- Text
- Graph,
- Vertices,
- Edges,
- Shortest,
- Algorithm,
- Vertex,
- Undirected,
- Subgraph,
- Transitive,
- Node,
- Interface,
- Boost

RBGL: R interface to boost graph library

a) Dijkstra's Exampleb) Transitive closureDCBEACAEBDFigure 12: a) The **graph** for Dijkstra’s example. b) The transitive closure of the **graph**in panel a)3.14 Wavefront, ProfilesTODO: EXPLAIN THESE TERMSThe following functions are available: ith.wavefront, maxWavefront, aver.wavefrontand rms.wavefront.> ss ith.wavefront(dijk, ss)$ith.wavefront[1] 3> maxWavefront(dijk)$maxWavefront[1] 4> aver.wavefront(dijk)$aver.wavefront[1] 2.6> rms.wavefront(dijk)$rms.wavefront[1] 2.792848TODO: EXPLAIN THESE RESULTS30

3.15 Betweenness Centrality and ClusteringBetweenness centrality of a vertex (or an edge) measures its importance in a **graph**, i.e.,among all the shortest paths between every pair of vertices in the **graph**, how manyof them have **to** go through this vertex (or edge). Relative betweenness centrality iscalculated by scaling the absolute betweenness centrality by fac**to**r 2/((n-1)(n-2)), wheren is the number of vertices in the **graph**.The brandes.betweenness.centrality function implements Brandes’ algorithm incalculating betweenness centrality.The betweenness.centrality.clustering function implements clustering in a **graph**based on edge betweenness centrality.TODO: EXPLAIN MORE> brandes.betweenness.centrality(coex)$betweenness.centrality.verticesA B C D E H F G[1,] 0 0 0 12 4 4 0 0$edges[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14][1,] "A" "A" "A" "B" "B" "C" "D" "D" "E" "E" "E" "H" "H" "F"[2,] "B" "C" "D" "C" "D" "D" "E" "H" "F" "G" "H" "F" "G" "G"$betweenness.centrality.edges[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]centrality 1 1 5 1 5 5 8 8 3 3 1 3 3[,14]centrality 1$relative.betweenness.centrality.verticesA B C D E H F G[1,] 0 0 0 0.5714286 0.1904762 0.1904762 0 0$dominance[1] 0.5170068> betweenness.centrality.clustering(coex, 0.1, TRUE)$no.of.edges[1] 12$edges31

- Page 4 and 5: zow_hdax_hboz_hfoo_cppyow_hbar_cppz
- Page 6 and 7: a) BFS Exampleb) BFS Example with s
- Page 8 and 9: A B C D E1 5 1 3 4$startA1The funct
- Page 10 and 11: nodes(dd)[1] "A" "B" "C" "D" "E" "G
- Page 12 and 13: 1 7$ed6$cb4$dc a-5 2> johnson.all.p
- Page 14 and 15: All edge distances are assumed to b
- Page 16 and 17: AFGCHBEDFigure 7: Modified Kruskal
- Page 18 and 19: AB F GCEIDHFigure 8: Biconnected co
- Page 20 and 21: ABA1CA2DA4EYA5HB1A3FB2GB3B4ZXFigure
- Page 22 and 23: $edges[,1] [,2] [,3] [,4] [,5] [,6]
- Page 24 and 25: 3.8 Edge connectivity and minimum d
- Page 26 and 27: kamada.kawai.spring.layout(coex)$ka
- Page 28 and 29: A1A2A3A4A5A7A8A6Figure 11: Example
- Page 32 and 33: [,1] [,2] [,3] [,4] [,5] [,6] [,7]
- Page 34 and 35: [1] "D" "E" "H"$maxCliques[[3]][1]
- Page 36 and 37: A C B E F D G H J K I L M N O P Q R
- Page 38 and 39: 5.5 kCliquesIn social network analy