12.07.2015 Views

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

434 CHAPTER 6. EDM CONEBecause 〈 {δ(u) | u∈ R N }, D 〉 ≥ 0 ⇔ D ∈ S N h , we can restrict observationto the symmetric hollow subspace without loss of generality. Then for D ∈ S N h〈D ∗ , D〉 ≥ 0 ∀D ∗ ∈ { −V N υυ T V T N | υ ∈ R N−1} ⇔ D ∈ EDM N (1099)this discretized membership relation becomes (1096); identical to theSchoenberg criterion.Hitherto a correspondence between the EDM cone and a face of a PSDcone, the Schoenberg criterion is now accurately interpreted as a discretizedmembership relation between the EDM cone and its ordinary dual.6.8.2 Ambient S N hWhen instead we consider the ambient space of symmetric hollow matrices(1055), then still we find the EDM cone is not self-dual for N >2. Thesimplest way to prove this is as follows:Given a set of generators G = {Γ} (1015) for the pointed closed convexEDM cone, the discrete membership theorem in2.13.4.2.1 asserts thatmembers of the dual EDM cone in the ambient space of symmetric hollowmatrices can be discerned via discretized membership relation:EDM N∗ ∩ S N h∆= {D ∗ ∈ S N h | 〈Γ , D ∗ 〉 ≥ 0 ∀ Γ ∈ G(EDM N )}(1100)By comparison= {D ∗ ∈ S N h | 〈δ(zz T )1 T + 1δ(zz T ) T − 2zz T , D ∗ 〉 ≥ 0 ∀z∈ N(1 T )}= {D ∗ ∈ S N h | 〈1δ(zz T ) T − zz T , D ∗ 〉 ≥ 0 ∀z∈ N(1 T )}EDM N = {D ∈ S N h | 〈−zz T , D〉 ≥ 0 ∀z∈ N(1 T )} (1101)the term δ(zz T ) T D ∗ 1 foils any hope of self-duality in ambient S N h .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!