12.07.2015 Views

Cold complex organic molecules toward low-mass protostars

Cold complex organic molecules toward low-mass protostars

Cold complex organic molecules toward low-mass protostars

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cold complex organic moleculestoward low-mass protostars andoutflowsÖberg et al. 2011Nienke van der MarelLeiden ObservatoryAugust 11 th , 2011ESACNienke van der Marel, 11-08-2011


Contents●●●●●●●●●Star formationAstrochemistryComplex organic moleculesLab resultsObservationsData reductionResultsComparison with other studiesConclusionsNienke van der Marel, 11-08-2011


Star formation●Many changes intemperature,density andchemistry duringstar formationprocessHogerheijde, 1997Nienke van der Marel, 11-08-2011


Star formation●Low mass●High mass– < 8 Mo– > 8 Mo– Slow evolution– Fast evolution– Low luminosity– High luminosity– Less complicatedmechanisms– More complicatedmechanisms– Complexmolecules?– Many complexmolecules (hot)Nienke van der Marel, 11-08-2011


Astrochemistry●●●●●> 150 different moleculesdetectedConditions in space: low T, n=> formation ánd destructionreactions slow!Tracers of physical conditionsGas and solid phase (ice)Approach: observations,modeling and lab experimentsNienke van der Marel, 11-08-2011


Astrochemistry●●●Dust grains veryimportantGas-grain/ice chemistry=> formation (larger)moleculesMost abundant ice: H 2ONienke van der Marel, 11-08-2011


Astrochemistry●Ice processes– Freeze out– Formation– Desorption (sublimation)●Triggering factors– Temperature– UV radiation– Atom bombardments– Shocks●Main observablesare desorbed gasphase molecules!Nienke van der Marel, 11-08-2011


Complex organic molecules●●Molecules with >6 atomsFormation in gas-phase & in ice (thermal)Öberg et al 2009Nienke van der Marel, 11-08-2011


Complex organic molecules●Long time thought: only complex organics inhot cores (high mass) => warm chemistry● Detections in low mass protostars rare (4)=> some kind of cold chemistry has to exist!Nienke van der Marel, 11-08-2011


Lab results●●Lab experiments ice(Öberg et al 2009)Freeze out CH 3OHand CO/CH 3OHice in UHV setup(Sackler labLeiden)Nienke van der Marel, 11-08-2011


Lab results●●●UV irradiation=> production complex organic moleculesat low (


Lab resultsÖberg et al 2009Nienke van der Marel, 11-08-2011


Motivation●●Understanding formation in low mass=> Need for larger sample!Observation demands:– Low mass protostellar environments– Very abundant CH 3OH– Submm telescope– Spectral settings with several complex organictarget molecule transitions– Long integration times: lines weak!Nienke van der Marel, 11-08-2011


Observations●●●Targets: two protostars+ one outflow inSerpens (d=250 pc)- SMM1 (30 Lo)- SMM4 (5 Lo)- SMM4-WRich in CH 3OH~ 30% wrt H 2O iceSingle pointingNienke van der Marel, 11-08-2011Kristensen et al 2010Pontoppidan et al 2004


Observations●Main target molecules (network)– CH 3OCH 3– dimethylether– HCOOCH 3– methylformate– CH 3CHO – acetaldehydeNienke van der Marel, 11-08-2011


Data analysis●●●Many potentialdetections inspectral rangeSmoothing0.1 to 0.4 km/srms ~10 mKDetections & upperlimitsNienke van der Marel, 11-08-2011


Results●Compare to CH 3OH:Nienke van der Marel, 11-08-2011– FWHM Derive originatingregion


Results●CH 3OH convolved to 17”/28” beam => eq.abundant => origin in envelope, not core●●CH 3OH 8 transitions => derive T rotCalculate column densitiesusing T rotfrom CH 3OH lines (10-15 K)●Derive ratio complex/CH 3OH (CC)Nienke van der Marel, 11-08-2011


Results● CC = 5 - 22%●Results consistent with cold UVphotochemistry:– CC ratio largest for SMM1 (most luminous)– (HCOOCH 3+CH 3CHO)/CH 3OCH 3~ 3 (coldchemistry => CH 3OCH 3forms after COdesorption)Nienke van der Marel, 11-08-2011


Results●Desorption mechanisms– Thermal– UV: only surface layer! (lab)– Outflow shocks: entire ice mantle!●●Abundance ratios depend on desorptionmechanism and formation structureMore modeling required to constrain formation,layer structure, desorption processesNienke van der Marel, 11-08-2011


Comparison with other studiesRelative abundances similar for low and high mass!Nienke van der Marel, 11-08-2011


Comparison with other studies●●HCOOCH 3> CH 3OCH 3for cold chemistryHCOOCH 3< CH 3OCH 3for hot core/high masswith high T=> support for sequential formation withHCOOCH 3formed in colder CO-rich ice andCH 3OCH 3in warmer CO-poor iceNienke van der Marel, 11-08-2011


Comparison with other studiesNienke van der Marel, 11-08-2011Öberg et al 2009


Comparison with other studiesLow THigh TNienke van der Marel, 11-08-2011


Conclusions●●●Complex organics can be detected in cold gas.Abundances of complex organics are similarfor high-mass hot cores and low-massprotostars and outflows, although thechemical mechanisms are different.HCOOCH 3/CH 3OCH 3is larger in low-masssources. This supports a sequential formationof complex molecules for CO-rich and COpooriceNienke van der Marel, 11-08-2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!