Standard X-ray Diffraction Powder Patterns
Standard X-ray Diffraction Powder Patterns
Standard X-ray Diffraction Powder Patterns
- No tags were found...
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
3. 41NBS MONOGRAPH 25—SECTION 4<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong><strong>Powder</strong> <strong>Patterns</strong>U.S. DEPARTMENT OF COMMERCENATIONAL BUREAU OF STANDARDS UNIVERSITY orARIZONA LIBFUDocuments ColletOCT 4 1966
THE NATIONAL BUREAU OF STANDARDSThe National Bureau of <strong>Standard</strong>s is a principal focal point in the Federal Governmentfor assuring maximum application of the physical and engineering sciences to the advancementof technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for makingmeasurements consistent with those standards; determination of physical constants andproperties of materials; development of methods for testing materials, mechanisms, andstructures, and making such tests as may be necessary, particularly for government agencies;cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; inventionand development of devices to serve special needs of the Government; assistance to industry,business, and consumers in the development and acceptance of commercial standards andsimplified trade practice recommendations; administration of programs in cooperation withUnited States business groups and standards organizations for the development of internationalstandards of practice; and maintenance of a clearinghouse for the collection and disseminationof scientific, technical, and engineering information. The scope of the Bureau's activities issuggested in the following listing of its three Institutes and their organizatonal units.Institute for Basic <strong>Standard</strong>s. Applied Mathematics. Electricity. Metrology. Mechanics.Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio <strong>Standard</strong>s Laboratory:* Radio <strong>Standard</strong>s Physics; Radio <strong>Standard</strong>s Engineering.Office of <strong>Standard</strong> Reference Data.Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. InorganicMaterials. Reactor Radiations. Cryogenics.* Materials Evaluation Laboratory. Office of<strong>Standard</strong> Reference Materials.Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel TechnologyCenter. Technical Analysis. Office of Weights and Measures. Office of Engineering <strong>Standard</strong>s. Office of Invention and Innovation. Office of Technical Resources. Clearinghousefor Federal Scientific and Technical Information.**'Located at Boulder, Colorado, 80301."Located at 6286 Port Royal Road, Springfield, Virginia, 22151.
UNITED STATES DEPARTMENT OF COMMERCE • John T. Connor, SecretaryNATIONAL BUREAU OF STANDARDS • A. V. Astin, Director<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong><strong>Powder</strong> <strong>Patterns</strong>Howard E. Swanson, Marlene C. Morris, and Eloise H. EvansNational Bureau of <strong>Standard</strong>s Monograph 25 — Section 4Issued June 28, 1966For sale by the Superintendent of Documents, U.S. Government Printing OfficeWashington, D.C., 20402 - Price 55 cents
Library of Congress Catalog Card No. 53-61386
ContentsIntroduction. _______________________________Ceil determination for internal standards.. ________<strong>Standard</strong> x-<strong>ray</strong> powder patterns:* Barium Boron Oxide, high form, BaB2O4(trigonal)_ _ ___________________________Barium Boron Oxide, BaB4Oy (monoclinic) ____Barium Fluosilicate, BaSiF6 (trigonal)___ ___*Cerium Arsenate, CeAsO4 (monoclinic) ______*Cesium Fluoantimonate, CsSbFa (trigonal)_*Cobalt, Co (cubic)_ _____________________Cobalt Diarsenide, CoAs2 (monoclinic) (revised) _ _______________________________*Cobalt Silicate, Co2SiO4 (orthorhombic) _____Cobalt Titanate, CoTiO3 (trigonal) __________*Cobalt Tungstate, CoWO4 (monoclinic) . . _ _ _* Dysprosium Vanadate, DyVO4 (tetragonal)..*Europium(III) Vanadate, EuVO4 (tetragonal) __ ______________________________* Gadolinium Arsenate, GdAsO4 (tetragonal).-*Holmium Vanadate, HoVO4 (tetragonal)__ _*Iridium Dioxide, IrO2 (tetragonal) __________*Lead Boron Oxide, PbB4O7 (orthorhombic) ___Lithium Phosphate, low form, (lithiophosphate),**LiaPO4 (orthorhombic) (revised) __Lithium Sulfate Monohydrate, Li2SO4-H2O(monoclinic) ____________________________*Magnesium Aluminum Silicate (pyrope),Mg3Al2(SiO4) 3 (cubic).___________________Magnesium Boron Oxide, Mg_B2O5 (tri clinic) __*Metaboric Acid, HBO2 (cubic) _____________*Neodymium Arsenate, NdAsO4 (monoclinic)-Neodymium Vanadate, NdVO4 (tetragonal) _ _ _Potassium Acid Phthalate,C6H 4 (COOH) (COOK) (orthorhombic) _____*Praseodymium Arsenate, PrAsO4 (monoclinic)—.-------------_ ___-_.__._____*Samarium Arsenate, SmAsO4 (tetragonal) ___*Samarium Oxide, Sm2O3 (cubic) ____________*Scandium Arsenate, ScAsO4 (tetragonal) _____^Strontium Boron Oxide, SrB4O7 (orthorhom*Tin Arsenide, Sn As (cubic) ._-____._.____* Ytterbium Arsenate, YbAsO 4 (tetragonal) _Zinc Antimony Oxide, ZnSb2O4 (tetragonal) _^Calculated powder patterns:Antimony Cerium, CeSb ________________Antimony Dysprosium, DySb__ _ __________Antimony Erbium, ErSb _________________Antimony Gadolinium , GdSb _____________Antimony Lanthanum, LaSb_ _____________Antimony Neodymium, NdSb_________ ____Antimony Praseodymium, PrSb__ _________Antimony Scandium, SbSc__ ______________Antimony Thorium, SbTh________________Antimony Thulium, SbTm _______________Antimony Ytterbium, SbYb_ _____________Antimony Yttrium, SbY_ ________________Bismuth Cerium, BiCe___ _________„______Bismuth Dysprosium, BiDy ______________*Not previously listed in <strong>Powder</strong> <strong>Diffraction</strong> File."Mineral name in parentheses indicates a synthetics sample.PagePage1 Bismuth Erbium, BiEr_____________________ 473 Bismuth Holmium, BiHo___________________ 48Bismuth Lanthanum, BiLa_____„___________ 48Bismuth Neodymium, BiNd________________ 494 Bismuth Praseodymium, BiPr__-_____._.__ 496 Bismuth Telluride, BiTe... ________________ 507 Calcium Telluride, CaTe____-_--__-________ 508 Cerium Arsenide, CeAs____-________________ 519 Cerium Nitride, CeN__ __________________ 5110 Cerium Phosphide, CeP_________-_____.____ 52Cobalt Iodide, CoI2____._._________________ 5210 Dysprosium Arsenide, DyAs________________ 5311 Dysprosium Nitride, DyN________________ 5313 Dysprosium Telluride, DyTe_______________ 5413 Erbium Arsenide, ErAs____-.-_____-.______ 5415 Erbium Nitride, ErN__________ ____________ 55Erbium TeDuride, ErTe____________________ 5516 Europium Nitride, EuN__________._________ 5617 Europium Oxide, EuO. ____________________ 5618 Gadolinium Arsenide, GdAs________________ 5719 Gadolinium Nitride, GdN_ _________________ 5719 Germanium Iodide, GeI 2 ___________________ 58Holmium Nitride, HoN_ ___________________ 5821 Holmium Selenide, HoSe______--___--_--___ 59Iron Bromide, FeBr2_______________________ 5922 Iron Iodide, Felj.-.----------- —---------- 60Lanthanum Arsenide, LaAs_________________ 6024 Lanthanum Nitride, LaN_________________ 6125 Lanthanum Selenide, LaSe. ________________ 6127 Lutetium Nitride, LuN_ ___________________ 6228 Magnesium Bromide, MgBr2________________ 6230 Manganese Bromide, MnBr2________________ 63Manganese Iodide, MnI 2 _ __________________ 6330 Neodymium Arsenide, NdAs________________ 64Neptunium Nitride, NpN__________________ 6432 Plutonium Arsenide, PuAs________________ 6533 Plutonium Phosphide, PuP_ ________________ 6534 Plutonium Telluride, PuTe_ ________________ 6635 Potassium Hydroxide, KOH at 300 °C_ ______ 66Praseodymium Arsenide, Pr As ______________ 6736 Praseodymium Sulfide, PrS_ ________________ 6737 Samarium Arsenide, SmAs—_______________ 6838 Scandium Arsenide, ScAs___._______________ 6839 Sodium Hydroxide, NaOH at 300 °C_ _______ 69Strontium Telluride, SrTe__________________ 6940 Terbium Nitride, TbN-.-_______________-__ 7041 Thorium Arsenide, ThAs___________________ 7041 Thulium Arsenide, TmAs_________________ 7142 Thulium Nitride, TmN_ ___________________ 7142 Thulium Telluride, TmTe_ _________________ 7243 Titanium Sulfide, TiS_--------------------- 7243 Uranium Telluride, UTe__. ________________ 7344 Ytterbium Arsenide, YbAs_ ________________ 7344 Ytterbium Nitride, YbN_ __________________ 7445 Yttrium Arsenide, YAs_____________________ 7445 Yttrium Telluride, YTe__________________ 7546 Zirconium Phosphide, ZrP__________________ 7546 Cumulative index to Circular 539, Volumes 1, 2, 3,47 4, 5, 6, 7, 8, 9, and 10, and Monograph 25,Sections 1, 2, 3, and 4_ ___________._____--- 77Cumulative mineral index________-_____ _------- 82111
ErrataMonograph 25, Section 4Circular 539Vol. 3, p. 33; The space group should be Dl d-P3mLVol. 4, p. 26; The space group should be Dl d-P5ml.Vol. 6, p. 3; The space group should be TJ-Pa3.p. 35; The space group should be DJd-I42d.Monograph 25Sec. 1, p. 2; In the left-hand column, the sentence beginning in the seventhline from the bottom should read: "Factors for converting integratedintensities to peak height intensities are on the left side of the chart.Sec. 3, p. 7; The d-spacing 1.568 should be 1.537.p. 5; kkl 341 should be 203.p. 16; The d-spacing 2.113 should be 2.013.p. 49; In the text for NBS sample, the first sentence should be corrected toread: ". . . by heating sodium trimetaphosphate sesquihydrate above themelting . . ."p. 51; The NBS value for ft for SnF2 should be 109° 6.5'±0.3'.<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong>The thirteen previous volumes in this series are available from the Superintendent of Documents, U.S.Government Printing Office, Washington, D.C., 20402, as follows:NBS Circular 539, Volume 1, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 54 inorganic substances) 45centsNBS Circular 539, Volume 2, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 30 inorganic substances) 45centsNBS Circular 539, Volume 3, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 34 inorganic substances) 45centsNBS Circular 539, Volume 4, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 42 inorganic substances) 45centsNBS Circular 539, Volume 5, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 45 inorganic substances) 45centsNBS Circular 539, Volume 6, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 44 inorganic substances) 40centsNBS Circular 539, Volume 7, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 53 substances) 40 centsNBS Circular 539, Volume 8, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 61 substances) 45 centsNBS Circular 539, Volume 9, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 43 substances) 40 centsNBS Circular 539, Volume 10, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 40 substances) 40 centsNBS Monograph 25, Section 1, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 46 substances) 40 centsNBS Monograph 25, Section 2, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 37 substances) 35 centsNBS Monograph 25, Section 3, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong> (Data for 51 substances) 40 centsSend orders with remittance to Superintendent of Documents, U.S. Government Printing Office, Washington,D.C., 20402. Remittances from foreign countries should include an additional one-fourth of the purchase pricefor postage.Those wishing to be notified of future issues should send mailing address to the Government Printing Office.IV
STANDARD X-RAY DIFFRACTION POWDER PATTERNSSection 4 Data for 103 SubstancesHoward E. Swanson, Marlene Cook Morris, 1 and Eloise H. Evans 1<strong>Standard</strong> x-<strong>ray</strong> diffraction powder data are presented for 103 substances. Thirty-twoof these patterns represent experimental data and 71 are calculated. Ten experimentalpatterns replace eleven cards already in the X-<strong>ray</strong> <strong>Powder</strong> <strong>Diffraction</strong> File published bythe American Society for Testing and Materials; twenty-two experimental patterns andseventy-one calculated patterns are for substances not previously included in the File. Theexperimental x-<strong>ray</strong> powder diffraction patterns were made with a Geiger counter x-<strong>ray</strong>diffractometer, using samples of high purity. All d-values were assigned Miller indicesdetermined by comparison with theoretical interplanar spacings and from space groupextinctions. The densities and lattice constants were calculated, and the refractive indiceswere measured whenever possible. The calculated x-<strong>ray</strong> powder diffraction patterns wereobtained from single crystal structure data. The reported peak height intensities forcalculated patterns were converted from integrated intensities.Accurate cell determination measurements for the internal standards were obtained byusing a flat-plate back reflection focusing camera.Key Words: standard, x-<strong>ray</strong>, diffraction, powder, patterns, crystal, structure, measurements, lattice, constantsThe X-<strong>ray</strong> <strong>Powder</strong> <strong>Diffraction</strong> File [1] 2 isa compilation of diffraction patterns from manysources and is used for the identification ofunknown crystalline materials by matching spacing and intensity measurements. The NationalBureau of <strong>Standard</strong>s in its program 3 for therevision and evaluation of published x-<strong>ray</strong> datafor the X-<strong>ray</strong> <strong>Powder</strong> <strong>Diffraction</strong> File presentsdata in this report for 103 compounds. Thiscompilation is the fourteenth of a series of"<strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong>." 4The designation ''Circular 539" used for the firstten volumes has been discontinued in favor of theseries, "Monograph 25." This compilation is thefourth section of the series Monograph 25. Included are patterns recommended to replace dataon 11 cards now present in the File. The otherpatterns are for 93 compounds not included in theFile. In this group of compounds, 22 patterns areexperimental and 71 are calculated.Experimental <strong>Powder</strong> <strong>Patterns</strong><strong>Powder</strong> data cards. Under this heading aregiven the <strong>Powder</strong> <strong>Diffraction</strong> File Card numbersand the literature reference for each card. Cardslisted through the 1964 index to the <strong>Powder</strong><strong>Diffraction</strong> File are included in the table.1 Research Associate at the National Bureau of <strong>Standard</strong>s sponsored bythe Joint Committee on Chemical Analysis by <strong>Powder</strong> <strong>Diffraction</strong> Methods.2 Figures in brackets indicate the literature references at the end of eachsection of this paper.3 This project is sponsored by the Joint Committee on Chemical Analysisby <strong>Powder</strong> <strong>Diffraction</strong> Methods. This committee is composed of membersfrom the American Society for Testing and Materials, the American CrystallographicAssociation, and the British Institute of Physics. Financial support is also provided by the National Bureau of <strong>Standard</strong>s.< Other volumes were published as follows: Circular 539 Vol. 1 and Vol. 2,June 1953; Vol. 3, June 1954; Vol. 4, March 1955; Vol. 5, October 1955; Vol 6,September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February1960; Vol. 10, September 1960; Monograph 25, Section 1, March 1962; Section2, May 1963; and Section 3, July 1964.INTRODUCTIONAdditional published patterns. Literature references for patterns that have not been publishedas <strong>Powder</strong> <strong>Diffraction</strong> cards are listed.NBS sample. Many of the samples used tomake NBS patterns were special preparations ofhigh purity obtained from a variety of sources orprepared in small quantities in our laboratory.Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of thesample was completed. The limit of detectionfor the alkali elements was 0.05 percent for thespectrographic analyses. A microscopic inspection for phase purity was made on the nonopaquematerials during the refractive index determination. Another check of phase purity was usuallyprovided by the x-<strong>ray</strong> pattern itself, when it wasindexed by comparison with theoretical d-values.Treating the sample by appropriate annealing,recrystallization, or heating in hydrothennalbombs improved the definition of most of the patterns. The refractive index measurements weremade by grain-immersion methods in white light,using oils standardized in sodium light, and covering the range 1.40 to 2.00.Structural data. For cubic materials a valuefor the lattice constant was calculated for eachd-value. However, the constant reported is thatobtained by averaging the constants for the lastfive lines because of the greater accuracy of calculation in the large-angle region of the pattern.The unit cell values for noncubic substances weredetermined by means of a least-squares calculation made on the IBM 7094, using those d-valuesfor which only one set of Miller indices could beassigned. The number of significant figures reported for the d-values in the NBS patterns variesslightly with the symmetry and crystallinity ofeach sample. A portion of the indexing and cell
efinement calculation was performed on a Burroughs B 220 computer at the United StatesGeological Survey using a program developed byH. T. Evans, Jr., D. E. Appleman, and D. Handwerker[2]. Lattice constant errors are given onlyfor data refined on that program and are based onleast squares refinement of the variance-covariancematrix derived from the unweighted A0 residuals.Published unit cell data in kX units and datagiven in angstrom units prior to 1947 were converted to angstrom units using the factor 1.00202as recommended by an international conferenceof crystallographers [3].The space groups are listed with both theSchoenflies and short Hermann-Mauguin symbolsas well as the space group numbers given in theInternational Tables for X-<strong>ray</strong> Crystallography [4].Orthorhombic cell dimensions are presented according to the Dana convention b^>a^>c [5].The densities calculated from the NBS latticeconstants are expressed in grams per cubic centimeter and are computed with atomic weightsbased on carbon 12 [6], and the Avogadro number(6.02252 X10 23).Intensity measurements. At least three patterns for intensity measurements were prepared tocheck reproducibility. Samples that gave satisfactory intensity patterns usually had an averageparticle-size smaller than 10 /i [7]. In order toavoid the orientation effects which occur whensamples are packed or pressed, a sample holderwas made that had an extended rectangularcavity opened on its top face and at the end. Toprepare the sample, a glass slide was clamped overthe top face to form a temporary cavity wall (seefig. 1). The powdered sample was then driftedinto the remaining end opening while the holderwas held in a vertical position. With the sampleholder returned to a horizontal position, the glassslide was carefully removed so that the samplesurface could be exposed to the x-<strong>ray</strong> beam (asshown in fig. 2). To powders that did not flowreadily, or were prone to orient excessively, approximately 50 volume percent of finely groundsilica-gel was added as a diluent. The intensitiesof the diffraction lines were measured as peakheights above background and were expressed inpercentages of the intensity of the strongest line.Interplanar spacings. Specimens for the interplanarspacing patterns were prepared bypacking into a shallow holder a sample containingapproximately 5 wt percent tungsten powder thatserved as an internal standard. When tungstenlines were found to interfere, 25 percent silver wasused in place of tungsten. If the internal standard correction varied along the length of thepattern, linear interpolations were used for theregions between the peaks of the standard. Forlow values of 26, the pattern peak was measuredin the center, at a place averaging about 75 percent of the peak height. For higher values of 20,where the «i and a2 peaks were separated, the a\peak was measured in the same way. The internal standard correction appropriate to eachregion was then applied to the measurement of20. The internal standard lattice constants usedwere 3.1648 A for tungsten and 4.0861 A for silverat 25 °C, as determined by Jette and Foote [8].All of the NBS patterns, unless otherwise noted,are made at 25 °C using either filtered copper orcobalt radiation (Kc^), having the wavelengths1.5405 I, and 1.7889 A, respectively.FlOUKB 1 FIGURE 2
Calculated <strong>Powder</strong> <strong>Patterns</strong>Some substances are not readily available forexperimental powder measurements. Therefore,patterns were calculated from single crystalstructure data, using a FORTRAN programdeveloped by Smith [9].Scattering factors were obtained from The International Tables [10].Intensity calculations were based upon copperwavelength, 1.5405 A. The integrated intensitieswere converted to peak height values by means ofa graph [11]. Data with peak height intensitiesless than 0.1 were omitted. Peak height intensities from 0.1 to 0.9 were recorded as
Samples of high purity tungsten and silver wereobtained from several suppliers, but only threetungsten and four silver samples gave sufficientlysharp diffraction peaks for measurement of cellvalues. Since the variation of cell values forthese samples was within the reproducibility ofthe equipment, it appears that most samples oftungsten or silver of four or five 9's purity andproducing sharp diffraction peaks would be suitable for x-<strong>ray</strong> spacing reference standards.Cadmium oxide was also considered and measured as a spacing standard, but the cell size wasobtained from only one high purity sample.Sample sourceTungsten :Spex »SpexParrish 2Fairmount 3FairmountPresent NBS<strong>Standard</strong>Silver:Cominco 4Johnson &Matthey 5Engelhard 6Present NBS<strong>Standard</strong>Cadmium oxide:FairmountFairmountLattice constantsX aCoNiNiCoNiCoNiNiNiNiCoNiA3. 165013. 165083. 165063. 165013. 165033. 164934. 086254. 086254. 086234. 086264. 695594. 69558Correctedfor index ofrefraction[1]A3. 165223. 16526b 3. 165243. 165223. 165213. 165144. 086394. 086394. 086374. 086404. 695734. 69570* CoKai = 1.78890 A, NiKai =1.65783 A [2],b a=3.16522 A, mean value obtained in I.U. Cr. project using same tungstensample [3].1 Spex Industries, Inc., 3880 Park Avenue, Metuchen, N.J.2 Dr. William Parrish. Philips Laboratories, Briarcliff Manor, N.Y.3. Fairmount Chemical Co., Inc, 136 Liberty Street, New York, N.Y.,10006.< Cominco Products, Inc., Electronic Materials Division, 933 West ThirdAvenue, Spokane 4, Washington.5 Johnson, Matthey & Co., Ltd., c/o Jarrell-Ash Co., Newtonville 60, Mass.« Engelhard Industries, Inc., 113 Astor Street, Newark 14, N.J.New lattice measurements will be used with therecently obtained standard reference samplesbeginning with the next Section of this Monograph. These changes will increase d-values bya factor of 1.00004 compared to the d-valuesobtained with the older standard samples.The following 26 angles for high purity tungsten,silver, and cadmium oxide are computed usingcopper radiation K ffl = 1.5405 A and the cellDimensions without index of refraction corrections.hkl110111200211220310311222321400331420422511440531600Referenceswa = 3.16504 ACalculated 20 Angles40. 26258. 25273. 18787. 000100. 630114. 922131. 171153. 533Aga =4.08625 A38. 11244.29564. 44077. 39081. 53097. 874110. 498114. 914134. 897156. 735CdO 0a=4.69558 A33. 01238. 30455. 28665. 92069. 25682. 01491. 29094. 378106. 954116. 939136. 230152. 076159. 618[1] H. Lipson and A. J. C. Wilson, The derivation oflattice spacings from Debye-Scherrer photographs,J. Sci. Instr. 18, 144 (1944).[2] The conversion factor for kX units to angstrom units,J. Sci. Instr. 24, 27 (1947).[3] W. Parrish, Results of the I. U. Cr. precision latticeparameter project, Acta Cryst. 13, 838 (1960).Barium Boron Oxide, high form, BaB >O4 (trigonal)<strong>Powder</strong> data cards. No. 6-0220 and No.6-0224, Levin and McMurdie [1] 1949. Thedata on card No. 6-0220 was taken at 700 °C.Card No. 6-0224 is for a lower temperatureform of BaB 2O 4 .Additional published patterns. None.NBS sample. The sample of barium boronoxide was prepared at NBS by C. E. Weir frombarium carbonate and boric acid. It was heatedat 1,000 °C, then alternately ground and reheatedseveral times. Spectrographic analysis showedthe following major impurities: 0.01 to 0.1 percenteach of calcium, silicon, and strontium; and0.001 to 0.01 percent each of aluminum, sodium,and nickel.The sample is colorless and optically negative.The indices of refraction are N e= 1.530 andThe d-values of the three strongest lines are3.619, 3.324, and 5.98 A.Structural data. Block, Perloff, and Weir[2] in 1964 reported that there appear to be twopolymorphic forms of barium boron oxide, thehigh form being trigonal having the space groupQv— R3c (No. 161) or D^— R3c (No. 167) with18 (BaB 2O 4) per unit hexagonal cell.
<strong>Powder</strong> data card. No. 6-0334, Levin andMcMurdie [1],Additional published pattern. None.NBS sample. The sample of barium boronoxide was prepared at NBS from boric acid andbarium carbonate, in a solid state reaction belowthe melting point of 910 °C. Spectrographicanalysis showed the following major impurities:0.1 to 1.0 percent silicon, and 0.01 to 0.1 percenteach of aluminum, calcium, cobalt, and strontium.Barium Boron Oxide, BaB4O7 (monoclinic)The sample was colorless and optically positivewith medium 2V. The indices of refraction areNa=1.594±0.004, N0=1.610±0.004, and N T=1.666 ±0.004.The d-values of the three strongest lines are3.130, 3.805, and 4.908 A.Structural data. Block, Perloff, and Weir [2]in 1964 determined that barium boron oxide hasthe space group C|h—P2i/c (No. 14) and 8(BaB4O 7)per unit cell.hklInternal <strong>Standard</strong> W,a=3.1648 A; temp. 25 CCu X 1.5405 Ad7hklInternal <strong>Standard</strong> W,a -3. 1648 A; temp. 25 °CCu X 1.5405 AdI100102, Til200012T12102211210112020212021211T13, 120T21, 013121302212221220312204, 222T14221123014311313,214104302123321130320, T31322T24, 131032024. T32224410A10.226. 1205. 1134.9954.9084, 8314.4104.3354. 1604. 0964.0103. 8973. 8473. 8053.7423.5483.3883,2463. 2293. 1963,1303. 0603. 0292.9832. 9672.9392. 8942. 8702. 8102.7122. 6912.6742.6382.6202.6142.5492.5072.4952.4522.4398492439724214644540554249424656365354910055612123211126510272971 172048583227230223232214, 231, +404313, 322515, 324421402133, 420225423, 332412T34216421, 304511,333016140314516134042422413135,511521,242225315, 512044236325327, 334530, 226544, 208B22, 141245A2.4102.3652.3482.3162.2992.2662.2472. 2192. 1772.1682. 1582. 1282. 1042.0942.0772.0602.0392.0332. 0081.9971.9801.9581. 9461. 9221.9141. 8871. 8731. 8371.7681.7181.6881.6571.6441.6361.6291.6201.59322 124940381416251825194427171913\ 37/21402157814777101591646151413
<strong>Powder</strong> data cards. None.Additional published patterns. Hull [1] 1921,Sekito [2] 1927, and Hofer and Peebles [3] 1947.NBS sample. The sample of cubic cobalt wasprepared at NBS by heating cobalt oxalate in astream of hydrogen at 800 °C for about 10 min.Spectographic analysis showed the followingmajor impurities: 0.1 to LO percent each of nickeland antimony; and 0.01 to 0.1 percent each ofaluminum and iron.The sample was a dark grey opaque powder.The d-values of the three strongest lines are2.0467, 1.7723, and 1.0688 A.Structural data. Hull [1] in 1921 determinedthat the cubic form of cobalt has the copperstructure, the space group OS—Fm3m (No. 225)and 4(Co) per unit cell. There also exists ahexagonal close-packed form of cobalt and theforms commonly occur together.hkl111200220311222dA2. 04671.77231.25321.06881.0233Internal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 °CCo X 1.7889 AAverage value of last fh^e lines/10041232911Cobalt, Co (cubic)aA3. 54493. 54463. 54463. 54483. 54483. 5447The lattice constant reported by Hull has beenrecalculated with a Mo wavelength of 0.711 JLThe lattice constant reported by Sekito could notbe converted because the wavelength used foriron radiation was not given.19211927194719501965Lattice constantsHull [!]___„.__. ___________Sekito [2]________-__ „____.__Hofer and Pebbles [3] . _Taylor and Floy d [4] _ _ _NationalBureau of <strong>Standard</strong>s,sample at 25 °C_ _ ____-__._A3.5463.5583.5463.54423. 5447The density of cubic cobalt calculated from theNBS lattice constant is 8.788 g/cm3 at 25 °C.ReferencesCobalt Diarsenide, CoAs 2 (monoclinic), revised[1] A. W. Hull, X-<strong>ray</strong> crystal analysis of thirteen commonmetals, Phys. Rev. 17, 571-587 (1921).[2] S. Sekito, On the lattice constants of metallic cobalt,Sci. Repts. Tohoku Imp. Univ. 16, 545-53 (1927).[3] L. J. E. Hofer and W. C. Pebbles, X-<strong>ray</strong> diffractionstudies of the action of carbon monoxide on cobaltthoria-kieselguhrcatalyst. I., J. Am. Chem. Soc. 09,2497-2500 (1947).[4] A. Taylor and R. W. Floyd, Precision measurementsof lattice parameters of non-cubic crystals, ActaCryst. 3, 285-289 (1950).<strong>Powder</strong> data card. The following pattern isthe same pattern shown on No. 11-115 preparedin 1960 by NBS*; however, it has been reindexedusing recent data from the literature.Additional published pattern. Quesnel andHeyding [1] 1962.NBS sample. Minor corrections and additionswere made to the original patterns.Structural data* Quesnel and Heyding [1] in1962 reported that cobalt diarsenide was isostructuralwith rhodium diphosphide, with thespace group Cih—1%/c (No. 14) and 4(CoAs2) perunit cell. However, the unit cell measurementsreported by Quesnel and Heyding are not in closeagreement with the indexing reported by them.Lattice constantsabc019621965Quesnel and Heyding [1]_ _____________________National Bureau of <strong>Standard</strong>s, sample at 25 °C _ ___ _A5.8535.916A5. 8055. 872A5.8855.960114°11'116°27'The density of cobalt diarsenide calculated from the NBS lattice constants is 7.480 g/cm3 at 25 °C.*NBS Circular 639, 10, 26 (1961).10
hklTil020111002200T21012210212221102022220222T13511213T31013131T23321513032230Internal <strong>Standard</strong> W,a=3.1648 A; temp. 25 °CCo X L7889 1dA3.8262.9362.7582. 6662.6482.5362.4292.4132.3192.0832.0451.9741. 9661.9131.8701.8561.8291.8251.7021.6581. 63701. 62741. 61761. 57771. 5744hkl/8202112321802347204444020401006052352T4126 332, 3144 004, 1233216644004221001428242281623
Cobalt Silicate, CoSiO4 (orthorhombic)—ContinuedhklInternal <strong>Standard</strong> W.a = 3. 1648 A; temp. 25 ^CCo X 1.7889 Ad'hklInternal <strong>Standard</strong> W,a = 3.1648 1; temp. 25 °CCo.X 1.7889 AdI020Oil120101111A5.1514.3363.9103.7393.516111315678152400, 341260033071A1.5111.502L4921,4461.40751925
<strong>Powder</strong> data card. No. 1-1040, New JerseyZinc Co.Additional published pattern. Barth and Posnjak[1] 1934.NBS sample. The sample of cobalt titanate,obtained from Alfa Inorganics Inc., Beverly,Mass., was pressed into a pellet and heated 4 l/2 hrat 1,350 °C. Spectrographic analysis showed thefollowing major impurities: 0.01 to 0.1 percenteach of aluminum, calcium, copper, iron, nickel,and silicon.The color of the sample was dark green. Theindices of refraction could not be determined because the sample was too fine-grained.The d-values of the three strongest lines are2.727, 2.5340, and 1.7114A.Structural data. Barth and Posnjak [1] in 1934determined that cobalt titanate has_the ilmenitestructure, the space group C32i—R3 (No. 148)and 6(CoTiO 3 ) per unit hexagonal cell.The rhombohedral cell reported by Barth andPosnjak was converted to the equivalent hexagonal cell for comparison with the NBS values.19341965Lattice constantsBarth and Posnjak [!]____National Bureau of <strong>Standard</strong>s, sample at 25 °C_ _ -Cobalt Titanate, CoTiO 3 (trigonal)aA5.0545. 0683cA13. 98913. 9225hkl (hex)0121041100061132020241071160181222143002081-0-101192203061280-2-101342260422-1-104043180-1-143244100-0-15, 0481-3-10Internal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 CCo X 1.7889 AdA3. 7172. 7272. 53402. 32022. 22402. 09341. 85661. 81141.71141. 61781. 61401. 49741. 46281. 36361. 32721. 32031. 26721. 23791. 20071. 17561. 14881. 11241. 0840?. 06641. 04650. 9977. 9699. 9675.9578. 9283. 916573710073
Cobalt Tunggtate, CoWO4 (monoclinic)—ContinuedLattice constantsabc01929Broch[l]__ ____________________A4.93A5.68A4.6690.0°1965National Bureau of <strong>Standard</strong>s,sample at 25 °C__ __4. 94785. 68274. 669490.0°The density of cobalt timgstate calculated fromthe NBS lattice constants is 7.760 g/cm 3 at 25 °C.hkl(ortho.)010001110Oil111020200120021002210201121012211112030220022031221202122131212310003311032222113231320132140, 023Internal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 °CCo X 1.7889 AdA5.6834.6733.7333.6082.9162.8422.4732.4642.4282.3352.2692.1852.1802. 1602.0411.9791.8941.8661.8031.7551.7331.6981.6951.6541.6261.5831.5561.5001.4711.4571.4361.4321.4261.4101.365hkl(ortho.)I123312, 1412132328400283132229033,331100401142104112022 004642010114313
Dysprosium Vanadate, DyVO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of dysprosiumvanadate was prepared at NBS by adding hotsodium orthovanadate solution to a hot acidicsolution of dysprosium chloride. After the samplewas dried at 110 °C for 1 hr, it was heated for 20min at 700 °C to improve the crystallinity.Spectrographic analysis showed the followingimpurities: 0.1 to 1.0 percent iron; 0.01 to 0.1percent each of aluminum, calcium, and silicon;and 0.001 to 0.01 percent each of copper, manganese, and antimony. Rare-earth impuritieswere less than 0.1 percent of total rare-earthcontent.The color of the sample was brown. Theindices of refraction could not be determinedbecause the sample was too fine-grained.The d-values of the three strongest lines are3.571, 2.675, and 1.837 A.Structural data. Milligan, Watt, andRachford [1] in 1949 determined that dysprosiumvanadate has the zircon structure, the spacegroup D£—l4!/amd (No. 141) and 4(DyVO4) perunit cell.19491965Lattice constantsMilligan, Watt, andRachford [!]_.___ _.National Bureau of<strong>Standard</strong>s, sampleat 25 °C- .__-_____aA7.097. 1434± 0. 0004cA6.276.313±0.001hkl101200211112220202301103321312400213411420004332204501413512440600404503532620424, 523305116640444, 543552Internal <strong>Standard</strong> W,a = 3. 1648 A; temp. 25 CCu X 1.5405 AdA4.7283.5712.8512.6752.5252.3632.2272.0181.8901.8371.7861.7581.6711.5971.5791.48561.44351.39371.33771.28051.26271. 19041.18301. 18211 14201. 12961. 12251. 11581.02970. 9909.9858.9622/3610012652371212125813651461211799788795735446The density of dysprosium vanadate calculatedfrom the NBS lattice constants is 5.720 g/cm3at 25 °C.Reference[1] W. O. Milligan, L. M. Watt, and H. H. Rachford,X-<strong>ray</strong> diffraction studies on heavy metal orthovanadates,J. Phys. Chem. 53, 227-234 (1949).15
Europium (III) Vanadate, EuVO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of europium (III)vanadate was prepared at NBS by adding a hotsolution of sodium orthovanadate to a hot acidicsolution of europium chloride. After the samplewas dried at 110° C for 1 hr., it was heated for 10min at 700° C to improve the crystallinity.Spectrographic analysis showed the followingmajor nonrare-earth impurities: 0.1 to 1.0 percentsilicon; 0.01 to 0.1 percent each of aluminum andmagnesium; and 0.001 to 0.01 percent each ofcadmium, iron, and antimony. Rare-earth impurities were less than 0.2 percent of total rareearthcontent.The sample was colorless. The indices ofrefraction could not be determined because thesample was too fine-grained.The d-values of the three strongest lines are3.619, 2.703, and 1.858 A.Structural data. Milligan, Watt, and Rachford[1] in 1949 determined that europium(III)vanadate has the zircon structure, the space groupDIE—IVamd (No. 141) and 4(EuVO4) per unitcell.19491965Lattice constantsMilligan, Watt, andRachford [1]. ______National Bureau of<strong>Standard</strong>s, sampleat 25 °C_._. ._._.__aA7.197. 2365± 0. 0002cA6.336. 3675± 0. 0003hkl101200211112220202301103321312400213411420303332204501224512440600404215611532620523, 424325116640552316604624732820516, 653Internal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 CCu X 1.5405 Ad14.7793.6192.8842.7032.5592.3902.2562.0371.9141.8581.8101. 77521. 69231.61791.59301. 50341.45701.41121.35151. 29631. 27941. 20621. 19531. 18541. 16961. 15651. 14441. 13491.07531.03901.00340. 9742.9626.9613.9291.9104.8774.8496/301001265218171111491856115141141010445436264445865427The density rty of europium --, (III) ^ - vanadate calculatedLted from the ~ NBS ~ lattice constants is 5.316g/cm 3 at 25 °C.Reference[1] W. O. Milligan, L. M. Watt, and H. H Rachford,X-<strong>ray</strong> diffraction studies on heavy metal orthovanadates,J. Phys. Chem. 53, 227-234 (1949).16
<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of gadolinium arsenatewas prepared at NBS from a water solutionof gadolinium trichloride and arsenic pentoxideand heated for 30 min at 900 °C. Spectrographicanalysis showed the following major nonrareearthimpurities: 0.01 to 0.1 percent each ofaluminum and antimony, and 0.001 to 0.01 percent each of iron, magnesium, lead, silicon, andtitanium. Rare-earth impurities were less than0.1 percent of total rare-earth content.The sample is colorless. The indices of refraction could not be determined because the samplewas too fine-grained.The d-values of the three strongest lines are3.566, 2.689, and 1.8395 A.Structural data. Durif and Forrat [1] in 1957determined that gadolinium arsenate has thezircon structure with the space group T>\1—(No. 141) and 4(GdAsO4) per unit cell.19571965Lattice constantsDurif and Forrat [!]___National Bureau of<strong>Standard</strong>s, sampleat 25° C. __________Gadolinium Arsenate, GdAsO4 (tetragonal)aA7.147. 1326± 0. 0002cA6.346. 3578± 0. 0003hkl101200112220202301103321312400420332204501224512440600404532424116640444712316624Internal <strong>Standard</strong> W,o = 3.1648 A; temp. 25 °CCo X 1.78891dA4.7473.5662.6892.5222.3742.2282.0321.8881. 83951. 78321.59481.48591.45171.39151.34441.28051.26081. 18901. 18661.14191. 12581.03670.9891.9876.9614.9591.919671010064204665461310119
Holmium Vanadate, HoVO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of holmium vanadatewas precipitated at NBS by adding hotsodium orthovanadate solution to a hot acidicsolution of holmium chloride. The sample wasfirst dried at 110 °C for 1 hr. To improve thecrystallinity, the sample was heated at 600 °C for2 hr. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent eachof iron and silicon, and 0.001 to 0.01 percent eachof silver, aluminum, calcium, copper, magnesium,and antimony. Rare-earth impurities were lessthan 0.1 percent of total rare-earth content.The color of the sample was dark brown. Theindices of refraction could not be determined because the sample was too fine.The rf-valves of the three strongest lines are3.564, 2.668, and 1.8311 A.Structural data. Milligan and Vernon [1] in1952 determined that holmium vanadate has thezircon structure, the space group DJS—(No. 141) and 4(HoVO4 ) per unit cell.19521965Lattice constantsMilligan and Vernon[1]National Bureau of<strong>Standard</strong>s, sampleat 25 °C-_--------aA7.067. 1214±0.0002cA6.256. 2926±0. 0005The density of holmium vanadate calculatedfrom the NBS lattice constants is 5.825 g/cm3 at25 °C.Reference[1] W. O. Milligan and L. W. Vernon, Crystal structure ofheavy metal orthovanadates, J. Phys. Chem. 56,145-148 (1952).hki101200211112220202301103321312400213411420004, 303332204, 323501413314512440600503215442611532620523325631116613640444, 543712316633, 604703732Internal <strong>Standard</strong> W,a=3.1648 A; temp. 25 CCu X 1.5405 1dA4.7163.5642.8412.6682.5172.3582. 2212. 01111.88411. 83111, 78071. 75111. 66591. 59261. 57221. 48091. 43851. 38881. 33341. 28991. 27651. 25901. 18701. 17831, 17091, 16941. 15111. 13851. 12591. 11881. 06091. 04701. 02611. 02230. 9874.9826.9592.9508.9473. 9153.8964/2710076618615995115321051393101924512163112
<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of iridium dioxidewas obtained from K&K Laboratories Inc.,Jamaica, N.Y. It was heated in an evacuatedsealed Vycor tube for 6 hrs at 900 °C. Spectrographicanalysis showed the following majorimpurities: 0.01 to 0.1 percent each of sodium,lead, and platinum.The sample was a black opaque powder.The d-values of the three strongest lines are3.178, 2.582, and 1.6960 A.Structural data. Goldschmidt [1] in 1926 determined that iridium dioxide has the rutilestructure, the space group D^t—P42/mnm (No.136), and 2(IrO2 ) per unit cell.19261965Lattice constantsGoldschmidt [!]_________National Bureau of<strong>Standard</strong>s, sample at25 °C_--------_--~---Indium Dioxide, IrO 2 (tetragonal)aA4. 504. 4983cA3. 153. 1544The density of iridium dioxide calculated fromthe NBS lattice constants is 11.665 g/cm3 at 25 °C.Reference[1] V. M. Goldschmidt, Crystal structure of the rutiletype with remarks on the geochemistry of thebivalent and quadrivalent elements, Skrifter NorskeVidenskaps-Akad. Oslo I: Mat. Naturv. Kl. No. 1(1926)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of lead boron oxidewas prepared at NBS from lead oxide and boricacid. It was heated at temperatures below themelting point (768 °C), ground, and then alternately reheated and reground several times.Spectrographic analysis showed the followingmajor impurities: 0.01 to 0.1 percent silicon and0.001 to 0.01 percent each of aluminum, iron,magnesium, and nickel.hkl110101200210211220002310112301202321400222330312411103420213402510332501303422521323440004Lead Boron Oxide, PbB4O7 (orthorhombic)Lattice constantsInternal <strong>Standard</strong> Ag,o = 4.0861 A; temp. 25 CCu X 1.5405 1d3. 1782. 5822. 24882. 01191. 69601. 59031. 57711. 42271. 41331. 35421. 29141. 16041. 12471. 11991. 06021. 05631. 03101. 02401. 00580. 9318.9157.8822. 8799. 8652. 8609.8480.8075. 8040. 7953. 7886I1009226
Lead Boron Oxide, PbB4O7 (orthorhombic)—ContinuedThe density of lead boron oxide calculated fromthe NBS lattice constants is 5.872 g/cm3 at 25 °C.Reference[1] S. Block, A. Perloff, and C. E. Weir, The crystallography of some M+2 borates, Acta Cryst. 17. 314(1964).hkl020100110on12010111113003104012113114020021000222014102220]150211051102230112221060, 122151231240132042241142161202212300222170251071152320232013, 301311171062Internal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 CCu X 1.5405 AdA5.4234.4564. 1223. 9523.4423. 0722. 9552. 8062. 7522. 7092. 6732. 3412. 3152. 2292. 1822. 1212. 0612. 0331. 9761.9721. 9491. 9411. 9311. 9161. 8961. 8871. 8541. 8071. 7721. 73171. 72111. 69291. 67091. 59501. 56421. 55751. 53661, 52151. 48521. 47821. 46251. 45921. 45511. 43571. 4322L41351. 40241. 39021. 38261. 3751hkl773321100807410380 24242615203321123573406227022252100 34151811335020 271831218143141725320326322, 21321053173512126219223
Lithium Phosphate, low form (lithiophosphate), Li 3PO4 (orthorhombic) revisedThis compound was described in earlier work [1]from this laboratory. Recently the structure ofthe low form was determined by Keffer, Mighell,Mauer, Swanson, and Block [2], The followingpattern is intended to replace the earlier one inMonograph 25, Sections.<strong>Powder</strong> data card. No. 12-230, Fisher [3]1958.Additional published patterns. Matias andBondareva [4] 1957 and National Bureau of<strong>Standard</strong>s [1] 1964.NBS sample. The sample of lithium phosphatewas obtained from the City Chemical Co., NewYork, N.Y. Spectrographic analj3is showed thefollowing major impurities: 0.1 to 1.0 percentcalcium; 0.01 to 0.1 percent each of aluminum,sodium, and strontium; and 0.001 to 0.01 percenteach of barium, iron, magnesium, and silicon.The sample was colorless. Two indices ofrefraction are Na=1.550 and N7 —1.538. It isoptically negative with a large 2V. N0 could notbe determined because of the crystal shape.The d-values of the three strongest lines are3.973, 3.797, and 2.640 LStructural data. Keffer, Swanson, Mighell,Mauer, and Block [2] in 1964 determined thatlow form lithium phosphate has the space groupC 27v-Pmn2, (No. 31) and 2(Li3PO4 ) per unit cell.References[1] H. E. Swanson, M. C. Morris, E. H. Evans, and L.Ulmer, <strong>Standard</strong> X-<strong>ray</strong> <strong>Diffraction</strong> <strong>Powder</strong> <strong>Patterns</strong>,NBS Mono. 25, Sec. 3, 38 (1964).[2] C. Keffer, A. Mighell, F. Mauer, H. Swanson, andS. Block, The crystal structure of low temperaturelithium phosphate (to be published in Inorg. Chem.).13] D. J. Fisher, Note on lithiophosphate, Am. Mineralogist 43, 761-2 (1958).[4] V. V. Matias and A. M. Bondareva, Lithiophosphate,a new mineral, Dokl. Akad. NaukSSSR 112, 124-6(1957); an English abstract exists in Am. Mineralogist 42, 585 (1957).[5] F. Zambonini and F. Laves, tlber die Kristallstrukturdes Li 3PO 4 und seine Beziehung Zum Strukturtyp desOlivin, Z. Krist. 83, 2fr-28 (1932).hkl010110101Oil111200210020002211021012121112310, 202301221212311122130031320131103013400230113410411213123420040402232331303412223240510501241422430323340Internal <strong>Standard</strong> Ag,a = 4.0861 1; temp. 25 CCu X 1.5405 JLdA5.2323.9733.7973.5543.0713.0592.6402.6162.4232.3182.3032. 1992. 1552.0701. 8991.8791. 8391.7851.7691. 70741. 67771. 64151.60831.58551. 56161. 54311. 52871. 51521. 49591. 46751. 40431, 3776L 34091. 3203L 30781. 29311. 28481. 27881. 26561. 25501. 25331. 20271. 1909L 18601. 16761. 15911. 14981. 13941. 1014/341009856} 26643647L l
Lattice Constants19321965Zambonini and Laves [5] ______National Bureau of <strong>Standard</strong>s,sample at 25 °C.__________.___aA6.086. 1155± 0. 00046A10. 285. 2340±0. 0005cA4874.8452±0.0005The density of lithium phosphate, low form, calculated from the NBS lattice constants is 2.479g/cm3 at 25 °C.Lithium Sulfate Monohydrate, Li 2SO4 • H 2O (monoclinic)<strong>Powder</strong> data card. No. 1-0425, Hanawalt,Rinn, and Frevel [1] 1938.Additional published patterns. None.NBS sample. The sample of lithium sulfatemonohydrate was prepared at NBS from lithiummetal and sulfuric acid, using enough heat to fumeoff the excess acid. Spectrographic analysisshowed the following major impurities: 0.01 to0.1 percent each of silver, calcium, sodium, andtungsten; and 0.001 to 0.01 percent each of aluminum, barium, iron, potassium, magnesium, silicon,and strontium.The sample was colorless and optically negative.The indices of refraction are N a =1.460, N^=1.477, and N T = 1.487; 2V is large.The d-values of the three strongest lines are5.084, 4.133, and 3.559 A.Structural data. Ziegler [2] in 1934 determinedthat lithium sulfate monohydrate has the spacegroup CJ—P2 X (No. 4) with 2(Li2SO4 -H2O) perunit cell.Lattice Constantsa6cft1934195219541965Ziegler [2]_ ________________________________Bechmann [3]____._ __ _ ____Larson and Helmholz [4]_ . .__-______ _ _ _ _ _ _National Bureau of <strong>Standard</strong>s, sample at 25 °C_A5.445.455.4305. 4518± 0. 0005A4.844.874. 8364. 8707± 0. 0004A8. 168. 188. 1408. 175± 0. 001107°35'107° 18'107° 14'107° 19. 8'±0.4'The density of lithium sulfate monohydratecalculated from the NBS lattice constants is 1.939g/cm3 at 25° C.References[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-<strong>ray</strong> diffraction, Anal. Chem. 10,457-512 (1938).[2] G. E. Ziegler, The crystal structure of lithium sulphatemonohydrate, Li3SO4'H 2O, Z. Krist. 89, 456-459(1934).[3] R. Bechmann, Elastic and piezoelectric coefficients oflithium sulphate monohydrate, Proc. Phys. Soc.65B, 375-77 (1952).[4] A. C. Larson and L. Helmholz, Redetermination of thecrystal structure of lithium sulfate monohydrate,Li2SO4-H 2O, J. Chem. Phys. 22, 2049-2050 (1954).22
Lithium Sulfate Monohydrate, LhSO4 -• H,O (monoclinic)—ContinuedhklInternal <strong>Standard</strong> W,0=3.1648 A; temp. 25 °CCu X 1.5405 AhklInternal <strong>Standard</strong> W,a=3.1648 A; temp. 25 °CCu X 1.5405 Ad7d7001100-T01Oil002101T02110Til012111T12102501T03200, 003502020112511T13021210, 013201512120121, 503103211121104122513004113202504122A7. 825.2055.0844. 1333.9043. 8373.6963.5593.5203.0493.0142.9442.7522. 7242.6662.6032.5432.4352.3962.3772.3392.3242. 2952.2742.2542.2072. 1972.0912.0612.0562.0362.0322.0011.9501.9211.9171. 8471. 8251131100953586349236185219521666341061541978I u|2108I 6j52I 12j43511301, 014T23, 302212220, 023522300514104221310523203513301031114005T15, 130304213311032T32, 015514321302320132531T33305204, 312532T06501A1.8151. 8111.7971.7841.7781.7591.73441, 72721. 67011. 66171. 63421. 63101. 61501.60061. 59611. 58931. 58001. 56131. 54961. 54511. 53311. 51671. 49921.48601. 47231. 45371. 43431. 41291.39831. 39461.38661.38321. 37651.36861. 36091. 3505}551 2j
Magnesium Aluminum Silicate (pyrope), (cubic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of pyrope wasobtained from Dr. F. R. Boyd [5] at the Geophysical Laboratory, Carnegie Institute, Washington, D.C. The sample was prepared frommagnesium silicate and aluminum silicate glassesat 40 kilobars of pressure and at 1,400 C for1 hr. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent eachof bismuth and iron; and 0.01 to 0.1 percenteach of calcium, nickel, titanium and vanadium.The sample was colorless. The index ofrefraction is 1.702.The d-values of the three strongest lines are2.562,2.865, and 1.5312 1.Structural data. Menzer [1] in 1926 determined that pyrope was an end-member of thegarnet group, having the space group Oi°—Ia3d(No. 230) with 8[Mg3Al2 (SiO4)3] per unit cell.The density of pyrope calculated from the NBSlattice constant is 3.563 g/cm 3 at 25 °C.hklInternal <strong>Standard</strong> Ag,a=4.0861 A; temp. 25 CCu X 1.5405 AhklInternal <strong>Standard</strong> Ag,a=4.0861 A; temp. 25 °CCu X 1.5405 Ad7ad7a21122032140042033242243152144061162054163144454364072164273280074182065382283175284084292166485184494110-M10-2-0943A4. 6774. 0533.0632.8652. 5622.4432.3392.2472.0922. 02561. 85881. 81201. 76781. 68941. 65401. 62051. 58901. 55941. 53121. 45511. 43201. 41021. 38971. 36961. 35061. 33231. 29761. 28111. 25031. 23551. 22161. 20791. 16931. 15751. 13431. 12351. 112884861100402227138167111213225229434123109563
Magnesium Aluminum Silcate (pyrope), Mg^Ah (SiO4) 3 (cubic)—Continued192619271937195619591965Lattice constantsMenzer (natural) • [!]„__-_____Stockwellb [2] _Fleischerb [3]___ „,,_,______Skinner [5] _.___. ._ ._ ___Boy d and England [6]- __ _National Bureau of <strong>Standard</strong>s,sample at 25 °C_-- -. _ _-_* Natural pyrope contains iron.b Extrapolated from natural garnets.A11. 5311. 45311. 46311. 45911.45611.455 .References[1] G. Menzer, Die Gitterkonstanten der Granate, Centr.Mineral. Geol. A and B, 343-344 (1926).[2] C. H. Stockwell, An x-<strong>ray</strong> study of the garnet group,Am. Mineralogist 12, 327-344 (1927).[3] M. H. Fleischer, The relation between chemical composition and physical properties in the garnet group,Am. Mineralogist 22, 751-759 (1937).[4] B. J. Skinner, Physical properties of end-members ofthe garnet group, Am. Mineralogist 41, 428-436(1956).[5] F. R. Boyd and J. L, England, Experimentation athigh pressures and temperatures, Pyrope, Ann. Kept.Director Geophys. Lab. No. 1320, 82-87 (1958-1959).Magnesium Boron Oxide, Mg2B2O 5 (triclinic)<strong>Powder</strong> data cards. No. 3-4)841, Dow ChemicalCo., Midland, Mich. This card is calledmagnesium metaborate, MgO-B 2O3 ; however, thedata is comparable to ours. Two other cards,Nos. 10-327 and 11^27, by Takeuchi [1] 1952 givepatterns for a monoclinic and the triclinic form.Additional published patterns. None.NBS sample. The sample of magnesium boronoxide was prepared at NBS by C. E. Weir from aslurry of magnesium carbonate and boric acid inwater. The sample was alternately fired andground several times reaching a maximumtemperature of 1,150 °C. Spectrographic analysisshowed the following major impurities: 0.001 to0.01 percent each of barium, beryllium, calcium,iron, silicon, and strontium.The sample was colorless. The indices of refraction could not be determined because thesample was too fine-grained.The rf-values of the three strongest lines are2.579, 2.536, and 2.009 A.Structural data. Block, Burley, Perloff andMason [2] in 1959 determined that magnesiumboron oxide is isomorphous with cobalt boronoxide having the space group C*—Pi (No. 2)with 2(Mg2B2O 5 ) per unit cell.The density of magnesium boron oxide calculated from NBS lattice constants is 2.910 g/cm3 at25 °C.Lattice constantsabcaft7195219591965TakSuchi [!]____________.______________Block, Burley, Perloff & Mason [2] „.____National Bureau of <strong>Standard</strong>s, sample at25 °CLA5. 936. 1876. 155± 0. 001A9. 039. 2199.220± 0. 002A3. 123. 1193. 122± 0. 00190° 54'90°24'90°28'±1'90° 0'92° 08'92° 09'±1'103° 54'104°19'104°25'±1'25
Magnesium Boron Oxide, Mg2B2O5 (triclinic)—Continuedhkl010100110, 020T20120001210200, 030, T30Oil520101111210021021111130, 230T40040031T31031201221510, 240520211151131521150, T412215413213012313T1T3l, 3205311413T1240, 1501151002, 311051, T60310, 320551T12, 341231330, 060331Internal <strong>Standard</strong> W,a=3.16481; temp. 25 °CCu X 1.54051dAa 945.96447340993.211a 1213.0652.9792.9282. 8242.7172. 7002.6352.5792.5362.5132.4312. 2872.2322. 1732. 1552. 1342. Ill2. 0662.0502.0091. 9731.9481. 8881. 8501. 8421.7831. 7211. 7171.7071.7041.6831.6671.6401.6241.6161.6041.5891.5581.5371. 5321.5191.5141.5121.4891.486/61044149942634632214100548766222042747^l302511168ii »1131610424410101 121 «>References[1] Y. Takguchi, The crystal structure of magnesiumpyroborate, Acta Cryst. 5, 574-581 (1952).[2] S. Block, G. Burley, A. Perloff, and R. Mason, Refinement of the crystal structure of triclinic magnesium pyroborate, J. Res. NBS 62, No. 3, (1959)RP2936.26
Metabolic Acid, HBO 2 (cubic)<strong>Powder</strong> data cards. None. Nos. 1-0409 and9-15 are for other modifications of metabolic acid.Additional published patterns. None.NBS sample. The sample of cubic metabolicacid was prepared at NBS by Kilday and Prosen[1] 1964 by holding orthoboric acid in a vacuumwith orthorhombic metaboric acid followed byheating at 180 °C. Spectrographic analysis ofthe starting materials showed no impurity greaterthan 0.001 percent.The sample was colorless. The refractive indexis 1.616.The d-values of the three strongest lines are4.442, 1.939, and 3.627 A.Structural data. Zachariasen [2] in 1963 determined that_cubic metaboric acid has the spacegroup TJ—P43n (No. 218) with 24(HBO2 ) perunit cell. Three other forms of metaboric acidhave been reported in the literature: a monoclinic,an orthorhombic, and a tetragonal.hklInternal <strong>Standard</strong> W,a= 3.1648 A; temp. 25 °CCu X 1.5405 AhklInternal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 °CCu X 1.5405 A110200210211220310222320321400410411420421332422500510520521440530531600611620621541622630631444700710720721731650732800dA6.28044423.9733.6273. 1402. 8092.5652.4642.3742.2212. 1552.0941.9861.9391.8941. 81341. 77681. 74241. 64961. 62151. 57081. 52321. 50161. 48051.44111. 40441. 38771. 37141. 33951. 32451. 31031. 28241. 26931. 25671. 22051. 20901. 15671. 13741. 1283L 1106/a42264322083669317525352136266421114541417513347100435026A8.8818.8848.8848.8848.8818.8838.8858.8848.8838.8848.8858.8848.8828.8868.8848.8848.8848.8828.8838.8818.8868. 8828. 8848.8838.8848.8828.8868.8888.8858.8858.8878. 8858.8858.8868.8858.8848.8858.8838. 8848.88581081182082165382283083175166283275284090091091192092192293093185293284494110-1-010-1-110-2-010- 2- 195095110-2-210-3-0dA1. 10221. 0937L 07741. 06951. 06201. 04721. 03971. 03261. 02601. 01901. 01241. 00580. 9934.9875.9811.9753.9639.9581.9418.9366.9313.9212.9164.9064.8976.8842.8799.8712.8670.8630.8590,8549.8510Average value of last five lines/444744544311112315212221121222321aA8.8868.8858.8848.8848.8858.8858.8838.8838.8858. 8838.8848.8838.8858.8888.8848.8858.8878.8858.8858.8858.8848.8848.8858.8868.8868.8868.8878.8848.8848.8858.8868.8848.8858.88527
Metaboric Acid, HBO 2 (cubic)—Continued19631965Lattice constantsZachariasen [2]. _ _ ______ __National Bureau of <strong>Standard</strong>s,sample at 25° C____ ___A8.8868.885References[1] M. V. Kilday and E. J. Prosen, Heats of solution,transition, and formation of three crystalline formsof metaboric acid, J. Res. NBS68A (Phys. and Chem.)No. 1,127-137 (1964).[2] W. H. Zachariasen, The crystal structure of cubicmetaboric acid, Acta Cryst. 16, 380-384 (1963).The density of cubic metaboric acid calculatedfrom the NBS lattice constant is 2.489 g/cm3at 25 °C.Neodymium Arsenate, NdAsO4 (monoclinic)<strong>Powder</strong> data cards. None.Additional published patterns* None.NBS sample. The sample of neodymiumarsenate was precipitated at NBS from a watersolution of arsenic pentoxide and neodymiumtrichloride. It was heated 1 hr at 930 °C.Spectrographic analysis showed the followingmajor nonrare-earth impurities: 0.01 to 0.1 percent antimony and 0.001 to 0.01 percent each ofaluminum, calcium, iron, lead, and silicon. Rareearthimpurities were less than 0.1 percent of totalrare-earth content.The sample was colorless. The indices ofrefraction could not be determined because thesample was too fine-grained.The rf-values of the three strongest lines are3.129, 2.941, and 3.331 A.Structural data. Schwarz [1] in 1963 determinedthat neodymium arsenate has the huttonite structure, the space group CSn—P2i/n (No. 14), and4(NdAsO4 ) per unit cell.Lattice constantsabc01965 National Bureau of <strong>Standard</strong>s, sample at 25 °C__A6. 897±0.001A7.094± 0. 001A6. 6849± 0. 0007104° 54 0'±0.7'The density of neodymium arsenate calculatedfrom the NBS lattice constants is 5.950 g/cm3at 25 °C.Reference[1] H. Schwarz, Uber die Chromate (V) der SeltenenErden, III Neodymchromat (V), NdCrO4, Z. Anorg.Allgem. Chem. 332, 129 (1963).28
Neodymium Arsenate, NdAsO 4 (monoclinic)—Continuedkkl101110OilTil101111020200002120210,511112012121, 502211,212112220, 521T22501130103, 031511221, 522113, 310131512212301230, 231T32320, 311Internal <strong>Standard</strong> Ag,a=4.0861 A; temp. 25 °CCu X 1.5405 AdA5.3784. 860477442874 1373. 5733.5463.3313.2273. 1293.0172.9582.9412.6912.5162.4842.4282.3972.2892.2302.2212.1802. 1452. 1202.0532. 0131.9861.9521.9281. 9131. 882hkl/50231052211040114 1321408400, 10214504, 11457 410, 1127004100312, 52321213, 514340146853224240, 24117T42, 23214 12465322542, 223
Neodymium Vanadate, NdVO4 (tetragonal)<strong>Powder</strong> data card. No. 6-0217, Milligan, Watt,and Rachford [1] 1949.Additional published patterns. None.NBS sample. The sample of nepdymiumvanadate was prepared at NBS by adding a hotsolution of sodium orthovanadate to a hot acidicsolution of neodymium chloride. After the samplewas dried at 110 °C for 1 hr, it was heated for20 min at 700 °C to improve the crystallinity.Spectrographic analysis showed the followingmajor impurities: 0.1 to 1.0 percent silicon and0.001 to 0.01 percent each of aluminum, calcium,copper, and magnesium. Rare-earth impuritieswere less than 0.1 percent of total rare-earthcontent.The color of the sample was pale blue. Theindices of refraction could not be determined because the sample was too fine-grained.The rf-values of the three strongest lines are3.664,2.732, and 1.881 AStructural data. Milligan, Watt, and Rachford[1] in 1949 determined that neodymium vanadate has the zircon structure, the space groupDJJ—IVamd (No. 141) and 4(NdVO4) per unitcell.19491965Lattice constantsMilligan, Watt, andRachford [1]_ ______National Bureau of<strong>Standard</strong>s, sampleat 25 °C__ _________aA7.317.3290±0. 0003cA6.426,4356±0.0006The density of neodymium vanadate calculatedfrom the NBS lattice constants is 4.979 g/cm3at 25 °C.Reference[1] W. O. Milligan, L. M. Watt and H. H. Rachford,X-<strong>ray</strong> diffraction studies on heavy metal orthovanadates,J. Phys. Chem. 53, 227-234 (1949).hkl101200211112220202301103321312400213411420303004332204501224512440600404215611532-620424325613, 116640543, 444552633, 316624732723, 336660653, 516Internal <strong>Standard</strong> W,a=3.1648 A; temp. 25 CCu X 1.5405 AdA4.8353.6642.9212.7322.5902.4192.2842.0591.9381.8811. 83251. 79511. 71311. 63911. 61221. 60861. 52191. 47331. 42931. 36701. 31211. 29541. 22141, 20861. 19771. 18401. 17041. 15841. 14811. 08741.05041. 01631. 00d40. 9867.9734.9404.9220.9113.8637.8596/3110011731951610125716521336161361212556531051026445663239Potassium Acid Phthalate, C6H4(COOH)(COOK) (orthorhombic)<strong>Powder</strong> data card. No. 1-0020, Hanawalt,Rinn, and Frevel [1] 1938.Additional published patterns. None.NBS sample. The sample of potassium acid30phthalate was obtained from J. T. Baker ChemicalCo., Phillipsburg, N.J. Spectrographic analysisshowed the following major impurities: 0.001 to0.01 percent each of aluminum, sodium, andrubidium.
Potassium Acid Phthalate, C6H4(COOH)(COOK) (orthorhombic)—ContinuedLattice constantsa6c195719631965Okaya and Pepinsky [2]. -_-_-__-_---_---Bearden and Huffman [3] _ ___ _ _ _National Bureau of <strong>Standard</strong>s, sample at25°C_ — — — — — — — — — — --A9.619.629.607A13.2613. 316413. 312A6.476.476.475The sample is colorless and optically negative.The refractive indices areN«=1.500, N0-1.653, NT=1.660, 2V^10°.The d-values of the three strongest lines are13.32, 4.982, and 4.030 A.Structural data. Okaya and Pepinsky [2] in1957 reported that potassium acid phthalate hasthe space group* Dl—P2 122l (No. 18) with4[C6H4 (COOH)(COOK)] per unit cell.The density of potassium acid phthalate calculated from the NBS lattice constants is 1.638g/cm3 at 25 °C.References[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-<strong>ray</strong> diffraction, Anal. Chem. 10,457-512 (1938).[2] Y. Okaya and R. Pepinsky, The crystal structure ofammonium acid phthalate, Acta Cryst. 10, 324-328(1957).[3] A. J. Bearden and F. N. Huffman, Precision measurement of the cleavage plane grating spacing of potassium acid phthalate, Rev. Sci. Instr. 34, No. 11.1233-1234 (1963).[4] Y. Okaya, The crystal structure of potassium acidphthalate, KC6H4COOH-COOK, Acta Cryst. 19,879 (1965).*Okaya [4] in 1966 reported that the revised space group is C**v-Pca2, (No.29).hkl010110020111200030121130220211131221002012, 140112231, 022320141122202050321, 212032150132, 241222331151142411,060251160242161152203351440261133, 070, 510170, 441062233162171Internal <strong>Standard</strong> Ag,o=4.0861 A; temp. 25 °CCu X 1.5405 AdA13.327.806.6514.9824. 8024.4384. 1794.0303.8943.7053.4233.3383.2403. 1452.9902.9122.8862.8302. 7872.6842.6632.6322.6152.5662.5222.4882.4102.3862.2572.2192. 1912. 1612.0902.0502.0101.9691.9531.9461.9241.9021.8661.8291.8001.7971.792/10021364
Praseodymium Arsenate, PrAsO4 (monoclinic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of praseodymiumarsenate was precipitated at NBS from a watersolution of arsenic pentoxide and praseodymiumtrichloride* It was dried at 110 °C. Spectrographicanalysis showed the following majorimpurities: 0.01 to 0.1 percent antimony and0.001 to 0.01 percent each of calcium, iron, magnesium, lead, and silicon. Rare-earth impuritieswere less than 0.1 percent of total rare-earthcontent.The color of the sample was light green. Theindices of refraction could not be determinedbecause the sample was too fine-grained.The d-values of the three strongest lines are3.141, 2.953, and 3.349 A.Structural data. Schwarz [1] in 1963 reportedthat praseodymium arsenate is isostructural withhuttonite with the space group C26h—P2j/n (No.14) and 4(PrAsO4 ) per unit cell.The density of praseodymium arsenate calculated from the NBS lattice constants is 5.804g/cm3 at 25 °C.hklT01110OilTil101111020200002120210, 511112012202512112220, 521122301103, 031Internal <strong>Standard</strong> Ag,a=4.0861 1; temp. 25 °CCu X 1.5405 Ad.A5.4044 87847994.3044 1583.5913.5603.3493.2463.1413.0312.9672.9532.7012.5252.4972.4402.4052.2992.231/5121112581960810024408229221688423hkl311222, 221122T13, 310131312212301230, 531103, T32311, T23, 320023322303222523231040132140311?02410T33, 330004312014532240, 241142T24422322223, 241314431143, 340303124, T51T34342332ReferenceInternal <strong>Standard</strong> Ag,a =4.0861 A; temp. 25 CCu X 1.5405 AdA2. 1882. 1552. 1342. 1302.0612.0211.9971.9621.9351.9201. 8921. 8481. 8141. 8021.7971. 7931.7851. 77941. 77261. 72021. 68281. 67291. 63001. 62651. 62311. 61011. 58231. 57611. 57221. 56321.51851. 51401. 49941. 48711. 47581. 39951. 39221. 38711. 37671. 37091. 36021. 35687109254639 41135186252234830 1321314161255892753855651110612[1] H. Schwarz, tJber die Chromate (V) der SeltenenErden, II. Praseodymchromat (V) PrCrO4, Z.Anorg. AUgem. Chem. 322, 15-24 (1963).32
Lattice constantsabc01965 National Bureau of <strong>Standard</strong>s, sample at 25 °C _>_____A6.929± 0. 001A7. 119± 0. 001A6.715±0.001104°48. 2'±0.6'Samarium Arsenate, SmAsO 4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of samarium arsenatewas prepared at NBS from a water solution ofsamarium trichloride and arsenic pentoxide. Thesample was heated to 900 °C for 20 hrs to sharpenthe pattern. Spectrographic analysis showed thefollowing major nonrare-earth impurities: 0.1 to1.0 percent silicon: 0.01 to 0.1 percent aluminum;and 0.001 to 0.01 percent each of calcium, iron,and magnesium. Rare-earth impurities wereless than 0.1 percent of total rare-earth content.The sample had a cream color. The indices ofrefraction could not be determined because thesample was too fine-grained.The ^-values of the three strongest lines are3.594, 2.708, and 1.853 A.Structural data. Durif and Forrat [1] in 1957determined that samarium arsenate has the zircon structure with the space group D^—I4j/amd(No. 141) and 4(SmAsO4) per unit cell.19571965Lattice constantsDurif and Forrat [!]__ _National Bureau of<strong>Standard</strong>s, sampleat 25°C_. ________aA7.207. 1865± 0. 0004cA6.406. 3999± 0. 0005The density of samarium arsenate calculatedfrom NBS lattice constants is 5.813 g/cm 3 at 25 °C.Reference[1] A. Durif and F. Forrat, Sur quelques arseniates desterres rares a structure zircon, Compt. Rend.1636-38(1957).hkl101200211112220202301103321312400213411420004332204501224512440600404503215532620424116206640444552316604624732336820516644Internal <strong>Standard</strong> Ag,a = 4.0861 A; temp. 25 CCu X 1.5405 AdA4. 7843.5942.8692. 7082. 5402.3902.2442.0451.9041.8531. 79671. 77781. 68171. 60681. 60041. 49731. 46171. 40201. 35391. 29011. 27091. 19801. 19491. 19221. 18941. 15041. 13621. 13411. 04391. 02250. 9965. 9948.9686.9655. 9586.9263.9054.9029. 8712. 8504.8458I14100769194106549162211101210281225753636611122154216133794-239 O - 66 - 5
Samarium Oxide, Sm 2O 3 (cubic)<strong>Powder</strong> data cards. None. Nos. 9-201, 11-412, and 13-244 are for the monoclinic B form ofsamarium oxide.Additional published patterns. Zachariasen [1]1927.NBS sample. The sample of samarium oxidewas obtained from the Lindsay Chemical Co.,West Chicago, 111. The cubic form was obtainedwhen the sample was heated at 800 °C for 19 hrs.The analysis by Lindsay Chemical Co. showed therare-earth impurities to be less than 0.1 percent oftotal rare-earth content.The sample was cream colored. The index ofrefraction is about 1.97.The d-values of the three strongest lines are3.155, 1.9317, and 2.731 A.Structural data. Zachariasen [1] in 1927 determined that the C-modification of samariumoxide has the manganese dioxide structure, thespace group T£—Ia3 (No. 206) with 16(Sm2O 3 )per unit cell.192519271939195419541965Lattice constantsGoldschmidt, Barth, andUlrich [2]___. ..__.____..._.Zachariasen [1] _ ____________Bommer [3] _Templeton and Dauber [4] _ __Brauer and Gradinger [5]_ . _ _National Bureau of <strong>Standard</strong>s,sample at 25 °C_ __ ___. __A10. 8710. 8910. 91510. 93210. 92810. 927The density of samarium oxide calculated fromNBS lattice constant is 7.100 g/cm3 at 25 °C.References[1] W. H. Zachariasen, The crystal structure of themodification C of the sesquioxides of the rare-earthmetals and of indium and thallium, Norsk Geol.Tidsskr. 9, 310-316(1927).[2] V. M. Goldschmidt, T. Barth, and F. Ulrich, GeochemischeVerteilungsgesetze der Elemente IV,—Zur Krystallstruktur der Oxyde der selten ErdmetalleSkrifter Norske Videnskaps-Akad. Oslo IMat. Naturv. Kl. (1925).[3] H. Bommer, Die Gitterkonstanten der C-Formen derOxyde der seltenen Erdmetalle, Z. Anorg. Allgem.Chem. 241, 273-280 (1939).[4] D. H. Templeton and C. H. Dauben, Lattice parameters of some rare-earth compounds and a set ofcrystal radii, J. Am. Chem. Soc. 76, 5237-5239 (1954).[5] I. G. Brauer and H. Gradinger, tlber heterotypeMischphasen bei Seltenerdoxyden, Z. Anorg. Allgem.Chem. 276, 209-226 (1954).hkl21122232140041142033251052144053060061154162263144471064072173280081183166284092193084494110-2-010-2-210-3-187110-4-010-3-311-2-188010-6-212-0-012-1-111-5-212-4-2Internal <strong>Standard</strong>s W,a = 3.1648 A; temp. 25 CCu X 1.5405 Ad^4.4603. 1552.9202.7312. 5752. 4442.3302. 1431.9951. 93171. 87391. 82121. 77231. 68571. 64741.61111. 57761. 54541. 51541. 48711. 38801. 36631. 34501. 27031. 25361. 22181. 17851. 15211. 11521. 10401. 07141. 05161. 04181. 02341. 01451. 00600. 9736. 9660.9236.9106. 9043. 8921. 8532Average value of last five h nes _/11100433814724041542978222344365346
Scandium Arsenate, ScAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample* The sample of scandium arsenate was prepared at NBS from a water solutionof arsenic pentoxide and scandium trichloride.It was heated 30 min at 900 °C. Spectrographicanalysis showed the following major impurities:0.01 to 0.1 percent each of antimony, silicon, andvanadium; and 0.001 to 0.01 percent each ofaluminum, chromium, copper, iron, magnesium,lead and tin.The sample was colorless. The indices of refraction could not be determined because thesample was too fine-grained.The d-values of the three strongest lines are3.354, 2.569, and 1.742 1.Structural data. No reference to the structureof scandium arsenate was found, but it is apparently isostructural with yttrium arsenate withthe space group DJ£—Mj/amd (No. 141) and4(ScAsO4) per unit cell.Lattice constants1965 National Bureau of<strong>Standard</strong>s, sampleat 25 °C___________Aa6. 7101± 0. 0001cA6. 1126± 0. 0002The density of scandium arsenate calculatedfrom the NBS lattice constants is 4.437 g/cm3 at25 °C.hkl101200211112220202301312213400411004420332204323501224314521512105440404600532424620541116444640316552604624336732800811615820, 307516644660327Internal <strong>Standard</strong>s W,a = 3.1648 A; temp. 25 CCu X 1.5405 AdA4. 5163. 3542.6932. 5692. 3712.2592. 1001. 7421. 68541. 67771. 57271. 52831. 50081. 40481. 39081. 37441. 31111. 28511. 24001. 22101. 20901. 20321. 18641. 12991. 11861. 07711. 07091. 06111. 03320. 9960. 9370. 9305.9184.9062. 9025. 8715. 8565. 8466.8388. 8246. 8190. 8137. 8056. 7948. 7909. 7905/101002248117
Strontium Boron Oxide, SrB4O7 (orthorhombic)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of strontium boronoxide was prepared at NBS from strontium carbonate and boric acid. It was heated to 1,000 °C,ground, and then alternately reheated and regroundseveral times. Spectrographic analysisshowed the following major impurities: 0.01 to 0.1percent each of barium, calcium, and silicon; and0.001 to 0.01 percent each of aluminum, iron, andmagnesium.hklInternal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 CCu X 1.5405 Ad7hklInternal <strong>Standard</strong> W,a = 3.1648 A; temp. 25 CCu X 1.5405 Ad7020100110Oil101111130031040121131140200210002220141022201211051230221122060231240132042241142161202212222251, 170071152232013260311171062321A5.354.434. 103.9403.0612.9422.7782.7292. 6772.6572.3242. 2922.2142. 1682. 1182. 0462.0151. 9691. 9621.9291.9111.8811. 8421. 79901. 78461. 71871. 70601. 68391. 66091. 58181. 55491. 54191. 53011. 51471. 47081. 44611. 43851. 42521. 40591. 39901. 38931. 38171. 36771. 36441. 348124429312813435115100
Strontium Boron Oxide, SrB4O7 (orthorhombic)—ContinuedThe sample was colorless. The indices ofrefraction could not be determined because thesample was too fine-grained.The d-values of the three strongest lines are2.657, 2.015, and 2.729 A.Lattice constantsStructural data. Block, Perloff, and Weir [1]in 1964 determined that strontium boron oxidehas the space group C72r—Pnn^ (No. 31) and2(SrB4O 7 ) per unit cell.a6cIQfM1965Block, Perloff, and Weir [!]__._---National Bureau of <strong>Standard</strong>s,sample at 25 °C... ..._ -- ...A4. 4314. 4263±0. 0002A10. 70610. 7074±0, 0005A4.2374. 2338± 0. 0002The density of strontium boron oxide calculatedfrom the NBS lattice constants is 4.019 g/cm3at 25 °C.<strong>Powder</strong> data cards. None.Additional published patterns. Willott andEvans [1] 1934.NBS sample. The sample of tin arsenide wasprepared at NBS in a solid state reaction byheating a mixture of arsenic and tin in an evacuated Pyrex tube at 500 °C. Spectrographicanalysis showed the following major impurities:0.01 to 0.1 percent lead, and 0.001 to 0.01 percenteach of aluminum, antimony, bismuth, copper,indium, iron, magnesium, nickel, and silicon.The sample was a g<strong>ray</strong> opaque powder.The ^-values of the three strongest lines are2.862, 2.024, and 1.652 A.Structural data. Goldschmidt [2] in 1928 determined that tin arsenide has the sodium chloridestructure, the space group Oh—Fm3m (No. 225)and 4 (SnAs) per unit cell.1928193419351965Lattice constantsGoldschmidt [2]____ __________Willott and Evans [1]. ........Hagg and Hybinette [3] _National Bureau of <strong>Standard</strong>s,sample at 25 °C__._ ._ __ReferenceTin Arsenide, SnAs (cubic"*A5. 7205. 6925.7285. 7248The density of tin arsenide calculated from theNBS lattice constant is 6.854 g/cm3 at 25 °C.37[1] S. Block, A. Perloff, and C. E. Weir, The crystallography of some M+2 borates, Acta Cryst. 17, 314(1964).hkl111200220311222400331420422511440531600620622444711640ReferencesInternal <strong>Standard</strong> W,a = 3.1648 1; temp. 25 °CCu X 1.5405 1dA3.3062.8622.0241. 7261. 6521. 43101. 31291. 28001. 16841. 10151. 01200. 9676. 9540.9052. 8630. 8263. 8017. 7939/1310055417821610
Ytterbium Arsenate, YbAsO4 (tetragonal)<strong>Powder</strong> data cards. None.Additional published patterns. None.NBS sample. The sample of ytterbium arsenatewas precipitated at NBS from a water solution of arsenic pentoxide and ytterbium trichloride.It was dried 1 hr at 880 °C. Spectrographicanalysis showed the following major nonrare-earthimpurities: 0.01 to 0.1 percent each of antimonyand titanium and 0.001 to 0.01 percent each ofaluminum, calcium, iron, nickel, lead, and silicon.Rare-earth impurities were less than 0.1 percentof total rare-earth content.The sample was colorless. The indices ofrefraction could not be determined because thesample was too fine-grained.The rf-values of the three strongest lines are3.486, 2.6375, and 1.8004 i.Structural data. Durif and Forrat [1] in 1957determined that ytterbium arsenate has the zirconstructure with the space group D]£—L^/amd (No.141) and 4(YbAsO4 ) per unit cell.19571965Lattice constantsDurif and Forrat [!]___National Bureau of<strong>Standard</strong>s, sampleat 25 °C_. ________aA6. 996. 9716±0. 0002cA6.246. 2437± 0. 0003The density of ytterbium arsenate calculatedfrom the NBS lattice constants is 6.828 g/cm3 at25 °C.Reference[1] A. Durif and F. Forrat, Sur quelques arseniates desterres rares a structure zircon, Compt. Rend. 245,1636-38 (1957).hkl101200211112220202301103321312400213411420332204501224512440105404503611532424325631116613444, 640543721552604633624703732800820516644536Internal <strong>Standard</strong> W,a = 3.1648 1; temp. 25 CCu X 1.5405 1d4.6523. 4862. 7882. 63752. 46482. 32582. 17811. 99391. 84681. 80041. 74241. 73081. 63161. 55871. 45411. 42501. 36041. 31881. 25241. 23221. 22891. 16251. 15821. 12711. 11661. 10291. 04911. 02501. 01871. 00390. 9669. 9647. 9464. 9403. 9321. 9302. 9004.8984. 8784. 8715. 8456. 8282. 8220. 7849/22100574243107756163115141128111 ^/\ }
Zinc Antimony Oxide, ZnSb 2O4 (tetragonal)<strong>Powder</strong> data cards. No. 4-0563, Stahl [1] 1943.No. 1-0678 is probably ZnO-Sb2O5 and notZnO-Sb2O3 .Additional published patterns. None.NBS sample* The sample of zinc antimonyoxide was prepared at NBS from zinc oxide andantimony trioxide. The mixture was wrapped ingold foil and sealed in a nitrogen filled quartz tube.It was heated to 700 °C for % of an hour. Spectrographicanalysis showred the following majorimpurities: 0.01 to 0.1 percent each of arsenic,magnesium, lead, and silicon.hkl110200210211220002310112202212400410330312411420213402430332511520521440004432530512413600610620224, 540532541602523622334424Internal <strong>Standard</strong> W,a = 4.0861 A; temp. 25 CCu X 1.5405 AdA6. 0214. 2613. 8113. 2063. Oil2.9642.6942. 6622.4342.3412. 1292. 0662.0081.9951. 95091. 90421. 75521. 72961. 70331. 66251. 60751. 58151. 52831. 50561. 48331. 47751. 46071. 45511. 42831. 41921. 40001. 34691. 33021.31041. 29801. 28051. 23501. 22641. 19331. 1704/8171100221029111971263296146
Zinc Antimony Oxide, ZnSb2O4 (tetragonal)—ContinuedLattice constantsacThe density of zinc antimony oxide calculatedfrom the NBS lattice constants is 5.754 g/cm3 at25 °C.1 Q4Q1965Stahl [I]- — ---------National Bureau of<strong>Standard</strong>s, sampleof O*> Of1A8.5088. 5168±0. 0002A5.9325. 9331± 0. 0003Reference[1] S. Stahl, The crystal structure of ZnSt^, Arkiv Kemi,Bd. 17B No. 5, (1943-44).CALCULATED POWDER PATTERNSAntimony Cerium, CeSb (cubic)Calculated PatternAdditional published pattern. landelli andBotti [8] 1937.Structural data. landelli and Botti [8] in 1937determined that antimony cerium is isomorphouswith sodium chloride with the space groupOJ—Fm3m (No. 225) and 4(CeSb) per unit cell.The atoms occupy the special positions:Ce: 0 0 0Sb: *|).19371963Lattice constantslandelli and Botti [8]_ . _ .Kuz'min and Nikitina [32] _A6.4126.41The lattice constant used in this calculatedpattern is a = 6.412 JLNo temperature correction was included.The calculated d-values of the three strongestlines are 3.21, 2.27, and 1.434 A.The calculated density is 6.598 g/cm3 .hkl111200220311222400331420422511440531600620622444711640642731800Calculated PatternCopper XdA3.703. 212. 271.9331. 8511.6031.4711.4341.309L2341. 1331. 0841.0691.0140.967.925.898.889.857.835. 802Peakheighti
Antimony Dysprosium, DySb (cubic) Antimony Erbium, ErSb (cubic)Calculated PatternBrixner [30] in 1960 determined that antimonydysprosium is isomorphous with sodium chloridewith the space group Og—Fm3m (No. 225) and4(DySb) per unit cell. The atoms occupy thespecial positions:Dy: 000Sb: } ) J.Brixner [30] reports the lattice constanta=6.153 I.No temperature correction was included.The calculated d-values of the three strongestlines are 3.08, 2.18, and 1.376 A.The density of antimony dysprosium calculatedfrom the constant of Brixner is 8.104 g/cm3 .Calculated PatternBrixner [30] in 1960 determined that antimonyerbium is isomorphous with sodium chloride withthe space group O£—Fm3m (No. 225) and4(ErSb) per unit cell. The atoms occupy thespecial positions:Er: 0 0 0Sb: \ \ iBrixner [30] reports the lattice constanta=6.106 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.05, 2.16, and 1.365 A.The density of antimony erbium calculated fromthe constant of Brixner is 8.432 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3. 553. 082. 181. 8551.7761. 5381. 4121. 3761.2561. 1841.0881. 0401.0260.973.938. 928. 888. 862. 853. 822. 801PeakheightI41006822210
Antimony Gadolinium, GdSb (cubic) Antimony Lanthanum, LaSb (cubic)Calculated PatternBrixner [30] in 1960 determined that antimonygadolinium is isomorphous with sodium chloridewith the space group Oh — Fm3m (No. 225) and4(GdSb) per unit cell. The atoms occupy thespecial positions:Gd: 0 0 0Sb:Brixner [30] reports thelattice constant a=6. 217 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.11, 2.20, and 1.390 A.The density of antimony gadolinium calculatedfrom the constant of Brixner is 7.712 g/cm 3 .Calculated PatternAdditional published pattern. landelli andBotti, [8] 1937.Structural data. landelli and Botti [8] in 1937determined that antimony lanthanum is isomorphous with sodium chloride with the spacegroup OS—Fm3m (No. 225) and 4(LaSb) per unitcell. The atoms occupy the special positions:La: 0 0 0Sb: } \ \.19371963Lattice constantlandelli and Botti [8]_ _ , _ _ _ _ _Kuz'min and Nikitina [32] ._ _A6.4886.49hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3. 593. 112. 201. 8741. 7951. 5541.4261.3901. 2691. 1961.0991.0511. 0360.983.948.937.897.870. 862. 831. 809Peakheight731006912310
Antimony Neodymium, NdSb (cubic)Antimony Praseodymium, PrSb (cubic)Calculated PatternAdditional published pattern. landelli andBotti, [9] 1937.Structural data. landelli and Botti [9] in 1937determined that antimony neodymium is isomorphouswith sodium chloride with the space groupO£—Fm3m (No, 225) and 4(NdSb) per unit cell.The atoms occupy the special positions:Nd: 000Sb: MiLattice constantsCalculated PatternAdditional published pattern. landelli andBotti [8] 1937.Structural data. landelli and Botti [8] in 1937determined that antimony praseodymium is isomorphouswith sodium chloride with the spacegroup O£—Fm3m (No. 225) and 4(PrSb) per unitcell. The atoms occupy the special positions:Pr: 0 0 0Sb: * * J.Lattice constants19371963landelli and Botti [9]__ __ _____Kuz'min and Nikitina [32]A6.3226.3219371963landelli and Botti [8]_ __________Kuz'min and Nikitina [32]A6.3666.37The lattice constant used in this calculatedpattern is a= 6.322 A.No temperature correction was included.The calculated ^-values of the three strongestlines are 3.16, 2.24, and 1.414 A.The calculated density is 6.992 g/cm 3 .Calculated PatternCopper XThe lattice constant used in this calculatedpattern is a=6.366 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 3.18, 2.25, and 1.423 A.The calculated density is 6.762 g/cm 3 .Calculated PatternCopper Xhkl111200220311222400331420422511440531600620533622444711640642731800dA3. 653. 162. 241. 9061. 8251. 5801.4501.4141. 2901. 2171. 1181. 0691. 0541. 0000.964.953.912. 885. 877. 845. 823. 790Peakheight'hkl111110020069220
Antimony Scandium, SbSc (cubic) Antimony Thorium, SbTh (cubic)Calculated PatternBrixner [30] in 1960 determined that antimonyscandium is isomorphous with sodium chloridewith the space group Oh—Fm3m (No. 225) and4(SbSc) per unit cell. The atoms occupy thespecial positions:Sb: 0 0 0Sc: \ \ \.Brixner [30] reports the lattice constanta=5.859 A,No temperature correction was included.The calculated lvalues of the three strongestlines are 2.93, 2.07, and 3.38 A.The density of antimony scandium calculatedfrom the constant of Brixner is 5.505 g/cm3 .Calculated PatternFerro [22] in 1956 determined that antimonythorium is isomorphous with sodium chloride withthe space group OS—Fm3m (No. 225) and4(SbTh) per unit cell. The atoms occupy thespecial positions:Sb: 0 0 0Th: £ \ iFerro [22] reports the lattice constanta = 6.318 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.16, 2.23, and 1.413 A.The density of antimony thorium calculatedfrom the constant of Ferro is 9.317 g/cm3 .Calculated PatternCopper Ahkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3. 382.932.071. 7671. 6911.4651.3441.3101. 1961. 1281.0360. 990.976.926. 893.883. 846.820. 812. 783Peakheight7391006516219623164551292834921hkl111200220311222400331420422511440531600620533622444711640642731800dA3.653. 162. 231.9051.8241.5801.4491.4131. 2901.2161. 1171.0681.0530.999. 963.952.912. 885. 876. 844.823. 790Peakheight716100697231032720262139
Antimony Thulium, SbTm (cubic) Antimony Ytterbium, SbYb (cubic)Calculated PatternBrixner [30] in 1960 determined that antimonythulium is isomorphous with sodium chloridewith the space group OJ—Fm3m (No. 225) and4 (SbTm) per unit cell. The atoms occupy thespecial positions:Sb: 0 0 0Tm: J i *Brixner [30] reports the lattice constanta=6.083 A.No temperature correction was included.The calculated ^-values of the three strongestlines are 3.04, 2.15, and 1.360 A.The density of antimony thulium calculatedfrom the constant of Brixner is 8.577 g/cm 3 .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3. 513.042. 151. 834L 7561. 5211. 3961. 3601. 2421. 1711.0751.0281.0140. 962.928.917. 878. 852. 844. 813. 792Peakheight'51006822210
Antimony Yttrium, SbY (cubic) Bismuth Cerium, BiCe (cubic)Calculated PatternDoinange, Flahaut, Guittard and Loners [27]in 1958 determined that antimony yttrium isisomorphous with sodium chloride with the spacegroup Oh—Fm3m (No. 225) and 4(SbY) per unitcell. The atoms occupy the special positions:Sb: 000Y: * * iBrixner [30] reports the lattice constanta=6,163 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.08, 2.18, and 1.378 A.The density of antimony yttrium calculatedfrom the constant of Brixner is 5.977 g/cm3 .hklCalculated PatternCopper XdPeakheight/Calculated PatternAdditional published pattern. I a ml ell i andBotti, [10] 1937.Structural data. landelli and Botti [10] in1937 determined that bismuth cerium is isomorphous with sodium chloride with the space groupOg—Fm3m (No. 225) and 4(BiCe) per unit cell.The atoms occupy the special positions:Bi: 000Ce: | \ \.The lattice constant used in this calculatedpattern is a=6.500 A, as reported by landelliand Botti [10].No temperature correction was included.The calculated ^-values of the three strongestlines are 3.25, 2.30, and 1.453 A.The calculated density is 8.443 g/cm 2 .hklCalculated PatternCopper XdPeakheight7111200220311222400331420422511440531600620553622444711640642731A3.563. 082. 181. 8581. 7791.5411. 4141.3781. 2581. 1861.0891. 0421. 0270. 974. 940. 929. 890. 863. 855.824. 8024100672210
Bismuth Dysprosium, BiDy (cubic)Bismuth Erbium, BiEr (cubic)Calculated PatternStructural data. Kuz'min and Nikitina [32] in1963 determined that bismuth dysprosium isisomorphous with sodium chloride with the spacegroup O£—Fm3m (No. 225) and 4(BiDy) per unitcell. The atoms occupy the special positions:Bi: 000Dy: | \ \.The lattice constant used in this calculatedpattern is a=6.20 A, as reported by Kuz'min andNikitina [32].No temperature correction was included.The calculated d-values of the three strongestlines are 3.10, 2.19, and 1.39 A.The calculated density is 10.35 g/cm3 .Calculated PatternCopper XCalculated PatternStructural data. Kuz'min and Nikitina [32] in1963 determined that bismuth erbium is isomorphous with sodium chloride with the space groupO5h—Fm3m (No. 225) and 4(BiEr) per unit cell.The atoms occupy the special positions:Bi: 0 0 0Er: i \ iThe lattice constant used in this calculatedpattern is
Bismuth Holmium, BiHo (cubic) Bismuth Lanthanum, BiLa (cubic)Calculated PatternAdditional published pattern. Bruzzone [31]1961.Structural data. Bruzzone [31] in 1961 determined that bismuth holmium is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(BiHo) per unitcell. The atoms occupy the special positions:Bi: 000Ho: \ \ i19611963Lattice constantsBruzzone [31] __ „ ____________Kuz'min and Nikitina [32] _A6.2286.23The lattice constant used in this calculatedpattern is a= 6.228 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.11, 2.20, and 1.393 A,The calculated density is 10.280 g/cm 3 .Calculated PatternAdditional published pattern. landelli andBotti [10] 1937.Structural data. landelli and Botti [10] in1937 determined that bismuth lanthanum isisomorphous with sodium chloride with the spacegroup O£—Fm3m (No. 225) and 4(BiLa) perunit cell. The atoms occupy the special positions:Bi: 000La: \ \ i19371963Lattice constantslandelli and Botti [10]. ___„___-_Kuz'min and Nikitina [32] _ _A6. 5786. 58The lattice constant used in this calculatedpattern is a~ 6.578 A.No temperature correction was included.The calculated ^-values of the three strongestlines are 3.29, 2.33, and 1.471 A.The calculated density is 8.118 g/cm 2 .Calculated PatternCopper Xhkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3. 603. 112. 201. 8781.7981. 5571. 4291. 3931.2711. 1991. 1011.0531.0380. 985. 950. 939. 899. 872. 864. 832. 811Peakheight/21007012410
Bismuth Neodymium, BiNd (cubic) Bismuth Praseodymium, BiPr (cubic)Calculated PatternStructural data. landelli [23] in 1956 determined that bismuth neodymium is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(BiNd) per unit cell.The atoms occupy the special positions:Bi: 0 0 0Nd: J i J.Lattice constantsCalculated PatternAdditional published pattern. landelli and Botti[10] 1937.Structural data. landelli and Botti [10] in1937 determined that bismuth praseodymium isisomorphous with sodium chloride with the spacegroup Og—Fm3m (No. 225) and 4(BiPr) per unitcell. The atoms occupy the special positions:Bi: 0 0 0Pr: 444'Lattice constants19561963landelli [23]_. ____.__„_..,__.__Kuz'min and Nikitina [32] _A6.4246.4219371963landelli and Botti [10] _ _______Kuz'min and Nikitina [32]____ _A6.4616.46The lattice constant used in this calculatedpattern is a—6.424 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.21, 2.27, and 1.436 A.The calculated density is 8.849 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642731800733Calculated PatternCopper XdA3.713. 212. 271.9371. 8541.6061.4741.4361.3111. 2361. 1361. 0861. 0711. 0160.980.968.927. 900. 891. 858. 836. 803.785Peakheighti6100703241112820
Bismuth Telluride, BiTe (cubic) Calcium Telluride, CaTe (cubic)Calculated PatternSemiletov [18] in 1954 determined that bismuthtelluride is isomorphous with sodium chloridewith the space group O£—Fm3m (No. 225) and4 (BiTe) per unit cell. The atoms occupy thespecial positions:Bi: 000Te: \ \ iSemiletov [18] reports the lattice constanta=6.47 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.24, 2.29, and 1.45 A.The density of bismuth telluride calculatedfrom the constant of Semiletov is 8.25 g/cm 3 .hkl111200220311222400331420422511440531600620533622444711640642731800733820Calculated PatternCopper XdA3.743.242.291.951. 871.621.481.45L321.251. 141. 101.081.020.987.975.934.906. 897.865.842. 809.790.785Peakheight/Calculated PatternAdditional published pattern. Oftedal [2] 1927.Structural data. Oftedal [2] in 1927 determinedthat calcium telluride is isomorphous with sodiumchloride with the space group O{! — Fm3m (No. 225)and 4 (CaTe) per unit cell. The atoms occupy thespecial positions:Ca:Te:192719390 0 0\ \ fLattice constantsOf tedal[2]____ ________________Senff and Klemm [1 2] _ . _ _ _ .A6.3586.354The lattice constant used in this calculatedpattern is the average value a=6.356 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.18, 2.25, and 3.67 A.The calculated density is 4.337 g/cm3 .Calculated PatternCopper X11Peak100height70 hkld5247112A281113.6746201 2003. 181002202.25683111.917206 2221. 8352221394001. 590103311.4597
Cerium Arsenide, CeAs (cubic) Cerium Nitride, CeN (cubic)Calculated PatternAdditional published pattern. landelli andBotti [8] 1937.Structural data. landelli and Botti [8] in 1937determined that cerium arsenide is isomorphouswith sodium chloride with the space groupOS—Fm3m (No. 225) and 4 (CeAs) per unit cell.The atoms occupy the special positions:Ce: 0 0 0As: * * |.The lattice constant used in this calculatedpattern is a= 6.072 A, as reported by landelli andBotti [8].No temperature correction was included.The calculated d-values of the three strongestlines are 3.04, 2.15, and 1.358 LThe calculated density is 6.380 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3.513.042. 151.8311.7531.5181.3931.3581.2391. 1691.0731.0261.0120.960.926.915.876.850.842. 811. 791PeakheightICalculated PatternCe: 0 0 0N: * * J.Calculated PatternCopper XhkldA1112.902002. 512201.7753111.5142221.4494001.2553311. 1524201. 1234221.0255110.966440.888531.849600. 837620. 79483281631710067722932517262129
Cerium Phosphide, CeP (cubic) Cobalt Iodide, CoI2 (hexagonal)Calculated PatternAdditional published pattern. landelli andBotti [6] 1937.Structural data. landelli and Botti [6] in 1937determined that cerium phosphide is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(CeP) per unit cell.The atoms occupy the special positions:Ce: 0 0 0P: i i *•The lattice constant used in this calculatedpattern is a=5.909 A, as reported by landelli andBotti [6].No temperature correction was included.The calculated d-values of the three strongestlines are 2.95, 3.41, and 209 A.The calculated density is 5.508 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3.412.952.091.7821. 7061.4771.3561.3211.2061. 1371.0450.999.985.934.901. 891. 853.827.819.790Peakheighti7810066322191124188691394938920Calculated PatternFerrari and Giorgi [4] in 1929 determined thatcobalt iodide is isomorphous with cadmium iodidewith the space group Did—P3ml (No. 164) andl(Co!2 ) per unit cell. The atoms occupy thespecial positions:Co: 0 0 0with u=0.25.Ferrari and Giorgi [4] report the lattice constants a=3.97 A and c=6.66 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.06, 2.39 and 1.98 A.The density of cobalt iodide calculated from theconstants of Ferrari and Giorgi is 5.712 g/cm3 .hkl001100002101102003110111103200112004, 201202104113203005210114,211105212204300301213115,006302Calculated PatternCopper XdA6.663.443.333.062.392.221.981.901.861.721.711.661.531.501.481.361.331.301.281.241.211.201. 151. 131. 121. 111.08PeakheightI961510032
Dysprosium Arsenide, DyAs (cubic) Dysprosium Nitride, DyN (cubic)Calculated PatternBrixner [30] in 1960 determined that dysprosiumarsenide is isomorphous with sodium chloridewith the space group O^—Fm3m (No. 225) and4 (DyAs) per unit cell. The atoms occupy thespecial positions:Dy: 0 0 0As: i } J.Brixner [30] reports the lattice constanta= 5.780 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.89, 2.04, and 3.34 A.The density of dysprosium arsenide calculatedfrom the constant of Brixner is 8.166 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640Calculated PatternCopper XdA3.342.892.041. 7431. 6691.4451. 3261.2921. 1801. 1121.0220.977.963.914.881.871.834.809.802Calculated PatternDy: 0 0 0N: MiCalculated PatternCopper X7hkldA1112. 832002.452201.7343111.4792221.4164001.2263311. 1254201.0974221. 0015110.944440. 867531. 829600. 818Peakheight2510065102194241736313101933Klemm and Winkelmann [24] in 1956 determined that dysprosium nitride is isomorphouswith sodium chloride with the space groupOg—Fm3m (No. 225) and 4(DyN) per unit cell.The atoms occupy the special positions:Klemm and Winkelmann [24] report the latticeconstant a=4.905 A.No temperature correction was included.-The calculated d-values of the three strongestlines are 2.83, 2.45, and 1.734 JLThe density of dysprosium nitride calculatedfrom the constant of Klemm and Winkelmann is9.934 g/cm3 .Peakheight/100694236136131613125181453
Dysprosium Telluride, DyTe (cubic) Erbium Arsenide, ErAs (cubic)Calculated PatternBrixner [30] in 1960 determined that dysprosiumtelluride is isomorphous with sodium chloridewith the space group Oj!—Fm3m (No. 225) and4 (DyTe) per unit cell. The atoms occupy thespecial positions:Dy: 0 0 0Te: § * J.Brixner [30] reports the lattice constanta=6.092 LNo temperature correction was included.The calculated d-values of the three strongestlines are 3.05, 2.15, and 1.362 A.The density of dysprosium telluride calculatedfrom the constant of Brixner is 8.522 g/cm 3 .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3.523.052. 151. 8371.7591. 5231.3981.3621.2441. 1721.0771.0301.0150.963.929.918.879.853.845. 814. 793PeakheightI31006812210
Erbium Nitride, ErN (cubic) Erbium Telluride, ErTe (cubic)Calculated PatternKlemm and Winkelmann [24] in 1956 determined that erbium nitride is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(ErN) per unit cell.The atoms occupy the special positions:Er:N:000I \ fKlemm and Winkelmann [24] report the latticeconstant a =^4.839 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.79, 2.42, and 1.711 1.The density of erbium nitride calculated fromthe constant of Klemm and Winkelmann is 10.63g/cm3 .Calculated PatternCopper XCalculated PatternBrixner [30] in 1960 determined that erbiumtelluride is isomorphous with sodium chloridewith the space group Og—Fm3m (No. 225) and4 (ErTe) per unit cell. The atoms occupy thespecial positions:Er: 0 0 0Te: \ \ |.Brixner [30] reports the lattice constanta —6.063 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 3.03, 2.14, and 1.356 A.The density of erbium telluride calculated fromthe constant of Brixner is 8.787 g/cm3 .Calculated PatternCopper Xhkl111200220311222400331420422511440531600dA2. 792.421. 7111.4591.3971. 2101. 1101.0820.988.931. 855. 818.806Peakheighthkl/1510068413513614161313619111200220311222400331420422511440531600620533dA3. 503.032. 141. 8281. 7501. 5161.3911. 3561.2381. 167L0721.0251. 0100.959. 925Peakheight/41006822310
Europium Nitride, EuN (cubic) Europium Oxide, EuO (cubic)Calculated PatternKlemm and Winkelmann [24] in 1956 determined that europium nitride is isomorphous withsodium chloride with the space group O*—Fm3m(No. 225) and 4(EuN) per unit cell. The atomsoccupy the special positions:Eu: 0 0 0N: \\ iKlemm and Winkelmann [24] report the latticeconstant a=5.014 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.89, 2.51, and 1.773 A.The density of europium nitride calculated fromthe constant of Klemm and Winkelmann is8.745 g/cm3 .hkl111200220311222400331420422511440531600620Calculated PatternCopper XdA2 892 511 7731 5121 4471 2541 1501 1211 0230 965886848836793Peakheight7100694336336131612125161311Calculated PatternStructural data. Eick, Baenziger, and Eyring[21] in 1956 determined that europium oxide isisomorphous with sodium chloride with the spacegroup Og—Fm3m (No. 225) and 4(EuO) perunit cell. Atoms occupy the special positions:Eu: 000O: HiThe lattice constant used in this calculatedpattern is a=5.1439 A, as reported by Eick,Baenziger, and Eyring [21].No temperature correction was included.The calculated d-values of the three strongestlines are 2.970, 2.572, and 1.819 A.The calculated density is 8.196 g/cm3 .hkl111200220311222400331420422511440531600620533Calculated PatternCopper XdA2.9702.5721.8191. 5511.4851.2861. 1801. 1501.0500.990.909.869.857.813.784Peakheight/100774737156141713125161211956
Gadolinium Arsenide, GdAs (cubic) Gadolinium Nitride, GdN (cubic)Calculated PatternBrixner [30] in 1960 determined that gadoliniumarsenide is isomorphous with sodium chloridewith the space group O*—Fm3m (No. 225) and4 (GdAs) per unit cell. The atoms occupy thespecial positions:Gd: 0 0 0As: \ \ iBrixner [30] reports the lattice constanta=5.854 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.93, 2.07, and 1.309 LThe density of gadolinium arsenide calculatedfrom the constant of Brixner is 7.687 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3.382.932.071.7651.6901.4641.3431.3091. 1951. 1271.0350.990.976.926. 893.883.845.820. 812.782Peakheight/23100669219425173631391933922Calculated PatternKlemm and Winkelmann [24] in 1956 determined that gadolinium nitride is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(GdN) per unit cell.The atoms occupy the special positions:Gd: 0 0 0N: i i fKlemm and Winkelmann [24] report the latticeconstant a=4.999 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.89, 2.50, and 1.767 A.The density of gadolinium nitride calculatedfrom the constant of Klemm and Winkelmann is9.105 g/cm3 .hkl111200220311222400331420422511440531600620Calculated PatternCopper XdA2. 892. 501. 7671.5071. 4431.2501. 1471. 1181.0200.962.884. 845.833. 790PeakheightI10069423513613161212516131157
Germanium Iodide, GeI 2 (hexagonal) Holmium Nitride, HoN (cubic)Calculated PatternPowell and Brewer [11] in 1938 determined thatgermanium iodide is isomorphous with cadmiumiodide with the space group D£,—Psml (No. 164)and l(Ge!2) per unit cell. The atoms occupy thespecial positions:Ge: 0 0 0with i*=Powell and Brewer [11] report the lattice constants a=4.14 A and c=6.80 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.17, 2.47, and 2.07 A.The density of germanium iodide calculatedfrom the constants of Powell and Brewer is5.369 g/cm3 .hkl001100002101102003110111103200112201004202104113203005, 210211114105212204300301213115006, 302205, 106Calculated PatternCopper AdA6. 803.593.403. 172.472.272.071.981.921.791.771.731.701. 591. 541.531.411.361.331.311.271.261. 231.201. 181. 161. 141. 131.08Klemm and Winkelmann [24] in 1956 determinedthat holmium nitride is isomorphous with sodiumchloride with the space group OJ—Fm3m (No, 225)and 4(HoN) per unit cell. The atoms occupy thespecial positions:Calculated PatternHo: 00 0N: \ \ \.Calculated PatternCopper XPeakheighthkld7A12 1112. 8142002.44122201. 7231003111.470352221.407
Holmium Selenide, HoSe (cubic) Iron Bromide, FeBr 2 (hexagonal)Calculated PatternAdditional published pattern. Bruzzone [31]1961.Structural data. Bruzzone [31] in 1961 determined that holmium selenide is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(HoSe) per unit cell.The atoms occupy the special positions:Ho: 000Se: I \ iThe lattice constant used in this calculatedpattern is a=5.680 1, as reported by Bruzzone[31].No temperature correction was included.The calculated d-values of the three strongestlines are 2.84, 2.01, and 1.270 A.The calculated density is 8.840 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640Calculated PatternCopper XdA3. 282. 842. 011. 7131. 6401. 4201.3031.2701. 1591.0931.0040.960.947. 898. 866. 856. 820.795. 788Calculated PatternFerrari and Giorgi [3] in 1929 determined thatiron bromide is isomorphous with cadmium iodidewith the space group D^—Fgml (No. 164) and!(FeBr2 ) per unit cell. The atoms occupy thespecial positions:Fe: 0 0 0with u=0.25.Ferrari and Giorgi [3] report the lattice constants a=3.748 A and c=6.183 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.87, 2.24, and 1.87 A.The density of iron bromide calculated fromthe constants of Ferrari and Giorgi is 4.761 g/cm3 .Calculated PatternCopper XPeakheightPeakhkldheight/7A0016. 18191003. 252230023. 09101001012. 87100661022.24389210032. 06
Iron Iodide, FeI 2 (hexagonal) Lanthanum Arsenide, LaAs (cubic)Calculated PatternFerrari and Giorgi [4] in 1929 determined thatiron iodide is isomorphous with cadmium iodidewith the space group Did—PSml (No. 164) andl(Felj) per unit cell. The atoms occupy thespecial positions:Fe: 0 0 0with 1^=0.25.Ferrari and Giorgi [4] report the lattice constants a=4.05 A and c=6.76 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.11, 2.43, and 2.02 A.The density of iron iodide calculated from theconstants of Ferrari and Giorgi is 5.354 g/cm 3 .hkl001100002101102003110111103200112201004202104113203210211, 114105212204300301213006115302Calculated PatternCopper XdA6.763. 513.383. 112.432.252.021.941.901.751. 741.701.691.561. 521.511.381. 331.301. 261.231.221. 171. 151. 141. 131. 121. 10Additional published pattern. landelli andBotti [8] 1937.Structural data. landelli and Botti [8] in 1937determined that lanthanum arsenide is isomorphouswith sodium chloride with the space grou01—Fm3m (No. 225) and 4(LaAs) per unit ce^The atoms occupy the special positions:Calculated PatternLa: 0 0 0Xi.o. AQ- i 222* i iCalculated PatternPeakCopper XheightIhkld86A151001113. 54322003.072202. 17
Lanthanum Nitride, LaN (cubic) Lanthanum Selenide, LaSe (cubic)Calculated PatternAdditional published patterns. landelli andBotti [7] 1937, and Young and Ziegler [15] 1952.Structural data. landelli and Botti [7] in 1937determined that lanthanum nitride is isomorphouswith sodium chloride with the space groupOS— Fm3m (No. 225) and 4 (LaN) per unit cell.The atoms occupy the special positions:La:N:19371952195619630 0 0* * J-Lattice constantslandelli and Botti [7]Young and Ziegler [15] ___Klemm and Winkelmann [24]____Lyutaya and Samsonov [33]__-__A5. 2865.2955.305.302The lattice constant used in this calculatedpattern is the average value a = 5.30 A.No temperature correction was included.The calculated J-values of the three strongestlines are 3.06, 2.65, and 1.87 A.The calculated density is 6.822 g/cm3 .hkl111200220311222400331420422511440531600620533622Calculated PatternCopper XdA3.062.651.871. 601.531.321.221. 191.081.020. 937. 896.883. 838. 808.799PeakheightI10074463714614161211514110710Calculated PatternStructural data. landelli [20] in 1955 determined that lanthanum selenide is isomorphouswith sodium chloride with the space groupO£—Fm3m (No. 225) and 4(LaSe) per unitcell. The atoms occupy the special positions:La: 0 0 0
Lutetium Nitride, LuN (cubic) Magnesium Bromide, MgBr 2 (hexagonal)Calculated PatternKlemm and Winkelmann [24] in 1956 determined that lutetium nitride is isomorphous withsodium chloride with the space group Oh—Fm3m(No. 225) and 4 (LuN) per unit cell. The atomsoccupy the special positions:Lu: 0 0 0N: i i iKlemm and Winkelmann [24] report the latticeconstant G=4.766 A.No temperature correction was included.The calculated cJ-values of the three strongestlines are 2.75, 2.38, and 1.685 A.The density of lutetium nitride calculated fromthe constant of Klemm and Winkelmann is 11.59g/cm 3 .Calculated PatternCopper XCalculated PatternFerrari and Giorgi [3] in 1929 determined thatmagnesium bromide is isomorphous with^cadmiumiodide with the space group Dfd—P3ml (No.164) and !(MgBr2) per unit cell. The atomsoccupy the special positions:Mg: 000T*r . 1 1 -..l\u with 16=0.25.Ferrari and Giorgi [3] report the lattice constants a=3.822 A and c=6.269 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.93, 2.28, and 1.91 A.The density of magnesium bromide calculatedfrom the constants of Ferrari and Giorgi is 3.855g/cm3 .Calculated PatternCopper Xhkl111200220311222400331420422511440531600dA2. 752. 381. 6851.4371.3761. 1921. 0931. 0660.973. 917. 843. 806. 794Peakheighthkl710000167100400023510112 102500314110161111310313 20061122020116 004202104dA6.273. 313. 132. 932. 282.091. 911. 831. 771.651. 631. 601. 571. 4641.416Peakheight74111910025
Manganese Bromide, MnBr 2 (hexagonal) Manganese Iodide, MnI2 (hexagonal)Calculated PatternFerrari and Giorgi [3] in 1929 determined thatmanganese bromide is isomorphousjwith cadmiumiodide with the space group Dfd—P3ml (No. 164)and !(MnBr2) pex unit cell. The atoms occupythe special positions:Mn: 000Br: | u; f u with u=0.25.Ferrari and Giorgi [3] report the lattice constants a=3.828 A and e=6.200 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.92, 2.26, and 1.91 A.The density of manganese bromide calculatedfrom the constants of Ferrari and Giorgi is 4.532g/cm3 .Calculated PatternCopper XCalculated PatternFerrari and Giorgi [4] in 1929 determined thatmanganese iodide is isomorphous with cadmiumiodide with the space group Did — P3ml (No. 164)and l(Mn!2) per unit cell. The atoms occupythe special positions:Mn: 000I: i § w; f withFerrari and Giorgi [4] report the lattice constants a=4.17 A and c=6.83 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 3.19, 2.48, and 2.08 A.The density of magnanese iodide calculatedfrom the constants of Ferrari and Giorgi is 4.984g/cm 3 .Calculated PatternCopper XhkldPeakheightihkldPeakheight'001100002101102A6. 203.323. 102.922. 261721010036001100002101102A6. 833. 613.423. 192.487715100300031101111032002.071.911. 831.751. 66
Neodymium Arsenide, NdAs (cubic) Neptunium Nitride, NpN (cubic)Calculated PatternAdditional published pattern. landelli andBotti [9] 1937.Structural data. landelli and Botti [9] in 1937determined that neodymium arsenide is isomorphouswith sodium chloride, with the spacegroup Og—Fm3rn (No. 225) and 4(NdAs) perunit cell. The atoms occupy the special positions:Nd: 0 0 0As: \\\.The lattice constant used in this calculatedpattern is a=5.970 A, as reported by landelli andBotti [9].No temperature correction was included.The calculated d-values of the three strongestlines are 2.98, 2.11, and 1.335 A.The calculated density is 6.841 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3.452.982. 111. 8001.7231.4921.3701.3351.2191. 1491.0551. 0090. 995. 944.910.900. 862. 836. 828.798Peakheight7191006782210324182621291832918Calculated PatternZachariasen [14] in 1949 determined that neptunium nitride is isomorphous with sodiumchloride with the space group O*—Fm3m (No.225) and 4 (NpN) per unit cell. The atoms occupythe special positions:Np: 000N: i i iZachariasen [14] reports the lattice constantNo temperature correction was included.The calculated ^-values of the three strongestlines are 2.83, 2.45, and 1.731 A.The density of neptunium nitride calculatedfrom the constant of Zachariasen is 14.20 g/cm3 .hkl111200220311222400331420422511440531600Calculated PatternCopper XdA2. 832.451. 7311.4761. 4141. 2241. 1231. 0951.0000. 942. 866. 828. 816PeakheightI100623936125141512135191464
Plutonium Arsenide, PuAs (cubic) Plutonium Phosphide, PuP (cubic)Calculated PatternGorum [26] in 1957 determined that plutoniumarsenide is isomorphous with sodium chloridewith the space group Oh—Fm3m (No. 225) and4(PuAs) per unit cell. The atoms occupy thespecial positions:Pu: 000As: Hi.Gorum [26] reports the lattice constanta=5.855 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.93, 2.07, and 3.38 A.The density of plutonium arsenide calculatedfrom the constant of Gorum is 10.487 g/cm3 .Calculated PatternCopper XCalculated PatternGorum [26] in 1957 determined that plutoniumphosphide is isomorphous with sodium chloridewith the space group Oh—Fm3m (No. 225) and4(PuP) per unit cell. The atoms occupy thespecial positions:Pu: 0 0 0P: ill-Gorum [26] reports the lattice constanta=5.644 A.No temperature correction was included.The calculated ^-values of the three strongestlines are 3.26, 2.82, and 1.995 A.The density of plutonium phosphide calculatedfrom the constant of Gorum is 10.08 g/cm 3 .Calculated PatternCopper XhkldPeakheightihkldPeakheight7111200220311222400331420422511440531600620533622444711640642A3.382. 932. 071. 7651. 6901. 4641. 3431.3091. 1951. 1271. 0350. 990.976. 926. 893. 883. 845. 820. 812. 7825010068212310826196671410310361024111200220311222400331420422511440531600620533622444711640A3. 262. 821. 9951. 7021. 6291. 4111. 2951. 2621. 1521. 0860. 998.954. 941. 892. 861. 851. 815. 790. 7831008658411981522161161313106103141265
Plutonium Telluride, PuTe (cubic) Potassium Hydroxide, KOH, at 300 °C(cubic)Calculated PatternCalculated PatternStructural data. Teichert and Klemm [13] in1939 determined that potassium hydroxide at300 °C is isomorphous with sodium chloride withthe space group O£—Fm3m (No. 225) and4(KOH) per unit cell. The atoms occupy thespecial positions:K: 0 0 0O: \ \ \H: undefined.The lattice constant used in this calculated pattern is a—5.79 A, as reported by Teichert andKlemm [13].No temperature correction was included.The calculated d-values of the three strongestCalculated Patternlines are 2.90, 2.05, and 3.34 A.Copper XThe calculated density is 1.920 g/cm3 .PeakCalculated PatternheightCopper Xhkld7PeakheighthkldA1113. 5718I2003. 091002202. 19703111. 8648A2221. 785231113.34252002.901004001. 54610 2202.05563311. 41833111.75104201. 383282221.67164221.2622025111. 1904001. 4563311.3344401. 0936 4201.29155311. 04524221. 186001.030135111. 116200. 97810533. 9431 4401. 025310.9799 600.965329620. 915533. 883183Gorum [26] in 1957 determined that plutoniumtelluride is isomorphous with sodium chloridewith the space group OJ—Fm3m (No. 225) and4 (PuTe) per unit cell. The atoms occupy thespecial positions:Pu: 0 0 0Te: } } iGorum [26] reports the lattice constanta=6.183 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.09, 2.19, and 1.383 A.The density of plutonium telluride calculatedfrom the constant of Gorum is 10.385 g/cm 3 .622444711640642731.932. 892. 866. 857. 826. 805622444711640. 873. 836. 811. 80310333752524666
Praseodymium Arsenide, PrAs (cubic) Praseodymium Sulfide, PrS (cubic)Calculated PatternAdditional published pattern. landelli andBotti [8] 1937.Structural data. landelli and Botti [8] in 1937determined that praseodymium arsenide is isomorphous with sodium chloride with the spacegroup OJ—Fm3m (No. 225) and 4(PrAs) perunit cell. The atoms occupy the special positions:Pr: 0 0 0As: % % iThe lattice constant used in this calculatedpattern is a=6.009 1, as reported by landelli andBotti [8].No temperature correction was included.The calculated d-values of the three strongestlines are 3.00, 2.12, and 1.344 A.The calculated density is 6.607 g/cmb .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3.473, 002. 121. 8121. 7351. 5021.3791. 3441.2271. 1561. 0621. 0161. 0020.950. 916. 906. 867. 841. 833. 803. 782Peakheighti18100678221032518262Calculated PatternStructural data. landelli [20] in 1955 determined that praseodymium sulfide is isomorphouswith sodium chloride, with the space groupOg—Fm3m (No. 225) and 4(PrS) per unit cell.The atoms occupy the special positions:Pr: 0 0 0S: \ \ \.19551956Lattice constantslandelli [20]_ __________________Picon and Patrie [25]_ „ _ _ _ _ _A5. 7395. 747The lattice constant used in this calculatedpattern is the average value a=5.743 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.87, 3.31, and 2.03 A.The calculated density is 6.065 g/cm 3 .Calculated PatternCopper XPeakheighthkld/A1113.31752002. 871002202. 03653111. 730302221. 657214001.43593311. 317114201. 28324124221. 1711785111. 104914401.01565310.97098 600.95613328620.907104533. 875184622444711640. 865. 828. 804. 79610391167
Samarium Arsenide, SmAs (cubic) Scandium Arsenide, ScAs (cubic)Calculated Patternlandelli [23] in 1956 determined that samariumarsenide is isomorphous with sodium chloridewith the space group OH—Fm3m (No. 225) and4(SmAs) per unit cell. The atoms occupy thespecial positions:Sm: 000As: } } ilandelli [23] reports the lattice constanta=5.921 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.96, 2.09, and 1.324 A.The density of samarium arsenide calculatedfrom the constant of landelli is 7.208 g/cm 3 .hkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3.422. 962. 091. 7851. 7091. 4801. 3581. 3241. 2091. 1401. 047L 0010.987. 936. 903. 893. 855. 829. 821.791Calculated PatternSc: 000As: J i i-Calculated PatternCopper XhkldA1113. 172002. 742201. 9403111. 6542221. 5844001. 3723311. 2594201. 2274221. 1205111. 0564400. 970531.92713 600.91491 620868533. 8379 622. 827329444.79219Peakheight/2110067922932518263Brixner [30] in 1960 determined that scandiumarsenide is isomorphous with sodium chloridewith the space group O£—Fm3m (No. 225) and4(ScAs) per unit cell. The atoms occupy thespecial positions:Brixner [30] reports the lattice constanta = 5.487A.No temperature correction was included.The calculated cf-values of the three strongestlines are 2.74, 1.940, and 1.227 A.The density of scandium arsenide calculatedfrom the constant of Brixner is 4.820 g/cm3 .PeakheightI12100624198 2211515 1129
Sodium Hydroxide, NaOH at 300 °C (cubic) Strontium Telluride, SrTe (cubic)Calculated PatternStructural data. West [5] in 1935 determinedthat sodium hydroxide at 300 °C is isomorphouswith sodium chloride with the space group
Terbium Nitride, TbN (cubic) Thorium Arsenide, ThAs (cubic)Calculated PatternKlemm and Winkelmann [24] in 1956 determined that terbium nitride is isomorphous withsodium chloride with the space groupO£—Fm3m (No. 225) and 4(TbN) per unit cell.The atoms occupy the special positions:Tb: 0 0 0N:Klemm and Winkelmann [24] report the latticeconstant a=4.933 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.85, 2.47, and 1.744 A.The density of terbium nitride calculated fromthe constant of Klemm and Winkelmann is 9.568g/cm 3 .hkl111200220311222400331420422511440531600Calculated PatternCopper XdA2. 852.471. 7441.4871.4241.2331. 1321. 1031.0070.949. 872. 834. 822PeakheightI1006942361361416121251713Calculated PatternFerro [19] in 1955 determined that thoriumarsenide is isomorphous with sodium chloride withthe space group OS—Fm3m (No. 225) and4 (ThAs) per unit cefl. The atoms occupy thespecial positions:Th: 0 0 0As: \ \ IFerro [19] reports the lattice constanta=5.972 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.99, 2.11, and 3.45 A.The density of thorium arsenide calculatedfrom the constant of Ferro is 9.572 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642Calculated PatternCopper XdA3.452.992. 111. 8011. 724L493L3701.3351.2191. 149L0561.0090,995. 944.911.900. 862. 836.828.798Peakheight/471006820231082619666131031035102070
Thulium Arsenide, TrnAs (cubic) Thulium Nitride, TmN (cubic)Calculated PatternBrixner [30] in 1960 determined that thuliumarsenide is isomorphous with sodium chloridewith the space group O£—Fm3m (No, 225) and4(TmAs) per unit cell. The atoms occupy thespecial positions:Tm: 000As: J*fBrixner [30] reports the lattice constanta=5.711 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.86, 2.02, and 3.30 A.The density of thulium arsenide calculatedfrom the constant of Brixner is 8.695 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640Calculated PatternCopper XdA3.302. 862.021. 7221.6491.4281. 3101. 2771. 1661. 0991.0100. 965.952.903. 871.861.824. 800.792Peakheight72710065112194241736413102103411Calculated PatternKlemm and Winkelmann [24] in 1956 determined that thulium nitride is isomorphous withsodium chloride with the space group O£—Fm3m(No. 225) and 4(TmN) per unit cell. Theatoms occupy the special positions:Tm: 000N: HiKlemm and Winkelmann [24] report the latticeconstant a=4.809 i.No temperature correction was included.The calculated d-values of the three strongestlines are 2.78, 2.40, and 1.700 A.The density of thulium nitride calculated fromthe constant of Klemm and Winkelmann is 10.93g/cm3 .hkl111200220311222400331420422511440531600Calculated PatternCopper XdA2.782. 401. 7001.4501.388L202L 1031.0750. 982. 925. 850. 813. 802Peakheight7100674035125141613136191571
Thulium Telluride, TmTe (cubic) Titanium Sulfide, TiS 2 (hexagonal)Calculated PatternBrixner [30] in 1960 determined that thuliumtelluride is isomorphous with sodium chloride withthe space group OJ—Fm3m (No. 225) and4 (TmTe) per unit cell. The atoms occupy thespecial positions:Tin: 000Te: | } IBrixner [30] reports the lattice constanta=6.042 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.02, 2.14, and 1.351 A.The density of thulium telluride calculated fromthe constant of Brixner is 8.929 g/cm3 .Calculated PatternCopper XCalculated PatternJeannin and Benard [29] in 1959 determinedthat titanium sulfide is isomorphous with cadmium iodide with the space group Dld—P3ml(No. 164) and l(TiS2) per unit cell. The atomsoccupy the special positions:Ti:S:0 0 0\u with ^=Jeannin and Benard [29] report the lattice constants a=3.4049 A and c=5.6912 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.62, 5.69, and 2.05 A.The density of titanium sulfide calculated fromthe constants of Jeannin and Benard is 3.255g/cm 3 .Calculated PatternCopper XhkldPeakheight'hkldPeakheighti111200220311222A3.493.022. 141. 8221. 744410067222001100002101102A5. 692. 952.852. 622. 055522100474003314204225111. 510L3861.3511. 2331. 16310
Uranium Telluride, UTe (cubic) Ytterbium Arsenide, YbAs (cubic)Calculated PatternFerro [16] in 1954 determined that uraniumtelluride is isomorphous with sodium chloridewith the space group Og—Fm3m (No. 225) and4 (UTe) per unit cell. The atoms occupy thespecial positions:U: 0 0 0Te: \ \ \.Ferro [16] reports the lattice constanta=6.163 A.No temperature correction was included.The calculated d-values of the three strongestlines are 3.08, 2.18, and 1.378 A.The density of uranium telluride calculatedfrom the constant of Ferro is 10.374 g/cm3 .hkl111200220311222400331420422511440531600620533622444711640642731Calculated PatternCopper XdA3. 563. 082. 181. 8581. 7791. 5411. 4141. 3781. 2581. 1861. 0891. 0421. 0270. 974. 940. 929. 890. 863. 855. 824. 802PeakheightCalculated PatternBrixner [30] in 1960 determined that ytterbiumarsenide is isomorphous with sodium chloride withthe space group Oh—Fm3m (No. 225) and4(YbAs) per unit cell. The atoms occupy thespecial positions:Yb: 0 0 0As: * \ J.Brixner [30] reports the lattice constanta=5.698 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.85, 2.01, and 3.29 A.The density of ytterbium arsenide calculatedfrom the constant of Brixner is 8.902 g/cm3 .Calculated PatternCopper XPeakheighthkld/IA171113. 29291002002. 8510070 2202. 016683111. 71812232221. 6452110 400L424933311. 3074274201. 27424192 422L 163183511L0976 4401. 007625310.963413600. 9501310 620. 901101 533. 86929 622. 85910329444. 82234711. 798640. 7901118373
Ytterbium Nitride, YbN (cubic) Yttrium Arsenide, YAs (cubic)Calculated PatternKlemm and Winkelmann [24] in 1956 determined that ytterbium nitride is isomorphous withsodium chloride with the space group Oh—Fm3m(No. 225) and 4(YbN) per unit cell. The atomsoccupy the special positions:Yb: 0 0 0N: MiKlemm and Winkelmann [24] report the latticeconstant a=4.786 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.76, 2.39, and 1.692 A.The density of ytterbium nitride calculatedfrom the constant of Klemm and Winkelmann isll,33g/cm3 .hkl111200220311222400331420422511440531600Calculated PatternCopper XdA2. 762.391. 6921. 4431. 3821. 1961.0981.0700.977.921.846. 809.798PeakheightCalculated PatternBrixner [30] in 1960 determined that yttriumarsenide is isomorphous with sodium chloridewith the space group O£—Fm3m (No. 225) and4(YAs) per unit cell. The atoms occupy thespecial positions:Y: 0 0 0As: } } ihkl/1610066403512514161313620Brixner [30] reports the lattice constanta=5.786 A.No temperature correction was included.The calculated d-values of the three strongestlines are 2.89, 2.05, and 1.294 A.The density of yttrium arsenide calculated fromthe constant of Brixner is 5.617 g/cm3 .111200220311222400331420422511440531600620533622444711640Calculated PatternCopper XdA3.342. 892.051. 7451.6701.4461.3271.2941. 1811. 1141. 0230.978.964.915. 882. 872. 835. 810. 802Peakheight7210063
Yttrium Telluride, YTe (cubic) Zirconium Phosphide, ZrP (cubic)Calculated PatternBrixner [30] in 1960 determined that yttriumtelluride is isomorphous with sodium chloridewith the space group C^—Fm3m (No. 225) and4 (YTe) per unit cell. The atoms occupy thespecial positions:Y: 0 0 0Te: \ \ \.Brixner [30] reports the lattice constanta=6.095 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 3.05, 2.15, and 1.363 A.The density of yttrium telluride calculatedfrom the constant of Brixner is 6.351 g/cm3 .Calculated PatternCopper XCalculated PatternSchonberg [17] in 1954 determined that zirconium phosphide is isomorphous with sodiumchloride with the space group O£—Fm3m (No.225) and 4(ZrP) per unit cell. The atoms occupy the special positions:Zr: 0 0 0P: * i iSchonberg [17] reports the lattice constanta=5.27 A.No temperature correction was included.The calculated rf-values of the three strongestlines are 2.63, 1.86, and 3.04 A.The density of zirconium phosphide calculatedfrom the constant of Schonberg is 5.54 g/cm3 .Calculated PatternCopper XhkldPeakheight7hkldPeakheightI111200220311222400331420422511440531600620533622444711640642731A3. 523.052. 151. 8381. 7591. 5241.3981.3631.2441. 1731.0771.0301.0160. 964.929.919. 880. 853. 845. 814.7945100672229
References for Calculated <strong>Patterns</strong>[1] V. M. Goldschmidt, Researches on the structure andproperties of crystals, Skrifter Norske Videnskaps-Akad. Oslo I. Mat.-Naturv. Kl. #8 (1926).[2] I. Oftedal, The lattice constants of CaO, CaS, CaSe,arid CaTe, Z. Physik Chem. (Leipzig) 128, 154(1927).[3] A. Ferrari and F. Giorgi, The crystal structure ofbromides of bivalent metals, Atti Accad. Nazi.Lincei Rend. Classe Sci. Fis. Mat. Nat. 9,1134 (1929).[4] A. Ferrari and F. Giorgi, The crystal structure of theanhydrous iodides of bivalent metals I. Iodides ofcobalt, iron, and manganese. Ibid. 10, 522 (1929).[5] C. D. West, Thermochemistry and physical propertiesof bromides and hydrosulfides, J. Phys. Chem, 39,493-507 (1935).[G] A. landelli and R. Botti, On the crystal structure ofcompounds of the rare earths with metalloids ofthe V group. Phosphides of La, Ce, and Pr.Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis.Mat. Nat. 24, 459 (1936).[7] A. landelli and R. Botti, On the crystal structure ofcompounds of the rare earths with metalloids ofthe V group. Nitrides of La, Ce, arid Pr. Ibid.25, 129 (1937).[8] A. landelli and R. Botti, On the crystal structure ofcompounds of the rare earths with metalloids ofthe V group. Arsenides and antimonides oflanthanum, cerium, and praseodymium, Ibid. 25,498-502 (1937).[9] A. landelli and R. Botti, On the crystal structure ofcompounds of the rare earths with metalloids ofthe V group. Compounds of neodymium, Ibid.25, 638-640 (1937).[10] A. landelli and R. Botti, On the crystal structure ofcompounds of the rare earths with metalloids of theV group. Compounds 1:1 with Bi, Ibid. 26, 233(1937),[11] 11. M. Powell and F. M. Brewer, The structure ofgermanous iodide, J. Chem. Soc. 1938 Part I, 197(1938).[12] II. Senff and W. Klemm, Ytterbochalkogenide, Z.Anorg. Allgem. Chem. 242, 92 (1939).[13] W. Teichert and W. Klemm, Das Gitter der Hochtomperaturformvon Kaliumhydroxyd, Ibid. 243,138 (1939).[14] W. H. Zachariasen, Crystal chemical studies of the5-f series of elements. XII. New compoundsrepresenting known structure types, Acta Cryst. 2,388 (1949).[15] R. A. Young and W. T. Ziegler, Crystal structure oflanthanum nitride, J. Am. Chem. Soc. 74, 5251(1952).[16] R. Ferro, Several selenium and tellurium compoundsof uranium, Z. Anorg. Allgem. Chem. 275, 320(1954).[17] N. Schonberg, An x-<strong>ray</strong> investigation of transitionmetal phosphides, Acta Chem. Scand. 8, 226 (1954).[18] S. A. Semiletov, <strong>Diffraction</strong> investigation of thestructure of sublimed films of the compositionBi-Se and Bi-Te, Trudy Inst. Krist. Akad. NaukSSSR 10, 76 (1954).[19] R. Ferro, The crystal structure of thorium arsenide,Acta Cryst. 8, 360 (1955).[20] A. landelli, Monochalcogenides of lanthanum, cerium,praseodymium, and neodvmium, Gazz. Chim. Ital.85, 881 (1955).[21] H. A. Eick, N. C. Baenziger, and L. Eyring, Loweroxides of samarium and europium. The preparation and crystal structure of SmOo.4-o.fi, SmO, andEuO, J. Am. Chem. Soc. 78, 5147 (1956).[22] R. Ferro, The crystal structures of thorium antimonides, Acta Cryst. 9, 817 (1956).[23] A. landelli, Some samarium compounds of NaCl-Type, Z. Anorg. Allgem, Chem. 288, 81 (1956).[24] W. Klemm and G. Winkelmann, Nitrides of the rareearth metals. Ibid. 288, 87 (1956).[25] M. Picon and M. Patrie, Sur les sous-sulfures desterres rares ceriques, Compt. Rend. 242, 1321 (1956)[26] A. E. Gorum, Crystal structure of PuAs, PuTe,PuP, and PuOSe, Acta Cryst. 10, 144 (1957).[27] L. Domange, J. Flahaut, M. Guittard, and J. Loriers,Ytterbium sulfides, Compt. Rend. 247, 1614 (1958).[28] M. Guittard and A. Benacerraf, The selenides, MSe,of the lanthanides from lanthanum to gadolinium,Ibid. 248, 2589 (1959).[29] Y. Jeannin and J. Benard, The noii-stoichiometricphase TiSg: Extent of the domain and nature ofthe defects, Ibid. 248, 2875 (1959).[30] L. II. Brixner, Structure and electrical properties ofsome new rare-earth arsenides, antimonides, andtellurides, J. Inorg. Nucl. Chem. 15, 199 (I960).[31] G. Bruzzone, Structure and magnetic properties ofMX compounds from holmium and metalloids ofthe fifth and sixth groups, Atti Accad. Nazi.Lincei Rend. Classe Sci. Fis. Mat. Nat. 30, 208-213.(1961).[32] R. N. Kuz'min and S. V. Nikitina, The structures ofcompounds of composition AB of rare-earth metalswith antimony and bismuth, Kristallografia 8(3),453-4 (1963)." English translation in Crystallography 8(3), 354 (1963).[33] M. D. Lyutaya and G. V. Samsonov, Preparationand properties of lanthanum nitride, Ukr. Khim.Zh. 29(3), 251-5 (1963).76
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4 5Vol. orsec. PageAluminum, Al___________________________ 1 11Aluminum antimony, AlSb_______________ 4 72Aluminum calcium sulfate hydrate (ettringite),Al2O3-6Caq.3SO 3-31H 2O_________--_ 8 3Aluminum chloride hexahydrate (chloraluminite),A1C13-6H 2O_______________ 7 3Aluminum fluosilicate, topaz, Al 2SiO 4 (F,OH) 2 1m 4Aluminum metaphosphate, A1(PO3)3------- 2m 3Aluminum orthophosphate (berlinite), A1PO4(trigonal) __ _________________________ 10 3Aluminum orthophosphate, A1PO4 (orthorhombic)__-_______--____-___-___-___- 10 4Aluminum oxide, (corundum), alpha A12O3 __ 9 3Aluminum oxide monohydrate (bohmite),alpha Al2O3.H 2O__________-____---__--_ 3 38Aluminum oxide monohydrate, diaspore,beta Al 2O 3-H 2O-_ ___-________-_--_--__- 3 41Aluminum 3:2 silicate (mullite)3Al2O 3>2SiO2 _ _________________________ 3m 3Ammonium aluminum sulfate dodecahydrate (teschermigite), NH4Al(SO 1 ) 2a2H20. 6 3Ammonium azide, NH 4Ns_ _______________ 9 4Ammonium bicarbonate (teschemacherite),(NH4)HCO 3 _-__-__--__---___---_----- 9 5Ammonium bromide, NH 4Br____ __________ 2 49Ammonium bromoosmate, (NH 4) 2OsBr6 _---- 3 71Ammonium bromoplatinate, (NH 4 ) 2PtBr6__- 9 6Ammonium bromoselenate, (NH 4)2SeBr5____ 8 4Ammonium bromotellurate, (NH4) 2TeBre___ 8 5Ammonium chloride (sal-ammoniac),NH 4 C1_ ______________________________ 1 59Ammonium chloroiridate (NH 4) 2IrCl 6 _ ____- 8 6Ammonium chloroosmate, (NH 4 ) 2OsCl 6____- 1m 6Ammonium chloropalladate, (NH 4) 2PdCl 6-_- 8 7Ammonium chloropalladite, (NH 4) 2PdCl4 ___ 6 6Ammonium chloroplatinate, (NH 4 ) 2PtCl6 -__ 5 3Ammonium chlorostannate (NH 4) 2SnCl6_-_- 5 4Ammonium chlorotellurate, (NH 4 ) 2TeCl 6__ 8 8Ammonium chromium sulfate dodecahydrate, NH 4Cr(SO4)r 12H 2O____ __________ 6 7Ammonium dihydrogen phosphate,NH4H 2P04 _ __________________________ 4 64Ammonium fluoberyllate, (NH4) 2BeF4___ _ __ 3m 5Ammonium fluoborate, NH4BF4___________ 3m 6Ammonium fluogermanate, (NH 4) 2 GeF 6 ____ 6 8Ammonium fluosilicate (cryptohalite),(NH 4) 2SiF 6 _ __________________________ 5 5Ammonium gallium sulfate dodecahydrate,NH 4 Ga(SO 4) 2-12H2O_____ ______________ 6 9Ammonium iodide, NH 4I_________________ 4 56Ammonium iron sulfate dodecahydrate,NH4Fe(SO4) 2.12H2O_ __________________ 6 10Ammonium metavanadate, NH 4VO3 _ ______ 8 9Ammonium nitrate (ammonia-niter),NH4N03 _ ____________________________ 7 4Ammonium oxalate monohydrate (oxammite),(NH4) 2C2O 4.H 2O_________________ 7 5Ammonium perchlorate, NH 4C1O4 (orthorhombic)_____________________________ 7 6Ammonium perrhenate, NH 4 ReO4 _________ 9 7Ammonium phosphomolybdate tetrahydrate,(NH 4) 3PO4 (MoO3) 12.4H2O_________ 8 10Ammonium sulfate (mascagnite), (NH 4) 2SO 4(revised) _____________________________ 9 8Ammonium zirconium fluoride, (NH 4) 3ZrF 7 - 6 14Antimony, Sb___________________________ 3 14Antimony cerium, CeSb__________________ 4m 40* Further work on this program is in progress, and it is anticipated thatadditional sections will be issued. Therefore, the accumulative index hereis not necessarily the concluding index for the project.m—Monograph 25.A mineral name in ( ) indicates a synthetic sample.Vol. orsec. PageAntimony dysprosium, DySb_ ____________ 4m 41Antimony erbium, ErSb__________________ 4m 41Antimony (III) fluoride, SbF3_ _____________ 2m 4Antimony gadolinium, GdSb______________ 4m 42Antimony(III) iodide, SbI 3—-___----_--_- 6 16Antimony lanthanum, LaSb______________ 4m 42Antimony neodymium, NdSb_____________ 4m 43Antimony (III) "oxide (senarmontite), Sb2Os(cubic)______-____-_____-__-__--_---_- 3 31Antimony (III) oxide, valentinite, Sb2O 3(orthorhombic) ________________________ 10 6Antimony (IV) oxide (cervantite), Sb2O 4_____ 10 8Antinomy(V) Oxide, Sb_O B~-------------- 10 10Antimony praseodymium, PrSb___________ 4m 43Antimony scandium, SbSc________________ 4m 44Antimony selenide, Sb2Ses---____-_-------. 3m 7Antimony (III) sulfide (stibnite), Sb2S3 —____ 5 6Antimony telluride, Sb2Te 3 _----_----__--- 3m 8Antimony thorium, SbTh_________________ 4m 44Antimony thulium, SbTm_ _______________ 4m 45Antimony ytterbium, SbYb_______________ 4m 45Antimony yttrium, SbY__ _______ _________ 4m 46Arsenic, As_____________________________ 3 6Arsenic(III) iodide, AsI3___.______________ 6 17Arsenic trioxide, claudetite, As2O 3 (monoclinic)________________________________ 3m 9Arsenic trioxide (arsenolite), As2O 3 (cubic) __ 1 51Barium, Ba____.________________________ 4 7Barium arsenate, Ba3 (AsO 4)o______________ 2m 6Barium boron oxide, high form, BaB2O4 ____ 4m 4Barium boron oxide, BaB 4O 7______________ 4m 6Barium bromide monohydrate, BaBr2-H 2O__ 3m 10Barium carbonate (witherite), BaCO 3 (orthorhombic)_____________________________ 2 54Barium carbonate, BaCO3 (cubic) at1075 °C______________________________ 10 11Barium fluoride, BaF 2__________________ 1 70Barium fluosilicate, BaSiF 6 __-_______----_ 4m 7Barium molybdate. BaMoO4______________ 7 7Barium nitrate (nitrobarite), Ba(NOs) 2----- 1 81Barium perchlorate trihydrate,Ba(ClO 4) 2 -3H 2O_ ______________________ 2m 7Barium peroxide, BaO 2___________________ 6 18Barium stannate, BaSnO 3 _ _______________ 3m 11Barium sulfate (barite), BaSO 4 _ ___________ 3 65Barium sulfide, BaS_____________________ 7 8Barium titanate, BaTiO 3 _ ________________ 3 45Barium tungstate, BaWO 4 _ _______________ 7 9Barium zirconate, BaZrO3 ________________ 5 8Beryllium aluminum oxide (chrysoberyl),BeAl2O 4 ______________________________ 9 10Beryllium aluminum silicate, beryl,Be3Al2 (SiO3) 6___ _______________________ 9 13Beryllium chromium oxide, BeCr2O4 _ ______ 10 12Beryllium germanate, Be2 GeO4____________ 10 13Beryllium orthosilicate, phenacite, BeSi2O4 __ 8 11Beryllium oxide (bromellite), BeO_________ 1 36Bismuth, Bi______________-______-_.___ 3 20Bismuth cerium, BiCe__________________ 4m 46Bismuth dysprosium, BiDy______________ 4m 47Bismuth erbium, BiEr ___!______________ 4m 47Bismuth fluoride, BiF 3 _ _________________ 1m 7Bismuth holmium, BiHo________________ 4m 48Bismuth(III) iodide, BiI S--------------- 6 20Bismuth lanthanum, BiLa_______________ 4m 48Bismuth neodymium, BiNd______________ 4m 49Bismuth orthophosphate, BiPO 4 (monoclinic)________ _______________________ 3m 11Bismuth orthophosphate, BiPO4 (trigonal), 3m 13Bismuth orthovanadate, low form, BiVO 4(tetragonal) __________________________ 3m 1477
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2,3, AND 4—ContinuedBismuth orthovanadate, high form, BiV0 4(monoclinic)---- __----------_--._-_-_-Bismuth oxy bromide, BiOBr___ __________Bismuth oxychloride (bismoclite), BiOCL ..Bismuth oxyiodide, BiOI_ _______________Bismuth praseodymium, BiPr_ ___________Bismuth sulfide (bismuthinite), BizSs------Bismuth telluride, BiTe _________________Bismuth telluride (tellurobismuthite),Bi/Tea------ --------__-----_ ---------Bismuth trioxide (bismite), alpha Bi_0 3____Cadmium, Cd____--_---__----_-----___-Cadmium bromide, CdBr2 _-_______-_____Cadmium carbonate (otavite), CdCO 3 __ _Cadmium chloride, CdCl 2 _ ______________Cadmium cyanide, Cd(CN) 2 - ------------Cadmium molybdate, CdMoO4-__- _______Cadmium oxide, CdO________-_-__-_____Cadmium per chlorate hexahydrate,Cd(ClO4)r6H 20. ____-__--____-___--__Cadmium selenide, CdSe (hexagonal) _____Cadmium sulfate, CdSO 4 _ _______ _______Cadmium sulfide (greenockite), CdS______Cadmium telluride, CdTe _______________Cadmium tungstate, CdW O 4 _ _ ___________tri-Calcium aluminate, 3CaO-Al2O3 _ ______Calcium aluminate 12:7, 12CaO-7Al 2O 3____Calcium aluminum germanate,Ca3Al 2 (GeO4)3-. ----------------------Calcium bromide hexahydrate, CaBr2-6H2O_Calcium carbonate (aragonite), CaCO 3 (orthorhombic)_ ____________-_-__-___--Calcium carbonate (calcite) CaCO 3 (hexagonal)________ ________________________Calcium chromate, CaCrO 4 _ _____________Calcium chromium germanate,Ca 3Cra (GeO 4)s------- -----------------Calcium chromium silicate (uvarovite),Ca3Cr 2 (SiO4)3- -----------------------Calcium fluoride (fluorite), CaF 2 __ _ _____Calcium fluoride phosphate (fluorapatite),Ca5F(PO4) 3 - -------------------------Calcium formate, Ca(HCO 2 ) 2 - -----------Calcium gallium germanate, Ca3Ga2 (GeO4 ) 3 _Calcium hydroxide (portlandite), Ca(OH) 2 _Calcium iron germanate, Ca3Fe 2 (GeO 4) 3 _ __Calcium iron silicate (andradite),Ca3Fe2Si3O 12 _ ________________________Calcium molybdate (powellite), C a Mo O 4 __Calcium nitrate, Ca (NO3 ) 2 . _____________Calcium oxide, CaO ____________________Calcium sulfate (anhydrite), CaSO4_______Calcium sulfide (oldhamite), CaS._ _______Calcium telluride, CaTe__ _ ______________Calcium tungstate, scheelite, CaWO4-__---Carbon, diamond, C--____----____----__Cerium arsenate, CeAsO 4 ________________Cerium arsenide, Ce As_ _________________Ceriurn(III) chloride, CeCl3---___ _______Cerium(III) fluoride, CeF 3______ _________Cerium, magnesium nitrate 24-hydrate,Ce2 Mg 3 (NO 3 ) 12.24H 2O_ ________________Cerium niobium titanium oxide (eschynite),CeNbTi0 6 ____ ___________ ____________Cerium nitride, CeN______________ ______Cerium (IV) oxide (cerianite) CeO 2 _ _ _____ra— Monograph 25.A mineral name in ( ) indicates a synthetic sample.Vol. or Vol. orsec. Page sec. PageCerium phosphide, CeP_________________ 4m 523m 14 Cerium(III) vanadate, CeVO 4____________ 1m 98 14 Cesium aluminum sulfate dodecahydrate,4 54 CsAl(S0 4) 2-12H 2O _-_, — -___________ 6 259 16 Cesium bromate, CsBrO3-- — ----------__ 8 184m 49 Cesium bromide, CsBr__________________ 3 494 23 Cesium bromoosmate (IV), Cs 2OsBr^___ 2m 104m 50 Cesium bromoplatinate, Cs 2PtBr6_______ 8 19Cesium bromoselenate, Cs2SeBr6__________ 8 203m 16 Cesium bromotellurate, Cs 2TeBr6_________ 9 243 16 Cesium chlorate, CsClO3 _ _______________ 8 203 10 Cesium chloride, CsCl______-__-____-____ 2 449 17 Cesium chloroosmate (IV), Cs 2OsCl 6------ 2m 117 11 Cesium chloroplatinate, Cs 2PtCU--------- 5 149 18 Cesium chlorostannate, Cs2SnCl
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2,3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2,3, AND 4—ContinuedVol. orsec. PageCopper(I) chloride (mantokite), CuCL.--- 10 35Copper(I) iodide (marchite), Cul________- 4 38Copper(I) oxide (cuprite), Cu2O__________ 2 23Copper(II) oxide (tenorite), CuO________ 1 49Copper sulfate (chalcocyanite), CuSO4____ 3m 29Copper(II) sulfide (covellite), CuS______ 4 13Dysprosium arsenate, DyAsO4 ___________ 3m 30Dysprosium arsenide, DyAs____________ 4m 53Dysprosium gallium oxide 3:5,Dy3Ga2(GaO4)3---------------------- 2m 15Dysprosium nitride, DyN_______________ 4m 53Dysprosium sesquioxide, Dy2O3___________ 9 30Dysprosium telluride, DyTe_____________ 4m 54Dysprosium vanadate, DyVO4__________ 4m 15Erbium arsenate, ErAsO4____________ 3m 31Erbium arsenide, ErAs__________________ 4m 54Erbium gallium oxide 3:5, Er3Ga2 (GaO4) 3-- 1m 12Erbium manganite, ErMnO3_____________ 2m 16Erbium nitride, ErN__________________ 4m 55Erbium phosphate, ErPO4_______________ 9 31Erbium sesquioxide, Er2O3_______________ 8 25Erbium telluride, ErTe________________ 4m 55Europium arsenate, EuAsO4 _____________ 3m 32Europium (III) chloride, EuCl 3 _-_ — _____ 1m 13Europium gallium oxide 3:5, Eu3Ga2(GaO4) 3 2m 17Europium nitride, EuN_________________ 4m 56Europium oxide, EuO___________________ 4m 56Europium oxychloride, EuOCl-__________ 1m 13Europium (III) vanadate, EuVO4 ________ 4m 16Gadolinium arsenate, GdAsO4____________ 4m 17Gadolinium arsenide, GdAs______________ 4m 57Gadolinium fluoride, GdF3-______________ 1m 14Gadolinium gallium oxide 3:5,Gd3Ga2 (GaO4) 3 _________--___------__ 2m 18Gadolinium nitride, GdN______________ 4m 57Gadolinium oxide, Gd2O3 ________________ 1m 16Gadolinium oxychloride, GdOCL_________ 1m 17Gallium, Ga__________-_________-_---__ 2 9Gallium arsenide, GaAs_________________ 3m 33Gallium antimonide, GaSb______________ 6 30Gallium oxide, alpha, Ga2O 3 _____________ 4 25Gallium phosphate (a-quartz type), GaPO4 _ 8 27Germanium, Ge__ _____________________ 1 18Germanium dioxide, GeO2 (hexagonal)(low form).________________________ 1 51Germanium dioxide, GeO2 (tetragonal)(high form)____________ ______________ 8 28Germanium iodide, GeI 2_________________ 4m 58Germanium (IV) iodide, GeI 4 ____-___--__ 5 25Gold, Au______________________________ 1 33Gold antimony 1:2 (aurostibite), AuSb2,___ 7 18Gold (I) cyanide, AuCN_.______________ 10 33Gold tin, 1:1 AuSn_________________-_-_ 7 19Hafnium, Hf_._________________________ 3 18Holmium arsenate, HoAsO4__________--_- 3m 34Holmium ethylsulfate nonahydrate,Ho[(C2H6)SO4]39H 2O_ -__-_-______---_- 1m 18Holmium nitride, HoN_ _______________ 4m 58Holmium selenide, HoSe_______________ 4m 59Holmium sesquioxide, Ho 2O3_____________ 9 32Holmium vanadate, HoVO4____--_-_----- 4m 18Indium, In. ___________________________ 3 12Indium antimony, InSb.________________ 4 73Indium arsenide, InAs_____-__-------_-_ 3m 35Indium oxide, In2O3___________________ 5 26Indium phosphate, InPO4 _______________ 8 29m—-Monograph 25.A mineral name in ( ) indicates a synthetic sample.Vol. orsec. Pagelodic acid, HIO3______________________ 5 28Iodine, I3~____________________________ 3 16Indium, Ir____________________________ 4 9Indium dioxide, IrOa__„_________________ 4m 19Iron, alpha Fe______-__________________ 4 3Iron arsenide, FeAs_____________________ 1m 19Iron arsenide (loellingite), FeAs2________ 10 34Iron bromide, FeBr2 ____________________ 4m 59Iron iodide, FeI2 _______________________ 4m 60Iron sulfide (pyrite), FeS2 ___-_-__-__-___ 5 29Lanthanum arsenate, LaAsO4 ____________ 3m 36Lanthanum arsenide. La As ______________ 4m 60Lanthanum bora te, La BO3 ___ ___________ 1m 20Lanthanum chloride, LaCl3______________ 1m 20Lanthanum fluoride, LaF3 _ ______________ 7 21Lanthanum magnesium nitrate 24-hydrate,La2Mg3(NO3) 12.24H 2O_______ ___________ 1m 22Lanthanum niobium titanium oxide,LaNbTiO,,-.-. _______________________ 3m 37Lanthanum nitride, LaN________________ 4m 61Lanthanum oxide, La2O3___-___________ 3 33Lanthanum oxy chloride, La OC1_ _________ 7 22Lanthanum selenide, LaSe_______________ 4m 61Lead, Pb____-__-_-_-__________________ 1 34Lead boron oxide, PbB4O7 _______________ 4m 19Lead bromide, PbBr2_________________ 2 47Lead carbonate (cerrussite), PbCO3 _______ 2 56Lead chloride (cotunnite), PbCl2 _________ 2 45Lead formate, Pb(HCO2) 2 _ _-_--.----_____ 8 30Lead fluochloride (matlockite), PbFCl. _ _ _ 1 76Lead fluoride, alpha PbF2 (orthorhombic) 5 31Lead fluoride, beta PbF2 (cubic)________ 5 33Lead (II), iodide, PbI 2 __________________ 5 34Lead molybdate (wulfenite), PbMoO4__ _ _ _ 7 23Lead monoxide (litharge), PbO (red) tetragonal. _______________________________ 2 30Lead monoxide (massicot), PbO (yellow)(orthorhombic)____ ___________________ 2 32Lead nitrate, Pb(NO3) 2________________ 5 36Lead (II, III) oxide (minium), Pb 3O4 -_ —- 8 32Lead phosphate hydrate, Pb5(PO4) 3OH_ - _ _ 8 33Lead selenide (clausthalite), PbSe_________ 5 38Lead sulfate (angelsite), PbSO4.__________ 3 67Lead sulfide (galena), PbS._ _____________ 2 18Lead titanate, PbTiO3 __________________ 5 39Lead tungstate (stolzite), PbWO4_________ 7 24Lithium arsenate, Li3AsO4_____-_-____-- 2m 19Lithium bromide LiBr__________________ 4 30Lithium chloride, LiCl_____._--__--_-_-- 1 62Lithium fluoride, LiF___________________ 1 61Lithium iodate, LiIO3__________„________ 7 26Lithium molybdate, Li2MoO4 (trigonal) ___ 1m 23Lithium oxide, Li2O___________________ 1m 25Lithium nitrate, LiNO3________________ 7 27Lithium perchlorate trihydrate,LiC104.3H 20____ _______-__---.-.-..- 8 34Lithium phosphate, low form, (lithipphosphate),Li3PO4 (orthorhombic) revised— 4m 21Lithium phosphate, high form, Li3PO4____- 3m 39Lithium sulfate monohydrate, Li2SO4-H2O- 4m 22Lithium trimetaphosphate trihydrate,Li3P3(V3H20_ __-______-_--_---.--..- 2m 20Lithium tungstate, Li2WO4 (trigonal) ______ 1m 25Lithium tungstate hemihydrate,Li2WO4-HH20___________------------- 2m 20Lutetium gallium oxide 3:5, Lu3Ga2(GaO4) 3 _ 2m 22Lutetium manganite, LuMnO3 ___________ 2m 23Lutetium nitride, LuN____.__--..------- 4m 62Lutetium oxide, Lu2O3_______-___--_-_-- 1m 2779
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4—ContinuedMagnesium, Mg___ _______________________Magnesium alumina te (spinel), MgAl2O4____Magnesium aluminum silicate (pyrope),Mg3Al2 (SiO4) 3 -_- ---------- -----------Magnesium aluminum silicate (low cordierite),Mg2ALjSi5Oi S (orthorhombic) ---___Magnesium aluminum silicate (high cordierite),Mg2Al4Si6Oi 8 (hexagonal) _________Magnesium ammonium phosphate hexahydrate,(struvite), MgNH 4PO 4-6H 2q______Magnesium boron oxide, Mg2B 2O5 (triclinic)-Magnesium bromide, MgBr2 _ -------------Magnesium carbonate (magnesite), MgCO3 _Magnesium chromite (picrochromite) ,MgCraO 4 - ---------------------------Magnesium fluoride (sellaite), MgF2 _ ______Magnesium gallate, MgGa 2O4 . _ ___________Magnesium germanate, Mg2GeO4 (cubic) ___Magnesium germanate, Mg2GeO4 (orthorhombic)_____________________________Magnesium hydroxide (brucite), Mg(OH) 2 __Magnesium oxide (periclase), MgO_ _______Magnesium silicate, enstatite, MgSiO 3 _ ___Magnesium silicate (forsterite) , Mg2SiO4 _ _Magnesium silicate fluoride (norbergite) ,Mg2SiO4-MgF 2 _ _______________________Magnesium silicate fluoride (humite),3Mg2SiO 4-MgF2 _ ______________________Magnesium sulfate heptahydrate (epsomite),MgSO 4 -7H2O_____ _____________________Magnesium sulfide, MgS_ _______ _________Magnesium tin, Mg2Sn___ ________________Magnesium titanate (geikielite) , MgTiO3 ___Magnesium tungstate, MgWp4___--_-___-_Manganese alumina te (galaxite), MnAl2O4 __Manganese bromide, MnBr2 ______________Manganese (II) carbonate (rhodochrosite),Manganese ferrite (jacobsite), MnFe2O4 - ___Manganese iodide, MnI 2 __ ______________Manganese (II) oxide (manganosite), MnO__Manganese (III) oxide (partridgeite), Mn 2O 3 .Manganese selenide, MnSe_ ______________Manganese sulfide (alabandite), alpha MnS_Manganese (II) tungstate (huebnerite) ,MnWO4— ----------------------------Mercury (I) bromide, Hg2Br2____ __________Mercury (I) chloride (calomel), Hg2Cl2 ______Mercury (II) chloride, HgCl2 ____ __________Mercury(II) cyanide, Hg(CN) 2 _ _________Mercury (II) fluoride, HgF2 _____ __________Mercury(I) iodide, Hgl__________________Mercury (II) iodide, HgI 2___ ______________Mercury (II) oxide (montroydite), HgO (revised) _ _____________________________Mercury (II) selenide (tiemannite), HgSe___Mercury (II) sulfide (cinnabar), HgS (hexagonal) ___ _______________„__________Mercury(II) sulfide (meta cinnabar), HgS(cubic) _______________________________Meta boric acid, HBO 2 (cubic) __ _________Molybdenum, Mo________ _______________Molybdenum disulfide (molybdenite), MoS2 _Molybdenum trioxide (mofybdite), MoO 3 __Neodynium arsenate, NdAsO4 _ __________Neodymium arsenide, Nd As ______________m—Monograph 25.A mineral name in ( ) indicates a synthetic sample.Vol. or Vol. orsec. Page sec. Page1 10 Neodymium borate, NdBO3____________ 1m 322 35 Neodymium chloride, NdCl3 ______________ 1m 33Neodymium ethylsulfate nonahydrate,4m 24 Nd[(C2H 5)SO 4] 3.9H2O__________________ 9 41Neodymium fluoride, NdF3 _______________ 8 361m 28 Neodymium gallium oxide 3:5,Nd3Ga2(Ga0 4)«—--------------------- 1m 341m 29 Neodymium oxide, Nd2O3 _ _______________ 4 26Neodymium oxychloride, NdOCl__________ 8 373m 41 Neodymium vanadate, NdVO4 ___ _________ 4m 304m 25 Neptunium nitride, NpN_________________ 4m 644m 62 Nickel, Ni—------_ — — — — -- — _---_____ 1 137 28 Nickel alumina te, NiAl2O 4 _ _______________ 9 42Nickel arsenic 1:2 (rammelsbergite), NiAs2 __ 10 429 34 Nickel arsenic sulfide (gersdorffite), NiAsS__ 1m 354 33 Nickel(II) carbonate, NiCO 3 (trigonal)_____ 1m 3610 36 Nickel ferrite i.trevorite), NiFe2O 4 _________ 10 4410 37 Nickel fluosilicate hexahydrate, NiSiF6-6H2O_ 8 38Nickel gallate, NiGa 2O 4 . _________________ 10 4510 38 Nickel germanate, Ni 2GeO4 _______________ 9 436 30 Nickel(II) oxide (bunsenite), NiO________ 1 471 37 Nickel sulfate, NiSO*--------- —-------- 2m 266 32 Nickel sulfate hexahydrate (retgersite),1 83 NiSO4-6H 2O_____-____________________ 7 36Nickel sulfide, millerite, NiS______________ 1m 3710 39 Nickel tungstate, NiWO 4 _ ________________ 2rn 27Niobium silicide, NbSi2___________________ 8 391m 30 Osmium, Os_---_ — — — — — —— — — — __._ 4 8Palladium, Pd_ _________________________ 1 217 30 Palladium oxide, PdO__________________ 4 277 31 Platinum, Pt__________________________ 1 315 41 Plutonium arsenide, PuAs._______________ 4m 655 43 Plutonium phosphide, PuP_ ______________ 4m 651 84 Plutonium telluride, PuTe________________ 4m 669 35 Potassium acid phthalate,4m 63 C6H4 (COOH)(COOK).__._____________ 4m 30Potassium aluminum sulfate dodecahydrate7 32 (alum), KA1(SO4) 2 .12H 2O_____„________ 6 369 36 Potassium borohydride, KBH4 ____________ 9 444m 63 Potassium bromate, KBrO3 _______________ 7 385 45 Potassium bromide, KBr_________________ 1 669 37 Potassium bromoplatinate, K2PtBr6______ 8 4010 41 Potassium bromoselenate, K2SeBr6___-__-__ 8 414 11 Potassium chlorate, KC1O3 _ ______________ 3m 42Potassium chloride (sylvite), KC1__________ 1 652m 24 Potassium chloroplatinate, K 2PtCl 6 ________ 5 497 33 Potassium chlororhenate, K2 ReCl6_-------_ 2m 281 72 Potassium chlororuthenate (IV), K2 RuCl6--- 10 461 73 Potassium chlorostannate, K2SnCl 6 ________ 6 386 35 Potassium chromium sulfate dodecahydrate,2m 25 KCr(SO4) 2 .12H2O_____ _________________ 6 394 49 Potassium cobaltinitrite, K3Co(NO2)6—_-_- 9 451 74 Potassium cyanate, KCNO_______________ 7 39Potassium cyanide, KCN_______________ 1 779 39 Potassium dihydrogen arsenate, KH2AsO 4 ___ 1m 387 35 Potassium dihydrogen phosphate, KH2PO4 __ 3 69Potassium fluogermanate, K2 GeF 6 __ _______ 6 414 17 Potassium fluoplatinate, K2PtF6_ ________„_ 6 42Potassium fluoride, KF_________________ 1 644 21 Potassium fluosilicate (hieratite), K2SiF6 ____ 5 504m 27 Potassium fluotitanate, K2TiF 6____________ 7 401 20 Potassium heptafluozirconate, K3ZrF 7______ 9 465 47 Potassium hydroxide, KOH at 300 ° C_____ 4m 663 30 Potassium hydroxy-chlororuthenate,4m 28 K4 .Ru2Cl 10O.H 2O_____ __________________ 10 474m 64 Potassium iodide, KI___________________ 1 68Potassium lithium sulfate, KLiSO4_________ 3m 43Potassium metaperiodate, KIO4 ___________ 7 41Potassium nitrate (niter), KNO3_________ 3 5880
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1, 2, 3, AND 4—ContinuedVol. orsec. PagePotassium nitroso chlororuthenate,K2 RuCl 6NO_ ____--__-_--_------_----- 2m 29Potassium perchlorate, KC1O4___________ 6 43Potassium perchromate, K3CrO 8___________ 3m 44Potassium permanganate, KMnO4 _________ 7 42Potassium perrhenate, KReO 4____________ 8 41Potassium phosphomolybdate tetrahydrate,K2Pp4/Mo0 3),_4H20______ _____________ 8 43Potassium sulfate (arcanite), K2SO4_-___-_- 3 62Potassium thiocyanate, KCNS____________ 8 44Potassium zinc decavanadate 16 hydrate,K2Zn2V, 0O 28 .16H2q___ ______------_----- 3m 45Potassium zinc fluoride, KZnF3____________ 5 51Praseodymium arsenate, PrAsCX----------- 4m 32Praseodymium arsenide, PrAs_____________ 4m 67Praseodymium chloride, PrCl 3---_--------- 1m 39Praseodymium fluoride, PrF3______________ 5 52Praseodymium oxychloride, PrOCL________ 9 47Praseodymium sulfide, PrS_______________ 4m 67Rhenium, Re.__.-___-__---------------- 2 13Rhodium, Rh______-_-____- _____-_--____ 3 9Rubidium aluminum sulfate dodecahydrate,RbAl(SO4) 2 -12H 2O______ _______--__--__ 6 44Rubidium bromate, RbBrO3 _____-----_-_- 8 45Rubidium bromide, RbBr________________ 7 43Rubidium bromotellurate, Rb2TeBr6-_-____ 8 46Rubidium chlorate, RbClO 3-___.-__..-__. 8 47Rubidium chloride, RbCL-—------------ 4 41Rubidium chloroplatinate, Rb2PtCl6_______ 5 53Rubidium chlorostannate, Rb2SnCl6_______ 6 46Rubidium chlorotellurate, Rb2TeCl6 _______ 8 48Rubidium chromate, Rb2CrO4___--________ 3m 46Rubidium chromium sulfate dodecahydrate,RbCr(SO 4) 2 42H2O_____ ________________ 6 47Rubidium fluoplatinate, Rb2PtF 6 _ _________ 6 48Rubidum fluosilicate, Rb2SiF 6 _ ____________ 6 49Rubidium iodide, Rbl, __________________ 4 43Rubidium perchlorate, RbClO4—__________ 2m 30Rubidium periodate, RbIO 4 ---__-------__ 2m 31Rubidium sulfate, Rb2SO4 ________________ 8 48Ruthenium, Ru_________________________ 4 5Samarium arsenate, SmAsO4______________ 4m 33Samarium arsenide, Sm As ________________ 4m 68Samarium chloride, SmCl3 ________________ 1m 40Samarium fluoride, SmF3_________________ 1m 41Samarium gallium oxide 3:5, Sm3 Ga2 (GaO 4) 3- 1m 42Samarium oxide, Sm 2O3 (cubic)„___________ 4m 34Samarium oxychloride, SmOCL___________ 1m 43Scandium arsenate, Sc AsO 4 ^_______--_____ 4m 35Scandium arsenide, Sc As ________________ 4m 68Scandium oxide, Sc2O 3 ___________________ 3 27Scandium phosphate, ScPO4 ______________ 8 50Selenium, Se____________________________ 5 54Selenium dioxide (selenolite), SeO2-_-______ 1 53Silicon, Si--_--__-_-_____---_----------- 2 6Silicon dioxide, alpha or low quartz, SiO2(hexagonal)___________________________ 3 24Silicon dioxide (alpha or low cristobalite),SiO2 (revised) (tetragonal) ______________ 10 48Silicon dioxide (beta or high cristobalite),SiO 2 (cubic)_____-____________-_-___-__ 1 42Silver, Ag______________________________ 1 23Silver antimony telluride, AgSbTe2 _ _______ 3rn 47Silver arsenate, Ag3AsO4 __________________ 5 56Silver bromate, AgBrO3 _ _________________ 5 57Silver bromide (bromyrite), AgBr_________ 4 46m—Monograph 25.A mineral name in ( ) indicates a synthetic sample.Vol. orsec. PageSilver carbonate, Ag2CO3__--____________ 1m 44Silver chlorate, AgClO3_________________ 7 44Silver chloride, (cerargyrite), AgCL________ 4 44Silver iodide (iodyrite), Agl (hexagonal) ____ 8 51Silver iodide, gamma, Agl (cubic)_________ 9 48Silver metaperiodate, AgIO4 ______________ 9 49Silver molybdate, Ag2 MoO4_______________ 7 45Silver nitrate, AgNO3 ____________________ 5 59Silver nitrite, AgNO,___________________ 5 60Silver oxide, Ag2O_______________________ 1m 45Silver (II) oxynitrate, Ag 7O sNO3 _ _________ 4 61Silver perrhenate, AgReO4 _ _______________ 8 53Silver phosphate, Ag3PO4 _ ________________ 5 62Silver selenate, Ag2SeO 4 ______________:___ 2m 32Silver sulfate, Ag2SO4 _ ___________________ 7 46Silver sulfide (argentite), Ag2 S_ ___________ 10 51Sodium acid fluoride, NaHF2____________ 5 63Sodium borohydride, NaBH 4 ______________ 9 51Sodium bromate, NaBrO3 __ ____„______„__ 5 65Sodium bromide, NaBr___________________ 3 47Sodium carbonate monohydrate(thermonatrite), Na2CO3 .H 2O__________ 8 54Sodium chlorate, NaClO3___,_„___________ 3 51Sodium chloride (halite), NaCL___________ 2 41Sodium cyanate, NaCNO.______________ 2m 33Sodium cyanide, NaCN (cubic) ___________ 1 78Sodium cyanide, NaCN (orthorhombic) at6 ° C_________________________________ 1 79Sodium fluoride (villiaumite), NaF_ _______ 1 63Sodium hydroxide, NaOH at 300 ° C_______ 4m 69Sodium iodate, NaIO3____________________ 7 47Sodium iodide, Nal______________________ 4 31Sodium magnesium aluminum boron hydroxysilicate, dravite,NaMg3Al 6B 3 Si6O27 (OH) 4 ________________ 3m 47Sodium metaperiodate, NaIO4 _____________ 7 48Sodium molybdate, Na2MoO4 ______ _______ 1m 46Sodium nitrate (soda-niter), NaNO 3 _ ______ 6 50Sodium nitrite, NaNO 2____-____________._ 4 62Sodium orthotungstate (VI) dihydrate,Na2WO 4 -2H 2O____ _____________________ 2m 33Sodium perchlorate, NaClO4 (orthorhombic) _ 7 49Sodium sulfate (thenardite), Na2SO4 _______ 2 59Sodium sulfite, Na2SO 3 _ -_-_----__________ 3 60Sodium tetrametaphosphate tetrahydrate,alpha, Na 4P4Oir4H 2 O (monoclinic)_______ 10 52Sodium tetrametaphosphate tetrahydrate,beta, Na 4P4 O 12-4H 2 O (triclinic)___________ 2m 35Sodium trimetaphosphate, Na 3P3O9 ________ 3m 49Sodium trimetaphosphate monohydrate,Na 3P3O9-H 2O___-__ ____________________ 3m 50Sodium tungstate, Na 2 WO4 _______________ 1m 47Strontium arsenate, Sr3 (AsO4) 2 _-__________ 2m 36Strontium 1:1 borate, SrO-B2O3 _ __________ 3m 53Strontium boron oxide, SrB 4 O 7 ____________ 4m 36Strontium bromide hexahydrate, SrBr2-6H 2O. 4 60Strontium carbonate (strontianite), SrCO 3___ 3 56Strontium chloride, SrCl2_________________ 4 40Strontium chloride hexahydrate, SrCl2-6H 2 O_ 4 58Strontium fluoride, SrF2_________________ 5 67Strontium formate, Sr (CH62)2------------ 8 55Strontium formate dihydrate,Sr(CHO2) 2-2H 2O (orthorhombic)_________ 8 56Strontium iodide hexahydrate, SrI 2-6H 2O_._ _. 8 58Strontium molybdate, SrMoO4 ____________ 7 50Strontium nitrate, Sr(NO 3) 2_____________ 1 80Strontium oxide, SrO_ ___________________ 5 68Strontium peroxide, SrO2_________________ 6 5281
CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1,2,3, 4, 5, 6, 7, 8, 9, 10,MONOGRAPH 25, SECTIONS 1,2, 3, AND 4—ContinuedVol. orsec. PageStrontium sulfate (celestite), SrSO4 _---.-_-_ 2 61Strontium sulfide, SrS—— ___-_-__-___-___ 7 52Strontium telluride, SrTe_______________ 4m 69Strontium titanate, SrTiO3--------------- 3 44Strontium tungstate, SrWO4-------------- 7 53Strontium zirconate, SrZrO3———__________ 9 51Sulfamic acid, NH 3SO3------------------- 7 54Sulfur, S-.--- — ----- —---------------- 9 54Tantalum, Ta___------------------------ 1 29Tantalum Silicide, TaSij.—___-___-__--__ 8 59Tellurium, Te...--. —----------------- 1 26Tellurium (IV) oxide (paratellurite), TeO2(tetragonal) ——____--___--_---_-___--_ 7 56Tellurium (IV) oxide, paratellurite, TeO2(tetragonal) __________--_------------_ 10 55Tellurium (IV) oxide, tellurite, TeO2 (orthorhombic)_____--__.--------__---------- 9 57Terbiumarsenate, TbAsO4 _ _______________ 3m 54Terbium nitride, TbN----- — — -- —— 4m 70Thallium aluminum sulfate dodecahydrate,T1A1(S04) 2-12H 20.___ _--_-- ____________ 6 53Thallium (I) arsenate, Tl3AsO4------------ 2m 37Thallium (I) bromate, TIBrOa—---------- 8 60Thallium bromide, TlBr_ _ ______________ 7 57Thallium (I) chlorate, T1C1O 3 _ ____________ 8 61Thallium (I) chloride, TlCl-_____----__-__ 4 51Thallium chloroplatinate, Tl2PtCl«- -__._-__ 5 70Thallium chlorostannate, Tl2SnCl 6- ________ 6 54Thallium chromate, Tl2CrO 4 ----_---_____- 3m 54Thallium chromium sulfate dodecahydrate,TlCr(SO4) 2.12H 2O--- —---------------- 6 55Thallium fluosilicate, Tl2SiF0._- ---.-______ 6 56Thallium gallium sulfate dodecahydrate,TlGa(S04) 2-12H 20__—----------------- 6 57Thallium (I) iodate, TilOs—------------ 8 62Thallium (I) iodide, Til (orthorhombic)____ 4 53Thallium (I) nitrate, UNO.——---------- 6 58Thallium (III) oxide, T12 O3 - __------______ 2 28Thallium (I) percholorate, T1C1O4 - --______ 2m 38Thallium (I) phosphate, T13PO4 _ _-_-__-___ 7 58Thallium (III) phosphate, T1PO4 _ ____-.__. 7 59Thallium (I) sulfate, T1 2SO4 -_____________ 6 59Thallium (I) thiocyanate, T1CNS—________ 8 63Thallium (I) tungstate, T1 2WO4 - _____--.-_ 1m 48Thorium arsenide, ThAs_____„__________ 4m 70Thorium oxide (thorianite), ThO 2________ 1 57Thulium arsenate, TmAsO4 ______--_-_____ 3m 56Thulium arsenide, TmAs.________________ 4m 71Thulium nitride, TmN________-__________ 4m 71Thulium sesquioxide, Tm2O 3 ______________ 9 58Thulium telluride, TmTe_ _ __--______.__ 4m 72Tin, alpha, Sn (cubic)___________________ 2 12Tin, beta, Sn (tetragonal)______________ 1 24Tin arsenide, SnAs______________________ 4m 37Tin (II) fluoride, SnF2_______-______-- _ 3m 51Tin (IV) iodide, SnI 4 __________._________ 5 71m— —Monograph 25.A mineral name in ( ) indicates a synthetic sample.Tin (II) oxide, SnO_.___--.--_-__-_____Tin (IV) oxide (cassiterite), SnQ2________Tin (II) telluride, SnTe-_--____-_________Titanium, Ti_ ______-..__„_-____---_-_._-Titanium dioxide (anatase), TiOj (tetragonal)—— _________ — ________________Titanium dioxide, brookite, TiO2 (orthorhombic)_____________________________Titanium dioxide (rutile), TiO2 (tetragonal).Titanium (III) oxide, TiOi. 5i5 ___.-________Titanium silicide, TisSi3__---__-__________Titanium sulfide, TiS2___________,„.__Tungsten, W________________________Tungsten sulfide (tungstenite), WS2___.__Uranium dioxide (uraninite), UO2---------Uranium telluride, UTe__________________Urea, CO (NH 2) 2-.___.__________________Vanadium (V) oxide, V205----------------Ytterbium arsenate, YbAsO4______________Ytterbium arsenide, YbAs________________Ytterbium gallium oxide 3:5,Yb3Ga2(GaO4) 3------------ ___________Ytterbium nitride, YbN__________________Yttrium arsenate, YAsO4____-_---________Yttrium arsenide, YAs___________________Yttrium gallium oxide 3:5, Y3Ga2 (GaO4) 3 ___Yttrium, oxide, Y2 O3___________________Yttrium oxychloride, YOGI._-_______.___Yttrium phosphate (xenotime), YPO4 _Yttrium telluride, YTe_________________Zinc, Zn______________________________Zinc aluminate (gahnite), ZnA12 O4 ----_____Zinc antimony oxide, ZnSb2 O4 _--__-_______Zinc borate, ZnB2O4 _____________________Zinc carbonate, smithsonite, ZnCO3 _Zinc cyanide, Zn (CN) 2 ____-_____________Zinc fluoride, ZnF2_______________________Zinc fluosilicate hexahydrate, ZnSiF6-6H 2O__Zinc germanate, Zn2GeO4 ____-_______-___„Zinc iodide, ZnI2 ________________________Zinc orthosilicate (willemite), Zn2SiO4 ______Zinc oxide (zincite), ZnO_____________„___Zinc pyrosilicate hydrate, hemimorphite,Zn4 (OH) 2Si 2O 7.H 2O._-_____ _____________Zinc selenide, ZnSe__„-_________-________Zinc sulfate (zinkosite), ZnSO4 ____________Zinc sulfate heptahydrate (goslarite),ZnSO4.7H 2O_.__—_„______________-___Zinc sulfide, (wurtzite), alpha ZnS (hexagonal) __,_„___________________________Zinc sulfide, (sphalerite), beta ZnS (cubic)--Zinc telluride, ZnTe.___________________Zinc tungstate, (sanmartinite), ZnWO 4-____Zirconium, alpha, Zr_____________________Zirconium iodate, Zr(IO3) 4________________Zirconium phosphide, ZrP________________Zirconium silicate, zircon, ZrSiO4 __________Zirconium sulfate tetrahydrate,Zr(SO4) 2-4H2O. _______________________Vol. orsec. Page4 28173 54613m1984m1824m784m4m1m4m2m4m1m31m84m124m1856810972237223m2m21m4m4465744596472286533736166387349743974502851677516383983697360705660622562236471141658401151756866CUMULATIVE MINERAL INDEXAlabandite MnS_______Alum, KA1(SO4) 2-12H 2O__Ammonia-niter, NH 4NO3 _Anatase, TiO2__.__-___Vol. orsec.4671Page1136446Andradite, Ca 3Fe2Si 3Oi2 _Anglesite, PbSO4 _______Anhydrite, CaSO 4 _____.Aragonite, CaCO 3_--.-.Vol. orsec. Page9 22343 67655382
Argentite, Ai&S.----_-------.--.--------Arcanite, K2SO4_________________________Arsenolite, As2O3 ________________________Aurostibite. AuSb2_- - _---________-_-__-*Azurite, Cu3 (OH) 2 (CO3) 2______________Barite, BaSO4—_.--__-___.--.---.-.Berlinite, A1PO4— ._..._______________*Beryl, Be3Al2 (Sipah------_-----------Bismite, (alpha) Bi2O3__________________Bismoclite, BiOCl_______________________Bismuthinite, Bi2S3-___-___---___--____-_Bohmite, A12O3.H2O______________________Bromellite, BeO—-----------------------Bromyrite, AgBr_______._-_____--_____-_*Brookite, TiQ2-------------------------Brucite, Mg(OH) 2 ___ ____________________Bunsenite, WiO-_---_--_---_____________Calcite, CaCO3-____ ____________________Calomel, Hg2Cl2_______________________Cassiterite, SnO2----------._-------_-_-_Celestite, SrSO4_------------------------Cerargyrite, AgCl___--__________-.,_____-Cerianite, CeO2 _-_______-_-______-__-___Cerussite, PbCO3._______________________Cervantite, Sb2O4_-_--_-_-_---_-_______--Chaleocyanite, CuSO4__________________Chloraluminite, A1C13-6H2(X______________ChrysoberyL BeAl2O4 -_________-___-_-_--Cinnabar, HgS-_ ________________________*Claudetite, As2O3__ _____________________Clausthalite, PbSe_____________________Cordierite, Mg2Al4SisOi8 (orthorhombic)Cordierite, Mg2 Al4Si5Oi 8 - (hexagonal) _______Corundum, A12O3__ ______________________Cotunnite, PbCl2________________________CoveUite, CuS..........______________Cristobalite, (alpha or low) SiO 2 (revised) _ _Cristobalite, (beta or high) SiO2__.________Cryptohalite, (NH 4) 2SiF6 _ - _______________Cuprite, Cu2O_________________________*Diamond, C--_____-___--__-_-_-___---_*Diaspore, A12O 3-H2O___--___-_-_-___----*Dra vite, Na Mg3Al9B 3Si6O27(OH) 4 . ________*Enstatite, MgSiOs----------------------Epsomite, MgSO4-7H2O-_______________Eschynite, CeNbTiO6____________________Ettringite, Al2O3.6CaO-3S03-3lH2O_ .......Fluorapatite, Ca5F(PO4) 3_...._--.-_._..--Fluorite, CaF2 ___________________,-_._Forsterite, Mg2SiO4._-.-_---_-__.-_-_-_--Galaxite, MnAlaO4—--------------------Galena, PbS_______________,______._._Gahnite, ZnAl2O4>___„____..___.__.......Geikielite, MgTiO 8----------------------Gersdorffite, NiAsS______________________Goslarite, ZnS0 4.7H2O______.____-____.--Greenockite, CdS_____._^________-_^___Halite, NaCL..—-- — . — , — -------*Hemimorphite, Zn4 (OH) 2Si2O7-H2O_. _. _ _Hieratite, K2SiF6 ________________________Huebnerite, MnWO4_____________________Humite, 3Mg2Si04*MgF2......._....._--.lodyrite, Agl___________________________Jacobsite, MnFe2O 4______________________Litharge, PbO (red)_-.__________________Lithiphosphate, Li5PO4 ___________________Loellingite, FeAs2______________________Magnesite, MgCO3 ______________________Malachite, Cu2(OH) 2CO3 --___________-_--Manganosite, MnO______________________Marshite, Cul__________________________* Natural mineral,m—Monograph 25.CUMULATIVE MINERAL INDEX—ContinuedVol. orVol. orsec. Pagesec.10 51 Mascagnite, (NH 4) 2SO4 (revised)......... 93 62 Massicot, PbO (yellow).._.____.._______ 211 51 Matlockite, PbFCK..._________________7 18 Metacinnabar, HgS___-_.____-_-_______ 410 30 *Millerite, NiS....._.__._--________. 1m3 65 Minium, Pb3O4_._......______________ 810 3 Molybdenite, MoS2_-_._________________ 59 13 Molybdite, MoO3__..................... 33m 17 Montroydite, HgO (revised)_____________ 94 54 Mullite, SAljOs^SiOj-.-.................. 3m4 23 Nantokite, CuCl_.__................. 43 38 Niter, KNO3_-__--_____________________ 31 36 Nitrobarite, Ba(NO3) 2___................14 46 Norbergite, Mg2SiO4.MgF2—............. 103m 57 Oldhamite, CaS---_-_---_._.___________ 76 30 Otavite, CdCO8......._._.............. 71 47 Oxammite, (NH 4) 2C2O4-H 2O__.......... 72 51 *Paratellurite, TeO2 _-_...______________ 101 72 Paratellurite, TeO2 ___ ______________.__„ 71 54 Partridgeite, Mn2O3___________________ 92 61 Periclase, MgO......_________________14 44 *Phenacite, Be2SiO4___________________ 81 56 Picrochromite, MgCr2O4_-____________._> 92 56 Portlandite, Ca(OH),.....--_.___.______110 8 Powellite, CaMoO 4 -___-_-_-_-_--______- 63m 29 Pyrite, FeSa---..-..-.-.---.----..-.... 57 3 Pyrope, Mg3Al2 (SiO 4) 3—................ 4m9 10 *Quartz, SiO2 (alpha or low)_____________ 34 17 Rammelsbergite, NiAs2________________ 103m 9 Retgersite, NiSO 4-6H2O..........__..._._ 75 38 Rhodochrosite, MnCO3________________ 71m 28 Rutile, TiOj.._._-_-..-.---._.....-.._-11m 29 Safflorite, CoFeAs 4__..___-_.__„_______ 109 3 Sal-ammoniac, NH 4C1_________________12 45 Sanmartinite, ZnWO4 ___________________ 2m4 13 *Scheelite, C3aWO4—..._---.-.._...-..- 610 48 Selenolite, SeO2 _ _______________________11 42 Sellaite, MgF2_______________.__________ 45 5 Senarmontite, Sb2O3 ____»__-_________-__ 32 23 Skutterudite, CoAs 3___________________ 102 5 *Smithsonite, ZnCO 3__________________ 83 41 Soda-niter, NaNO3 ________________._.__ 63m 47 Sphalerite, ZnS_._______________________ 26 32 Spherocobaltite, CoCO3 ,________________ 107 30 Spinel, MgAl2O4____________.___________ 23m 24 Stibnite, Sb2S8----_--_______-__-_____ 58 3 Stolzite, PbWO4_____.___________,______ 73m 22 Strontianite, SrCO3-___________-_____-_- 31 69 Struvite, MgNH 4PO4-6H2O__________!___ 3m1 83 Sylvite, KC1_________________________19 35 *Tellurite, TeO2________________________ 92 18 Tellurobismuthite, Bi2Te3__ ____________ 3m2 38 Tenorite, CuO-_-_-_____-___________--_15 43 Teschemacherite, NH 4HCO 3 _____________ 91m 35 Teschermigite, NH 4A1(SO4) 2-12H 2O_______ 68 71 Thenardite, Na 2SO4-_-___-_________-,__- 24 15 Thermonatrite, Na 2CO3-H2O_____________ 82 41 Thorianite, ThO2._-___________________.12 62 Tiemannite, HgSe_________________-_--_ 75 50 *Topaz, Al2SiO4 (F,OH) 2________________ 1m2m 24 Trevorite, NiFe2O4__________________ 101m 30 Tungstenite, WS2_____________________ 88 51 Uraninite, UO2—..---...---...-----.--- 29 36 Uvarovite, Ca3Cr2 (SiO4) 3 _ _______________ 102 30 *Valentinite, SbjOa--------------------- 104m 21 Villiaumite, NaF________--____-_--_____110 34 Willemite, Zn2SiO4___________-__--_.__ 77 28 Witherite, BaCO8—------------------- 210 31 Wulfenite, PbMoO4__--__-___-_--_-__-_- 75 45 Wurtzite, ZnS-__________.__---_-__-___ 24 38 Xenotime, YPO 4---------------------- 8Zincite, ZnO__.______________________ 2Zinkosite, ZnSO4 _______________________ 7*Zircon, ZrSiO4________-_-_________-_- 483U.S. GOVERNMENT PRINTING OFFICE : 1966 O—794-239Page83276213732473039335588139151155556373711345822292424423632442859402353333121695016243562456416557164953595457354446533176636254231467256468
U.S. DEPARTMENT OF COM MERGEWASHINGTON, D.C. 20230POSTAGE AND FEES PAIDU.S. DEPARTMENT OF COMMERCEOFFICIAL BUSINESS