12.07.2015 Views

The near wall behavior of an impinging jet - UFRJ

The near wall behavior of an impinging jet - UFRJ

The near wall behavior of an impinging jet - UFRJ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

D.R.S. Guerra et al. / International Journal <strong>of</strong> Heat <strong>an</strong>d Mass Tr<strong>an</strong>sfer 48 (2005) 2829–2840 283750y[mm]40r= 80mm r= 85mm r=90mm r= 95mm r= 100mm3020100T w T w T w T w T w(a)26 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38 26 30 34T[ºC]3850y[mm]40r= 105mm r= 110mm r= 115mm r= 120mm r= 130mm302010T w T w T wT wT w026 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38(b)T[ºC]50y[mm]40r= 130mm r= 135mm r= 140mm r= 145mm r=150mm302010T w T w T w T wT w026 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38 26 30 34 38(c)T[ºC]Fig. 5. Me<strong>an</strong> temperature pr<strong>of</strong>iles. (a) Stations 80–100 mm, (b) stations 105–125 mm, <strong>an</strong>d (c) stations 130–150 mm.or Preston tubes. Since these devices are calibrated takingas reference the universal law <strong>of</strong> the <strong>wall</strong>, they c<strong>an</strong>notbe reliably used in regions where the existence <strong>of</strong>the law <strong>of</strong> the <strong>wall</strong> c<strong>an</strong> be questioned. Wygn<strong>an</strong>skiet al. estimated the skin-friction through three differenttechniques: a momentum integral method, the me<strong>an</strong>velocity gradient in the viscous sub-layer, <strong>an</strong>d by use<strong>of</strong> a Preston tube.<strong>The</strong> establishment <strong>of</strong> the above concepts for thevelocity field clearly raises some questions for the temperaturefield. An immediate question concerns the existence<strong>of</strong> <strong>an</strong> appropriate temperature scale at the outeredge <strong>of</strong> the equilibrium layer. At the point <strong>of</strong> velocitymaximum, Fig. 5 shows that the temperature pr<strong>of</strong>ilesreach a minimum. Thus, drawing <strong>an</strong> <strong>an</strong>alogy to thevelocity <strong>an</strong>alyses <strong>of</strong> Narasimha et al. [6] <strong>an</strong>d <strong>of</strong> Özdemir<strong>an</strong>d Whitelaw [5], one would expect the appropriatescaling temperature parameter to be this minimumtemperature.<strong>The</strong> law <strong>of</strong> the <strong>wall</strong> for the temperature pr<strong>of</strong>ile c<strong>an</strong> bewritten asT w T¼ 1 ln yu sþ Bð6Þt s k t mwhere t s is the friction temperature <strong>an</strong>d j t is the vonKarm<strong>an</strong> const<strong>an</strong>t for the temperature field.<strong>The</strong> expected parametric <strong>behavior</strong> <strong>of</strong> B is then to berepresented byB ¼ g T w T mð7Þt swhere T w represents the <strong>wall</strong> temperature, T m the minimumtemperature in a given pr<strong>of</strong>ile <strong>an</strong>d t s is the frictiontemperature.To find the values <strong>of</strong> A <strong>an</strong>d <strong>of</strong> B, the graphical method<strong>of</strong> Coles [42] was used. Here, we must point out that thethickness <strong>of</strong> the inner turbulent region for <strong>an</strong> <strong>impinging</strong><strong>jet</strong> is very thin, so that the fitting <strong>of</strong> a straight line to the


2838 D.R.S. Guerra et al. / International Journal <strong>of</strong> Heat <strong>an</strong>d Mass Tr<strong>an</strong>sfer 48 (2005) 2829–2840fully turbulent region is a difficult affair. For a pl<strong>an</strong>e <strong>wall</strong><strong>jet</strong>, the fully turbulent region is rather arbitrary [8], normallybeing located within the interval 70 < yu s /m < 170.Since the <strong>an</strong>alysis <strong>of</strong> Wygn<strong>an</strong>ski et al. [7] suggests thatvon Karm<strong>an</strong>Õs parameter c<strong>an</strong> be considered const<strong>an</strong>t<strong>an</strong>d that A varies from 5.5 to 9.5, the fitting <strong>of</strong> a straightline to the velocity <strong>an</strong>d to the temperature data in semilogplots in the region 70 < yu s /m < 170 c<strong>an</strong> then be usedto find u s , A, t s <strong>an</strong>d B in Eqs. (4)–(7). <strong>The</strong> graphicalmethod used for the determination <strong>of</strong> parameters A<strong>an</strong>d B is illustrated in Fig. 6.<strong>The</strong> resulting li<strong>near</strong> <strong>behavior</strong> <strong>of</strong> parameters A <strong>an</strong>d Bis shown in Fig. 7. This figure indicates that both A <strong>an</strong>dB increase as the maximum <strong>jet</strong> velocity increases <strong>an</strong>d theminimum <strong>jet</strong> temperature decreases, respectively. Specifically,the following equations result:A ¼ 1.124 u M27.538; ð8Þu sB ¼ 1.031 T wt sT m25.869. ð9ÞThus, the trend observed by Özdemir <strong>an</strong>d Whitelaw [5]is confirmed here. Furthermore, the present <strong>an</strong>alysisgives us a strong hint that a possible li<strong>near</strong> <strong>behavior</strong> <strong>of</strong>A <strong>an</strong>d <strong>of</strong> B as a function <strong>of</strong> the maximum <strong>jet</strong> velocity<strong>an</strong>d <strong>of</strong> the minimum <strong>jet</strong> temperature would be in order.When the pr<strong>of</strong>ile-shift parameters A <strong>an</strong>d B are subtractedfrom the velocity <strong>an</strong>d the temperature pr<strong>of</strong>iles,the resulting curves exhibit the <strong>behavior</strong> <strong>of</strong> equilibriumlayers that extends to the locations <strong>of</strong> the velocity maximum<strong>an</strong>d the temperature minimum, respectively. Thisis shown in Fig. 8.Despite our brief account <strong>of</strong> the problem <strong>of</strong> <strong>an</strong>orthogonal <strong>jet</strong> <strong>impinging</strong> on a <strong>wall</strong>, the following findingsare remarkable: (1) the variation <strong>of</strong> both A <strong>an</strong>d Bis well defined <strong>an</strong>d is in accord<strong>an</strong>ce with the account<strong>of</strong> other authors, (2) the level in the logarithmic expressionsfor the laws <strong>of</strong> the <strong>wall</strong> have a tendency to in-6.4u[m/s]6H/D= 2.011T w-T H/D= 2.0105.695.28(a)4.84.4r= 120mm-0.8 -0.4 0 0.4 0.8 1.2ln(y)(b)76r= 150mm-1 0 1 2 3 4 5ln(y)Fig. 6. Graphical method for the determination <strong>of</strong> parameters A <strong>an</strong>d B. (a) Determination <strong>of</strong> A <strong>an</strong>d (b) determination <strong>of</strong> B.15A10H/D= 2.016B12H/D= 2.05804-50-10-4B = 1.031* ((Tw-Tm)/Ttau)-25.869A= 1.124*(UM/Utau)-27.538-15-810 15 20 25 30 35 40 20 24 28 32 36 40(a) U m /u (b) T w -T m /tFig. 7. Deviation function for the (a) velocity <strong>an</strong>d the (b) temperature pr<strong>of</strong>iles.


D.R.S. Guerra et al. / International Journal <strong>of</strong> Heat <strong>an</strong>d Mass Tr<strong>an</strong>sfer 48 (2005) 2829–2840 2839Fig. 8. Velocity <strong>an</strong>d temperature pr<strong>of</strong>iles in inner variables, y + = yu s /m, with subtraction <strong>of</strong> the pr<strong>of</strong>ile-shift parameters. (a) Velocitypr<strong>of</strong>iles <strong>an</strong>d (b) temperature pr<strong>of</strong>iles.creased with increasing maximum <strong>jet</strong> velocity <strong>an</strong>d withdecreasing minimum temperature.<strong>The</strong> relations for A <strong>an</strong>d for B derived here are particularlyimport<strong>an</strong>t for the determination <strong>of</strong> the skin-frictioncoefficient <strong>an</strong>d <strong>of</strong> the heat tr<strong>an</strong>sfer coefficient.This issue will be dealt with in separate article.5. Conclusion<strong>The</strong> present work has described the <strong>behavior</strong> <strong>of</strong> asemi-confined <strong>impinging</strong> <strong>jet</strong> over a heated flat plate.Experimental data for the pressure distribution, velocity<strong>an</strong>d temperature fields were obtained. <strong>The</strong> heat tr<strong>an</strong>sferdata confirmed the existence <strong>of</strong> a minimum in temperaturepr<strong>of</strong>ile away from the <strong>wall</strong>. <strong>The</strong> existence <strong>of</strong> a velocity<strong>an</strong>d a temperature equilibrium layer was alsoinvestigated. <strong>The</strong> results found at this investigation indicatethat the level <strong>of</strong> the logarithmic portion <strong>of</strong> thevelocity <strong>an</strong>d the temperature laws <strong>of</strong> the <strong>wall</strong> increaseswith increasing maximum <strong>jet</strong> velocity <strong>an</strong>d decreasingminimum temperature. This fact, for the temperaturepr<strong>of</strong>iles, has been observed for the first time in the course<strong>of</strong> the present research.<strong>The</strong> present research is particularly relev<strong>an</strong>t due to itsapplication for the development <strong>of</strong> methods that c<strong>an</strong> beused for the determination <strong>of</strong> the local skin-friction <strong>an</strong>d<strong>of</strong> the local heat tr<strong>an</strong>sfer coefficient.AcknowledgementsDRSG is grateful to CAPES (Brazili<strong>an</strong> Ministry <strong>of</strong>Education) for the award <strong>of</strong> a D.Sc. scholarship in thecourse <strong>of</strong> the research. APSF is grateful to the Brazili<strong>an</strong>National Research Council (CNPq) for the award <strong>of</strong> aresearch fellowship (Gr<strong>an</strong>t No. 304919/2003-9). <strong>The</strong>work was fin<strong>an</strong>cially supported by CNPq through Gr<strong>an</strong>tNo. 472215/2003-5 <strong>an</strong>d by FAPERJ through Gr<strong>an</strong>tsE-26/171.198/2003 <strong>an</strong>d E-26/152.368/2002. JS has alsobenefited from a CNPq research fellowship (Gr<strong>an</strong>t No.550780/2002-5).References[1] R.P. Patel, Self preserving two dimensional turbulent <strong>jet</strong>s<strong>an</strong>d <strong>wall</strong> <strong>jet</strong>s in a moving stream, M.Sc. <strong>The</strong>sis, McGillUniversity, Montreal, 1962.[2] A. Taill<strong>an</strong>d, J. Mathieu, Jet parietal, J. Mec<strong>an</strong>ique 6 (1967)1.[3] V. Ozarapoglu, Measurements in incompressible turbulentflows. D.Sc <strong>The</strong>sis, Laval University, Quebec, 1973.[4] H.P.A.H. Irwin, Measurements in a self-preserving pl<strong>an</strong>e<strong>wall</strong> <strong>jet</strong> in a positive pressure gradient, J. Fluid Mech. 61(1973) 33–63.[5] I.B. Ozdemir, J.H. Whitelaw, Impingement <strong>of</strong> <strong>an</strong> axisymmetric<strong>jet</strong> on unheated <strong>an</strong>d heated flat plates, J. FluidMech. 240 (1992) 503–532.[6] R. Narasimha, K.Y. Naray<strong>an</strong>, S.P. Pathasarathy, Parametric<strong>an</strong>alysis <strong>of</strong> turbulent <strong>wall</strong> <strong>jet</strong>s in still air, Aeronaut.J. 77 (1973) 335.[7] I. Wygn<strong>an</strong>ski, Y. Katz, Horev, On the applicability <strong>of</strong>various scaling laws to the turbulent <strong>wall</strong> <strong>jet</strong>, J. FluidMech. 234 (1992) 669–690.[8] G.P. Hammond, Complete velocity pr<strong>of</strong>ile <strong>an</strong>d ‘‘optimum’’skin-friction formulas for the pl<strong>an</strong>e <strong>wall</strong>-<strong>jet</strong>, J. Fluids Eng.104 (1982) 59–66.[9] D.B. Spalding, A single formula for the law <strong>of</strong> the <strong>wall</strong>,ASME J. Appl. Mech. 28 (1961) 455–458.[10] M. Behnia, S. Parneix, P.A. Durbin, Prediction <strong>of</strong> heattr<strong>an</strong>sfer in <strong>an</strong> axisymmetric turbulent <strong>jet</strong> <strong>impinging</strong> on aflat plate, Int. J. Heat Mass Tr<strong>an</strong>sfer 41 (1998) 1845–1855.[11] M. Behnia, S. Parneix, Y. Shab<strong>an</strong>y, P.A. Durbin, Numericalstudy <strong>of</strong> turbulent heat tr<strong>an</strong>sfer in confined <strong>an</strong>dunconfined <strong>impinging</strong> <strong>jet</strong>s, Int. J. Heat Fluid Flow 20(1999) 1–9.


2840 D.R.S. Guerra et al. / International Journal <strong>of</strong> Heat <strong>an</strong>d Mass Tr<strong>an</strong>sfer 48 (2005) 2829–2840[12] M.M. Gibson, R.D. Harper, Calculation <strong>of</strong> <strong>impinging</strong>-<strong>jet</strong>heat tr<strong>an</strong>sfer with the low-Reynolds-number q f turbulencemodel, Int. J. Heat Fluid Flow 18 (1997) 80–87.[13] D.O.A. Cruz, A.P. Silva Freire, On single limits <strong>an</strong>d theasymptotic <strong>behavior</strong> <strong>of</strong> separating turbulent boundarylayers, Int. J. Heat Mass Tr<strong>an</strong>sfer 41 (1998) 2097–2111.[14] D.O.A. Cruz, A.P. Silva Freire, Note on a thermal law <strong>of</strong>the <strong>wall</strong> for separating <strong>an</strong>d recirculating flows, Int. J. HeatMass Tr<strong>an</strong>sfer 45 (2002) 1459–1465.[15] E. Forthm<strong>an</strong>n, Uber turbulente strahlausbreitung, Ing.Arch. 5 (1934) 42.[16] A. Sigalla, Measurements <strong>of</strong> a skin-friction in a pl<strong>an</strong>eturbulent <strong>wall</strong> <strong>jet</strong>, J.R. Aero. Soc. 62 (1958) 873.[17] M.D. Fox, M. Kurosaka, L. Hedges, K. Hir<strong>an</strong>o, <strong>The</strong>influence <strong>of</strong> vortical structures on the thermal fields <strong>of</strong> <strong>jet</strong>s,J. Fluid Mech. 255 (1993) 447–472.[18] D. Cooper, D.C. Jackson, B.E. Launder, G.X. Liao,Impinging <strong>jet</strong> studies for turbulence model assessment-I.Flow-field experiments, Int. J. Heat Mass Tr<strong>an</strong>sfer 36(1993) 2675–2684.[19] T.J. Craft, L.J.W. Graham, B.E. Launder, Impinging <strong>jet</strong>studies for turbulence model assessment-II. An examination<strong>of</strong> the perform<strong>an</strong>ce <strong>of</strong> four turbulence models, Int. J.Heat Mass Tr<strong>an</strong>sfer 36 (1993) 2685–2697.[20] K. Knowles, Computational studies <strong>of</strong> <strong>impinging</strong> <strong>jet</strong>s usingj e turbulence models, Int. J. Numer. Meth. Fluids 22(1996) 799–810.[21] D.W. Colucci, R. Visk<strong>an</strong>ta, Effect <strong>of</strong> nozzle geometry onlocal convective heat tr<strong>an</strong>sfer to a confined <strong>impinging</strong> air<strong>jet</strong>, Exp. <strong>The</strong>rm. Fluid Sci. 13 (1996) 71–80.[22] M. Di<strong>an</strong>at, M. Fairweather, W.P. Jones, Predictions <strong>of</strong>axisymmetric <strong>an</strong>d two-dimensional <strong>impinging</strong> turbulent<strong>jet</strong>s, Int. J. Heat Fluid Flow 17 (1996) 530–538.[23] J.-J. Shu, G. Wilks, Heat tr<strong>an</strong>sfer in the flow <strong>of</strong> a cold,two-dimensional vertical liquid <strong>jet</strong> against a hot, horizontalplate, Int. J. Heat Mass Tr<strong>an</strong>sfer 37 (1996) 3367–3379.[24] C. Meola, G.M. Carlomagno, Influence <strong>of</strong> shear layerdynamics on impingement heat tr<strong>an</strong>sfer, Exp. <strong>The</strong>rm.Fluid Sci. 13 (1996) 29–33.[25] T. Liu, J.P. Sulliv<strong>an</strong>, Heat tr<strong>an</strong>sfer <strong>an</strong>d flow structures in<strong>an</strong> excited circular <strong>impinging</strong> <strong>jet</strong>, Int. J. Heat MassTr<strong>an</strong>sfer 39 (17) (1996) 3695–3706.[26] K. Nishino, M. Samada, K. Kasuya, K. Torii, Turbulencestatistics in the stagnation region <strong>of</strong> <strong>an</strong> axisymmetric<strong>impinging</strong> <strong>jet</strong> flow, Int. J. Heat Fluid Flow 17 (1996) 193–201.[27] S. Ashforth-Frost, K. Jambunath<strong>an</strong>, Numerical prediction<strong>of</strong> semi-confined <strong>jet</strong> impingement <strong>an</strong>d comparison withexperimental data, Int. J. Numer. Meth. Fluids 23 (1996)295–306.[28] J.-Y. S<strong>an</strong>, C.-H. Hu<strong>an</strong>g, M.-H. Shu, Impingement cooling<strong>of</strong> a confined circular air <strong>jet</strong>, Int. J. Heat Mass Tr<strong>an</strong>sfer 40(6) (1997) 1355–1364.[29] K. Knowles, M. Myszko, Turbulence measurements inradial <strong>wall</strong>-<strong>jet</strong>s, Exp. <strong>The</strong>rm. Fluid Sci. 77 (1998) 71–78.[30] A.A. Kendoush, <strong>The</strong>ory <strong>of</strong> stagnation region heat <strong>an</strong>dmass tr<strong>an</strong>sfer to fluid <strong>jet</strong>s <strong>impinging</strong> normally on solidsurfaces, Chem. Eng. Process. 37 (1998) 223–228.[31] J. Lee, S.-J. Lee, Stagnation region heat tr<strong>an</strong>sfer <strong>of</strong> aturbulent axisymmetric <strong>jet</strong> impingement, Exp. Heat Tr<strong>an</strong>sfer12 (1999) 137–156.[32] E. Baydar, Confined <strong>impinging</strong> air <strong>jet</strong> at low Reynoldsnumbers, Exp. <strong>The</strong>rm. Fluid Sci. 19 (1999) 27–33.[33] J. Lee, S.-J. Lee, <strong>The</strong> effect <strong>of</strong> nozzle aspect ratio onstagnation region heat tr<strong>an</strong>sfer characteristics <strong>of</strong> elliptic<strong>impinging</strong> <strong>jet</strong>, Int. J. Heat Mass Tr<strong>an</strong>sfer 43 (2000) 555–575.[34] S.D. Hw<strong>an</strong>g, C.H. Lee, H.H. Cho, Heat tr<strong>an</strong>sfer <strong>an</strong>d flowstructure in axisymmetric <strong>impinging</strong> <strong>jet</strong> controlled byvortex pairing, Int. J. Heat Fluid Flow 22 (2001) 293–300.[35] Y. Guo, D.H. Wood, Measurements in the vicinity <strong>of</strong> astagnation point, Exp. <strong>The</strong>rmal Fluid Sci. 25 (2002) 605–614.[36] Y.M. Chung, K.H. Luo, N.D. S<strong>an</strong>dham, Numerical study<strong>of</strong> momentum <strong>an</strong>d heat tr<strong>an</strong>sfer in unsteady <strong>impinging</strong> <strong>jet</strong>s,Int. J. Heat Fluid Flow 23 (2002) 592–600.[37] T.H. Park, H.G. Choi, J.Y. Yoo, S.J. Kim, Stream lineupwind numerical simulation <strong>of</strong> two-dimensional confined<strong>impinging</strong> slot <strong>jet</strong>s, Int. J. Heat Mass Tr<strong>an</strong>sfer 46 (2003)251–262.[38] M. Angioletti, R.M. Di Tommaso, E. Nino, G. Ruocco,Simult<strong>an</strong>eous visualization <strong>of</strong> flow field <strong>an</strong>d evaluation <strong>of</strong>local heat tr<strong>an</strong>sfer by tr<strong>an</strong>sitional <strong>impinging</strong> <strong>jet</strong>s, Int. J.Heat Mass Tr<strong>an</strong>sfer 46 (2003) 1703–1713.[39] V. Naray<strong>an</strong><strong>an</strong>, J. Seyed-Yagoobi, R.H. Page, An experimentalstudy <strong>of</strong> fluid mech<strong>an</strong>ics <strong>an</strong>d heat tr<strong>an</strong>sfer in <strong>an</strong><strong>impinging</strong> slot <strong>jet</strong> flow, Int. J. Heat Mass Tr<strong>an</strong>sfer 47(2004) 1827–1845.[40] D.W. Zhou, S.-J. Lee, Heat tr<strong>an</strong>sfer enh<strong>an</strong>cement <strong>of</strong><strong>impinging</strong> <strong>jet</strong>s using mesh screens, Int. J. Heat MassTr<strong>an</strong>sfer 47 (2004) 2097–2108.[41] S.J. Kline, <strong>The</strong> purpose <strong>of</strong> uncertainty <strong>an</strong>alysis, J. FluidsEng. 107 (1985) 153–160.[42] D. Coles, <strong>The</strong> law <strong>of</strong> the wake in a turbulent flow, J. FluidMech. 1 (1956) 191.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!