</strong>ation of the most limit<strong>in</strong>g nutri<strong>en</strong>ts will thus give a substantial yieldimprovem<strong>en</strong>t. Clearly application of non-limit<strong>in</strong>g nutri<strong>en</strong>ts is wasteful and repres<strong>en</strong>ts anunnecessary dra<strong>in</strong> of scarce resources. Effici<strong>en</strong>t nutri<strong>en</strong>t use therefore requires applicationof the most limit<strong>in</strong>g ones only.The second pr<strong>in</strong>ciple refers to decreas<strong>in</strong>g marg<strong>in</strong>al returns (Figure 10). Thepr<strong>in</strong>ciple implies that, if a nutri<strong>en</strong>t is defici<strong>en</strong>t, at low levels of application one kg extra offertilizer will give a high return <strong>in</strong> terms of kgs of the crop product. These per each extrakg returns gradually decl<strong>in</strong>e with <strong>in</strong>creas<strong>in</strong>g the dose of fertilizer applied until an extra kghas zero effect, whereafter yields may actually decl<strong>in</strong>e. Thus to obta<strong>in</strong> maximum returns tofertilizer, small doses are preferable. Such small doses of the most limit<strong>in</strong>g nutri<strong>en</strong>ts ar<strong>en</strong>ot only likely to be the most economical but also maximize kg product per kg fertilizerused. A constra<strong>in</strong>t of this approach may be that, <strong>in</strong> aggregate, it will produce <strong>in</strong>suffici<strong>en</strong>tfood to satisfy the requirem<strong>en</strong>ts of the global population. Or more precisely, it may makethe use of nutri<strong>en</strong>ts more effici<strong>en</strong>t, but will not allow a larger food production.The third fertilizer pr<strong>in</strong>ciple refers to <strong>in</strong>teractions betwe<strong>en</strong> nutri<strong>en</strong>ts. Figure 11shows the stylized overall picture of the N-dep<strong>en</strong>d<strong>en</strong>t response to P. At low N there is agreater response to P if compared to medium N levels. At high N levels there is hardlyresponse to P and yields soon ev<strong>en</strong> decl<strong>in</strong>e (Source: Voortman and Brouwer, 2003).Further <strong>in</strong>vestigations have led to a hypothesis on the various <strong>in</strong>teractions among plantnutri<strong>en</strong>ts <strong>in</strong> the soil as shown <strong>in</strong> Figure 12 (Source: Voortman and Spiers, 2010). Thefigure implies that copper, iron and z<strong>in</strong>c are mutually antagonistic where uptake by plantsis concerned. Phosphorus is mutually antagonistic with these three micronutri<strong>en</strong>ts. Theequilibria are further conditioned by the ratios of cations (Ca/Mg, Mg/K and (Ca+Mg)/K),which themselves reflect antagonisms betwe<strong>en</strong> the cations. Overall these <strong>in</strong>teractions arebe<strong>in</strong>g shaped by the total amount of exchangeable bases (TEB), soil texture and Al levels.This hypothetical model still needs to be further completed with other micronutri<strong>en</strong>ts and<strong>in</strong>teractions <strong>in</strong>volved. Furthermore, the modification of nutri<strong>en</strong>t <strong>in</strong>teractions by soil biotasuch as mycorrhyzeae has yet to be further <strong>in</strong>vestigated so as to the <strong>en</strong>tire picture <strong>in</strong> theright perspective. 37
Figure 9. Liebig’s law: crop yield is determ<strong>in</strong>ed by the most limit<strong>in</strong>g nutri<strong>en</strong>t.Yield contribution (kg/ha)4504003503002502001501005000 1 2 3 4 5 6 7 8 9 10P-Bray (ppm)Figure 10. Stylized yield response to P for curr<strong>en</strong>t range of P-Bray (Source: Voortman andBrouwer, 2003).Fertilizer pr<strong>in</strong>ciples; practical implicationsThe above fertilizer pr<strong>in</strong>ciples one and three imply that to achieve the desiredeffective yield improvem<strong>en</strong>t, the fertilizer technologies to be applied have to be f<strong>in</strong>elytuned to local soil chemistry conditions. The ma<strong>in</strong> constra<strong>in</strong>t for such developm<strong>en</strong>ts is thatit is knowledge <strong>in</strong>t<strong>en</strong>sive. To illustrate this po<strong>in</strong>t we consider data about on velvet bean, anitrog<strong>en</strong> fix<strong>in</strong>g legume, as researched <strong>in</strong> Zimbabwe (Table 10). Without P fertilizer theyield varies from 317 to 7240 kg. 38
Figure 11. N-dep<strong>en</strong>d<strong>en</strong>t yield response to P-Bray (Source: Voortman and Brouwer, 2003).Figure 12: Schematic diagram of <strong>in</strong>teractions betwe<strong>en</strong> soil chemical properties <strong>in</strong> relation toplant nutrition, repres<strong>en</strong>t<strong>in</strong>g the key ecological factors govern<strong>in</strong>g the ecologicaldiversity of soils, patterns of distribution of vegetation types and determ<strong>in</strong><strong>in</strong>g landuse pot<strong>en</strong>tials. (Source: Voortman and Spiers, 2010). 39
Table 10. Biomass production (kg/ha, dry mass) by velvet bean with and without P and yield<strong>in</strong>crease/decrease due to P application (∆%), on exhausted sandy soils <strong>in</strong> sixsmallholder communal areas <strong>in</strong> northern Zimbabwe, 1996/97 season (Source:Hikwa et al., 1998).Communal Area - P + P Δ %(Site)Mangw<strong>en</strong>de (1) 317 318 0.3Zvimba (1) 1260 2410 91.3Zvimba (2) 1620 850 -47.5Chiduku (1) 1865 1757 -5.8Gokwe South (1) 1916 2368 23.6Gokwe South (2) 1964 1826 -7.0Chiduku (2) 2703 4538 67.9Chihota (2) 3405 4275 25.6Mangw<strong>en</strong>de (2) 5250 5351 1.9Chihota (1) 5290 10665 101.6Nyazura (2) 6610 6490 -1.8Nyazura (1) 7240 8020 10.8Such variation is clear evid<strong>en</strong>ce of the great variety of natural conditions. Ev<strong>en</strong> with<strong>in</strong> thesame small area (Mangw<strong>en</strong>de), yields vary from 317 to 5250 kg. It shows that such naturalconditions vary at very local scales. With P applied, we first of all note that the response tofertilizer is also highly variable and that <strong>in</strong> most cases yields either <strong>in</strong>crease verymarg<strong>in</strong>ally or ev<strong>en</strong> decrease. It implies that P is not defici<strong>en</strong>t or <strong>in</strong> relation to othernutri<strong>en</strong>ts already is pres<strong>en</strong>t <strong>in</strong> excess, respectively. Differ<strong>en</strong>ces <strong>in</strong> response to fertilizer arealso very locally determ<strong>in</strong>ed: where unfertilized yields are rather similar, the response mayvary from 90 perc<strong>en</strong>t positive to almost 50 perc<strong>en</strong>t negative (Zvimba). So <strong>in</strong>deed, due tovery locally determ<strong>in</strong>ed soil variability both unfertilized yields and yield response to thesame fertilizer dose can vary dramatically. Therefore, fertilizer types and doses have tovary with the spatial variation exist<strong>in</strong>g <strong>in</strong> the chemical constellation of soils. To achievethis is a very knowledge <strong>in</strong>t<strong>en</strong>sive trajectory <strong>in</strong>deed. This trajectory, based on the use oflocal knowledge and the use of bio-<strong>in</strong>dication, is beyond the scope of this paper, but forAfrica this has be<strong>en</strong> developed <strong>in</strong> Voortman and Spiers (2010, Chapter 6).Actual fertilizer practice; the cases of Africa and Ch<strong>in</strong>aThe previous paragraphs have developed the theoretical basis of effici<strong>en</strong>t fertilizertechnologies <strong>in</strong> relation to the spatial diversity of soils and it has be<strong>en</strong> concluded thatfertilizer technologies need to vary accord<strong>in</strong>g to the local soil chemical properties. Hereactual practice will be discussed tak<strong>in</strong>g two widely differ<strong>in</strong>g examples: first Sub-SaharaAfrica where hardly any fertilizers are be<strong>in</strong>g used and th<strong>en</strong> Ch<strong>in</strong>a where ample use offertilizers is be<strong>in</strong>g made.AfricaAlthough hardly any fertilizer is used <strong>in</strong> Africa, there has be<strong>en</strong> a considerableamount of fertilizer research and most countries have fertilizer recomm<strong>en</strong>dations.Individual African countries usually have a s<strong>in</strong>gle pan-territorial or so-called blanketfertilizer recomm<strong>en</strong>dation. These recomm<strong>en</strong>ded technologies are frequ<strong>en</strong>tly similar tothose that were successful <strong>in</strong> the Gre<strong>en</strong> Revolution <strong>in</strong> Asia. The actual amounts may vary,but they mostly prescribe large doses. With respect to the nutri<strong>en</strong>t mix, these technologies 40
are usually restricted to macro- and mesonutri<strong>en</strong>ts, most commonly N and P, andsometimes K, is also <strong>in</strong>cluded. For <strong>in</strong>stance, <strong>in</strong> Malawi 90 kg N and 40 kg P per hectareper year are recomm<strong>en</strong>ded (Snapp et al., 2003) and the curr<strong>en</strong>t fertilizer recomm<strong>en</strong>dation<strong>in</strong> Zimbabwe consists of 120 kg N, 30 kg P, and 25 kg K per ha per year (Z<strong>in</strong>gore et al.,2007). These technologies are usually derived from theoretically calculated climatic yieldpot<strong>en</strong>tials based on climatic parameters and the amount of nutri<strong>en</strong>ts that would th<strong>en</strong> beremoved from the land. They do not reflect local soil conditions. So, contrary to the abovedef<strong>in</strong>ed fertilizer pr<strong>in</strong>ciples, the doses are large, they are not f<strong>in</strong>e tuned to local soilconditions and they only consider a very restricted choice of ess<strong>en</strong>tial plant nutri<strong>en</strong>ts.Most agronomic experim<strong>en</strong>ts apply similar mixes of plant nutri<strong>en</strong>ts and doses.There is much research to show that such technologies, based on a very restricted choice ofess<strong>en</strong>tial plant nutri<strong>en</strong>ts, frequ<strong>en</strong>tly <strong>in</strong>deed give little response or have ev<strong>en</strong> negativeeffects (e.g. Smal<strong>in</strong>g and Janss<strong>en</strong>, 1993; Mbagwu et al., 1984; Wopereis et al., 2006; Szilaset al., 2007; see also Table 10). Moreover, at high doses the ph<strong>en</strong>om<strong>en</strong>on of decreas<strong>in</strong>gmarg<strong>in</strong>al returns is oft<strong>en</strong> confirmed. A tell<strong>in</strong>g example show<strong>in</strong>g that high doses can ev<strong>en</strong>be detrim<strong>en</strong>tal to crop yield and fertilizer effici<strong>en</strong>cy <strong>in</strong> Africa comes from Zimbabwe.Experim<strong>en</strong>tal research has shown that at application rates lower than 20 kg of N perhectare, each kilo of N could produce 80 kg of maize, fall<strong>in</strong>g rapidly with <strong>in</strong>creas<strong>in</strong>g dosesto m<strong>in</strong>us 5 kg maize per kg of N at application rates higher than 90 kg ha -1 (Kamanga etal., 2001). Rec<strong>en</strong>tly, it has be<strong>en</strong> further confirmed that high fertilizer doses are moreg<strong>en</strong>erally very <strong>in</strong>effici<strong>en</strong>t <strong>in</strong> Zimbabwe (Z<strong>in</strong>gore et al., 2007). Similar observations havebe<strong>en</strong> made with respect to P <strong>in</strong> the sa<strong>van</strong>nah soils <strong>in</strong> Nigeria (Ayodela and Agboola, 1982;Uyovbisere and Lomb<strong>in</strong>, 1991; Sang<strong>in</strong>ga et al., 2000; Kogbe and Adediran, 2003). Thesefour papers are consist<strong>en</strong>t <strong>in</strong> their observations that, at application rates of more than about20 kg P per hectare, there is either no further response to P or yields actually decl<strong>in</strong>erapidly. Also elsewhere research has concluded that recomm<strong>en</strong>ded fertilizer doses can bereduced so as to <strong>en</strong>hance effici<strong>en</strong>cy and reduce costs (W<strong>en</strong>dt and Jones, 1997; Nwoke etal., 2004).The recomm<strong>en</strong>ded fertilizer technologies, therefore, may not only be <strong>in</strong>appropriatefor the soils to which they are applied <strong>in</strong> terms of nutri<strong>en</strong>t composition, but also therecomm<strong>en</strong>ded high doses can be extremely <strong>in</strong>effici<strong>en</strong>t due to the effect of decreas<strong>in</strong>gmarg<strong>in</strong>al returns. The confirmation of the basic pr<strong>in</strong>ciple of decreas<strong>in</strong>g marg<strong>in</strong>al returnsobviously is good news for cash-constra<strong>in</strong>ed farmers. It implies that if N or P would<strong>in</strong>deed be defici<strong>en</strong>t, they can obta<strong>in</strong> substantial yield improvem<strong>en</strong>t with small amounts offertilizer, so as to <strong>en</strong>sure profitability. However, it is remarkable that, although ontheoretical and empirical grounds, decreas<strong>in</strong>g marg<strong>in</strong>al returns are to be expected, theamount of research that experim<strong>en</strong>ts with optimal, modest fertilizer doses is quite limitedand certa<strong>in</strong>ly does not f<strong>in</strong>d expression <strong>in</strong> the promoted fertilizer recomm<strong>en</strong>dations.In sum, commonly recomm<strong>en</strong>ded and experim<strong>en</strong>ted fertilizer technologies maywell be <strong>in</strong>effici<strong>en</strong>t and consequ<strong>en</strong>tly not profitable, because of the restrictive choice ofess<strong>en</strong>tial plant nutri<strong>en</strong>ts applied and, <strong>in</strong> addition, because of the high doses used. Notsurpris<strong>in</strong>gly, poor profitability of blanket fertilizer applications are no isolated cases.Asia and Ch<strong>in</strong>aUp to the early 1960’s, before the so-called Gre<strong>en</strong> Revolution, <strong>in</strong>organic fertilizeruse <strong>in</strong> Asia was very modest. Thereafter, crop yields of rice, wheat and maize could besubstantially <strong>in</strong>creased, largely based on the use of N and P fertilizer and improved crop 41
varieties, which are responsive to these <strong>in</strong>puts. With the proceed<strong>in</strong>g Gre<strong>en</strong> Revolution theuse of fertilizer has dramatically <strong>in</strong>creased. However, curr<strong>en</strong>tly there is an evid<strong>en</strong>t fatigue<strong>in</strong> productivity ga<strong>in</strong>s <strong>in</strong> the countries concerned such as India and Ch<strong>in</strong>a (Kesa<strong>van</strong> andSwam<strong>in</strong>athan, 2008). Indeed, many long-term experim<strong>en</strong>ts show that crop yields stagnateand frequ<strong>en</strong>tly ev<strong>en</strong> decl<strong>in</strong>e (e.g. Ladha et al., 2003; Aggarwal et al., 2004; Biswas andB<strong>en</strong>bi, 1997; Tirol-Padre and Ladha, 2006). Although the data vary, the use of m<strong>in</strong>eral Nand P is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>effici<strong>en</strong>t. For <strong>in</strong>stance, it is reported that of the N applied<strong>in</strong> irrigated rice systems <strong>in</strong> Asia only 31 % is harvested with the crop (Cassman et al.,2002), compared with an optimal recovery <strong>in</strong> the order of 70-80%. More rec<strong>en</strong>tly, thisorder of magnitude was confirmed (20-30%) by Ju et al. (2009). The most rec<strong>en</strong>t reportarrives at an average 16-18 perc<strong>en</strong>t of on-farm N recovery <strong>in</strong> <strong>in</strong>t<strong>en</strong>sive wheat-maizesystems (Cui et al., 2010).Regression analysis on annual N use and food production <strong>in</strong> Ch<strong>in</strong>a also suggeststhat nitrog<strong>en</strong> use is becom<strong>in</strong>g rapidly less effici<strong>en</strong>t (Zhu and Ch<strong>en</strong>, 2002). Countrywide <strong>in</strong>Ch<strong>in</strong>a the use of nitrog<strong>en</strong> fertilizer amounts to almost 50 million tons. Of this total amountonly 4.4 million ton is reported to reach households <strong>in</strong>cluded <strong>in</strong> food, while 23 million tonsis lost to the atmosphere and 20 million tons to ground and surface water (Ma et al., 2009).The N use <strong>in</strong>effici<strong>en</strong>cy thus leads to very high gre<strong>en</strong>house gas emissions (as N 2 O andNH 3 ), <strong>in</strong>creased levels of N <strong>in</strong> groundwater and frequ<strong>en</strong>t occurr<strong>en</strong>ces of algal blooms <strong>in</strong>lakes and red tides <strong>in</strong> estuaries (Zhu and Ch<strong>en</strong>, 2002; Ju et al., 2009). At the same time,soils suffer from acidification (Wang et al., 2010; Guo et al., 2010). Cassman et al. (1998)suggest that one of the reasons for farmers to use high N doses is that recomm<strong>en</strong>ded levelsdo not take <strong>in</strong>to account the N levels pres<strong>en</strong>t <strong>in</strong> the soil which can be high particularlyunder flooded rice. They also do not account for the very high N deposition rates <strong>in</strong> Ch<strong>in</strong>a,which ev<strong>en</strong> approach up to 100 kg/ha (Cui et al., 2010).H<strong>en</strong>ce, curr<strong>en</strong>t practice is a certa<strong>in</strong> recipe for <strong>in</strong>effici<strong>en</strong>cy of the use of m<strong>in</strong>eralfertilizer, which is confirmed by a broad spectrum of data. Xie et al. (2007) for <strong>in</strong>stancereport an extreme case whereby farmers apply 200 kg N per ha per year to rice, whileachiev<strong>in</strong>g a yield <strong>in</strong>crease of 300 kg rice only (not significantly differ<strong>en</strong>t from the control)and their g<strong>en</strong>eral conclusion is that N doses can be reduced with 45% without affect<strong>in</strong>gyields. This is confirmed by Ju et al. (2009), who suggest that annual N applications of550-600 kg/ha <strong>in</strong> double cropp<strong>in</strong>g systems can be reduced by 30-60 perc<strong>en</strong>t withoutsignificant reduction of yield.The high <strong>in</strong>effici<strong>en</strong>cies though do not <strong>en</strong>tirely derive from not account<strong>in</strong>g for local<strong>en</strong>vironm<strong>en</strong>tal conditions. First of all, fertilizer is cheap as it is subsidized by the Ch<strong>in</strong>esegovernm<strong>en</strong>t (production and transport), but it also appears that farmers are urged to usefertilizers by local officials who take kickbacks from fertilizer sales (Hvist<strong>en</strong>dahl, 2010).In any case, N fertilizer use effici<strong>en</strong>cy <strong>in</strong> Ch<strong>in</strong>a (and other Asian Gre<strong>en</strong> Revolutioncountries) is very low and as Ch<strong>in</strong>a alone produces 38% of the global anthropog<strong>en</strong>ic N(2005), this must obviously be of worldwide concern (Cui et al., 2010).With respect to phosphorus the use effici<strong>en</strong>cy <strong>in</strong> Asia appears ev<strong>en</strong> worse. Thehighest effici<strong>en</strong>cy of P use (that is the fraction which is <strong>in</strong>cluded <strong>in</strong> the crop) is around 30perc<strong>en</strong>t, but it can be ev<strong>en</strong> as low as 10% (Blake et al., 2000; Baligar et al., 2001), whilethe average recovery is estimated at 50%. Other assessm<strong>en</strong>t methods <strong>in</strong> Ch<strong>in</strong>a suggest thatP use effici<strong>en</strong>cies on average are 36, 5 and 7% for crop production, animal production andthe whole food cha<strong>in</strong>, respectively (Ma et al., 2009). Further studies suggest that <strong>in</strong> wheat, 42
ice and maize production only 3.2, 2.6 and 0.9% of the applied P fertilizer <strong>en</strong>ds up be<strong>in</strong>gconsumed by humans, respectively (Ma et al., 2011). Global studies confirm Ch<strong>in</strong>a to bethe largest s<strong>in</strong>gle areal ext<strong>en</strong>t of the lowest P use effici<strong>en</strong>cy class (Macdonald et al., 2011).The <strong>in</strong>effici<strong>en</strong>cy of P fertilizer use also results <strong>in</strong> high P accumulation <strong>in</strong> soil (P is lessmobile than N). The study of Ma et al. (2011) calculates accumulation levels of 29.4, 13.6and 21.3 kg/ha per year for wheat, rice and maize production, respectively. High Paccumulation is also observed elsewhere <strong>in</strong> Asia. For <strong>in</strong>stance <strong>in</strong> 20 year experim<strong>en</strong>t withrice-wheat <strong>in</strong> the Indo-Gangetic pla<strong>in</strong> a three-fold <strong>in</strong>crease of available soil P was observed(Kumar and Yadav, 2001). A large scale sampl<strong>in</strong>g of soils <strong>in</strong> South Korea shows that <strong>in</strong>about 30 years Available P <strong>in</strong>creased 2.5 times on lowland paddy soils and 5-fold onupland soils (Joh and Koh, 2004), lead<strong>in</strong>g to luxury uptake of phosphorus, lower yield dueto micronutri<strong>en</strong>t defici<strong>en</strong>cies, <strong>in</strong> comb<strong>in</strong>ation result<strong>in</strong>g <strong>in</strong> low food quality.The high rates of soil P accumulation th<strong>en</strong> br<strong>in</strong>gs us back to the micronutri<strong>en</strong>ts,s<strong>in</strong>ce, as earlier observed, high soil P causes that the uptake by plants of micronutri<strong>en</strong>tssuch as Cu and Zn is impeded. High P fertilizer applications may not only decrease theeffici<strong>en</strong>cy of P use, but may also be one of the reasons for the earlier reported widespreadmicronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> the Asian Gre<strong>en</strong> Revolution areas. Indeed <strong>in</strong> the Indo-Gangetic pla<strong>in</strong>s micronutri<strong>en</strong>ts appar<strong>en</strong>tly start to appear and Z<strong>in</strong>c defici<strong>en</strong>cy is notablywidespread (Aggarwal et al., 2004; P<strong>in</strong>gali and Shah, 2001). Biswas and B<strong>en</strong>bi (1997) alsoshow <strong>in</strong> long-term experim<strong>en</strong>ts that high yields could be ma<strong>in</strong>ta<strong>in</strong>ed only with theapplication of Zn or farmyard manure, which obviously conta<strong>in</strong>s micronutri<strong>en</strong>ts.Chaudhary and Narwal (2005) <strong>in</strong>deed demonstrate that cont<strong>in</strong>uous application of farmyardmanure <strong>in</strong>creases available levels of Zn, Fe, Mn and Cu <strong>in</strong> the soil. The observed<strong>in</strong>effici<strong>en</strong>cy of P is obviously already of serious concern by itself, because the m<strong>in</strong>eablereserves are f<strong>in</strong>ite. But <strong>in</strong>toxicat<strong>in</strong>g the soil with a scarce resource (P) thus has the effect ofcaus<strong>in</strong>g soil defici<strong>en</strong>cies of ev<strong>en</strong> scarcer resourcesToo high levels of available soil P levels will not only negatively affect crop yields,but also the quality of food. Application of P fertilizer g<strong>en</strong>erally <strong>in</strong>creases the phytatecont<strong>en</strong>t <strong>in</strong> the crop and phytate is a nutri<strong>en</strong>t b<strong>in</strong>der. It plays an important role <strong>in</strong> seedgerm<strong>in</strong>ation but cannot be digested by mono-gastric animals such as pigs, chick<strong>en</strong>s andhumans. Consequ<strong>en</strong>tly most of the P pres<strong>en</strong>t <strong>in</strong> phytate is after animal or humanconsumption directly excreted. Moreover, phytate <strong>in</strong>hibits the uptake of Zn and thus it cancause Zn defici<strong>en</strong>cy ev<strong>en</strong> though Zn may be suffici<strong>en</strong>tly pres<strong>en</strong>t <strong>in</strong> the food. Indeed,human micronutri<strong>en</strong>t defici<strong>en</strong>cies are widespread <strong>in</strong> Ch<strong>in</strong>a and rapidly <strong>in</strong>creas<strong>in</strong>g. Subcl<strong>in</strong>icalZn defici<strong>en</strong>cy is <strong>in</strong> the order of 50-60% among the Ch<strong>in</strong>ese population (Yang etal., 2007). Cont<strong>in</strong>ued application of high doses of P fertilizer is, therefore, a certa<strong>in</strong> recipefor lower food quality and further <strong>in</strong>creas<strong>in</strong>g z<strong>in</strong>c defici<strong>en</strong>cies <strong>in</strong> humans.In sum, curr<strong>en</strong>t fertilizer practice <strong>in</strong> Ch<strong>in</strong>a is remotely distant from the abovepres<strong>en</strong>tedtheoretical pr<strong>in</strong>ciples that def<strong>in</strong>e fertilizer effici<strong>en</strong>cy. These practices are a causeof very ext<strong>en</strong>sive and serious <strong>en</strong>vironm<strong>en</strong>tal problems and a source of very highgre<strong>en</strong>house gas emissions, but not only so. Crop yields are also stagnat<strong>in</strong>g or ev<strong>en</strong>decl<strong>in</strong><strong>in</strong>g and the quality of food <strong>in</strong> terms of micronutri<strong>en</strong>t cont<strong>en</strong>t is decreas<strong>in</strong>g.Cont<strong>in</strong>ued overdos<strong>in</strong>g with P is a certa<strong>in</strong> recipe for lower yields and poor quality food, and<strong>in</strong>evitably will require that scarce metals have to be used <strong>in</strong> dissipative ways, wherebyrecycl<strong>in</strong>g options are limited. At the same time, the use of metals <strong>in</strong> agriculture will haveto compete with applications <strong>in</strong> other sectors such as technologyAssessm<strong>en</strong>t 43
Inevitably <strong>in</strong>organic fertilizers will have to be used <strong>in</strong> agriculture to susta<strong>in</strong> thehigh yields needed to produce the food for a grow<strong>in</strong>g and more afflu<strong>en</strong>t global population.However, fertilizers such as N and P need to be employed more effici<strong>en</strong>tly for a number ofreasons. The large doses commonly used are the cause of surface, ground water andcoastal zone pollution and N overuse <strong>in</strong> particular is a source of gre<strong>en</strong>house gas emissions.Moreover, <strong>in</strong>effici<strong>en</strong>t fertilizer use makes food unnecessarily more costly, while at thesame time it dim<strong>in</strong>ishes the quality of food, notably <strong>in</strong> the case of P over-use. The lavishapplication of N and P should not, and cannot, be copied <strong>in</strong> the case of micronutri<strong>en</strong>ts,s<strong>in</strong>ce these are far more scarce, while curr<strong>en</strong>tly also hav<strong>in</strong>g their ma<strong>in</strong> application outsideagriculture. Nevertheless, to produce the required food effici<strong>en</strong>tly, will <strong>in</strong>evitably call forconsider<strong>in</strong>g ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>ts beyond N and P, <strong>in</strong>clud<strong>in</strong>g scarce metal elem<strong>en</strong>ts,ev<strong>en</strong> though their application <strong>in</strong> agriculture is of a dissipative nature. 44
8 Conclud<strong>in</strong>g remarksThis report has set out to sketch that humanity is faced with a number of globalproblems that are <strong>in</strong>tricately l<strong>in</strong>ked. The issues <strong>in</strong>volved, first of all, <strong>in</strong>clude ris<strong>in</strong>g foodand feed demand due to population growth and expected greater afflu<strong>en</strong>ce. Other concerns,among others, are climate change due to gre<strong>en</strong>house gas emissions, <strong>en</strong>ergy scarcity,competition for good land and <strong>in</strong>puts betwe<strong>en</strong> food and biofuel production, scarcity ofland, water and fertilizer <strong>in</strong>puts (phosphorus), ext<strong>en</strong>sive pollution of ground and surfacewater due to fertilizer use, and the <strong>in</strong>tegrity of the biosphere (biodiversity). The complexl<strong>in</strong>kages and <strong>in</strong>teractions betwe<strong>en</strong> these global problems are such that solv<strong>in</strong>g one issuecan cause another problem to <strong>in</strong>crease <strong>in</strong> magnitude. Disregard<strong>in</strong>g this <strong>in</strong>terconnectedness<strong>in</strong> a partial analysis frequ<strong>en</strong>tly results <strong>in</strong> optimistic f<strong>in</strong>d<strong>in</strong>gs, but a broader approachcommonly reveals that humanity is fac<strong>in</strong>g a daunt<strong>in</strong>g chall<strong>en</strong>ge. The question is not if wecan produce the food, feed and fiber for a grow<strong>in</strong>g and more afflu<strong>en</strong>t global population,but if we can do so with modest fertilizer doses, with low gre<strong>en</strong>house gas emissions, withlow water consumption, with little ground and surface water pollution, whilesimultaneously produc<strong>in</strong>g sizeable quantities of biofuels and while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g theecosystem services of the biosphere. This certa<strong>in</strong>ly is not an easy task.It has further be<strong>en</strong> emphasized that the literature gives hardly any att<strong>en</strong>tion to thepot<strong>en</strong>tial impacts of metal scarcity on agricultural production and the global food system.That metals such as copper and z<strong>in</strong>c may become scarce <strong>in</strong> the foreseeable future is wellestablished on the basis of curr<strong>en</strong>tly known m<strong>in</strong>eable reserves, consumption levels andexpected demand growth. The future role of these metals <strong>in</strong> the global food cha<strong>in</strong> andgrow<strong>in</strong>g demand deriv<strong>in</strong>g there from is usually neglected. A number of metals areess<strong>en</strong>tial micronutri<strong>en</strong>ts for plants, animals and humans, or <strong>in</strong> short for life on earth. Theyare needed <strong>in</strong> small amounts only, but defici<strong>en</strong>cy, whether <strong>in</strong> plants, animals or humans,<strong>in</strong>evitably leads to growth retardation, disease or ev<strong>en</strong> death, dep<strong>en</strong>d<strong>in</strong>g on the severity ofthe defici<strong>en</strong>cy. The ess<strong>en</strong>tiality of these metals for life <strong>en</strong>tails that they cannot besubstituted by other elem<strong>en</strong>ts. If micronutri<strong>en</strong>ts are defici<strong>en</strong>tly pres<strong>en</strong>t <strong>in</strong> the soil, theirapplication <strong>in</strong> agriculture will raise crop yields, while simultaneously improv<strong>in</strong>g nutritionalquality (micronutri<strong>en</strong>t d<strong>en</strong>sities). Consequ<strong>en</strong>tly, metal micronutri<strong>en</strong>ts may prove crucial tosusta<strong>in</strong> the global food system.Micronutri<strong>en</strong>t scarcities add to the problem of scarcity of macro- and mesonutri<strong>en</strong>tssuch as N, P and K at some time to come, whereby m<strong>in</strong>eable P and K maybecome depleted and N be too exp<strong>en</strong>sive/<strong>en</strong>ergy <strong>in</strong>t<strong>en</strong>sive to produce. The differ<strong>en</strong>cebetwe<strong>en</strong> the scarcities for <strong>in</strong>stance betwe<strong>en</strong> P and micronutri<strong>en</strong>ts is that curr<strong>en</strong>tly m<strong>in</strong>ed Pis almost exclusively used <strong>in</strong> agriculture, while the micronutri<strong>en</strong>ts are by and large used fornon-agricultural purposes (construction, <strong>in</strong>dustry, etc.). Another dissimilarity is that theknown reserves of the micronutri<strong>en</strong>ts, if compared to those of P, are much smaller: <strong>in</strong> theorder of a few decades rather than a few c<strong>en</strong>turies. In comb<strong>in</strong>ation, both differ<strong>en</strong>cessuggest that scarcity of micronutri<strong>en</strong>ts may be expected much sooner as well as be<strong>in</strong>gsevere to the ext<strong>en</strong>t of preclud<strong>in</strong>g their use <strong>in</strong> agriculture.The above <strong>in</strong>dicative number of years that reserves of copper and z<strong>in</strong>c (a fewdecades) will be able to cover demand are calculated on the static fixed-stock assumption,which is a rather pessimistic method of analysis. Clearly, more resources will be found,prices may <strong>in</strong>crease with the result that m<strong>in</strong><strong>in</strong>g lower grade ore or ores difficult to m<strong>in</strong>ebecome economical, substitution may take place and recycl<strong>in</strong>g may become attractive. But 45
how far this optimism of the opportunity cost paradigm can carry on is, obviously, alsouncerta<strong>in</strong>. Moreover, externalities of m<strong>in</strong><strong>in</strong>g operations are curr<strong>en</strong>tly not reflected <strong>in</strong> theprices of m<strong>in</strong>erals: pollution of air, water and soil, biodiversity. Furthermore, water and<strong>en</strong>ergy use <strong>in</strong> m<strong>in</strong><strong>in</strong>g is expected to grow expon<strong>en</strong>tially, and both are likely to becomescarce and exp<strong>en</strong>sive as well. Also here partial analyses may prove to be too optimistic. Inany case, this issue is beyond the scope of this report and is considered elsewhere (Baste<strong>in</strong>and Van Bree, 2012). Nevertheless, the quotes on m<strong>in</strong>eral scarcity <strong>in</strong> Text box 1 providean <strong>in</strong>formative sample of curr<strong>en</strong>t diverse op<strong>in</strong>ion. It can be concluded though, that metalscarcity will become real <strong>in</strong> a not too distant future, but it is difficult, if not impossible, toquantify the time left before scarcity is real and how severe its impact will be.Ev<strong>en</strong> without an imp<strong>en</strong>d<strong>in</strong>g scarcity of metals, there is reason <strong>en</strong>ough to payatt<strong>en</strong>tion to them with<strong>in</strong> the context of agriculture and the global food system. Curr<strong>en</strong>tly,the use of metals as micronutri<strong>en</strong>ts <strong>in</strong> crop production and animal husbandry is verylimited. Their use <strong>in</strong> agriculture is likely to <strong>in</strong>crease drastically for various reasons and,unlike for non-agricultural uses, <strong>in</strong> plant, animal and human nutrition these ess<strong>en</strong>tialmicronutri<strong>en</strong>ts cannot be substituted for. The <strong>in</strong>creased use of micronutri<strong>en</strong>ts is dictated bythe pres<strong>en</strong>t very unbalanced nutri<strong>en</strong>t applications <strong>in</strong> high-<strong>in</strong>put agriculture, be<strong>in</strong>g usuallyrestricted to N and P, and <strong>in</strong> lesser ext<strong>en</strong>t to K. Such practices will not go unpunished as iscurr<strong>en</strong>tly evid<strong>en</strong>t from crop yield tr<strong>en</strong>ds <strong>in</strong> the Asian Gre<strong>en</strong> Revolution areas, where about50 perc<strong>en</strong>t of the arable land is considered z<strong>in</strong>c defici<strong>en</strong>t. The ext<strong>en</strong>t of z<strong>in</strong>c defici<strong>en</strong>cy isalso large <strong>in</strong> Sub-Sahara Africa, where hardly any fertilizers are used, thus suggest<strong>in</strong>gwidespread natural soil micronutri<strong>en</strong>t defici<strong>en</strong>cies. Here, crop yield response to promotedfertilizer technologies frequ<strong>en</strong>tly rema<strong>in</strong>s low, caus<strong>in</strong>g non-adoption, precisely because themicronutri<strong>en</strong>t defici<strong>en</strong>cies are not addressed.The use of micronutri<strong>en</strong>ts <strong>in</strong> agriculture is all the more important because of thewidespread and <strong>in</strong>creas<strong>in</strong>g occurr<strong>en</strong>ce of human micronutri<strong>en</strong>t defici<strong>en</strong>cies, which result <strong>in</strong>human disease and a global death toll of a similar magnitude as malaria, ma<strong>in</strong>ly <strong>in</strong>develop<strong>in</strong>g countries. In short, micronutri<strong>en</strong>ts are likely to play a crucial role <strong>in</strong> thesusta<strong>in</strong>able production of suffici<strong>en</strong>t good quality food <strong>in</strong> the future. This report further hasestablished that the quantities of micronutri<strong>en</strong>ts required to susta<strong>in</strong> the world food systemon an annual basis are modest if compared with contemporary other applications, butbecause of the ess<strong>en</strong>tially of these elem<strong>en</strong>ts for life on earth they will have to be appliedeverlast<strong>in</strong>gly.The <strong>in</strong>creas<strong>in</strong>g and perpetual requirem<strong>en</strong>ts for micronutri<strong>en</strong>ts <strong>in</strong> the world foodsystem obviously calls for substitution and recycl<strong>in</strong>g where other uses are concerned, aswell as the developm<strong>en</strong>t of technologies to do so effectively (<strong>in</strong>clud<strong>in</strong>g water and <strong>en</strong>ergyuse). Whereas, us<strong>in</strong>g metals as fertilizers constitutes a dissipative use, also <strong>in</strong> agriculturethey must be applied such that a maximum yield response and optimum food quality isachieved. This calls for fertilizer technologies that, <strong>in</strong> terms of dose and composition, aref<strong>in</strong>ely tuned to local soil chemical conditions. 46
Text Box 1: Quotes on m<strong>in</strong>eral scarcities• ‘To some ext<strong>en</strong>t one may say that the differ<strong>en</strong>ce <strong>in</strong> approach betwe<strong>en</strong> the fixedstock and the opportunity cost paradigm repres<strong>en</strong>ts the differ<strong>en</strong>ce betwe<strong>en</strong>technological pessimism versus technological optimism’ (Foran and Poldy, 2001).• ’the optimists, like the pessimists, have not provided adequate data to supporttheir position, although history is on the sides of the optimists’ (Willet, 2002).• ‘Depletion raises the specter of a world where resources are too costly to userather than a world with no resources’ (Tilton, 2002).• ‘The future course of copper prices is impossible to predict with any accuracygiv<strong>en</strong> the great uncerta<strong>in</strong>ties’ (Tilton and Lagos, 2007).• ‘We do not and <strong>in</strong>deed cannot know whether it will be possible <strong>in</strong> practice toovercome any resource constra<strong>in</strong>t’ (Neumayer, 2000).• ‘To conclude that there is no reason whatsoever to worry is tantamount tocommitt<strong>in</strong>g the same mistake the pessimists are oft<strong>en</strong> guilty of- that is the mistakeof extrapolat<strong>in</strong>g past tr<strong>en</strong>ds’ (Neumayer, 2000).• ‘Scarcities affect each other’ and ‘we know too little about the quantitative impactof scarcities on each other’ (Anonymous, 2009).• ‘Exploration of new locations and technological <strong>in</strong>novation <strong>in</strong> m<strong>in</strong><strong>in</strong>g andextraction has kept the available and known material reserves on par with the<strong>in</strong>crease of demand. Will this cont<strong>in</strong>ue <strong>in</strong> the 21 st c<strong>en</strong>tury as well? It is difficult topredict a c<strong>en</strong>tury ahead, but look<strong>in</strong>g at a number of developm<strong>en</strong>ts, we are afraidthe answer is: no (Wouters and Bol, 2009).• ‘The stakes are too high to gamble on timely and adequate future technologicalbreakthroughs to solve our problems’ (Dieder<strong>en</strong>, 2009).• The question is: ‘How best to prepare for <strong>in</strong>creas<strong>in</strong>g scarcities <strong>in</strong> the world’(Anonymous, 2009).• ‘The careful stewardship of available resources repres<strong>en</strong>ts a task for the future’(Angerer et al., 2009).A basic requirem<strong>en</strong>t hereto is the developm<strong>en</strong>t of knowledge on what governs the spatialdiversity of soils, what are the operat<strong>in</strong>g mechanism <strong>in</strong> ecological function<strong>in</strong>g <strong>in</strong>volved,how is this expressed <strong>in</strong> soil stoichiometry, and what does this imply for fertilizer dosesand composition requirem<strong>en</strong>ts and the yield response that follows. This is knowledge<strong>in</strong>t<strong>en</strong>sive. Hitherto, agronomic research has be<strong>en</strong> of a trial and error nature and,consequ<strong>en</strong>tly, this practice has to be changed towards build<strong>in</strong>g up a coher<strong>en</strong>t andcompreh<strong>en</strong>sive analytical framework and knowledge on the operat<strong>in</strong>g mechanisms<strong>in</strong>volved where soil stoichiometry and yield response to fertilizer is concerned.Furthermore, research att<strong>en</strong>tion, while us<strong>in</strong>g a similar analytical framework <strong>in</strong>clud<strong>in</strong>g thefunction<strong>in</strong>g of soil biota, will have to be directed to the issue of clos<strong>in</strong>g the gap betwe<strong>en</strong>the nutri<strong>en</strong>t pools of total elem<strong>en</strong>tal cont<strong>en</strong>t and the part thereof that is available for plantuptake. Together, this def<strong>in</strong>es a large well-founded and well-targeted research ag<strong>en</strong>dadeveloped on the basis of a coher<strong>en</strong>t set of guid<strong>in</strong>g pr<strong>in</strong>ciples: a formidable task ahead<strong>in</strong>deed.F<strong>in</strong>ally, the uncerta<strong>in</strong>ty associated with data on metal resources pres<strong>en</strong>t <strong>in</strong> themantle of the earth, on their location, and whether they can be economically m<strong>in</strong>ed atacceptable <strong>en</strong>vironm<strong>en</strong>tal costs, calls for att<strong>en</strong>tive preparedness, that <strong>in</strong>cludes monitor<strong>in</strong>gof m<strong>in</strong>eral prospection results, actual developm<strong>en</strong>t of demand and supply and future 47
projections thereof. And, as earlier m<strong>en</strong>tioned, att<strong>en</strong>tive preparedness obviously further<strong>in</strong>cludes the developm<strong>en</strong>t of novel agricultural technologies, that are less dep<strong>en</strong>d<strong>en</strong>t onconv<strong>en</strong>tionally m<strong>in</strong>ed sources of metals, so as to <strong>en</strong>able mitigation of pot<strong>en</strong>tial negativeimpacts of metal scarcity on agricultural production and the world food system. 48
Annex 1: Sel<strong>en</strong>iumSel<strong>en</strong>ium is an ess<strong>en</strong>tial m<strong>in</strong>eral nutri<strong>en</strong>t for animals and humans. It is notestablished as be<strong>in</strong>g ess<strong>en</strong>tial for plants, but it possibly is b<strong>en</strong>eficial (Marschner, 1995).Human defici<strong>en</strong>ciesHuman sel<strong>en</strong>ium defici<strong>en</strong>cy is an important health problem globally, withpreval<strong>en</strong>ce estimates <strong>in</strong> 0.5-1.0 billion people. This estimate does not <strong>in</strong>clude the numberof people that consume <strong>in</strong>suffici<strong>en</strong>t sel<strong>en</strong>ium for optimal protection aga<strong>in</strong>st cancer,cardiovascular diseases and severe <strong>in</strong>fectious diseases, <strong>in</strong>clud<strong>in</strong>g HIV (Haug et al., 2007).Sel<strong>en</strong>ium defici<strong>en</strong>cy is the cause of the well-known Keshan disease and Kash<strong>in</strong> Beckdisease. Keshan is <strong>en</strong>demic cardiomyopathy (hart disease) most frequ<strong>en</strong>tly observed <strong>in</strong>childr<strong>en</strong> and wom<strong>en</strong> at childbear<strong>in</strong>g age <strong>in</strong> Ch<strong>in</strong>a. Kash<strong>in</strong>-Beck is an <strong>en</strong>demicosteoarthropathy (stunt<strong>in</strong>g of feet and hands caus<strong>in</strong>g deformity of jo<strong>in</strong>ts). It occurs <strong>in</strong>Siberia, Ch<strong>in</strong>a, North Korea and possibly <strong>in</strong> parts of Africa (Fordyce, 2005).Increas<strong>in</strong>g evid<strong>en</strong>ce becomes available that sel<strong>en</strong>ium is <strong>in</strong>volved <strong>in</strong> other aspects ofhuman health. L<strong>in</strong>ks have be<strong>en</strong> established betwe<strong>en</strong> sel<strong>en</strong>ium defici<strong>en</strong>cy and iod<strong>in</strong>edefici<strong>en</strong>cy disorders (goiter and cret<strong>in</strong>ism) that still need further <strong>in</strong>vestigation. There isevid<strong>en</strong>ce to suggest that <strong>in</strong>creased sel<strong>en</strong>ium <strong>in</strong>take provides protection aga<strong>in</strong>st cancer andit is implicated <strong>in</strong> cardio-vascular health. A further role is suspected <strong>in</strong> human reproductionand protection aga<strong>in</strong>st viral attacks, <strong>in</strong>clud<strong>in</strong>g HIV/aids (Rayman, 2000, 2002; Kupka etal., 2004). Sel<strong>en</strong>ium defici<strong>en</strong>cy has also be<strong>en</strong> l<strong>in</strong>ked to human muscular dystrophy (whichis common <strong>in</strong> sel<strong>en</strong>ium defici<strong>en</strong>t livestock). F<strong>in</strong>ally, a compreh<strong>en</strong>sive review on sel<strong>en</strong>iumand breastfeed<strong>in</strong>g suggests that worldwide for about 30% of wom<strong>en</strong> the sel<strong>en</strong>iumconc<strong>en</strong>trations <strong>in</strong> breastmilk are <strong>in</strong>adequate for satisfy<strong>in</strong>g the sel<strong>en</strong>ium requirem<strong>en</strong>ts oftheir breastfed childr<strong>en</strong> (Zachara and Pilecki, 2000; Dorea, 2002). Another importantobservation is that human sel<strong>en</strong>ium <strong>in</strong>takes are decreas<strong>in</strong>g rather sharply <strong>in</strong> developedcountries: by 1/3 <strong>in</strong> 25 years <strong>in</strong> the UK (Jackson et al., 2003). The marg<strong>in</strong> betwe<strong>en</strong>sel<strong>en</strong>ium defici<strong>en</strong>cy and toxicity is rather narrow, but overt human toxicity problems arerare.Animal defici<strong>en</strong>ciesSel<strong>en</strong>ium defici<strong>en</strong>cy <strong>in</strong> animals is very common and widespread across the globe(Oldfield, 1999). Sel<strong>en</strong>ium defici<strong>en</strong>cy causes white muscle disease, a deg<strong>en</strong>eration ofmuscles, g<strong>en</strong>erally decreas<strong>in</strong>g mobility and if the hart or lungs are affected death mayfollow. Animals on a defici<strong>en</strong>t diet dur<strong>in</strong>g gestation may produce offspr<strong>in</strong>g that is equallydefici<strong>en</strong>t and the newborns may be dead or very weak and die with<strong>in</strong> days. Sel<strong>en</strong>iumdefici<strong>en</strong>cy further depresses the response of the immune system. In chick<strong>en</strong>, defici<strong>en</strong>cymay lead to massive hemorrhages b<strong>en</strong>eath the sk<strong>in</strong>. Low sel<strong>en</strong>ium pastures are moreg<strong>en</strong>erally associated with ‘ill thrift’: subcl<strong>in</strong>ical growth deficits or rapid weight loss.Toxicity most frequ<strong>en</strong>tly occurs on sel<strong>en</strong>iferous soils. Acute toxicity is rare s<strong>in</strong>ce animalst<strong>en</strong>d to avoid plants that accumulate sel<strong>en</strong>ium. Chronic sel<strong>en</strong>ium <strong>in</strong>toxication leads to twodiseases known as alkali disease and bl<strong>in</strong>d staggers <strong>in</strong> graz<strong>in</strong>g animals. Both cause poorperformance of animals and can lead to death.Sel<strong>en</strong>ium <strong>in</strong> soils and agricultureAlthough not ess<strong>en</strong>tial, plants do not avail of mechanisms that preclude sel<strong>en</strong>ium to<strong>en</strong>ter the plant, and plant sel<strong>en</strong>ium cont<strong>en</strong>t varies with the level of soil sel<strong>en</strong>ium and thetotal soil chemical constellation. Consequ<strong>en</strong>tly, sel<strong>en</strong>ium application to agricultural land 49
can be used to <strong>in</strong>crease its cont<strong>en</strong>t <strong>in</strong> animal feed and human food (various sources quoted<strong>in</strong> Nube and Voortman, 2011). Because sel<strong>en</strong>ium is not ess<strong>en</strong>tial for plants, such practiceswill not <strong>in</strong>crease crop yield. Although sel<strong>en</strong>ium is ubiquitous <strong>in</strong> soils, its d<strong>en</strong>sity isg<strong>en</strong>erally very low, but also show<strong>in</strong>g large differ<strong>en</strong>ces ev<strong>en</strong> at short distances. Sel<strong>en</strong>iumcan be pres<strong>en</strong>t <strong>in</strong> soils as elem<strong>en</strong>tal sel<strong>en</strong>ium, as sel<strong>en</strong>ide, sel<strong>en</strong>ite, or sel<strong>en</strong>ate, or asorganically bound sel<strong>en</strong>ium, and of these differ<strong>en</strong>t forms, sel<strong>en</strong>ate is most mobile and besttak<strong>en</strong> up by plants. Other factors affect<strong>in</strong>g sel<strong>en</strong>ium uptake by plants are the degree ofsand<strong>in</strong>ess of soils, and also the pH, with more sel<strong>en</strong>ium be<strong>in</strong>g available at higher pH(Lyons et al, 2003, 2005; Wang et al., 2005). Furthermore, both iron and sulphur have anegative effect on soil sel<strong>en</strong>ium availability. In fact, it has be<strong>en</strong> suggested that <strong>in</strong>creasedsulphur conc<strong>en</strong>trations <strong>in</strong> soils, result<strong>in</strong>g from high global levels of fossil fuel burn<strong>in</strong>g andrelated emission of sulphur, are partially responsible for globally decreas<strong>in</strong>g levels ofsel<strong>en</strong>ium availability (Lyons et al, 2003). Sel<strong>en</strong>ium may also become toxic and theparticular feature of sel<strong>en</strong>ium is that the differ<strong>en</strong>ce betwe<strong>en</strong> defici<strong>en</strong>t and toxic levels issmallest of all micronutri<strong>en</strong>ts. Sel<strong>en</strong>ium application to cropland is therefore frequ<strong>en</strong>tlycontrolled by <strong>en</strong>vironm<strong>en</strong>tal regulations. The same applies to animal feed supplem<strong>en</strong>ts, butthis can easily be circumv<strong>en</strong>ted by obta<strong>in</strong><strong>in</strong>g a veter<strong>in</strong>ary prescription.The literature sources on soil sel<strong>en</strong>ium cont<strong>en</strong>t do vary, but the figure <strong>in</strong> the earlierpres<strong>en</strong>ted Table 11 can be considered repres<strong>en</strong>tative: 0.09 ppm and for ease of calculationwe use 0.1 ppm. Under natural conditions the level of sel<strong>en</strong>ium <strong>in</strong> soils may vary fromtraces (practically nil) <strong>in</strong> low-sel<strong>en</strong>ium soils to over 150 ppm <strong>in</strong> sel<strong>en</strong>iferous soils. Us<strong>in</strong>gthe average figure on soil sel<strong>en</strong>ium cont<strong>en</strong>t (and the same assumption as for z<strong>in</strong>c andcopper) implies that the total amount of sel<strong>en</strong>ium <strong>in</strong> the top 20 cm and top 50 cm is 0.24kg and 0.60 kg, respectively. Of this total amount, about 2% is pres<strong>en</strong>t <strong>in</strong> plant-availableforms or about 5 and 12 grams per ha, respectively. At on average 0.02 ppm sel<strong>en</strong>ium,plant cont<strong>en</strong>t is very low, and us<strong>in</strong>g the same assumptions as used for copper and z<strong>in</strong>c,crop removal per hectare would amount to 0.1 gram per year. Table 11 gives the timeduration that soil sel<strong>en</strong>ium cont<strong>en</strong>t could susta<strong>in</strong> such a level of removals under hypotheticconditions. These calculations assume:• that sel<strong>en</strong>ium is equally distributed across world cropland,• that all the sel<strong>en</strong>ium pres<strong>en</strong>t <strong>in</strong> the soil can be tak<strong>en</strong> up by plants (which is contraryto experi<strong>en</strong>ce),• that plants can fully exploit the soil up to 50 cm depth (which is frequ<strong>en</strong>tly not thecase <strong>in</strong> crop plants), and• that only 5 tons of crop product is removed from the field per year per ha (which <strong>in</strong>developed countries is by far surpassed).Table 11: The time duration of soil supply of sel<strong>en</strong>ium to crops dep<strong>en</strong>d<strong>en</strong>t onassumptions on soil depth and total and available soil sel<strong>en</strong>ium cont<strong>en</strong>t.Soil depth (cm) Total Se (g/ha) Duration(years)Available Se(g)20 240 2400 5 5050 600 6000 12 120Duration(years) 50
Sel<strong>en</strong>ium resourcesSel<strong>en</strong>ium does not occur <strong>in</strong> ores of suffici<strong>en</strong>t d<strong>en</strong>sities to warrant specific m<strong>in</strong><strong>in</strong>gfor it. The ma<strong>in</strong> source is that it is a byproduct <strong>in</strong> the process of ref<strong>in</strong><strong>in</strong>g copper. Further,high levels of sel<strong>en</strong>ium occur <strong>in</strong> some coal deposits and black shales, but the extractiontechnology is still too exp<strong>en</strong>sive. Some phosphate rock deposits also conta<strong>in</strong> appreciableamounts of sel<strong>en</strong>ium. The 2011 global reserves of sel<strong>en</strong>ium amount 93,000 metric tons, ofwhich 2/3 are conc<strong>en</strong>trated four countries: Chile, Russia, Peru and the United States.Ref<strong>in</strong>ery production with 70% was conc<strong>en</strong>trated <strong>in</strong> Germany, Japan and Belgium (butaccord<strong>in</strong>g to USGS data are poor). In 2008 the reserve base was about double the amountof the reserves: 170,000 versus 82,000 metric tons. Annual consumption <strong>in</strong> 2011 was 2000metric tons. H<strong>en</strong>ce the reserve/consumption ratio suggests that at curr<strong>en</strong>t consumptionlevels curr<strong>en</strong>t reserves will be depleted <strong>in</strong> about 42 years. If all agricultural land wouldannually receive a ma<strong>in</strong>t<strong>en</strong>ance application of 0.1 gram of sel<strong>en</strong>ium, this would amount <strong>in</strong>total to 500 metric tons, or 25% of curr<strong>en</strong>t annual production. In F<strong>in</strong>land standard practiceis to add 10 mg Se per kg of fertilizer: at 200 kg fertilizer per hectare, this would amountto 2 grams per hectare. If this were to be copied worldwide, it would amount to 10,000metric tons or five times the annual production. Experim<strong>en</strong>ts <strong>in</strong> Brasil were conducted atev<strong>en</strong> 10 and 20 grams per hectare (Cerquira Luz et al., 2010). Both observations suggestthat <strong>in</strong> case of suspected defici<strong>en</strong>cy, the dosage applied is obviously substantially largerthan ma<strong>in</strong>t<strong>en</strong>ance applications. We do not know what perc<strong>en</strong>tage of agricultural land issel<strong>en</strong>ium defici<strong>en</strong>t, however.Sel<strong>en</strong>ium is commonly used as feed additive <strong>in</strong> animal husbandry. In 2003 thelivestock population of cattle, buffalo, sheep and goats was about 2 billion of an assumed400 kg cattle equival<strong>en</strong>t. Recomm<strong>en</strong>ded supplem<strong>en</strong>ts are <strong>in</strong> the order of 1 mg per 100 kgper day. If the <strong>en</strong>tire world livestock would be supplem<strong>en</strong>ted this would take 3000 metrictons per year, 1.5 times the curr<strong>en</strong>t annual production. Of course this would imply that partof the land would have no need to be fertilized, s<strong>in</strong>ce manure application would do the job. 51
Refer<strong>en</strong>ces and bibliographyAbunyewa, A.A. and Mercer-Quarshie, H. 2004. Response of maize to magnesium and z<strong>in</strong>c application <strong>in</strong>the semi arid zone of West Africa. Asian Journal of Plant Sci<strong>en</strong>ces 3: 1-5.Achternbosch, M., Kupsch, C., Sardeman, G. and Bräutigam, K.R. 2009. Cadmium flows caused by theworldwide production of primary z<strong>in</strong>c metal. Journal of Industrial Ecology 13: 438-454.Aggarwal, P.K, Joshi, P.K., Ingram, J.S.I. and Gupta, R.K. 2004. Adapt<strong>in</strong>g food systems of the Indo-Gangetic pla<strong>in</strong>s to global <strong>en</strong>vironm<strong>en</strong>tal change: key <strong>in</strong>formation needs to improve policyformulation. Environm<strong>en</strong>tal Sci<strong>en</strong>ce and Policy 7: 487-498.Alloway, B.J. 2008. Z<strong>in</strong>c <strong>in</strong> soils and crop nutrition. International Fertilizer Industry Association andInternational Z<strong>in</strong>c Association.Andrén,O., Kirchmann, H., Kätterer, T., Magid, J., Paul, E.A. and Coleman, D.C. 2008. Visions of a moreprecise soil biology. European Journal of Soil Sci<strong>en</strong>ce 59: 380-390.Angerer, G. et al. 2009. Raw materials for emerg<strong>in</strong>g technologies; The <strong>in</strong>flu<strong>en</strong>ce of sector-specific feedstockdemand on future raw materials consumption <strong>in</strong> material-<strong>in</strong>t<strong>en</strong>sive emerg<strong>in</strong>g technologies. FraunhoferInstitute for Systems and Innovation Research, Karlsruhe and Institute for Futures Studies andTechnology Assessm<strong>en</strong>t, Berl<strong>in</strong>.Anonymous 2010. Critical raw materials for the EU. Report of the Ad-hoc Work<strong>in</strong>g Group on def<strong>in</strong><strong>in</strong>gcritical raw materials. European Commission, Enterprise and Industry.Anonymous. 2009. Scarcity and Transition; Research questions for future policy. M<strong>in</strong>istry of Foreign Affairsand M<strong>in</strong>istry of Hous<strong>in</strong>g, Spatial plann<strong>in</strong>g and the Environm<strong>en</strong>t, The Hague.Arizype, N. et al. 2011. Food security and fossil <strong>en</strong>ergy dep<strong>en</strong>d<strong>en</strong>ce: an <strong>in</strong>ternational comparison of the useof fossil <strong>en</strong>ergy <strong>in</strong> Agriculture. Critical Reviews <strong>in</strong> Plant Sci<strong>en</strong>ces 30: 45-63.Ayodela, O. and Agboola, A. 1982. An attempt to evaluate phosphorus fertilizer requirem<strong>en</strong>ts of westernNigeria sa<strong>van</strong>nah soils. Fertilizer Research 3: 293-302.Ayres, R.U., Ayres, L.W. and Råde I. 2002. The life cycle of copper, its co-products and by-products.M<strong>in</strong><strong>in</strong>g, M<strong>in</strong>erals and Susta<strong>in</strong>able Developm<strong>en</strong>t No. 24, IIED and World Bus<strong>in</strong>ess Council forSusta<strong>in</strong>able Developm<strong>en</strong>t.Ayres, R.U. 2001. Resources, scarcity, growth and the <strong>en</strong>vironm<strong>en</strong>t. C<strong>en</strong>ter for the Managem<strong>en</strong>t ofEnvironm<strong>en</strong>tal Resources, Fonta<strong>in</strong>ebleau.Bate<strong>in</strong>, T. and Van Bree, T. 2012. Suppletie <strong>van</strong> micronutriënt<strong>en</strong> uit de mijnbouw. TNO report for LIS.BGS 2007. World M<strong>in</strong>eral production 2001-2005. British Geological Survey, Keiworth, Nott<strong>in</strong>gham.Biswas, C.R. and B<strong>en</strong>bi, D.K. 1997. Susta<strong>in</strong>able yield tr<strong>en</strong>ds of irrigated maize and wheat <strong>in</strong> a long-termexperim<strong>en</strong>t on loamy sand <strong>in</strong> semi-arid India. Nutri<strong>en</strong>t Cycl<strong>in</strong>g <strong>in</strong> Agroecosystems 46: 225-234.Black, R. 2003. Micronutri<strong>en</strong>t defici<strong>en</strong>cy-an underly<strong>in</strong>g cause of morbidity and mortality. Bullet<strong>in</strong> of theWorld Health Organization 81:79.Black, R.E. et al. 2008. Maternal and child undernutrition: global and regional exposures and healthconsequ<strong>en</strong>ces. The Lancet 371: 243-260.Bleischwitz, R and Br<strong>in</strong>gezu, S. 2007. Global Resource Managem<strong>en</strong>t; Conflict pot<strong>en</strong>tial and characteristicsof a global governance regime. Policy Paper 27, Developm<strong>en</strong>t and Peace Foundation, BonnBleischwitz, R. 2006. International Raw Materials Markets: Ris<strong>in</strong>g Prices and Grow<strong>in</strong>g Conflict Pot<strong>en</strong>tial.In: Global tr<strong>en</strong>ds 2007 - vulnerability and human security <strong>in</strong> the 21st c<strong>en</strong>tury, Tobias Debiel et al.,eds., pp. 65-78, Foundation for Developm<strong>en</strong>t and Peace (SEF): Bonn, 2006.Bleischwitz, R. 2010. International economics of resource productivity- Rele<strong>van</strong>ce, measurem<strong>en</strong>t, empiricaltr<strong>en</strong>ds, <strong>in</strong>novation, resource policies. International Economics and Economic Policy 7: 227-244.Bru<strong>in</strong>sma, J. 2009. The resource outlook to 2050: By how much do land water and crop yields need to<strong>in</strong>crease by 2050? FAO expert meet<strong>in</strong>g on how to feed the world <strong>in</strong> 2050. Rome, 24-26 June 2009.Buerkert, A., Haake, C., Ruckwird, M., and Marschner, H. 1998. Phosphorus application affects th<strong>en</strong>utritional quality of millet gra<strong>in</strong> <strong>in</strong> the Sahel. Field Crop Research 57: 223-35.Cakmak, I. Z<strong>in</strong>c defici<strong>en</strong>cy <strong>in</strong> Wheat <strong>in</strong> Turkey. Chapter 7 <strong>in</strong> Alloway B.J. (ed.), Micronutri<strong>en</strong>t Defici<strong>en</strong>cies<strong>in</strong> Global Crop Production. Spr<strong>in</strong>ger Sci<strong>en</strong>ce.Cassman K.G., Dobermann, A. and Walters, D.T. 2002. Agroecosystems, Nitrog<strong>en</strong>-use effici<strong>en</strong>cy, andNitrog<strong>en</strong> managem<strong>en</strong>t. Ambio 31:132-140.Cassman, K.G., P<strong>en</strong>g, S., Olk, D.C., Ladha, J.K., Reichardt, W., Dobermann, A. and S<strong>in</strong>gh, U. 1998.Opportunities for <strong>in</strong>creased nitrog<strong>en</strong>-use effici<strong>en</strong>cy from improved resource managem<strong>en</strong>t <strong>in</strong> irrigatedrice systems. Field Crops Research 56: 7-39.Caulfield LE, Richard SA, Rivera JA, Musgrove P, Black RE. Stunt<strong>in</strong>g, wast<strong>in</strong>g and micronutri<strong>en</strong>tdefici<strong>en</strong>cy disorders. In: Jamison, D.T., Breman, J.G., Measham, A.R. et al., (eds) Disease ControlPriorities <strong>in</strong> Develop<strong>in</strong>g Countries (Ch 28). Oxford Press and World Bank, 2006: 551-67. 53
CDA 1988. Copper <strong>in</strong> plant, animal and human nutrition. Copper Developm<strong>en</strong>t Association PublicationTN35.Cerquira Luz P.H. de et al., 2010. Sel<strong>en</strong>ium <strong>in</strong> soils of São Paulo state and its application to forage legume.19 th World Congress of Soil Sci<strong>en</strong>ce, Soil Solutions for a Chang<strong>in</strong>g World. 1-6 August, Brisbane,Australia.Coh<strong>en</strong>, D. 2007. Earth’s natural wealth: an audit. New Sci<strong>en</strong>tist 23 May.Cordell, D. et al., 2009. The story of phosphorus: Global food security and food for thought. GlobalEnvironm<strong>en</strong>tal Change 19: 292-305.Crutz<strong>en</strong>, P.J., Mosier, A.R., Smith, K.A. and W<strong>in</strong>iwarter, W. 2007. N 2 O release from agrobiofuel productionnegates global warm<strong>in</strong>g reduction by replac<strong>in</strong>g fossil fuels. Atmospheric Chemistry and PhysicsDiscussions 7: 11191-11205.Cui, Z. et al. 2010. Curr<strong>en</strong>t nitrog<strong>en</strong> managem<strong>en</strong>t status and measures to improve the <strong>in</strong>t<strong>en</strong>sive wheat-maizesystem <strong>in</strong> Ch<strong>in</strong>a. Ambio 39: 376-384.Davies, B.E. 1997. Defici<strong>en</strong>cies and toxicities of trace elem<strong>en</strong>ts and micronutri<strong>en</strong>ts <strong>in</strong> tropical soils:Limitations of knowledge and future research needs. Environm<strong>en</strong>tal Toxicology and Chemistry 16:75-83.Dieder<strong>en</strong>, A.M. 2009. Metal m<strong>in</strong>eral scarcity; a call for managed austerity and the elem<strong>en</strong>ts of hope. TNODef<strong>en</strong>se, Security and Safety, Delft.Dieder<strong>en</strong>, A.M. 2010. Global resource depletion; managed austerity and the elem<strong>en</strong>ts of hope. Eburon, Delft.Dom<strong>in</strong>y, S.C., Noppé, M.A. and Annels, A.E. 2002. Errors and uncerta<strong>in</strong>ty <strong>in</strong> M<strong>in</strong>eral resource and orereserve estimation: The importance of gett<strong>in</strong>g it right. Exploration and M<strong>in</strong><strong>in</strong>g Geology 11: 77-98.Dorea, J.G., 2002. Sel<strong>en</strong>ium and breast-feed<strong>in</strong>g. British Journal of Nutrition 88: 443-61.Ecker, O., We<strong>in</strong>berger, K. and Qaim, M. 2010. Patterns and determ<strong>in</strong>ants of dietary micronutri<strong>en</strong>tdefici<strong>en</strong>cies <strong>in</strong> rural areas of East Africa. African Journal of Agricultural and Resource Economics 4:175-193.Emery, X., Ortiz, J.M. and Rodriguez, J.J. 2006. Quantify<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong> m<strong>in</strong>eral resources by use ofclassification schemes and conditional simulations. Mathematical Geology 38: 445-463.Ernst, W.G. 2002. Global equity and susta<strong>in</strong>able earth resource consumption requires super-effici<strong>en</strong>textraction-conservation-recycl<strong>in</strong>g and ubiquitous, <strong>in</strong>exp<strong>en</strong>sive <strong>en</strong>ergy. International Geology Review44: 1072-1091.Fargione, J., Hill, J., David Tilman, D., Polasky, S. and Hawthorne, P. 2008. Land Clear<strong>in</strong>g and the BiofuelCarbon Debt. Sci<strong>en</strong>ce 319:1235-1238.Fierer, N., Grandy, A.S., Six, J. and Paul, E.A. 2009. Search<strong>in</strong>g for unify<strong>in</strong>g pr<strong>in</strong>ciples <strong>in</strong> soil ecology. SoilBiology and Biochemistry 41: 1-8.Fordyce, F. 2005. Sel<strong>en</strong>ium defici<strong>en</strong>cy and toxicity <strong>in</strong> the <strong>en</strong>vironm<strong>en</strong>t. Chapter 15 <strong>in</strong>: Sel<strong>in</strong>us O. et al. (eds)Ess<strong>en</strong>tials of medical geology; impacts of the natural <strong>en</strong>vironm<strong>en</strong>t on public health. ElsevierAcademic Press, Burl<strong>in</strong>gton, MA.Galloway, J.N. 2008. Transformation of the nitrog<strong>en</strong> cycle: Rec<strong>en</strong>t tr<strong>en</strong>ds, questions and pot<strong>en</strong>tial solutions.Sci<strong>en</strong>ce 320: 889-992.Giurco, D. et al. 2010. Peak m<strong>in</strong>erals <strong>in</strong> Australia: A review of chang<strong>in</strong>g impacts and b<strong>en</strong>efits. F<strong>in</strong>al Report.Gordon, R.B. et al. 2006. Metal stocks and susta<strong>in</strong>ability. PNAS 103: 1209-1214.Gordon, R.B. et al. 2007. On the susta<strong>in</strong>ability of metal supplies: A response to Tilton and Lagos. ResourcesPolicy 32: 24-28.Graedel , T.E. and Van der Voet, E. (eds) 2010. L<strong>in</strong>kages of susta<strong>in</strong>ability. Strüngman orum Reports. MITPress, Cambridge.Graedel, T.E. et al. 2004. The multilevel cycle of anthropog<strong>en</strong>ic copper. Environm<strong>en</strong>tal Sci<strong>en</strong>ce andTechnology 38: 1253-1261.Graedel, T.E. et al. 2005. The multilevel cycle of anthropog<strong>en</strong>ic copper. Journal of Industrial Ecology 9: 67-90.Graedel, T.E. et al. 2011. What do we know about metal recycl<strong>in</strong>g rates? Journal of Industrial Ecology 15:355-366.Guo, J.H. et al. 2010. Significant acidification <strong>in</strong> major Ch<strong>in</strong>ese croplands. Sci<strong>en</strong>ceexpress, 11 February 1-4.Hagerberg, D. et al. 2011. Low conc<strong>en</strong>tration of copper <strong>in</strong>hibits colonization of soil by the arbuscularmycorrhizal fungus Glomus <strong>in</strong>traradices and changes the microbial community structure. MicrobialEcology 61: 844-852.Haug, A. et al. 2007. How to use the world’s scarce sel<strong>en</strong>ium resources effici<strong>en</strong>tly to <strong>in</strong>crease the sel<strong>en</strong>iumconc<strong>en</strong>tration <strong>in</strong> food. Microbial Ecology <strong>in</strong> Health and Disease 19: 209-228.Hikwa, D., Murata, M., Tagwira, F., Chiduza, C., Murwira, H., Muza L. and Wadd<strong>in</strong>gton S.R. 1998.Performance of gre<strong>en</strong> manure legumes on exhausted soils <strong>in</strong> northern Zimbabwe: A Soil FertilityNetwork trial. In: Wadd<strong>in</strong>gton S.R., Murwira, H., Kumw<strong>en</strong>da, J.D.T., Hikwa, D. and Tagwira, F. 54
(eds). Soil fertility research for maize-based farm<strong>in</strong>g systems <strong>in</strong> Malawi and Zimbabwe. Proceed<strong>in</strong>gsof the Soil Fertility Network results and plann<strong>in</strong>g workshop, 7-11 July 1997, Mutare, Zimbabwe. SoilFert Net and CIMMYT-Zimbabwe, Harare, Zimbabwe.H<strong>in</strong>s<strong>in</strong>ger, P. et al., 2009. Rhizosphere: biophysics, biogeochemistry and ecological rele<strong>van</strong>ce. Plant and Soil321: 117-152.Holloway, R.E. et al. 2008. Micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> Australian field crops. Chapter 3 <strong>in</strong> Alloway B.J.(ed.), Micronutri<strong>en</strong>t Defici<strong>en</strong>cies <strong>in</strong> Global Crop Production. Spr<strong>in</strong>ger Sci<strong>en</strong>ce.Huang, C. et al. 2000. Z<strong>in</strong>c defici<strong>en</strong>cy up-regulates expression of high-aff<strong>in</strong>ity phosphate transporter g<strong>en</strong>es <strong>in</strong>both phosphate–suffici<strong>en</strong>t and –defici<strong>en</strong>t barley roots. Plant Physiology 124: 415-422.Hvist<strong>en</strong>dahl, M. 2010. Ch<strong>in</strong>a’s push to add by subtract<strong>in</strong>g fertilizer. Sci<strong>en</strong>ce 327: 801.ILZRO 1975. Z<strong>in</strong>c <strong>in</strong> crop production. International Lead Z<strong>in</strong>c Research Organization, Inc., ResearchTriangle Park.IZA (International z<strong>in</strong>c association) 2011. Z<strong>in</strong>c is an Ess<strong>en</strong>tial Trace Elem<strong>en</strong>t for Humans, Animals andPlants. http://www.z<strong>in</strong>c.org/<strong>in</strong>fo/z<strong>in</strong>c_crops.Iy<strong>en</strong>gar, G.V. 1998. Reevaluation of the trace elem<strong>en</strong>t cont<strong>en</strong>t <strong>in</strong> refer<strong>en</strong>ce man. Radiation Physics andChemistry 4-6: 545-560.Jackson, M.J. et al. 2003. Marg<strong>in</strong>al dietary sel<strong>en</strong>ium <strong>in</strong>takes <strong>in</strong> the UK: are there functional consequ<strong>en</strong>ces?The Journal of Nutrition: 1557S.Jarstfer, A.G., Farmer-Kopp<strong>en</strong>ol, P. and Sylvia, D.M. 1998. Tissue magnesium and calcium affect arbuscularmycorrhyza developm<strong>en</strong>t and fungal reproduction. Mycorrhiza 7: 237-242.Jo, I.S. and Koh, M.H. 2004. Chemical changes <strong>in</strong> agricultural soils <strong>in</strong> Korea: data review and suggestedcountermeasures. Environm<strong>en</strong>tal Geochemistry and Health 26: 105-117.Ju, X.T. 2009. Reduc<strong>in</strong>g <strong>en</strong>vironm<strong>en</strong>tal risk by improv<strong>in</strong>g N managem<strong>en</strong>t <strong>in</strong> <strong>in</strong>t<strong>en</strong>sive Ch<strong>in</strong>ese agriculturalsystems. PNAS 106: 3041-3046.Kamanga, B.C.G., Shamudzarira, Z. and Wadd<strong>in</strong>gton, S.R. 2001. On-farm comparison of fertilizerapplication practices to assess Nitrog<strong>en</strong>-use effici<strong>en</strong>cy with maize <strong>in</strong> Zimuto communal area,Zimbabwe. Sev<strong>en</strong>th Eastern and Southern Africa Regional Maize Confer<strong>en</strong>ce, 11 th – 15 th February2001, pp. 519-529.Kang, B.T. and Os<strong>in</strong>ame, O.A. 1985. Micronutri<strong>en</strong>t problems <strong>in</strong> tropical Africa. Fertilizer Research 7: 131-150.Kayode, G. and Agboola, A. 1985. Macro- and micronutri<strong>en</strong>t effects on the yield and nutri<strong>en</strong>t conc<strong>en</strong>trationof maize (Zea mays L) <strong>in</strong> South Western Nigeria. Fertilizer Research 8: 129-135.Kesa<strong>van</strong>, P.C. and Swam<strong>in</strong>athan, M.S. 2008. Strategies and models for agricultural susta<strong>in</strong>ability <strong>in</strong>develop<strong>in</strong>g Asian countries. Philosophical transactions of the Royal Society B 363: 877-891Keyzer, Michiel, Wim <strong>van</strong> Ve<strong>en</strong>, Roelf Voortman, Jikun Huang, Huanguang Qiu, Gu<strong>en</strong>ther Fischer andTatiana Ermolieva. 2009. Nutri<strong>en</strong>t shortages and agricultural recycl<strong>in</strong>g options worldwide, withspecial refer<strong>en</strong>ce to Ch<strong>in</strong>a. Paper pres<strong>en</strong>ted at EAERE confer<strong>en</strong>ce, 23-27 June, VU UniversityAmsterdam.Kleijn, R. and <strong>van</strong> der Voet, E. 2010a. Resource constra<strong>in</strong>ts <strong>in</strong> a hydrog<strong>en</strong> economy based on r<strong>en</strong>ewable<strong>en</strong>ergy sources: An exploration. R<strong>en</strong>ewable and Susta<strong>in</strong>able Energy Reviews 14: 2784-2795.Kleijn, R. and <strong>van</strong> der Voet, E. 2010b. Scarcity: a story of l<strong>in</strong>kages of susta<strong>in</strong>ability. Essay for theconfer<strong>en</strong>ce: Enrich<strong>in</strong>g the Planet, Empower<strong>in</strong>g Europe – Optimis<strong>in</strong>g the use of natural resources for amore susta<strong>in</strong>able economy, The Hague, 26 &27 April.Kleijn, R. et al. 2011. Metal requirem<strong>en</strong>ts of low-carbon power g<strong>en</strong>eration. Energy (forthcom<strong>in</strong>g)Kogbe, J.O.S and Adediran, J.A. 2003. Influ<strong>en</strong>ce of nitrog<strong>en</strong>, phosphorus and potassium application on theyield of maize <strong>in</strong> de sa<strong>van</strong>na zone of Nigeria. African Journal of Biotechnology 2: 345-349.Köhler, A.R. et al. 2010. Material scarcity: a new ag<strong>en</strong>da for <strong>in</strong>dustrial design <strong>en</strong>g<strong>in</strong>eer<strong>in</strong>g. KnowledgeCollaboration & Learn<strong>in</strong>g for Susta<strong>in</strong>able Innovation ERSCP-EMSU confer<strong>en</strong>ce, Delft, TheNetherlands, October 25-29.Koppelaar, R.H.E.M. 2011. Model<strong>in</strong>g m<strong>in</strong>eral cost developm<strong>en</strong>ts; The case of copper, iron ore, tungst<strong>en</strong> andphosphorus. MSc thesis, Wag<strong>en</strong><strong>in</strong>g<strong>en</strong> University.Kramer, G.J. 2011. The accid<strong>en</strong>tal cathedral; Thoughts on rebuild<strong>in</strong>g the <strong>en</strong>ergy system. Inaugural address,18 March Leid<strong>en</strong>.Kumar, A. and Yadav, D.S. 2001. Long-term effects of fertilizers on the soil fertility and productivity of arice-wheat system. Journal of Agronomy and Crop sci<strong>en</strong>ce 186:47-54.Kupka, R., Msamanga, G.I., Spiegelman, D., Morris, SW., Mugusi, F., Hunter, D.J.,. Fawzi, W.W., 2004,Sel<strong>en</strong>ium status is associated with accelerated HIV disease progression among HIV-1 <strong>in</strong>fectedpregnant wom<strong>en</strong> <strong>in</strong> Tanzania. Journal of Nutrition 134: 2556-2560.Ladha, J.K. et al., 2003. How ext<strong>en</strong>sive are yield decl<strong>in</strong>es <strong>in</strong> long-term rice-wheat experim<strong>en</strong>ts <strong>in</strong> Asia? FieldCrops Research 81: 159-180. 55
Lévy, J. et al., 2004. A putative Ca 2+ and calmodul<strong>in</strong>-dep<strong>en</strong>d<strong>en</strong>t prote<strong>in</strong> k<strong>in</strong>ase required for bacterial andfungal symbioses. Sci<strong>en</strong>ce 303: 1361-1364.Li, B.Y. et al. 2007. Soil micronutri<strong>en</strong>t availability to crops as affected by long-term <strong>in</strong>organic and organicfertilizer applications. Soil & Tillage Research 96: 166-173.Lifset, R.J. et al. 2002. Where has all the copper gone: The stocks and flows project, Part 1. The Journal ofthe M<strong>in</strong>erals, metal, and materials society October: 21-26.Lisuma, J.B. et al2006. Maize yield and nutri<strong>en</strong>t uptake after micronutriënt application on a volcanic soil.Agronomy Journal 98: 402-406.L<strong>in</strong>, B. and Li, J.K. (1997) Problems and strategies of fertilizer <strong>in</strong> Ch<strong>in</strong>a, Phosphorus Fertilizer andLiu, Z. 1991. The agricultural chemistry and micronutri<strong>en</strong>ts (pp. 93–232). Beij<strong>in</strong>g: Agricultural Publisher ofCh<strong>in</strong>a.Liu, Z. 1993. Human Nutrition and Social Nutrition (pp.421–425). Beij<strong>in</strong>g: Light Industrial Publishers ofCh<strong>in</strong>a.Liu, Z. 1994. The soil z<strong>in</strong>c distribution <strong>in</strong> Ch<strong>in</strong>a. Ch<strong>in</strong>ese Agricultural Sci<strong>en</strong>ce 27: 30–37.Lyons, G., Stangoulis, J., Graham, R., 2003. Nutriprev<strong>en</strong>tion of disease with high-sel<strong>en</strong>ium wheat. Journal ofAustralasian College of Nutritional and Environm<strong>en</strong>tal Medic<strong>in</strong>e 22: 3-9.Lyons G H, Judson G J, Ortiz-Monasterio I, G<strong>en</strong>c Y, Stangoulis J C R, Graham R D, 2005, Sel<strong>en</strong>ium <strong>in</strong>Australia: Sel<strong>en</strong>ium status and biofortification of wheat for better health. Journal of Trace Elem<strong>en</strong>ts <strong>in</strong>Medic<strong>in</strong>e and Biology 19: 75-82.Ma, L. et al. Model<strong>in</strong>g nutri<strong>en</strong>t flows <strong>in</strong> the food cha<strong>in</strong> of Ch<strong>in</strong>a. Journal of Environm<strong>en</strong>tal Quality 39: 1279-1289.Ma, W., Ma, L. Li, J., Wang, F, Sisák, I. and Zhang, F. 2011. Phosphorus flows and use effici<strong>en</strong>cies <strong>in</strong>production and consumption of wheat, rice, and maize <strong>in</strong> Ch<strong>in</strong>a. Chemosphere 84: 814-821.Ma, Y. et al., 2009. Phosphorus accumulation and depletion <strong>in</strong> whaet-maize cropp<strong>in</strong>g systems: Model<strong>in</strong>g andaccumulation. Field Crops Research 110: 207-212.Macdonald, G.K. et al.2011. Agronomic phosphorus imbalances across the world’s croplands. PNAS 108:3086-3091.Mäder, P. et al. 2000. Arbuscular micorrhizea <strong>in</strong> a long-term field trial compar<strong>in</strong>g low-<strong>in</strong>put (organic,biological) and high-<strong>in</strong>put (conv<strong>en</strong>tional) farm<strong>in</strong>g systems <strong>in</strong> a crop rotation. Biology and Fertility ofSoils 31: 150-156.Markert, B. 1992. Establish<strong>in</strong>g of ‘refer<strong>en</strong>ce plant’ for <strong>in</strong>organic characterization of differ<strong>en</strong>t plant species bychemical f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g. Water, Air and Soil Pollution 64: 533-538.Marschner, 1995. M<strong>in</strong>eral nutrition of higher plants. Academic Press, London.Marvasti, A. 1996. Reserve characteristics and m<strong>in</strong><strong>in</strong>g costs; An empirical study of the phosphate <strong>in</strong>dustry.Environm<strong>en</strong>tal and Resource Economics 7: 357-373.Mbagwu, J.S.C., Lal, R. and Scott, T.W. 1984. Effects of desurfac<strong>in</strong>g of Alfisols and Ultisols <strong>in</strong> SouthernNigeria: 1. Crop performance. Soil Sci<strong>en</strong>ce Society of America Journal 48: 823-833.McK<strong>in</strong>sey, 2011. Resource revolution: Meet<strong>in</strong>g the world’s <strong>en</strong>ergy, materials, food and water needs.McK<strong>in</strong>sey & Company.Mitchell, R.L. 1972. Trace elem<strong>en</strong>ts <strong>in</strong> soils and factors that affect their availability. Geological Society ofAmerica Bullet<strong>in</strong> 83: 1069-1076.Morley, C., Snowd<strong>en</strong>, V. and Day, D. 1999. F<strong>in</strong>ancial impact of resource/reserve uncerta<strong>in</strong>ty. The Journal ofthe South African Institute of M<strong>in</strong><strong>in</strong>g and Metallurgy, Oct.-Dec.: 293-301.Müller, O. et al. 2003. Effect of z<strong>in</strong>c supplem<strong>en</strong>tation on growth <strong>in</strong> West-African childr<strong>en</strong>: a randomizeddouble-bl<strong>in</strong>d placebo-controlled trial <strong>in</strong> Rural Burk<strong>in</strong>a Faso. International Journal of Epidemiology32: 1098-1102.Neumayer, E. 2000. Scarce or abundant? The economics of resource availability. Journal of EconomicSurveys 14: 307-335.Neves, M.F. et al. 2011. Food and fuel: The example of Brazil. Wag<strong>en</strong><strong>in</strong>g<strong>en</strong> Academic PublishersWag<strong>en</strong><strong>in</strong>g<strong>en</strong>.NRC 2008. M<strong>in</strong>erals, critical m<strong>in</strong>erals, and the U.S. Economy. The National Academic press, Wash<strong>in</strong>gton,D.C.Nubé, M. 2008. The Asian <strong>en</strong>igma: predisposition for low adult BMI among people of South Asian desc<strong>en</strong>t.Public Health Nutrition 12: 507-516.Nubé, M. and Voortman, R.L. 2011. Human micronutriënt defici<strong>en</strong>cies: L<strong>in</strong>kages with micronutriëntdefici<strong>en</strong>cies <strong>in</strong> soils, crops and animals. In: Thompson, B. and Amoroso, L. (eds) Combat<strong>in</strong>gmicronutri<strong>en</strong>t defici<strong>en</strong>cies: Food-based approaches pp. 289-311. FAO, Rome.Nwoke, O.C., Vanlauwe, B., Diels, J., Sang<strong>in</strong>ga, N. and Osonubi, O. 2004. The distribution of phosphorusfractions and desorption characteristics of some soils <strong>in</strong> the moist sa<strong>van</strong>na zone of West Africa.Nutri<strong>en</strong>t Cycl<strong>in</strong>g <strong>in</strong> Agroecosystems 69: 127-141. 56
Oj<strong>en</strong>iyi, S.O. and Kayode, G.O.1993. Response of maize to copper and sulphur <strong>in</strong> tropical regions. Journalof Agricultural Sci<strong>en</strong>ce 120: 295-299.Oldfield, J.E. 1999. Sel<strong>en</strong>ium World Atlas. Sel<strong>en</strong>ium Tellurium De. Ass., Grimberg<strong>en</strong>, Belgium.Oldfield, J.E. 2002. A brief history of sel<strong>en</strong>ium research: From alkali disease to prostrate cancer (frompoison to prev<strong>en</strong>tion) American Society of Animal Sci<strong>en</strong>ce.Pathak, P. et al. 2004. Preval<strong>en</strong>ce of multiple micronutri<strong>en</strong>t defici<strong>en</strong>cies amongst pregnant wom<strong>en</strong> <strong>in</strong> a ruralarea of Haryana. Indian Journal of Pediatrics 71: 1007-14.PBL. 2011. Scarcity <strong>in</strong> a sea of pl<strong>en</strong>ty? Global resource scarcities and policies <strong>in</strong> the European Union andThe Netherlands. Netherlands Environm<strong>en</strong>tal Assessm<strong>en</strong>t Ag<strong>en</strong>cy, The Hague.Plachy, J. 2004. Z<strong>in</strong>c recycl<strong>in</strong>g <strong>in</strong> the United States <strong>in</strong> 1998. USGS Circular 1196-D..Price, Waterhouse, Coopers 2011. M<strong>in</strong>erals and metals scarcity <strong>in</strong> manufactur<strong>in</strong>g: a tick<strong>in</strong>g time bombQ<strong>in</strong>, Y. et al . 2009. Dietary <strong>in</strong>take of z<strong>in</strong>c <strong>in</strong> the population of Jiangsu prov<strong>in</strong>ce, Ch<strong>in</strong>a. Asia and PacificJournal of Cl<strong>in</strong>ical Nutrition 18: 193-199.Rauch, J. and Pacyna, J.M. 2009. Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. GlobalBiochemical Cycles 23: 1-16.Rauch, J.N. and Graedel, T.E. 2007. Earth’s anthrobiochemical copper cycle. Global Biochemical Cycles 21:1-13.Rayman, M P, 2000. The importance of sel<strong>en</strong>ium to human health. Lancet 356: 233241.Rayman, M.P., 2002. The argum<strong>en</strong>t for <strong>in</strong>creas<strong>in</strong>g sel<strong>en</strong>ium <strong>in</strong>take. Proceed<strong>in</strong>gs of the Nutrition Society 61:203-215.Reisberman, F.R. 2006. Water scarcity; fact or fiction? Agricultural Water Managem<strong>en</strong>t 80: 5-22.Rockström, J., Lannerstad, M. and Falk<strong>en</strong>mark, M. 2007. Assess<strong>in</strong>g the water chall<strong>en</strong>ge of a new gre<strong>en</strong>revolution <strong>in</strong> develop<strong>in</strong>g countries. PNAS 104: 6253-6260.Rodel, M.G.W. and Hopley, J.D.H. 1973. Investigations <strong>in</strong>to systems of farm<strong>in</strong>g suitable for tribal trust land.Rhodesia Agricultural Journal 70: 1-18.Ros<strong>en</strong>au-Tornow, D. et al. 2009. Assess<strong>in</strong>g the long-term supply risks for m<strong>in</strong>eral raw materials-a comb<strong>in</strong>edevaluation of past and future tr<strong>en</strong>ds. Resources Policy 34: 161-175.Rudnick, R.L. and Gao, S. 2003. Composition of the cont<strong>in</strong><strong>en</strong>tal crust. In: Rudnick, R.L. (ed.) The crust:Treatise on Geochemistry 3. Elsevier.Samuel, F.O. et al. 2010. Preval<strong>en</strong>ce of z<strong>in</strong>c defici<strong>en</strong>cy among primary school childr<strong>en</strong> <strong>in</strong> a poor peri-urban<strong>in</strong>formal settlem<strong>en</strong>t <strong>in</strong> South Africa. Health SA Gesondheid 15 (1), 6 pages.Sang<strong>in</strong>ga, N., Lyasse, O. and S<strong>in</strong>gh, B.B. 2000. Phosphorus use effici<strong>en</strong>cy and nitrog<strong>en</strong> balance of cowpeabreed<strong>in</strong>g l<strong>in</strong>es <strong>in</strong> a low P soil of the derived sa<strong>van</strong>na zone <strong>in</strong> West Africa. Plant and Soil 220: 119-128.Sanik, J. et al. 1952. The effect of the calcium-magnesium ratio on the solubility and availability of plantnutri<strong>en</strong>ts. Soil Society of America Journal 16: 263-267.Schodde, R. 2010a. Global discovery tr<strong>en</strong>ds 1950-2009: What, where and who found them. Pres<strong>en</strong>tation atpanel discussion: Exploration exp<strong>en</strong>ditures are <strong>in</strong>creas<strong>in</strong>g, but discoveries not. Why? PDAC 7 MarchToronto.Schodde, R. 2010b. The key drivers beh<strong>in</strong>d resource growth: an analysis of the copper <strong>in</strong>dustry over the last100 years. Pres<strong>en</strong>tation at MEMS confer<strong>en</strong>ce m<strong>in</strong>eral and metal markets, 3 March, Pho<strong>en</strong>ix.Schüler, D. et al. 2011. Study on rare earths and their recycl<strong>in</strong>g. F<strong>in</strong>al report for the Gre<strong>en</strong>s/EFA Group <strong>in</strong>the European Parliam<strong>en</strong>t. Institute for Applied Ecology, Darmstadt.Shrimpton, R. and Gross, R. 2005. Z<strong>in</strong>c defici<strong>en</strong>cy: what are the most appropriate <strong>in</strong>terv<strong>en</strong>tions? BritishMedical Journal 330: 347-9.Sillanpää, M. 1982. Micronutri<strong>en</strong>ts and the nutri<strong>en</strong>t status of soils: a global study. FAO Soils Bullet<strong>in</strong> 48.FAO, Rome.S<strong>in</strong>ger, D.A. 2010. Progress <strong>in</strong> <strong>in</strong>tegrated quantitative m<strong>in</strong>eral resource assessm<strong>en</strong>ts. Ore Geology Reviews38: 242-250.S<strong>in</strong>gh, A.K. 2011. Role of micronutri<strong>en</strong>ts <strong>in</strong> <strong>en</strong>sur<strong>in</strong>g food security <strong>in</strong> India. Paper pres<strong>en</strong>ted at ‘Global soilfertility; the role of next g<strong>en</strong>eration smart fertilizers’. Sem<strong>in</strong>ar, Wag<strong>en</strong><strong>in</strong>g<strong>en</strong>, 21 march, 2011.S<strong>in</strong>gh, M.V. 2008. Micronutri<strong>en</strong>t defici<strong>en</strong>cies <strong>in</strong> crops and soils <strong>in</strong> India. Chapter 4 <strong>in</strong> Alloway B.J. (ed.),Micronutri<strong>en</strong>t Defici<strong>en</strong>cies <strong>in</strong> Global Crop Production. Spr<strong>in</strong>ger Sci<strong>en</strong>ce.S<strong>in</strong>gh, M.V. 2009. Micronutri<strong>en</strong>t nutritional problems <strong>in</strong> soils of India and improvem<strong>en</strong>t for human andanimal health. Indian Journal of Fertilizers 4: 11-16, 19-26, 56.Smal<strong>in</strong>g, E.M.A. and Janss<strong>en</strong>, B.H. 1993. Calibarat<strong>in</strong>g QUEFTS, a model predict<strong>in</strong>g nutri<strong>en</strong>t uptake andyields from chemical soil fertility <strong>in</strong>dices. Geoderma 59: 21-44.Smal<strong>in</strong>g, E.M.A., Stoorvogel, J.J. and W<strong>in</strong>dmeijer, P.N. 1993. Calculat<strong>in</strong>g soil nutri<strong>en</strong>t balances <strong>in</strong> Africa atdiffer<strong>en</strong>t scales II. District scale. Fertilizer Research 35: 237-250.Smit B. et al. 2009. Phosphorus <strong>in</strong> Agriculture: global resources, tr<strong>en</strong>ds and developm<strong>en</strong>ts. Plant ResearchInternational, Wag<strong>en</strong><strong>in</strong>g<strong>en</strong> UR, Report 282. 57
Snapp, S.S., Blackie, M.J. and Dono<strong>van</strong>, C. 2003. Realign<strong>in</strong>g research and ext<strong>en</strong>sion to focus on farmers’constra<strong>in</strong>ts and opportunities. Food Policy 28: 349-363.Snyder, C.S. et al. 2007. Gre<strong>en</strong>house gas emissions from cropp<strong>in</strong>g systems and the <strong>in</strong>flu<strong>en</strong>ce of fertilizermanagem<strong>en</strong>t. A literature review. International Plant Nutrition Institute, Norcross, Georgia, USA.Sohn, I. 2006. Long-term projections of non-fuel m<strong>in</strong>erals: We were wrong, but why? Resources Policy 30:259-284.Ste<strong>in</strong>field, H. et al. 2006. Livestock’s long shadow; <strong>en</strong>vironm<strong>en</strong>tal issues and options. FAO, Rome.Stoorvogel, J.J., Smal<strong>in</strong>g, E.M.A. and Janss<strong>en</strong>, B.H. 1993. Calculat<strong>in</strong>g soil nutri<strong>en</strong>t balances <strong>in</strong> Africaat differ<strong>en</strong>t scales. I: Supra national scale. Fertilizer Research 35: 227-235.Sunde, R.A. 2006. Sel<strong>en</strong>ium. In: Bowman, B.A and Russell, R.M. (eds) Pres<strong>en</strong>t knowledge <strong>in</strong> nutrition. 9 thed. ILSI Press, Wash<strong>in</strong>gton D.C.Svedberg, P. and Tilton, J.E. 2005. The Real, Real price of nonr<strong>en</strong>ewable resources: Copper 1870-2000.World developm<strong>en</strong>t 34: 501-519.Tan, J. A. (Ed.) 2004. Geological <strong>en</strong>vironm<strong>en</strong>t and health. Beij<strong>in</strong>g, Ch<strong>in</strong>a: Chemical Industry Press.Tan, J., Zhu, W., Wang, W. et al. 2002. Sel<strong>en</strong>ium <strong>in</strong> soil and <strong>en</strong>demic diseases <strong>in</strong> Ch<strong>in</strong>a. Sci<strong>en</strong>ce of the TotalEnvironm<strong>en</strong>t 284:227-35.Tilman, D. et al. 2009. B<strong>en</strong>eficial biofuels-The food, <strong>en</strong>ergy and <strong>en</strong>vironm<strong>en</strong>t trilemma. Sci<strong>en</strong>ce 325: 270-271.Tilton, J.E. 2001. Depletion and the long-run availability of m<strong>in</strong>eral commodities. M<strong>in</strong><strong>in</strong>g, m<strong>in</strong>erals andsusta<strong>in</strong>able developm<strong>en</strong>t No 14, International Institute for Environm<strong>en</strong>t and Developm<strong>en</strong>t, Londonand World Bus<strong>in</strong>ess Council for Susta<strong>in</strong>able Developm<strong>en</strong>t, G<strong>en</strong>eva.Tilton, J.E. 2002. On borrowed time? Assess<strong>in</strong>g the threat of m<strong>in</strong>eral depletion. S<strong>en</strong>ate dist<strong>in</strong>guished lecture(based on a book with the same title).Tilton, J.E. 2004. Determ<strong>in</strong><strong>in</strong>g the optimal tax on m<strong>in</strong><strong>in</strong>g. Natural Resources Forum 28: 144-149.Tilton, J.E. and Lagos, G. 2007. Assess<strong>in</strong>g the long-run availability of copper. Resources Policy 32: 19-23.Tirol-Padre, A. and Ladha, J.K. 2006. Integrat<strong>in</strong>g rice and wheat productivity tr<strong>en</strong>ds us<strong>in</strong>g the SASmixed=procedure and meta analysis. Field Crops research 95: 75-88.Tra<strong>in</strong>er, F.E. 1982. Pot<strong>en</strong>tially recoverable resources; How recoverable? Resources Policy, March: 41-52.Udo de Haes, H.A., Jans<strong>en</strong>, J.L.A., <strong>van</strong> der Weijd<strong>en</strong>, W.J. and Smit, A.L. 2009. Fosfaat – <strong>van</strong> te veel naartekort. Stuurgroep Technology Assessm<strong>en</strong>t <strong>van</strong> het M<strong>in</strong>isterie <strong>van</strong> LNV. Utrecht.UNEP 2011. Recycl<strong>in</strong>g rates of metals, A status report. UNEP International Resource Panel, Paris.UNICEF 2006. The state of the world’s childr<strong>en</strong>. UNICEF, New York.Voortman, R.L. And Spiers, B. 2010. The use of local ecological knowledge and bio-<strong>in</strong>dication for thedevelopm<strong>en</strong>t of effective fertilizer Technologies; the case of Angonia district, Mozambique. In:Voortman, R.L. Explorations <strong>in</strong>to African land resource ecology; on the chemistry betwe<strong>en</strong> soils,plants and fertilizers (PhD thesis). Gildepr<strong>in</strong>t Drukkerij<strong>en</strong>, Enschede.Voortman, R.L. 2010. On the orig<strong>in</strong> of low levels of fertilizer use <strong>in</strong> Africa; ignorant farmers, unruly soils or<strong>in</strong>appropriate technologies. In: Voortman, R.L. Explorations <strong>in</strong>to African land resource ecology; onthe chemistry betwe<strong>en</strong> soils, plants and fertilizers (PhD thesis). Gildepr<strong>in</strong>t Drukkerij<strong>en</strong>, Enschede.Voortman, R.L., B.G.J.S. Sonneveld and M.A. Keyzer (2000) ‘African land ecology; opportunities andconstra<strong>in</strong>ts for agricultural developm<strong>en</strong>t.’ CID work<strong>in</strong>g paper No. 37, C<strong>en</strong>tre for InternationalDevelopm<strong>en</strong>t, Harvard University, Cambridge, MA. (a revised and abbreviated version is published <strong>in</strong>Ambio 32: 367-373 (2003)).Wäger, P and Class<strong>en</strong>, M. 2006. Metal availability and supply: the many facets of scarcity. 1 st InternationalSymposium on Materials, M<strong>in</strong>erals and Metal Ecology, Cape Town, Soth Africa.Wang, D., Grieve, C.M., Suarez, D.L., 2005. Composition of irrigation water sal<strong>in</strong>ity affects growthcharacteristics and uptake of sel<strong>en</strong>ium and salt ions by soybean. Journal of Plant Nutrition 28: 1073-1088.Wang, D. et al. 2010. Effect of agricultural practices on soil acidification <strong>in</strong> acid precipitation area. Paperpres<strong>en</strong>ted at 19 th World Congress of Soil Sci<strong>en</strong>ce, Soil Solutions for a Chang<strong>in</strong>g World. 1-6 August,Brisbane, Australia.Weil, M. et al. 2009. How to assess the availability of resources for new Technologies? Case study: Lithiuma strategic metal for emerg<strong>in</strong>g technologies. Revue de Métallurgie 106: 554-558.Weil, R.R. and Mughogho, S.P. 2000. Sulfur nutrition of Maize <strong>in</strong> four regions of Malawi. AgronomyJournal 92: 649-656.W<strong>en</strong>dt, J.W. and Jones, R.B. 1997. Evaluation of the efficacy of Malawi Tundulu phosphate rock for maizeproduction. Nutri<strong>en</strong>t Cycl<strong>in</strong>g <strong>in</strong> Agroecosystems 48: 161-170.W<strong>en</strong>dt, J.W. and Rijpma, J. 1997. Sulphur, z<strong>in</strong>c, and boron defici<strong>en</strong>cies <strong>in</strong> the Dedza Hills and Thiwi-Lifidziregions <strong>in</strong> Malawi. Tropical Agriculture 74: 81-89. 58
West, J. 2011. Decreas<strong>in</strong>g metal ore grades; Are they really be<strong>in</strong>g driv<strong>en</strong> by the depletion of high-gradedeposits? Journal of Industrial Ecology 15: 165-168.Woods, J. et al. 2010. Energy and the food system. Philosophical Transactions of the Royal Society B 365:2991-3006.Wopereis, M.C.S., Tamélokpo, A., Ezui, K., Gnakpénou, D., Fofana, B. and Breman, H. 2006. M<strong>in</strong>eralfertilizer managem<strong>en</strong>t of maize on farmer fields differ<strong>in</strong>g <strong>in</strong> organic <strong>in</strong>puts <strong>in</strong> the West Africansa<strong>van</strong>na. Field Crops Research 96: 355-362.World Bank Group 2006. The outlook for metal markets; Background paper prepared for G20 deputiesmeet<strong>in</strong>g Sydney. The World Bank Group, Wash<strong>in</strong>gton.Wouters, H. and Bol, D. 2009. Material scarcity; an M2i study. Materials Innovation Institute Foundation,Delft.Xie, W., Wang, G. and Guo, H. 2007. Effects of nitrog<strong>en</strong> fertilization strategies on nitrog<strong>en</strong> use effici<strong>en</strong>cy <strong>in</strong>physiology, recovery and agronomy and redistribution of dry matter accumulation and nitrog<strong>en</strong>accumulation <strong>in</strong> two typical rice cultivars <strong>in</strong> Zhejiang, Ch<strong>in</strong>a. Journal of Zhejiang UniversitySCIENCE B: 208-216.Yang, X-E., Ch<strong>en</strong>, W-R. and F<strong>en</strong>g, Y. 2007. Improv<strong>in</strong>g human micronutri<strong>en</strong>t nutrition throughbiofortification <strong>in</strong> the soil-plant system: Ch<strong>in</strong>a as a case study. Environm<strong>en</strong>tal Geochemistry andHealth 29: 413-28.Yaroshevskii, A.A. 2007. On the reliability of estimates of the average chemical composition of the uppercont<strong>in</strong><strong>en</strong>tal crust and river discharge. Geochemistry International 11: 1144-1145.Young, A. 1999. is there really spare land? A critique of estimates of available cultivable land <strong>in</strong> develop<strong>in</strong>gcountries. Environm<strong>en</strong>t, Developm<strong>en</strong>t and Susta<strong>in</strong>ability 1: 3-18.Zachara, B.A. and Pilecki, A., 2000. Sel<strong>en</strong>ium conc<strong>en</strong>tration <strong>in</strong> the milk of breast-feed<strong>in</strong>g mothers and itsgeographic distribution. Environm<strong>en</strong>tal Health Perspectives 108: 1043-46.Zhang, H. et al. 2010. Rice yield, potassium uptake and appar<strong>en</strong>t balance under long-term fertilization <strong>in</strong>rice-based cropp<strong>in</strong>g systems <strong>in</strong> southern Ch<strong>in</strong>a. Nutri<strong>en</strong>t Cycl<strong>in</strong>g <strong>in</strong> Agroecosystems 88: 341-349.Zhou, J. et al. 2001. Nutri<strong>en</strong>t cycl<strong>in</strong>g and managem<strong>en</strong>t <strong>in</strong> differ<strong>en</strong>t agro-eco regions of Ch<strong>in</strong>a. In Horst, W.J.et al. (eds) Plant nutrition-Food security and susta<strong>in</strong>ability of agro-ecosystems. Kluwer AcademicPublishers.Zhu, Z.L. and Ch<strong>en</strong>, D.L. 2002. Nitrog<strong>en</strong> fertilizer use <strong>in</strong> Ch<strong>in</strong>a-Contributions to food production, impactson the <strong>en</strong>vironm<strong>en</strong>t and best managem<strong>en</strong>t strategies. Nutri<strong>en</strong>t Cycl<strong>in</strong>g <strong>in</strong> Agroecosytems 63: 117-127Z<strong>in</strong>gore, S., Murwira, H.K., Delve, R.J. and Giller, K.E. 2007. Soil type, managem<strong>en</strong>t history and curr<strong>en</strong>tresource allocation: Three dim<strong>en</strong>sions regulat<strong>in</strong>g variability <strong>in</strong> crop productivity on Africansmallholder farms. Field Crops Research 101: 296-305.Zou, C., Gao, X., Shi, R., Fan, X. and Zhang, F. 2008 Micronutri<strong>en</strong>t Defici<strong>en</strong>cies <strong>in</strong> Crop Production <strong>in</strong>Ch<strong>in</strong>a, Chapter 5 <strong>in</strong> Alloway B.J. (ed.), Micronutri<strong>en</strong>t Defici<strong>en</strong>cies <strong>in</strong> Global Crop Production.Spr<strong>in</strong>ger Sci<strong>en</strong>ce. 59
Suppletie <strong>van</strong> micronutriënt<strong>en</strong> uit de mijnbouwTon Baste<strong>in</strong> <strong>en</strong> Thijm<strong>en</strong> <strong>van</strong> BreeTNO, Van Mourik Broekmanweg 6, Delft (ton.baste<strong>in</strong>@tno.nl) 61
Inhoud1 Introductie 652 M<strong>in</strong>eraalschaarste 672.1 Reserves: e<strong>en</strong> statische of dynamische grootheid? 672.2 Wat maakt m<strong>in</strong>eraalschaarste zo urg<strong>en</strong>t? 682.3 Wat zijn de kritieke m<strong>in</strong>eral<strong>en</strong>? 703 Koper: aanbod, vraag, ontwikkel<strong>in</strong>g<strong>en</strong> 733.1 Aanbod: Voorrad<strong>en</strong>, Jaarlijkse productie <strong>en</strong> productielocaties 733.2 Vraag: Gebruik <strong>en</strong> applicaties <strong>van</strong> koper 753.3 Ontwikkel<strong>in</strong>g<strong>en</strong> 763.3.1 Toch koperschaarste? 763.3.2 Afnem<strong>en</strong>de ertsgraad <strong>en</strong> to<strong>en</strong>em<strong>en</strong>de <strong>en</strong>ergiekost<strong>en</strong> 784 Z<strong>in</strong>k: aanbod, vraag, ontwikkel<strong>in</strong>g<strong>en</strong> 814.1 Aanbod: voorrad<strong>en</strong>, jaarlijkse productie <strong>en</strong> productielocaties 814.2 Vraag: huidig gebruik 824.3 Ontwikkel<strong>in</strong>g<strong>en</strong>: prijz<strong>en</strong> z<strong>in</strong>k <strong>en</strong> toekomst verwacht<strong>in</strong>g 835 Andere bronn<strong>en</strong>: recycl<strong>in</strong>g <strong>en</strong> micronutriënt<strong>en</strong> uit afvalwater? 856 De status <strong>van</strong> <strong>en</strong>kele andere micronutriënt<strong>en</strong>: B, Mn, Se, Mo 877 Conclusies 89Literatuur 91Bijlage : Sam<strong>en</strong>vatt<strong>in</strong>g risicogegev<strong>en</strong>s micronutriënt<strong>en</strong> 92 63
1 IntroductieHet Platform Landbouw, Innovatie & Sam<strong>en</strong>lev<strong>in</strong>g (adviesorgaan op het gebied <strong>van</strong>landbouw voor het m<strong>in</strong>isterie <strong>van</strong> EL&I) vraagt zich af of er sprake is, nu of <strong>in</strong> detoekomst, <strong>van</strong> mogelijke schaarste <strong>van</strong> micronutriënt<strong>en</strong> <strong>en</strong> wat de consequ<strong>en</strong>ties daar<strong>van</strong>zijn voor de landbouw <strong>en</strong> de <strong>voedsel</strong>voorzi<strong>en</strong><strong>in</strong>g (vrij naar de website www.platformlis.nl).Uite<strong>in</strong>delijk gaat het daarbij om de vraag <strong>in</strong> hoeverre tekort<strong>en</strong> <strong>van</strong> micronutriënt<strong>en</strong> <strong>in</strong> delandbouw kunn<strong>en</strong> word<strong>en</strong> wegg<strong>en</strong>om<strong>en</strong> door suppletie <strong>van</strong> deze nutriënt<strong>en</strong>.Om deze vraag te kunn<strong>en</strong> beantwoord<strong>en</strong> is e<strong>en</strong> beeld <strong>van</strong> de aanbod- <strong>en</strong> de vraagzijd<strong>en</strong>odig. In deze bijdrage zal word<strong>en</strong> <strong>in</strong>gegaan op de supply-zijde <strong>van</strong> de (m<strong>in</strong>erale)micronutriënt<strong>en</strong> die <strong>en</strong>erzijds <strong>van</strong> belang zijn voor de landbouw <strong>en</strong> waar<strong>van</strong> anderzijds kanword<strong>en</strong> vermoed dat op termijn schaarste zou kunn<strong>en</strong> ontstaan (met als gevolglever<strong>in</strong>gsproblem<strong>en</strong>, dan wel hoge prijsvolatiliteit). De beschouw<strong>in</strong>g richt zich daarbijhoofdzakelijk op de elem<strong>en</strong>t<strong>en</strong> koper (Cu) <strong>en</strong> z<strong>in</strong>k (Zn). 65
2 M<strong>in</strong>eraalschaarste2.1 Reserves: e<strong>en</strong> statische of dynamische grootheid?<strong>Schaarste</strong> is op zich e<strong>en</strong> economisch f<strong>en</strong>ome<strong>en</strong> waar prijsvorm<strong>in</strong>g <strong>in</strong> onze sam<strong>en</strong>lev<strong>in</strong>gmede op gebaseerd is: schaarste aan goeder<strong>en</strong> <strong>en</strong> di<strong>en</strong>st<strong>en</strong> veroorzak<strong>en</strong> e<strong>en</strong> hogere prijs <strong>en</strong>daardoor aan de <strong>en</strong>e kant e<strong>en</strong> rem op consumptie <strong>en</strong> aan de andere kant stimulans voor e<strong>en</strong><strong>in</strong>novatieve zoektocht naar alternatiev<strong>en</strong> om het gebruik <strong>van</strong> het schaarse goed teverm<strong>in</strong>der<strong>en</strong>, <strong>en</strong> naar nieuwe bronn<strong>en</strong> (bijvoorbeeld andere, diepere mijn<strong>en</strong>, ofm<strong>in</strong>eraalw<strong>in</strong>n<strong>in</strong>g op zee). Als maat voor schaarste wordt <strong>in</strong> bepaalde bronn<strong>en</strong> deverhoud<strong>in</strong>g tuss<strong>en</strong> de huidige productie <strong>en</strong> de huidige (bek<strong>en</strong>de) reserves g<strong>en</strong>om<strong>en</strong> ( het‘statische’ wereldbeeld). Dit verhoud<strong>in</strong>gsgetal is echter <strong>van</strong>wege de dynamiek <strong>in</strong> demijnbouwwereld niet maatgev<strong>en</strong>d voor het aantal jar<strong>en</strong> totdat e<strong>en</strong> materiaal ’op’ is.De aardkorst bevat onnoemelijke hoeveelhed<strong>en</strong> m<strong>in</strong>eral<strong>en</strong>: het is echter de vraag wat ope<strong>en</strong> gegev<strong>en</strong> mom<strong>en</strong>t economisch <strong>en</strong> (dus ook) technologisch haalbaar is om te w<strong>in</strong>n<strong>en</strong>. De<strong>in</strong>schatt<strong>in</strong>g <strong>en</strong> rapportage <strong>van</strong> de hoeveelheid aanwezige <strong>en</strong> w<strong>in</strong>bare erts<strong>en</strong> wordt over hetalgeme<strong>en</strong> aan de hand <strong>van</strong> onderstaand schema weergegev<strong>en</strong> (zie Figuur 1). Hier<strong>in</strong> is de‘reserve’ dat deel <strong>van</strong> de totale ‘resources’ dat geologisch gedemonstreerd is <strong>en</strong> dat –op hetmom<strong>en</strong>t <strong>van</strong> rapportage- commercieel te w<strong>in</strong>n<strong>en</strong> is. Afhankelijk dus <strong>van</strong> de economische,politieke <strong>en</strong> technologische randvoorwaard<strong>en</strong> kan de reserve <strong>van</strong> grootte verander<strong>en</strong>. Deresources zijn de geïd<strong>en</strong>tificeerde (i.e. geologisch vastgestelde) m<strong>in</strong>eraalbronn<strong>en</strong>, die <strong>van</strong>economisch belang kunn<strong>en</strong> word<strong>en</strong> als de omstandighed<strong>en</strong> verander<strong>en</strong> <strong>en</strong> die <strong>in</strong> pr<strong>in</strong>cipe <strong>in</strong>voldo<strong>en</strong>de hoeveelheid <strong>en</strong> conc<strong>en</strong>tratie voorkom<strong>en</strong> om technologisch gewonn<strong>en</strong> te kunn<strong>en</strong>word<strong>en</strong> (<strong>en</strong> dan ‘gepromoveerd’ word<strong>en</strong> tot ‘reserves’.)De ‘hypothetical’ <strong>en</strong> ‘speculative’ voorrad<strong>en</strong> bevatt<strong>en</strong> geschatte hoeveelhed<strong>en</strong> die nog tewe<strong>in</strong>ig onderzocht zijn om het economisch pot<strong>en</strong>tieel er<strong>van</strong> <strong>in</strong> te kunn<strong>en</strong> schatt<strong>en</strong>.Rapportages zijn gebaseerd op de ‘reserves’. De meest uitgebreide bron <strong>van</strong> (op<strong>en</strong>bare)<strong>in</strong>formatie is de US Geological Survey (USGS). 4E<strong>en</strong> statisch grondstofbeeld, waarbij uitputt<strong>in</strong>g kan word<strong>en</strong> verondersteld op basis <strong>van</strong> dereserves <strong>en</strong> de jaarlijkse gewonn<strong>en</strong> hoeveelheid, doet dus ge<strong>en</strong> recht aan het dynamischkarakter <strong>van</strong> de <strong>in</strong>schatt<strong>in</strong>g <strong>van</strong> w<strong>in</strong>bare grondstofvoorrad<strong>en</strong>. Sterker nog,mijnbouwbedrijv<strong>en</strong> zull<strong>en</strong> ge<strong>en</strong> acties ondernem<strong>en</strong> om reserves te vergrot<strong>en</strong> bov<strong>en</strong> e<strong>en</strong>(R/P)waarde <strong>van</strong> 30-40 jaar. Exploratie is e<strong>en</strong> uiterst kostbare aangeleg<strong>en</strong>heid, <strong>en</strong> e<strong>en</strong>ev<strong>en</strong>tueel succes, <strong>en</strong> dus verl<strong>en</strong>g<strong>in</strong>g <strong>van</strong> de productiehoeveelhed<strong>en</strong> tot bov<strong>en</strong> de 40 jaarverteg<strong>en</strong>woordigt ge<strong>en</strong> extra ‘shareholders value’ voor de betrokk<strong>en</strong> bedrijv<strong>en</strong>. Dat geeftdus e<strong>en</strong> rem op de ontwikkel<strong>in</strong>g <strong>van</strong> de reserves: daarmee kunn<strong>en</strong> formele reserves opniveau blijv<strong>en</strong> terwijl toch aanzi<strong>en</strong>lijke productie plaatsv<strong>in</strong>dt.4 Alle rele<strong>van</strong>te <strong>in</strong>formatie is te v<strong>in</strong>d<strong>en</strong> <strong>in</strong> de zgn. USGS M<strong>in</strong>eral Commodity Summaries die jaarlijks e<strong>en</strong>update krijg<strong>en</strong>. 67
Figuur 1. E<strong>en</strong> overzicht <strong>van</strong> de term<strong>in</strong>ologie met betrekk<strong>in</strong>g tot de schaarste <strong>van</strong> m<strong>in</strong>eral<strong>en</strong>(bron: http://pubs.usgs.gov/bul/b1450b/1450_F1.gif).Het gaat echter ook te ver om bij e<strong>en</strong> risico-<strong>in</strong>schatt<strong>in</strong>g over het ontstaan <strong>van</strong>m<strong>in</strong>eraalschaarste de grootte <strong>van</strong> de huidige reserves niet mee te nem<strong>en</strong>. Zo zal e<strong>en</strong>absoluut kle<strong>in</strong>e reserve niet snel kunn<strong>en</strong> groei<strong>en</strong> als nieuwe technologieën daarbijvoorbeeld om vrag<strong>en</strong>. Alle<strong>en</strong> al omdat het <strong>en</strong>orme <strong>in</strong>vester<strong>in</strong>g<strong>en</strong> (<strong>en</strong> lange lead times)vergt om nieuwe mijnbouwproject<strong>en</strong> tot ontwikkel<strong>in</strong>g te br<strong>en</strong>g<strong>en</strong>. Verder zal bij lagereR/P-verhoud<strong>in</strong>g<strong>en</strong> meer <strong>en</strong> sneller exploratie-activiteit moet<strong>en</strong> plaatsv<strong>in</strong>d<strong>en</strong>. Kortom, deR/P-verhoud<strong>in</strong>g verteg<strong>en</strong>woordigt ge<strong>en</strong> realistisch beeld <strong>van</strong> de snelheid <strong>van</strong> uitputt<strong>in</strong>g,maar verteg<strong>en</strong>woordigt wel e<strong>en</strong> sterke <strong>in</strong>dicator <strong>van</strong> kwetsbaarhed<strong>en</strong>.2.2 Wat maakt m<strong>in</strong>eraalschaarste zo urg<strong>en</strong>t?Anders wordt het als schaarste het gevolg is <strong>van</strong> uitputt<strong>in</strong>g (<strong>en</strong> dus verarm<strong>in</strong>g) <strong>van</strong>bronn<strong>en</strong>. In die z<strong>in</strong> is m<strong>in</strong>eraalschaarste e<strong>en</strong> deelprobleem <strong>van</strong> e<strong>en</strong> brederuitputt<strong>in</strong>gsprobleem dat <strong>in</strong> 1972 zo treff<strong>en</strong>d werd weergegev<strong>en</strong> <strong>in</strong> (de 1 e editie <strong>van</strong>)“Limits to Growth” 5 . E<strong>en</strong> groei<strong>en</strong>de wereldbevolk<strong>in</strong>g <strong>en</strong> e<strong>en</strong> wereldwijd groei<strong>en</strong>dewelvaart zorg<strong>en</strong> voor sterke druk op veel <strong>van</strong> onze bronn<strong>en</strong> (m<strong>in</strong>eral<strong>en</strong>, <strong>en</strong>ergie, water,land, <strong>voedsel</strong>) op hetzelfde mom<strong>en</strong>t. Deze lock-<strong>in</strong> effect<strong>en</strong> veroorzak<strong>en</strong> tal <strong>van</strong> nietl<strong>in</strong>eaireafhankelijkhed<strong>en</strong>, die tot grote druk op de beschikbaarheid (<strong>en</strong> dus op de prijs)zull<strong>en</strong> leid<strong>en</strong>. Om m<strong>in</strong>erale mijnbouw als voorbeeld te nem<strong>en</strong>: mijnbouw vergt grotehoeveelhed<strong>en</strong> (zoet) water <strong>en</strong> <strong>en</strong>ergie (voor transport <strong>en</strong> tal <strong>van</strong> ref<strong>in</strong><strong>in</strong>g-stapp<strong>en</strong> <strong>in</strong> deeerste fas<strong>en</strong> <strong>van</strong> het proces); die hoeveelhed<strong>en</strong> nem<strong>en</strong> drastisch toe naarmate de ertsgraadlager wordt. Deze set <strong>van</strong> onderl<strong>in</strong>ge relaties wordt uitgewerkt <strong>in</strong> het boek L<strong>in</strong>kages ofSusta<strong>in</strong>ability (Graedel <strong>en</strong> Van der Voet, 2010), waar<strong>in</strong> o.a. wordt <strong>in</strong>geschat dat het risicobestaat dat <strong>in</strong> 2040 tot 40% <strong>van</strong> het wereldwijde <strong>en</strong>ergieverbruik <strong>in</strong>gezet zal moet<strong>en</strong>word<strong>en</strong> om <strong>in</strong> onze behoefte aan m<strong>in</strong>eral<strong>en</strong> te voorzi<strong>en</strong>. Dergelijke <strong>in</strong>schatt<strong>in</strong>g<strong>en</strong> gev<strong>en</strong> alaan dat op termijn e<strong>en</strong> <strong>en</strong>orme druk zal ontstaan op prijs <strong>en</strong> beschikbaarheid <strong>van</strong> m<strong>in</strong>erale5 De meest rec<strong>en</strong>te editie is: Limits to Growth, the 30-year update door Donella <strong>en</strong> D<strong>en</strong>nis Meados <strong>en</strong> Jorg<strong>en</strong>Randers uit 2004. 68
grondstoff<strong>en</strong>. Die druk kan (voor geselecteerde groep<strong>en</strong> m<strong>in</strong>eral<strong>en</strong>) nog word<strong>en</strong> vergrootdoor: Explosieve vraaggroei als gevolg <strong>van</strong> nieuwe technologie (zoals bijvoorbeeld t.b.v.de <strong>en</strong>ergietransitie): het gebruik <strong>van</strong> elem<strong>en</strong>t<strong>en</strong> uit de reeks <strong>van</strong> zeldzameaardmetal<strong>en</strong> <strong>en</strong> material<strong>en</strong> als <strong>in</strong>dium <strong>en</strong> gallium stijg<strong>en</strong> de laatste jar<strong>en</strong> sterk doorde <strong>in</strong>troductie <strong>van</strong> iPads, plasmascherm<strong>en</strong>, LED-verlicht<strong>in</strong>g, PC’s <strong>en</strong> w<strong>in</strong>dturb<strong>in</strong>es;dit aspect wordt nog versterkt door de lead times (5-10 jaar) voor het ontdekk<strong>en</strong> <strong>en</strong><strong>in</strong> gebruik nem<strong>en</strong> <strong>van</strong> nieuwe mijnbouwlocaties (nog afgezi<strong>en</strong> <strong>van</strong> de <strong>en</strong>orme<strong>in</strong>vester<strong>in</strong>gskost<strong>en</strong> daarvoor). Het geologische feit dat veel <strong>van</strong> de ‘exotische’ elem<strong>en</strong>t<strong>en</strong> als (ppm-)bijproduct<strong>van</strong> andere metal<strong>en</strong> word<strong>en</strong> gewonn<strong>en</strong> <strong>en</strong> dus ge<strong>en</strong> zelfstandige marktdynamiekk<strong>en</strong>n<strong>en</strong> (voorbeeld: cadmium <strong>en</strong> <strong>in</strong>dium als bijproduct<strong>en</strong> <strong>van</strong> z<strong>in</strong>kw<strong>in</strong>n<strong>in</strong>g).Geopolitieke ontwikkel<strong>in</strong>g<strong>en</strong>: economisch w<strong>in</strong>bare erts<strong>en</strong> ligg<strong>en</strong> niet homoge<strong>en</strong>verspreid over de wereld: land<strong>en</strong> als Ch<strong>in</strong>a, Zuid-Afrika, Brazilië, Kazachstan <strong>en</strong>Australië zijn grootmacht<strong>en</strong> op m<strong>in</strong>eraalgebied <strong>en</strong> kunn<strong>en</strong> het bezit <strong>van</strong> erts<strong>en</strong>strategisch <strong>in</strong>zett<strong>en</strong>. Het tijdelijk blokker<strong>en</strong> <strong>van</strong> zeldzame-aarde-export aan Japandoor Ch<strong>in</strong>a <strong>in</strong> het najaar <strong>van</strong> 2010 is daar e<strong>en</strong> sprek<strong>en</strong>d voorbeeld <strong>van</strong>.Overig<strong>en</strong>s is de groei <strong>van</strong> de consumptie voor bepaalde grondstoff<strong>en</strong> ontkoppeld <strong>van</strong> groei<strong>in</strong> welvaart, m.n. door effici<strong>en</strong>cy-maatregel<strong>en</strong>. Deze tr<strong>en</strong>d is o.a. zichtbaar voor koper <strong>en</strong>z<strong>in</strong>k (zie Figuur 2).Figuur 2. Verschill<strong>en</strong>de mat<strong>en</strong> <strong>van</strong> ontkoppel<strong>in</strong>g <strong>van</strong> de vraag naar grondstoff<strong>en</strong> <strong>en</strong> de groei<strong>van</strong> de welvaart (bron: T.E. Graedel <strong>en</strong> E. <strong>van</strong> der Voet, editors, L<strong>in</strong>kages ofSusta<strong>in</strong>ability, MIT Press, 2010).Sam<strong>en</strong>vatt<strong>en</strong>d, zonder te kunn<strong>en</strong> sprek<strong>en</strong> over het ‘oprak<strong>en</strong> <strong>van</strong> metal<strong>en</strong>’, is er alle red<strong>en</strong>over de brede l<strong>in</strong>ie e<strong>en</strong> opwaartse druk op de prijz<strong>en</strong> te verwacht<strong>en</strong> tezam<strong>en</strong> met e<strong>en</strong>to<strong>en</strong>em<strong>en</strong>de lever<strong>in</strong>gsonzekerheid. En dus is het zaak met grote waakzaamheid te kijk<strong>en</strong> 69
naar de ontwikkel<strong>in</strong>g<strong>en</strong> op dit gebied, de gevolg<strong>en</strong> daar<strong>van</strong> <strong>in</strong> de eig<strong>en</strong> waardeket<strong>en</strong>, <strong>en</strong>alternatieve strategieën te ontwerp<strong>en</strong>.2.3 Wat zijn de kritieke m<strong>in</strong>eral<strong>en</strong>?De zorg om voldo<strong>en</strong>de, betrouwbare <strong>en</strong> betaalbare toevoer <strong>van</strong> m<strong>in</strong>eral<strong>en</strong>, leidt wereldwijd( <strong>en</strong> dan natuurlijk m.n. <strong>in</strong> sterk geïndustrialiseerde land<strong>en</strong>) tot activiteit<strong>en</strong> die variër<strong>en</strong> <strong>van</strong>risicoanalyse tot strategische voorraadvorm<strong>in</strong>g, e<strong>en</strong> actievere rol op diplomatiek vlak <strong>en</strong>het <strong>in</strong>zett<strong>en</strong> op het zoek<strong>en</strong> naar ver<strong>van</strong>g<strong>in</strong>g, het versterk<strong>en</strong> <strong>van</strong> recycl<strong>in</strong>g <strong>en</strong> het nad<strong>en</strong>k<strong>en</strong>over fiscaal beleid dat consumptie moet remm<strong>en</strong>.Voor die risicoanalyse hebb<strong>en</strong> verschill<strong>en</strong>de <strong>in</strong>stanties prioriteit<strong>en</strong>lijst<strong>en</strong> gemaakt <strong>van</strong>‘critical materials’. Prioriteit wordt i.h.a. langs twee ass<strong>en</strong> bepaald: één as geeft dan demate <strong>van</strong> lever<strong>in</strong>gsonzekerheid aan (reservehoeveelheid, landafhankelijkheid, druk <strong>van</strong>concurrer<strong>en</strong>de technologie), de andere as gaat <strong>in</strong> op het belang <strong>van</strong> het materiaal <strong>van</strong>uit hetoogpunt <strong>van</strong> de belanghebb<strong>en</strong>de (economisch belang voor de EU, rele<strong>van</strong>tie voor<strong>en</strong>ergietransitie voor JRC-IE <strong>en</strong> US-DoE, militair belang voor US-DoD). In figur<strong>en</strong> 3 <strong>en</strong> 4zijn de hoofdresultat<strong>en</strong> gegev<strong>en</strong> <strong>van</strong> risicoanalyses <strong>van</strong> resp. de EU (RMI, 2010) 6 <strong>en</strong> hetUS-DoE 7 (US Departm<strong>en</strong>t of Energy, 2010).De meeste prioriteit krijg<strong>en</strong> wereldwijd de zeldzame aardmetal<strong>en</strong> (REM of REE), deplat<strong>in</strong>a-groep-metal<strong>en</strong> (PGM), <strong>in</strong>dium, germanium, gallium, niobium, wolfraam,antimoon, magnesium.Figuur 3. Kritieke m<strong>in</strong>eral<strong>en</strong>, <strong>van</strong>uit oogpunt <strong>van</strong> duurzame <strong>en</strong>ergie (bron: US Departm<strong>en</strong>tof Energy, 2010).6 Het rapport <strong>van</strong> de Ad-hoc work<strong>in</strong>g group <strong>van</strong> het Raw Materials Initiative RMI versche<strong>en</strong> <strong>in</strong> juli 20107 In december 2010 versche<strong>en</strong> deze risico-analyse <strong>van</strong> de DoE; beide rapport<strong>en</strong> zijn te download<strong>en</strong>. 70
5,04,5Rare Earths4,03,5PGMSupply Risk3,02,5AntimonyGermaniumMagnesiumGalliumNiobium2,0IndiumTungst<strong>en</strong>Fluorspar1,5BarytesBerylliumGraphiteCobalt Tantalum1,0LithiumRh<strong>en</strong>iumMagnesiteChromiumVanadiumBorate LimestoneTellurium0,5Molybd<strong>en</strong>um ManganeseDiatomite PerliteGypsumB<strong>en</strong>toniteIronZ<strong>in</strong>cSilicaNickelSilverAlum<strong>in</strong>umTalc ClaysCopperBauxiteFeldsparTitanium0,03,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0Economic ImportanceFiguur 4. Kritieke m<strong>in</strong>eral<strong>en</strong> <strong>van</strong>uit oogpunt <strong>van</strong> economisch belang (bron: RMI, 2010).In deze lijst<strong>en</strong> ontbrek<strong>en</strong> koper <strong>en</strong> z<strong>in</strong>k als prioriteitsmaterial<strong>en</strong>. In het rapport <strong>van</strong> het RawMaterials Initiative 8 word<strong>en</strong> ze meeg<strong>en</strong>om<strong>en</strong> als te onderzoek<strong>en</strong> material<strong>en</strong>, maar de‘supply-risk’ wordt zo laag <strong>in</strong>geschat dat het ge<strong>en</strong> prioriteitsgebied<strong>en</strong> word<strong>en</strong>. Wel wordterk<strong>en</strong>d dat het om economisch uiterst belangrijke material<strong>en</strong> gaat. En daarbij past dekanttek<strong>en</strong><strong>in</strong>g dat het Raw Materials Initiative e<strong>en</strong> tijdshorizon <strong>van</strong> 10 jaar heeft g<strong>en</strong>om<strong>en</strong>.Het Amerikaanse M<strong>in</strong>isterie <strong>van</strong> Def<strong>en</strong>sie houdt e<strong>en</strong> aantal material<strong>en</strong> ‘<strong>in</strong> stock’. Dit zijnBeryllium, Tantaal, Niobium, PGM, Iridium, T<strong>in</strong>, Z<strong>in</strong>k, Thorium, Wolfraam <strong>en</strong> Kobalt.Z<strong>in</strong>k is nog ‘<strong>in</strong> stock’ maar wordt <strong>in</strong>middels niet meer als kritiek, noch strategischbeschouwd, <strong>en</strong> de voorraad wordt dus actief afgebouwd.8 Site: http://ec.europa.eu/<strong>en</strong>terprise/policies/raw-materials/critical/<strong>in</strong>dex_<strong>en</strong>.htm; hier<strong>in</strong> verwijz<strong>in</strong>g<strong>en</strong> naarrele<strong>van</strong>te docum<strong>en</strong>t<strong>en</strong> 71
3 Koper: aanbod, vraag, ontwikkel<strong>in</strong>g<strong>en</strong>3.1 Aanbod: Voorrad<strong>en</strong>, Jaarlijkse productie <strong>en</strong> productielocatiesIn de onderstaande tabel word<strong>en</strong> de bek<strong>en</strong>de reserves, <strong>en</strong> productiecijfers <strong>van</strong> koperweergegev<strong>en</strong>. 9 Met ‘reserves’ wordt hier bedoeld de hoeveelheid bewez<strong>en</strong> voorrad<strong>en</strong> dieonder de huidige omstandighed<strong>en</strong> (economie, technologie) economisch w<strong>in</strong>baar zijn. DeP/R-verhoud<strong>in</strong>g (productie over reserve) voor koper schommelt (al jar<strong>en</strong>) tuss<strong>en</strong> de 30 <strong>en</strong>40 jaar (op dit mom<strong>en</strong>t 39 jaar), onafhankelijk <strong>van</strong> de hoogte <strong>van</strong> de productie. Er lijktge<strong>en</strong> jaarlijkse uitgebreide studie aan deze cijfers vooraf te gaan, maar eerder e<strong>en</strong><strong>in</strong>schatt<strong>in</strong>g <strong>en</strong> opgave <strong>van</strong> mijnbouwbedrijv<strong>en</strong> <strong>en</strong> producer<strong>en</strong>de land<strong>en</strong>. De verdel<strong>in</strong>g <strong>van</strong>de kopermijnbouwproductie over land<strong>en</strong> is weergegev<strong>en</strong> <strong>in</strong> Figuur 5, de verdel<strong>in</strong>g <strong>van</strong> deraff<strong>in</strong>agecapaciteit <strong>in</strong> Figuur 6.Tabel 1. Reserves <strong>en</strong> productiecijfers voor koper (bron: USGS M<strong>in</strong>eral commoditysummaries, January 2011 (http://m<strong>in</strong>erals.usgs.gov/m<strong>in</strong>erals/pubs/commodity/).Reserves(ton)Mijnbouw 2010(ton/jaar)Ref<strong>in</strong><strong>in</strong>g(ton/jaar)Chili 150.000 5.520 3272Peru 90.000 1.285 423Ch<strong>in</strong>a 30.000 1.150 4175Ver<strong>en</strong>igde Stat<strong>en</strong> 35.000 1.120 1160Australië 80.000 900 446Indonesië 30.000 840Zambia 20.000 770Rusland 30.000 750 870Canada 8.000 480 336Pol<strong>en</strong> 26.000 430 50Kazachstan 18.000 400 368Mexico 38.000 230 261Japan 1140India 715Duitsland 669Korea 532België 374Spanje 335Brazilië 213Overige land<strong>en</strong> 80.000 2.300 2259Totaal 630.000 16.200 184009 T<strong>en</strong>zij anders vermeld zijn de gegev<strong>en</strong>s afkomstig over reserves <strong>en</strong> productiehoeveelhed<strong>en</strong> afkomstig <strong>van</strong>de USGS M<strong>in</strong>eral Information website: http://m<strong>in</strong>erals.usgs.gov/m<strong>in</strong>erals/pubs/commodity/ 73
Figuur 5. verdel<strong>in</strong>g kopermijnbouwproductie (bron: USGS M<strong>in</strong>eral Commodities 2010).Figuur 6. Verdel<strong>in</strong>g Koperraff<strong>in</strong>age (bron: USGS).Naast de zogehet<strong>en</strong> ‘<strong>in</strong>ferred’ bronn<strong>en</strong> (o.a. <strong>in</strong> Chili), word<strong>en</strong> nog veel toekomstige‘undiscovered’ reserves verondersteld op de zee<strong>bodem</strong> (<strong>in</strong> massieve sulfides) (zie Figuur1).De wereldwijde productie <strong>van</strong> koper neemt al jar<strong>en</strong> gestaag toe (zie Figuur 7); e<strong>en</strong>relatieve ontkoppel<strong>in</strong>g <strong>in</strong> de reeds geïndustrialiseerde wereld, wordt meer dangecomp<strong>en</strong>seerd door e<strong>en</strong> to<strong>en</strong>ame aan wereldbevolk<strong>in</strong>g <strong>en</strong> welvaart. 74
Figuur 7. Wereldwijde productie <strong>van</strong> koper 1940-2009 (bron: USGS).Zowel de primaire w<strong>in</strong>n<strong>in</strong>g als de verwerk<strong>in</strong>g <strong>van</strong> erts v<strong>in</strong>dt plaats <strong>in</strong> e<strong>en</strong> groot aantalland<strong>en</strong>. Daarbij zijn de grootste mijnbouwland<strong>en</strong> niet noodzakelijkerwijs de grootsteverwerkers <strong>van</strong> kopererts. Zo is opvall<strong>en</strong>d dat Chili de grootste mijnbouwlocatie is, maarCh<strong>in</strong>a de belangrijkste speler als het gaat om de verdere verwerk<strong>in</strong>g. Marktverstor<strong>in</strong>g zoals<strong>in</strong> het geval <strong>van</strong> zeldzame aard<strong>en</strong> het geval is (meer dan 95% <strong>van</strong> de productie <strong>en</strong>verwerk<strong>in</strong>g v<strong>in</strong>dt <strong>in</strong> Ch<strong>in</strong>a plaats), is <strong>in</strong> het geval <strong>van</strong> koper dan ook niet aan de orde. Dit isook aanleid<strong>in</strong>g geweest voor de opstellers <strong>van</strong> het rapport <strong>van</strong> de Raw Materials Initiativede ‘supply risk’ <strong>van</strong> koper zodanig laag <strong>in</strong> te schatt<strong>en</strong> dat koper – voor de kom<strong>en</strong>de 10 jaar- niet <strong>in</strong> de ‘gevar<strong>en</strong>zone’ <strong>van</strong> kritieke material<strong>en</strong> terecht komt.3.2 Vraag: Gebruik <strong>en</strong> applicaties <strong>van</strong> koperGedur<strong>en</strong>de de laatste 30 jaar is de koperconsumptie sterk gegroeid <strong>en</strong> dan vooral <strong>in</strong> Azië.Figuur 8. Gebruik <strong>van</strong> geraff<strong>in</strong>eerd koper per regio voor 1960, 1980 <strong>en</strong> voorlopige cijfers(‘prelim<strong>in</strong>ary’) voor 2009 (bron: International Copper Study Group, 2010). 75
Figuur 9. Belangrijkste toepass<strong>in</strong>g<strong>en</strong> <strong>van</strong> koper (bron: International Copper Study Group).De huidige verdel<strong>in</strong>g <strong>van</strong> het kopergebruik is <strong>in</strong> bov<strong>en</strong>staande figuur weergegev<strong>en</strong>. Watopvalt aan de gebruiksverdel<strong>in</strong>g, is dat naast het dom<strong>in</strong>ante gebruik <strong>in</strong> het vervoer<strong>en</strong> <strong>van</strong>elektriciteit, koper grootschalig wordt <strong>in</strong>gezet <strong>in</strong> de constructiewereld (buiz<strong>en</strong>,verwarm<strong>in</strong>g, v<strong>en</strong>tilatie, maar ook <strong>in</strong> aanzi<strong>en</strong>lijke mate als constructiemateriaal zelf).Zonder op details <strong>in</strong> te gaan, spreekt het -gezi<strong>en</strong> deze applicaties- <strong>van</strong>zelf dat to<strong>en</strong>em<strong>en</strong>deprijz<strong>en</strong> <strong>van</strong> koper e<strong>en</strong> range aan alternatieve oploss<strong>in</strong>g<strong>en</strong> met zich mee zal br<strong>en</strong>g<strong>en</strong>.3.3 Ontwikkel<strong>in</strong>g<strong>en</strong>3.3.1 Toch koperschaarste?Alhoewel koper door zowel de US-DoE als door het RMI niet als kritisch wordtbestempeld, ligt wel voor de hand dat het gebruik <strong>van</strong> koper zal to<strong>en</strong>em<strong>en</strong> naarmate onze<strong>en</strong>ergievoorzi<strong>en</strong><strong>in</strong>g (<strong>in</strong>clusief automobiliteit) meer gebaseerd zal zijn op elektriciteit.Kleijn <strong>en</strong> Van der Voet (2010) gev<strong>en</strong> aan dat er stevige knelpunt<strong>en</strong> zijn te verwacht<strong>en</strong> <strong>in</strong>de koper-supply (<strong>in</strong> 2050) als e<strong>en</strong> groot deel <strong>van</strong> de elektriciteitsbehoefte uit de Sahara zoumoet<strong>en</strong> kom<strong>en</strong> via koperkabels (<strong>en</strong>ergieopwekk<strong>in</strong>g uit Conc<strong>en</strong>trated Solar Power CSP).Deze belemmer<strong>in</strong>g<strong>en</strong> zijn zo groot dat of deze project<strong>en</strong> niet op deze schaal <strong>van</strong> startkunn<strong>en</strong> gaan, of goede alternatiev<strong>en</strong> (via bijvoorbeeld alum<strong>in</strong>iumgeleid<strong>in</strong>g) voorhand<strong>en</strong>moet<strong>en</strong> zijn.Fraunhofer ISI schat <strong>in</strong> dat <strong>in</strong> 2030 (t.o.v. 2006) e<strong>en</strong> verdrievoudig<strong>in</strong>g plaatsv<strong>in</strong>dt <strong>van</strong> dekoperbehoefte voor <strong>en</strong>kele specifieke technologieën (m.n. <strong>in</strong>dustriële elektromotor<strong>en</strong>, <strong>en</strong>motor<strong>en</strong> t.b.v. elektrische auto’s), waardoor de totale druk op koper <strong>en</strong> de behoefte omalternatiev<strong>en</strong> (Alum<strong>in</strong>ium Core Steel Re<strong>in</strong>forced kabels, plastic leid<strong>in</strong>g<strong>en</strong> voor water,glasfibers voor dataverkeer) te zoek<strong>en</strong> sterk zal to<strong>en</strong>em<strong>en</strong> (Angerer et al., 2009).Deze <strong>en</strong>orme behoefteto<strong>en</strong>ame zal niet noodzakelijkerwijs plaatsv<strong>in</strong>d<strong>en</strong>, omdat markt- <strong>en</strong>prijsbeweg<strong>in</strong>g<strong>en</strong> dit beïnvloed<strong>en</strong>. Systeemdynamische modeller<strong>in</strong>g kan word<strong>en</strong> <strong>in</strong>gezet om<strong>in</strong> niet-l<strong>in</strong>eaire system<strong>en</strong> met grote onzekerhed<strong>en</strong> e<strong>en</strong> beeld te creër<strong>en</strong> <strong>van</strong> mogelijketoekomstsc<strong>en</strong>ario’s (<strong>en</strong> de <strong>in</strong>vloed <strong>van</strong> <strong>in</strong>grep<strong>en</strong> daarop). E<strong>en</strong> rec<strong>en</strong>te studie <strong>van</strong> Aup<strong>in</strong>g(TU Delft, 2011) richt zich op het kopersysteem. Het uitgangspunt staat gegev<strong>en</strong> <strong>in</strong>onderstaande figuur.De belangrijkste bev<strong>in</strong>d<strong>in</strong>g<strong>en</strong> uit deze SD-studie voor de lange termijn zijn: Koperprijz<strong>en</strong> blijv<strong>en</strong> <strong>en</strong>orm volatiel, als gevolg <strong>van</strong> e<strong>en</strong> onbalans tuss<strong>en</strong> vraag <strong>en</strong>aanbod, lange lead times voor nieuwe mijnbouw (<strong>en</strong> overige <strong>in</strong>frastructuur) <strong>en</strong> de‘concurr<strong>en</strong>tie’ met reële substitut<strong>en</strong>; De kopervraag blijft geleidelijk afnem<strong>en</strong> door de to<strong>en</strong>ame <strong>van</strong> de kost<strong>en</strong> (<strong>van</strong>wegeafname <strong>van</strong> de ertsgraad) <strong>en</strong> de te verwacht<strong>en</strong> stabielere prijs <strong>van</strong> substitut<strong>en</strong>. 76
Figuur 10. Het kopersysteem (bron: Aup<strong>in</strong>g, 2011).Dat e<strong>en</strong> hoge volatiliteit niet alle<strong>en</strong> <strong>in</strong> de toekomst is te verwacht<strong>en</strong> maar ook nu al <strong>van</strong>toepass<strong>in</strong>g is, blijkt uit Figur<strong>en</strong> 11 <strong>en</strong> 12.Figuur 11. Lange-termijn prijsontwikkel<strong>in</strong>g <strong>van</strong> koper 1940-2009 (bron: USGS). 77
Figuur 12. Rec<strong>en</strong>te prijsontwikkel<strong>in</strong>g <strong>van</strong> koper (US$ per ton) (bron: London MetalsExchange (November 2011)).3.3.2 Afnem<strong>en</strong>de ertsgraad <strong>en</strong> to<strong>en</strong>em<strong>en</strong>de <strong>en</strong>ergiekost<strong>en</strong>Door de jar<strong>en</strong> he<strong>en</strong>, neemt de ertsgraad <strong>van</strong> verschill<strong>en</strong>de m<strong>in</strong>eral<strong>en</strong> af (zie figuur 13) (ziebijvoorbeeld Mudd, 2009).Figuur 13. Afname ertsgraad <strong>van</strong> e<strong>en</strong> aantal m<strong>in</strong>eral<strong>en</strong> (bron: Mudd, 2009).Met name voor koper zijn de consequ<strong>en</strong>ties hier<strong>van</strong> goed gedocum<strong>en</strong>teerd. Figuur 14 laatzi<strong>en</strong> dat bij e<strong>en</strong> lagere ertsgraad de b<strong>en</strong>odigde hoeveelheid <strong>en</strong>ergie <strong>en</strong> water voor(koper)mijnbouw veel hoger is (zie Norgate, 2010). 78
Figuur 14. B<strong>en</strong>odigde hoeveelheid water <strong>en</strong> <strong>en</strong>ergie voor de kopermijnbouw <strong>in</strong>afhankelijkheid <strong>van</strong> de ertsgraad (bron: Norgate, 2010).Omdat de druk op betaalbare <strong>en</strong>ergie <strong>en</strong> zoet water (<strong>en</strong> daarmee de kost<strong>en</strong>) aanzi<strong>en</strong>lijkkunn<strong>en</strong> stijg<strong>en</strong> <strong>in</strong> de kom<strong>en</strong>de dec<strong>en</strong>nia, is het afnem<strong>en</strong> <strong>van</strong> de ertsgraad e<strong>en</strong> risicofactordie tot sterke prijsstijg<strong>in</strong>g<strong>en</strong> kan leid<strong>en</strong>. Dit zijn prijsstijg<strong>in</strong>g<strong>en</strong> die los staan <strong>van</strong> to<strong>en</strong>ame<strong>in</strong> gebruik als gevolg <strong>van</strong> groei <strong>in</strong> bevolk<strong>in</strong>g <strong>en</strong> welvaart. 79
4 Z<strong>in</strong>k: aanbod, vraag, ontwikkel<strong>in</strong>g<strong>en</strong>4.1 Aanbod: voorrad<strong>en</strong>, jaarlijkse productie <strong>en</strong> productielocatiesTabel 2. Reserves <strong>en</strong> productiecijfers voor z<strong>in</strong>k <strong>in</strong> 2010 (bron: USGS M<strong>in</strong>eral commoditysummaries, January 2011 (http://m<strong>in</strong>erals.usgs.gov/m<strong>in</strong>erals/pubs/commodity/).Z<strong>in</strong>kproductie(x1000 ton)Reserves(ton)Mijnproductie(ton per jaar)Smeltercapaciteit(ton per jaar)Ch<strong>in</strong>a 42.000 3.500 4.360Overige land<strong>en</strong> 62.000 1.580 2.418Peru 23.000 1.520 -Australië 53.000 1.450 531India 11.000 750 582Ver<strong>en</strong>igde Stat<strong>en</strong> 12.000 720 203Canada 6.000 670 686Mexico 15.000 550 300Kazachstan 16.000 480 329Bolivia 6.000 430 -Ierland 2.000 350 -Japan - - 643Korea - - 623Spanje - - 501Rusland - - 225Wereld Totaal 250.000 12.000 11.400De R/P-verhoud<strong>in</strong>g (reserves/productie) voor z<strong>in</strong>k ligg<strong>en</strong> hiermee op ongeveer 21 jaar,aanzi<strong>en</strong>lijk korter dan voor koper (tuss<strong>en</strong> de 30 <strong>en</strong> 40 jaar).Ev<strong>en</strong>als bij koper zijn veel land<strong>en</strong> betrokk<strong>en</strong> bij de mijnbouw <strong>van</strong> z<strong>in</strong>k. Dat betek<strong>en</strong>t datde lever<strong>in</strong>gszekerheid <strong>van</strong> z<strong>in</strong>k niet de <strong>in</strong>zet <strong>van</strong> geopolitiek zal kom<strong>en</strong>. Dit geldt <strong>in</strong> ietsm<strong>in</strong>dere mate ook voor de smelter-capaciteit: ook die is aanwezig <strong>in</strong> veel land<strong>en</strong>(overig<strong>en</strong>s betek<strong>en</strong>t dit ook dat <strong>in</strong>frastructuur <strong>en</strong> k<strong>en</strong>nis <strong>in</strong> meer land<strong>en</strong> aanwezig is),alhoewel Ch<strong>in</strong>a duidelijk e<strong>en</strong> belangrijke speler is op deze markt (bijna 40% <strong>van</strong> hetwereldtotaal). 81
Figuur 15. Wereldwijde productie <strong>van</strong> z<strong>in</strong>k (bron: USGS).De productiegroei <strong>in</strong> het geval <strong>van</strong> z<strong>in</strong>k is vergelijkbaar met die <strong>van</strong> koper: e<strong>en</strong> gestagegroei, die het gevolg is <strong>van</strong> ontwikkel<strong>in</strong>g<strong>en</strong> <strong>in</strong> e<strong>en</strong> zich ontwikkel<strong>en</strong>de wereld met e<strong>en</strong>groei<strong>en</strong>de wereldbevolk<strong>in</strong>g.Met name de verdel<strong>in</strong>g over e<strong>en</strong> groot aantal producer<strong>en</strong>de land<strong>en</strong>, was ook (net als <strong>in</strong> hetgeval <strong>van</strong> koper) <strong>in</strong> het Raw Materials Initiative rapport aanleid<strong>in</strong>g om z<strong>in</strong>k (alhoewel heteconomisch belang groter werd <strong>in</strong>geschat dan voor koper) niet op te nem<strong>en</strong> <strong>in</strong> de lijst <strong>van</strong>kritieke grondstoff<strong>en</strong>.4.2 Vraag: huidig gebruikDe belangrijkste Industriële z<strong>in</strong>ktoepass<strong>in</strong>g<strong>en</strong>, ligg<strong>en</strong> <strong>in</strong> de metallurgische wereld.Figuur 16. Belangrijkste toepass<strong>in</strong>g<strong>en</strong> <strong>van</strong> koper (bron: International Lead and Z<strong>in</strong>c StudyGroup).Volg<strong>en</strong>s de USGS wordt z<strong>in</strong>k stof (z<strong>in</strong>c compounds <strong>en</strong> dust) hoofdzakelijk gebruikt <strong>in</strong> delandbouw, verf- <strong>en</strong> rubber<strong>in</strong>dustrie. 82
De coat<strong>in</strong>gtoepass<strong>in</strong>g<strong>en</strong> mak<strong>en</strong> z<strong>in</strong>k populair: het levert e<strong>en</strong> uiterst lange <strong>en</strong>onderhoudsvri<strong>en</strong>delijke lev<strong>en</strong>sduur op. Daarmee zijn er wel alternatiev<strong>en</strong> te bed<strong>en</strong>k<strong>en</strong>(zowel metallurgische, als op basis <strong>van</strong> verf <strong>en</strong> plastic coat<strong>in</strong>g), maar de alternatiev<strong>en</strong> zijn(<strong>van</strong>zelfsprek<strong>en</strong>d) duurder.Figuur 17. De vraag naar z<strong>in</strong>k (<strong>in</strong> 1000 ton per jaar) <strong>in</strong> e<strong>en</strong> aantal land<strong>en</strong> (bron: Citi GroupGlobal Markets, 2011).De wereldwijd to<strong>en</strong>em<strong>en</strong>de welvaart leidt tot e<strong>en</strong> groei<strong>en</strong>de behoefte aan metal<strong>en</strong> <strong>en</strong> dusaan corrosiebescherm<strong>in</strong>g. Uit bov<strong>en</strong>staande figuur blijkt dat Ch<strong>in</strong>a e<strong>en</strong> <strong>en</strong>orm belangrijkepositie <strong>in</strong>neemt als consum<strong>en</strong>t <strong>van</strong> z<strong>in</strong>k.Anders dan <strong>in</strong> het geval <strong>van</strong> koper, wordt voor z<strong>in</strong>k ge<strong>en</strong> additionele stijg<strong>in</strong>g <strong>van</strong> de vraagverwacht als gevolg <strong>van</strong> toepass<strong>in</strong>g<strong>en</strong> <strong>in</strong> nieuwe technologie.4.3 Ontwikkel<strong>in</strong>g<strong>en</strong>: prijz<strong>en</strong> z<strong>in</strong>k <strong>en</strong> toekomstverwacht<strong>in</strong>gBron: USGS.Figuur 18. Rec<strong>en</strong>te <strong>en</strong> lange termijn prijsontwikkel<strong>in</strong>g <strong>van</strong> z<strong>in</strong>k (<strong>in</strong> US$ per ton) (bron:International Lead and Z<strong>in</strong>c study group).Ondanks het niet-kritieke karakter <strong>van</strong> het z<strong>in</strong>k-systeem, schommelt de prijs opvergelijkbare wijze als die <strong>van</strong> koper. Zowel qua marktdynamiek, als qua complexiteitm.b.t. het opzett<strong>en</strong> <strong>van</strong> nieuwe mijnbouwexploitaties spel<strong>en</strong> dezelfde f<strong>en</strong>om<strong>en</strong><strong>en</strong>, die dusook hier tot e<strong>en</strong> aanzi<strong>en</strong>lijke marktvolatiliteit leid<strong>en</strong>. 83
Figuur 19. Feitelijke vraag <strong>en</strong> aanbod (tot 2011) <strong>en</strong> verwachte totale vraag naar z<strong>in</strong>k (rodelijn) teg<strong>en</strong>over verschill<strong>en</strong>de sc<strong>en</strong>ario’s voor het totale aanbod <strong>van</strong> z<strong>in</strong>k (Bron:Citigroup Global markets, 2011).De verwacht<strong>in</strong>g is dat het aanbod <strong>van</strong> z<strong>in</strong>k tot ca. 2017 groter zal zijn dan de vraag (zieFiguur 19).Gezi<strong>en</strong> de to<strong>en</strong>em<strong>en</strong>de vraag, met name <strong>in</strong> grootverbruiker Ch<strong>in</strong>a, wordt voor de nabijetoekomst e<strong>en</strong> cont<strong>in</strong>ue – maar <strong>in</strong> feite toch nog beperkte - stijg<strong>in</strong>g <strong>van</strong> de prijs voorzi<strong>en</strong> <strong>in</strong>de ordegrootte <strong>van</strong> $300 <strong>van</strong> het huidige niveau (zie Figuur 20).Figuur 20. Rec<strong>en</strong>t prijsontwikkel<strong>in</strong>g <strong>van</strong> z<strong>in</strong>k (bron: Citi Group Global markets 2011). 84
5 Andere bronn<strong>en</strong>: recycl<strong>in</strong>g <strong>en</strong> micronutriënt<strong>en</strong> uitafvalwater?Alhoewel <strong>in</strong> de kom<strong>en</strong>de jar<strong>en</strong> ge<strong>en</strong> fysieke schaarste is te verwacht<strong>en</strong> op het gebied <strong>van</strong>de hier behandelde micronutriënt<strong>en</strong> koper <strong>en</strong> z<strong>in</strong>k, is het goed te kijk<strong>en</strong> of andere bronn<strong>en</strong><strong>in</strong> aanmerk<strong>in</strong>g kom<strong>en</strong> voor suppletie <strong>van</strong> deze nutriënt<strong>en</strong>.Op dit mom<strong>en</strong>t word<strong>en</strong> zowel koper als z<strong>in</strong>k <strong>in</strong>t<strong>en</strong>sief gerecycled: tuss<strong>en</strong> de 30 <strong>en</strong> 50% <strong>van</strong><strong>in</strong>gezette koper <strong>en</strong> z<strong>in</strong>k is afkomstig uit secundaire strom<strong>en</strong> (NB: <strong>van</strong> veel <strong>van</strong> de kritiekehigh-tech-metal<strong>en</strong> wordt m<strong>in</strong>der dan 1% teruggewonn<strong>en</strong> via recycl<strong>in</strong>g, soms doorontbrek<strong>en</strong> <strong>van</strong> beschikbare technologie, vaker nog door het ontbrek<strong>en</strong> <strong>van</strong> e<strong>en</strong> economischr<strong>en</strong>dabele logistiek, aangezi<strong>en</strong> deze material<strong>en</strong> slechts <strong>in</strong> kle<strong>in</strong>e conc<strong>en</strong>traties <strong>in</strong> high-techapplicatiesvoorkom<strong>en</strong>).Omdat micronutriënt<strong>en</strong> <strong>in</strong> landbouwgewass<strong>en</strong> <strong>en</strong> dus <strong>voedsel</strong> voorkom<strong>en</strong>, zal e<strong>en</strong> grootgedeelte <strong>van</strong> deze nutriënt<strong>en</strong> weer <strong>in</strong> efflu<strong>en</strong>t<strong>en</strong> <strong>en</strong> <strong>in</strong> mest terecht kom<strong>en</strong>. Tabel 3 geeft desam<strong>en</strong>stell<strong>in</strong>g <strong>van</strong> het droge-as aan (dat na verbrand<strong>in</strong>g <strong>van</strong> RWZI-slib ontstaat). Hieruitblijkt o.a. dat <strong>in</strong> verbrand slib-as ongeveer 2,5 g/kg z<strong>in</strong>k <strong>in</strong> slib-as <strong>en</strong> 1 g/kg koper <strong>in</strong> slibasaanwezig is <strong>in</strong> deze as. Vergelek<strong>en</strong> met zelfs de armste mijnbouwoperaties, zijn ditechter nog steeds lage conc<strong>en</strong>traties. De armste koper-mijnbouw v<strong>in</strong>dt mom<strong>en</strong>teel plaatsop e<strong>en</strong> conc<strong>en</strong>tratie <strong>van</strong> 0,3 – 0,5% koper <strong>in</strong> erts (d.w.z. 3 – 5 g/kg koper <strong>in</strong> erts). Ditbev<strong>in</strong>dt zich (zo wordt aang<strong>en</strong>om<strong>en</strong>) dicht bij de m<strong>in</strong>eralogische barrière, die aangeeftb<strong>en</strong>ed<strong>en</strong> welk gehalte het bov<strong>en</strong>matig veel <strong>en</strong>ergie kost om economisch verantwoordmijnbouw te kunn<strong>en</strong> pleg<strong>en</strong>. Naar analogie, lijkt het niet haalbaar om zuiver koper <strong>en</strong> z<strong>in</strong>kuit verbrand slib-as te isoler<strong>en</strong>. Wellicht is e<strong>en</strong> <strong>in</strong>zet <strong>in</strong> m<strong>in</strong>der zuivere vorm te overweg<strong>en</strong>,alhoewel contam<strong>in</strong>atie met andere (zware) metal<strong>en</strong> daar e<strong>en</strong> probleem zou kunn<strong>en</strong> vorm<strong>en</strong>.Tabel 3. Gehalt<strong>en</strong> <strong>van</strong> m<strong>in</strong>eral<strong>en</strong> <strong>in</strong> verbrand slib-as <strong>in</strong> mg/kg droge stof <strong>van</strong> slibverwerk<strong>in</strong>gNoord-Brabant (bron: SNB/Unie <strong>van</strong> Waterschapp<strong>en</strong>, 2011). 85
6 De status <strong>van</strong> <strong>en</strong>kele andere micronutriënt<strong>en</strong>: B, Mn, Se, MoNaast koper <strong>en</strong> z<strong>in</strong>k spel<strong>en</strong> <strong>en</strong>kele andere m<strong>in</strong>eral<strong>en</strong> ook e<strong>en</strong> belangrijke rol alsmicronutriënt. De situatie m.b.t. deze m<strong>in</strong>eral<strong>en</strong> is op hoofdlijn<strong>en</strong> gegev<strong>en</strong> <strong>in</strong> Tabel 4.Tabel 4. Reserves, productiecijfers <strong>en</strong> toepass<strong>in</strong>g<strong>en</strong> voor e<strong>en</strong> aantal andere micronutriënt<strong>en</strong>(bron voor R, P <strong>en</strong> R/P: USGS M<strong>in</strong>erals Information, 2011(http://m<strong>in</strong>erals.usgs.gov/m<strong>in</strong>erals/pubs/commodity/).Stof R (ton) P (tonperjaar)R/P 10(jaar)Aandel<strong>en</strong> <strong>in</strong>productieB (boor) 210.000 3.500 60 >75% Turkije,Chili,Arg<strong>en</strong>t<strong>in</strong>ieMn(mangaan)Mo(molybde<strong>en</strong>)630.000 13.000 48 50% uit Z-Afrika, Chili,Ch<strong>in</strong>a9.800.000 234.000 42 >75% uit US,Ch<strong>in</strong>a, ChiliSe (sele<strong>en</strong>) 88.000 2.260 39 Bijproduct <strong>van</strong>koper; >75% uitDuitsland,Japan, CanadaToepass<strong>in</strong>g<strong>en</strong>Chemie(bleek), glasStaal- <strong>en</strong> Alleger<strong>in</strong>g<strong>en</strong>leger<strong>in</strong>g<strong>en</strong>Glas,electronica,PVOpmerk<strong>in</strong>g<strong>en</strong>Ge<strong>en</strong> recycl<strong>in</strong>g,maar substitut<strong>en</strong>mogelijkDiepzeemijnbouw?Ge<strong>en</strong> substitut<strong>en</strong>bek<strong>en</strong>dSubstitutiemogelijk, metandere ‘schaarse’metal<strong>en</strong>Prijz<strong>en</strong> stijg<strong>en</strong>,substitut<strong>en</strong>mogelijkOp sele<strong>en</strong> na, word<strong>en</strong> deze grondstoff<strong>en</strong> ook g<strong>en</strong>oemd <strong>in</strong> het RMI: er wordt e<strong>en</strong> wez<strong>en</strong>lijkeconomisch belang aan gegev<strong>en</strong>, maar de ‘supply risk’ wordt ook hier niet hoog <strong>in</strong>geschat,waardoor deze material<strong>en</strong> niet onder de meest kritieke grondstoff<strong>en</strong> word<strong>en</strong> geschaard.Ook <strong>in</strong> vergelijk<strong>in</strong>g met de uitgebreider besprok<strong>en</strong> micronutriënt<strong>en</strong> koper <strong>en</strong> z<strong>in</strong>k, valt opdat de R/P-verhoud<strong>in</strong>g<strong>en</strong> gunstig afstek<strong>en</strong>. <strong>Schaarste</strong> valt niet op kortere termijn teverwacht<strong>en</strong> dan voor koper <strong>en</strong> z<strong>in</strong>k. Ook niet bij sele<strong>en</strong>, alhoewel dat als bijproduct wordtgewonn<strong>en</strong>: de koperproductie zal immers ook to<strong>en</strong>em<strong>en</strong>, zodat de pot<strong>en</strong>tie voor sele<strong>en</strong>w<strong>in</strong>n<strong>in</strong>gnav<strong>en</strong>ant zal to<strong>en</strong>em<strong>en</strong>.Overige nutriënt<strong>en</strong> waarvoor de m<strong>in</strong>erale voorraadsituatie <strong>in</strong> kaart kan word<strong>en</strong> gebrachtzijn: kalium, calcium, magnesium, zwavel <strong>en</strong> ijzer. Gegev<strong>en</strong>s over deze m<strong>in</strong>eral<strong>en</strong> word<strong>en</strong>gegev<strong>en</strong> <strong>in</strong> de bijlage.10 USGS M<strong>in</strong>erals Information 2011 87
7 ConclusiesDe aandacht voor krapte op de m<strong>in</strong>eral<strong>en</strong>markt zal de kom<strong>en</strong>de jar<strong>en</strong> to<strong>en</strong>em<strong>en</strong>. Deaandacht zal daarbij voornamelijk uitgaan naar e<strong>en</strong> set kritieke m<strong>in</strong>eral<strong>en</strong>, zoals die (o.a.)door de EU is vastgesteld.Koper <strong>en</strong> z<strong>in</strong>k word<strong>en</strong> gezi<strong>en</strong> als belangrijke material<strong>en</strong> voor de economie <strong>van</strong> de EU,maar niet als metal<strong>en</strong> waarvoor (b<strong>in</strong>n<strong>en</strong> de gekoz<strong>en</strong> tijdshorizon <strong>van</strong> 10 jaar) e<strong>en</strong> grootrisico voor lever<strong>in</strong>gsonderbrek<strong>in</strong>g bestaat, deels omdat de grondstofw<strong>in</strong>n<strong>in</strong>g nietgedom<strong>in</strong>eerd wordt door e<strong>en</strong> beperkt aantal land<strong>en</strong>. Daarmee kan gesteld word<strong>en</strong> dat dezetwee metal<strong>en</strong> de kom<strong>en</strong>de dec<strong>en</strong>nia niet <strong>in</strong> absolute z<strong>in</strong> ‘oprak<strong>en</strong>’ of schaars word<strong>en</strong>.Alhoewel we aannemelijk hebb<strong>en</strong> gemaakt dat statische R/P (reserve/productie)-verhoud<strong>in</strong>g<strong>en</strong> ge<strong>en</strong> realistisch beeld gev<strong>en</strong> <strong>van</strong> de concreet te verwacht<strong>en</strong>grondstoff<strong>en</strong>problematiek, geeft de R/P-verhoud<strong>in</strong>g wel e<strong>en</strong> beeld <strong>van</strong> de mate waar<strong>in</strong>zorg<strong>en</strong> omtr<strong>en</strong>t grondstoff<strong>en</strong> to<strong>en</strong>em<strong>en</strong>, <strong>en</strong> waar<strong>in</strong> actie (o.a. nieuwe mijnbouwactiviteit<strong>en</strong>)zou moet<strong>en</strong> plaatsv<strong>in</strong>d<strong>en</strong>. In die z<strong>in</strong> is de huidige situatie m.b.t. z<strong>in</strong>k (e<strong>en</strong> R/P-verhoud<strong>in</strong>g<strong>van</strong> ongeveer 20) zorgwekk<strong>en</strong>der dan die voor koper <strong>en</strong> <strong>en</strong>kele overige <strong>in</strong> dit stukbesprok<strong>en</strong> micronutriënt<strong>en</strong>. Disclaimer daarbij is wel dat hier altijd wordt uitgegaan <strong>van</strong> depublieke <strong>in</strong>formatie die door de USGS ter beschikk<strong>in</strong>g wordt gesteld. Er wordt –ook <strong>in</strong>Europees verband– hard gewerkt aan het opzett<strong>en</strong> <strong>van</strong> meer <strong>in</strong>formatiebronn<strong>en</strong>.Het huidige beeld voor koper zou <strong>in</strong> de nabije toekomst zorgelijker kunn<strong>en</strong> word<strong>en</strong>, omdatde behoefte aan koper <strong>in</strong> de kom<strong>en</strong>de dec<strong>en</strong>nia sterk (i.e. sterker dan op basis <strong>van</strong>to<strong>en</strong>em<strong>en</strong>de bevolk<strong>in</strong>g <strong>en</strong> welvaart is te veronderstell<strong>en</strong>) zou kunn<strong>en</strong> to<strong>en</strong>em<strong>en</strong> door e<strong>en</strong>to<strong>en</strong>em<strong>en</strong>d belang <strong>van</strong> elektrificatie. Door deze to<strong>en</strong>em<strong>en</strong>de vraag, maar ook door dekarakteristiek<strong>en</strong> <strong>van</strong> de mijnbouw- <strong>en</strong> m<strong>in</strong>eral<strong>en</strong>markt is volatiliteit <strong>en</strong> prijsstijg<strong>in</strong>g op demetaal (koper <strong>en</strong> z<strong>in</strong>k) markt <strong>van</strong> blijv<strong>en</strong>de aard. De kwetsbaarheid daar<strong>van</strong> zal voorverschill<strong>en</strong>de markt<strong>en</strong> anders uitpakk<strong>en</strong>: dat zal afhang<strong>en</strong> <strong>van</strong> de prijselasticiteit <strong>van</strong> diemarkt<strong>en</strong>, oftewel de heftigheid waarmee de vraag reageert op prijsverander<strong>in</strong>g<strong>en</strong>. Dehoogte <strong>van</strong> prijsstijg<strong>in</strong>g<strong>en</strong> wordt hierbij vooral bepaald door het aandeel dat de metal<strong>en</strong>hebb<strong>en</strong> <strong>in</strong> de totale kostprijs <strong>van</strong> e<strong>en</strong> e<strong>in</strong>dproduct. Zo kan bijvoorbeeld berek<strong>en</strong>d word<strong>en</strong>dat de kostprijs <strong>van</strong> e<strong>en</strong> zgn. flat panel display (waarde ongeveer 600EUR) slechts met0,2% zou stijg<strong>en</strong> <strong>in</strong>di<strong>en</strong> de prijs <strong>van</strong> het hiervoor b<strong>en</strong>odigde <strong>in</strong>dium zou verdubbel<strong>en</strong> (<strong>in</strong> ditvoorbeeld komt de waarde <strong>van</strong> het LCD-scherm dan op 601,20 euro). Hoe dezeverhoud<strong>in</strong>g<strong>en</strong> <strong>in</strong> de landbouwwereld uitpakk<strong>en</strong>, is <strong>in</strong> het kader <strong>van</strong> deze bijdrage niet naderbekek<strong>en</strong>.Alhoewel uit de deze stukk<strong>en</strong> blijkt dat er ge<strong>en</strong> onmiddellijk tekort dreigt aan debesprok<strong>en</strong> micronutriënt<strong>en</strong>, is zorg op zijn plaats. Net als <strong>in</strong> het geval <strong>van</strong> fosfaat gaat hetbij micronutriënt<strong>en</strong> om material<strong>en</strong> die –anders dan bij diverse <strong>in</strong>dustriële toepass<strong>in</strong>g<strong>en</strong>–e<strong>en</strong> niet-ver<strong>van</strong>gbare rol hebb<strong>en</strong> voor het lev<strong>en</strong> op aarde. Dat prijsvolatiliteit <strong>en</strong>prijsstijg<strong>in</strong>g<strong>en</strong> aan de orde <strong>van</strong> de dag zull<strong>en</strong> blijv<strong>en</strong> is welhaast zeker. De mate waar<strong>in</strong> ditbepal<strong>en</strong>d is voor de landbouwsector zal <strong>en</strong>erzijds afhang<strong>en</strong> <strong>van</strong> de concrete bijdrage <strong>van</strong> demicronutriënt<strong>en</strong> <strong>in</strong> (landbouw)opbr<strong>en</strong>gst<strong>en</strong> <strong>en</strong> anderzijds <strong>van</strong> de draagkracht <strong>van</strong> de<strong>in</strong>dividuele boer, die <strong>in</strong> verschill<strong>en</strong>de del<strong>en</strong> <strong>van</strong> de wereld verschill<strong>en</strong>d zal kunn<strong>en</strong>uitpakk<strong>en</strong>. 89
LiteratuurAngerer, Gerhard et al. (2009) Rohstoffe für Zukunftstechnologi<strong>en</strong>, E<strong>in</strong>fluss des branch<strong>en</strong>spezifisch<strong>en</strong>Rohstoffbedarfs <strong>in</strong> rohstoff<strong>in</strong>t<strong>en</strong>siv<strong>en</strong> Zukunftstechnologi<strong>en</strong> auf die zukünftige Rohstoffnachfrage,Fraunhofer Institut für System- und Innovationsforschung ISI, Karlsruhe, 2009.Aup<strong>in</strong>g, W.L. (2011) The uncerta<strong>in</strong> future of copper: An Exploratory System Dynamics Model and Analysisof the global copper system <strong>in</strong> the next 40 years, Master thesis, Technology, Policy and Managem<strong>en</strong>t,2011-11-10, M<strong>en</strong>tors: Thiss<strong>en</strong>, W.A.H., Pruyt, E., Dijkema, G.P.J., Baste<strong>in</strong>, A.G.T.M.Graedel, T.E. <strong>en</strong> E. <strong>van</strong> der Voet, editors, MIT Press, 2010. L<strong>in</strong>kages of Susta<strong>in</strong>ability.International Copper Study Group (2010). The world Copper factbook 2010.Kleijn, R<strong>en</strong>e, Ester <strong>van</strong> der Voet (2010) Resource constra<strong>in</strong>ts <strong>in</strong> a hydrog<strong>en</strong> economy based on r<strong>en</strong>ewable<strong>en</strong>ergy sources: An exploration, R<strong>en</strong>ewable and Susta<strong>in</strong>able Energy Reviews 14: 2784–2795Limits to Growth, the 30-year update door Donella <strong>en</strong> D<strong>en</strong>nis Meados <strong>en</strong> Jorg<strong>en</strong> Randers uit 2004.Mudd, G M, 2009, The Susta<strong>in</strong>ability of M<strong>in</strong><strong>in</strong>g <strong>in</strong> Australia : Key Production Tr<strong>en</strong>ds and TheirEnvironm<strong>en</strong>tal Implications for the Future. Research Report No RR5, Departm<strong>en</strong>t of CivilEng<strong>in</strong>eer<strong>in</strong>g, Monash University and M<strong>in</strong>eral Policy Institute, 2009.(http://users.monash.edu.au/~gmudd/sustym<strong>in</strong><strong>in</strong>g.html)Norgate, T.E. (2010) <strong>in</strong>: L<strong>in</strong>kages of Susta<strong>in</strong>ability, T.E. Graedel <strong>en</strong> E. <strong>van</strong> der Voet, editors, MIT Press,2010, hoofdstuk 8 Deteriorat<strong>in</strong>g Ore Grades.RMI (2010) Critical materials for the EU. Report of the Ad-hoc work<strong>in</strong>g group on def<strong>in</strong><strong>in</strong>g critical materials;July 2010 (http://ec.europa.eu/<strong>en</strong>terprise/policies/raw-materials/files/docs/report-b_<strong>en</strong>.pdf)US Departm<strong>en</strong>t of Energy (2010) Critical Materials Strategy.(http://cr.aiag.org/files/criticalmaterialsstrategy.pdf)USGS M<strong>in</strong>eral Commodities 2010Gebruikte websites:http://ec.europa.eu/<strong>en</strong>terprise/policies/raw-materials/critical/<strong>in</strong>dex_<strong>en</strong>.htmhttp://m<strong>in</strong>erals.usgs.gov/m<strong>in</strong>erals/pubs/commodity/ 91
Bijlage : Sam<strong>en</strong>vatt<strong>in</strong>g risicogegev<strong>en</strong>s micronutriënt<strong>en</strong>Tabel 5: Risicogegev<strong>en</strong>s voor de belangrijkste micronutriënt<strong>en</strong> (bron voor R, P <strong>en</strong> R/P: USGS). In deze tabel is ook e<strong>en</strong> aantal material<strong>en</strong>opg<strong>en</strong>om<strong>en</strong> dat niet tot de micronutriënt<strong>en</strong> behoort, maar wel tot de ess<strong>en</strong>tiële voed<strong>in</strong>gsstoff<strong>en</strong>.Reserve (ton) Productie(ton / jaar)N Ruim beschikbaar(uit de lucht)R/P(jaar)Bijproduct? GeografischeSubstitut<strong>en</strong>Conc<strong>en</strong>tratie? 11 beschikbaar?131.000 n.a. Nee Laag NeeP (fosfaat erts) 65.000.000 176.000 370 Nee 67% <strong>van</strong> productie <strong>in</strong> 3land<strong>en</strong>, 77% <strong>van</strong> voorraad<strong>in</strong> MarokkoCu 630.000 16.200 39 Nee Laag Deels 0,2Zn 250.000 12.000 21 Nee Laag Moeilijk 0,4Mn 630.000 13.000 48 Nee Laag Nee 0,4Mo 9.800.000 234.000 42 Nee Hoog Ja, maar door andere 0,5kritieke m<strong>in</strong>eral<strong>en</strong>B 210.000 3.500 60 Nee Hoog Ja 0,6Se 88.000 2.260 39 Ja Hoog JaFe 180.000.000 2.400.000 75 Nee Laag -K 9.500.000 33.000 288 Nee Laag - -Ca (als ‘lime’) Ruim beschikbaar 310.000 - Laag - -Mg 2.400.000 5.580 430 Nee Hoog Ja 2,6 13S Afkomstig uit 68.000 n.a. - Laag - -m<strong>in</strong>erale olie: ruimbeschikbaarNa Ruim beschikbaar n.a. n.a. - laagNeeSupplyRisk 12
Micronutriënt<strong>en</strong> <strong>in</strong> de landbouw <strong>en</strong> beschikbaarheid <strong>in</strong> de<strong>bodem</strong> - Focus op koper <strong>en</strong> z<strong>in</strong>kD.W. Buss<strong>in</strong>kNutriënt<strong>en</strong> Managem<strong>en</strong>t Instituut NMI, Wag<strong>en</strong><strong>in</strong>g<strong>en</strong>95
Inhoud1. Introductie 992. Gewas- <strong>en</strong> dierbehoefte <strong>en</strong> overschott<strong>en</strong> <strong>in</strong> Nederland 1012.1. Gewas- <strong>en</strong> dierbehoefte 1012.2. Cu- <strong>en</strong> Zn-overschott<strong>en</strong> 1013. Spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong>: factor<strong>en</strong> die <strong>van</strong> <strong>in</strong>vloed zijn op beschikbaarheid 1033.1. Vorm<strong>en</strong> 1033.2. Factor<strong>en</strong> die de beschikbaarheid beïnvloed<strong>en</strong> 1043.3. De rol <strong>van</strong> de plant 1054. Grondonderzoek als <strong>in</strong>dicator voor de beschikbaarheid <strong>in</strong> de <strong>bodem</strong> 1074.1. Bepal<strong>in</strong>g <strong>van</strong> de beschikbaarheid met achtergrond<strong>en</strong> 1074.2. Ontwikkel<strong>in</strong>gsperspectief <strong>en</strong> behoefte naar bepal<strong>in</strong>gbeschikbaarheid <strong>in</strong> grond 1084.3. Gewasonderzoek <strong>in</strong> relatie tot grondonderzoek 1094.4. Te nem<strong>en</strong> maatregel<strong>en</strong> 1105. Sam<strong>en</strong>gevat 111Literatuur 11397
1. IntroductieMicronutriënt<strong>en</strong> (spoorelem<strong>en</strong>t<strong>en</strong>) als B, Mo, Cu, Zn, Fe <strong>en</strong> Ni zijn ess<strong>en</strong>tieel voor e<strong>en</strong> goedegroei <strong>van</strong> gewass<strong>en</strong> <strong>en</strong> dier<strong>en</strong>. Gehalt<strong>en</strong> <strong>in</strong> de <strong>bodem</strong> <strong>en</strong> daarmee <strong>in</strong> plant<strong>en</strong> zijn <strong>van</strong> naturevaak te laag voor e<strong>en</strong> optimale gewasgroei <strong>en</strong>/of dierprestatie. Wereldwijd komt e<strong>en</strong> tekortaan Zn maar ook Cu dan ook vaak voor (Voortman, 2011). Bemest<strong>in</strong>g is noodzakelijk omtekort<strong>en</strong> bij gewass<strong>en</strong> op te heff<strong>en</strong>. Resultat<strong>en</strong> uit Turkije lat<strong>en</strong> zi<strong>en</strong> dat dit kan leid<strong>en</strong> totspectaculaire opbr<strong>en</strong>gststijg<strong>in</strong>g<strong>en</strong> (tot wel 600%) <strong>in</strong> Zn-deficiënte gebied<strong>en</strong> (Cakmak et al.,1996). Dit heeft daar geleid tot e<strong>en</strong> sterk stijg<strong>en</strong>d gebruik <strong>van</strong> Zn-houd<strong>en</strong>de meststoff<strong>en</strong>.Anderzijds wordt <strong>in</strong> India verwacht dat de problematiek met betrekk<strong>in</strong>g tot Zn-tekort<strong>en</strong>verscherpt (S<strong>in</strong>gh, 2011).Tegelijkertijd is het <strong>van</strong> belang om efficiënt met micronutriënt<strong>en</strong> om te gaan, omdat dezeschaars <strong>en</strong> relatief duur zijn <strong>en</strong> nog duurder zull<strong>en</strong> word<strong>en</strong>. De wereldvoorrad<strong>en</strong> <strong>van</strong>bijvoorbeeld w<strong>in</strong>baar koper <strong>en</strong> z<strong>in</strong>k zijn zeer beperkt (Baste<strong>in</strong>, 2011). Anderzijds kanovermatig gebruik leid<strong>en</strong> tot milieuproblem<strong>en</strong>. In Nederland wordt vooral op deveehouderijbedrijv<strong>en</strong> <strong>van</strong> de zware metal<strong>en</strong> Cu <strong>en</strong> Zn meer aangevoerd dan dat er met hetgewas wordt afgevoerd. Dit leidt tot ophop<strong>in</strong>g <strong>en</strong>/of extra uit- <strong>en</strong> afspoel<strong>in</strong>g naar hetoppervlaktewater.Om efficiënt met spoorelem<strong>en</strong>t<strong>en</strong> om te kunn<strong>en</strong> gaan di<strong>en</strong>t <strong>en</strong>erzijds bek<strong>en</strong>d te zijn welkefactor<strong>en</strong> de beschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong> beïnvloed<strong>en</strong> <strong>en</strong> anderzijds di<strong>en</strong>tbek<strong>en</strong>d te zijn wat de gewas- <strong>en</strong> dierbehoefte is. In deze bijdrage wordt vooral <strong>in</strong>gegaan op<strong>bodem</strong>process<strong>en</strong> <strong>en</strong> de rol <strong>van</strong> grondonderzoek om de beschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>voor gewass<strong>en</strong> te duid<strong>en</strong>.99
100
2. Gewas- <strong>en</strong> dierbehoefte <strong>en</strong> overschott<strong>en</strong> <strong>in</strong> Nederland2.1. Gewas- <strong>en</strong> dierbehoefteGewass<strong>en</strong> verschill<strong>en</strong> <strong>in</strong> hun behoefte aan Cu <strong>en</strong> Zn. In Tabel 4 is voor e<strong>en</strong> aantal gewass<strong>en</strong>weergegev<strong>en</strong> of ze e<strong>en</strong> hoge of lage gewasbehoefte aan deze elem<strong>en</strong>t<strong>en</strong> hebb<strong>en</strong> <strong>en</strong> op welkeprocess<strong>en</strong> <strong>in</strong> de plant Cu <strong>en</strong> Zn <strong>in</strong>vloed hebb<strong>en</strong>. In Nederland is de voorzi<strong>en</strong><strong>in</strong>g <strong>van</strong> gewass<strong>en</strong>met Cu <strong>en</strong> Zn <strong>in</strong> het algeme<strong>en</strong> goed door het gebruik <strong>van</strong> dierlijke mest dat relatief hogegehalt<strong>en</strong> aan Cu <strong>en</strong> Zn bevat.Cu <strong>en</strong> Zn zijn ess<strong>en</strong>tieel voor e<strong>en</strong> goede diergezondheid <strong>en</strong> dierprestatie (Tabel 4). Debehoefte <strong>van</strong> dier<strong>en</strong> aan Cu <strong>en</strong> Zn hangt af <strong>van</strong> de diersoort, leeftijd <strong>en</strong> productiedoel. InTabel 2 is globaal weergegev<strong>en</strong> welke ranges <strong>in</strong> behoefte-norm<strong>en</strong> <strong>van</strong> ruwvoer gehanteerdword<strong>en</strong> voor melkvee <strong>en</strong> vark<strong>en</strong>s (EU 2003a; EU2003b, COMV, 2005; Jacela et al., 2010).Met bemest<strong>in</strong>g kunn<strong>en</strong> deze gehaltes <strong>in</strong> gewass<strong>en</strong> voor ruwvoer <strong>in</strong> pr<strong>in</strong>cipe ongeveergerealiseerd word<strong>en</strong>, maar <strong>in</strong> de praktijk is de opname meestal lager (zie Tabel 1), terwijlgehaltes <strong>van</strong> bov<strong>en</strong> de 10 mg Cu per kg ds voer via bemest<strong>in</strong>g niet te realiser<strong>en</strong> zijn. Veelalwordt daarom extra Cu <strong>en</strong> Zn toegevoegd aan krachtvoeders <strong>en</strong> word<strong>en</strong> erm<strong>in</strong>eraalconc<strong>en</strong>trat<strong>en</strong> toegevoegd aan ruwvoer, te meer daar voldo<strong>en</strong>de Cu <strong>en</strong> Znverondersteld wordt positief te werk<strong>en</strong> op de diergezondheid <strong>en</strong> het weerstandsvermog<strong>en</strong>.Tabel 1. Het gemiddelde Cu- <strong>en</strong> Zn-gehalte <strong>en</strong> de 95% range <strong>van</strong> <strong>en</strong>kele belangrijke ruwvoeders.Ruwvoeder Cu-gehalte (95%-range) Zn-gehalte (95%-range)Weidegras 9 (5 - 13)* ..kuilgras 8 (5 -11,5 ..snijmaiskuil 4 (2 – 6) 35 (20-50)Tabel 2. De behoefte aan Cu <strong>en</strong> Zn uitdrukt <strong>in</strong> mg per kg droog voer.Diersoort Cu ZnMelkvee* 8-12 25-50Vark<strong>en</strong>s 5-10 50-125* In Nederland word<strong>en</strong> voor droogstaand melkvee <strong>en</strong> jongvee beduid<strong>en</strong>d hogere norm<strong>en</strong> aangehoud<strong>en</strong>2.2. Cu- <strong>en</strong> Zn-overschott<strong>en</strong>Uit e<strong>en</strong> <strong>in</strong>v<strong>en</strong>tarisatie <strong>van</strong> D<strong>en</strong> Boer et al. (2007) op 25 melkveehouderijbedrijv<strong>en</strong> <strong>in</strong> Dr<strong>en</strong>thebleek dat de Cu- <strong>en</strong> Zn-voorzi<strong>en</strong><strong>in</strong>g regelmatig het dubbele of meer bedroeg <strong>van</strong> wat <strong>van</strong>uitveevoed<strong>in</strong>gstechnisch oogpunt nodig is. Dit resulteerde gemiddeld over de bedrijv<strong>en</strong> <strong>in</strong>positieve Cu- <strong>en</strong> Zn-balans <strong>van</strong> respectievelijk 184g Cu/ha <strong>en</strong> 304 g Zn/ha. Bov<strong>en</strong>di<strong>en</strong> was devariatie tuss<strong>en</strong> bedrijv<strong>en</strong> zeer groot. Indi<strong>en</strong> op de bedrijv<strong>en</strong> Cu-houd<strong>en</strong>de voetbad<strong>en</strong> werd<strong>en</strong>gebruikt kon het Cu-overschot oplop<strong>en</strong> tot 1 kg/ha. Op nationaal niveau is het Cu <strong>en</strong> Zn <strong>in</strong>m<strong>en</strong>gvoerders de belangrijkste bron <strong>van</strong> toevoer (via dierlijke mest) naar landbouwpercel<strong>en</strong>(Jongbloed <strong>en</strong> Römk<strong>en</strong>s, 2009) <strong>en</strong> bedroeg voor Nederland als geheel het overschotrespectievelijk ongeveer 400 <strong>en</strong> 1100 ton Cu <strong>en</strong> Zn per jaar.Door e<strong>en</strong> aangepast managem<strong>en</strong>t <strong>en</strong> aanpass<strong>in</strong>g<strong>en</strong> <strong>in</strong> de m<strong>in</strong>erale sam<strong>en</strong>stell<strong>in</strong>g <strong>van</strong>voedermiddel<strong>en</strong> zijn Cu- <strong>en</strong> Zn-overschott<strong>en</strong> drastisch te verkle<strong>in</strong><strong>en</strong> (D<strong>en</strong> Boer et al., 2007;101
Vliet et al., 2009), mits erfbetreders hun adviez<strong>en</strong> naar de agrarisch ondernemer metbetrekk<strong>in</strong>g tot de spoorelem<strong>en</strong>t voorzi<strong>en</strong><strong>in</strong>g op elkaar afstemm<strong>en</strong>. Naar verwacht<strong>in</strong>g zal ditleid<strong>en</strong> tot lagere gehalt<strong>en</strong> <strong>in</strong> de mest. In comb<strong>in</strong>atie met e<strong>en</strong> lagere mestgift per ha als gevolg<strong>van</strong> het viger<strong>en</strong>de N- <strong>en</strong> P-beleid zal de aanvoer naar landbouwpercel<strong>en</strong> naar verwacht<strong>in</strong>gvoldo<strong>en</strong>de afnem<strong>en</strong>. Voor e<strong>en</strong> adequate voorzi<strong>en</strong><strong>in</strong>g <strong>van</strong> gewass<strong>en</strong> met Cu <strong>en</strong> Zn wordt hetdan belangrijker om via grondonderzoek te kunn<strong>en</strong> voorspell<strong>en</strong> hoeveel Cu <strong>en</strong> Zn beschikbaarkan kom<strong>en</strong> door nalever<strong>in</strong>g uit de <strong>bodem</strong> <strong>en</strong> welke factor<strong>en</strong> hierop <strong>van</strong> <strong>in</strong>vloed zijn. Dan kanbeter onderk<strong>en</strong>d word<strong>en</strong> of er bemest<strong>in</strong>g nodig is <strong>en</strong> zo ja, welk type meststof of welketoedi<strong>en</strong><strong>in</strong>gstechniek het beste gebruikt kan word<strong>en</strong> Dit is des te belangrijker voor gebied<strong>en</strong>waarbij de voorzi<strong>en</strong><strong>in</strong>g met Cu <strong>en</strong> Zn marg<strong>in</strong>aal (zoals <strong>in</strong> de trop<strong>en</strong>, Zuidoost Azië) is.102
3. Spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong>: factor<strong>en</strong> die <strong>van</strong> <strong>in</strong>vloed zijn opbeschikbaarheid3.1. Vorm<strong>en</strong>Spoorelem<strong>en</strong>t<strong>en</strong> zijn <strong>in</strong> verschill<strong>en</strong>de vorm<strong>en</strong> <strong>in</strong> de <strong>bodem</strong> aanwezig, zowel <strong>in</strong> de vaste als <strong>in</strong>de opgeloste fase. De vier belangrijkste vorm<strong>en</strong> zijn:- als vrij anion/kation <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g;- gecomplexeerd met anorganische/organische bestanddel<strong>en</strong> <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g; <strong>en</strong>- geadsorbeerd aan metaal(hydr)oxid<strong>en</strong>, organische stof <strong>en</strong>/of kleim<strong>in</strong>eral<strong>en</strong>; <strong>en</strong>- <strong>in</strong> <strong>bodem</strong>m<strong>in</strong>eral<strong>en</strong>Er is e<strong>en</strong> groot verschil tuss<strong>en</strong> de totaalgehalt<strong>en</strong> aan (spoor)elem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong> (Tabel 3)<strong>en</strong> de conc<strong>en</strong>tratie <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g.Tabel 3. Totaalgehalt<strong>en</strong> aan Cu <strong>en</strong> Zn die wereldwijd <strong>in</strong> de <strong>bodem</strong> word<strong>en</strong> aangetroff<strong>en</strong> <strong>en</strong> deconc<strong>en</strong>tratie er<strong>van</strong> <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g, uitgedrukt als totaalconc<strong>en</strong>tratie <strong>in</strong> de<strong>bodem</strong>oploss<strong>in</strong>g. Data uit M<strong>en</strong>gel & Kirkby (1987) <strong>en</strong> Kabata-P<strong>en</strong>dias & P<strong>en</strong>dias(2001).Elem<strong>en</strong>t totaalgehalte, mg kg -1 conc<strong>en</strong>tratie <strong>in</strong> <strong>bodem</strong>oploss<strong>in</strong>g,mg kg -1Koper 1 – 140 0,0018 – 0,135Z<strong>in</strong>k 3,5 – 770 0,021 – 0,570Over het algeme<strong>en</strong> komt e<strong>en</strong> groot deel <strong>van</strong> de voorraad aan Cu <strong>en</strong> Zn voor <strong>in</strong> m<strong>in</strong>eral<strong>en</strong> <strong>in</strong> de<strong>bodem</strong>, waaruit deze vrij kunn<strong>en</strong> kom<strong>en</strong> door verwer<strong>in</strong>g. Doorgaans is dit e<strong>en</strong> zeer langzaamproces <strong>en</strong> zal zeer we<strong>in</strong>ig bijdrag<strong>en</strong> aan de beschikbaarheid <strong>van</strong> het spoorelem<strong>en</strong>t voor e<strong>en</strong>gewas b<strong>in</strong>n<strong>en</strong> e<strong>en</strong> groeiseizo<strong>en</strong>.Voor spoorelem<strong>en</strong>t<strong>en</strong> geldt dat alle<strong>en</strong> de vrije vorm <strong>in</strong> oploss<strong>in</strong>g (het Cu 2+ , Zn 2+ ion),opneembaar is voor de plant <strong>en</strong> dus chemisch gezi<strong>en</strong> beschikbaar is. Dit is slechts e<strong>en</strong> fractie<strong>van</strong> het totaal (Tabel 3).Tuss<strong>en</strong> de conc<strong>en</strong>tratie <strong>van</strong> het vrije ion <strong>in</strong> oploss<strong>in</strong>g <strong>en</strong> de andere vorm<strong>en</strong> <strong>van</strong> het elem<strong>en</strong>t <strong>in</strong>de <strong>bodem</strong> bestaat e<strong>en</strong> chemisch ev<strong>en</strong>wicht. De ligg<strong>in</strong>g <strong>van</strong> dat ev<strong>en</strong>wicht wordt bepaald doorde aff<strong>in</strong>iteit <strong>van</strong> de chemische reacties. E<strong>en</strong> dal<strong>in</strong>g <strong>van</strong> de conc<strong>en</strong>tratie <strong>van</strong> het vrije elem<strong>en</strong>t<strong>in</strong> oploss<strong>in</strong>g leidt tot e<strong>en</strong> verschuiv<strong>in</strong>g <strong>van</strong> het ev<strong>en</strong>wicht, waardoor e<strong>en</strong> deel <strong>van</strong> hetspoorelem<strong>en</strong>t <strong>van</strong>uit de gecomplexeerde of geadsorbeerde fase wordt vrijgemaakt <strong>en</strong> <strong>in</strong>oploss<strong>in</strong>g komt. Deze nalever<strong>in</strong>g buffert de conc<strong>en</strong>tratie <strong>van</strong> het vrije spoorelem<strong>en</strong>t <strong>in</strong>oploss<strong>in</strong>g zoals schematisch is weergegev<strong>en</strong> <strong>in</strong> Figuur 1.Complexer<strong>in</strong>g <strong>in</strong> oploss<strong>in</strong>g met anorganische/organische complexvormers speelt e<strong>en</strong> rol bijCu <strong>en</strong> Zn <strong>en</strong> wordt beïnvloed door de pH. Anorganische complexvormers zijn onder anderechloride (Cu <strong>en</strong> Zn), sulfaat (Zn) <strong>en</strong> carbonaat (Zn). Daarnaast kunn<strong>en</strong> Cu <strong>en</strong> Zn <strong>in</strong> oploss<strong>in</strong>ggecomplexeerd zijn met opgeloste organische stof (Ashley, 1996). Gecomplexeerd Cu <strong>en</strong> Znis niet direct beschikbaar voor opname. Het moet eerst word<strong>en</strong> vrijgemaakt <strong>van</strong> het complex.103
Wel verhoogt complexer<strong>in</strong>g de mobiliteit <strong>van</strong> Cu <strong>en</strong> Zn <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g, waardoor degewasopname kan to<strong>en</strong>em<strong>en</strong>.Het adsorbtiecomplex is de belangrijkste micronutriënt<strong>en</strong>-buffer <strong>in</strong> de <strong>bodem</strong> <strong>en</strong> daarmee debelangrijkste bron <strong>van</strong> opname door de plant. Geadsorbeerd aan <strong>bodem</strong>bestanddel<strong>en</strong> (klei,organische stof, metaal(hydr)oxid<strong>en</strong>, kalk) moet<strong>en</strong> Cu <strong>en</strong> Zn eerst word<strong>en</strong> gedesorbeerdalvor<strong>en</strong>s ze opneembaar zijn voor de plant. Wanneer de adsorptie to<strong>en</strong>eemt, is deev<strong>en</strong>wichtsconc<strong>en</strong>tratie <strong>van</strong> het spoorelem<strong>en</strong>t <strong>in</strong> oploss<strong>in</strong>g lager <strong>en</strong> is het spoorelem<strong>en</strong>t dusm<strong>in</strong>der beschikbaar voor opname. Heel we<strong>in</strong>ig organische stof <strong>en</strong> kleim<strong>in</strong>eral<strong>en</strong> is ongunstig,want dan spoel<strong>en</strong> nutriënt<strong>en</strong> snel uit; e<strong>en</strong> heel hoog gehalte aan klei, ijzeroxid<strong>en</strong> <strong>en</strong> organischestof is ook weer niet gunstig, want dan neemt de beschikbaarheid <strong>van</strong> de nutriënt<strong>en</strong> relatiefweer af, omdat zoveel geadsorbeerd wordt.Figuur 1. Schema <strong>van</strong> de belangrijkste <strong>bodem</strong>fracties waar<strong>in</strong> hoofd- <strong>en</strong> spoorelem<strong>en</strong>t<strong>en</strong>aanwezig zijn. De process<strong>en</strong> die <strong>van</strong> <strong>in</strong>vloed zijn op het beschikbaar kom<strong>en</strong> <strong>van</strong> e<strong>en</strong>bepaalde fractie <strong>en</strong> de mate waar<strong>in</strong> de verschill<strong>en</strong>de fracties kunn<strong>en</strong> vrijkom<strong>en</strong> vooropname b<strong>in</strong>n<strong>en</strong> e<strong>en</strong> groeiseizo<strong>en</strong> zijn aangegev<strong>en</strong>.3.2. Factor<strong>en</strong> die de beschikbaarheid beïnvloed<strong>en</strong>De factor<strong>en</strong> die de adsorptie <strong>en</strong> resorptie bepal<strong>en</strong>, <strong>en</strong> daarmee de mate waar<strong>in</strong> Cu <strong>en</strong> Znbeschikbaar zijn, zijn onder andere:• pH;• vochtgehalte;• temperatuur; <strong>en</strong>• <strong>in</strong>teracties met andere elem<strong>en</strong>t<strong>en</strong>.Adsorptie/desorptieprocess<strong>en</strong> zijn sterk pH-afhankelijk. Bij adsorptie aan metaal(hydr)oxid<strong>en</strong><strong>en</strong> kleim<strong>in</strong>eral<strong>en</strong> leidt e<strong>en</strong> verhog<strong>in</strong>g <strong>van</strong> de pH tot e<strong>en</strong> hogere adsorptie <strong>van</strong> Cu <strong>en</strong> Zn,104
waardoor de beschikbaarheid afneemt. De Cu <strong>en</strong> Zn-conc<strong>en</strong>tratie <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>gnem<strong>en</strong> <strong>in</strong> 100-voud af per e<strong>en</strong>heid dat de pH to<strong>en</strong>eemt. Hierdoor neemt ook de opname <strong>van</strong>Cu <strong>en</strong> Zn door de plant sterk af bij verhog<strong>in</strong>g <strong>van</strong> de pH. Op kalkgrond<strong>en</strong> zonder bemest<strong>in</strong>gzal daardoor vaak e<strong>en</strong> Zn tekort optred<strong>en</strong>.Het vochtgehalte <strong>van</strong> de <strong>bodem</strong> di<strong>en</strong>t voldo<strong>en</strong>de te zijn voor nutriënt<strong>en</strong>transport. Met deaanvoer <strong>van</strong> water naar de wortels word<strong>en</strong> immers ook spoorelem<strong>en</strong>t<strong>en</strong>, die zich <strong>in</strong> de<strong>bodem</strong>oploss<strong>in</strong>g bev<strong>in</strong>d<strong>en</strong>, meegevoerd. Onder droge omstandighed<strong>en</strong> zijn nutriënt<strong>en</strong>gehalt<strong>en</strong><strong>in</strong> gewass<strong>en</strong> dan meestal ook duidelijk lager. E<strong>en</strong> goede vochtvoorzi<strong>en</strong><strong>in</strong>g kan ertoe leid<strong>en</strong> datbij e<strong>en</strong> relatief lage beschikbaarheid toch voldo<strong>en</strong>de Cu <strong>en</strong> Zn wordt opg<strong>en</strong>om<strong>en</strong>.Voor de meeste elem<strong>en</strong>t<strong>en</strong> geldt dat afname <strong>van</strong> de temperatuur leidt tot afname <strong>van</strong> deopname <strong>van</strong> nutriënt<strong>en</strong>.Wat de <strong>in</strong>teractie met andere elem<strong>en</strong>t<strong>en</strong> betreft wordt de opname <strong>van</strong> Cu sterk beperkt doorandere dival<strong>en</strong>te kation<strong>en</strong>, vooral Zn2+. E<strong>en</strong> overmaat Zn kan leid<strong>en</strong> tot e<strong>en</strong> Cu-tekort. Cu <strong>en</strong>N verton<strong>en</strong> sterke positieve <strong>in</strong>teracties. Meer N verhoogt de opname <strong>van</strong> Cu <strong>en</strong> dat geldt ookomgekeerd. Toedi<strong>en</strong><strong>in</strong>g <strong>van</strong> relatief grote hoeveelhed<strong>en</strong> N- <strong>en</strong> P-meststoff<strong>en</strong> kunn<strong>en</strong> doorstimuler<strong>in</strong>g <strong>van</strong> de groei leid<strong>en</strong> tot Cu-gebrek bij plant<strong>en</strong> die <strong>in</strong> grond<strong>en</strong> groei<strong>en</strong> met lage Cugehalt<strong>en</strong>.Cu <strong>en</strong> P zijn antagonist<strong>en</strong>. Verhog<strong>in</strong>g <strong>van</strong> de hoeveelheid P <strong>in</strong> de <strong>bodem</strong> leidt doorcompetitie om adsorptieplekk<strong>en</strong> op de organische stof, tot verm<strong>in</strong>der<strong>in</strong>g <strong>van</strong> de hoeveelheidgeadsorbeerd Cu <strong>in</strong> de <strong>bodem</strong>. Op korte termijn leidt dit tot to<strong>en</strong>ame <strong>van</strong> beschikbaarheid <strong>van</strong>Cu. Op lange termijn leidt dit echter, door afname <strong>van</strong> de geadsorbeerde Cu-ion<strong>en</strong> die e<strong>en</strong>soort voorraad vorm<strong>en</strong>, tot Cu-gebrek. Anderzijds zijn plant<strong>en</strong> met P-gebrek vatbaar voor Cutoxiciteit.Cu-toxiciteit kan leid<strong>en</strong> tot Fe-gebrek <strong>in</strong> plant<strong>en</strong>: Cu <strong>en</strong> Fe zijn antagonist<strong>en</strong>.Zn vertoont <strong>in</strong>teracties met vele elem<strong>en</strong>t<strong>en</strong>: Zn-P, Zn-N, Zn-K, Zn-Mn, Zn-Fe <strong>en</strong> Zn-Cu(Moraghan & Mascagni, 1991). De <strong>in</strong>teractie met P is bek<strong>en</strong>d. Hoge P-gift<strong>en</strong> kunn<strong>en</strong> leid<strong>en</strong>tot het ontstaan <strong>van</strong> Zn-tekort <strong>en</strong> daardoor tot e<strong>en</strong> opbr<strong>en</strong>gstderv<strong>in</strong>g i.p.v. e<strong>en</strong>opbr<strong>en</strong>gststijg<strong>in</strong>g. Doordat meer P wordt opg<strong>en</strong>om<strong>en</strong> versnelt de groei <strong>van</strong> de spruit <strong>en</strong> ditleidt tot ‘verdunn<strong>in</strong>g’ <strong>van</strong> de Zn-conc<strong>en</strong>tratie <strong>in</strong> het gewas <strong>en</strong> daardoor tot Zn-gebrek.Daarnaast neemt de Zn-oplosbaarheid <strong>in</strong> de <strong>bodem</strong> af bij verhog<strong>in</strong>g <strong>van</strong> P-conc<strong>en</strong>traties <strong>in</strong><strong>bodem</strong>oploss<strong>in</strong>g. Gewass<strong>en</strong> met tekort aan Zn kunn<strong>en</strong> hoge P-gehalt<strong>en</strong> hebb<strong>en</strong>. Het komtvoor dat og<strong>en</strong>schijnlijke Zn-gebreksverschijnsel<strong>en</strong>, <strong>in</strong> werkelijkheid P-toxiciteitverschijnsel<strong>en</strong>zijn.3.3. De rol <strong>van</strong> de plantNiet alle<strong>en</strong> de zojuist g<strong>en</strong>oemde factor<strong>en</strong> beïnvloed<strong>en</strong> de beschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>voor de plant<strong>en</strong>, maar plant<strong>en</strong> kunn<strong>en</strong> zelf ook e<strong>en</strong> actieve rol spel<strong>en</strong> <strong>in</strong> de opname.Plant<strong>en</strong>wortels kunn<strong>en</strong> de chemische omstandighed<strong>en</strong> <strong>in</strong> de nabijheid <strong>van</strong> de wortel(rhizosfeer) sterk beïnvloed<strong>en</strong> door e<strong>en</strong> verander<strong>in</strong>g <strong>in</strong> de pH. Deze verander<strong>in</strong>g <strong>van</strong> pH hangtsam<strong>en</strong> met het opnamemechanisme <strong>van</strong> kation<strong>en</strong> <strong>en</strong> anion<strong>en</strong>. Opname <strong>van</strong> kation<strong>en</strong> isgekoppeld aan afgifte <strong>van</strong> H+ <strong>en</strong> opname <strong>van</strong> anion<strong>en</strong> aan e<strong>en</strong> netto afgifte <strong>van</strong> OH-.Wanneer de opnamebalans <strong>van</strong> (kation<strong>en</strong>-anion<strong>en</strong>) negatief is (d.w.z. wanneer netto meeranion<strong>en</strong> word<strong>en</strong> opg<strong>en</strong>om<strong>en</strong>), wat doorgaans het geval is wanneer N als nitraat wordtopg<strong>en</strong>om<strong>en</strong>, stijgt de pH <strong>in</strong> de rhizosfeer. Als N overweg<strong>en</strong>d wordt opg<strong>en</strong>om<strong>en</strong> alsammonium, of bij plant<strong>en</strong> met symbiotische stikstofb<strong>in</strong>d<strong>in</strong>g, is de opnamebalans <strong>van</strong>(kation<strong>en</strong>-anion<strong>en</strong>) positief <strong>en</strong> daalt de pH <strong>in</strong> de rhizosfeer (Aquilar & Van Diest, 1981;105
Gahoonia et al., 1992; Thomson et al., 1993). Door e<strong>en</strong> verander<strong>in</strong>g <strong>van</strong> de pH <strong>in</strong> derhizosfeer verandert ook de beschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>. Bijvoorbeeld e<strong>en</strong> pHstijg<strong>in</strong>g<strong>in</strong> de rhizosfeer zorgt voor e<strong>en</strong> verm<strong>in</strong>derde beschikbaarheid <strong>van</strong> Cu <strong>en</strong> Zn. Ditbetek<strong>en</strong>t dus dat de vorm waar<strong>in</strong> N wordt opg<strong>en</strong>om<strong>en</strong> e<strong>en</strong> belangrijke rol speelt bij de opname<strong>van</strong> m<strong>in</strong>eral<strong>en</strong>.Plant<strong>en</strong>wortels scheid<strong>en</strong> diverse organische verb<strong>in</strong>d<strong>in</strong>g<strong>en</strong> uit, bijvoorbeeld suikers, <strong>en</strong>zym<strong>en</strong>,organische zur<strong>en</strong>, <strong>en</strong> <strong>in</strong> bijzondere gevall<strong>en</strong> phytosiderofor<strong>en</strong>: stoff<strong>en</strong> die zorg<strong>en</strong> dat bepaaldeelem<strong>en</strong>t<strong>en</strong> gemakkelijker opg<strong>en</strong>om<strong>en</strong> kunn<strong>en</strong> word<strong>en</strong>. De uitscheid<strong>in</strong>g <strong>van</strong> organische zur<strong>en</strong>uit de wortels <strong>van</strong> sommige plant<strong>en</strong>soort<strong>en</strong> kan sterk to<strong>en</strong>em<strong>en</strong> door fosfaatgebrek, waardoormeer P kan word<strong>en</strong> opg<strong>en</strong>om<strong>en</strong>. De capaciteit <strong>van</strong> wortels om phytosiderofor<strong>en</strong> uit tescheid<strong>en</strong> verschilt sterk tuss<strong>en</strong> plant<strong>en</strong>soort<strong>en</strong> <strong>en</strong> tuss<strong>en</strong> rass<strong>en</strong> <strong>van</strong> e<strong>en</strong> soort (Römheld &Marschner, 1990; Marschner, 1995).In Tabel 4 zijn <strong>en</strong>kele <strong>van</strong> <strong>in</strong>vloed zijnde factor<strong>en</strong> op de beschikbaarheid <strong>in</strong> beknopte vormweergegev<strong>en</strong>.106
4. Grondonderzoek als <strong>in</strong>dicator voor de beschikbaarheid <strong>in</strong> de<strong>bodem</strong>4.1. Bepal<strong>in</strong>g <strong>van</strong> de beschikbaarheid met achtergrond<strong>en</strong>De ontwikkel<strong>in</strong>g <strong>van</strong> grondonderzoeksmethodiek<strong>en</strong> kwam <strong>in</strong> de tw<strong>in</strong>tiger jar<strong>en</strong> <strong>van</strong> de vorigeeeuw op gang <strong>en</strong> werd sterk geïnt<strong>en</strong>siveerd na 1945. De ontwikkelde techniek<strong>en</strong> zijn vooralgebaseerd op “trial and error” onderzoek (Van Erp <strong>en</strong> Van Beusichem, 1998). Diverseextractiemiddel<strong>en</strong> zijn <strong>in</strong> het verled<strong>en</strong> getest om vast te stell<strong>en</strong> of ze agressief g<strong>en</strong>oeg war<strong>en</strong>om met de to<strong>en</strong> beschikbare analytische techniek<strong>en</strong> verschill<strong>en</strong> <strong>in</strong> extraheerbaarnutriëntgehalte tuss<strong>en</strong> grond<strong>en</strong> vast te stell<strong>en</strong>. Deze verschill<strong>en</strong> zijn vervolg<strong>en</strong>s gerelateerdaan opbr<strong>en</strong>gst- <strong>en</strong> respons proev<strong>en</strong> op bemest<strong>in</strong>g. Deze correlatieve b<strong>en</strong>ader<strong>in</strong>g heeft ertoegeleid dat elk land <strong>en</strong>/of regio zo’n beetje zijn eig<strong>en</strong> extractie methodiek heeft, hetge<strong>en</strong>resulteert <strong>in</strong> ti<strong>en</strong>tall<strong>en</strong> verschill<strong>en</strong>de methodiek<strong>en</strong> (Jones 1998, Buss<strong>in</strong>k & Temm<strong>in</strong>ghoff2004) met hun eig<strong>en</strong> waarder<strong>in</strong>gssystematiek. Dit bemoeilijkt het uitwissel<strong>en</strong> <strong>van</strong><strong>bodem</strong>analyse gegev<strong>en</strong>s <strong>en</strong> bijbehor<strong>en</strong>de adviez<strong>en</strong> tuss<strong>en</strong> regio’s.In Nederland werd tot voor kort 0,43 M salpeterzuur <strong>en</strong> 0,4 M azijnzuur als extractiemiddelgebruikt om respectievelijk Cu <strong>en</strong> Zn te bepal<strong>en</strong>. De destijds afgeleide relaties tuss<strong>en</strong> dehoeveelheid geëxtraheerd <strong>en</strong> gewasrespons verklar<strong>en</strong> vaak niet meer 25%.Figuur 2. Belangrijkste fracties <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong>, process<strong>en</strong> <strong>van</strong> <strong>in</strong>vloed op hetbeschikbaar kom<strong>en</strong> <strong>van</strong> bepaalde fractie, mate waar<strong>in</strong> de verschill<strong>en</strong>de fracties kunn<strong>en</strong>vrijkom<strong>en</strong> voor opname b<strong>in</strong>n<strong>en</strong> e<strong>en</strong> groeiseizo<strong>en</strong> <strong>en</strong> type extractiemiddel dat <strong>van</strong><strong>in</strong>vloed is op het vrij mak<strong>en</strong> <strong>van</strong> micronutriënt<strong>en</strong> uit e<strong>en</strong> bepaalde fractie. Het is slechtse<strong>en</strong> grove <strong>in</strong>dicatie <strong>van</strong> wat de belangrijkste fracties zijn die micronutriënt<strong>en</strong> vrijmak<strong>en</strong> voor de <strong>bodem</strong>oploss<strong>in</strong>g (Buss<strong>in</strong>k & Temm<strong>in</strong>ghoff, 2004).107
Met de komst <strong>van</strong> nieuwe analysetechniek<strong>en</strong> <strong>in</strong> de afgelop<strong>en</strong> dec<strong>en</strong>nia (ICP, ICP-MS) kunn<strong>en</strong>tot meer dan 1000 keer lagere gehalt<strong>en</strong> word<strong>en</strong> gemet<strong>en</strong> (Buss<strong>in</strong>k & Temm<strong>in</strong>ghoff, 2004).Dat biedt de mogelijkheid om met zwakkere extractiemiddel<strong>en</strong> te gaan werk<strong>en</strong> die beter hetwortelmilieu weerspiegel<strong>en</strong>.In zijn algeme<strong>en</strong>heid di<strong>en</strong>t e<strong>en</strong> goed extractiemiddel <strong>in</strong>formatie te gev<strong>en</strong> over:• de hoeveelheid die direct beschikbaar is <strong>in</strong> de <strong>bodem</strong> (<strong>in</strong>t<strong>en</strong>siteit); <strong>en</strong>• de hoeveelheid die gemakkelijk <strong>in</strong> oploss<strong>in</strong>g kan kom<strong>en</strong> om de door de plantopg<strong>en</strong>om<strong>en</strong> hoeveelheid te ver<strong>van</strong>g<strong>en</strong> (capaciteit of hoeveelheid).Voor e<strong>en</strong> optimale gewasgroei c.q. het realiser<strong>en</strong> <strong>van</strong> e<strong>en</strong> bepaald gew<strong>en</strong>st gehalte <strong>in</strong> hetgewas, di<strong>en</strong><strong>en</strong> de nutriëntconc<strong>en</strong>traties <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g bov<strong>en</strong> e<strong>en</strong> bepaalde waarde teblijv<strong>en</strong>. E<strong>en</strong> groei<strong>en</strong>d gewas zal eerst de direct beschikbare hoeveelheid opnem<strong>en</strong>. Het gehalte<strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g zal daardoor dal<strong>en</strong>. Vervolg<strong>en</strong>s bepaalt de hoeveelheid die gemakkelijk<strong>in</strong> oploss<strong>in</strong>g kan gaan of e<strong>en</strong> zekere m<strong>in</strong>imumconc<strong>en</strong>tratie <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g gehandhaafdkan blijv<strong>en</strong> om zo optimale gewasgroei of e<strong>en</strong> gew<strong>en</strong>st gehalte <strong>in</strong> het gewas te realiser<strong>en</strong>.Bemest<strong>in</strong>g is nodig <strong>in</strong>di<strong>en</strong> dit niet het geval is. Dit concept is uitstek<strong>en</strong>d beschrev<strong>en</strong> doorM<strong>en</strong>gel & Kirkby (1987). Echter wanneer er maar één extract wordt gebruikt per elem<strong>en</strong>t ishet m<strong>in</strong>der goed mogelijk om onderscheid te mak<strong>en</strong> tuss<strong>en</strong> <strong>in</strong>t<strong>en</strong>siteit <strong>en</strong> capaciteit. Hetresultaat kan zijn dat de correlatie coëfficiënt tuss<strong>en</strong> gewasrespons <strong>en</strong> grondanalyseresultaatrelatief laag is. Twee typ<strong>en</strong> extractie, één voor <strong>in</strong>t<strong>en</strong>siteit <strong>en</strong> één voor capaciteit is <strong>in</strong> pr<strong>in</strong>cipee<strong>en</strong> betere b<strong>en</strong>ader<strong>in</strong>g maar duurder <strong>en</strong> daardoor nu niet gebruikelijk.4.2. Ontwikkel<strong>in</strong>gsperspectief <strong>en</strong> behoefte naar bepal<strong>in</strong>g beschikbaarheid <strong>in</strong>grondDe afgelop<strong>en</strong> dec<strong>en</strong>nia is detectielimiet voor het met<strong>en</strong> <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong> <strong>en</strong>orm omlaaggegaan (Buss<strong>in</strong>k & Temm<strong>in</strong>ghoff, 2004). Daardoor kan <strong>van</strong> diverse agressieveextractiemiddel<strong>en</strong> geswitcht word<strong>en</strong> naar één zwak extractant (bijvoorbeeld met 0,01 MCaCl 2 ). Deze weerspiegelt beter wat er werkelijk beschikbaar is (de <strong>in</strong>t<strong>en</strong>siteitsbepal<strong>in</strong>g).Bov<strong>en</strong>di<strong>en</strong> maakt dit het mogelijk om recht te do<strong>en</strong> aan het feit dat de gewasrespons voor e<strong>en</strong>elem<strong>en</strong>t niet alle<strong>en</strong> afhankelijk is <strong>van</strong> het betreff<strong>en</strong>de elem<strong>en</strong>t, maar ook <strong>van</strong> de overigeelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>g <strong>en</strong> de vaste fase <strong>van</strong> de <strong>bodem</strong> (klei, zand, oxid<strong>en</strong> <strong>en</strong>organische stof) die bijvoorbeeld bepaald kan word<strong>en</strong> met spectroscopische techniek<strong>en</strong> (zieverderop). Zog<strong>en</strong>aamde multi-nutriënt gebaseerde bemest<strong>in</strong>gsadviez<strong>en</strong> (het advies voor bijv.Cu is niet alle<strong>en</strong> afhankelijk <strong>van</strong> de Cu-toestand, maar ook <strong>van</strong> de Zn- <strong>en</strong> P-toestand) word<strong>en</strong>daarmee <strong>in</strong> pr<strong>in</strong>cipe mogelijk. De beoordel<strong>in</strong>g <strong>van</strong> spoorelem<strong>en</strong>t beschikbaarheid voor hetgewas kan daarmee belangrijk word<strong>en</strong> verbeterd. Bijkom<strong>en</strong>d voordeel is dat voor veelspoorelem<strong>en</strong>t<strong>en</strong> m<strong>in</strong>der gewasonderzoek nodig is om vast te stell<strong>en</strong> of spoorelem<strong>en</strong>t niveausadequaat, te laag of te hoog zijn. Immers er kan beter word<strong>en</strong> voorspeld welk gehalte aanspoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> het gewas te verwacht<strong>en</strong> is.In het fysisch-chemisch grondonderzoek zijn de afgelop<strong>en</strong> dec<strong>en</strong>nia nieuwe <strong>in</strong>zicht<strong>en</strong>ontstaan <strong>in</strong> het begrijp<strong>en</strong> <strong>van</strong> <strong>bodem</strong>chemische process<strong>en</strong> <strong>en</strong> hoe deze process<strong>en</strong> <strong>in</strong>grijp<strong>en</strong> opde beschikbaarheid <strong>van</strong> (spoor)elem<strong>en</strong>t<strong>en</strong>. Dit betek<strong>en</strong>t het met behulp <strong>van</strong> modell<strong>en</strong>toepass<strong>en</strong> <strong>van</strong> k<strong>en</strong>nis over de nalevercapaciteit <strong>van</strong> de vaste fase (ad- <strong>en</strong> desorptiegedrag <strong>van</strong>klei, oxid<strong>en</strong> <strong>en</strong> organische stof <strong>en</strong> het complexatiegedrag <strong>van</strong> <strong>in</strong> de <strong>bodem</strong>oploss<strong>in</strong>gaanwezige (an)organische ligand<strong>en</strong>), <strong>in</strong> de evaluatie <strong>van</strong> het grondanalyse resultaat. Uit werk<strong>van</strong> Wag<strong>en</strong><strong>in</strong>g<strong>en</strong> Universiteit blijkt dat het gedrag <strong>van</strong> diverse zware metal<strong>en</strong> (waaronder Cu108
<strong>en</strong> Zn) <strong>in</strong>middels goed te beschrijv<strong>en</strong> is. Temm<strong>in</strong>ghoff et al. (1998) kon voor Cu e<strong>en</strong> directerelatie ontwikkel<strong>en</strong> tuss<strong>en</strong> het extractie resultaat met 0.01 M CaCl 2 <strong>en</strong> het adsorptie/desorptiegedrag <strong>van</strong> de vaste fase. Bov<strong>en</strong>di<strong>en</strong> gaf dit e<strong>en</strong> beter verband met de opname door gras danextractie met 0,43 M HNO 3 extractie. Mclar<strong>en</strong> et al. (1987) vond e<strong>en</strong> goede relatie tuss<strong>en</strong> 0,01M CaCl 2 extractie <strong>en</strong> gewasopname voor Co, <strong>in</strong> het bijzonder wanneer rek<strong>en</strong><strong>in</strong>g wordtgehoud<strong>en</strong> met de pH.Het bov<strong>en</strong>staande betek<strong>en</strong>t dat <strong>in</strong>di<strong>en</strong> de sam<strong>en</strong>stell<strong>in</strong>g <strong>van</strong> de vaste fase bek<strong>en</strong>d is <strong>en</strong> deconc<strong>en</strong>tratie aan (spoor)elem<strong>en</strong>t<strong>en</strong> met e<strong>en</strong> zwak extractant is bepaald, dat het dan mogelijk isom de beschikbaarheid <strong>van</strong> e<strong>en</strong> spoorelem<strong>en</strong>t voor gewasopname nauwkeuriger <strong>en</strong> op meerfundam<strong>en</strong>tele grondslag te voorspell<strong>en</strong>. Bijkom<strong>en</strong>d voordeel is dat <strong>in</strong> pr<strong>in</strong>cipe ookaangegev<strong>en</strong> kan word<strong>en</strong> <strong>in</strong> welke vorm e<strong>en</strong> nutriënt het beste toegedi<strong>en</strong>d kan word<strong>en</strong>, hoe hetruimtelijk verdeeld di<strong>en</strong>t te word<strong>en</strong> (bijvoorbeeld breedwerpig toedi<strong>en</strong><strong>en</strong> versus plaats<strong>in</strong>g) <strong>en</strong>of bemest<strong>in</strong>g <strong>van</strong> de <strong>bodem</strong> wel de beste strategie is of dat tijdig met bladbemest<strong>in</strong>g di<strong>en</strong>t teword<strong>en</strong> begonn<strong>en</strong>.Het vaststell<strong>en</strong> <strong>van</strong> de compositie <strong>van</strong> de vaste fase kan relatief duur zijn, maar is slechtsiedere 5-10 jaar nodig. Bov<strong>en</strong>di<strong>en</strong> zijn goedkope techniek<strong>en</strong> <strong>in</strong> opkomst. Niet <strong>in</strong>vasievetechniek<strong>en</strong> zoals nabij <strong>in</strong>frarood spectroscopie (NIR) of mid <strong>in</strong>frarood spectroscopie (MIR)hebb<strong>en</strong> e<strong>en</strong> groot pot<strong>en</strong>tieel. Chang et al. (2001) heeft 33 chemische, fysische <strong>en</strong> biologischeparameters <strong>van</strong> 802 grondmonsters getest afkomstig uit 4 gebied<strong>en</strong> <strong>van</strong> de VS. Zij liet<strong>en</strong> zi<strong>en</strong>dat totaal C, totaal N, CEC (kation<strong>en</strong>uitwissel<strong>in</strong>gscapaciteit), zand <strong>en</strong> silt hoeveelheid relatiefnauwkeurig voorspeld kond<strong>en</strong> word<strong>en</strong>. Rec<strong>en</strong>telijk bevestigde Brown et al. (2006) dezebev<strong>in</strong>d<strong>in</strong>g<strong>en</strong>. In Nederland heeft Blgg AgroXpertus <strong>en</strong>kele jar<strong>en</strong> geled<strong>en</strong> nabij <strong>in</strong>fraroodspectroscopie (NIR) rec<strong>en</strong>telijk voor grondonderzoek geïntroduceerd. In Australië wordt MIRal langer toegepast <strong>in</strong> rout<strong>in</strong>ematig grondonderzoek. Daarbij word<strong>en</strong> onder andere klei, zand,silt, totaal C, CEC <strong>en</strong> de kation<strong>en</strong>compositie <strong>van</strong> de CEC gemet<strong>en</strong>.Rec<strong>en</strong>telijk is e<strong>en</strong> onderzoek gestart om voortbouw<strong>en</strong>d op basis <strong>van</strong> de zojuist g<strong>en</strong>oemdek<strong>en</strong>nis te kom<strong>en</strong> tot e<strong>en</strong> nieuwe waarder<strong>in</strong>gssystematiek voor spoorelem<strong>en</strong>tbeschikbaarheid <strong>in</strong>grond<strong>en</strong>. Deze is niet alle<strong>en</strong> <strong>in</strong> Nederland maar <strong>in</strong> pr<strong>in</strong>cipe ook <strong>in</strong>ternationaal <strong>in</strong>zetbaar.Ook voor ontwikkel<strong>in</strong>gsland<strong>en</strong> lijkt dit de gew<strong>en</strong>ste oploss<strong>in</strong>gsricht<strong>in</strong>g, daarbij gebruikmak<strong>en</strong>d <strong>van</strong> e<strong>en</strong> zwak mult<strong>in</strong>utriënt extractiemiddel <strong>en</strong> het vaststell<strong>en</strong> <strong>van</strong> de sam<strong>en</strong>stell<strong>in</strong>g<strong>van</strong> de vaste fase (spectroscopisch of via e<strong>en</strong> agressieve extractie) met daaraan geadsorbeerdespoorelem<strong>en</strong>t<strong>en</strong>.4.3. Gewasonderzoek <strong>in</strong> relatie tot grondonderzoekE<strong>en</strong> duidelijk gebrek aan spoorelem<strong>en</strong>t<strong>en</strong> kan veelal visueel word<strong>en</strong> onderk<strong>en</strong>d. Situaties mete<strong>en</strong> beperkt tekort (tot 10%) zijn visueel vaak lastig te onderk<strong>en</strong>n<strong>en</strong>. Gewasonderzoek kandan uitkomst bied<strong>en</strong> <strong>en</strong> op basis daar<strong>van</strong> kunn<strong>en</strong> er maatregel<strong>en</strong> word<strong>en</strong> g<strong>en</strong>om<strong>en</strong> viabladbemest<strong>in</strong>g om e<strong>en</strong> tekort op te heff<strong>en</strong>. Echter e<strong>en</strong> ev<strong>en</strong>tuele achterstand/opbr<strong>en</strong>gstderv<strong>in</strong>gdoor e<strong>en</strong> tekort kan niet meer ongedaan word<strong>en</strong> gemaakt. Ook is op basis <strong>van</strong>gewasonderzoek lastiger vast te stell<strong>en</strong> of het tekort <strong>van</strong> e<strong>en</strong> bepaald nutriënt het gevolg is <strong>van</strong>tekort <strong>van</strong> dat nutriënt of het gevolg is <strong>van</strong> bijvoorbeeld e<strong>en</strong> overaanbod <strong>van</strong> andere nutriënt<strong>en</strong>(d<strong>en</strong>k aan Zn- <strong>en</strong> P-<strong>in</strong>teractie) of e<strong>en</strong> te hoge pH. Meer <strong>in</strong>formatie over gewasanalyse is tev<strong>in</strong>d<strong>en</strong> <strong>in</strong> Reuter & Rob<strong>in</strong>son (1986) <strong>en</strong> Buss<strong>in</strong>k & Temm<strong>in</strong>ghoff (2004).109
4.4. Te nem<strong>en</strong> maatregel<strong>en</strong>Bij e<strong>en</strong> tekort aan spoorelem<strong>en</strong>t<strong>en</strong> is niet alle<strong>en</strong> bemest<strong>in</strong>g met spoorelem<strong>en</strong>t<strong>en</strong> nodig maardi<strong>en</strong>t als eerste op basis <strong>van</strong> het grondonderzoek te word<strong>en</strong> nagegaan of bekalk<strong>in</strong>g nodig isom de pH op orde te br<strong>en</strong>g<strong>en</strong> <strong>en</strong> om bijvoorbeeld vast te stell<strong>en</strong> of er e<strong>en</strong> risico bestaat <strong>van</strong> P-geïnduceerd P-gebrek. Ook maatregel<strong>en</strong> die bijdrag<strong>en</strong> aan e<strong>en</strong> betere vochtvoorzi<strong>en</strong><strong>in</strong>g <strong>en</strong>doorwortelbaarheid <strong>van</strong> de <strong>bodem</strong> (e<strong>en</strong> betere <strong>bodem</strong>structuur) zijn <strong>van</strong> belang voor e<strong>en</strong>goede nutriëntb<strong>en</strong>utt<strong>in</strong>g. Aansluit<strong>en</strong>d di<strong>en</strong>t de keus gemaakt te word<strong>en</strong> welke m<strong>in</strong>eralemeststof z<strong>in</strong>vol kan word<strong>en</strong> toegepast. Als Zn-meststoff<strong>en</strong> word<strong>en</strong> gebruikt, ZnO, ZnSO 4 <strong>en</strong>Zn-chelat<strong>en</strong>. Als Cu-meststoff<strong>en</strong> word<strong>en</strong> gebruikt, CuO, Cu 2 O, CuSO 4 <strong>en</strong> Cu-chelat<strong>en</strong>. Dewerk<strong>in</strong>g is het hoogst bij de chelat<strong>en</strong> <strong>en</strong> het laagst bij de oxid<strong>en</strong>. Daarteg<strong>en</strong>over staat datchelat<strong>en</strong> het duurst zijn. Andere vorm<strong>en</strong> kom<strong>en</strong> ook voor. De eig<strong>en</strong>schapp<strong>en</strong> <strong>van</strong> de grond(mate <strong>van</strong> vastlegg<strong>in</strong>g <strong>van</strong>) <strong>in</strong> comb<strong>in</strong>atie met de kostprijs <strong>van</strong> de meststof bepal<strong>en</strong> welkemeststof het beste <strong>in</strong>gezet kan word<strong>en</strong> <strong>en</strong> hoe (plaats<strong>in</strong>g bij de wortel of breedwerpigetoedi<strong>en</strong><strong>in</strong>g). Voor situaties met e<strong>en</strong> sterke vastlegg<strong>in</strong>g kan naast plaats<strong>in</strong>g <strong>van</strong> meststoff<strong>en</strong> ofhet gebruik <strong>van</strong> chelat<strong>en</strong> ook gedacht word<strong>en</strong> aan bladmeststoff<strong>en</strong>. Het toepass<strong>en</strong> <strong>van</strong> gecoatzaaizaad behoort ook tot de mogelijkhed<strong>en</strong>.Organische mest is e<strong>en</strong> bron <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>, waardoor bemest<strong>in</strong>g met Cu <strong>en</strong> Zn <strong>in</strong>Nederland slechts beperkt nodig is. De beperkte resultat<strong>en</strong> <strong>in</strong> de trop<strong>en</strong> gev<strong>en</strong> aan dat mestvaak wel werkt (soms ook niet) maar veelal is het effect niet e<strong>en</strong>duidig alle<strong>en</strong> aanspoorelem<strong>en</strong>t<strong>en</strong> toe te schrijv<strong>en</strong> daar met de mest ook N, P <strong>en</strong> K word<strong>en</strong> aangevoerd. Vaakwordt mest echter gedroogd <strong>en</strong> als brandstof gebruikt waardoor het niet beschikbaar is alsmeststof. De as zou als mest gebruikt kunn<strong>en</strong> word<strong>en</strong> maar dat wordt zeld<strong>en</strong> gedaan. Hettoepass<strong>en</strong> <strong>van</strong> compost is e<strong>en</strong> optie. Composter<strong>in</strong>g <strong>van</strong> afval wordt <strong>in</strong> ontwikkel<strong>in</strong>gsland<strong>en</strong>echter we<strong>in</strong>ig toegepast (Hoornweg et al., 1999).Het toepass<strong>en</strong> <strong>van</strong> mest, compost <strong>en</strong> het lat<strong>en</strong> ligg<strong>en</strong> <strong>van</strong> gewasrest<strong>en</strong> draagt bij aan het oppeil houd<strong>en</strong> <strong>en</strong> of verhog<strong>en</strong> <strong>van</strong> het organisch stofgehalte <strong>van</strong> de <strong>bodem</strong> <strong>en</strong> stimuleert het<strong>bodem</strong>lev<strong>en</strong>. De natuurlijke <strong>bodem</strong>vruchtbaarheid, <strong>en</strong> als onderdeel daar<strong>van</strong> debeschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>, neemt daarmee toe.110
5. Sam<strong>en</strong>gevatDe problematiek met spoorelem<strong>en</strong>t<strong>en</strong> is divers. Er zijn regio’s waar ruim wordt omgegaanmet spoorelem<strong>en</strong>t<strong>en</strong> <strong>en</strong> waaruit het oogpunt <strong>van</strong> het voorzorgspr<strong>in</strong>cipe (milieu),<strong>voedsel</strong>veiligheid, de to<strong>en</strong>em<strong>en</strong>de schaarste aan spoorelem<strong>en</strong>t<strong>en</strong> efficiënter di<strong>en</strong>t te word<strong>en</strong>omgegaan met spoorelem<strong>en</strong>t<strong>en</strong>. Anderzijds zijn er wereldwijd veel regio’s waar de <strong>bodem</strong> tewe<strong>in</strong>ig spoorelem<strong>en</strong>t<strong>en</strong> bevat voor e<strong>en</strong> goede gewasgroei <strong>en</strong>/of voorzi<strong>en</strong><strong>in</strong>g <strong>van</strong> dier<strong>en</strong> <strong>en</strong>m<strong>en</strong>s<strong>en</strong> met voldo<strong>en</strong>de spoorelem<strong>en</strong>t<strong>en</strong>.De laatste dec<strong>en</strong>nia maakt k<strong>en</strong>nisontwikkel<strong>in</strong>g <strong>van</strong> het gedrag <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de<strong>bodem</strong> <strong>in</strong> comb<strong>in</strong>atie met de ontwikkel<strong>in</strong>g <strong>van</strong> nieuwe analytische techniek<strong>en</strong> het mogelijkom de beschikbaarheid <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong> <strong>in</strong> de <strong>bodem</strong> <strong>in</strong> relatie tot andere<strong>bodem</strong>parameters beter te duid<strong>en</strong>. Multi-nutriëntextractie met e<strong>en</strong> zwak extractiemiddel <strong>in</strong>comb<strong>in</strong>atie met e<strong>en</strong> karakteriser<strong>in</strong>g <strong>van</strong> de vaste fase, bijvoorbeeld via spectroscopischetechniek<strong>en</strong>, lijkt de oploss<strong>in</strong>gsricht<strong>in</strong>g. Bov<strong>en</strong>di<strong>en</strong> is zo e<strong>en</strong> meer universele b<strong>en</strong>ader<strong>in</strong>gmogelijk die overal <strong>in</strong>zetbaar is. Daardoor kan de regionale verscheid<strong>en</strong>heid <strong>in</strong>adviessystem<strong>en</strong> (<strong>en</strong> het daarmee gepaard gaande onderhoud) sterk verm<strong>in</strong>der<strong>en</strong>.Uitontwikkel<strong>in</strong>g <strong>en</strong> toepasbaar mak<strong>en</strong> <strong>in</strong> operationele system<strong>en</strong> is opgepakt maar behoeftmeer aandacht. Dit kan bijdrag<strong>en</strong> aan meer duurzame <strong>voedsel</strong>productie <strong>en</strong> het verm<strong>in</strong>der<strong>en</strong><strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>gebrek <strong>in</strong> de landbouw wereldwijd. Van belang daarbij is niet alle<strong>en</strong> tekijk<strong>en</strong> naar het spoorelem<strong>en</strong>tgebrek zelf maar ook naar achterligg<strong>en</strong>de oorzak<strong>en</strong> als e<strong>en</strong> telage pH, <strong>in</strong>teracties met andere nutriënt<strong>en</strong> <strong>en</strong> e<strong>en</strong> goede <strong>bodem</strong>structuur.Ook de <strong>in</strong>zet <strong>van</strong> lokale bronn<strong>en</strong> als mest, compost <strong>en</strong> gewasrest<strong>en</strong> die <strong>en</strong> de <strong>bodem</strong>kwaliteitverbeter<strong>en</strong> maar ook spoorelem<strong>en</strong>t<strong>en</strong> lever<strong>en</strong> verdi<strong>en</strong>t meer aandacht. In de trop<strong>en</strong> <strong>en</strong>ontwikkel<strong>in</strong>gsland<strong>en</strong> zijn deze bronn<strong>en</strong> maar beperkt beschikbaar, waardoor de <strong>in</strong>zet <strong>van</strong>m<strong>in</strong>erale spoorelem<strong>en</strong>t meststoff<strong>en</strong> nodig is. Op basis <strong>van</strong> k<strong>en</strong>nis <strong>van</strong> de <strong>bodem</strong> kunn<strong>en</strong> dezemeststoff<strong>en</strong> efficiënter word<strong>en</strong> <strong>in</strong>gezet, waardoor de kost<strong>en</strong> dal<strong>en</strong> <strong>en</strong> de opbr<strong>en</strong>gst<strong>en</strong> stijg<strong>en</strong>.111
112
LiteratuurAquilar A & Van Diest A (1981) Rock-phosphate mobilization <strong>in</strong>duced by the alkal<strong>in</strong>e uptake patternof legumes utiliz<strong>in</strong>g symbiotically fixed nitrog<strong>en</strong>. Plant and Soil 61, 27-42.Ashley JTF (1996) Adsorption of Cu(II) and Zn(II) by estuar<strong>in</strong>e, river<strong>in</strong>e and terrestrial humic acids.Chemosphere 33, 2175-2187.Baste<strong>in</strong> T (2011) ‘Suppletie’ <strong>van</strong> micronutriënt<strong>en</strong> uit mijnbouw. TNO. Pres<strong>en</strong>tatie op de workshop‘Micronutriënt<strong>en</strong> <strong>in</strong> de landbouw’, 22 november 2011, Platform Landbouw Innovatie &Sam<strong>en</strong>lev<strong>in</strong>g.D<strong>en</strong> Boer DJ, Haas MJM, Van der Draai H (2007) Verbeter<strong>en</strong> voorzi<strong>en</strong><strong>in</strong>g spoorelem<strong>en</strong>t<strong>en</strong> opmelkveebedrijv<strong>en</strong> <strong>in</strong> Dr<strong>en</strong>the. NMI-rapport 1314.N.502. Wag<strong>en</strong><strong>in</strong>g<strong>en</strong>, pp.73.Brown D, Shepherd KD, Walsh MG 2006. Global soil characterization with VNIR diffuse reflectancespectroscopy. Geoderma 132, 273–290.Buss<strong>in</strong>k DW & Temm<strong>in</strong>ghoff (2004). Soil and tissue test<strong>in</strong>g for micronutri<strong>en</strong>t status. The <strong>in</strong>ternationalFertiliser Society (IFS). Proceed<strong>in</strong>gs 548. York, UK. pp 42.Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Er<strong>en</strong>oglu b & Braun HJ (1996) Z<strong>in</strong>c defici<strong>en</strong>cy asa critical problem <strong>in</strong> wheat production <strong>in</strong> c<strong>en</strong>tral Anatolia. Plant & Soil 180:165-172.Chang CW, Laird DA, Mausbach MJ & Hurburgh CR (2001). Near-<strong>in</strong>frared reflectance spectroscopypr<strong>in</strong>ciplecompon<strong>en</strong>ts regression analyses of soil properties. Soil Sci. Soc. Am. J. 65:480-490.COMV (2005) Handleid<strong>in</strong>g M<strong>in</strong>eral<strong>en</strong>voorzi<strong>en</strong><strong>in</strong>g Rundvee, Schap<strong>en</strong>, Geit<strong>en</strong>. C<strong>en</strong>traalVeevoederbureau, Lelystad, 228pp.EU (2003b) Op<strong>in</strong>ion of the Sci<strong>en</strong>tific Committee for Animal Nutrition on the use of copper <strong>in</strong>feed<strong>in</strong>gstuffs. (adopted on 19 February 2003). Brussels, pp 47.EU (2003b) Op<strong>in</strong>ion of the Sci<strong>en</strong>tific Committee for Animal Nutrition on the use of z<strong>in</strong>c <strong>in</strong>feed<strong>in</strong>gstuffs. (adopted on 14 March 2003). Brussels, pp 33.Gahoonia TS, Claass<strong>en</strong> N & Jungk A (1992) Mobilization of phosphate <strong>in</strong> differ<strong>en</strong>t soils by ryegrasssupplied with ammonium or nitrate. Plant and Soil 140, 241-248.Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelss<strong>en</strong> JL, R<strong>en</strong>ter DG, Dritz SS (2010).Feed additives for sw<strong>in</strong>e: Fact sheets – high dietary levels of copper and z<strong>in</strong>c for young pigs,and phytase.J Sw<strong>in</strong>e Health Prod. 18: 87–91.Jones Jr JB (1998) Soiel test methods:past,pres<strong>en</strong>t, and future use of soil extractants. Communications<strong>in</strong> Soil Sci<strong>en</strong>ce and Plant Analysis 29, 1543-1352.Jongbloed A & Römk<strong>en</strong>s P (2009). Vele koper <strong>en</strong> z<strong>in</strong>k <strong>in</strong> veevoeders zorgelijk. V-focus februari 2009:42-43.Marschner H (1995) M<strong>in</strong>eral nutrition of higher plants. Academic Press, London. pp.889.McLar<strong>en</strong> RG, Lawson DM& Swift RS (1987) The availability to pasture plants of native and appliedsoil cobalt <strong>in</strong> relation to extractable soil cobalt and other soil properties. Journal of the Sci<strong>en</strong>ceof Food and Agriculture 39, 101-112.M<strong>en</strong>gel K & Kirkby EA (1987) Pr<strong>in</strong>ciples of plant nutrition. Fourth edition, International PotashInstitute, Bern, Switzerland, 687 pp.Kabata-P<strong>en</strong>dias A & P<strong>en</strong>dias H (2001) Trace elem<strong>en</strong>ts <strong>in</strong> Soils and Plants. Third Edition. CRC Press,Boca Raton, Florida Moraghan & Mascagni, 1991.Römheld V & Marschner H (1990) G<strong>en</strong>otypical differ<strong>en</strong>ces among gram<strong>in</strong>aceous species <strong>in</strong> release ofphytosiderophores and uptake of iron phytosiderophores. Plant and Soil 123, 147-153.S<strong>in</strong>gh MV (2011) Sc<strong>en</strong>ario of Z<strong>in</strong>c Defici<strong>en</strong>cy <strong>in</strong> Indian Soils and Its Influ<strong>en</strong>ce on Z<strong>in</strong>c Enrichm<strong>en</strong>t <strong>in</strong>Crops for Improv<strong>in</strong>g Human and Animal Health. 3rd International Z<strong>in</strong>c Symposium Hyderabad,India, 10-14 October 2011.Temm<strong>in</strong>ghof EJM, Van der Zee SEATM & De Haan FAM (1998b) Copper speciation <strong>in</strong> sandy soil <strong>in</strong>relation to copper uptake and copper toxicity by ryegrass (Lolium multiflorum L.). In:Temm<strong>in</strong>ghof EJM. Chemical speciation of heavy metals <strong>in</strong> sandy soils <strong>in</strong> relation to availabilityand mobility. PhD dissertation, Landbouwuniversiteit Wag<strong>en</strong><strong>in</strong>g<strong>en</strong>.Thomson CJ, Marschner H & Römheld V (1993) Effect of nitrog<strong>en</strong> fertilizer form on pH of the bulksoil and rhizosphere, and on the growth, phosphorus, and micronutri<strong>en</strong>t uptake of bean. J. PlantNutr. 16, 493-506.113
Van Erp PJ & Van Beusichem ML, (1998). Soil and plant test<strong>in</strong>g as a tool for optimiz<strong>in</strong>g fertilizerstrategies. Journal of Crop Production 1, 53-80.Reuter DJ & Rob<strong>in</strong>son JB (1986) Plant analysis, an <strong>in</strong>terpretation manual. Inkata Press, Melbourne,Australië.Vliet J, Le<strong>en</strong>dertse L, Buss<strong>in</strong>k W & d<strong>en</strong> Boer DJ (2009). Bodem voor Water. Slimme maatregel<strong>en</strong> terverm<strong>in</strong>der<strong>in</strong>g <strong>van</strong> de zware metal<strong>en</strong> emissie <strong>in</strong> de melkveehouderij. CLM, Culemborg pp. 74.Voortman, R (2011) Micronutriënt<strong>en</strong> <strong>in</strong> het wereld<strong>voedsel</strong>systeem. Micronutriënt<strong>en</strong> deficiënties,duurzaamheid <strong>en</strong> implicaties voor de onderzoeksag<strong>en</strong>da. Pres<strong>en</strong>tatie op de workshop‘Micronutriënt<strong>en</strong> <strong>in</strong> de landbouw’, 22 november 2011, Platform Landbouw Innovatie &Sam<strong>en</strong>lev<strong>in</strong>g.Hoornweg D, Thomas L & Ott<strong>en</strong> L (1999). Compost<strong>in</strong>g and Its Applicability <strong>in</strong> Develop<strong>in</strong>gCountries. The <strong>in</strong>ternational bank for reconstruction and developm<strong>en</strong>t/The World bank.Wash<strong>in</strong>gton DC pp. 52.114
Tabel 4. Gewasbehoefte <strong>en</strong> functies <strong>van</strong> spoorelem<strong>en</strong>t<strong>en</strong>, <strong>en</strong> factor<strong>en</strong> die de beschikbaarheid <strong>van</strong> <strong>en</strong> de behoefte aan spoorelem<strong>en</strong>t<strong>en</strong> beïnvloed<strong>en</strong>.MicronutriëntCu biet<strong>en</strong>citrushaverluzerneslasp<strong>in</strong>azieuitarweZn bon<strong>en</strong>citrusgierstfruitbom<strong>en</strong>maïsrijstsp<strong>in</strong>azieuivlasgewasbehoefte functies <strong>in</strong> factor<strong>en</strong> nadelighoog medium laag Plant Dier m<strong>en</strong>svoorbeschikbaarheidbloemkoolbroccoligerstklaverkomkommermaïsradijstomat<strong>en</strong>ui<strong>en</strong>wortel<strong>en</strong>aardappelbiet<strong>en</strong>gerstkomkommerluzerneslatomaataspergeaardappelbon<strong>en</strong>erwt<strong>en</strong>grass<strong>en</strong>aspergeerwt<strong>en</strong>grasgran<strong>en</strong>koolwortel<strong>en</strong><strong>van</strong> <strong>in</strong>vloed op:• reproductie,slechtevruchtzett<strong>in</strong>g• chlorofylproductie• vele <strong>en</strong>zym<strong>en</strong>• betrokk<strong>en</strong> bijsynthese <strong>van</strong>am<strong>in</strong>ozur<strong>en</strong> <strong>en</strong>eiwitt<strong>en</strong> <strong>en</strong>vorm<strong>in</strong>g <strong>van</strong>groeihormoonaux<strong>in</strong>e• stofwissel<strong>in</strong>gs-<strong>en</strong>zym<strong>en</strong>(tekort geeftslechteconditie,groei,diarree)• groeiprocess<strong>en</strong>• celdel<strong>in</strong>g• wondhel<strong>in</strong>g• nodig voorvorm<strong>in</strong>g <strong>van</strong>bloed,b<strong>in</strong>dweefselbotvorm<strong>in</strong>g,goedfunctioner<strong>en</strong><strong>van</strong>afweersysteem,bloedstoll<strong>in</strong>gonderdeel <strong>van</strong>vele <strong>en</strong>zym<strong>en</strong> <strong>in</strong>lichaam• opbouweiwitt<strong>en</strong>• groei <strong>en</strong>vernieuw<strong>in</strong>g<strong>van</strong> weefsel,• koolhydraatstofwissel<strong>in</strong>g,• functioner<strong>en</strong>afweersysteem• hoge pH• droogte• lage os- <strong>en</strong>zeer hoge osgehalt<strong>en</strong>• hoge pH• hoge osgehalt<strong>en</strong>• lagetemperatuur• droogte• veel fosfaat• lichtezandgrond<strong>en</strong>• (veel fosfaat)behoefte aanmeststoff<strong>en</strong>gelijkblijv<strong>en</strong>d:• m<strong>in</strong>der dierlijkemest• veehouderij veelm<strong>in</strong>eral<strong>en</strong>m<strong>en</strong>gselsge<strong>en</strong> tot <strong>en</strong>igsz<strong>in</strong>s• m<strong>in</strong>der dierlijkemest• m<strong>in</strong>der gewasbescherm<strong>in</strong>gsmiddel<strong>en</strong>opmerk<strong>in</strong>g<strong>en</strong>• verbeter<strong>in</strong>ggrondanalyse ismogelijk• S-bemest<strong>in</strong>g opmaat i.v.m.nadelig effect opCubeschikbaarheiddier• Let opvoorzi<strong>en</strong><strong>in</strong>gkleipercel<strong>en</strong>• ge<strong>en</strong> opgrondonderzoekgebaseerd adviesbeschikbaar voorgevoeligegewass<strong>en</strong>• let opvoorzi<strong>en</strong><strong>in</strong>g bijvollegrondsgro<strong>en</strong>teteelt
Toelicht<strong>in</strong>g bij de foto’s op de omslagOp de voorkant <strong>van</strong> l<strong>in</strong>ksbov<strong>en</strong> met de klok mee:• Biet<strong>en</strong>blad met z<strong>in</strong>ktekort• Rammelsbergmijn nabij Goslar <strong>in</strong> de Harz, Duitsland. Belangrijke product<strong>en</strong> war<strong>en</strong> zilver-erts, koper <strong>en</strong> lood.De mijn is geslot<strong>en</strong> <strong>in</strong> 1988.• Runder<strong>en</strong> met koperdeficiëntie• Kopermijn <strong>in</strong> Arizona• Bijvoed<strong>in</strong>g <strong>van</strong> schap<strong>en</strong> met m<strong>in</strong>eral<strong>en</strong> <strong>in</strong>clusief micronutriënt<strong>en</strong>• Gebied<strong>en</strong> <strong>in</strong> de wereld waar z<strong>in</strong>kdeficiënties <strong>in</strong> belangrijke gewass<strong>en</strong> voorkom<strong>en</strong>.Op de achterkant:• Baby met z<strong>in</strong>kdeficiëntieCLM_achtergrondrapport<strong>en</strong>.<strong>in</strong>dd 2 20-06-12 10:35