Views
2 years ago

Chromatically unique bipartite graphs with low 3-independent ...

Chromatically unique bipartite graphs with low 3-independent ...

120 F.M. Dong et al. /

120 F.M. Dong et al. / Discrete Mathematics 224 (2000) 107–124Table 4. (continued)(c) For s¿5; we have q¿6 and 2 q−4 is a factor of ′′ (G; 4) + 9 for every G ∈ S 5 ;but 4 is not a factor of ′′ (G; 4) + 9 for every G ∈ S 1 ∪ S 2 ∪ S 3 . Hence(S 1 ∪ S 2 ∪ S 3 ; S 5 )=0.(d) For s¿5; we have q¿6; and 2 q−2 is a factor of ′′ (G; 4) + 11 for G ∈ S 1 ; 2 3is not a factor of ′′ (G; 4) + 11 for G ∈ S 2 ; and 2 3 is a factor of ′′ (G; 4)+11but 2 4 is not for G ∈ S 3 . Hence (S 1 ; S 2 ; S 3 )=0.

F.M. Dong et al. / Discrete Mathematics 224 (2000) 107–124 121(e) For s¿6; we have q¿7; and 2 2 is a factor of ′′ (G; 4) for every G ∈ S 6 but itis not for every G ∈ S 4 . Hence (S 4 ; S 6 )=0.By (b)–(e), Claim 1 holds.The remaining work is to compare every two graphs in each S i . Both S 1 and S 4contain only one graph. For S 5 , when p=q; G 4;10∼ = G4;11 ; when p ¿ q; ′′ (G 4;10 ; 4) ≠ ′′ (G 4;11 ; 4). In the following, we shall study the three sets S 2 ; S 3 and S 6 .(4.1) S 3 : When p ¿ q; ′′ (G 4;6 ; 4) ¿ ′′ (G 4;7 ; 4) ¿ ′′ (G 4;8 ; 4). When p = q, wehave G 4;6∼ = G4;8 and by the method used in (8),(G 4;7 ; 5) − (G 4;8 ; 5)= (G 4;7 −{a 4 ;b 4 ;c 4 }; 4) − (G 4;8 −{a 5 ;b 5 ;c 5 }; 4) = −2 q−5 ≠0:(4.2) S 6 : When p¿q, ′′ (G 4;12 ; 4) ¿ ′′ (G 4;13 ; 4) ¿ ′′ (G 4;14 ; 4) ¿ ′′ (G 4;15 ; 4) ¿ ′′ (G 4;16 ; 4):When p = q; G 4;12∼ = G4;16 ;G 4;13∼ = G4;15 and by the method used in (8),(G 4;14 ; 5) − (G 4;15 ; 5) = −2 q−5 ;(G 4;15 ; 5) − (G 4;16 ; 5) = −3 × 2 q−5 ¡ 0:(4.3) S 2 : Observe that ′′ (G 4;3 ; 4) = ′′ (G 4;4 ; 4). When p¿q, ′′ (G 4;2 ; 4) ¡ ′′ (G 4;3 ; 4) ¡ ′′ (G 4;5 ; 4):When p=q; G 4;2∼ = G4;5 and G 4;3∼ = G4;4 . In the following, we shall compare (G 4;4 ; 5)with (G 4;5 ; 5) for p = q, and (G 4;3 ; 5) with (G 4;4 ; 5) for p¿q.By Lemma 3.5, when p = q, by the method used in (8),(G 4;4 ; 5) − (G 4;5 ; 5)= (G 4;4 −{a ′ 2;b ′ 2;c ′ 2}; 4) − (G 4;5 −{a 3 ;b 3 ;c 3 }; 5)= − 2 q−5¡ 0:For G 4;3 and G 4;4 , we prove the following claim:Claim 2. (G 4;3 ; 5) − (G 4;4 ; 5) = 3(2 p−5 − 2 q−5 ).By Lemma 3.5,(G 4;3 ; 5)= (G 4;3 + a 1 b 1 ; 5) + (G 4;3 −{a 1 ;b 1 }; 4) + (G 4;3 −{a 1 ;b 1 ;c 1 }; 4)= (G 4;3 + a 1 b 1 + b 1 c 1 ; 5) + (G 4;3 −{b 1 ;c 1 }; 4) + (G 4;3 −{b 1 ;c 1 ;d 1 }; 4)+ (G 4;3 −{a 1 ;b 1 }; 4) + (G 4;3 −{a 1 ;b 1 ;c 1 }; 4);

The Pk Partition Problem and Related Problems in Bipartite Graphs ...
On uniqueness of prime bipartite factors of graphs - People.vcu.edu ...
Mixing 3-colourings in Bipartite Graphs - Department of Mathematics
Independence and chromatic densities of graphs - ResearchGate
Generation of graphs Bipartite graphs – unique perfect matching.
Discrete Applied Mathematics On the locating chromatic number of Kneser graphs
Discrete Applied Mathematics On the locating chromatic number of Kneser graphs
Embedding Spanning Bipartite Graphs of Small Bandwidth
On Sampling Colorings of Bipartite Graphs - Discrete Mathematics ...
AN EXTREMAL PROBLEM FOR COMPLETE BIPARTITE GRAPHS ...
On the Structure of Maximum Independent Sets in Bipartite Graphs ...
Sharp bounds for the number of 3-partitions and the chromatic ...
DISJOINT HAMILTONIAN CYCLES IN BIPARTITE GRAPHS 1 ...
Matchings in Random Biregular Bipartite Graphs
P9 - Factorization of Complete Bipartite Graph 1 Introduction
The IC-Indices of Complete Bipartite Graphs
Potts model on infinite graphs and the limit of chromatic polynomials
Chromaticity of Complete 6-Partite Graphs with Certain Star or ...
Crossing Minimization in Weighted Bipartite Graphs*
chromatic number of graphs and edge folkman numbers
density theorems for bipartite graphs and related ramsey-type results
Cycle Systems in the Complete Bipartite Graph Minus a One-Factor
Partitioning Signed Bipartite Graphs for Classification of Individuals ...
On the Chromatic Uniqueness of Edge-Gluing of Complete Tripartite ...
Partitioning Signed Bipartite Graphs for Classification of Individuals ...
Sum coloring of bipartite graphs with bounded degree