12.07.2015 Views

Singlet-triplet filtering and entanglement in a quantum dot structure

Singlet-triplet filtering and entanglement in a quantum dot structure

Singlet-triplet filtering and entanglement in a quantum dot structure

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHYSICAL REVIEW B 75, 085302 2007<strong>S<strong>in</strong>glet</strong>-<strong>triplet</strong> <strong>filter<strong>in</strong>g</strong> <strong>and</strong> <strong>entanglement</strong> <strong>in</strong> a <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong>G. Giavaras, 1,2 J. H. Jefferson, 2 M. Fearn, 2 <strong>and</strong> C. J. Lambert 11 Department of Physics, Lancaster University, Lancaster LA14YB, Engl<strong>and</strong>2 Q<strong>in</strong>etiQ, St.Andrews Road, Malvern WR143PS, Engl<strong>and</strong>Received 25 October 2006; revised manuscript received 30 November 2006; published 1 February 2007We consider two <strong>in</strong>teract<strong>in</strong>g electrons <strong>in</strong> a semiconductor <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong>, which consists of a small<strong>dot</strong> with<strong>in</strong> a larger <strong>dot</strong>, <strong>and</strong> demonstrate a s<strong>in</strong>glet-<strong>triplet</strong> <strong>filter<strong>in</strong>g</strong> mechanism which <strong>in</strong>volves sp<strong>in</strong>-dependentresonances <strong>and</strong> can generate <strong>entanglement</strong>. By study<strong>in</strong>g the exact time evolution of s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> states weshow how the degree of both <strong>filter<strong>in</strong>g</strong> <strong>and</strong> sp<strong>in</strong> <strong>entanglement</strong> can be tuned us<strong>in</strong>g a time-dependent gate voltage.DOI: 10.1103/PhysRevB.75.085302PACS numbers: 73.21.La, 73.63.b, 73.23.HkIn semiconductor <strong>quantum</strong> <strong>dot</strong>s which can be formed forexample at the <strong>in</strong>terface of a gated GaAs/AlGaAs hetero<strong>structure</strong>,we can trap electrons <strong>and</strong> control their numberprecisely down to 1. 1–4 The fact that the electrons <strong>in</strong> the <strong>dot</strong>sare well conf<strong>in</strong>ed with<strong>in</strong> a region of some nanometers, <strong>and</strong>they are therefore isolated from the rema<strong>in</strong><strong>in</strong>g environmentof the host material, offers not only the opportunity to exploreatomiclike effects <strong>and</strong> electron correlations 2,3,5,6 <strong>in</strong> thesolid state, but also to consider the <strong>quantum</strong> <strong>dot</strong>s as promis<strong>in</strong>gc<strong>and</strong>idates for nanoelectronic applications. For <strong>in</strong>stance,the proposal for realization of sp<strong>in</strong> <strong>and</strong> charge qubits <strong>in</strong>double <strong>quantum</strong> <strong>dot</strong>s 7,8 has attracted a lot of <strong>in</strong>terest boththeoretically 9–13 <strong>and</strong> experimentally 14–17 <strong>and</strong> the demonstrationof <strong>entanglement</strong>, which is a necessary <strong>in</strong>gredient fortwo-qubit gates, is one of the ma<strong>in</strong> goals. Many systemswhich <strong>in</strong>clude <strong>quantum</strong> <strong>dot</strong>s make use of the Loss <strong>and</strong>DiV<strong>in</strong>cenzo 7 exchange-energy mechanism based on the Coulomb<strong>in</strong>teraction <strong>and</strong> Pauli exclusion to generate sp<strong>in</strong><strong>entanglement</strong>.For example, Burkard et al. 18 proposed theuse of <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong>s as efficient entangler devices<strong>in</strong> solid state. In addition, sp<strong>in</strong> <strong>filter<strong>in</strong>g</strong> was proposed <strong>in</strong><strong>quantum</strong> <strong>dot</strong>s 19 <strong>and</strong> sp<strong>in</strong> <strong>entanglement</strong> creation via Coulombscatter<strong>in</strong>g was studied <strong>in</strong> Refs. 20 <strong>and</strong> 21. Furthermore, fly<strong>in</strong>gqubits <strong>in</strong> surface acoustic wave based <strong>quantum</strong> <strong>dot</strong>s 22–25<strong>and</strong> static-fly<strong>in</strong>g qubits <strong>in</strong> <strong>quantum</strong> wires 25,26 have been suggested<strong>and</strong> studied as means of <strong>entanglement</strong> generation betweenelectron sp<strong>in</strong>s. The s<strong>in</strong>glet-<strong>triplet</strong> qubit <strong>in</strong> a double<strong>quantum</strong> <strong>dot</strong> is also a promis<strong>in</strong>g c<strong>and</strong>idate for <strong>quantum</strong> computation.The two-electron s<strong>in</strong>glet-<strong>triplet</strong> S z =0 states constitutethe two-level <strong>quantum</strong> system <strong>and</strong> as has been shownthis scheme, which is also under experimental<strong>in</strong>vestigation, 17 is efficient for universal <strong>quantum</strong> gates. 27,28In this paper we propose <strong>and</strong> <strong>in</strong>vestigate a semiconductor<strong>dot</strong> <strong>structure</strong> which can <strong>in</strong>duce a mechanism to filter s<strong>in</strong>glet<strong>triplet</strong>states <strong>and</strong> thus to generate maximal sp<strong>in</strong> <strong>entanglement</strong>between two electrons. The operation is controlled by a timedependentgate voltage which can tune the degree of <strong>filter<strong>in</strong>g</strong><strong>and</strong> <strong>entanglement</strong>.To be specific, we choose material parameters for GaAs<strong>and</strong> consider the quasi-one-dimensional 1D <strong>quantum</strong> <strong>dot</strong><strong>structure</strong> which is shown <strong>in</strong> Fig. 1a, loaded with two electrons.It consists of a small open <strong>dot</strong> which is formed <strong>in</strong> thecenter of a much larger <strong>dot</strong>. The small <strong>dot</strong> is such that it canb<strong>in</strong>d only one electron <strong>and</strong> this means that the Coulomb<strong>in</strong>teraction forces the second electron to occupy the region ofthe large <strong>dot</strong>. The latter has width L=800 nm80a B * , wherea B * is the effective Bohr radius for GaAs. In this regime thetwo electrons are <strong>in</strong> the strong correlation regime, 29,30 i.e.,the Coulomb <strong>in</strong>teraction dom<strong>in</strong>ates over the k<strong>in</strong>etic energy<strong>and</strong> <strong>in</strong> the ground state the two electrons are localized <strong>in</strong>regions for which the electrostatic repulsion is m<strong>in</strong>imized.Note that this is the case for both s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> stateswhich give virtually the same electron distribution <strong>and</strong> theyare separated with a very small antiferromagnetic exchangeenergy J.To explicitly demonstrate <strong>and</strong> analyze these effects wehave studied the two-electron problem with exactdiagonalization 31 consider<strong>in</strong>g the parabolic-b<strong>and</strong> HamiltonianH = i=1,2− 2 22m * 2x + V dx ii + V c x 1 ,x 2 ,where m * =0.067m o is the effective mass of the electrons forGaAs. We have modelled the <strong>quantum</strong> <strong>dot</strong> with theGaussian conf<strong>in</strong><strong>in</strong>g potential V d x=−V o exp−x 2 /2l o 2 , for−400 nm x400 nm <strong>and</strong> V d x= otherwise. The parametersV o , l o determ<strong>in</strong>e the depth <strong>and</strong> width of the small <strong>dot</strong>,respectively, <strong>and</strong> they are chosen to give only a s<strong>in</strong>gle boundenergy level −1.5 meV. A realistic well depth for the large<strong>dot</strong> would be a few tens of meV <strong>and</strong> s<strong>in</strong>ce for the chosenwidth of <strong>dot</strong> the energy scale of the relevant s<strong>in</strong>glet <strong>and</strong><strong>triplet</strong> states is a few meV, the <strong>in</strong>f<strong>in</strong>ite well approximationhas only a small quantitative effect on the results. In practice,the hard wall would be replaced by f<strong>in</strong>ite barriers but, aga<strong>in</strong>,these may be chosen such that tunnel<strong>in</strong>g out of the large<strong>dot</strong> is negligible for the time scales of <strong>in</strong>terest. TheCoulomb term is given by V c x 1 ,x 2 =q 2 /4 r o r, with r=x 1 −x 2 2 + c 2 <strong>and</strong> r =13 the relative permittivity <strong>in</strong> GaAs.This simplified form of the Coulomb <strong>in</strong>teraction assumesthat all excitations take place <strong>in</strong> the x direction, whereas <strong>in</strong>the y, z directions the electrons occupy at all times the lowesttransverse modes. To satisfy this assumption we choose forall the calculations c =20 nm, which gives a physicalconf<strong>in</strong>ement length <strong>in</strong> the transverse y, z directions muchsmaller than that <strong>in</strong> x. The two-electron time-<strong>in</strong>dependentSchröd<strong>in</strong>ger equation is solved numerically by the configuration<strong>in</strong>teraction method. The low-energy eigenstates consistof two closely spaced s<strong>in</strong>glets <strong>and</strong> two <strong>triplet</strong>s with a somewhatlarger energy gap to higher-ly<strong>in</strong>g states. Figure 1b11098-0121/2007/758/0853026085302-1©2007 The American Physical Society


GIAVARAS et al.FIG. 1. Color onl<strong>in</strong>e a Quantum <strong>dot</strong> conf<strong>in</strong><strong>in</strong>g potential <strong>and</strong>effective charge density <strong>in</strong> arbitrary units of the lowest <strong>triplet</strong>eigenstate. b Contour plot of the lowest <strong>triplet</strong> eigenstate. c Thetwo-lowest s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> pairs.shows the lowest <strong>triplet</strong> eigenstate o T x 1 ,x 2 antisymmetric<strong>and</strong> Fig. 1c shows typical energy levels. The correspond<strong>in</strong>geffective charge density of o T x 1 ,x 2 which is derivedby <strong>in</strong>tegrat<strong>in</strong>g the two-electron charge density over thePHYSICAL REVIEW B 75, 085302 2007spatial coord<strong>in</strong>ates of one of the two electrons, i.e., T x=2q T o x,x 2 dx is shown <strong>in</strong> Fig. 1a. For this distributionone electron is bound <strong>in</strong> the small <strong>dot</strong>, whereas thesecond electron is at the left <strong>and</strong> right corners with equalprobability due to the symmetric potential. The charge densitiesassociated with all states <strong>in</strong> the low-ly<strong>in</strong>g manifold are<strong>in</strong> fact virtually identical to that shown <strong>in</strong> Fig. 1a.This can be understood from a simple Heitler-London pictureus<strong>in</strong>g one-electron states derived from a Hartreeapproximation <strong>in</strong> which we replace the trapped electron <strong>in</strong>the small <strong>dot</strong> with an effective Hartree potentialV H x=V c x,x c x 2 dx, where c x describes thes<strong>in</strong>gle-electron state of the small <strong>dot</strong>. The second electronfeels the approximate potential V H x+V d x, which for thelowest two-electron states of <strong>in</strong>terest acts as a double-wellpotential. The two lowest s<strong>in</strong>gle-electron states, − x, + xbond<strong>in</strong>g-antibond<strong>in</strong>g, of this potential have a small energysplitt<strong>in</strong>g <strong>and</strong> peak <strong>in</strong> the left <strong>and</strong> right corners. Us<strong>in</strong>g theone-electron Hartree states we may form the two lowest electronstates <strong>in</strong>dependent of sp<strong>in</strong> o x 1 ,x 2 = − x 1 c x 2 <strong>and</strong> 1 x 1 ,x 2 = + x 1 c x 2 <strong>and</strong> similarly for the nexthigher pair. With<strong>in</strong> the Hartree model this means that notonly the lowest s<strong>in</strong>glet, <strong>triplet</strong> eigenstates have a distributionof the form of Fig. 1a, but also the first excited eigenstateswhich <strong>in</strong>deed agrees with the results that we derive from theexact diagonalization. Note that even though the Hartreemodel gives great <strong>in</strong>sight <strong>in</strong>to the two-electron energies <strong>and</strong>distributions of the low-ly<strong>in</strong>g states, with remarkably littleeffort, the symmetric <strong>and</strong> antisymmetric comb<strong>in</strong>ations S,A x 1 ,x 2 = o x 1 ,x 2 ± o x 2 ,x 1 / 2 give a poor approximationto the s<strong>in</strong>glet-<strong>triplet</strong> splitt<strong>in</strong>g, with even the <strong>in</strong>correctsign. This is little improved by us<strong>in</strong>g more accurateone-electron states, e.g., from Hartree-Fock or density functionaltheory DFT, be<strong>in</strong>g a consequence of strong correlationsrequir<strong>in</strong>g accurate solutions of the two-electron problem.However, as we discuss later, the system may bedescribed accurately by an extended Hubbard model.We po<strong>in</strong>t out that the restriction to a 1D system is ma<strong>in</strong>lyfor simplicity of presentation <strong>and</strong> a 2D <strong>structure</strong>, with a numberof channels <strong>in</strong> the transverse direction, would be morerealistic for a device based on a GaAs hetero<strong>structure</strong>. However,it is straightforward to generalize the 1D results to 2Dfor rectangular <strong>dot</strong>s with high aspect ratio for which the Coulomb<strong>in</strong>teraction aga<strong>in</strong> leads to peaks <strong>in</strong> probability densitynear the opposite boundaries of the <strong>dot</strong>s <strong>and</strong> a pair of isolateds<strong>in</strong>glets <strong>and</strong> <strong>triplet</strong>s, as has been shown <strong>in</strong> Ref. 32 for arelated two-electron system <strong>in</strong> a square conf<strong>in</strong><strong>in</strong>g potential.For the dynamics that we describe below it is important to<strong>in</strong>troduce left <strong>and</strong> right states which are formed by comb<strong>in</strong><strong>in</strong>gthe two lowest eigenstates for s<strong>in</strong>glet S L = S o + S S1 , R= S o − S 1 <strong>and</strong> <strong>triplet</strong> T L =− T o + T 1 , T R = T o + T 1 unnormalized.For these states one electron is bound <strong>in</strong> the small <strong>dot</strong>whereas the second electron is localized to the correspond<strong>in</strong>gcorner as we demonstrate <strong>in</strong> Fig. 2 for the <strong>triplet</strong>.Although the effective charge density of the low-ly<strong>in</strong>gs<strong>in</strong>glets <strong>and</strong> <strong>triplet</strong>s is virtually identical, the wave functionsare quite different <strong>and</strong> give rise to effective <strong>in</strong>teractions betweensp<strong>in</strong>s, responsible for their <strong>entanglement</strong>. To demonstratehow these states can generate sp<strong>in</strong> <strong>entanglement</strong> <strong>and</strong>085302-2


SINGLET-TRIPLET FILTERING AND ENTANGLEMENT IN…PHYSICAL REVIEW B 75, 085302 2007FIG. 2. Color onl<strong>in</strong>e Effective charge density for a left <strong>and</strong>b right <strong>triplet</strong> states. The <strong>quantum</strong> <strong>dot</strong> conf<strong>in</strong><strong>in</strong>g potential is alsoshown.give rise to s<strong>in</strong>glet-<strong>triplet</strong> <strong>filter<strong>in</strong>g</strong>, we first prepare the systemsuch that one electron is located on the left with sp<strong>in</strong> up<strong>and</strong> the other <strong>in</strong> the central <strong>dot</strong> with sp<strong>in</strong> down. A suitablenonentangled state of this type may be written as a superpositionof the left s<strong>in</strong>glet <strong>and</strong> the left S z =0 <strong>triplet</strong> state,i.e., ↑↓ = S L S ↑↓ + T L T ↑↓ / 2, with the sp<strong>in</strong> eigenstates S/T ↑↓ 1,2= ↑ 1 ↓ 2 ↓ 1 ↑ 2/ 2. An approximationto this state may be obta<strong>in</strong>ed <strong>in</strong> pr<strong>in</strong>ciple by apply<strong>in</strong>g a smallsource-dra<strong>in</strong> bias V sd across the <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong> toseparate the electrons with negligible overlap. The sp<strong>in</strong>s maythen be <strong>in</strong>itialized us<strong>in</strong>g magnetic fields <strong>and</strong> a microwavepulse, as suggested for scalable qubit arrays. 7,14 If V sd isremoved, then oscillations <strong>in</strong> a similar fashion to a double<strong>dot</strong> system <strong>and</strong> <strong>entanglement</strong> will develop with a typicaltime for the <strong>triplet</strong> component of the wave function on theorder of /E T 1 s, where E T =E T 1 −E T o is the energysplitt<strong>in</strong>g of the two lowest <strong>triplet</strong> eigenstates when V sd =0similarly for the s<strong>in</strong>glet. To speed up the process we canapply a time-dependent gate voltage that will tune <strong>in</strong> such away the <strong>dot</strong> potential so as to <strong>in</strong>crease this energy splitt<strong>in</strong>g.In this work we have modelled the gate voltage potentialus<strong>in</strong>g the expression V g x,t=−V p texp−x 2 /2l 2 g l g130 nm, which is driven by a triangular pulse of the formV p t =2V bT pt, 0 t T p /2− 2V bT pt +2V b , T p /2 t T p ,2FIG. 3. Effective charge density for s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> componentsat the f<strong>in</strong>al time for a a case <strong>in</strong> the <strong>filter<strong>in</strong>g</strong> regime <strong>and</strong> bthe most general case.where T p is the period of the pulse <strong>and</strong> V b is the maximumgate voltage. We have studied the case for which the gat<strong>in</strong>grate =dV p /dt is such that to a good approximation onlythe two lowest s<strong>in</strong>glet <strong>and</strong> two lowest <strong>triplet</strong> states are <strong>in</strong>volved<strong>in</strong> the dynamics. Dur<strong>in</strong>g the first half of the cycle0tT p /2 the effect of the voltage is to decrease theeffective width of the <strong>dot</strong> thereby <strong>in</strong>creas<strong>in</strong>g the energy splitt<strong>in</strong>g<strong>and</strong> the <strong>in</strong>teraction, whereas dur<strong>in</strong>g the second half ofthe cycle T p /2tT p the process is reversed. Investigationof the optimum pulse shape <strong>and</strong> possible nonadiabaticeffects are beyond the scope of this work.The dynamics of the two electrons is governed by thetime-dependent Schröd<strong>in</strong>ger equation with the Hamiltonian1 <strong>and</strong> for a total potential V d x+V g x,t which is the sumof the <strong>dot</strong> conf<strong>in</strong><strong>in</strong>g potential <strong>and</strong> the time-dependent gatepotential. For t0, the sp<strong>in</strong> eigenstates are unchanged fors<strong>in</strong>glet or <strong>triplet</strong> components, whereas the evolution of thecorrespond<strong>in</strong>g orbital states is given directly by the solutionof the time-dependent Schröd<strong>in</strong>ger equation which is implementednumerically us<strong>in</strong>g the staggered-time algorithm proposedby Visscher. 33 The time evolution of the <strong>in</strong>itial state ↑↓ is then determ<strong>in</strong>ed by add<strong>in</strong>g the separately determ<strong>in</strong>eds<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components. In Fig. 3 we show two examplesof the f<strong>in</strong>al electron distribution for s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong>components. Specifically, <strong>in</strong> Fig. 3a the s<strong>in</strong>glet correspondsto a good approximation to the right state, whereas the <strong>triplet</strong>corresponds to the left state. This is the ideal <strong>filter<strong>in</strong>g</strong> regimetogether with the opposite limit <strong>in</strong> which at the f<strong>in</strong>al timethe two components occupy different spatial regions. Notethat <strong>in</strong> this regime the two electrons are fully entangled providedthe measurement doma<strong>in</strong> is restricted either to the leftor right region, detect<strong>in</strong>g the s<strong>in</strong>glet or the S z =0 <strong>triplet</strong> state,respectively, which are fully entangled states. Perform<strong>in</strong>g anadditional measurement but <strong>in</strong>itializ<strong>in</strong>g the electron sp<strong>in</strong>s toa purely <strong>triplet</strong> state either of S z =±1 reveals the occupationregion of the <strong>triplet</strong> state hence offer<strong>in</strong>g a way to discrim<strong>in</strong>atebetween s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components. Note that <strong>in</strong> themost general case which is shown <strong>in</strong> Fig. 3b the f<strong>in</strong>al twoelectronstate is a superposition of left <strong>and</strong> right states forboth s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components. Clearly, a measurementwith restriction to either the left doma<strong>in</strong> or the right doma<strong>in</strong>would probe a partially entangled state.To underst<strong>and</strong> the dynamics <strong>and</strong> the difference betweens<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components we can write the time dependence,for example of the s<strong>in</strong>glet, us<strong>in</strong>g the correspond<strong>in</strong>gtwo lowest energy states at all times, i.e., S=C S L S L +C S R S R <strong>in</strong> the left-right basis with the amplitudesC S L =e −iS cos S <strong>and</strong> C S R =ie −iS s<strong>in</strong> S . The parameters S085302-3


GIAVARAS et al.PHYSICAL REVIEW B 75, 085302 2007C R = 2P nsfP sf 1/2, 4P sf + P nsfwith P nsf =C nsf 2 <strong>and</strong> P sf =C sf 2 , thusC R = P R S + P R T 2 −4P R S P R T cos 2 1/2P R S + P RT, 5FIG. 4. Energy splitt<strong>in</strong>g of the two lowest levels for s<strong>in</strong>glet <strong>and</strong><strong>triplet</strong> components, as a function of time for one cycle <strong>in</strong> the <strong>filter<strong>in</strong>g</strong>regime.= t 0 E S 1 t+E S o tdt/2 <strong>and</strong> S = t 0 E S 1 t−E S o tdt/2depend on the two lowest energy levels <strong>and</strong> change withtime. Note that S determ<strong>in</strong>es the amount of <strong>filter<strong>in</strong>g</strong> becauseit determ<strong>in</strong>es the period of the oscillations between left <strong>and</strong>right states, whereas both S <strong>and</strong> S determ<strong>in</strong>e the degree of<strong>entanglement</strong> as we demonstrate below. In Fig. 4 we showthe energy splitt<strong>in</strong>g of the two lowest levels the energies arecalculated from <strong>in</strong>stantaneous solutions as a function oftime for one cycle <strong>in</strong> the <strong>filter<strong>in</strong>g</strong> regime which gives fullyentangled electrons <strong>in</strong> time T p 0.3 ns for V b 2.8 meV.We see that the splitt<strong>in</strong>g is larger for the s<strong>in</strong>glet <strong>and</strong> thismeans that S T , i.e., the s<strong>in</strong>glet component oscillatesfaster than the <strong>triplet</strong>. We can underst<strong>and</strong> this effect with aHartree approximation: because the small <strong>dot</strong> has only onebound energy level c , the tunnel<strong>in</strong>g time the time that theelectron <strong>in</strong> the left corner needs <strong>in</strong> order to move to the rightcorner for the <strong>triplet</strong> is longer due to the Pauli block<strong>in</strong>g.With<strong>in</strong> the Hartree model the electron <strong>in</strong> the large <strong>dot</strong> needsto tunnel through an effective double barrier due to the Coulombrepulsion from the trapped electron <strong>in</strong> the small <strong>dot</strong>,which has only one resonance energy level c +U c with U cthe Coulomb energy when both electrons occupy c <strong>and</strong>corresponds to a s<strong>in</strong>glet state. For a <strong>triplet</strong> resonance to existthe small <strong>dot</strong> needs to have at least two bound levels due tothe Pauli pr<strong>in</strong>ciple. It is worth not<strong>in</strong>g that the efficiency ofthis s<strong>in</strong>glet-<strong>triplet</strong> <strong>filter<strong>in</strong>g</strong> mechanism <strong>and</strong> the <strong>in</strong>duced <strong>entanglement</strong>has been also demonstrated <strong>in</strong> scatter<strong>in</strong>g problemsbetween a static <strong>and</strong> a fly<strong>in</strong>g qubit. 25,26To quantify the degree of <strong>entanglement</strong> which arises as aconsequence of the <strong>in</strong>teraction when the electrons are closetogether we have calculated concurrence 34 at the f<strong>in</strong>al time,from sp<strong>in</strong>-flip, P sf , <strong>and</strong> non-sp<strong>in</strong>-flip, P nsf , probabilities. Forexample, at the right region the amplitudes for these probabilitiesareC nsf = C R T S+ C R, C sf = C R T S− C R, 322which are derived by writ<strong>in</strong>g the correspond<strong>in</strong>g f<strong>in</strong>al state ↑↓ t f <strong>in</strong> the basis of sp<strong>in</strong> eigenstates. Concurrence at theright region is then given bywhere we have set P S R =C S R 2 =s<strong>in</strong> 2 S <strong>and</strong> P T R =C T R 2=s<strong>in</strong> 2 T <strong>and</strong> the relative phase = S − T . A similar expressioncan be derived for the left <strong>and</strong> even for the total region.Note that by def<strong>in</strong>ition 0C R 1 where the limit C R =0 correspondsto unentangled electrons, whereas the limit C R =1to fully entangled electrons. The measurement <strong>in</strong> the rightregion is mean<strong>in</strong>gful only when P S R 0, <strong>and</strong>/or P T R 0, i.e.,when the right state is occupied for s<strong>in</strong>glet <strong>and</strong>/or <strong>triplet</strong>. Wesee from Eq. 4 that C R =1 when P sf = P nsf or equivalentlyfrom Eq. 5 when cos =0 <strong>and</strong>/or when P S R =0 <strong>and</strong> simultaneouslyP T R 0 or vice versa.In Fig. 5 we present the dependence of probabilities,phase shift, <strong>and</strong> concurrence as a function of maximum gatevoltage V b for a fixed gat<strong>in</strong>g rate 18 meV/ns which ensuresthat to a good approximation only the two lowesteigenstates for both s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components are <strong>in</strong>volved<strong>in</strong>to the dynamics. Figure 5a shows the probabilitiesP S R , P T R <strong>and</strong> the absolute magnitude of the quantity cos calculatedat the f<strong>in</strong>al time vs V b . We see that the probabilitiesP S TR , P R do not oscillate for small gates voltages V b2.5 meV but rather they <strong>in</strong>crease because the energysplitt<strong>in</strong>g of the two lowest levels <strong>in</strong> this limit rema<strong>in</strong>s relativelysmall <strong>and</strong> therefore the tunnel<strong>in</strong>g time is long. Further<strong>in</strong>crease of the gate voltage <strong>in</strong>duces well-def<strong>in</strong>ed oscillations.In particular the probability of the s<strong>in</strong>glet component oscillatesfaster than the <strong>triplet</strong> because the energy splitt<strong>in</strong>g whichdeterm<strong>in</strong>es the frequency of the oscillations is larger for thes<strong>in</strong>glet. Note also that the frequency of oscillations <strong>in</strong>creaseswith gate voltage for both components follow<strong>in</strong>g the <strong>in</strong>creaseof the energy splitt<strong>in</strong>g. Figure 5b shows the concurrence C R<strong>and</strong> the sp<strong>in</strong>-flip P sf <strong>and</strong> non-sp<strong>in</strong>-flip P nsf probabilities calculatedat the f<strong>in</strong>al time. When these probabilities are equalthe <strong>entanglement</strong> is maximum whereas when one of them iszero the electrons rema<strong>in</strong> unentangled. For a gate voltageV b 2.8 meV we have an example of the ideal <strong>filter<strong>in</strong>g</strong> regimefor which P S R 0, P T R 1, <strong>and</strong> P sf = P nsf giv<strong>in</strong>g C R =1,s<strong>in</strong>ce only a <strong>triplet</strong> state occupies the right region. The genericcondition for ideal <strong>filter<strong>in</strong>g</strong> is when s<strong>in</strong> S =1 <strong>and</strong> simultaneouslys<strong>in</strong> T =0 or vice versa. Other <strong>filter<strong>in</strong>g</strong> casesnonideal which give C R =1 occur when one of the componentsis zero, say P S R =0 <strong>and</strong> the other is nonzero P T R 0, butnot, however, equal to 1. F<strong>in</strong>ally an <strong>in</strong>terest<strong>in</strong>g limit is whenP S R = P T R for which the concurrence reduces to the simple expressionC R =s<strong>in</strong> which depends only on the relativephase between s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> components.Figure 6 presents the dependence of various quantities asa function of the pulse duration time for two different gatevoltages. As we see by compar<strong>in</strong>g Figs. 6a <strong>and</strong> 6b theperiod of the oscillations can be controlled with the value ofthe maximum gate voltage with the larger V b <strong>in</strong>duc<strong>in</strong>g fasteroscillations due to the larger energy splitt<strong>in</strong>g.085302-4


SINGLET-TRIPLET FILTERING AND ENTANGLEMENT IN…PHYSICAL REVIEW B 75, 085302 2007FIG. 5. Color onl<strong>in</strong>e Dependence at the f<strong>in</strong>altime, as a function of maximum gate voltagefor fixed gat<strong>in</strong>g rate, of a absolute value ofcos <strong>and</strong> right probabilities for s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong>components, <strong>and</strong> b concurrence, sp<strong>in</strong>-flip, <strong>and</strong>non-sp<strong>in</strong>-flip probabilities calculated for the rightregion.F<strong>in</strong>ally, we po<strong>in</strong>t out that the low-ly<strong>in</strong>g sp<strong>in</strong> states relevantto the dynamics of this entangler which <strong>in</strong>volve virtuallyidentical charge distributions at the left, center, <strong>and</strong> rightof the <strong>dot</strong> <strong>structure</strong> suggest that this charge-sp<strong>in</strong> system maybe modelled by a three-site Hubbard model of the formH eff = n L + n R + c n C + C † i, C C, + H.c.,i=L,R+ Un L,↑ n L,↓ + n R,↑ n R,↓ + U c n C,↑ n C,↓ + Vn L n C + n C n R ,6where n i = n i, = C † i, C i, , i=L,R,C, <strong>and</strong> C † i, C i, createsdestroys an electron on site i with sp<strong>in</strong> . The on-siteorbital energy for the left <strong>and</strong> right sites is <strong>and</strong> for thecentral site is c . The on-site Coulomb energy is denoted byU for the left <strong>and</strong> right sites <strong>and</strong> by U c for the central site.The nearest site Coulomb energy is V <strong>and</strong> f<strong>in</strong>ally expressesthe hopp<strong>in</strong>g between nearest sites. Note that all the physicalparameters , c ,U,U c ,V, may be estimated from theHartree approximation described earlier. Work<strong>in</strong>g with<strong>in</strong> therestricted subspace for which the two-electron basis statesconsist of six s<strong>in</strong>glets <strong>and</strong> three <strong>triplet</strong>s, we can extract thecorrect energy splitt<strong>in</strong>g of the two lowest eigenstates forboth s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong>, the correspond<strong>in</strong>g eigenstates <strong>and</strong>the antiferromagnetic exchange energy. Solution of this timedependentmodel Eq. 6 does <strong>in</strong>deed show qualitatively thesame behavior as the orig<strong>in</strong>al cont<strong>in</strong>uous problem but withconsiderable sav<strong>in</strong>g <strong>in</strong> computer time once the timedependentparameters are known. The analysis based on theeffective Hamiltonian Eq. 6 <strong>in</strong>dicates that the physical behaviorthat we have demonstrated can also be realized <strong>in</strong> atriple <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong>. More importantly, the Hubbardmodel gives <strong>in</strong>sight <strong>in</strong>to the behavior of the system s<strong>in</strong>ce it isreadily mapped onto an effective charge-sp<strong>in</strong> model for thelow-ly<strong>in</strong>g manifold of two s<strong>in</strong>glets <strong>and</strong> two <strong>triplet</strong>s. In particular,for s<strong>in</strong>glets there are two processes by which an electronmay tunnel from left to right, as shown <strong>in</strong> Fig. 7. Theprocess a, that is only allowed for s<strong>in</strong>glets, has amplitudeFIG. 6. Color onl<strong>in</strong>e Dependence at the f<strong>in</strong>altime of quantities <strong>in</strong> Fig. 5 as a function ofpulse duration time for two different maximumgate voltages. a V b =2.75 meV <strong>and</strong> b V b=5 meV.085302-5


GIAVARAS et al.FIG. 7. Illustration of the two-electron sp<strong>in</strong> dynamics <strong>in</strong> a threestepprocess, I, II, III. The process a is allowed only for s<strong>in</strong>gletswhereas the process b is allowed for both s<strong>in</strong>glets <strong>and</strong> <strong>triplet</strong>s. 1 = 2 /U−V+ c −J where J is the Heisenberg exchangeenergy between an electron sp<strong>in</strong> on the central site<strong>and</strong> one on either the left or the right site. On the other h<strong>and</strong>,process b is valid for both s<strong>in</strong>glets <strong>and</strong> <strong>triplet</strong>s <strong>and</strong> hasPHYSICAL REVIEW B 75, 085302 2007amplitude 2 = 2 /− c −V. The relative rate of tunnel<strong>in</strong>gfor s<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> is thus tuned by the gate by chang<strong>in</strong>g c , s<strong>in</strong>ce mak<strong>in</strong>g c more negative the energy denom<strong>in</strong>ator <strong>in</strong> 1 decreases whereas that of 2 <strong>in</strong>creases.In summary we have presented a <strong>quantum</strong> <strong>dot</strong> <strong>structure</strong><strong>and</strong> described the two-electron distribution for the lowests<strong>in</strong>glet <strong>and</strong> <strong>triplet</strong> states. By study<strong>in</strong>g the electron dynamicsdue to a time-dependent gate voltage we showed how we can<strong>in</strong>duce a s<strong>in</strong>glet-<strong>triplet</strong> <strong>filter<strong>in</strong>g</strong> based on the Pauli block<strong>in</strong>geffect for the <strong>triplet</strong> state. This can generate full sp<strong>in</strong> <strong>entanglement</strong>with<strong>in</strong> the order of 0.3 ns. Both the degree of<strong>filter<strong>in</strong>g</strong> <strong>and</strong> <strong>entanglement</strong> can be efficiently controlled withthe gat<strong>in</strong>g rate <strong>and</strong> the maximum applied gate voltage.G.G. thanks UK EPSRC for fund<strong>in</strong>g. This work was supportedby the UK M<strong>in</strong>istry of Defence.1 L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoeastro, M.Eto, D. G. Aust<strong>in</strong>g, T. Honda, <strong>and</strong> S. Tarucha, Science 278,1788 1997.2 S. Tarucha, D. G. Aust<strong>in</strong>g, T. Honda, R. J. van der Hage, <strong>and</strong> L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 1996.3 L. P. Kouwenhoven, D. G. Aust<strong>in</strong>g, <strong>and</strong> S. Tarucha, Rep. Prog.Phys. 64, 701 2001.4 W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.Fujisawa, S. Tarucha, <strong>and</strong> L. P. Kouwenhoven, Rev. Mod. Phys.75, 12003.5 D. H. Cobden <strong>and</strong> J. Nygard, Phys. Rev. Lett. 89, 046803 2002.6 S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, <strong>and</strong> K. Ishibashi,Phys. Rev. Lett. 94, 186806 2005.7 D. Loss <strong>and</strong> D. P. DiV<strong>in</strong>cenzo, Phys. Rev. A 57, 120 1998.8 L. Fedichk<strong>in</strong>, M. Yanchenko, <strong>and</strong> K. A. Valiev, Nanotechnology11, 387 2000.9 G. Burkard, D. Loss, <strong>and</strong> D. P. DiV<strong>in</strong>cenzo, Phys. Rev. B 59,2070 1999.10 J. Schliemann, D. Loss, <strong>and</strong> A. H. MacDonald, Phys. Rev. B 63,085311 2001.11 X. Hu <strong>and</strong> S. Das. Sarma, Phys. Rev. A 61, 062301 2000.12 M. Friesen, P. Rugheimer, D. E. Savage, M. G. Lagally, D. W.van der Weide, R. Joynt, <strong>and</strong> M. A. Eriksson, Phys. Rev. B 67,121301R 2003.13 P. Zhang, Q. K. Xue, X. G. Zhao, <strong>and</strong> X. C. Xie, Phys. Rev. A 66,022117 2002.14 F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. V<strong>in</strong>k, K. C.Nowack, T. Meunier, L. P. Kouwenhoven, <strong>and</strong> L. M. K. V<strong>and</strong>ersypen,Nature London 442, 766 2006.15 R. Hanson, L. H. Willems van Beveren, I. T. V<strong>in</strong>k, J. M. Elzerman,W. J. M. Naber, F. H. L. Koppens, L. P. Kouwenhoven, <strong>and</strong>L. M. K. V<strong>and</strong>ersypen, Phys. Rev. Lett. 94, 196802 2005.16 T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, <strong>and</strong> Y.Hirayama, Phys. Rev. Lett. 91, 226804 2003.17 J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,M. D. Luk<strong>in</strong>, C. M. Marcus, M. P. Hanson, <strong>and</strong> A. C. Gossard,Science 309, 2180 2005.18 G. Burkard, D. Loss, <strong>and</strong> E. V. Sukhorukov, Phys. Rev. B 61,R16303 2000.19 P. Recher, E. V. Sukhorukov, <strong>and</strong> D. Loss, Phys. Rev. B 63,165314 2001.20 D. S. Saraga, B. L. Altshuler, D. Loss, <strong>and</strong> R. M. Westervelt,Phys. Rev. B 71, 045338 2005.21 D. S. Saraga, B. L. Altshuler, D. Loss, <strong>and</strong> R. M. Westervelt,Phys. Rev. Lett. 92, 246803 2004.22 C. H. W. Barnes, J. M. Shilton, <strong>and</strong> A. M. Rob<strong>in</strong>son, Phys. Rev.B 62, 8410 2000.23 G. Gumbs <strong>and</strong> Y. Abranyos, Phys. Rev. A 70, 050302R 2004.24 S. Furuta, C. H. W. Barnes, <strong>and</strong> C. J. L. Doran, Phys. Rev. B 70,205320 2004.25 G. Giavaras, J. H. Jefferson, A. Ramšak, T. P. Spiller, <strong>and</strong> C. J.Lambert, Phys. Rev. B 74, 195341 2006.26 J. H. Jefferson, A. Ramšak, <strong>and</strong> T. Rejec, Europhys. Lett. 75, 7642006.27 R. Hanson <strong>and</strong> G. Burkard, cond-mat/0605576 unpublished.28 J. M. Taylor, H.-A. Engel, W. Dür, A. Yacoby, C. M. Marcus, P.Zoller, <strong>and</strong> M. D. Luk<strong>in</strong>, Nat. Phys. 1, 177 2005.29 G. W. Bryant, Phys. Rev. Lett. 59, 1140 1987.30 C. E. Creffield, W. Häusler, J. H. Jefferson, <strong>and</strong> S. Sarkar, Phys.Rev. B 59, 10719 1999.31 For two electrons x 1 , 1 ,x 2 , 2 =x 1 ,x 2 1 , 2 with symmetric antisymmetric for s<strong>in</strong>glet <strong>triplet</strong> under electronexchange. Because the Hamiltonian does not conta<strong>in</strong> any sp<strong>in</strong>dependent term we can consider only the spatial components.32 J. H. Jefferson, M. Fearn, D. L. J. Tipton, <strong>and</strong> T. P. Spiller, Phys.Rev. A 66, 042328 2002.33 P. B. Visscher, Comput. Phys. 5, 596 1991.34 W. K. Wootters, Phys. Rev. Lett. 80, 2245 1998.085302-6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!