12.07.2015 Views

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

556 APPENDIX D. MATRIX CALCULUSBecause gradient of the product (1550) requires total change with respectto change in each entry of matrix X , the Xb vector must make an innerproduct with each vector in the second dimension of the cubix (indicated bydotted line segments);⎡∇ X (X T a)Xb = ⎢⎣⎤a 1 00 a 1⎥a 2 0 ⎦0 a 2[ ]b1 X 11 + b 2 X 12∈ R 2×1×2b 1 X 21 + b 2 X 22(1554)[ ]a1 (b= 1 X 11 + b 2 X 12 ) a 1 (b 1 X 21 + b 2 X 22 )∈ R 2×2a 2 (b 1 X 11 + b 2 X 12 ) a 2 (b 1 X 21 + b 2 X 22 )= ab T X Twhere the cubix appears as a complete 2 ×2×2 matrix. In like manner forthe second term ∇ X (g)f⎡ ⎤b 1 0∇ X (Xb)X T b 2 0[ ]X11 aa =1 + X 21 a 2⎢ ⎥∈ R 2×1×2⎣ 0 b 1⎦ X 12 a 1 + X 22 a 2 (1555)0 b 2= X T ab T ∈ R 2×2The solution∇ X a T X 2 b = ab T X T + X T ab T (1556)can be found from Table D.2.1 or verified using (1549).D.1.2.1Kronecker productA partial remedy for venturing into hyperdimensional representations, suchas the cubix or quartix, is to first vectorize matrices as in (30). This devicegives rise to the Kronecker product of matrices ⊗ ; a.k.a, direct productor tensor product. Although it sees reversal in the literature, [245,2.1] weadopt the definition: for A∈ R m×n and B ∈ R p×q⎡⎤B 11 A B 12 A · · · B 1q AB ⊗ A =∆ B 21 A B 22 A · · · B 2q A⎢⎥⎣ . . . ⎦ ∈ Rpm×qn (1557)B p1 A B p2 A · · · B pq A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!