Edward Baltz (SLAC), "Combining Data on Dark Matter" - cosmo 06

cosmo06.ucdavis.edu
  • No tags were found...

Edward Baltz (SLAC), "Combining Data on Dark Matter" - cosmo 06

ong>Combiningong> ong>Dataong> on Dark Matterong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006The Dark Matter ProblemThe energy density of the universe is mostly unidentifiedBaryons: 5%Dark Matter: 20%Dark Energy: 75%The dark matter is likely to be “WIMPs”: weakly interactingmassive particles in the 100 GeV – TeV range1 pb annihilation cross section gives correct relic density


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006To Solve the Dark MatterProblem We Must:1.) detect the constituent particles of our galaxyas particles2.) create dark matter particles in the controlledenvironments of particle accelerators3.) demonstrate that these two are the sameTo accomplish this we need to combine datafrom astrophysics and accelerators


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Alternative Scenarios for WIMPs(which might be observed at the LHC)The WIMP is all / part / none of the dark matterThe WIMP is stable / unstable to a superWIMPThe underlying physics is SUSY / extra dimensions / TBDCosmology was standard / exotic to temperatures of 100 GeVThe dark matter halo of the galaxy is clumpy / smoothThe velocity distribution of dark matter is featured / smoothWe need the data that will distinguish all of these possibilities.


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Laboratory Creation of Dark MatterLHCfind particles up to 2+ TeV inmissing energy eventsLinear collider (ILC)mass reach not as highprecision measurementsSimulation of event in ATLAS @ LHC


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Dark MatterMicrophysicsMuch of the discussion is generic to WIMPs,but we take examples from SUSY modelsEAB, M. Battaglia, M. Peskin and T. Wizansky hep-ph/0602187Study 4 “benchmark” SUSY pointsLCC1-4, chosen by ALCPG: dark matter and ILC-500For each of 4 points, identify measurements possible at collidersmasses, polarized production cross-sections, FB asymmetriesFor each of 4 points, generate several million SUSY modelsconsistent with simulated measurements24 parameters – most general MSSM conserving flavor and CPStudy the predictions of properties relevant to dark matter, giventhe collider measurements at each benchmark pointCalculated with DarkSUSY 4.1


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Constraints:LCC1 (SPS1a)cross sectionsmasses(Weiglein et al., Phys. Rep., 2006)


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Results: LCC1“Bulk” region: most superpartners are lightLHC discovers a large number of the superpartnersILC discovers (in two stages: 500 GeV and 1 TeV) most of theremaining ones, and measures cross sectionsIn this case alone, the ILC-TeV can infer relic density withcomparable precision to future CMB measurements (Plancksatellite, 0.5% accuracy)Direct detection dominated by heavy Higgs – need thismeasurement (ILC TeV) or constraint from e.g. SuperCDMSAnnihilation cross section is small – dominated by b bbar withlarge helicity suppression


LCC1: Prediction of Relic Density andDirect Detection Cross SectionLCC1 has thewrong relic density,frac. error correctprobability distribution functions for dark matter quantities given possibleaccelerator measurements and assuming a supersymmetric modelong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Results: LCC2“Focus point” region: gauginos, higgsinos are light,sfermions are all inaccessible to any colliderLHC discovers most gauginos + Higgsinos, one Higgs bosonILC discovers the remaining gauginos / Higgsinos, measuresvarious cross sectionsRelic density estimate has 10% accuracy with ILC TeVCMB measurement is doing collider physics!Direct detection is dominated by light HiggsAnnihilation cross section is large – dominated by W pairspromising for gamma ray experiments


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006LCC2: Probability Islands forNeutralinos @ LHCbino(correct solution)winohiggsino


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006LCC2: Prediction of Relic Density andDirect Detection Cross Section


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006LCC2: Prediction of AnnihilationCross Sections


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006The Situation in 2012 for LCC2LHC has seen missing energy events, and measured masses fornew particles including a dark matter candidateWhat is the underlying theory? Spins are difficult to measure.The standard cosmology chooses the SUSY bino solutionGLAST has obtained a 4+ year sky survey, and has observedanomalous gamma ray sourcesMass is in the same rangeEvidence for dark matter clustering at small scales?Direct detection experiments have detected ~70 events,measured mass to 30%Mass is consistent with LHCMeasure the local dark matter density, assuming the SUSY solution


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Using Direct Detection toMeasure Particle PropertiesLHC measures the mass, butnot the elastic scatteringcross sectionDirect detection providesthis accurately, if given themass (and assuming thestandard galactic halo)Bottom Line: we canmeasure masses of Higgsbosons without directobservation


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Local Flux of NeutralinosLCC2 LCC3input data: collider + number of counts in direct detection experimentdetermine WIMP flux with no astrophysical / cosmological assumptions


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Dark Matter in the Gamma Ray SkyMilky Way Halo simulated byTaylor & Babul (2005)All-sky map of gamma ray emissionfrom dark matter annihilationsdark matter substructure exhibits:1. characteristic γ -ray spectrum2. spatially extended emission


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006Distinguishing Dark Matter Clumpsfrom Astrophysical SourcesMolecular cloudsE^-2.5 proton spectrumNO slope fits wellPulsarsLow energy slope > -4/3can match – none knownWIMPs annihilate to qqvery hard pion spectrumW pairs -> quarks is sameCounts in 5 years (simulated GLAST)


Dark Matter Annihilation RateLCC2 LCC4J ∝∫d r 2 , N ∝J 〈 v 〉/ m 2input data: collider + number of counts in GLAST for one clumpdetermine J with no astrophysical / cosmological assumptionsong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006


ong>Edwardong> A. ong>Baltzong> (KIPAC, ong>SLACong>) COSMO-06, Lake Tahoe September 28 th , 2006SummarySolving the dark matter problem requires BOTH detecting darkmatter in the galaxy and studying its properties in the laboratoryExperimental approaches are complementary:accelerators, direct detection, indirect detectionWe can learn about fundamental physics in astrophysicalsettings, and learn about our galaxy at high-energy colliders

More magazines by this user
Similar magazines