Indicator of Bioavailability of Heavy Metals in Phyto-Stabilized ...
Indicator of Bioavailability of Heavy Metals in Phyto-Stabilized ...
Indicator of Bioavailability of Heavy Metals in Phyto-Stabilized ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Morariu F. et. al./Scientific Papers: Animal Science and Biotechnologies, 2011, 44 (1)<strong>Indicator</strong> <strong>of</strong> <strong>Bioavailability</strong> <strong>of</strong> <strong>Heavy</strong> <strong>Metals</strong> <strong>in</strong><strong>Phyto</strong>-<strong>Stabilized</strong> Processes <strong>of</strong> Fly Ash DepositsFlorica Morariu 1 , Smaranda Mâsu 2 , Neculai Dragomir 1 , Valeria Rus 2 , Ligia Demetrovici 2 ,Stela Uruioc 3 , Dumitru Popescu 1 , Adela Jurjescu 11Banat University <strong>of</strong> Agricultural Sciences and Veter<strong>in</strong>ary Medic<strong>in</strong>e, 300645 - Timisoara, Calea Aradului 119,Romania2National R & D Institute for Industrial Ecology Branch <strong>of</strong> Timisoara, 300004 – Timisoara, Reg<strong>in</strong>a Maria Street 1,Romania3West University <strong>of</strong> Timisoara, 300251 - Timisoara, Pestalozzi Street no. 16, RomaniaAbstractThe study refers to the assessment <strong>of</strong> the effectiveness <strong>of</strong> treatments <strong>of</strong> topsoil <strong>of</strong> fly ash from a fresh deposit.<strong>Bioavailability</strong> reduction <strong>of</strong> metals: chromium, copper and lead from soil to the plant tissue, for a healthy vegetationcover <strong>of</strong> a legum<strong>in</strong>ous plant species is aimed. The modification <strong>of</strong> metal mobility <strong>in</strong> the top layer <strong>of</strong> fly ash throughthe use <strong>of</strong> biosolids (municipal sludge) as organic fertilizers alone or mixed with pillared <strong>in</strong>digenous tuff is <strong>in</strong>dicatedby a bioavailability <strong>in</strong>dex <strong>of</strong> metal accumulation <strong>in</strong> plant tissue. This <strong>in</strong>dicator <strong>of</strong> bioavailability <strong>of</strong> heavy metals iscalled transfer factor (TF) and is the ratio <strong>of</strong> metal content <strong>in</strong> plant tissue Q P mg/kg DM <strong>of</strong> total metal content <strong>in</strong> flyash treated or untreated site Q S mg/kg DM TF = Q P /Q S . Transfer factor from soil to plant tissue for chromium andcopper decreases from 0.11 – 0.18 to 0.06 – 0.08 and from 0.28 to 0.03 for lead when treat<strong>in</strong>g the top layer <strong>of</strong> fly ashwith biosolids mixed with pillared <strong>in</strong>digenous tuff.Keywords: biosolids, fly ash, heavy metals, pillared <strong>in</strong>digenous tuff, transfer factor.1. Introduction All heavy metals are toxic to plants when present<strong>in</strong> soil <strong>in</strong> larger quantities than those considerednormal. A high concentration <strong>of</strong> metals can causeoxidative stress, when a series <strong>of</strong> metabolicprocesses are disrupted. As consequence plantweight and crop are reduced. If plants can toleratehigh amounts <strong>of</strong> metals <strong>in</strong> soil and accumulatethese metals <strong>in</strong> their tissues, these can reach thefood cha<strong>in</strong>s where it <strong>in</strong> turn can cause dysfunction<strong>in</strong> organism. If the amount <strong>of</strong> metals <strong>in</strong> soil is nottoxic to plants, we can obta<strong>in</strong> important crops, butthe extent <strong>of</strong> metal transfer from soil to plantcomes to be toxic to higher organisms. Examples<strong>of</strong> such metals are lead, chromium, copper, z<strong>in</strong>c,and cadmium [1-5]. * Correspond<strong>in</strong>g author: Florica Morariu,0256/277206, florica.morariu@animalsci-tm.roTransfer factor (TF) <strong>of</strong> metals from soil to plantscan be an <strong>in</strong>dicator <strong>of</strong> metal accumulation <strong>in</strong> planttissue. TF def<strong>in</strong>ed by J. Freytag, 1986, as the ratio<strong>of</strong> metal content <strong>in</strong> plant tissue Q P mg/kg DM tothe total content <strong>of</strong> metal <strong>in</strong> treated or untreatedfly ash topsoil Q S mg/kg DM TF = Q P /Q S [6].There was a big difference between the values <strong>of</strong>transfer factors for different metals such as Cd,Zn, Pb, etc., <strong>of</strong> the same plant. Transfer factor forcadmium species <strong>of</strong> maize was assessed for theentire plant to 0.3. For z<strong>in</strong>c transfer factor is 0.68for the entire plant, and for lead is a factor <strong>of</strong> 0.01[7]. The use <strong>of</strong> organic fertilizers such biosolids,compost, manure and <strong>in</strong>organic amendments suchas zeolite type, red mud etc. used to modify soilcharacteristics have demonstrated their ability tochange the bioavailability <strong>of</strong> metals from soil <strong>in</strong>toplants [3-4,8].The study aims to assess the <strong>in</strong>fluence <strong>of</strong> biosolidstype fertilizers, amendments <strong>of</strong> <strong>in</strong>digenous493
Morariu F. et. al./Scientific Papers: Animal Science and Biotechnologies, 2011, 44 (1)volcanic tuff based on cl<strong>in</strong>optilolite, and biosolidsmixed with zeolite (<strong>in</strong>digenous tuff) regard<strong>in</strong>g thedegree <strong>of</strong> transfer <strong>of</strong> copper, chromium and leadfrom the fly ash topsoil planted with Onobrychisviciifolia legum<strong>in</strong>ous species. Study <strong>of</strong> metaltransfer from soil to plant tissue is performed <strong>in</strong>the period <strong>of</strong> plant maturity.deposits <strong>of</strong> coal combustion <strong>in</strong> thermal powerplant.The study is carried out <strong>in</strong> the summer <strong>of</strong> 2010.Transfer factor is analyzed for metals Cu, Cr, Pband Zn from plant tissues harvested dur<strong>in</strong>g themature phenophase. Soil sample analysis wasdone to determ<strong>in</strong>e copper, chromium, lead andz<strong>in</strong>c concentrations accord<strong>in</strong>g to the analysis2. Materials and methodsmethod <strong>of</strong> ISO 1,1047/99. Soil samplespreparation for analysis was done <strong>in</strong> accordanceExperimental parcels <strong>in</strong>clude: C as a controlparcels, untreated fly ash, C + B fly ash parcelsfertilized with municipal sludge 25t/ha DM(biosolids), C + Ts fly ash parcels treated withpillared tuff, tuff-Aln, <strong>in</strong> a quantity <strong>of</strong> 2% andexperimental parcel C + B +Ts fly ash fertilizedwith bio-fertilizer k<strong>in</strong>d organic-zeolite, 25t/haDM. The biosolids used had the follow<strong>in</strong>gcharacteristics: total nitrogen 0.53%, 0.75%phosphorus and pH 6.5. Pillared tuff, tuff- Aln isprepared as native volcanic tuff at ECOINDBranch Timisoara accord<strong>in</strong>g to a patent [9]. Thewith ISO 11,464/98. <strong>Heavy</strong> metals were extractedfrom the soil samples by heat<strong>in</strong>g with Aqua Regiafor 2hrs, at reflux. After <strong>in</strong>terrupt<strong>in</strong>g the heat, thesystem was left <strong>in</strong> stand-by for 16 hrs. Then thesamples were diluted <strong>in</strong> a flask with deionizedwater to exactly 50 ml. Plant sampl<strong>in</strong>g was done<strong>in</strong> agreement with the standardized methodologyPlant tissues were thoroughly washed withdeionized water to remove any soil particlesattached to plant surfaces. The tissues were dried(105°C) to a constant weight. Plant samples withprecise weight are then brought to 550°C; to thenative volcanic tuff conta<strong>in</strong>s up to 70% residual materials 5ml <strong>of</strong> concentratedcl<strong>in</strong>optilolite and comes from the Mirsid quarry, hydrochloric acid are added, samples areRomania. The organic-zeolite fertilizer is ma<strong>in</strong>ta<strong>in</strong>ed 30 m<strong>in</strong>utes on the dry sand bath. Aftercomposed <strong>of</strong> mixed biosolids with pillared tuff,tuff-Aln, 2%.filter<strong>in</strong>g those <strong>in</strong> a paper filter with small porosity,were taken to a calibrated flask with hydrochloricThe cultivated species is the legum<strong>in</strong>ous acid 1:1 solution. Plant and soil extracts analysisOnobrychis viciifolia species. Experimental plotarea was 3 m 2 (1.5m x 2 m) and width <strong>of</strong> the alleybetween the experimental variants was 1 m. Theexperimental location was situated on fly ashwas done us<strong>in</strong>g a spectrophotometer, VarianSpectra AASIn Table 1, metal concentrations are presented <strong>in</strong>the top layer <strong>of</strong> untreated and treated experimentalparcels were seeded with plants.Table 1. Metal concentrations <strong>in</strong> the top layer <strong>of</strong> untreated and treated experimental parcels sownOnobrychis viciifolia speciesNo.Experimental parcelsContent on heavy metals mg/kgDMCu Cr Pb Zn1 C 77.6 93.5 7.4 54.74 C+B 74.1 77.9 9.0 70.93 C+ Ts 71.6 74.4 7.6 60.06 C+B+Ts 81.6 103.1 7.7 70.6The amount <strong>of</strong> Cr and Cu from the topsoil parcelsranges between the alert threshold values for lesssensitive soil, and the amount <strong>of</strong> Pb and Zn is <strong>in</strong>the range <strong>of</strong> concentrations for normal soils,accord<strong>in</strong>g to the Romanian Order 756/1997.3. Results and discussionIn Figure 1 are shown the levels <strong>of</strong> accumulation<strong>of</strong> metals: Cr, Cu, Pb, and Zn by transfer factorsexpressed <strong>in</strong> the plant tissue <strong>of</strong> Onobrychisviciifolia species.494
Morariu F. et. al./Scientific Papers: Animal Science and Biotechnologies, 2011, 44 (1)0.14Chromium0.4CopperTransfer factor soil-plant0.120.10.080.060.040.02Transfer factor soil-plant0.350.30.250.20.150.10.050C C+B C+T C+B+TExperimental varantsa)0C C+B C+T C+B+TExperimental variantsb)Transfer factor soil-plant0.30.250.20.150.10.050LeadC C+B C+T C+B+TExperimental var<strong>in</strong>tsc)1.81.61.41.210.80.60.40.20Z<strong>in</strong>cC C+B C+T C+B+TExperimental variantsFigure 1. Accumulation <strong>of</strong> metals expressed by transfer factors <strong>of</strong> soil-plant tissue <strong>in</strong> Onobrychis viciifolia species:a) Chromium, b) Copper, c) Lead, and d) Z<strong>in</strong>c.Transfer factor soil-plantd)The figure shows that the transfer factor isdependent on the metal species and topsoiltreatment:1. The organic fertilizer determ<strong>in</strong>es the follow<strong>in</strong>gchanges <strong>in</strong> bioavailability:- Transfer factor <strong>in</strong>creases, as well as thebioavailability <strong>of</strong> metals such as copper;- Reduces the transfer factor and bioavailability <strong>of</strong>some metals with 70-90%, such be<strong>in</strong>g the case <strong>of</strong>Pb or Zn.2. Inorganic amendment determ<strong>in</strong>es the follow<strong>in</strong>gchanges <strong>in</strong> bioavailability:- Transfer factor <strong>in</strong>creases, as well as thebioavailability <strong>of</strong> metals such as chromium;- Reduces the transfer factor and bioavailability <strong>of</strong>some metals with 50% such be<strong>in</strong>g the case for Znand 100% for Pb.3. The organic-zeolite fertilizer determ<strong>in</strong>eschanges <strong>in</strong> bioavailability:- It is the most effective treatment, show<strong>in</strong>gsynergistic effects <strong>of</strong> bioavailability reduction upto 45-65% for Cu and Cr;- At the same time, the <strong>in</strong>fluence <strong>of</strong> pillaredvolcanic tuff to decrease bioavailability <strong>of</strong> Pb andZn <strong>in</strong> soil exceeds the organic matter and biosolidstendency to make available these metals, so thateventually the transfer factor values be m<strong>in</strong>imal.4. ConclusionsThe use organic fertilizers <strong>of</strong> the biosolids type, <strong>of</strong>some <strong>in</strong>organic amendments such as <strong>in</strong>digenousvolcanic tuff based on cl<strong>in</strong>optilolite (as a pillaredtuff-Aln) and organic-zeolite fertilizers based onbiosolids mixed with pillared tuff demonstratedtheir ability to change the bioavailability <strong>of</strong> metalsfrom the fly ash layer covered with Onobrychisviciifolia plants.From the treatment variants, the most effectiveone was the organic-zeolite fertilizer because itshows synergistic effects to reduce thebioavailability <strong>of</strong> up to 45-65% for copper andchromium.At the same time, the <strong>in</strong>fluence <strong>of</strong> pillaredvolcanic tuff to decrease the bioavailability <strong>of</strong> leadand z<strong>in</strong>c <strong>in</strong> soil exceeds the organic matter andbiosolids tendency to make bioavailable thesemetals, so that eventually the transfer factor valuesbe m<strong>in</strong>imal.495
Morariu F. et. al./Scientific Papers: Animal Science and Biotechnologies, 2011, 44 (1)References1. Pilon – Smits, E., <strong>Phyto</strong>remedation, Annual Review<strong>of</strong> Plant Biology, 2005, 56, 15 – 392. Mart<strong>in</strong>, T. A., Ruby, M. V., Review <strong>of</strong> <strong>in</strong> situRemediation Technologies for lead, z<strong>in</strong>c, and cadmium<strong>in</strong> soil, Remediation, 2004, 14, 35-533. Vassilev, A., Vangronsveld, J., Yordanov, I.,Cadmium <strong>Phyto</strong>extraction, Bulgarian Journal <strong>of</strong> PlantPhysiology, 2002, 28, 68-954. Das, M., Maiti, S. K., Metal Accumulation <strong>in</strong> 5-Native Plants Grov<strong>in</strong>g on Abandoned Cu, - Tail<strong>in</strong>gsPonds, Applied Ecology and Environmental Research,2007, 5, 27-355. Mâşu, S., Lixandru, B., Trandafir, G., Rechiţean, D.,Gaşpar, S., P<strong>in</strong>toi, O., Study <strong>of</strong> the process <strong>of</strong> z<strong>in</strong>cbioaccumulation <strong>in</strong> corn cultivated on polluted soils.,Lucrari Zootehnie şi Biotehnologii, Timişoara, 2005,XXXVIII, 44-546. Freytag, J., Bestimmung von TrsansferfaktorenBoden/Pflanze e<strong>in</strong>ger Elemente und Untersuchungenuber deren Abhangigkeit von ausgewahltenBodeneigenschafte, Hamburger BodenkundlicheArbeiten, 1986, 1, 43-517. Puschenreiter, M., Horak, O., Friesl, W., Hartl, W.,Low-cost agricultural measures to reduce heavy metaltransfer <strong>in</strong>to the food cha<strong>in</strong> – a review, Plant Soil andEnvironment, 2005, 51, 1–118. Silveiro, M. L. A., Alloni, L. R. F., Guilherme, L. R.G., Biosolids and heavy metals <strong>in</strong> soils, Scienciaagricola, 2003, 60, 793-8069. Mâșu, S., Andres, L., Rus, V., Bogatu, C., Botau, D.,Cocheci, D., Ihos, M., Process for obta<strong>in</strong><strong>in</strong>g <strong>of</strong> pillaredmaterials used for metals immobilization from water,Romanian Patent No. 122630, Bucharest, 2009496