28.11.2012 Views

XRF at the WSU GeoAnalytical Lab - University of Western Ontario

XRF at the WSU GeoAnalytical Lab - University of Western Ontario

XRF at the WSU GeoAnalytical Lab - University of Western Ontario

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>XRF</strong> <strong>at</strong> <strong>the</strong> <strong>WSU</strong> <strong>GeoAnalytical</strong> <strong>Lab</strong>:<br />

decades <strong>of</strong> service with graphite<br />

crucibles and a smile<br />

Rick and Laureen<br />

Richard M Conrey<br />

Laureen C Wagoner*<br />

Diane J Cornelius*<br />

John A Wolff<br />

<strong>GeoAnalytical</strong> <strong>Lab</strong><br />

http://www.sees.wsu.edu/Geolab/index.html<br />

School <strong>of</strong> Earth and<br />

Environmental Sciences<br />

P.O. Box 642812<br />

Pullman, WA 99164 USA<br />

* gradu<strong>at</strong>es <strong>of</strong> Univ. <strong>of</strong> <strong>Western</strong> <strong>Ontario</strong> <strong>XRF</strong> course


Mission <strong>of</strong> <strong>the</strong> <strong>XRF</strong> portion <strong>of</strong> our lab<br />

Since our founding circa 1973 by Peter Hooper we have served thousands <strong>of</strong><br />

researchers with X-Ray Fluorescence d<strong>at</strong>a<br />

Our client base is chiefly o<strong>the</strong>r universities around <strong>the</strong> USA and <strong>the</strong> world, our own<br />

students and faculty, and government agencies both local and federal<br />

We strive to provide research quality d<strong>at</strong>a <strong>at</strong> an affordable price and to educ<strong>at</strong>e both<br />

our students and visitors in <strong>the</strong> methods <strong>of</strong> sample prepar<strong>at</strong>ion and X-Ray<br />

Fluorescence analysis<br />

A gradu<strong>at</strong>e level X-Ray Analysis course has been taught <strong>at</strong> <strong>WSU</strong> by Nick Foit for<br />

three decades, with a focus on XRD, <strong>XRF</strong> and electron microprobe analysis<br />

Diane<br />

Our lab also houses a JEOL 8500F field emission electron microprobe, Siemens D-500 powder X-ray<br />

diffractometer, Agilent 7700 ICP-MS, Thermo-Finnegan Neptune multi-collector ICP-MS, Thermo-Finnegan<br />

Element2 high precision ICP-MS, Finnegan Delta S gas source mass spectrometer, and a Perkin-Elmer<br />

Spectrum GX FTIR<br />

Nick<br />

John <strong>at</strong> <strong>the</strong> JEOL console


<strong>XRF</strong> <strong>at</strong> <strong>WSU</strong> - a brief history<br />

� ~1973: <strong>XRF</strong> lab started by Peter<br />

Hooper and his gradu<strong>at</strong>e students<br />

working on <strong>the</strong> Columbia River basalts<br />

� Peter adopted <strong>the</strong> low dilution fusion<br />

in graphite method to measure both<br />

major and trace elements based upon<br />

his prior experience in Wales<br />

� ~1976: first <strong>XRF</strong>: a “biologically<br />

autom<strong>at</strong>ed” Philips PW1410<br />

� 1980s: radioactive waste project <strong>at</strong><br />

Hanford provides steady work<br />

� 1986: autom<strong>at</strong>ed Rigaku 3370 <strong>XRF</strong><br />

� 1984 - 2009: <strong>the</strong> <strong>XRF</strong> lab blossoms<br />

under Diane Johnson Cornelius<br />

� 1997: Peter retires, John Wolff<br />

assumes directorship <strong>of</strong> <strong>the</strong> GAL<br />

� 2004: Thermo-ARL Advant’XP+<br />

<strong>XRF</strong> spectrometer installed<br />

� 2010: <strong>XRF</strong> lab now run by Rick<br />

Conrey and Laureen Wagoner, both<br />

former students <strong>of</strong> Peter Hooper<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Steve<br />

Reidel<br />

<strong>XRF</strong>, ICP-MS samples/year through 2009<br />

<strong>XRF</strong><br />

ICP-MS<br />

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008<br />

Peter<br />

Hooper<br />

Vic<br />

Camp<br />

Marty<br />

Ross


Graphite has many advantages<br />

� Ease <strong>of</strong> maintenance, fabric<strong>at</strong>ion,<br />

and cleaning, inert, inexpensive,<br />

efficient, rare to make unusable<br />

pellet, no releasing agent required<br />

� Allows single recipe with Litetrabor<strong>at</strong>e<br />

for nearly all samples -<br />

we analyze nearly all rock types,<br />

minerals and soils with <strong>the</strong><br />

exception <strong>of</strong> ores - little need* to<br />

know beforehand wh<strong>at</strong> you are<br />

analyzing<br />

� Allows low dilution str<strong>at</strong>egy - traces<br />

measured on same pellet as majors;<br />

full m<strong>at</strong>rix correction for all<br />

elements<br />

� * Mg-, Fe-, Ca-, P, or Mn-rich<br />

samples can be diluted with pure<br />

fused silica to ensure good glass<br />

form<strong>at</strong>ion upon cooling<br />

Life <strong>of</strong> a graphite crucible<br />

<strong>XRF</strong> ICP<br />

custom boring tool<br />

~ 60 fusions/crucible<br />

• Graphite crucible cost - $US 8<br />

• machined in-house from ultra-pure rod<br />

• nearly all <strong>WSU</strong> ICP-MS analyses begin<br />

with a graphite fusion<br />

24 fusions possible<br />

every 45 minutes


Graphite doubly fused beads - glass with some carbon on top<br />

graphite crucible loading<br />

Kimwipe +<br />

compressed air<br />

cleaning<br />

� homogeneity requires re-grind (30 sec/bead) and<br />

re-fusion <strong>of</strong> graphite st<strong>at</strong>ic fused beads<br />

� loss <strong>of</strong> powder is imm<strong>at</strong>erial <strong>at</strong> re-grind stage<br />

� buffing reduces carbon load before re-grind<br />

powders are weighed into<br />

plastic jars, mixed with a<br />

Vortex mixer, and passed<br />

over an anti-st<strong>at</strong>ic bar<br />

prior to loading<br />

Graphite fusions<br />

re-grinding


� diamond grinding in w<strong>at</strong>er is fast (total 2-3 min/bead)<br />

� final cleaning in sonic<strong>at</strong>or with ethanol<br />

� lapping removes diffusion pr<strong>of</strong>ile <strong>at</strong> contact <strong>of</strong> glass and crucible - final surface finish is 15 microns<br />

29 mm 15 mm 8 mm<br />

Mask Sample wt Minimum wt<br />

29 mm 3.5 gm 1.5 gm<br />

15 mm 1.1 gm 0.5(?) gm<br />

8 mm 0.4 gm 0.2(?) gm<br />

Sizing/lapping <strong>of</strong> graphite fused beads<br />

machined templ<strong>at</strong>e assures accur<strong>at</strong>e sizing<br />

We calibr<strong>at</strong>e with smaller masks for beads down to 8 mm diameter<br />

Not simply a reduction in counts across <strong>the</strong> spectrum - varies with 2<strong>the</strong>ta<br />

because <strong>of</strong> crystal geometry so many parameters change<br />

Precision varies as square root <strong>of</strong> counts so degraded by factor ~2 each<br />

step down in size - we count twice as long <strong>at</strong> 15 mm and 4x <strong>at</strong> 8 mm<br />

Small sample analyses<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Concentr<strong>at</strong>ion (ppm)<br />

vs. m<strong>at</strong>rix corrected<br />

intensity (kcps)<br />

Zr calibr<strong>at</strong>ion <strong>at</strong> 8 mm<br />

SEE = 4.2 ppm; n =14<br />

r 2 = 0.9999<br />

0 0.2 0.4 0.6 0.8 1


50 ton anvil press<br />

“mini”-chipper<br />

(sub-2 mm)<br />

Breaking and chipping, splitting and grinding<br />

<strong>the</strong> Cadillac <strong>of</strong> splitters<br />

It’s important not to<br />

contamin<strong>at</strong>e during<br />

chipping - need a<br />

very hard surface<br />

Our custom-made<br />

(<strong>WSU</strong> Tech Services)<br />

chipmunks use<br />

hardened tool steel<br />

pl<strong>at</strong>es - we’re still<br />

using <strong>the</strong> original<br />

35+ yr old pl<strong>at</strong>es<br />

Rocklabs ring mill<br />

Random sub-sampling <strong>of</strong> rocks is critical: we mini-chip coarse samples and reduce<br />

splitting error to <strong>the</strong> level <strong>of</strong> analytical error with a Rocklabs rotary splitter<br />

Coarse<br />

chipmunk<br />

Retsch planetary ball mill<br />

We normally grind in Ta-free Rocklabs WC (< 120 g) for both <strong>XRF</strong> and ICP-MS or<br />

in ag<strong>at</strong>e (< 20 g) on request or for soils; small ball mills are used for < 3 g samples WC and ag<strong>at</strong>e ball mills


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

The nitty gritty <strong>of</strong> a <strong>WSU</strong> <strong>GeoAnalytical</strong> <strong>Lab</strong> <strong>XRF</strong> analysis<br />

� collect intensities <strong>at</strong> 36 peak and 25 background positions (~ 66 min/sample) for all samples<br />

� calcul<strong>at</strong>e net peak minus background intensity for each element (<strong>of</strong>ten require linear and even<br />

parabolic* m<strong>at</strong>rix-dependent background slope correction)<br />

� correct <strong>the</strong> net intensities for 135 spectral interferences (pk on pk, pk on bgd, Compton tails)<br />

� calcul<strong>at</strong>e raw concentr<strong>at</strong>ions from corrected intensities using <strong>the</strong> calibr<strong>at</strong>ion curves (set with 75 to 105<br />

highly diverse CRMs)<br />

� calcul<strong>at</strong>e m<strong>at</strong>rix corrected concentr<strong>at</strong>ions from <strong>the</strong> raw concentr<strong>at</strong>ions by iter<strong>at</strong>ion using <strong>the</strong><br />

fundamental parameters method (with <strong>the</strong> absorbance values <strong>of</strong> <strong>the</strong> NIST-GSC using Al, Ba, Ca, Cl, Cr,<br />

Fe, K, Mg, Mn, Na, P, S, Si, Sr, Ti, Zr and estim<strong>at</strong>ed LOF as m<strong>at</strong>rix elements)<br />

� recalcul<strong>at</strong>e <strong>the</strong> corrected concentr<strong>at</strong>ions by iter<strong>at</strong>ion using an estim<strong>at</strong>ed loss on fusion (LOF; simply 100<br />

minus <strong>the</strong> analytical sum) to correct for raw powder** analysis and vol<strong>at</strong>ile loss <strong>of</strong> weighed rock powder<br />

upon fusion (correction for not truly 2:1 flux:rock mixture)<br />

** raw powder is much preferred due to potential sample damage and partial analyte losses (chiefly <strong>of</strong> Pb, K, and Rb) during<br />

ignition loss measurements, especially for halide-rich samples<br />

* parabolic background<br />

correction for Zr<br />

Zr peak minus<br />

background vs.<br />

RhKb Compton<br />

intensity<br />

y = 0.00003424x 2 + 0.00485338x + 0.07247217<br />

R 2 = 0.99536438<br />

mixtures <strong>of</strong> silica and<br />

pur<strong>at</strong>ronic compounds<br />

20 40 60 80 100<br />

estim<strong>at</strong>ed loss on<br />

fusion is a robust<br />

approxim<strong>at</strong>ion <strong>of</strong> loss<br />

on ignition - we have<br />

employed this<br />

correction for several<br />

years now on diverse<br />

lithologies. Very Ferich<br />

samples (gray<br />

squares) have high<br />

estim<strong>at</strong>ed LOF due to<br />

reduction <strong>of</strong> Fe +3<br />

Estim<strong>at</strong>ed LOF (wt%)<br />

55<br />

45<br />

35<br />

25<br />

15<br />

5<br />

-5<br />

(A)<br />

y = 0.9972x + 0.9522<br />

R 2 = 0.9891; n = 2552<br />

-5 5 15 25 35 45 55<br />

Measured LOI (wt%)


M<strong>at</strong>rix corrected intensity (kcps)<br />

M<strong>at</strong>rix corrected intensity (kcps)<br />

Major and trace element calibr<strong>at</strong>ion with graphite double fusions<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

K 2O<br />

SEE = 0.044 wt%<br />

R 2 = 0.9998<br />

n = 102<br />

0 4 8 12 16<br />

Al 2O 3<br />

Concentr<strong>at</strong>ion (wt %)<br />

SEE = 0.155 wt%<br />

R 2 = 0.9998<br />

n = 104<br />

0 10 20 30 40 50 60 70 80<br />

Concentr<strong>at</strong>ion (wt %)<br />

M<strong>at</strong>rix corrected intensity (kcps)<br />

M<strong>at</strong>rix corrected intensity (kcps)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

2.25<br />

2<br />

1.75<br />

1.5<br />

1.25<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

Sc<br />

Calibr<strong>at</strong>ion requires 5 days <strong>at</strong> ~66 min/CRM but calibr<strong>at</strong>ions hold for 3-10 months<br />

SEE = 0.8 ppm<br />

R 2 = 0.9995<br />

n = 85<br />

0 10 20 30 40 50 60 70 80<br />

V<br />

Concentr<strong>at</strong>ion (ppm)<br />

SEE = 4.9 ppm<br />

R 2 = 0.9987<br />

n = 84<br />

0 100 200 300 400 500 600<br />

Concentr<strong>at</strong>ion (ppm)


Reproducibility <strong>of</strong> major and trace elements using graphite double fusions (n = 850)<br />

Difference from average (wt%)<br />

Difference from average (wt%)<br />

0.015<br />

0.010<br />

0.005<br />

0.000<br />

-0.005<br />

-0.010<br />

-0.015<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

P 2O 5<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

Concentr<strong>at</strong>ion (wt %)<br />

CaO<br />

0 4 8 12 16 20<br />

Concentr<strong>at</strong>ion (wt %)<br />

Difference from average (ppm)<br />

Difference from average (ppm)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

0 20 40 60 80 100<br />

Rb<br />

Nb<br />

Concentr<strong>at</strong>ion (ppm)<br />

0 100 200 300 400 500<br />

Concentr<strong>at</strong>ion (ppm)<br />

Duplic<strong>at</strong>e analyses <strong>of</strong> 850 diverse same sample powders performed over a 5 year period, 2004-2009


<strong>WSU</strong> <strong>XRF</strong> (ppm)<br />

<strong>WSU</strong> <strong>XRF</strong> (ppm)<br />

Graphite fused <strong>XRF</strong> versus graphite fused- acid digested ICP-MS trace elements (n = 1224)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

200<br />

160<br />

120<br />

80<br />

40<br />

0<br />

0<br />

Ba<br />

y = 0.9827x + 5.763<br />

R 2 = 0.9995<br />

0 200 400 600 800 1000<br />

Ce<br />

<strong>WSU</strong> ICP-MS (ppm)<br />

y = 0.9908x - 0.6172<br />

R 2 = 0.9985<br />

0 40 80 120 160 200<br />

<strong>WSU</strong> ICP-MS (ppm)<br />

<strong>WSU</strong> <strong>XRF</strong> (ppm)<br />

<strong>WSU</strong> <strong>XRF</strong> (ppm)<br />

200<br />

160<br />

120<br />

80<br />

60<br />

40<br />

20<br />

80<br />

40<br />

0<br />

0<br />

Y<br />

y = 0.9715x + 0.6721<br />

R 2 = 0.9988<br />

0 40 80 120 160 200<br />

Th<br />

<strong>WSU</strong> ICP-MS (ppm)<br />

y = 0.9885x + 0.5574<br />

R 2 = 0.9906<br />

0 20 40 60 80<br />

<strong>WSU</strong> ICP-MS (ppm)<br />

All 1224 analyses performed over an eight month period in 2009 on a single <strong>XRF</strong> calibr<strong>at</strong>ion


Summary<br />

� Our lab has served a broad Earth science research clientele over <strong>the</strong><br />

past 35 years using low dilution graphite fusions for <strong>XRF</strong> analysis<br />

� Graphite provides more than sufficient reproducibility for <strong>the</strong> vast<br />

majority <strong>of</strong> bulk rock analyses (our lab is <strong>of</strong>ten chosen for certific<strong>at</strong>ion<br />

studies due to our consistent performance on GeoPT samples)<br />

� Graphite allows employment <strong>of</strong> a robust low dilution fusion str<strong>at</strong>egy<br />

for nearly all geologic m<strong>at</strong>erials save ores<br />

� We thank Charles Wu and <strong>the</strong> instructors <strong>of</strong> <strong>the</strong> <strong>University</strong> <strong>of</strong> <strong>Western</strong><br />

<strong>Ontario</strong> <strong>XRF</strong> course for <strong>the</strong>ir excellence in instruction and in prepar<strong>at</strong>ion<br />

<strong>of</strong> course m<strong>at</strong>erials. The UWO courses have deepened <strong>the</strong> knowledge<br />

base <strong>of</strong> our technical staff and helped us fur<strong>the</strong>r our goals <strong>of</strong> providing<br />

educ<strong>at</strong>ion and good d<strong>at</strong>a <strong>at</strong> a reasonable cost.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!