12.07.2015 Views

Active and passive stabilization of body pitch in ... - Itai Cohen Group

Active and passive stabilization of body pitch in ... - Itai Cohen Group

Active and passive stabilization of body pitch in ... - Itai Cohen Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Downloaded from rsif.royalsocietypublish<strong>in</strong>g.org on May 27, 2013<strong>Active</strong> <strong>and</strong> <strong>passive</strong> <strong>stabilization</strong> <strong>of</strong> <strong>body</strong><strong>pitch</strong> <strong>in</strong> <strong>in</strong>sect flightrsif.royalsocietypublish<strong>in</strong>g.orgResearchCite this article: Ristroph L, Ristroph G,Morozova S, Bergou AJ, Chang S,Guckenheimer J, Wang ZJ, <strong>Cohen</strong> I. 2013 <strong>Active</strong><strong>and</strong> <strong>passive</strong> <strong>stabilization</strong> <strong>of</strong> <strong>body</strong> <strong>pitch</strong> <strong>in</strong> <strong>in</strong>sectflight. J R Soc Interface 10: 20130237.http://dx.doi.org/10.1098/rsif.2013.0237Received: 13 March 2013Accepted: 29 April 2013Leif Ristroph 1 , Gunnar Ristroph 5 , Svetlana Morozova 1 , Attila J. Bergou 6 ,Song Chang 2 , John Guckenheimer 3 , Z. Jane Wang 1,4 <strong>and</strong> <strong>Itai</strong> <strong>Cohen</strong> 11 Department <strong>of</strong> Physics, 2 School <strong>of</strong> Applied <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g Physics, 3 Department <strong>of</strong> Mathematics, <strong>and</strong>4 School <strong>of</strong> Mechanical <strong>and</strong> Aerospace Eng<strong>in</strong>eer<strong>in</strong>g, Cornell University, Ithaca, NY 14853, USA5 IJK Controls, Dallas, TX 75231, USA6 Department <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Brown University, Providence, RI 02912, USAFly<strong>in</strong>g <strong>in</strong>sects have evolved sophisticated sensory–motor systems, <strong>and</strong> herewe argue that such systems are used to keep upright aga<strong>in</strong>st <strong>in</strong>tr<strong>in</strong>sic flight<strong>in</strong>stabilities. We describe a theory that predicts the <strong>in</strong>stability growth rate <strong>in</strong><strong>body</strong> <strong>pitch</strong> from flapp<strong>in</strong>g-w<strong>in</strong>g aerodynamics <strong>and</strong> reveals two ways <strong>of</strong>achiev<strong>in</strong>g balanced flight: active control with sufficiently rapid reactions<strong>and</strong> <strong>passive</strong> <strong>stabilization</strong> with high <strong>body</strong> drag. By glue<strong>in</strong>g magnets to fruitflies <strong>and</strong> perturb<strong>in</strong>g their flight us<strong>in</strong>g magnetic impulses, we show thatthese <strong>in</strong>sects employ active control that is <strong>in</strong>deed fast relative to the <strong>in</strong>stability.Moreover, we f<strong>in</strong>d that fruit flies with their control sensors disabled cankeep upright if high-drag fibres are also attached to their bodies, an observationconsistent with our prediction for the <strong>passive</strong> stability condition.F<strong>in</strong>ally, we extend this framework to unify the control strategies used byhover<strong>in</strong>g animals <strong>and</strong> also furnish criteria for achiev<strong>in</strong>g <strong>pitch</strong> stability <strong>in</strong>flapp<strong>in</strong>g-w<strong>in</strong>g robots.Subject Areas:biomechanics, biomimeticsKeywords:<strong>in</strong>sect flight, flapp<strong>in</strong>g flight, stability,control, fruit fly, flight dynamicsAuthor for correspondence:Leif Ristrophe-mail: ristroph@cims.nyu.edu1. IntroductionFlight <strong>of</strong> both animals <strong>and</strong> mach<strong>in</strong>es requires not only generat<strong>in</strong>g aerodynamicforce sufficient to overcome gravity but also ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g balance while al<strong>of</strong>t[1–3]. For fixed-w<strong>in</strong>g aircraft, the need for balance has led to solutions rang<strong>in</strong>gfrom passenger airl<strong>in</strong>ers that are stable by design to fighter jets that requireactive control <strong>of</strong> w<strong>in</strong>g surfaces to overcome <strong>in</strong>tr<strong>in</strong>sic <strong>in</strong>stabilities [4]. Moregenerally, control strategies are constra<strong>in</strong>ed by <strong>in</strong>stabilities, with fast-grow<strong>in</strong>g<strong>in</strong>stabilities dem<strong>and</strong><strong>in</strong>g fast reactions [5,6]. Here, we show how these same pr<strong>in</strong>ciplesplay out <strong>in</strong> the case <strong>of</strong> flapp<strong>in</strong>g-w<strong>in</strong>g flight <strong>of</strong> <strong>in</strong>sects. We apply techniquesfrom dynamical systems <strong>and</strong> control theory to form a framework that l<strong>in</strong>ks thephysical stability characteristics <strong>of</strong> fly<strong>in</strong>g <strong>in</strong>sects with the sensory–motor systemsneeded for control. We use the fruit fly, Drosophila melanogaster, as a model organism<strong>in</strong> establish<strong>in</strong>g this framework <strong>and</strong> also show how the <strong>stabilization</strong> strategies<strong>of</strong> other animals <strong>and</strong> flapp<strong>in</strong>g-w<strong>in</strong>g robots can be assessed.Our approach builds on the last decade’s rapid progress <strong>in</strong> underst<strong>and</strong><strong>in</strong>ghow <strong>in</strong>tr<strong>in</strong>sic stability or <strong>in</strong>stability emerges from the aerodynamics <strong>of</strong> flapp<strong>in</strong>gw<strong>in</strong>gs. A variety <strong>of</strong> studies have used computational fluid flow solvers[7–10] <strong>and</strong> aerodynamic models [11–13] to assess a simulated <strong>in</strong>sect’s <strong>passive</strong>dynamical response to flight perturbations. Such studies have shown that theback-<strong>and</strong>-forth flapp<strong>in</strong>g motions characteriz<strong>in</strong>g the w<strong>in</strong>g k<strong>in</strong>ematics <strong>of</strong> fruitflies <strong>and</strong> a broad class <strong>of</strong> other <strong>in</strong>sects <strong>in</strong>duce an oscillat<strong>in</strong>g diverg<strong>in</strong>g <strong>in</strong>stability<strong>in</strong> the <strong>body</strong> <strong>pitch</strong> orientation. The appearance <strong>of</strong> this <strong>in</strong>stability <strong>in</strong> avariety <strong>of</strong> simulations us<strong>in</strong>g different <strong>body</strong> plans <strong>and</strong> w<strong>in</strong>g motions suggeststhat it is a generic feature <strong>of</strong> <strong>in</strong>sect flight. Thus, the <strong>pitch</strong> dynamics is an appeal<strong>in</strong>gplatform for <strong>in</strong>vestigat<strong>in</strong>g how <strong>in</strong>sect flight control systems contend withphysical <strong>in</strong>stabilities.& 2013 The Authors. Published by the Royal Society under the terms <strong>of</strong> the Creative Commons AttributionLicense http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the orig<strong>in</strong>alauthor <strong>and</strong> source are credited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!