02.12.2012 Views

technical program wednesday 26 september 2012 - IEEE Photonics ...

technical program wednesday 26 september 2012 - IEEE Photonics ...

technical program wednesday 26 september 2012 - IEEE Photonics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OFFICERS<br />

Hideo Kuwahara, President James J. Coleman, Past President<br />

Dalma Novak, Secretary-Treasurer<br />

Terms Expiring <strong>2012</strong> Terms Expiring 2013 Terms Expiring 2014<br />

Y. Arakawa P. Andrekson S. Bigo<br />

J. Capmany P. Juodawlkis A. Kirk<br />

M. Glick J. McInerney F. Koyama<br />

L. Nelson D. Novak P. Smowton<br />

K. Choquette, Conferences<br />

J. Kash, Membership<br />

T. Koch, Technical Affairs<br />

BOARD OF GOVENORS<br />

VICE PRESIDENTS<br />

EDITORS<br />

EXECUTIVE OFFICE<br />

Richard Linke, Executive Director<br />

Doug Razzano, Business Manager<br />

Karen Mergner, Coordinator, Society Governance and Awards<br />

CONFERENCE ACTIVITIES<br />

Christine Bluhm, Conference Activities Manager<br />

Mary Hendrickx, Senior Conference Planner<br />

Megan Figueroa, Conference Planner<br />

Cheryl Scott, Conference Finance Coordinator<br />

Katrina Edsell, Conference Data Services Coordinator<br />

PUBLICATIONS<br />

Douglas Hargis, Publications Administrator<br />

Yvette Charles, Publications Coordinator<br />

Sylvia Flores, Publications Coordinator<br />

Chin Tan Lutz, Publications Coordinator<br />

Daphne Moses, Publications Administrative Asst.<br />

Lisa Manteria, Editorial Office Asst.<br />

445 Hoes Lane Piscataway, NJ 08854 USA<br />

(732) 562-3894–3895 Conferences<br />

J. Chennupati, Finance & Administration<br />

R. Tkach, Publications<br />

C. Chang-Hasnain, Journal of Lightwave Technology E-H. Lee, <strong>Photonics</strong> Technology Letters<br />

S. Ünlü,<br />

Journal of Quantum Electronics S. Savory, <strong>Photonics</strong> Society Newsletter<br />

J. Cartledge, Journal of Selected Topics in Quantum<br />

A. Nathan, Journal of Display Technology<br />

C. Menoni, <strong>Photonics</strong> Journal Electronics


September <strong>2012</strong><br />

On behalf of the <strong>IEEE</strong> <strong>Photonics</strong> Society Board of<br />

Governors and Staff I would like to welcome you to<br />

Burlingame for the <strong>IEEE</strong> <strong>Photonics</strong> <strong>2012</strong> conference. As<br />

you may know, this represents the 25th year in this series of<br />

conferences which were formerly known as the LEOS<br />

Annual Meeting.<br />

We are particularly pleased with the number and quality of<br />

the submissions to this year’s conference. Submissions, at<br />

441, were up again this year over last year making this the<br />

largest number of submissions received for our annual<br />

conference in my full six-year tenure as Executive Director<br />

of our Society. Congratulations to the hard-working Program Committee and the IPS<br />

conference staff! Complementing the contributed papers we also have 125 invited<br />

papers, 4 tutorials and 4 plenary talks this year for a total of 519 presentations. We<br />

hope you will appreciate the many high-quality <strong>technical</strong> sessions and special<br />

symposia presented in this year’s <strong>program</strong> as well as our location here with easy<br />

access to San Francisco.<br />

If you are not already an <strong>IEEE</strong> <strong>Photonics</strong> Society member you may sign up anytime<br />

online at www.ieee.org/membership/join so that you may begin to enjoy the many<br />

benefits of membership including online access to many of our journals and conference<br />

proceedings, reduced registration rates, and access to our online member<br />

directory.<br />

Again this year the <strong>IEEE</strong> <strong>Photonics</strong> Society will make available recordings of selected<br />

presentations with video display of the presentation materials at the low price of $35.<br />

If you did not sign up for this conference feature at registration you may do so at any<br />

time during the conference at the registration desk. The recordings will be accessible<br />

via the web for 60 after the conference. Last year was our first experiment with this<br />

offering and many people found it extremely helpful to view presentations that they<br />

may have missed due to a conflict in their schedule. Please check out this feature<br />

and give us your feedback!<br />

The <strong>IEEE</strong> <strong>Photonics</strong> Society is pleased to spotlight the recent report from the National<br />

Academy of Sciences entitled: Optics and <strong>Photonics</strong>: Essential Technologies for<br />

Our Nation. Alan Willner, co-chair of the NAS committee that produced the report,<br />

will present a brief review of the committee’s conclusions and will address questions<br />

on Sunday evening at 7pm directly after the Semiconductor Laser Symposium.<br />

Finally, I’d like to encourage you to join us 8-12 September 2013 at the Hyatt<br />

Regency Bellevue, Bellevue WA for the <strong>IEEE</strong> <strong>Photonics</strong> Conference 2013. Hope to<br />

see you there!<br />

Rich Linke<br />

Executive Director<br />

<strong>IEEE</strong>-<strong>Photonics</strong> Society<br />

Page 1


TABLE OF CONTENTS<br />

Page 2<br />

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

General Information<br />

Registration Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Speaker and Session Chair Check-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Reception/Awards Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Program at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9<br />

Sessions at a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 11<br />

Conference Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Program Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 13<br />

Gold Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Plenary Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 17<br />

Special Symposia Organizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19<br />

Tutorial Speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

<strong>Photonics</strong> Society Program<br />

Monday Technical Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31<br />

Tuesday Technical Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-43<br />

Wednesday Technical Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-63<br />

Thursday Technical Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66-79<br />

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-85<br />

Advertisers Index<br />

International Semiconductor Laser Conference . . . . . . . . . . . . . . . . . . . . . 15<br />

Optical Interconnects Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21<br />

Journal of Selected Topics in Quantum Electronics<br />

In Semiconductor Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

Summer Topicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Journal of Selected Topics in Quantum Electronics<br />

In Numerical Simulation of Optoelectronic Devices . . . . . . . . . . . . . . 44<br />

Avionics, Fiber-Optics & <strong>Photonics</strong> Conference . . . . . . . . . . . . . . . . . . . . .45<br />

Journal of Selected Topics in Quantum Electronics<br />

In Graphene Optoelectronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

Microwave <strong>Photonics</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65<br />

2013 <strong>Photonics</strong> Society Meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BC<br />

Conference Site Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88-IBC<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational,<br />

publicity, promotional and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed.<br />

Do not photograph any such images that are labeled as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal<br />

characteristics not related to ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information<br />

on the <strong>IEEE</strong> policy visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol


Welcome to San Francisco, California and the 25th <strong>IEEE</strong> <strong>Photonics</strong> Conference<br />

(previously known as the <strong>IEEE</strong> LEOS Annual Meeting). Following in the path of<br />

previous successful meetings, this year’s conference features an extensive<br />

range of <strong>technical</strong> activities in addition to some unique events.<br />

The conference opens on Sunday with a GOLD (Graduates Of the Last Decade)<br />

session focused on career development and networking opportunities for recent<br />

graduates in the photonics field. This is followed by the “Careers In Research<br />

Forum”. The charter of the Careers in Research Forum is to promote career<br />

awareness among students and young researchers in photonics and related<br />

fields. Attendees will have the opportunity to listen to a welcome address and<br />

invited presentations from leading researchers in academia and industry highlighting<br />

milestones for achieving success. They are: Prof. Scott Yam from Queen’s University, Canada,<br />

and Prof. Odile Liboiron-Ladouceur from the Department of Electrical and Computer Engineering, McGill<br />

University. The next event is the “Entrepreneurs Session”. This session will feature invited presentations<br />

from a number of successful photonics entrepreneurs who will present their personal perspectives and<br />

insights on successfully commercializing photonics technology as well as the lessons they learnt along<br />

the way. Attendees will have a unique opportunity to hear first-hand about the dynamic world of<br />

photonics startups and to learn about what it takes to be successful as an entrepreneur. Following the<br />

presentations, there will be a panel discussion to field questions from the audience. The presenters<br />

include Prof. H. Scott Hinton from Utah State University, Dr. Raymond Beausoleil from HP Labs, and Dr.<br />

David Rolston from Reflex <strong>Photonics</strong>.<br />

The last event on Sunday’s schedule is a 50th Anniversary of the Semiconductor Laser Session &<br />

Reception. <strong>2012</strong> marks a very special birthday as it is the 50th Anniversary of the Semiconductor Laser.<br />

The very first operational semiconductor laser was made in 1962. In the 50 years since we have<br />

witnessed great progress in its development. To celebrate the occasion, there will be a special session<br />

on Sunday evening devoted to the semiconductor laser. Several renowned researchers including Prof.<br />

James Coleman from the University of Illinois at Urbana-Champagne, Prof. Thomas Koch from the<br />

University of Arizona, and Dr. Don Scifres from SDL Ventures Inc., will provide some historical perspectives<br />

and share their experiences in the development of semiconductor laser technology.<br />

We will hold two plenary sessions, one each on Monday afternoon and Tuesday afternoon. Four distinguished<br />

speakers (two per day) will provide their insight on a range of topics: “Large-Area, Flexible,<br />

Organic <strong>Photonics</strong> and Electronics” by Prof. Takao Someya, University of Tokyo, Tokyo, Japan; “Driving<br />

VCSELs and Silicon Photonic Optical Interconnects to Brutal Area and Energy Efficiencies for Future<br />

Computing Systems” by Dr. Ashok Krishnamoorthy, Oracle, San Diego, CA, USA; “3D Photonic<br />

Metamaterials and Transformation Optics”, by Prof. Martin Wegener, Karlsruhe Institute of Technology,<br />

Karlsruhe, Germany; and “The Opto-Electronic Physics that Just Broke the Efficiency Record in Solar<br />

Cells” by Prof. Eli Yablonovitch, University of California – Berkeley, Berkeley, CA, USA.<br />

We will also have seven tutorials that have been scheduled throughout the week which will be given by<br />

four distinguished researchers on the following topics: “Solar Cells” by Prof. Vikram Dalal, Director of the<br />

Microelectronics Research Center at Iowa State University.; “Cavity Optomechanics” by Prof. Kerry<br />

Vahala, California Institute of Technology, USA; “Microwave Photonic Filters” by Dr. Lute Maleki,<br />

OEWaves, USA; and “Coherent Communication” by Dr. Peter Winzer, Bell Laboratories, Alcatel-Lucent,<br />

USA.<br />

The main <strong>technical</strong> <strong>program</strong> of the meeting this year is extremely strong. The Society’s 14 <strong>program</strong><br />

subcommittees have assembled an outstanding <strong>program</strong> comprising 4 Special Symposia, 125 invited<br />

talks and 441 contributed papers, over half of which are contributed by student authors. There were 23<br />

papers submitted for the Best Student Paper Aware. 5 were nominated by the <strong>program</strong> subcommittees<br />

and five student awards will be presented at Monday evening’s Awards Reception.<br />

On behalf of my fellow conference Chairs, I wish to express our sincere gratitude to all the volunteers<br />

who have contributed to the success of this year’s meeting; especially the Chairs and Members of the<br />

Society’s Program Subcommittees who invested an extraordinary amount of their time selecting invited<br />

speakers, reviewing papers, and organizing the high quality <strong>technical</strong> sessions. In addition, the hard<br />

work and enthusiastic dedication of the <strong>Photonics</strong> Society conference activities staff is greatly appreciated<br />

and they are to be congratulated for skillfully coordinating the complex logistics of this large event.<br />

In particular, special thanks go to Mary Hendrickx and Katrina Edsell for their tireless efforts.<br />

We hope you have a very rewarding and enjoyable conference!<br />

Susumu NODA<br />

Program Chair, <strong>2012</strong> <strong>IEEE</strong> International <strong>Photonics</strong> Conference<br />

<strong>2012</strong> PHOTONICS SOCIETY FORWARD<br />

Page 3


<strong>2012</strong> GENERAL INFORMATION<br />

Page 4<br />

(Registration Hours<br />

The <strong>Photonics</strong> Society Registration Counter will be<br />

located in the Grand Peninsula Foyer except on<br />

Sunday where it will be located in front of the<br />

Sandpebble Rooms.<br />

Registration will be open during the following<br />

hours:<br />

Sunday 23 September 11:00am – 5:00pm<br />

(Located in front of the Sandpebble Rooms)<br />

Monday 24 September 7:00am – 5:00pm<br />

Tuesday 25 September 8:00am – 5:00pm<br />

Wednesday 25 September 8:00am – 5:00pm<br />

Thursday <strong>26</strong> September 8:00am – 4:00pm<br />

<strong>Photonics</strong> Society Speaker & Session Chair<br />

Check-in<br />

To ensure that all sessions proceed smoothly, all<br />

speakers and session chairs must report to the<br />

<strong>Photonics</strong> Society Speaker/Session check-in directly<br />

after you pick up your registration.<br />

The Speaker/Session Check-in is located in the<br />

Grand Peninsula Foyer all days except for Sunday<br />

where it will be located in front of the Sandpebble<br />

Rooms.<br />

Speaker Check-In Hours will be as follows:<br />

Sunday 23 September 11:00am – 5:00pm-<br />

(Located in front of the Sandpebble Rooms)<br />

Monday 24 September 7:00am – 5:00pm<br />

Tuesday 25 September 8:00am – 5:00pm<br />

Wednesday <strong>26</strong> September 8:00am – 5:00pm<br />

Thursday 27 September 8:00am – 3:00pm<br />

Audio Visual Equipment<br />

Each meeting room will have available the following<br />

audio-visual equipment:<br />

Podium microphone<br />

Lavaliere microphone<br />

Pointer<br />

Laptop<br />

Data Projector<br />

Job Postings<br />

A self-service job postings board will be located<br />

near the <strong>Photonics</strong> Society Registration Desk<br />

<strong>Photonics</strong> Society Post-Deadline Papers:<br />

Post-Deadline Paper Submission Deadline:<br />

9:00AM, Monday 24 September <strong>2012</strong><br />

The purpose of post-deadline papers is to give<br />

participants the opportunity to hear new and significant<br />

material in rapidly advancing areas. Only those<br />

papers judged to be truly excellent and compelling<br />

in their timeliness will be accepted.<br />

Authors of post deadline papers must submit the<br />

original paper and 30 copies to the <strong>Photonics</strong><br />

Society Speaker Check-In Desk by 9:00am<br />

24 September <strong>2012</strong>.<br />

The two-page abstract should be submitted on 8.5”<br />

x 11” white bond paper, typed single space on one<br />

side with one-inch margins on all four sides. Charts,<br />

illustrations and figures must fit within the two-page<br />

paper specification.<br />

Accepted papers will be posted by 9:00AM on<br />

Wednesday <strong>26</strong> September <strong>2012</strong>.<br />

The 2 Page Summary will be published in the <strong>IEEE</strong><br />

Xplore if accepted. Authors of accepted post<br />

deadline papers should be prepared to email an<br />

electronic copy of their 2-page summary, directly to<br />

Katrina Edsell (k.edsell@ieee.org) at the <strong>IEEE</strong><br />

<strong>Photonics</strong> Society prior to the conference end.<br />

The post deadline session will take place on<br />

Wednesday, <strong>26</strong> September <strong>2012</strong> from 5:30pm-<br />

6:30pm in Grand Peninsula D.<br />

Exhibits are located in Grand Peninsula Foyer.<br />

Awards to be presented by Hideo Kuwahara,<br />

<strong>Photonics</strong> Society President<br />

<strong>IEEE</strong> <strong>Photonics</strong> William Streifer Scientific<br />

Achievement Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Aron Kressel Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Distinguished Service Award<br />

EEE <strong>Photonics</strong> Distinguished Lecturers (2010-2011)<br />

<strong>IEEE</strong> <strong>Photonics</strong> Society Fellows<br />

<strong>Photonics</strong> Society Board of Governors<br />

(Ending term <strong>2012</strong>)<br />

<strong>IEEE</strong> <strong>Photonics</strong> Chapter of the Year Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Largest Membership Increase<br />

Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Most Improved Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Most Innovative Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Senior Member Initiative Award<br />

<strong>IEEE</strong> <strong>Photonics</strong> Graduate Student Fellowships<br />

<strong>IEEE</strong> <strong>Photonics</strong> 2011 Best Student Paper Awards<br />

<strong>IEEE</strong> <strong>Photonics</strong> Award will be presented by<br />

Vincenzo Piuri


PHOTONICS SOCIETY <strong>2012</strong> PROGRAM-AT-A-GLANCE<br />

SUNDAY, 23 SEPTEMBER <strong>2012</strong><br />

NOTE: ALL SESSIONS SHADED IN ORANGE WILL BE RECORDED AND AVAILABLE FOR VIEWING AFTER THE CONFERENCE FOR A FEE. FOR MORE INFORMATION PLEASE<br />

CONTACT : MARY HENDRICKX AT M.HENDRICKX@<strong>IEEE</strong>.ORG OR BY VISITING WWW.IPC-<strong>IEEE</strong>.ORG OR BY STOPPING BY THE REGISTRATION DESK AT THE CONFERENCE<br />

REGISTRATION 11:00am - 5:00pm SANDPEBBLE FOYER<br />

SPEAKER CHECK-IN 11:00am - 5:00pm SANDPEBBLE FOYER<br />

GOLD (Graduates of The Last Decade) Session 1:30pm –3:30pm SANDPEBBLE ROOMS<br />

The session is a Forum for graduate students and young professionals to interact with their peers, take part in GOLD organized activities,<br />

and establish connections in the photonic community. The invited talk will focus on how to develop academic or industrial careers after graduation.<br />

The poster presentations from the graduate fellowship winners are aimed at giving attendees an opportunity to mix with successful academic and<br />

industrial leaders in the photonics field.successful academic and industrial leaders in the photonics field.<br />

1:30pm - 2:00pm Welcome: Dr. Scott Yam, Queen’s University, Canada & GOLD Session Coordinator of <strong>IEEE</strong> <strong>Photonics</strong> Society<br />

Invited Talk: “From PhD Candidate to Principal Investigator”<br />

Odile Liboiron-Ladouceur Department of Electrical and Computer Engineering, McGill University,<br />

2:00pm – 3:30pm GOLD Poster Session<br />

Panel Session: Special Session on Entrepreneurial-ism in the Optics/<strong>Photonics</strong><br />

3:30pm – 5:00pm SANDPEBBLE ROOMS<br />

Forum Chair: David Plant, McGill University, Canada<br />

<strong>Photonics</strong> Entrepreneurial Session — Moderated by David Plant of McGill University, this session will feature invited presentations<br />

from successful photonics entrepreneurs, giving their perspectives and insights on successfully commercializing photonics technology.<br />

Attendees will hear first-hand about the dynamic world of photonics startups and learn what it takes to be successful as an entrepreneur.<br />

Following the presentations, there will be a panel discussion and Q&A.<br />

FEATURED SPEAKERS/PANELISTS<br />

H. Scott Hinton, Utah State University Raymond Beausoleil, HP Labs David Rolston, Reflex <strong>Photonics</strong><br />

50th Anniversary of the Semiconductor Laser Session & Reception 5:00pm – 7:00pm SANDPEBBLE ROOMS<br />

Forum Chair: David Plant, McGill University, Canada<br />

<strong>2012</strong> marks a very special birthday as it is the 50th Anniversary of the Semiconductor Laser. The very first operational semiconductor laser<br />

was made in 1962 by Robert Hall and his associates at the General Electric Co. laboratories in Schenectady, NY. In the 50 years since we have<br />

witnessed great progress in its development. To celebrate the occasion, there will be a special session on Sunday evening devoted<br />

to the semiconductor laser. Several renowned pioneers will provide some historical perspectives and share their experiences in the development of<br />

semiconductor laser technology.<br />

FEATURED SPEAKERS/PANELISTS<br />

James Coleman, University of Illinois at Urbana-Champagne Thomas Koch, University of Arizona Don Scifres, SDL Ventures Inc.<br />

Optics and <strong>Photonics</strong>: Essential Technologies for Our Nation Evening Session 7:00pm-8:00pm<br />

Moderator: Alan E. Willner, Study Committee Co-Chair, Univ. of Southern California<br />

This evening session will provide a forum to discuss the National Academies Study on Optics and <strong>Photonics</strong>.<br />

Page 5


PHOTONICS SOCIETY <strong>2012</strong> PROGRAM-AT-A-GLANCE<br />

MONDAY, 24 SEPTEMBER <strong>2012</strong><br />

Page 6<br />

PSSI Photodetectors, Sensors, Systems and Imaging<br />

PIP Photonic Integration and Packaging<br />

PMST Photonic Materials Science & Technology<br />

SL Semiconductor Lasers<br />

Special Symposia<br />

SS-QP Quantum <strong>Photonics</strong><br />

SS-OMNP Optical Microresonators and Novel Phenomena<br />

SS-SP III-V on Si for Silicon <strong>Photonics</strong><br />

SS-PPN Photovoltaics based on Plasmonics<br />

and Nanophotonics<br />

Session Abbreviation Key<br />

BIO Biophotonics<br />

DISL Displays and Lighting<br />

HPIS High Power/ Intensity Sources<br />

MWP Microwave <strong>Photonics</strong><br />

NANO Nanophotonics<br />

NLUO Non-Linear and Ultrafast Optics<br />

OC Optical Communications<br />

OFT Optical Fiber Technology<br />

OI Optical Interconnects<br />

ONS Optical Networks and Systems<br />

REGISTRATION<br />

SPEAKER/SESSION CHAIR<br />

CHECK-IN<br />

7:00am - 5:00pm<br />

GRAND PENINSULA FOYER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30am – 10:00am<br />

MH OI1<br />

OI I - Devices<br />

E. Johnson<br />

8:30am – 10:00am<br />

MG SS-PPN1<br />

Plasmonic Based<br />

Photovoltaics<br />

M. Brongersma<br />

8:30am – 10:00am<br />

MF SL1<br />

Quantum Dot Sources<br />

H. Liu<br />

8:30am – 10:00am<br />

ME OC1<br />

PON<br />

TBD<br />

8:30am – 10:00am<br />

MD PSSI1<br />

Single Photon Counting<br />

Systems<br />

B. Onat<br />

8:30am – 10:00am<br />

MC MWP1<br />

Microwave Photonic<br />

Signal Generation<br />

E. W. Jacobs<br />

8:30am – 10:15am<br />

MB BIO1<br />

Microscopy and<br />

Imaging<br />

D. Faber<br />

8:30am – 9:30am<br />

MA TUT1<br />

Tutorial I:<br />

Solar Cells<br />

C. Jagadish<br />

10:00AM - 10:30AM COFFEE BREAK /EXHIBITS GRAND BALLROOM D<br />

10:30am –12:15pm<br />

MP OI2<br />

OI II - Applications<br />

M. Haney<br />

10:30am –12:00pm<br />

MO SS-PPN2<br />

Photonic Crystal<br />

Photovoltaics<br />

C. Jagadish<br />

10:30am –12:00pm<br />

MN SL2<br />

Vertical-Cavity Surface<br />

Emitting Lasers I<br />

N. Ledentsov<br />

10:30am –12:00pm<br />

MM OC2<br />

All-Optical Signal<br />

Processing I<br />

T. Woodward<br />

10:30am –12:00pm<br />

ML PSSI2<br />

Single Photon Counting<br />

Detectors<br />

J. C. Campbell<br />

10:30am –11:45am<br />

MK MWP2<br />

Microwave Photonic<br />

Integrated Circuits<br />

J. Yao<br />

10:30am –12:00pm<br />

MJ BIO2<br />

Bioimaging and<br />

Analysis Techniques<br />

F. Pavone<br />

10:30am –12:00pm<br />

MI SS-MRP1<br />

Special Symposium on<br />

Micro Resonators &<br />

Novel Phenomena I<br />

TBD<br />

LUNCH (On Own) 12:00pm - 1:30pm<br />

1:30pm – 3:00pm<br />

MX NANO1<br />

Photon Management &<br />

Gratings<br />

H. V. Demir<br />

1:30pm – 3:00pm<br />

MW SS-PPN3<br />

Nanostructures in Solar<br />

Cells<br />

TBD<br />

1:30pm – 2:45pm<br />

MV SL3<br />

Optical Interconnect<br />

and Hybrid Laser<br />

Sources<br />

B. Koch<br />

1:30pm – 2:45pm<br />

MU OC3<br />

DSP for Coherent<br />

System I<br />

S. Randel<br />

1:30pm – 2:45pm<br />

MT PSSI3<br />

Infrared Detectors<br />

S. Krishna<br />

1:30pm – 3:00pm<br />

MS MWP3<br />

Microwave Photonic<br />

Devices<br />

V. Urick<br />

1:30pm – 3:00pm<br />

MR BIO3<br />

Photonic Biosensors I<br />

S. Unlu<br />

1:30pm – 3:00pm<br />

MQ SS-MRP2<br />

Special Symposium on<br />

Micro Resonators &<br />

Novel Phenomena II<br />

A. Matsko<br />

3:00pm - 3:30pm COFFEE BREAK /EXHIBITS GRAND PENINSULA FOYER<br />

Plenary Session I 3:30pm – 5:15pm GRAND BALLROOM D<br />

Plenary Session Chair: Dalma Novak<br />

3:30pm – 3:45 Welcome Remarks<br />

3:45pm – 4:30pm “Large-Area, Flexible, Organic <strong>Photonics</strong> and Electronics” Takao Someya, University of Tokyo, Tokyo, Japan<br />

4:30pm – 5:15pm “Driving VCSELs and Silicon Photonic Optical Interconnects to Brutal Area and Energy Efficiencies for Future Computing Systems”<br />

Ashok Krishnamoorthy, Oracle, San Diego, CA, USA<br />

AWARDS PRESENTION 5:15pm – 6:00pm GRAND BALLROOM D<br />

WELCOME RECEPTION 6:00pm – 7:30pm GRAND PENINSULA ABC/CORRIDOR<br />

Indicates recorded session


PHOTONICS SOCIETY <strong>2012</strong> PROGRAM-AT-A-GLANCE<br />

TUESDAY, 25 SEPTEMBER <strong>2012</strong><br />

REGISTRATION 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

SPEAKER CHECK-IN 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30am – 10:00am<br />

TuH NANO2<br />

Photonic Crystals and<br />

Devices I<br />

Z. Yu<br />

8:30am – 10:00am<br />

TuG SS-MRP3<br />

Special Symposium on<br />

Micro Resonators &<br />

Novel Phenomena III<br />

TBD<br />

8:30am – 10:00am<br />

TuF SL4<br />

Vertical-Cavity Surface<br />

Emitting Lasers II<br />

A. Sirbu<br />

8:30am – 9:45am<br />

TuE OC4<br />

Coherent Transmission<br />

F. Hauske<br />

8:30am – 10:00am<br />

TuD PSSI4<br />

Imaging Detector<br />

Arrays: Visible to Tera<br />

Hertz<br />

A. Sarangan<br />

8:30am – 10:00am<br />

TuC MWP4<br />

Microwave Photonic<br />

Techniques<br />

A. M. J. Koonen<br />

8:30am – 10:00am<br />

TuB BIO4<br />

Photonic Biosensors II<br />

TBD<br />

8:30am – 9:30am<br />

TuA TUT2<br />

Tutorial II:<br />

Opto-Mechanics<br />

M. Sumetsky<br />

10:00am - 10:30am COFFEE BREAK /EXHIBITS - GRAND PENINSULA FOYER<br />

10:30am – 12:15pm<br />

TuP NANO3<br />

Photonic Crystals and<br />

Novel Devices II<br />

O. Solgaard<br />

10:30am – 12:00pm<br />

TuO SS-MRP4<br />

Special Symposium on<br />

Micro Resonators &<br />

Novel Phenomena IV<br />

T. Carmon<br />

10:30am – 12:00pm<br />

TuN SL5<br />

Integrated Laser<br />

Sources and<br />

Communication Lasers<br />

V. Tolstikhin<br />

10:30am – 11:45am<br />

TuM OC5<br />

Constellation<br />

Optimization &<br />

Nonlinearities<br />

N. Alic<br />

10:30am – 12:15pm<br />

TuL PSSI5<br />

High Speed Detectors<br />

B. Onat<br />

10:30am – 11:45am<br />

TuK MWP5<br />

Microwave Photonic<br />

Processing &<br />

Measurements<br />

F. Quinlan<br />

10:30am – 11:45am<br />

TuJ BIO5<br />

Photonic Tools for<br />

Biology and<br />

Manipulation<br />

R. Heideman<br />

10:30am – 12:15pm<br />

TuI OI3<br />

Architecture Devices<br />

P. Srinivasan<br />

LUNCH (ON OWN) 12:00pm – 1:30pm<br />

1:30pm – 3:00pm<br />

TuX SS-QP1<br />

Special Symposium on<br />

Quantum <strong>Photonics</strong> I<br />

S. Iwamoto<br />

1:30pm – 3:00pm<br />

TuW SS-MRP5<br />

Special Symposium on<br />

Micro Resonators &<br />

Novel Phenomena V<br />

M. Sumetsky<br />

1:30pm – 3:00pm<br />

TuV SL6<br />

Dynamics of<br />

Semiconductor Lasers<br />

R. Salvatore<br />

1:30pm – 2:45pm<br />

TuU OC6<br />

Nonlinearity<br />

Compensation in<br />

Coherent Transmission<br />

N. Alic<br />

1:30pm – 3:00pm<br />

TuT PSSI6<br />

Thin Film Detectors<br />

TBD<br />

1:30pm – 3:00pm<br />

TuS MWP6<br />

Microwave Photonic<br />

Links and Systems<br />

T. Clark<br />

1:30pm – 3:00pm<br />

TuR NLUO1<br />

Photonic Lattices &<br />

Solitons<br />

R. Morandotti<br />

1:30pm – 3:00pm<br />

TuQ OI4<br />

OI IV – Technology<br />

Platforms<br />

K. Raj<br />

3:00pm - 3:30pm COFFEE BREAK /EXHIBITS - GRAND PENINSULA FOYER<br />

Plenary Session II 3:30pm – 5:00pm GRAND BALLROOM D<br />

Plenary Session Chair: Dalma Novak<br />

3:30pm – 4:15pm “3D Photonic Metamaterials and Transformation Optics”<br />

Martin Wegener, Karlsruhe Institute of Technology, Karlsruhe, Germany<br />

4:15pm – 5:00pm “The Opto-Electronic Physics that Just Broke the Efficiency Record in Solar Cells”<br />

Eli Yablonovitch, University of California – Berkeley, Berkeley, CA, USA<br />

Indicates recorded session<br />

Page 7


PHOTONICS SOCIETY <strong>2012</strong> PROGRAM-AT-A-GLANCE<br />

Page 8<br />

WEDNESDAY, <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

REGISTRATION 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

SPEAKER CHECK-IN 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30am – 10:00am<br />

WH NANO4<br />

Large-Area<br />

Nanophotonics and<br />

Novel Fabrication<br />

Techniques<br />

A. Yanik<br />

8:30am – 10:00am<br />

WG SS-QP2<br />

Special Symposium on<br />

Quantum <strong>Photonics</strong> II<br />

TBD<br />

8:30am – 10:00am<br />

WF SL7<br />

Nanocavity and Ring<br />

Resonator Lasers<br />

TBD<br />

8:30am – 9:45am<br />

WE OC7<br />

DSP for Coherent<br />

Systems II<br />

M. O’Sullivan<br />

8:30am – 10:00am<br />

WD PSSI7<br />

Integrated Optical<br />

Sensors<br />

S. Gunapala<br />

8:30am – 10:30am<br />

WC DISL1<br />

Novel Inorganic LEDS<br />

TBD<br />

8:30am – 10:00am<br />

WB NLUO2<br />

NLO & Linear Optical<br />

Devices<br />

Y. J. Ding<br />

8:30am – 9:30am<br />

WA TUT3<br />

Tutorial III: Microwave<br />

Photonic Filters<br />

T. Clark<br />

10:00AM - 10:30AM COFFEE BREAK / EXHIBITS - GRAND PENINSULA FOYER<br />

10:30am – 12:15pm<br />

WP NANO5<br />

Bio-Nanophotonics<br />

R. Oulton<br />

10:30am – 12:00pm<br />

WO SS-QP3<br />

Special Symposium on<br />

Quantum <strong>Photonics</strong> III<br />

G. Weihs<br />

10:30am – 12:00pm<br />

WN SL8<br />

High-Power and<br />

Quantum Cascade<br />

Lasers<br />

TBD<br />

10:30am – 11:45am<br />

WM OC8<br />

FEC Techniques<br />

I. Djordjevic<br />

10:30am – 11:45am<br />

WL PSSI8<br />

Interferometric Sensors<br />

A. Adibi<br />

10:30am – 12:30pm<br />

WK DISL2<br />

Organic LEDs &<br />

AMOLED Displays<br />

P. Servati<br />

10:30am – 12:00pm<br />

WJ NLUO4<br />

Fiber Lasers &<br />

Applications<br />

N. S. Prasad<br />

10:30am – 12:00pm<br />

WI NLUO3<br />

Optical Frequency<br />

Combs<br />

R. A. Kaindl<br />

LUNCH (ON OWN) 12:00PM - 1:30PM<br />

1:30pm – 3:00pm<br />

WX NANO6<br />

Gain and Loss in<br />

Plasmonics<br />

H. Schmidt<br />

1:30pm – 2:45pm<br />

WW SS-QP4<br />

Special Symposium on<br />

Quantum <strong>Photonics</strong> IV<br />

M. Stevenson<br />

1:30pm – 2:45pm<br />

WV SL9<br />

New Semiconductor<br />

Laser Materials<br />

TBD<br />

1:30pm – 2:45pm<br />

WU OC9<br />

Space Division<br />

Multiplexing<br />

E. Ip<br />

1:30pm – 3:00pm<br />

WT PSSI9<br />

Compressive and<br />

Spectral Imaging<br />

M. Hayat<br />

1:30pm – 2:45pm<br />

WS MWP7<br />

Radio over Fiber<br />

Techniques<br />

H. Murata<br />

1:30pm – 3:00pm<br />

WR NLUO6<br />

NLO Applications<br />

M. Fejer<br />

1:30pm – 3:00pm<br />

WQ NLUO5<br />

Mid-IR/THz & NLO<br />

Phenomena<br />

Z. Che<br />

10:00AM - 10:30AM COFFEE BREAK / EXHIBITS - GRAND PENINSULA FOYER<br />

Sandpebble<br />

C Room<br />

3:30pm – 5:00pm<br />

WGG PMST1<br />

Compound<br />

Material<br />

Growth<br />

S. Bank<br />

3:30pm – 5:00pm<br />

WFF NANO7<br />

Integrated<br />

Plasmonic<br />

Devices<br />

A. Yanik<br />

3:30pm – 4:30pm<br />

WEE SS-QP5<br />

Special Symposium on<br />

Quantum <strong>Photonics</strong> V<br />

V. Zwiller<br />

3:30pm – 5:00pm<br />

WDD OFT1<br />

Fiber Lasers<br />

K. H. Oh<br />

3:30pm – 5:00pm<br />

WCC OC10<br />

All-Optical Signal<br />

Processing II<br />

L. Oxenløwe<br />

3:30pm –5:00pm<br />

WBB PSSI10<br />

Digital Holography,<br />

Microscopy and LADAR<br />

P. Ferraro<br />

3:30pm –4:30pm<br />

WAA ONS1<br />

Optical Wireless<br />

W. D. Zhong<br />

3:30pm – 5:00pm<br />

WZ PIP1<br />

Silicon Nanophotonics<br />

and Other Integration<br />

Platforms<br />

B. Koch<br />

3:30pm – 4:45pm<br />

WY NLUO7<br />

Attosecond &<br />

Supercontinuum<br />

S.-D. Yang<br />

5:30PM - 6:30PM POSTDEADLINE SESSIONS - GRAND BALLROOM D<br />

Indicates recorded session


PHOTONICS SOCIETY <strong>2012</strong> PROGRAM-AT-A-GLANCE<br />

THURSDAY 27 SEPTEMBER <strong>2012</strong><br />

REGISTRATION 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

SPEAKER CHECK-IN 8:00am - 5:00pm GRAND PENINSULA FOYER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30am – 10:00am<br />

ThH NANO8<br />

Quantum Confined Light<br />

Sources<br />

S. Zhang<br />

8:30am – 9:45am<br />

ThG SS-SP1<br />

Heterogenious<br />

Integration Technology<br />

and Devices<br />

N. Nishiyama<br />

8:30am – 10:00am<br />

ThF OFT2<br />

Fiber Measurements<br />

and Sensors<br />

J. Ballato<br />

8:30am – 9:45am<br />

ThE HPIS1<br />

High-Intensity, Short-<br />

Pulse Lasers and their<br />

Applications<br />

K. Yamakawa<br />

8:30am – 10:00am<br />

ThD PMST2<br />

Nanostructure Material<br />

Processes<br />

W. Zhou<br />

8:30am – 9:45am<br />

ThC ONS2<br />

Optical Access<br />

I. Andonovic<br />

8:30am – 10:00am<br />

ThB PIP2<br />

Silicon <strong>Photonics</strong><br />

J. Coleman<br />

8:30am – 9:30am<br />

ThA TUT4<br />

Tutorial IV: Coherent<br />

Communication<br />

TBD<br />

10:00AM - 10:30AM COFFEE BREAK / EXHIBITS - GRAND PENINSULA FOYER<br />

10:30am – 12:00pm<br />

ThP NANO9<br />

Infrared Nanophotonics<br />

T. Gregorkiewicz<br />

10:30am – 12:00pm<br />

ThO SS-SP2<br />

Hybrid Lasers<br />

M. Heck<br />

10:30am – 12:00pm<br />

ThN OFT3<br />

Novel Fibers and<br />

Applications<br />

T. Taunay<br />

10:30am – 12:00pm<br />

ThM HPIS2<br />

High-Power Fiber and<br />

Solid-State Lasers<br />

Z. Wei<br />

10:30am – 12:00pm<br />

ThL PMST3<br />

Nonlinear and Meta-<br />

Materials<br />

S. Bank<br />

10:30am – 11:45am<br />

ThK ONS3<br />

Optical Networking<br />

TBD<br />

10:30am – 12:15pm<br />

ThJ PIP3<br />

Photonic Crystals &<br />

Integration<br />

M. Dagenais<br />

10:30am – 12:00pm<br />

ThI NLUO8<br />

Ultrafast & Nonlinear<br />

Plasmonics<br />

A. M. Weiner<br />

LUNCH (ON OWN) 12:00PM - 1:30PM<br />

1:30pm – 3:00pm<br />

ThX NANO10<br />

Nanoplasmonics I<br />

T. Gregorkiewicz<br />

1:30pm – 3:00pm<br />

ThW SS-SP3<br />

Direct Growth on Si<br />

K. Tanabe<br />

1:30pm – 2:45pm<br />

ThV OFT4<br />

Multicore Fibers<br />

TBD<br />

1:30pm – 3:00pm<br />

ThU HPIS3<br />

High-Order Harmonic<br />

Generation<br />

A. Staudte<br />

1:30pm – 3:00pm<br />

ThT PMST4<br />

Compound Material<br />

Growth II<br />

M. Dawson<br />

1:30pm – 3:00pm<br />

ThS ONS4<br />

Optical Transmission<br />

L. Paraschis<br />

1:30pm – 3:00pm<br />

ThR PIP4<br />

III-V Photonic<br />

Integration I<br />

F. Koyama<br />

1:30pm – 3:00pm<br />

ThQ NLUO9<br />

Si <strong>Photonics</strong> & Ultrafast<br />

Techniques<br />

G. Sun<br />

10:00AM - 10:30AM COFFEE BREAK / EXHIBITS - GRAND PENINSULA FOYER<br />

3:30pm – 5:00pm<br />

ThFF NANO11<br />

Nanoplasmonics II<br />

S. Zhang<br />

3:30pm – 4:45pm<br />

ThEE SS-SP4<br />

Novel Hybrid Devices<br />

M. Fujita<br />

3:30pm – 5:15pm<br />

ThDD OFT5<br />

Fiber Biophotonics and<br />

Devices<br />

P. Shum<br />

3:30pm – 4:45pm<br />

ThCC HPIS4<br />

Applications of<br />

Attosecond and Short-<br />

Wavelength Sources<br />

T. Ozaki<br />

3:30pm – 5:00pm<br />

ThBB PMST5<br />

Emerging Material<br />

Technologies<br />

W. Zhou<br />

3:30pm – 4:45pm<br />

ThAA ONS5<br />

Optical Nodes<br />

TBD<br />

3:30pm – 5:15pm<br />

ThZ PIP5<br />

III-V Photonic<br />

Integration II<br />

TBD<br />

3:30pm – 5:00pm<br />

ThY DISL3<br />

Phosphor and Displays<br />

TBD<br />

SEE YOU IN 2013!<br />

<strong>IEEE</strong> PHOTONICS CONFERENCE 2013 (Formerly LEOS Annual Meeting)<br />

8-12 SEPTEMBER 2013 - HYATT REGENCY BELLEVUE, BELLEVUE WASHINGTON<br />

Page 9<br />

Indicates recorded session


<strong>2012</strong> SESSIONS AT-A-GLANCE<br />

Page 10<br />

PLE1. Plenary Session I<br />

Monday, September 24, <strong>2012</strong> 3:45:00 PM - 5:15 PM<br />

Dr. Dalma Novak<br />

Regency Ballroom<br />

PLE2. Plenary Session II<br />

Tuesday, September 25, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Dalma Novak<br />

Regency Ballroom<br />

BIO - Biophotonics<br />

MB Microscopy and Imaging<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Dirk J. Faber<br />

Grand Ballroom B<br />

MJ Bioimaging and Analysis Techniques<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Francesco S. Pavone<br />

Grand Ballroom B<br />

MR Photonic Biosensors I<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. M. Selim Unlu<br />

Grand Ballroom B<br />

TuB Photonic Biosensors II<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

TBD<br />

Grand Ballroom B<br />

TuJ Photonic Tools for Biology and Manipulation<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Rene G. Heideman<br />

Grand Ballroom B<br />

DISL - Displays and Lighting<br />

WC Novel Inorganic LEDs<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:30 AM<br />

TBD<br />

Grand Ballroom C<br />

WK Organic LEDs & AMOLED Displays<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:30 PM<br />

Dr. Peyman Servati<br />

Grand Ballroom C<br />

ThY Phosphor and Displays<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

TBD<br />

Harbour Room B<br />

HPIS - High Power/Intensity Sources<br />

ThE High-Intensity, Short-Pulse Lasers<br />

and Their Applications<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 9:45 AM<br />

Dr. Koichi Yamakawa<br />

Grand Ballroom F<br />

ThM High-Power Fiber and Solid-State Lasers<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Zhiyi Wei<br />

Grand Ballroom F<br />

ThU High-Order Harmonic Generation<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Andre Staudte<br />

Grand Ballroom F<br />

ThCC Applications of Attosecond<br />

and Short-Wavelength Sources<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 4:45 PM<br />

Dr. Tsuneyuki Ozaki<br />

Grand Ballroom F<br />

MWP - Microwave <strong>Photonics</strong><br />

MC Microwave Photonic Signal Generation<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Everett W. Jacobs<br />

Grand Ballroom C<br />

MK Microwave Photonic Integrated Circuits<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Jianping Yao<br />

Grand Ballroom C<br />

MS Microwave Photonic Devices<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Vincent J. Urick<br />

Grand Ballroom C<br />

TuC Microwave Photonic Techniques<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. A.M.J. Koonen<br />

Grand Ballroom C<br />

TuK Microwave Photonic Processing<br />

and Measurements<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Franklyn J. Quinlan<br />

Grand Ballroom C<br />

TuS Microwave Photonic Links and Systems<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Thomas R. Clark<br />

Grand Ballroom C<br />

WS Radio over Fiber Techniques<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Hiroshi Murata<br />

Grand Ballroom C<br />

NANO - Nanophotonics<br />

MX Photon Management & Gratings<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Hilmi Volkan Demir<br />

Grand Ballroom A<br />

TuH Photonic Crystals and Devices I<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Zongfu Yu<br />

Grand Ballroom A<br />

TuP Photonic Crystals and Novel Devices II<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Olav Solgaard<br />

Grand Ballroom A<br />

WH Large-Area Nanophotonics and<br />

Novel Fabrication Techniques<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Ahmet Ali Yanik<br />

Grand Ballroom A<br />

WP Bio-Nanophotonics<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Rupert F. Oulton<br />

Grand Ballroom A<br />

WX Gain and Loss in Plasmonics<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Holger Schmidt<br />

Grand Ballroom A<br />

WFF Integrated Plasmonic Devices<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Ahmet Ali Yanik<br />

Grand Ballroom A<br />

ThH Quantum Confined Light Sources<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Shuang Zhang<br />

Grand Ballroom A<br />

ThP Infrared Nanophotonics<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Tom Gregorkiewicz<br />

Grand Ballroom A<br />

ThX Nanoplasmonics I<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Tom Gregorkiewicz<br />

Grand Ballroom A<br />

ThFF Nanoplasmonics II<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Shuang Zhang<br />

Grand Ballroom A<br />

NLUO - Non-Linear & Ultrafast Optics<br />

TuR Photonic Lattices & Solitons<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Roberto Morandotti<br />

Grand Ballroom B<br />

WB NLO & Linear-Optical Devices<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Yujie J. Ding<br />

Grand Ballroom B<br />

WI Optical Frequency Combs<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Robert A. Kaindl<br />

Harbour Room B<br />

WJ Fiber Lasers & Applications<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Narasimha S. Prasad<br />

Grand Ballroom B<br />

WQ Mid-IR/THz & NLO Phenomena<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Zhigang Chen<br />

Harbour Room B<br />

WR NLO Applications<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Martin M. Fejer<br />

Grand Ballroom B<br />

WY Attosecond & Supercontinuum<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Shang-Da Yang<br />

Harbour Room B<br />

ThI Ultrafast & Nonlinear Plasmonics<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Andrew M. Weiner<br />

Harbour Room B<br />

ThQ Si <strong>Photonics</strong> & Ultrafast Techniques<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Greg Sun<br />

Harbour Room B<br />

OC - Optical Communications<br />

ME PON<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

TBD<br />

Grand Ballroom F<br />

MM All-Optical Signal Processing<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Ted K. Woodward<br />

Grand Ballroom F<br />

MU DSP for Coherent System I<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Sebastian Randel<br />

Grand Ballroom F<br />

TuE Coherent Transmission<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 9:45 AM<br />

Dr. Fabian Hauske<br />

Grand Ballroom F<br />

TuM Constellation Optimization & Nonlinearities<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Nikola Alic<br />

Grand Ballroom F<br />

TuU Nonliearity Compensation in<br />

Coherent Transmission<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. ))Nikola Alic<br />

Grand Ballroom F<br />

WE DSP for Coherent Systems II<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 9:45 AM<br />

Dr. Maurice S. O’Sullivan<br />

Grand Ballroom F<br />

WM FEC Techniques<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Ivan B. Djordjevic<br />

Grand Ballroom F<br />

WU Space Divsion Multiplexing<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Ezra Ip<br />

Grand Ballroom F<br />

WCC All Optical Signal Processing II<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Leif K. Oxenløwe<br />

Grand Ballroom F<br />

OFT - Optical Fiber Technology<br />

WDD Fiber Lasers<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Kyunghwan Oh<br />

Grand Ballroom G<br />

ThF Fiber Measurements and Sensors<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. John M. Ballato<br />

Grand Ballroom G<br />

ThN Novel Fibers and Applications<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Thierry F. Taunay<br />

Grand Ballroom G<br />

ThV Multicore Fibers<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

TBD<br />

Grand Ballroom G<br />

ThDD Fiber Biophotonics and Devices<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 5:15 PM<br />

Dr. Ping Shum<br />

Grand Ballroom G<br />

OI - Optical Interconnects<br />

MH OI I - Devices<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Eric Johnson<br />

Grand Ballroom A<br />

MP OI II - Applications<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Michael W. Haney<br />

Grand Ballroom A<br />

TuI OI III - Architecture & Devices<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Pradeep Srinivasan<br />

Harbour Room B<br />

TuQ OI IV - Technology Platforms<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Kannan Raj<br />

Harbour Room A


ONS - Optical Networks & Systems<br />

WAA Optical Wireless<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 4:30 PM<br />

Dr. Weidong Zhou<br />

Grand Ballroom C<br />

ThC Optical Access<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 9:45 AM<br />

Dr. Ivan Andonovic<br />

Grand Ballroom C<br />

ThK Optical Networking<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

TBD<br />

Grand Ballroom C<br />

ThS Optical Transmission<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Loukas Paraschis<br />

Grand Ballroom C<br />

ThAA Optical Nodes<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 4:45 PM<br />

TBD<br />

Grand Ballroom C<br />

PIP - Photonic Integration and Packaging<br />

WZ Silicon Nanophotonics<br />

and Other Integration Platforms<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Brian R. Koch<br />

Grand Ballroom B<br />

ThB Silicon <strong>Photonics</strong><br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Prof. James J. Coleman<br />

Grand Ballroom B<br />

ThJ Photonic Crystals & Integration<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Mario Dagenais<br />

Grand Ballroom B<br />

ThR III-V Photonic Integration I<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Fumio Koyama<br />

Grand Ballroom B<br />

ThZ III-V Photonic Integration II<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 5:15 PM<br />

TBD<br />

Grand Ballroom B<br />

PMST - Photon Materials Science<br />

and Technology<br />

WGG Compound Material Growth I<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Seth R. Bank<br />

ThD Nanostructure Material Processes<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Weidong Zhou<br />

Grand Ballroom E<br />

ThL Nonlinear and Meta-Materials<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Seth R. Bank<br />

Grand Ballroom E<br />

ThT Compound Material Growth II<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Martin D. Dawson<br />

Grand Ballroom E<br />

ThBB Emerging Material Technologies<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Weidong Zhou<br />

Grand Ballroom E<br />

PSSI - Photodetectors, Sensors, Systems<br />

and Imaging<br />

MD Single Photon Counting Systems<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Bora M. Onat<br />

Grand Ballroom E<br />

ML Single Photon Counting Detectors<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Joe C. Campbell<br />

Grand Ballroom E<br />

MT Infrared Detectors<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Sanjay Krishna<br />

Grand Ballroom E<br />

TuD Imaging Detector Arrays: Visible to Tera Hertz<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Andrew M. Sarangan<br />

Grand Ballroom E<br />

TuL High Speed Detectors<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 12:15 PM<br />

Dr. Bora M. Onat<br />

Grand Ballroom E<br />

TuT Thin Film Detectors<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

TBD<br />

Grand Ballroom E<br />

WD Integrated Optical Sensors<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Sarath D. Gunapala<br />

Grand Ballroom E<br />

WL Interferometric Sensors<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 11:45 AM<br />

Dr. Ali Adibi<br />

Grand Ballroom E<br />

WT Compressive and Spectral Imaging<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Majeed M. Hayat<br />

Grand Ballroom E<br />

WBB Digital Holography, Microscopy and LADAR<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 5:00 PM<br />

Dr. Pietro Ferraro<br />

Grand Ballroom E<br />

SL - Semiconductor Lasers<br />

MF Quantum Dot Sources<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Huiyun Liu<br />

Grand Ballroom G<br />

MN Vertical-Cavity Surface Emitting Lasers I<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Nikolay N. Ledentsov<br />

Grand Ballroom G<br />

MV Optical Interconnect and Hybrid Laser Sources<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Brian R. Koch<br />

Grand Ballroom G<br />

TuF Vertical-Cavity Surface Emitting Lasers II<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Alexei Sirbu<br />

Grand Ballroom G<br />

TuN Integrated Laser Sources<br />

and Communication Lasers<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Valery I. Tolstikhin<br />

Grand Ballroom G<br />

TuV Dynamics of Semiconductor Lasers<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Randal A. Salvatore<br />

Grand Ballroom G<br />

WF Nanocavity and Ring Resonator Lasers<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

TBD<br />

Grand Ballroom G<br />

WN High-Power and Quantum Cascade Lasers<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

TBD<br />

Grand Ballroom G<br />

WV New Semiconductor Laser Materials<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

TBD<br />

Grand Ballroom G<br />

SS:MRP - Special Symposium on Micro<br />

Resonators & Novel Phenomena<br />

MI SS:MRP I<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

TBD<br />

Harbour Room B<br />

MQ SS:MRP II<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Andrey B. Matsko<br />

Harbour Room B<br />

TuA Tutorial II<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 9:30 AM<br />

Dr. Misha Sumetsky<br />

Harbour Room B<br />

TuG MRP III<br />

Tuesday, September 25, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

TBDi<br />

Harbour Room A<br />

TuO MRP IV<br />

Tuesday, September 25, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Tal Carmon<br />

Harbour Room A<br />

TuW MRP V<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Misha Sumetsky<br />

Harbour Room A<br />

SS:PPN - Special Symposium on<br />

Photovoltaics based on Plasmonics and<br />

Nanophotonics<br />

MG Plasmonic based Photovoltaics<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

Dr. Mark L. Brongersma<br />

Harbour Room A<br />

MO Photonic Crystal Photovoltaics<br />

Monday, September 24, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Chennupati Jagadish<br />

Harbour Room A<br />

MW Nanostructures in Solar Cells<br />

Monday, September 24, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

TBD<br />

Harbour Room A<br />

ThA Tutorial IV<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 9:30 AM<br />

TBD<br />

Harbour Room B<br />

SS:QP - Special Symposium on Quantum<br />

<strong>Photonics</strong><br />

TuX Special Symposium on Quantum <strong>Photonics</strong> I<br />

Tuesday, September 25, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Satoshi Iwamoto<br />

Grand Ballroom A<br />

WA Tutorial III<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 9:30 AM<br />

Dr. Thomas R. Clark<br />

Harbour Room B<br />

WG Special Symposium on Quantum <strong>Photonics</strong> II<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 8:30:00 AM - 10:00 AM<br />

TBD<br />

Harbour Room A<br />

WO Special Symposium on Quantum <strong>Photonics</strong> III<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Dr. Gregor Weihs<br />

Harbour Room A<br />

WW Special Symposium on Quantum <strong>Photonics</strong> IV<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 1:30:00 PM - 2:45 PM<br />

Dr. Mark Stevenson<br />

Harbour Room A<br />

WEE Special Symposium on Quantum <strong>Photonics</strong> V<br />

Wednesday, September <strong>26</strong>, <strong>2012</strong> 3:30:00 PM - 4:30 PM<br />

Dr. Valery Zwiller<br />

Harbour Room A<br />

SS:SP - Special Symposium on III-V<br />

on Si for Silicon <strong>Photonics</strong><br />

MA Tutorial I<br />

Monday, September 24, <strong>2012</strong> 8:30:00 AM - 9:30 AM<br />

Dr. Chennupati Jagadish<br />

Harbour Room B<br />

ThG Heterogenious Integration Technology and Devices<br />

Thursday, September 27, <strong>2012</strong> 8:30:00 AM - 9:45 AM<br />

Dr. Nobuhiko Nishiyama<br />

Harbour Room A<br />

ThO Hybrid Lasers<br />

Thursday, September 27, <strong>2012</strong> 10:30:00 AM - 12:00 PM<br />

Martijn Heck<br />

Harbour Room A<br />

ThW Direct Growth on Si<br />

Thursday, September 27, <strong>2012</strong> 1:30:00 PM - 3:00 PM<br />

Dr. Katsuaki Tanabe<br />

Harbour Room A<br />

ThEE Novel Hybrid Devices<br />

Thursday, September 27, <strong>2012</strong> 3:30:00 PM - 4:45 PM<br />

Dr. Masayuki Fujita<br />

Harbour Room A<br />

<strong>2012</strong> SESSIONS AT-A-GLANCE Page<br />

11


<strong>2012</strong> COMMITTEES<br />

Page 12<br />

CHAIR<br />

Dr. Dalma Novak, Conference Chair<br />

Pharad, LLC, Glen Burnie, MD, USA<br />

Dr. David V. Plant, Member at Large<br />

McGill University, Montreal, QC,<br />

Canada<br />

Dr. Susumu Noda, Program Chair<br />

Kyoto University, Kyoto, Kyoto, Japan<br />

PHOTONICS SOCIETY <strong>2012</strong> TOPIC COMMITTEES<br />

BIOPHOTONICS<br />

Dr. M. Selim Unlu, Chair<br />

Boston University, Boston, MA, USA<br />

Dr. Stefan Andersson-Engels<br />

Lund University, Lund, Sweden<br />

Dr. Andrea M. Armani<br />

University of Southern California, Los<br />

Angeles, CA, USA<br />

Dr. Stephen A. Boppart<br />

University of Illinois at Urbana-Champaign -<br />

Beckman Institute, Urbana, IL, USA<br />

Dr. Yu Chen<br />

University of Maryland - Laboratory for<br />

Physical Sciences, College Park, MD, USA<br />

Dr. Brian T. Cunningham<br />

University of Illinois at Urbana-Champaign -<br />

Beckman Institute, Urbana, IL, USA<br />

Dr. Rene G. Heideman<br />

LioniX BV, Enschede, The Netherlands<br />

Dr. Xingde Li<br />

Johns Hopkins University - Whitaker<br />

Biomedical Engineering Institute, Baltimore,<br />

MD, USA<br />

Dr. Valery V. Tuchin<br />

Saratov State University, Saratov, Russia<br />

Dr. Ayca Yalcin<br />

Massachusetts Institute of Technology,<br />

Cambridge, MA, USA<br />

Dr. James W. Tunnell, Vice Chair<br />

University of Texas at Austin, Austin, TX,<br />

USA<br />

DISPLAYS AND LIGHTING<br />

Dr. Peyman Servati, Chair<br />

University of British Columbia - Vancouver<br />

Campus, Vancouver, BC, Canada<br />

Dr. G. Reza Chaji<br />

Ignis Innovation, Inc., Kitchener, Canada<br />

Dr. Gregory S. Herman<br />

Oregon State University, Corvallis, OR, USA<br />

Dr. Hyun Jae Kim<br />

Yonsei University, Seoul, Korea<br />

Dr. Yi-Hsin Lin<br />

National Chiao Tung University - Institute of<br />

Photonic System, Hsinchu, Taiwan, R.O.C.<br />

Dr. Joanna McKittrick<br />

University of California - San Diego, La<br />

Jolla, CA, USA<br />

Dr. Stephan Reichelt<br />

SeeReal Technologies GmbH, Dresden,<br />

Germany<br />

Dr. Franky So<br />

University of Florida, Gainesville, FL, USA<br />

Dr. Xiao Wei Sun<br />

Nanyang Technological University,<br />

Singapore, Singapore<br />

HIGH POWER/INTENSITY SOURCES<br />

Dr. Koichi Yamakawa, Chair<br />

Japan Atomic Energy Agency - , Kizugawa,<br />

Kyoto, Japan<br />

Dr. Andrius Baltuska<br />

Vienna University of Technology - TILab,<br />

Wien, Austria<br />

Dr. Zenghu Chang<br />

University of Central Florida - CREOL,<br />

Orlando, FL, USA<br />

Dr. Tae Moon Jeong<br />

Gwangju Institute of Science and<br />

Technology, Buk-gu, Korea<br />

Dr. Igor Jovanovic<br />

Pennsylvania State University, University<br />

Park, PA, USA<br />

Dr. Ruxin Li<br />

Shanghai Institiute of Optics and Fine<br />

Mechanics - CAS, Jiading, Shanghai, China<br />

Dr. Phyllis R. Nelson<br />

California State Polytechnic University,<br />

Pomona, Pomona, CA, USA<br />

Dr. Tsuneyuki Ozaki<br />

Institut National de la Recherche Scientifique<br />

- Énergie, Matériaux et<br />

Télécommunications, Varennes , Quebec,<br />

Canada<br />

Dr. Jan Rothhardt<br />

Friedrich-Schiller University- Jena, Jena,<br />

Germany<br />

Dr. Giuseppe Sansone<br />

Politecnico di Milano, Como, Italy<br />

Dr. Eiji Takahashi<br />

Institute of Physical and Chemical Research<br />

- TBA, Unknown<br />

Dr. Shoichi Kubodera, Vice Chair<br />

Miyazaki University, Nishi, Miyazaki, Japan<br />

MICROWAVE PHOTONICS<br />

Dr. Thomas R. Clark, Chair<br />

Johns Hopkins University - Applied Physics<br />

Laboratory, Laurel, MD, USA<br />

Dr. José Capmany<br />

Universidad Politécnica de Valencia -<br />

Nanophotonics Technology Center,<br />

Valencia, Valencia, Spain<br />

Dr. Young-Wan Choi<br />

Chung-Ang University, Seoul, Korea<br />

Dr. Everett W. Jacobs<br />

SPAWAR Systems Center - San Diego, San<br />

Diego, CA, USA<br />

Dr. Jonathan Klamkin<br />

MIT Lincoln Laboratory, Lexington, MA,<br />

USA<br />

Dr. A.M.J. Koonen<br />

Eindhoven University of Technology -<br />

COBRA Institute, Eindhoven, The<br />

Netherlands<br />

Dr. Christina Lim<br />

University of Melbourne, Parkville, Victoria,<br />

Australia<br />

Dr. Idelfonso Tafur Monroy<br />

Technical University of Denmark - Research<br />

Centre COM, Kgs. Lyngby, Denmark<br />

Dr. Hiroshi Murata<br />

Osaka University - Institute for Laser<br />

Technology, Japan<br />

Dr. Franklyn J. Quinlan<br />

National Institute of Standards and<br />

Technology, Boulder, CO, USA<br />

Dr. Frédéric Van Dijk<br />

Alcatel-Thales III-V Lab, Palaiseau, France<br />

Dr. Jianping Yao<br />

University of Ottawa, Ottawa, Canada<br />

Dr. Vincent J. Urick, Vice Chair<br />

US Naval Research Laboratory - Code<br />

6818, Washington, DC, USA<br />

NANOPHOTONICS<br />

Dr. Hatice Altug, Chair<br />

Boston University, Boston, MA, USA<br />

Dr. Yasuhiko Arakawa<br />

University of Tokyo - Institute of Industrial<br />

Science, Tokyo, Japan<br />

Dr. Ertugrul Cubukcu<br />

University of Pennsylvania, Philadelphia,<br />

PA, USA<br />

Dr. Hilmi Volkan Demir<br />

Bilkent University, Ankara, Turkey<br />

Dr. Dirk Englund<br />

Columbia University, New York, NY, USA<br />

Dr. Qiaoqiang Gan<br />

State University of New York at Buffalo,<br />

Buffalo, NY, USA<br />

Dr. Odile Liboiron-Ladouceur<br />

McGill University, Montreal, QC, Canada<br />

Dr. Zhaowei Liu<br />

University of California - San Diego, La<br />

Jolla, CA, USA<br />

Dr. Aydogan Ozcan<br />

University of California - Los Angeles, Los<br />

Angeles, CA, USA<br />

Dr. Lorenzo Pavesi<br />

University of Trento, Trento, Italy<br />

Dr. Kartik Srinivasan<br />

National Institute of Standards and<br />

Technology - Center for Nanoscale Science<br />

and Technology, Gaithersburg, MD, USA<br />

Dr. Hong Tang<br />

Yale University, New Haven, CT, USA<br />

Dr. Joris Van Campenhout<br />

IMEC, Leuven, Belgium<br />

NON-LINEAR & ULTRAFAST OPTICS<br />

Dr. Yujie J. Ding, Chair<br />

Lehigh University, Bethlehem, PA, USA<br />

Dr. Randy A. Bartels<br />

Colorado State University, Fort Collins, CO,<br />

USA<br />

Dr. Markus Betz<br />

Dortmund University of Technology,<br />

Dortmund, Germany<br />

Dr. Demetrios N. Christodoulides<br />

University of Central Florida - CREOL,<br />

Orlando, FL, USA<br />

Dr. Vittorio Degiorgio<br />

University of Pavia, Pavia, Italy<br />

Dr. Nils C. Fernelius<br />

US Air Force Research Laboratory - Control<br />

Systems Development and Application<br />

Branch, Wright-Patterson Air Force Base,<br />

OH, USA<br />

Dr. Robert A. Kaindl<br />

Lawrence Berkeley National Laboratory,<br />

Berkeley, CA, USA<br />

Dr. Hiroaki Minamide<br />

RIKEN - Terahertz-Wave Research Program,<br />

Sendai, Sendai, Japan<br />

Dr. Roberto Morandotti<br />

Institut National de la Recherche Scientifique<br />

- Énergie, Matériaux et<br />

Télécommunications, Varennes , Quebec,<br />

Canada<br />

Dr. Taiichi Otsuji<br />

Tohoku University, Aoba-ku, Sendai-si,<br />

Japan<br />

Dr. Narasimha S. Prasad<br />

NASA - Langley Research Center, Hampton,<br />

VA, USA<br />

Dr. Greg Sun<br />

University of Massachusetts Boston,<br />

Boston, MA, USA<br />

Dr. Shang-Da Yang<br />

National Tsing Hua University, Hsinchu,<br />

Taiwan, R.O.C.<br />

Dr. Xiaodong Mu, Vice Chair<br />

Onyx Optics Inc., Dublin, CA, USA<br />

OPTICAL COMMUNICATIONS<br />

Dr. Nikola Alic, Chair<br />

University of California - San Diego, La<br />

Jolla, CA, USA<br />

Dr. Ivan B. Djordjevic<br />

University of Arizona - Optical Science<br />

Center, Tucson, AZ, USA<br />

Dr. Fabian Hauske<br />

Huawei Technologies Duesseldorf GmbH -<br />

European Research Center, Munich,<br />

Germany<br />

Dr. Maxim Kuschnerov<br />

Nokia Siemens Networks, Munich, Germany<br />

Dr. Maurice S. O’Sullivan<br />

Ciena Corporation, Ottawa, Canada


Dr. Leif K. Oxenløwe<br />

Technical University of Denmark - Research<br />

Centre COM, Kgs. Lyngby, Denmark<br />

Dr. Ioannis Roudas<br />

|University of Patras, Patras, Greece<br />

Dr. Seb J. Savory<br />

University College London - Dept of Electronic<br />

& Electrical Engineering, London, UK<br />

Dr. Masatoshi Suzuki<br />

KDDI R&D Laboratories, Fujimino, Saitama,<br />

Japan<br />

Dr. Hongbin Zhang<br />

University of Paderborn, Paderborn, Germany<br />

Dr. Chongjin Xie, Vice Chair<br />

Alcatel-Lucent - Bell Labs, New Providence,<br />

NJ, USA<br />

OPTICAL FIBER TECHNOLOGY<br />

Dr. Paul S. Westbrook, Chair<br />

OFS Laboratories, Norcross, GA, USA<br />

Dr. Jacques Albert<br />

Carleton University, Ottawa, ON, Canada<br />

Dr. Neil G.R. Broderick<br />

University of Auckland, Auckland, New<br />

Zealand<br />

Dr. Mikhail Brodsky<br />

AT&T - Labs - Research, Florham Park, NJ,<br />

USA<br />

Dr. Adrian Carter<br />

Nufern, East Granby, CT, USA<br />

Dr. Goëry Nicolas Genty<br />

Tampere University of Technology, Tampere,<br />

Finland<br />

Dr. Dan Grobnic<br />

Communications Research Centre, Ottawa,<br />

ON, Canada<br />

Dr. Takashi Inoue<br />

National Institute of Advanced Industrial<br />

Science and Technology, Tsukuba, Ibaraki,<br />

Japan<br />

Dr. Ming-Jun Li<br />

Corning, Inc. - Sullivan Park R&D Center,<br />

Corning, NY, USA<br />

Dr. Kyunghwan Oh, Vice Chair<br />

Yonsei University, Seoul, Korea<br />

OPTICAL INTERCONNECTS<br />

Dr. Michael W. Haney, Chair<br />

University of Delaware, Newark, DE, USA<br />

Dr. Alexei Glebov<br />

OptiGrate Corporation, Orlando, FL, USA<br />

Dr. Predrag Milojkovic<br />

US Army Research Laboratory, Adelphi, MD,<br />

USA<br />

Dr. Kannan Raj<br />

Oracle - Sun Labs, San Diego, CA, USA<br />

Mr. Ronald M Reano<br />

Ohio State University, Columbus, OH, USA<br />

Dr. Pradeep Srinivasan<br />

Intel Corporation, Santa Clara, CA, USA<br />

Dr. Andreas Weisshaar<br />

Oregon State University, Corvallis, OR, USA<br />

Dr. Eric Johnson, Vice Chair<br />

Clemson University, Clemson, SC, USA<br />

OPTICAL NETWORKS & SYSTEMS<br />

Dr. Ivan Andonovic, Chair<br />

University of Strathclyde - Microsystems<br />

Group, Glasgow, Scotland, UK<br />

Dr. Trevor J. Hall<br />

University of Ottawa, Ottawa, Canada<br />

Dr. Chris J. Ito<br />

Infinera, Sunnyvale, CA, USA<br />

Dr. Monika Jaeger<br />

T-Systems Enterprise Services Gmbh - ,<br />

Berlin, Germany<br />

Dr. Ken-ichi Kitayama<br />

Osaka University - Institute for Laser<br />

Technology, Japan<br />

Dr. A.M.J. Koonen<br />

Eindhoven University of Technology - COBRA<br />

Institute, Eindhoven, The Netherlands<br />

Dr. Loukas Paraschis<br />

Cisco Systems, Inc., San Jose, CA, USA<br />

Dr. Dimitra Simeonidou<br />

University of Essex, Colchester, UK<br />

Dr. Wen-De Zhong<br />

Nanyang Technological University, Singapore,<br />

Singapore<br />

PHOTONIC INTEGRATION AND PACK-<br />

AGING<br />

Dr. Mario Dagenais, Chair<br />

University of Maryland - Laboratory for<br />

Physical Sciences, College Park, MD, USA<br />

Dr. P. Daniel Dapkus<br />

University of Southern California, Los Angeles,<br />

CA, USA<br />

Dr. Yeshaiahu Fainman<br />

University of California - San Diego, La Jolla,<br />

CA, USA<br />

Dr. Chennupati Jagadish<br />

Australian National University - Research<br />

School of Physical Sciences & Engineering,<br />

Canberra, Australia<br />

Dr. Gunther Roelkens<br />

Ghent University - Electronics and Information<br />

Systems, Gent, Belgium<br />

Dr. Meint K. Smit<br />

Technical University of Eindhoven, Eindhoven,<br />

The Netherlands<br />

Dr. Larry A. Coldren, Vice Chair<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA<br />

PHOTON MATERIALS SCIENCE AND<br />

TECHNOLOGY<br />

Dr. Weidong Zhou, Chair<br />

University of Texas at Arlington, Arlington, TX,<br />

USA<br />

Dr. John E. Cunningham<br />

Oracle - Sun Labs, San Diego, CA, USA<br />

Dr. Martin D. Dawson<br />

University of Strathclyde - Microsystems<br />

Group, Glasgow, Scotland, UK<br />

Dr. Nicholas X. Fang<br />

Massachusetts Institute of Technology,<br />

Cambridge, MA, USA<br />

Dr. Lan Fu<br />

Australian National University - Research<br />

School of Physical Sciences & Engineering,<br />

Canberra, Australia<br />

Dr. Sonia Garcia-Blanco<br />

University of Twente, The Netherlands<br />

Dr. Kristian M. Groom<br />

University of Sheffield, Sheffield, South<br />

Yorkshire, UK<br />

Mo Li<br />

University of Minnesota Twin Cities,<br />

Minneapolis, MN, USA<br />

Dr. Zetian Mi<br />

McGill University, Montreal, QC, Canada<br />

Dr. Daniel M. Wasserman<br />

University of Illinois, Urbana, IL, USA<br />

Dr. Lan Yang<br />

Washington University in Saint Louis, St.<br />

Louis, MO, USA<br />

Dr. Zhiping Zhou<br />

Peking University, Beijing, China<br />

Dr. Seth R. Bank, Vice Chair<br />

University of Texas at Austin, Austin, TX, USA<br />

PHOTODETECTORS, SENSORS,<br />

SYSTEMS AND IMAGING<br />

Dr. Majeed M. Hayat, Chair<br />

University of New Mexico - Center for High<br />

Technology Materials, Albuquerque, NM, USA<br />

Dr. Joe C. Campbell<br />

National Institute of Standards and Technology,<br />

Boulder, CO, USA<br />

Dr. John P.R. David<br />

University of Sheffield, Sheffield, South<br />

Yorkshire, UK<br />

Dr. Erik K. Duerr<br />

MIT Lincoln Laboratory, Lexington, MA, USA<br />

Dr. Pietro Ferraro<br />

Istituto Nazionale di Ottica Applicata, Pozzuoli,<br />

Italy<br />

Junichi Fujikata<br />

NEC Corporation, Tsukuba, Ibaraki, Japan<br />

Dr. Sarath D. Gunapala<br />

Jet Propulsion Laboratory, Pasadena, CA, USA<br />

Dr. Kazuyoshi Itoh<br />

Osaka University, Suita, Osaka, Japan<br />

Dr. Beata Kardynal<br />

Technical University of Denmark, Kgs. Lyngby,<br />

Denmark<br />

Dr. Sanjay Krishna<br />

University of New Mexico - Center for High<br />

Technology Materials, Albuquerque, NM, USA<br />

Dr. Manuel Martinez-Corral<br />

University of Valencia, València, Spain<br />

Dr. Osamu Matoba<br />

Kobe University - School of Medicine, Chuoko,<br />

Japan<br />

Dr. Hui Nie<br />

Alta Devices, Santa Clara, CA, USA<br />

Dr. Takanori Nomura<br />

Wakayama University, Wakayama, Japan<br />

Dr. Bora M. Onat<br />

Princeton Lightwave, Inc., Cranbury, NJ, USA<br />

Dr. Wolfgang Osten<br />

University of Stuttgart - Institute For<br />

Semiconductor Engineering, Stuttgart,<br />

Germany<br />

Dr. Demetri Psaltis<br />

École Polytechnique Fédérale de Lausanne,<br />

Lausanne, Switzerland<br />

Dr. Andrew M. Sarangan<br />

University of Dayton, Dayton, OH, USA<br />

Dr. Ali Serpenguezel<br />

Koc University, Istanbul, Turkey<br />

SEMICONDUCTOR LASERS<br />

Dr. Valery I. Tolstikhin, Chair<br />

OneChip <strong>Photonics</strong> Inc. - , Ottawa, ON,<br />

Canada<br />

Dr. Dieter Bimberg<br />

Technical University Berlin - Institut für<br />

Festkorperphysik, Berlin, Germany<br />

Dr. Hiroyuki Ishii<br />

NTT Corporation - <strong>Photonics</strong> Laboratories,<br />

Atsugi, Japan<br />

Dr. Brian R. Koch<br />

Aurrion, Goleta, CA, USA<br />

Dr. Paul O. Leisher<br />

Rose-Hulman Institute of Technology, Terre<br />

Haute, IN, USA<br />

Dr. Randal A. Salvatore<br />

Infinera, Sunnyvale, CA, USA<br />

Dr. Peter M. Smowton<br />

Cardiff University, Cardiff, Wales, UK<br />

Dr. Reuel B. Swint<br />

MIT Lincoln Laboratory, Lexington, MA, USA<br />

SPECIAL SYMPOSIUM ON MICRO<br />

RESONATORS & NOVEL PHENOMENA<br />

Dr. Misha Sumetsky, Chair<br />

OFS Laboratories, Somerset, NJ, USA<br />

Dr. Andrey B. Matsko<br />

OEwaves, Inc. - , Pasadena, CA, USA<br />

Dr. Giancarlo C. Righini<br />

Istituto di Fisica Applicata “Nello Carrara”,<br />

Fiorentino, Firenze, Italy<br />

Dr. Jessie C. Rosenberg<br />

IBM Research - TJ Watson Research Center,<br />

Yorktown Heights, NY, USA<br />

Dr. Jacob Koby Scheuer<br />

Tel Aviv University, Tel-Aviv, Israel<br />

SPECIAL SYMPOSIUM ON PHOTO-<br />

VOLTAICS BASED ON PLASMONICS<br />

AND NANOPHOTONICS<br />

Dr. Majeed M. Hayat, Chair<br />

University of New Mexico - Center for High<br />

Technology Materials, Albuquerque, NM, USA<br />

Dr. Mark L. Brongersma<br />

Stanford University - Solid State <strong>Photonics</strong><br />

Laboratory, Stanford, CA, USA<br />

Dr. Sanjay Krishna<br />

University of New Mexico - Center for High<br />

Technology Materials, Albuquerque, NM, USA<br />

SPECIAL SYMPOSIUM ON QUANTUM<br />

PHOTONICS<br />

Dr. Satoshi Iwamoto, Chair<br />

University of Tokyo - Institute of Industrial<br />

Science, Tokyo, Japan<br />

Dr. Antonio Badolato<br />

University of Rochester - Department of<br />

Physics and Astronomy, Rochester, NY, USA<br />

Dr. Darrick Chang<br />

Institut de Ciencies Fotoniques - , Barcelona,<br />

Spain<br />

Dr. Alex Hayat<br />

University of Toronto, Toronto, ON, Canada<br />

Dr. Peter Lodahl<br />

University of Copenhagen - Niels Bohr<br />

Institute, Copenhagen, Denmark<br />

Dr. Hiroki Takesue<br />

NTT Corporation - Basic Research<br />

Laboratories, Atsugi-shi, Japan<br />

SPECIAL SYMPOSIUM ON III-V ON SI<br />

FOR SILICON PHOTONICS<br />

Dr. Nobuhiko Nishiyama, Chair<br />

Tokyo Institute of Technology, Yokohama-shi,<br />

Kanagawa, Japan<br />

Martijn Heck<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA<br />

Dr. Dries J. Van Thourhout<br />

Ghent University - Electronics and Information<br />

Systems, Gent, Belgium<br />

Dr. Akihiro Wakahara<br />

Toyohashi University of Technology, Toyohashi,<br />

Japan<br />

<strong>2012</strong> COMMITTEES Page<br />

13


Page 14<br />

GOLD<br />

Session<br />

Graduates of The Last Decade<br />

Time: Sunday 23, September <strong>2012</strong> 1:30pm - 3:30pm Place: Sandpebble Room<br />

Schedule of Event<br />

Welcome : Scott Yam, Gold Coordinator, of <strong>IEEE</strong> <strong>Photonics</strong> Conference <strong>2012</strong><br />

Invited Talk Title : From PhD Candidate to Principal Investigator<br />

Odile Liboiron-Ladouceur Department of Electrical and Computer Engineering, McGill University,<br />

Abstract: While graduating with a PhD offers exceptional opportunities, it does come with numerous questions about career<br />

choices. Depending on geographical location, work culture, personal situation, navigating after-PhD life is not necessarily<br />

straightforward. The talk will present one story out of many with the hope of providing answers to some of those questions<br />

.<br />

Biography: Odile Liboiron-Ladouceur received the B. Eng. degree in electrical engineering from McGill University<br />

(Montreal, Canada) in 1999, and the M.Sc. and Ph.D. degrees in electrical engineering from Columbia University<br />

(New York, USA) in 2004 and 2007, respectively. Her doctoral research work focused on the physical layer of<br />

optical interconnection networks for high performance computing. Prior to her graduatestudies, she worked three<br />

years in industry from 1999 to 2002, for Teradyne in Boston as an applications engineer (1999-2000) and for Texas<br />

Instruments as a test engineer (2000-2002). During her Ph.D., she spent four months in 2006 as an intern at the<br />

IBM T.J. Watson Research Center in Yorktown Heights, NY working on optical chip-to-chip interconnection. In<br />

2007, Dr. Liboiron-Ladouceur received a post-doctoral fellowship from the Natural Sciences and Engineering<br />

Research Council of Canada.<br />

She is currently an assistant professor in the department of electrical and computer engineering at McGill University and is a Canada<br />

Research Chair in photonic interconnects. As a principal investigator, she has raised over $1.6M in research grants for the operation<br />

and supporting infrastructure towards her research related to energy-efficient optical data communication. She currently supervises<br />

ten students. She is an associate editor for the <strong>IEEE</strong> <strong>Photonics</strong> Technology Lettersince 2009. She is the author or coauthor of over<br />

65 papers in peer-reviewed journals and conferences. She has two provisional patents and one pending patent.<br />

Poster Presentations<br />

<strong>2012</strong> <strong>IEEE</strong> <strong>Photonics</strong> Society Graduate Student Fellowship winners<br />

Tingyi Gu<br />

Columbia University<br />

Jens Hofrichter<br />

Eindhoven University of Technology<br />

Domanic Lavery<br />

University College, London<br />

William Loh<br />

Massachusetts Institute of Technology<br />

Dan Luo<br />

Nanyang Technological University<br />

Hiva Shahoei<br />

University of Ottawa<br />

Yan Shi<br />

Eindhoven University of Technology<br />

Ke Wang<br />

University of Melbourne<br />

Jin Yan<br />

University of Central Florida<br />

Yue Zhou<br />

University of Hong Kong


Page 15


<strong>2012</strong> PLENARY SESSION<br />

Page 16<br />

Monday, 24 September <strong>2012</strong><br />

Plenary Session I<br />

3:30 PM – 5:15 PM<br />

Session Chair: Dalma Novak<br />

PLE1.1 3:45 PM – 4:30 PM<br />

Takao Someya, University of Tokyo, Tokyo, Japan<br />

Title: Large-Area, Flexible, Organic <strong>Photonics</strong> and Electronics<br />

Abstract: Not Available<br />

Biography: Takao Someya received the Ph.D. degree in electrical engineering from the University of Tokyo in 1997.<br />

Since 2009, he has been a professor of Department of Electrical and Electronic Engineering, The University of Tokyo.<br />

From 2001 to 2003, he worked at the Nanocenter (NSEC) of Columbia University and Bell Labs, Lucent Technologies,<br />

as a Visiting Scholar. His current research interests include organic transistors, flexible electronics, plastic integrated<br />

circuits, large-area sensors, and plastic actuators. Prof. Someya has received a number of awards, a Japan Society for<br />

the Promotion of Science (JSPS) Prize, the 1st Prize of the newly established German Innovation Award, 2004<br />

<strong>IEEE</strong>/ISSCC Sugano Award, and 2009 <strong>IEEE</strong> Paul Rappaport Award. He is a global scholar of Princeton University and<br />

an <strong>IEEE</strong>/EDS Distinguished Lecturer since 2005. Prof. Someya’s “large-area sensor array” electronic thin film was<br />

featured in Time Magazine as one of its “Best Inventions of 2005” in its November 21st issue.<br />

PLE1.2 4:30 PM – 5:15 PM<br />

Ashok Krishnamoorthy, Oracle, San Diego, CA, USA<br />

Title: Driving VCSELs and Silicon Photonic Optical Interconnects to<br />

Brutal Area and Energy Efficiencies for Future Computing Systems<br />

Abstract: Optical interconnects play an integral role in the interconnect hierarchy of large-scale digital computing systems. Today, systems<br />

use vertical cavity laser modules soldered to circuit boards containing the processing and switching chips. A future vision for a many-chip<br />

module based on silicon photonic interposers closely stitches together tens of chips and provide a dense and efficient communication infrastructure.<br />

We review the guiding design principles for this “macrochip” design and describe the energy, loss, and area budgets for a<br />

break-through optical link.<br />

Biography: Dr. A. V. Krishnamoorthy is Oracle’s Chief Technologist, <strong>Photonics</strong> and an Architect and Principle<br />

Investigator for the Oracle Labs DARPA UNIC initiative on silicon “photonics-to-the-processor”.<br />

Previously, he was a Distinguished Engineer and Director at Sun Microsystems responsible for advanced optical interconnect<br />

and silicon photonics development. He also spent several years as CTO and President of AraLight, a Lucent<br />

technologies spinout developing high-density parallel optical products and technologies. Prior to that he was an<br />

entrepreneur-in-residence at Lucent New Ventures group, and before that a member of <strong>technical</strong> staff in the Advanced<br />

<strong>Photonics</strong> research department at Bell Labs, in Holmdel, NJ. He has worked over two decades on the integration of<br />

photonic devices with silicon CMOS circuits and on building switching and computing sub-systems based on these<br />

components - including electro-optic modulators on silicon, quantum well devices, VCSELs, and, most recently, Si/Ge photonics. He has<br />

published over 200 <strong>technical</strong> papers and 8 book chapters, has presented over 80 conference invited and plenary talks, and holds over 75 US<br />

patents. He has served as member or chair of over 35 international conferences, and has been guest editor for several <strong>technical</strong> journals. His<br />

honors include the <strong>IEEE</strong> Distinguished Lecturer award, the ICO international prize in Optics, Eta Kappa Nu’s outstanding engineer award, the<br />

Chairman’s Award from Sun Microsystems, Computerworld’s Horizon Award for Innovation, and Best Paper at the Intl. Symposium on<br />

Microelectronics. He is a distinguished member of Tau Beta Pi and is a fellow of the OSA and <strong>IEEE</strong>.


Tuesday, 25 September <strong>2012</strong><br />

Plenary Session II<br />

3:30 PM – 5:00 PM<br />

Session Chair: Dalma Novak<br />

PLE2.1 3:30 PM – 4:15 PM<br />

Martin Wegener, Karlsruhe Institute of Technology, Karlsruhe, Germany<br />

Title: 3D Photonic Metamaterials and Transformation Optics<br />

Abstract: Metamaterials are tailored man-made materials that can exhibit properties not accessible in natural substances [1]. Transformation<br />

optics goes one step further and treats intentionally spatially inhomogeneous metamaterial structures, aiming at achieving certain functionalities<br />

like, e.g., invisibility cloaking [1]. I will give an introduction into these fields and review our recent experimental progress regarding<br />

three-dimensional structures. Direct-laser-writing (DLW) optical lithography and stimulated-emission-depletion (STED) DLW are used for<br />

fabrication. [1] M. Wegener and S. Linden, “Shaping Optical Space with Metamaterials”, Physics Today 63, 32 (2010)<br />

Biography: After completing his PhD in physics in 1987 at Johann Wolfgang Goethe-Universitat Framkfurt<br />

(Germany), he spent two years as a postdoc at AT&T Bell Laboratories in Holmdel (U.S.A.). From 1990-1995 he was<br />

C3-Professor at Universitat Karlsruhe (TH). Since 2001 he has had a joint appointment at Institut fur Nanotechnologie<br />

of Forchungszentrum Karlsruhe GmbH. Since 2001 he has also been a coordinator of the DFG-Center for Functional<br />

Nanostructures (CFN) in Karlsruhe. His reasearch interests are comprised of ultrafast optics (extreme) nonlinear<br />

optics, near-field optics, photonics crystals, photonic metamaterials and transformation optics. This research has led<br />

to various awards and honors, among which are the Alfried Krupp von Bohlen und Halbach Research Award 1993, the<br />

Baden-Wurttemberg Teaching Award 1998, the DFG Gottfried Wilhelm Leibniz Award 2000, the European Union Rene<br />

Descartes Prize 2005, the Baden-Wurttemberg Research Award 2005, and the Carl Ziess Research Award 2006. He is a<br />

member of Leopoldina, the German Academy of Sciences (since 2006), Fellow of the Optical Society of America (since 2008), Fellow of the<br />

Hector Foundation (since 2008), Adjunct Professor at the Optical Sciences Center, Tucson, U.S.A. (since 2009).<br />

PLE2.2 4:15 PM – 5:00 PM<br />

Eli Yablonovitch, University of California – Berkeley, Berkeley, CA, USA<br />

Title: The Opto-Electronic Physics that Just Broke the<br />

Efficiency Record in Solar Cells<br />

Abstract: After languishing at 25.1% efficiency for almost 20 years, the record efficiency in solar cells has suddenly reached 28.8%<br />

efficiency. The improvements above 25.1% rely upon photonics, light transport, and luminescence extraction, rather than upon electronic<br />

properties.<br />

Biography: Eli Yablonovitch is Director of the NSF Center for Energy Efficient Electronics Science (E3S), a multi-<br />

University Center based at Berkeley.<br />

He received his Ph.d. degree in Applied Physics from Harvard University in 1972. He worked for two years at Bell<br />

Telephone Laboratories, and then became a professor of Applied Physics at Harvard. In 1979 he joined Exxon to do<br />

research on photovoltaic solar energy. Then in 1984, he joined Bell Communications Research, where he was a<br />

Distinguished Member of Staff, and also Director of Solid-State Physics Research. In 1992 he joined the University of<br />

California, Los Angeles, where he was the Northrop-Grumman Chair Professor of Electrical Engineering. Then in<br />

2007 he became Professor of Electrical Engineering and Computer Sciences at UC Berkeley, where he holds the<br />

James & Katherine Lau Chair in Engineering.<br />

In his photovoltaic research, Yablonovitch introduced the 4n2 light-trapping factor that is used commercially in almost all high performance<br />

solar cells. Yablonovitch introduced the idea that strained semiconductor lasers could have superior performance due to reduced valence band<br />

(hole) effective mass. Today, almost all semiconductor lasers use this concept, including telecommunications lasers, DVD players, and laser<br />

pointers.<br />

Yablonovitch is regarded as one of the Fathers of the Photonic BandGap concept, and coined the term “Photonic Crystal”.<br />

<strong>2012</strong> PLENARY SESSION<br />

Page 17


<strong>2012</strong> SPECIAL SYMPOSIA<br />

Page 18<br />

Special Symposium on Quantum <strong>Photonics</strong><br />

Symposium Chair: Satoshi Iwamoto, Uiniversity of Tokyo, Japan<br />

Committee: Antonio Badolato,University of Rochester, USA, Darrick Chang, Institut de<br />

Ciències Fotòniques, Spain, Alex Hayat, University of Toronto, Canada, Peter Lodahl,<br />

University of Copenhagen, Denmark, Hiroki Takesue, NTT, Japan<br />

This special symposium will focus on fundamental physics, devices and systems, and<br />

their applications in Quantum <strong>Photonics</strong>, where non-classical aspects of photons, materials,<br />

and their interactions are featured. Efficient generation of non-classical light utilizing<br />

photonic technologies is essential for many quantum information applications. Quantum<br />

photonic systems will open the door to a new paradigm of optoelectronics. In this symposium,<br />

through a series of invited and contributed presentations, we will review the recent<br />

advances in Quantum <strong>Photonics</strong>, a rapidly-developing field of photonics, and discuss its<br />

future direction, including potential applications.<br />

Invited Speakers<br />

Edo Waks, University of Maryland, USA<br />

Kartik Srinivasan, Center for Nanoscale Science and Technology, NIST, USA<br />

Prem Kumar, Northwestern University, USA<br />

Robert Boyd,The Institute of Optics, University of Rochester, USA<br />

Takashi Yamamoto, Osaka University, Japan<br />

Val Zwiller, Delft, The Netherlands<br />

Yasunobu Nakamura,Department of Applied Physics, University of Tokyo, Japan<br />

Oskar Painter, California Institute of Technology, USA<br />

Mark Stevenson,Toshiba Research Europe Limited, UK<br />

Gregor Weihs,University of Innsbruck, Austria<br />

Special Symposium Optical Microresonators and Novel Phenomena<br />

Symposium Chair: Misha Sumetsky ,OFS Laboratories, USA<br />

Committee:Andrey Matsko , OE Waves, USA, Giancarlo C. Righini, Istituto di Fisica<br />

Applicata “Nello Carrara”, Italy, Jessie Rosenberg, IBM TJ Watson Research Center, USA,<br />

Jacob Scheuer, Tel-Aviv University, Israel<br />

The goal of this symposium is to review the recent achievements in the rapidly developing<br />

field of optical microresonators and related phenomena. The optical resonance devices<br />

are demonstrated as effective miniature optical signal processors, microlasers, super<br />

accurate sensors, opto-mechanical oscillators and optical frequency comb generators.<br />

They have found numerous applications in fundamental research and in engineering. This<br />

symposium will concentrate on the significant advances in the performance, innovative<br />

types and configurations, and new applications of optical microresonators and devices<br />

based on optical resonance phenomena.<br />

Invited Speakers<br />

Mario Armenise, Politecnico di Bari, Italy<br />

Tal Carmon,University of Michigan, USA;<br />

Shanhui Fan,Stanford University, USA<br />

Shayan Mookherjea,University of California at San Diego, USA<br />

Kengo Nozaki,NTT Basic Research Laboratories, Japan<br />

Hansuek Lee, Caltech, USA<br />

Pascal Del’Haye, National Institute of Standards and Technology, USA<br />

Frank Vollmer, Max Planck Institute, Germany


Special Symposium on III-V on Si for Silicon <strong>Photonics</strong><br />

Symposium Chair: Nobu Nishiyama, Tokyo Institute of Technology, Japan<br />

Committee: Martijn J. R. Heck, University of California Santa Barbara, USA, Dries Van<br />

Thourhout, Ghent University, Belgium, Akihiro Wakahara, Toyohashi University of<br />

Technology<br />

The symposium will focus on the current status and related technologies to realize III-V/Si<br />

hybrid photonic integrated circuits (PICs) for Silicon <strong>Photonics</strong>. Integrating III-V semiconductors<br />

on Si is a promising way to have optical gain / absorption devices on Si in Silicon<br />

<strong>Photonics</strong>. There are several fabrication methods including direct growth, wafer bonding<br />

and so on. Device structures are also varied by applications (telecom, interconnects, onchip,<br />

sensors, etc.) and fabrication methods. Topics will cover fabrication technologies,<br />

device designs, device characteristics, applications and futures of such heterogeneous<br />

integration for Silicon <strong>Photonics</strong>.<br />

Invited Speakers<br />

Gregory Fish, Aurrion, USA<br />

Huiyun Liu, UCL, United Kingdom<br />

Makoto Okano, AIST/PECST, Japan<br />

Tadatomo Suga, University of Tokyo, Japan<br />

Katsuaki Tanabe, University of Tokyo, Japan<br />

Pierre Viktorovitch, Lyon, France<br />

Kerstin Volz, Philipps University Marburg, Germany<br />

Roel G. Baets, Ghent University/IMEC, Belgium<br />

Special Symposium on Photovoltaics based on Plasmonics and<br />

Nanophotonics<br />

Symposium Chair: Majeed Hayat, University of New Mexico-Center for High Technology<br />

Materials, USA<br />

Committee: Mark Brongersma, Stanford University, USA, Chennupati Jagadish, Australian<br />

Nantional University, Australia,<br />

Sanjay Krishna, University of New Mexico, USA<br />

Recently there has been a resurgence of interest in the interaction of electromagnetic radiation<br />

with nanoscale metal-dielectric structures. Their local field concentration and unique<br />

light scattering properties afforded by these objects has led to a fundamental interest in<br />

plasmonic and metamaterial structures. Of particular interest is the application of this<br />

phenomenon to energy harvesting photovoltaic devices, in which the absorption can be<br />

significantly enhanced by means of these nanophotonic effects including broadband and<br />

resonant enhancement. In this symposium, a series of presentations by various leading<br />

researchers will describe the role of plasmonics and nanophotonics in solar cells and<br />

photovoltaics. The symposium includes both theoretical and experimental aspects of the<br />

topic.<br />

Invited Speakers<br />

Philippe M. Fauchet, University of Rochester, USA<br />

Vivian Ferry, Department of Chemistry, UC Berkeley/Lawrence Berkeley National<br />

Laboratory, USA<br />

Sajeev John, University of Toronto, Canada<br />

Sudha Mokkapati, Australian National University, Canberra, Australia<br />

Georgios Veronis, Louisiana State University, USA<br />

Ralf Wehrspohn, Fraunhofer IWM Freiburg, Germany<br />

<strong>2012</strong> SPECIAL SYMPOSIA<br />

Page 19


<strong>2012</strong> TUTORIAL SPEAKERS<br />

Page 20<br />

TUTORIAL I: MONDAY, 24 SEPTEMBER <strong>2012</strong><br />

MA1: 8:30 AM – 9:30 AM<br />

SOLAR CELLS<br />

Vikram Dalal, Iowa State University, Ames, IA, USA<br />

BIOGRAPHY: Prof. Dalal is the Whitney Professor of Electrical and Computer Engineering and Director of the Microelectronics<br />

Research Center at Iowa State University. He holds the B.E.(Elec.Engr.) degree from the University of Bombay, India and Ph.D. in EE<br />

from Princeton. He also holds a M.P.A.(Econ.)degree from Princeton. He worked in industrial and academic research institutions for<br />

19 years after getting his Ph.D. in 1969, and then joined Iowa State in 1988. His primary research interests are in photovoltaic materials<br />

and devices, and in plasma processing. He is a Distinguished Lecturer of the <strong>IEEE</strong> Electron Devices Society, and a Fellow of<br />

<strong>IEEE</strong>, American Physical Society and American Association for the Advancement of Science, having been recognized by all three for<br />

his research on photovoltaic materials and devices. He has published over 170 papers and holds 12 U.S. patents. Dr. Dalal is also a<br />

Distinguished Visiting Professor at the Indian Institute of Technology, Bombay (India).<br />

TUTORIAL II: TUESDAY, 25 SEPTEMBER <strong>2012</strong><br />

TuA1: 8:30 AM – 9:30 AM<br />

CAVITY OPTOMECHANICS<br />

Kerry Vahala, California Institute of Technology, Pasadena, CA, USA<br />

BIOGRAPHY: Dr. Kerry Vahala served as Chief Scientist at Xponent <strong>Photonics</strong>, Inc. Dr. Vahala co-founded Xponent <strong>Photonics</strong>, Inc.<br />

in 2000. He worked at lightwave communications for 20 years time frame during which he has made discoveries impacting both the<br />

fundamental limits for information transmission as well as how lightwave information can be manipulated in pure optical form. He<br />

has served as a <strong>technical</strong> member for the organization of many lightwave communications conferences, including OFC and CLEO (for<br />

which he was the General Chair in 2001). Dr. Vahala is a Fellow of the Optical Society of America, is the first recipient of the Richard<br />

P. Feynman Hughes Fellowship, and has received both the NSF and ONR Presidential Investigator Awards. Dr. Vahala served as<br />

Chairman of the Board and Director of Xponent <strong>Photonics</strong>, Inc. He is a Professor of Applied Physics at the California Institute of<br />

Technology. Dr. Vahala received his Ph. D. in Applied Physics at Caltech in 1985.<br />

TUTORIAL III: WEDNESDAY, <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

WA1: 8:30 AM – 9:30 AM<br />

MICROWAVE PHOTONIC FILTERS<br />

Lute Maleki, Oewaves, Inc., Pasadena, CA, USA<br />

BIOGRAPHY: Lute Maleki, Ph.D. is a co-founder of OEwaves, Inc., and serves as its President and Chief Executive Officer. Dr.<br />

Maleki served as a Senior Research Scientist at the Jet Propulsion Laboratory (JPL) where he created and grew the Quantum<br />

Sciences and Technologies Group for the past 23 years. In that capacity, he was responsible for the multi-million dollar budget of the<br />

group, and the management of one of the largest <strong>technical</strong> groups at JPL that was internationally recognized as a leader in atomic<br />

clocks, frequency standards, and an array of photonic and quantum sensors. Dr. Maleki engaged in the development of atomic clocks<br />

based on ion traps and laser cooled trapped atoms; development of sensors based on atom wave interferometers; study and development<br />

of ultra-stable photonic oscillators, the opto-electronic oscillator (OEO), and photonic signal distribution systems; study and<br />

development of whispering gallery mode microresonators and their applications in RF-photonic systems; and tests of fundamental<br />

physics with clocks. He serves as a Director of OEwaves, Inc. He is an inventor on over 20 U.S. Patents and applications, including<br />

the OEO, and has authored and co-authored over 100 refereed publications, and over 200 conference proceedings. Dr. Maleki serves on the <strong>technical</strong> committees<br />

of major international conferences devoted to frequency and timing, and optical sciences and engineering. He is a Fellow of the <strong>IEEE</strong>, a Fellow of the<br />

American Physical Society, and a Fellow of the Optical Society of America. He served as the Associate Editor for Frequency Control, Atomic and Optical, and<br />

<strong>IEEE</strong>.<br />

TUTORIAL IV: THURSDAY, 27 SEPTEMBER <strong>2012</strong><br />

THA1: 8:30 AM – 9:30 AM<br />

COHERENT COMMUNICATION<br />

Peter Winzer, Alcatel-Lucent, Holmdel, NJ, USA<br />

BIOGRAPHY: Peter J. Winzer heads the Optical Transmission Systems and Networks Research Department at Bell Laboratories,<br />

Alcatel-Lucent, in Holmdel, NJ. He received his Ph.D. in electrical engineering from the Vienna University of Technology, Austria, in<br />

1998. Supported by the European Space Agency, he investigated space-borne Doppler lidar and laser communications using highsensitivity<br />

digital modulation and detection. At Bell Labs since 2000, he has focused on various aspects of high-bandwidth fiber-optic<br />

communication systems, including Raman amplification, advanced optical modulation formats and receiver concepts, digital signal<br />

processing and coding, as well as on robust network architectures for dynamic data services. He demonstrated several high-speed<br />

and high-capacity optical transmission records from 10 to 400 Gb/s, including the first 100G and the first 400G electronically multiplexed<br />

optical transmission systems and the first field trial of live 100G video traffic over an existing carrier network. Since 2008 he<br />

has been investigating spatial multiplexing as a promising option to scale optical transport systems. He has widely published and<br />

patented and is actively involved in <strong>technical</strong> and organizational tasks with the <strong>IEEE</strong> <strong>Photonics</strong> Society and the OSA. He is a Distinguished Member of Technical<br />

Staff at Bell Labs and a Fellow of the <strong>IEEE</strong> and the OSA.


8:30 AM - 9:30 AM<br />

Session MA: Tutorial I<br />

Session Chair: Chennupati Jagadish,<br />

Australian National University, Canberra,<br />

Australia<br />

MA1 8:30 AM - 9:30 AM (Tutorial)<br />

Solar Cell, V. Dalal, Iowa State University,<br />

Ames, IA, USA<br />

ABSTRACT NOT AVAILABLE<br />

Page 22<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

8:30 AM - 10:00 AM<br />

Session MB: Microscopy and<br />

Imaging<br />

Session Chair: Dirk J. Faber, Academic<br />

Medical Center of the University of Amsterdam,<br />

Amsterdam, The Netherlands<br />

MB1 8:30 AM - 9:00 AM (Invited)<br />

Non Linear In-Vivo Flourescence<br />

Microscopy, F. S. Pavone, European<br />

Laboratory for Non-Linear Spectroscopy, Sesto,<br />

Firenze, Italy<br />

A brief review on the nonlinear laser imaging<br />

techniques will be displayed. In particular, tumor<br />

detection in tissue imaging applications will be<br />

shown in different fields, together with the possibility<br />

to manipulate tissue samples.<br />

MB2 9:00 AM - 9:15 AM<br />

High-Speed Second Harmonic<br />

Generation Holographic Imaging of<br />

Biological Specimens at over 1000<br />

Volumes per Second, D. Smith, D. Winters<br />

and R. A. Bartels, Colorado State University, Fort<br />

Collins, CO, USA<br />

Demonstration of high-speed second harmonic<br />

holographic microscopic imaging of biological<br />

specimens up to 1500 volumes per second with<br />

signal-to-noise analysis and 3D particle tracking.<br />

Additionally, SHG holography phase-shifted<br />

reconstruction and polarization-resolved imaging<br />

are developed.<br />

MB3 9:15 AM - 9:30 AM<br />

Optical Time-Stretch Microscopy Using<br />

Few-Mode Fibers, Y. Qiu, J. Xu,<br />

K. K.-Y. Y. Wong and K. K. M. Tsia, University of<br />

Hong Kong, Hong Kong<br />

Abstract: We demonstrate a cost-effective and<br />

efficient approach for realizing ultrafast timestretch<br />

microscopy in 1µm using the standard<br />

telecommunication single-mode fibers (e.g.<br />

SMF28 and dispersion compensation fiber<br />

(DCF)) as few-mode fibers (FMFs).<br />

8:30 AM - 10:00 AM<br />

Session MC: Microwave Photonic<br />

Signal Generation<br />

Session Chair: Everett W. Jacobs, SPAWAR<br />

Systems Center - Pacific, San Diego, CA, USA<br />

MC1 8:30 AM - 9:00 AM (Invited)<br />

High Spectral Purity Microwave<br />

Generation via Optical Division,<br />

T. M. Fortier, F. J. Quinlan, J. Taylor, A. Hati,<br />

C. W. Nelson, N. Lemke, A. D. Ludlow,<br />

D. Liebrandt, T. Rosenband, D. Howe, Y. Fu,<br />

J. C. Campbell, C. W. Oates and S. A. Diddams,<br />

National Institute of Standards and Technology,<br />

Boulder, CO, USA<br />

We generate 10 GHz microwave signals from<br />

high quality factor (Q~10 11 ) optical resonators via<br />

optical frequency division. The demonstrated<br />

phase noise is comparable to or better than that<br />

obtained via cryogenic systems for timescales<br />


8:30 AM - 10:00 AM<br />

Session ME: PON<br />

Session Chair: TBD<br />

ME1 8:30 AM - 8:45 AM<br />

Bidirectional Uncompressed HD Video<br />

Distribution over Fiber Employing<br />

VCSELs, J. Estaran, J. J. Vegas Olmos,<br />

G. A. Rodes and I. T. Monroy, Technical<br />

University of Denmark, Kgs Lyngby, Denmark<br />

We report on a bidirectional system in which<br />

VCSELs are simultaneously modulated with two<br />

uncompressed HD video signals. The results<br />

show a large power budget and a negligible<br />

penalty over 10 km long transmission link.<br />

ME2 8:45 AM - 9:00 AM<br />

Extended Gain Bandwidth low Ripple<br />

Hybrid Raman-Parametric Amplifier<br />

Design for PON Applications, S. Peiris,<br />

N. Madamopoulos, City College of New<br />

York/CUNY, New York, NY, USA, N. Antoniades,<br />

College of Staten Island/CUNY, Staten Island, NY,<br />

USA, M. A. Ummy, New York City College of<br />

Technology, New York, NY, USA, R. Dorsinville<br />

and M. A. Ali, City College of New York/CUNY,<br />

New York, NY, USA<br />

A hybrid Raman-OPA amplifier with 190nm<br />

bandwidth, and 13-fold enhancement<br />

in a 7.5 nm thin-film absorber yielding a<br />

maximum absorption of 74.4%. Broadband and<br />

wide-angle absorption is demonstrated.<br />

MG3 9:15 AM - 9:45 AM (Invited)<br />

Plasmonics for III-V Semiconductor Solar<br />

Cells, S. Mokkapati, H. F. Lu, S. Turner, L. Fu,<br />

H. H. Tan and C. Jagadish, Australian National<br />

University, Canberra, Australia<br />

Surface plasmons supported by metal nanoparticles<br />

can be used to enhance the performance of<br />

solar-cells based on III-V semiconductors. We<br />

present results on plasmonic quantum-dot solarcells<br />

and discuss the role of plasmonics for<br />

nanowire solar-cells.<br />

8:30 AM - 10:00 AM<br />

Session MH: OI I - Devices<br />

Session Chair: Eric Johnson, Clemson<br />

University, Clemson, SC, USA<br />

MH1 8:30 AM - 9:00 AM (Invited)<br />

Nano-Photonic Technologies for Optical<br />

Interconnects, Y. Fainman, University of<br />

California - San Diego, La Jolla, CA, USA<br />

ABSTRACT NOT AVAILABLE<br />

MH2 9:00 AM - 9:15 AM<br />

A New Approach to Ge Lasers with Low<br />

Pump Power, X. Chen, Y. Huo, E. Fei,<br />

G. Shambat, K. Zang, X. Liu, Y. Chen,<br />

T. I. Kamins, J. Vuckovic and J. S. Harris,<br />

Stanford University, Stanford, CA, USA<br />

We present direct bandgap photoluminescence<br />

from carrier confinement in Ge/SiGe quantum<br />

wells (QWs) in a microdisk. Simulation and<br />

experimental results indicate this structure has<br />

great potential to serve as a low pump power Ge<br />

laser.<br />

MH3 9:15 AM - 9:30 AM<br />

Low-Power Monolithic COMB Laser for<br />

Short-Reach WDM Optical Interconnects,<br />

A. E. Gubenko, S. S. Mikhrin, V. Mikhrin,<br />

I. L. Krestnikov and D. A. Livshits, Innolume<br />

GmbH, Dortmund, Germany<br />

16+ low-noise optical comb lines with 80 GHz<br />

spacing and 0 dBm/line output power are generated<br />

by a single InAs/GaAs quantum dot (QD)<br />

Fabry-Perot laser. Electrical power consumption<br />

is reduced dramatically down to 6 mW/line.<br />

Page 23


10:30 AM - 12:00 PM<br />

Session MI: SS:MRP I<br />

Session Chair: TBD<br />

MI1 10:30 AM - 11:00 AM (Invited)<br />

Mechanical Stabilization of Frequency<br />

Combs from Laser Machined Microrod-<br />

Resonators, P. Del’Haye, S. Papp and<br />

S. A. Diddams, National Institute of Standards<br />

and Technology, Boulder, CO, USA<br />

We introduce piezo-electric mechanical control<br />

and stabilization of frequency combs produced in<br />

novel, laser-machined microresonators. The<br />

residual and absolute 1-second-stabilities of the<br />

33 GHz comb spacing are 5×10 -14 and<br />

=1.4×10 -12 , respectively.<br />

MI2 11:00 AM - 11:15 AM<br />

Hyper-Parametric Oscillations in<br />

Multimode Microresonators, A. B. Matsko,<br />

A. A. Savchenkov and L. Maleki, OEwaves, Inc.,<br />

Pasadena, CA, USA<br />

We analyze hyper-parametric oscillations in<br />

optical microresonators characterized with small<br />

group velocity dispersion (GVD) and show that<br />

the nonlinear process critically depends on linear<br />

interaction among the microresonator modes that<br />

changes local GVD.<br />

Page 24<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

MB4 9:30 AM - 9:45 AM<br />

Comparison of Singular Value<br />

Decomposition and Principal Component<br />

Analysis applied to Hyperspectral<br />

Imaging of Biofilm, D.-H. Kim, H. N. D. Le,<br />

US Food and Drug Administration, Silver Spring,<br />

MD, USA and M. S. Kim, US Department of<br />

Agriculture, Beltsville, MD, USA<br />

Different degrees of bacterial attachment to<br />

various surface morphologies observed by<br />

Hyperspectral Imaging Method are studied. Foreground<br />

and back-ground distinction performed<br />

by Singular Value Decomposition and Principal<br />

Component Analysis is also discussed.<br />

MB5 9:45 AM - 10:00 AM<br />

Theory of Diffraction and Defocus Effects<br />

in Spatial Frequency-ModulatedImaging,<br />

D. Higley, D. Winters and R. A. Bartels, Colorado<br />

State University, Fort Collins, CO, USA<br />

Experimental and simulational validation of theory<br />

developed for diffraction and defocus effects on a<br />

novel single-pixel method that encodes spatial<br />

information using chirped amplitude modulation<br />

are presented.<br />

10:30 AM - 12:00 PM<br />

Session MJ: Bioimaging dand<br />

Analysis Techniques<br />

Session Chair: Francesco S. Pavone,<br />

European Laboratory for Non-Linear<br />

Spectroscopy, Sesto, Firenze, Italy<br />

MJ1 10:30 AM - 11:00 AM (Invited)<br />

Functional Optical Biopsy of Epithelial<br />

Tumors, D. J. Faber, D. de Bruin, R. Wessels<br />

and T. G. van Leeuwen, Academic Medical Center<br />

of the University of Amsterdam, Amsterdam, The<br />

Netherlands,<br />

Functional Optical Biopsy provides information<br />

on stage and grade of epithelial tumors. It is<br />

based on Optical Coherence Tomography for<br />

microscale imaging of tissue morphology in<br />

combination with e.g. reflection or fluorescence<br />

spectroscopy.<br />

MJ2 11:00 AM - 11:15 AM<br />

Lab on a Chip Imaging and Quantitative<br />

Phase Contrast in Turbid Microfluidic<br />

Channel, M. Paturzo, P. Ferraro, P. Memmolo,<br />

A. Finizio, Istituto Nazionale di Ottica Applicata,<br />

Pozzuoli, Italy, D. Balduzzi, R. Puglisi and A. Galli,<br />

Istituto Sperimentale Italiano “Lazzaro<br />

Spallanzani”, Rivolta d’Adda, Cremona, Italy<br />

We show that sharp imaging is possible in<br />

microfluidics in flowing turbid media by digital<br />

holography. Imaging results are demonstrated for<br />

biological cells in microfluidic channels, in<br />

flowing liquids with suspended colloidal particles.<br />

MC4 9:30 AM - 9:45 AM<br />

Stabilization of a Dual-Frequency<br />

VECSEL Free of Relaxation Oscillations<br />

for Microwave <strong>Photonics</strong> Applications,<br />

G. Baili, G. Pillet, L. Morvan, M. Alouini,<br />

D. Dolfi, Thales Research and Technology,<br />

Palaiseau, France and I. Sagnes, Laboratoire de<br />

Photonique et de Nanostructures, Marcoussis,<br />

France<br />

We describe a dual-frequency dual-polarization<br />

class-A vertical external-cavity semiconductor<br />

laser delivering a tunable optically-carried<br />

microwave signal with an additive phase noise<br />

below -120 dBc/Hz at 10 kHz.<br />

MC5 9:45 AM - 10:00 AM<br />

Transient Response of a Modulated<br />

Microwave Subcarrier Generated Using<br />

Optical Injection, M. C. Pochet, E. P. Harvey,<br />

T. P. Locke, US Air Force Institute of Technology,<br />

Wright-Patterson AFB, OH, USA and<br />

N. G. Usechak, US Air Force Research<br />

Laboratory, WPAFB, OH, USA<br />

The transient response of a directly modulated<br />

injection-locked semiconductor laser operated in<br />

the period-one state is analyzed theoretically and<br />

verified experimentally. The results illustrate the<br />

limits and stability properties of the modulated<br />

microwave subcarrier frequency.<br />

10:30 AM - 11:45 AM<br />

Session MK: Microwave Photonic<br />

Integrated Circuits<br />

Session Chair: Jianping Yao, University of<br />

Ottawa, Ottawa, ON, Canada<br />

MK1 10:30 AM - 11:00 AM (Invited)<br />

Integrated Microwave <strong>Photonics</strong> for<br />

Phase Modulated Systems, D. Marpaung<br />

and C. G. H. Roeloffzen, University of Twente,<br />

Enschede, The Netherlands<br />

In this paper, the applications of photonic integrated<br />

circuit (PIC) for frequency discrimination<br />

in phase-modulated microwave photonic (MWP)<br />

systems like a high dynamic range photonic link<br />

and an ultrawideband (UWB) pulse shaper are<br />

discussed.<br />

MK2 11:00 AM - 11:15 AM<br />

Meta-Material Enhanced Photonic RF<br />

Receiver, S. Shi, University of Delaware,<br />

Newark, DE, USA, R. L. Nelson, US Air Force<br />

Research Laboratory, WPAFB, OH, USA,<br />

D. W. Nippa, T. Barnum, Battelle, Columbus, OH,<br />

USA, C. Scheutz, Phase Sensitive Innovations,<br />

Inc., Newark, DE, USA, D. W. Prather, University<br />

of Delaware, Newark, DE, USA, W. Chen and<br />

Q. Zhan, University of Dayton, Dayton, OH, USA<br />

The devolvement of a novel metamaterial<br />

enhanced photonic RF receiver is presented. The<br />

receiver consists of D-ring structures designed<br />

MD4 9:30 AM - 9:45 AM<br />

A Compact Time-to-Digital Converter<br />

(TDC) Module with 10 ps Resolution and<br />

Less than 1.5% LSB DNL, B. Markovic,<br />

F. Villa, S. Bellisai, D. Bronzi, C. Scarcella,<br />

G. Boso, A. Bahgat Shehata, A. Della Frera, and<br />

A. Tosi, Politecnico di Milano, Milano, Italy<br />

We present a compact low-power TDC module<br />

that provides 10 ps timing resolution and DNL<br />

better than 1.5% LSB. The module is suitable<br />

for: FLIM, FRET, TOF ranging, TOF PET, DOT,<br />

OTDR, quantum optics, etc.<br />

MD5 9:45 AM - 10:00 AM<br />

Phototransistor Based Time-of-Flight<br />

Range Finding Sensor in an 180 nm<br />

CMOS Process, P. Kostov, M. Davidovic,<br />

M. Hofbauer, W. Gaberl and H. Zimmermann,<br />

Vienna University of Technology, Vienna, Austria<br />

Time-of-Flight sensors using different kinds of<br />

integrated phototransistors are presented. The<br />

sensors and phototransistors were implemented<br />

in a standard 180nm CMOS Process. Standard<br />

deviations down to 1.6mm were achieved.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am - GRAND PENINSULA FOYER<br />

10:30 AM - 12:00 PM<br />

Session ML: Single Photon Counting<br />

Detectors<br />

Session Chair: Joe C. Campbell, University<br />

of Virginia, Charlottesville, VA, USA<br />

ML1 10:30 AM - 11:00 AM (Invited)<br />

InGaAs/InP Single Photon Avalanche<br />

Diodes with Negative Feedback, X. Jiang,<br />

M. A. Itzler, K. O’Donnell, M. Entwistle and<br />

K. Slomkowski, Princeton Lightwave, Inc.,<br />

Cranbury, NJ, USA<br />

We present the design, operation and characterization<br />

of InGaAs/InP based negative feedback<br />

avalanche diodes for single photon detection in<br />

the SWIR wavelength range. These devices<br />

provide a simple, practical solution for many<br />

photon counting applications.<br />

ML2 11:00 AM - 11:15 AM<br />

InGaAs/InP Single-Photon Avalanche<br />

Diode with Narrow Photon Timing<br />

Response, F. Acerbi, A. Tosi, A. Bahgat<br />

Shehata, M. Anti and F. Zappa, Politecnico di<br />

Milano, Milano, Italy<br />

We present a novel InGaAs/InP SPAD with ><br />

25% photon detection efficiency, 6 kcps dark<br />

count rate and better than 90 ps photon timing<br />

jitter, when operated at 200 K and 5 V excess<br />

bias.


ME5 9:30 AM - 9:45 AM<br />

High-Bandwidth Parallel Data<br />

Transmission Using GaN/CMOS Micro-<br />

LED Arrays, S. Zhang, University of<br />

Strathclyde, Glasgow, UK, S. Watson, University<br />

of Glasgow, Glasgow, UK, J. McKendry,<br />

D. Massoubre, University of Strathclyde,<br />

Glasgow, UK, A. Cogman, University of<br />

Edinburgh, Edinburgh, UK, E. Gu, University of<br />

Strathclyde, Glasgow, UK, R. K. Henderson,<br />

University of Edinburgh, Edinburgh, UK,<br />

A. E. Kelly, University of Glasgow, Glasgow, UK<br />

and M. D. Dawson, University of Strathclyde,<br />

Glasgow, UK<br />

A multiple-channel visible light communication<br />

demonstration system is realized through a<br />

CMOS-controlled micro light-emitting diode<br />

(µLED) array. A total data transmission rate of 1.5<br />

Gbit/s is achieved by modulating four µLED<br />

pixels simultaneously.<br />

ME6 9:45 AM - 10:00 AM<br />

Demonstration of WDM-PON System<br />

Based on Injection-Locked SFP<br />

Transceivers, H.-L. Wang, Chunghwa Telecom<br />

Co., Ltd., Yang-Mei, Taoyuan, Taiwan, R.O.C.<br />

We investigated the WDM-PON with low-cost,<br />

mass-production C-/ L-band SFP transceivers<br />

based on injection-locked FP-LDs, and designed<br />

video transfer player systems to perform the<br />

network traffic stress test.<br />

10:30 AM - 12:00 PM<br />

Session MM: All-Optical Signal<br />

Processing<br />

Session Chair: Ted K. Woodward, Applied<br />

Communication Sciences, Red Bank, NJ, USA<br />

MM1 10:30 AM - 11:00 AM (Invited)<br />

Integrated-Photonic Signal Processing<br />

for High-Speed Optical Communication,<br />

I. Kang, Seoul National University, Gyeonggi-Do,<br />

Seoul, Korea<br />

We present all-optical signal processing techniques<br />

for fiber-optical communication using<br />

photonic integrated devices. We first report<br />

passive-optical discrete Fourier transform<br />

devices and applications. Optical bitwise-logic<br />

based signal processing using semiconductor<br />

optical amplifiers is also reviewed.<br />

MM2 11:00 AM - 11:15 AM<br />

Femtosecond Optical Waveform<br />

Generation Based on Space-to-Time<br />

Mapping in Long Period Gratings,<br />

R. Ashrafi, M. Li and J. Azaña, Institut National<br />

de la Recherche Scientifique, Montréal, QC,<br />

Canada<br />

A novel and simple all-fiber approach for<br />

femtosecond optical arbitrary waveform generation<br />

based on superluminal space-to-time<br />

mapping in long period gratings is proposed and<br />

numerically demonstrated.<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

MF4 9:30 AM - 9:45 AM<br />

Relation between Small and Large Signal<br />

Modulation Capabilities in Highly<br />

Nonlinear Quantum Dot Lasers for Optical<br />

Telecommunication, D. Gready, Technion,<br />

Haifa, Israel<br />

We present a theoretical model supported by<br />

experiments showing that diode lasers having<br />

large gains with a small signal modulation which<br />

is limited by gain compression, can be modulated<br />

digitally at very high bit rates.<br />

MF5 9:45 AM - 10:00 AM<br />

Stimulated Emission in Red, Green, and<br />

Blue from Colloidal Quantum Dot Films<br />

by Single Exciton Optical Gain, C. Dang,<br />

Brown University, Providence, RI, USA<br />

Epitaxial-like colloidal quantum dot films are<br />

demonstrated as potential single material system<br />

for red, green, and blue lasing. These prospects<br />

derive in part from the access to single exciton<br />

gain in the optically dense films.<br />

10:30 AM - 12:00 PM<br />

Session MN: Vertical Cavity Surface<br />

Emitting Lasers I<br />

Session Chair: Nikolay Ledentsov, VI<br />

Systems GmbH, Berlin, Germany<br />

MN1 10:30 AM - 11:00 AM (Invited)<br />

Recent Results on Long-Wavelength<br />

VCSELs: Device Structures, Performance<br />

and Applications, T. Gruendl, M. Mueller,<br />

C. Grasse, K. Vizbaras and M.-C Amann,<br />

Technical University of Munich, Garching, Germany<br />

We are presenting an overview of InP and GaSb<br />

based VCSEL devices in the long-wavelength<br />

range. Device structures and performances<br />

regarding high-power, tunability and high-speed<br />

are discussed by focusing on telecommunication,<br />

safety and medical applications.<br />

MN2 11:00 AM - 11:15 AM<br />

1310 nm Wafer Fused VCSELs - A New<br />

Generation of Uncooled 10 Gbps Telecom<br />

Lasers, A. Sirbu, École Polytechnique Fédérale<br />

de Lausanne, Lausanne, Switzerland<br />

1310 nm-band wafer-fused VCSELs demonstrate<br />

record low 10 Gbps modulation current of 6 mA<br />

at temperatures from RT to 70 0 C. Reliability<br />

studies demonstrate the suitability of this technology<br />

in commercial photonic systems.<br />

MG4 9:45 AM - 10:00 AM<br />

Embedded Ag@SiO2 Nanoparticles for<br />

Enhanced Solar Absorption in Thin Film<br />

Photovoltaics, R. K. Harrison and<br />

A. Ben-Yakar, University of Texas at Austin,<br />

Austin, TX, USA<br />

We analytically determine the contribution of<br />

plasmonic nanospheres embedded in absorbing<br />

media to the total optical absorption. We estimate<br />

gains of ~30% for a 1 µm µc-Si solar cell using<br />

54 nm silica-coated silver nanoparticles.<br />

10:30 AM - 12:00 PM<br />

Session MO: Photonic Crystal<br />

Photovoltaics<br />

Session Chair: Chennupati Jagadish,<br />

Australian National University, Canberra,<br />

Australia<br />

MO1 10:30 AM - 11:00 AM (Invited)<br />

3D Photonic Crystals for Photon<br />

Management in Solar Cells,<br />

R. B. Wehrspohn and A. N. Sprafke, Martin-<br />

Luther University Halle-Wittenberg, Halle,<br />

Germany<br />

Photon management is a key element to optimize<br />

the optical and electro-optical performance of<br />

solar cells. The potential of 3D photonic crystals<br />

for photon management in solar cells and the<br />

corresponding concepts are discussed.<br />

MO2 11:00 AM - 11:15 AM<br />

Photocurrent Enhancement in Ultrathin<br />

Silicon by the Photonic Band-Edge Effect,<br />

M. Fujita, Osaka University, Osaka, Japan,<br />

H. Shigeta, Y. Tanaka, A. Oskooi, H. Ogawa,<br />

Y. Tsuda and S. Noda, Kyoto University, Kyoto,<br />

Japan<br />

We demonstrate photodetecting devices<br />

consisting of a two-dimensional photonic crystal<br />

within an ultrathin active layer. The photocurrent<br />

is enhanced nearly 20 times at the photonic band<br />

edge, which is attributed to better Q-matching.<br />

MH4 9:30 AM - 10:00 AM (Invited)<br />

Low Power Wavelength Division<br />

Multiplexed <strong>Photonics</strong>, M. R. Watts,<br />

Massachusetts Institute of Technology,<br />

Cambridge, MA, USA<br />

We review recent successes and the remaining<br />

challenges to implementing low power, wavelength<br />

division multiplexed silicon photonics on<br />

chip. Integration with CMOS, wavelength<br />

recovery, yield, and implications for current<br />

applications will all be discussed.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am - GRAND PENINSULA FOYER<br />

10:30 AM - 12:15 PM<br />

Session MP: OI II - Applications<br />

Session Chair: Michael W. Haney,<br />

University of Delaware, Newark, DE, USA<br />

MP1 10:30 AM - 11:00 AM (Invited)<br />

TBD, W. Zhao, Google Inc., San Francisco, CA,<br />

USA<br />

ABSTRACT NOT AVAILABLE<br />

MP2 11:00 AM - 11:15 AM<br />

A 25-Gb/s 49-mW CMOS-Driven<br />

Equalized Optical Link, B. G. Lee,<br />

J. E. Proesel, A. V. Rylyakov, C. Baks, IBM<br />

Research, Yorktown Heights, NY, USA, N.-Y. Li,<br />

Emcore Corporation, Albuquerque, NM, USA,<br />

C. Xie, Emcore Corporation, Newark, CA, USA,<br />

K. P. Jackson, Emcore Corporation, Albuquerque,<br />

NM, USA and C. L. Schow, IBM Research,<br />

Yorktown Heights, NY, USA<br />

A low-power CMOS-driven VCSEL-based link<br />

using a 2-tap feed-forward equalizer in the transmitter<br />

is reported at 850-nm wavelengths. Power<br />

Page 25


MI3 11:15 AM - 11:30 AM<br />

On-Chip Microresonator Frequency<br />

Combs Formation: Observation of Comb<br />

Line Dependent Mutual Coherence,<br />

F. Ferdous, Purdue University, West Lafayette, IN,<br />

USA, H. Miao, National Institute of Standards<br />

and Technology, Gaithersburg, MD, USA,<br />

P.-H. Wang, D. E. Leaird, Purdue University,<br />

West Lafayette, IN, USA, K. Srinivasan, L. Chen,<br />

V. A. Aksyuk, National Institute of Standards and<br />

Technology, Gaithersburg, MD, USA and<br />

A. M. Weiner, Purdue University, West Lafayette,<br />

IN, USA<br />

We use pulse shaper to investigate frequency<br />

combs generation in microresonators in the<br />

temporal domain. We observe that different<br />

groups of comb lines have different mutual<br />

coherence and suggest a model for comb<br />

formation.<br />

MI4 11:30 AM - 11:45 AM<br />

Optical Communication Test of Multiple-<br />

Wavelength Comb Source from Silicon<br />

Nitride Microresonators, P.-H. Wang,<br />

F. Ferdous, Purdue University, West Lafayette, IN,<br />

USA, H. Miao, National Institute of Standards<br />

and Technology, Gaithersburg, MD, USA,<br />

J. Wang, D. E. Leaird, Purdue University, West<br />

Lafayette, IN, USA, K. Srinivasan, L. Chen,<br />

V. A. Aksyuk, National Institute of Standards and<br />

Technology, Gaithersburg, MD, USA, and<br />

A. M. Weiner, Purdue University, West Lafayette,<br />

IN, USA<br />

We evaluate the optical communication performance<br />

of individual comb lines generated in<br />

silicon nitride microresonators. A high coherence<br />

mode yields error-free communications at 10<br />

Gb/s, while a partially coherent mode results in<br />

closed eye diagrams.<br />

MI5 11:45 AM - 12:00 PM<br />

Observation of Second Harmonic<br />

Generations from X-Cut BBO Whispering<br />

Gallery Mode Resonators, G. Lin,<br />

D. Strekalov and N. Yu, Jet Propulsion<br />

Laboratory, Pasadena, CA, USA<br />

We report the observation of second harmonic<br />

generations from an x-cut beta barium borate<br />

(BBO) disk pumped at 1557 nm. This x-cut<br />

geometry will provide a new phase matching<br />

condition for nonlinear processes in resonators.<br />

1:30 PM - 3:00 PM<br />

Session MQ: SS:MRP II<br />

Session Chair: Andrey B. Matsko,<br />

OEwaves, Inc., Pasadena, CA, USA<br />

6Page 28<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

MJ3 11:15 AM - 11:30 AM<br />

Flexible Pyramids Array 2D Diffraction<br />

Grating for In-Situ Measurement of<br />

Refractive Index and Pressure of Fluid,<br />

Z. Xu, X. Wang and G. L. Liu, University of<br />

Illinois at Urbana-Champaign, Urbana, IL, USA<br />

Flexible 2D grating with nano-pyramids array<br />

used for in-situ and highly sensitive measurement<br />

of refractive index and pressure of fluid is<br />

demonstrated for potential application in blood<br />

monitoring in dialysis.<br />

MJ4 11:30 AM - 11:45 AM<br />

Analysis of Laser Light Reflectance on<br />

the Human Skin for Optoelectronic<br />

Devices, J. C. Rodriguez, O. Sergiyenko,<br />

L. C. Basaca and M. Rivas, Universidad<br />

Autónoma de Baja California, Mexicali, Mexico<br />

The laser light reflection intensity on human skin<br />

varies depending the ethnicity of each person, in<br />

this paper we present an analysis of reflection<br />

intensity and how affects the measurement of<br />

some optoelectronic devices.<br />

MJ5 11:45 AM - 12:00 PM<br />

All-Optical Sensing of the Components of<br />

the Internal Local Electric Field in<br />

Proteins, M. Drobizhev, J. N. Scott, P. R. Callis<br />

and A. Rebane, Montana State University,<br />

Bozeman, MT, USA<br />

We develop a new method based on the<br />

measurements of the one- and two-photon<br />

absorption properties of a fluorescent probe that<br />

allows measuring the projections of the internal<br />

local electric field in the protein.<br />

1:30 PM - 3:00 PM<br />

Session MR: Photonic Biosensors I<br />

Session Chair: M. Selim Unlu, Boston<br />

University, Boston, MA, USA<br />

on electro-optic LiNbO3 substrates to achieve<br />

direct modulation of RF signal into optical<br />

sideband.<br />

MK3 11:15 AM - 11:30 AM<br />

170 GHz Photodiodes for InP-based<br />

Photonic Integrated Circuits, E. Rouvalis,<br />

University College London, London, UK, M.<br />

Cthioui, F. van Dijk, III-V Lab, Palaiseau,<br />

France, M. J. Fice, University College<br />

London, London, UK, G. Carpintero,<br />

Universidad Carlos III de Madrid, Madrid,<br />

Spain, C. C. Renaud and A. J. Seeds,<br />

University College London, London, UK<br />

MK4 11:30 AM - 11:45 AM<br />

Two-layer Integrated Optical Tapped<br />

Delay Line for RF Spectrum Analysis,<br />

J. R. Adleman, C. Lin, B. M. L. L. Pascoguin,<br />

B. Neuner III, A. Hening, M. Lasher,<br />

E. W. Jacobs, Space and Naval Warfare Systems<br />

Center - Pacific, San Diego, CA, USA and J.<br />

Rodgers, Defense Advanced Research Projects<br />

Agency, Arlington, VA, USA<br />

We present the design and characterization of<br />

tapped delay line filters fabricated in two-level<br />

photonic integrated circuits. Phase error correction<br />

techniques are evaluated to enable spectrum<br />

analysis of a 4GHz band with 300MHz resolution.<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session MS: Microwave Photonic<br />

Devices<br />

Session Chair: Vincent J. Urick, US Naval<br />

Research Laboratory, Washington, DC, USA<br />

ML3 11:15 AM - 11:30 AM<br />

Extended Wavelength InGaAs-based<br />

Avalanche Photodiodesfor Single Photon<br />

Counting Applications, B. M. Onat,<br />

K. Slomkowski and M. A. Itzler, Princeton<br />

Lightwave, Inc., Cranbury, NJ, USA<br />

We present a novel InGaAs based avalanche<br />

photodetector with extended wavelength detection<br />

up to 2.4um wavelengths for single photon<br />

counting applications. The measured DCR was<br />

106 Hz at 2 volts excess bias at 223K.<br />

ML4 11:30 AM - 11:45 AM<br />

Single Photon Detection with Sine<br />

Gated Dual InGaAs/InP Avalanche<br />

Diodes, Z. Lu, W. Sun, J. C. Campbell,<br />

University of Virginia, Charlottesville, VA,<br />

USA, X. Jiang and M. A. Itzler, Princeton<br />

Lightwave, Inc., Cranbury, NJ, USA<br />

We propose and demonstrate a technique cancel<br />

common mode signals of sinusoidally gated<br />

single photon avalanche diodes (SPADs). This<br />

approach enables the elimination of narrow band<br />

filters that fix the frequency of conventional single<br />

photon detection with sine wave gating.<br />

ML5 11:45 AM - 12:00 PM<br />

Theory for Spatial Distribution of Impact-<br />

Ionization Events in Avalanche<br />

Photodiodes, D. A. Ramirez, M. M. Hayat,<br />

University of New Mexico, Albuquerque, NM,<br />

USA, A. S. Huntington and G. M. Williams,<br />

Voxtel, Inc., Portland, OR, USA<br />

We report an extension of the Dead Space<br />

Multiplication Theory that enables determining<br />

the spatial distribution of the impact ionizations<br />

for arbitrary heterojunction multiplication<br />

regions.<br />

1:30 PM - 2:45 PM<br />

Session MT: Infrared Detectors<br />

Session Chair: Sanjay Krishna, University<br />

of New Mexico, Albuquerque, NM, USA


MM3 11:15 AM - 11:30 AM<br />

All-Optical Modulation Format<br />

Conversion from 4-channels NRZ-OOK to<br />

RZ-16QAM using SOA-MZI Wavelength<br />

Converters, D. Hisano, A. Maruta and<br />

K.-I. Kitayama, Osaka University, Suita, Osaka,<br />

Japan<br />

We propose an all-optical modulation format<br />

converter in which 4-channels NRZ-OOK signals<br />

can be converted to RZ-16QAM. The converter<br />

consists of two SOA-MZI based OOK to 4ASK<br />

converters and a single SOA for offset compensation.<br />

MM4 11:30 AM - 11:45 AM<br />

All-Optical 2R Regeneration of a 160-<br />

Gbit/s RZ- OOK Serial Data Signal Using<br />

a FOPA, J. Wang, H. Ji, H. Hu,<br />

H. C. H. Mulvad, M. Galili, E. Palushani,<br />

P. Jeppesen, Technical University of Denmark,<br />

Lyngby, Denmark, J. Yu, Tianjin University,<br />

Tianjin, China and L. K. Oxenløwe, Technical<br />

University of Denmark, Lyngby, Denmark<br />

All-optical 2R regeneration of a 160-Gbit/s RZ-<br />

OOK signal is demonstrated in a fiber optical<br />

parametric amplifier using a highly nonlinear<br />

fiber with the data as pump. Bit error rate bathtub<br />

curves validate the regeneration performance.<br />

MM5 11:45 AM - 12:00 PM<br />

Numerical Investigation of Power<br />

Requirements for Ultra-High-Speed<br />

Serial-to-Parallel Conversion,<br />

M. Lillieholm, H. C. H. Mulvad, E. Palushani,<br />

C. Peucheret, P. Jeppesen and L. K. Oxenløwe,<br />

Technical University of Denmark, Lyngby,<br />

Denmark<br />

We present a numerical bit-error rate investigation<br />

of 160-640 Gbit/s serial-to-parallel<br />

conversion by four-wave mixing based timedomain<br />

optical Fourier transformation, showing<br />

an inverse scaling of the required pump energy<br />

per bit with the bit rate.<br />

1:30 PM - 2:45 PM<br />

Session MU: DSP for Coherent<br />

System I<br />

Session Chair: Sebastian Randel, Alcatel-<br />

Lucent, Holmdel, NJ, USA<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

MN3 11:15 AM - 11:30 AM<br />

Ultra-Compact Intra-Cavity Contacts for<br />

Multi-Terminal VCSEL Power<br />

Enhancement, C.-H. Lin, B. Thibeault,<br />

Y. Zheng, J. S. Parker, M. J. W. Rodwell and<br />

L. A. Coldren, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We demonstrate ultra-compact intra-cavity<br />

contacts fabricated with an embedded Al2O3 etchstop,<br />

which effectively shorten the cavity length<br />

and enhance the output power of a multi-terminal<br />

VCSEL.<br />

MN4 11:30 AM - 11:45 AM<br />

Measurement of Optical Loss in Oxide-<br />

Confined VCSELs, S. T. M. Fryslie,<br />

D. F. Siriani and K. D. Choquette, University of<br />

Illinois at Urbana-Champaign, Urbana, IL, USA<br />

Cold-cavity spectral characteristics are used to<br />

extract the size dependent optical loss for small<br />

diameter oxide-confined VCSELs. For aperture<br />

diameters < 2 µm, the oxide scattering loss can<br />

be as large as 10 cm -1 .<br />

MN5 11:45 AM - 12:00 PM<br />

Simultaneous Measurements of the<br />

Optical Phase & Amplitude Modulation of<br />

Injection-Locked VCSELs Modulated at<br />

GHz Rates, S. Bhooplapur, N. Hoghooghi and<br />

P. J. Delfyett, University of Central Florida,<br />

Orlando, FL, USA<br />

We experimentally study the optical phase and<br />

amplitude modulation characteristics of an<br />

injection-locked VCSEL using coherent optical<br />

demodulation. Two different phase modulation<br />

regimes are explored, vital for the use of VCSELs<br />

as linear interferometric modulators.<br />

1:30 PM - 2:45 PM<br />

Session MV: Optical Interconnect<br />

and Hybrid Laser Sources<br />

Session Chair: Brian R. Koch, Aurrion,<br />

Santa Barbara, CA, USA<br />

MO3 11:15 AM - 11:45 AM (Invited)<br />

Light Trapping and Solar Energy<br />

Harvesting with 3D Photonic Crystals,<br />

S. John, University of Toronto, Toronto, ON,<br />

Canada<br />

We describe designs of 3D photonic crystal<br />

silicon-based solar cells using architectures<br />

consisting of less than 1 micron of silicon,<br />

absorbing roughly 75% of all sunlight, with<br />

power efficiencies in the 15-20% range.<br />

MO4 11:45 AM - 12:00 PM<br />

Low-Cost Approach for Broadband<br />

Enhancement of Ultraviolet to Visible<br />

Light Downconversion in Fluorescent<br />

Media, R. Mupparapu, K. Vynck, I. Malfanti,<br />

University of Florence, Sesto Fiorentino<br />

(Florence), Italy, S. Vignolini, University of<br />

Cambridge, Cambridge UK, M. Burresi,<br />

University of Florence, Sesto Fiorentino<br />

(Florence), Italy, P. Scudo, R. Fusco, ENI<br />

Donegani Institute, Novara, Italy and<br />

D. S. Wiersma, University of Florence, Sesto<br />

Fiorentino (Florence), Italy<br />

The addition of a tiny amount of Aluminum<br />

nanoparticles in dye solutions is shown to yield<br />

a significant enhancement of the down conversion<br />

of ultraviolet light while maintaining a high<br />

transparency at visible wavelengths.<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session MW: Nanostructures in Solar<br />

Cells<br />

Session Chair: TBD<br />

efficiencies of 1.5, 2.0, and 3.8 pJ/b are achieved<br />

at 22.5, 25, and 28.5 Gb/s, respectively.<br />

MP3 11:15 AM - 11:30 AM<br />

P-Type D-Doping of Highly-Strained<br />

VCSELs for 25 Gbps Operation, A. V. Barve<br />

and Y. Zheng, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We present the utilization of d-doping to mitigate<br />

the rise in nonlinear gain compression in highlystrained<br />

InGaAs VCSELs and compare it with<br />

unstrained and undoped active region designs.<br />

High-speed 25 Gbps operation is also<br />

demonstrated.<br />

MP4 11:30 AM - 11:45 AM<br />

Low Loss and Flatband Si-wire Optical<br />

MUX/DeMUX based on Microring<br />

Resonator assisted Delayed Mach-<br />

Zehnder Interferometers, S.-H. Jeong,<br />

S. Tanaka, T. Akiyama, S. Sekiguchi, Y. Tanaka<br />

and K. Morito, Fujitsu Laboratories Ltd., Atsugi,<br />

Kanagawa, Japan<br />

Novel Si-wire optical MUX/DeMUX employing<br />

microring resonator assisted delayed Mach-<br />

Zehnder interferometers is experimentally<br />

demonstrated. The fabricated device shows<br />

1×4Ch demultiplexing with low excess loss<br />

(


MQ1 1:30 PM - 2:00 PM (Invited)<br />

Coupled Ring Resonators: Physical<br />

Effects and Potential Applications,<br />

C. Ciminelli, F. Dell’Olio, C. E. Campanella and<br />

M. Armenise, Politecnico di Bari, Bari, Italy<br />

Main physical phenomena occurring in coupled<br />

ring resonators and their most promising applications<br />

in the field of buffers for optical<br />

interconnects, nonlinear optics, angular velocity<br />

sensing, and group velocity manipulation are<br />

reviewed in the paper.<br />

MQ2 2:00 PM - 2:15 PM<br />

Transmission Amplitudes and Modeling<br />

of SNAP Devices, M. Sumetsky, OFS<br />

Laboratories, Somerset, NJ, USA<br />

The transmission amplitudes of SNAP (Surface<br />

Nanoscale Axial <strong>Photonics</strong>) devices are determined<br />

and applied to investigation of basic<br />

SNAP structures.<br />

MQ3 2:15 PM - 2:30 PM<br />

Modeling Sagnac Effect in Micro<br />

Resonators Using FDTD Method,<br />

R. Novitski, J. K. Scheuer and B. Z. Z. Steinberg,<br />

Tel Aviv University, Tel-Aviv, Israel<br />

We present a novel FDTD method for studying<br />

optics in rotating microrings. We find that in<br />

contrast to commonly thought, the Sagnac<br />

frequency splitting depends on the group index<br />

and not on the effective index.<br />

MQ4 2:30 PM - 2:45 PM<br />

Integrated Si3N4/SiO2 Ultra High Q Ring<br />

Resonators, D. T. Spencer, Y. Tang,<br />

J. F. Bauters, M. Heck and J. E. Bowers,<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA<br />

We demonstrate a Si3N4 waveguide optical<br />

resonator with a record high quality factor of 55<br />

million using planar waveguide couplers.<br />

Investigations into coupler losses are studied to<br />

further increase performance.<br />

Page 28<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

MR1 1:30 PM - 2:00 PM (Invited)<br />

Integrated Lab on Chip for Detection of<br />

Cells and Micro-Organisms, E. Salm,<br />

C. Duarte and R. Bashir, University of Illinois at<br />

Urbana-Champaign, Urbana, IL, USA<br />

We aim to take ‘lab-on-a-chip’ further by introducing<br />

‘lab-on-a-transistor’. We developed a<br />

heating technique that allows transistors to act as<br />

electrically addressable, individual heaters. To<br />

demonstrate this technique, DNA denaturation in<br />

sub-nanoliter droplets is shown.<br />

MR2 2:00 PM - 2:15 PM<br />

A Point-of-Care Diagnostic Prototype for<br />

High-Throughput, Multiplexed Single-<br />

Virus Detection, A. Reddington, J. T. Trueb,<br />

G. Daaboul, D. S. Freedman, H. Fawcett,<br />

J. Connor and M. Unlu, Boston University,<br />

Boston, MA, USA<br />

A self-contained point-of-care prototype has<br />

been developed using an interferometric technique<br />

for high-throughput single-particle<br />

detection on a simple 2-layer surface. Initial<br />

results show a label-free limit-of-detection of 10 4<br />

PFU/ml in serum for vesicular stomatitis virus.<br />

MR3 2:15 PM - 2:30 PM<br />

Experimental Detection of 1Pico-Molar<br />

Concentration from High-Q Photonic<br />

Crystal Microcavity Biosensors, Y. Zou,<br />

University of Texas at Austin, Austin, TX, USA,<br />

S. Chakravarty, Omega Optics Inc., Austin, TX,<br />

USA, W.-C. Lai and R. T. Chen, University of<br />

Texas at Austin, Austin, TX, USA<br />

We experimentally demonstrate a photonic<br />

crystal microcavity biosensor with 1pM sensitivity.<br />

Radiation loss engineering for high Q and<br />

increased mode overlap with analyte are<br />

combined to achieve the highest sensitivity in<br />

silicon-on-insulator platform.<br />

MR4 2:30 PM - 2:45 PM<br />

External Cavity Laser Biosensor, C. Ge,<br />

University of Illinois at Urbana-Champaign,<br />

Urbana, IL, USA<br />

We have demonstrated a novel single-mode<br />

continuous-wave narrow bandwidth emission<br />

and widely tunable external cavity laser<br />

biosensor that simultaneously achieves high<br />

resolution, high sensitivity and large dynamic<br />

range.<br />

MS1 1:30 PM - 2:00 PM (Invited)<br />

Developments in High-Performance<br />

Photodiodes, A. Joshi, Discovery<br />

Semiconductors, Inc., Ewing, NJ, USA<br />

ABSTRACT NOT AVAILABLE<br />

MS2 2:00 PM - 2:15 PM<br />

Phase of Intermodulation Distortion<br />

Products in High-Linearity Photodiode:<br />

Measurement Technique and Theoretical<br />

Model, Y. Fu, H. Pan, A. Beling, and<br />

J. C. Campbell, University of Virginia,<br />

Charlottesville, VA, USA<br />

The third-order intermodulation distortion products<br />

(IMD3) of the high-linearity InGaAs/InP<br />

photodiode exhibit 180 degree phase changes<br />

around their minima, which can be explained by<br />

a nonlinear responsivity model.<br />

MS3 2:15 PM - 2:30 PM<br />

Compact Optical/THz Signal Converter<br />

using Photo-generated Carrier Gate in<br />

THz Waveguide, D. Take, M. Shirao,<br />

K. Maruyama, N. Nishiyama, M. Asada and<br />

S. Arai, Tokyo Institute of Technology, Tokyo,<br />

Japan<br />

A novel structure of the optical/THz signal<br />

converter was proposed. By using THz plasmon<br />

waveguide, high conversion rate of optical/THz<br />

signal was estimated. It can be integrated with<br />

optical waveguide and THz RTD oscillator.<br />

MS4 2:30 PM - 2:45 PM<br />

Effects of Injection Power and Frequency<br />

Detuning on Noise Characteristics of an<br />

Injection-Locked VCSEL, N. Hoghooghi,<br />

S. Bhooplapur and P. J. Delfyett, University of<br />

Central Florida, Orlando, FL, USA<br />

The noise characteristics of an injection-locked<br />

VCSEL are experimentally investigated. Effects of<br />

injection-ratio and detuning on the phase noise<br />

added by an injection-locked VCSEL are studied.<br />

MT1 1:30 PM - 1:45 PM<br />

Graded-Barrier Heterostructures for<br />

Photovoltaic Split-Off Infrared Detection,<br />

U. A. G. Perera, Y. F. Lao, P. K. D. D. P. Pitigala,<br />

Georgia State University, Atlanta, GA, USA,<br />

S. P. Khanna, L. H. Li and E. H. Linfield,<br />

University of Leeds, Leeds, UK<br />

A graded-barrier photovoltaic infrared detector is<br />

reported based on split-off transitions. This<br />

detector showed room temperature operation<br />

with zero-response threshold at ~4 µm and a<br />

long-wavelength peak up to 8 µm at 80 K.<br />

MT2 1:45 PM - 2:00 PM<br />

Planar InAs Photodiodes Fabricated<br />

using He Ion Implantation, I. C. Sandall,<br />

C. H. Tan, University of Sheffield, Sheffield, UK,<br />

A. J. Smith and R. M. Gwilliam, University of<br />

Surrey, Guildford, Surrey, UK<br />

We investigate the use of Helium ion implantation<br />

to create resistive regions in InAs, with an<br />

increase in resistivity of seven orders of magnitude<br />

being observed. This has been used to<br />

realize planar photodiodes.<br />

MT3 2:00 PM - 2:15 PM<br />

InAs Quantum Dot Photodetector<br />

Operating at 1.3 µm Grown on Silicon,<br />

I. C. Sandall, J. S. Ng, J. P. R. David, C. H. Tan,<br />

University of Sheffield, Sheffield, UK, T. Wang<br />

and H. Liu, University College London, London,<br />

UK<br />

The optical and electrical properties of InAs<br />

quantum dots epitaxially grown on silicon have<br />

been investigated to evaluate their potential as<br />

photodiodes, avalanche photodiodes (APDs) and<br />

electro-optical modulators operating at a wavelength<br />

of 1300 nm.<br />

MT4 2:15 PM - 2:30 PM<br />

Charge-Compensated High Gain InAs<br />

Avalanche Photodiode, W. Sun, University of<br />

Virginia, Charlottesville, VA, USA<br />

We report an InAs avalanche photodiode with<br />

graded p-doping to compensate the n-type<br />

background doping in the depletion region. The<br />

measured gain, excess noise, and bandwidth are<br />

consistent with Monte Carlo simulation.<br />

MT5 2:30 PM - 2:45 PM<br />

Polarization-Dependent Photocurrent<br />

Enhancement in Metamaterial-integrated<br />

Quantum Dot Infrared Detectors,<br />

Y. Sharma, University of New Mexico,<br />

Albuquerque, NM, USA<br />

We present the design, fabrication, and characterization<br />

of quantum dots-in-a-well infrared<br />

detectors integrated with a planar metamaterial<br />

layer. The resonantly excited metamaterial layer<br />

provides strongly enhanced optical fields and the<br />

increased photocurrent.


MU1 1:30 PM - 1:45 PM<br />

CD Equalization with Non-maximally<br />

Decimated DFT Filter Bank, I. Slim,<br />

L. G. Baltar, A. Mezghani, J. A. Nossek, Technical<br />

University of Munich, Munich, Germany and<br />

F. N. Hauske, Huawei Technologies Duesseldorf<br />

GmbH, Germany<br />

We perform CD compensation in the frequency<br />

domain through non-maximally decimated DFT filter<br />

bank with one-tap per sub-channel equalizer. Larger<br />

CD values are tolerated at the cost of slightly increased<br />

complexity compared to overlap-and-discard method.<br />

MU2 1:45 PM - 2:00 PM<br />

A New Cycle Slip Compensation<br />

Technique for Ultra High Speed Coherent<br />

Optical Communications, M. A. Castrillon,<br />

D. A. Morero and M. R. Hueda, Universidad<br />

Nacional de Cordoba, Córdoba, Argentina<br />

We propose a novel cycle slip mitigation algorithm<br />

suitable for next generation OTNs.<br />

Simulation results of a 100 Gb/s DP-QPSK<br />

optical system show almost no degradation at a<br />

post-FEC BER of 10 -6 .<br />

MU3 2:00 PM - 2:15 PM<br />

Real-time Comparison of Blind Phase<br />

Search with Different Angle Resolutions<br />

for 16-QAM, A. Al-Bermani, University of<br />

Paderborn, Paderborn, Germany<br />

The influence of phase noise related to 16 and<br />

32 test carrier phase angles of BPS carrier<br />

recovery in a 16-QAM transmission system has<br />

been investigated in real-time with a data rate of<br />

2.5 Gb/s.<br />

MU4 2:15 PM - 2:30 PM<br />

On the Performance of Timing<br />

Synchronization Techniques for<br />

Optical OFDM IMDD Transmission,<br />

T. A. Truong, H. Lin, B. Jahan, L. Anet Neto,<br />

Orange Labs, Rennes, France, Cesson<br />

Sevigne, France, M. Arzel and M. Jezequel,<br />

Telecom Bretagne, Brest, France<br />

We do a comparative study of different timing<br />

synchronization techniques for optical OFDM<br />

IMDD transmission in single-mode fiber<br />

channel. Some modifications of Park’s method<br />

are proposed in order to obtain a more robust<br />

timing estimator.<br />

MU5 2:30 PM - 2:45 PM<br />

A Low Complexity and High Accuracy<br />

Frame Synchronization for Optical OFDM<br />

and PolMux-Optical OFDM, K. Puntsri,<br />

University of Paderborn, Paderborn, Germany<br />

Coherent optical OFDM frame synchronization<br />

over 2,000 km of optical fiber at a sampling rate<br />

of 28 Gs/s is presented. A short training<br />

sequence is applied, which slightly affects to the<br />

OFDM frame efficiency.<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

MV1 1:30 PM - 2:00 PM (Invited)<br />

Optical Interconnects for Computing<br />

Applications, B.-J. Offrein, IBM Research,<br />

Rueschlikon, Switzerland<br />

Optical interconnects are now emerging in<br />

computing applications. A tight integration of<br />

electrical and optical functions and novel<br />

assembly techniques are required to meet anticipated<br />

bandwidth, efficiency and cost<br />

requirements.<br />

MV2 2:00 PM - 2:30 PM (Invited)<br />

Hybrid III-V on Silicon Lasers, B. Ben<br />

Bakir, A. Descos, D. Bordel, Ph. Grosse,<br />

N. Olivier, J-M. Fédéli, C. Kopp and<br />

S. Menezo, Commissariat à l’Énergie<br />

Atomique, Grenoble, France<br />

We report on hybrid III–V on Silicon lasers<br />

with adiabatic coupling. Fabry-Pérot laser<br />

with 16mW output power, integrated racetrack<br />

laser and photodetector, as well as<br />

widely tunable laser with 45nm tuning range<br />

are presented.<br />

MV3 2:30 PM - 2:45 PM<br />

VCSEL Bonding to Silicon and Plastic<br />

Substrates, H. Jeong, J. Sulkin, R.-H. Kim,<br />

J. A. Rogers and K. D. Choquette, University of<br />

Illinois at Urbana-Champaign, Urbana, IL, USA<br />

GaAs VCSELs are transferred onto hybrid<br />

substrates using Van der Waals bonding. Arrays<br />

transferred onto Si show that transfer technique<br />

does not degrade laser characteristics and<br />

transfer onto PET demonstrate flexible VCSEL<br />

arrays.<br />

MW1 1:30 PM - 2:00 PM (Invited)<br />

Enhancing the Efficiency of Photovoltaic<br />

Solar Cells with Photonic<br />

Nanostructures, G. Veronis, C. Min,<br />

C. H. Granier and J. P. Dowling, Louisiana State<br />

University, Baton Rouge, LA, USA<br />

We demonstrate that periodic metallic gratings<br />

can greatly enhance the optical absorption efficiency<br />

of thin-film solar cells. We also introduce<br />

aperiodic multilayer structures with highly directional<br />

absorptivity for both polarizations for solar<br />

thermophotovoltaic systems.<br />

MW2 2:00 PM - 2:15 PM<br />

Inverse Electromagnetic Design for<br />

Subwavelength Light Trapping in Solar<br />

Cells, V. Ganapati, O. Miller and<br />

E. Yablonovitch, University of California -<br />

Berkeley, Berkeley, CA, USA<br />

In the subwavelength regime, the optimal surface<br />

texture for light trapping in solar cells remains to<br />

be found. We use computational inverse electromagnetic<br />

design to find the optimal nanoscale<br />

surface texture.<br />

MW3 2:15 PM - 2:45 PM (Invited)<br />

Plasmonics and Photovoltaics on the<br />

Cheap, P. M. Fauchet, Vanderbilt University,<br />

Nashville, TN, USA<br />

This presentation reviews the potential usefulness<br />

of nanoplamsmonic enhancement of the<br />

response of Si solar cells and discusses results<br />

obtained with inexpensive Ag nanoparticles.<br />

MX1 1:30 PM - 2:00 PM (Invited)<br />

Light Management for Sunlight and<br />

Thermal Emission, Z. Yu and S. Fan,<br />

Stanford University, Stanford, CA, USA<br />

Light management is critically important for solar<br />

conversion devices. Similarly, in the reverse<br />

process when other forms of energy are<br />

converted into thermal radiation, light<br />

management can also be applied to enhance<br />

thermal emission.<br />

MX2 2:00 PM - 2:15 PM<br />

Resonant Dielectric-Grating Polarizers<br />

for Normal Incidence Operation, K. J. Lee,<br />

J. Giese, I. L. Ajayi, R. Magnusson, University of<br />

Texas at Arlington, Arlington, TX, USA, and<br />

E. Johnson, Clemson University, Clemson, SC,<br />

USA<br />

Design, fabrication, and characterization of<br />

guided-mode resonance polarizers with single<br />

dielectric layer are presented. These Si3N4 and<br />

TiO2 polarizers show high transmittance for TM<br />

and low transmittance for TE polarization at<br />

wavelength 1550 nm.<br />

MX3 2:15 PM - 2:30 PM<br />

Experimental Characterization on High<br />

Contrast Grating Reflectivity, T. Sun,<br />

W. Yang, Y. Rao and C. J. Chang-Hasnain,<br />

University of California - Berkeley, Berkeley, CA,<br />

USA<br />

Reflectivity of high contrast subwavelength<br />

grating (HCG) is experimentally characterized<br />

with the HCG being top reflector in an all-passfilter<br />

cavity. Large fabrication tolerance of HCG is<br />

demonstrated. Good agreement is achieved<br />

between experiment and simulation.<br />

MX4 2:30 PM - 2:45 PM<br />

Low-Contrast Top Gratings in High-<br />

Contrast SOI Waveguides for Integrated<br />

Holographic Filters, M. Verbist, D. J. Van<br />

Thourhout and W. Bogaerts, Ghent University,<br />

Gent, Belgium<br />

We design integrated holographic filters with any<br />

transfer function by weakly modulating the top<br />

cladding of SOI waveguides. Our calculations are<br />

confirmed by full-vectorial simulations. Grating<br />

are fabricated with focused ion beam.<br />

Page 29


Page 30<br />

TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

MQ5 2:45 PM - 3:00 PM<br />

High-Q ZBLAN Microcavities for Mid-<br />

Infrared Applications, B. Way, R. K. Jain<br />

and M. Hossein-Zadeh, University of New<br />

Mexico, Albuquerque, NM, USA<br />

We have demonstrated a simple and reliable<br />

method for fabricating high-Q WGM<br />

(Whispering Gallery Mode) optical microcavities<br />

in “mid-IR relevant” ZBLAN glasses.<br />

Intrinsic quality factors of 10 7 have already been<br />

demonstrated.<br />

MR5 2:45 PM - 3:00 PM<br />

Infrared Detection of Flu Viruses,<br />

A. Banerjee, New Jersey Institute of Technology,<br />

Newark, NJ, USA, S. Chakraborty, Weill Medical<br />

College of Cornell University, New York, NY, USA<br />

and H. Grebel, New Jersey Institute of<br />

Technology, Newark, NJ, USA<br />

We monitored the binding of viruses to a model<br />

membrane - lipid bilayer - by using Infrared (IR)<br />

spectroscopy.<br />

MS5 2:45 PM - 3:00 PM<br />

Traveling Wave Electrodes for Wide-<br />

Bandwidth Substrate-Removed<br />

Electro-Optic Modulators, S. Dogru and<br />

N. Dagli, University of California - Santa Barbara,<br />

Santa Barbara, CA, USA<br />

Traveling wave electrodes suitable for wide<br />

bandwidth substrate removed electro-optic<br />

modulators containing buried electrodes are<br />

reported. Experimental results indicate modulator<br />

bandwidths in excess of 35 GHz along with sub<br />

volt drive voltage.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm - GRAND PENINSULA FOYER<br />

Session PLE1: PLENARY I - 3:30pm - 5:15pm - GRAND BALLROOM D<br />

Session Chair: Dalma Novak, Pharad, LLC, Glen Burnie, MD, USA<br />

3:30pm – 3:45 Welcome Remarks<br />

PLE1. 1 3:45 PM - 4:30 PM<br />

Large-Area, Flexible, Organic <strong>Photonics</strong> and Electronics, T. Someya, University of Tokyo, Tokyo, Japan<br />

PLE1.2 4:30 PM - 5:15 PM<br />

Driving Optical Interconnects to Brutal Area and Energy Efficiencies for Future Computing Systems, A. V. Krishnamoorthy, Oracle, San Diego, CA, USA<br />

AWARDS PRESENTATION 5:15pm - 6:00pm - GRAND BALLROOM D<br />

WELCOME RECEPTION 6:00pm - 7:30pm - GRAND PENINSULA ABC/CORRIDOR<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol


TECHNICAL PROGRAM MONDAY 24 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

MW4 2:45 PM - 3:00 PM<br />

A Comparison of Bulk and Quantum Dot<br />

GaAs Solar Cells, T. Li, J. Amirloo, J. Murray,<br />

University of Maryland, College Park, MD, USA,<br />

K. A. Sablon, J. Little, P. Uppal, US Army<br />

Research Laboratory, Adelphi, MD, USA,<br />

J. Munday and M. Dagenais, University of<br />

Maryland, College Park, MD, USA<br />

We report on the realization of a GaAs type-I<br />

quantum dot solar cell with a record 29.9<br />

mA/cm 2 short circuit current density and we<br />

compare it to a reference bulk GaAs solar cell.<br />

MX5 2:45 PM - 3:00 PM<br />

Vertical Coupling for Silicon Nitride<br />

Waveguides Using Silicon Grating<br />

Couplers and Transitions, Z. Xiao, F. Luan,<br />

Nanyang Technological University, Singapore,<br />

T.-Y. Liow, J. Zhang, A*STAR, Institute of<br />

Microelectronics, Singapore and P. Shum,<br />

Nanyang Technological University, Singapore<br />

Fiber to silicon nitride waveguides coupling is<br />

achieved using silicon grating coupler with a<br />

transition. Two optimized couplers are designed<br />

for TE and TM mode excitation, achieving over<br />

55% efficiency. Fabrication issues are also<br />

discussed.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm - GRAND PENINSULA FOYER<br />

Session PLE1: PLENARY I - 3:30pm - 5:15pm - GRAND BALLROOM D<br />

Session Chair: Dalma Novak, Pharad, LLC, Glen Burnie, MD, USA<br />

3:30pm – 3:45 Welcome Remarks<br />

PLE1. 1 3:45 PM - 4:30 PM<br />

Large-Area, Flexible, Organic <strong>Photonics</strong> and Electronics, T. Someya, University of Tokyo, Tokyo, Japan<br />

PLE1.2 4:30 PM - 5:15 PM<br />

Driving Optical Interconnects to Brutal Area and Energy Efficiencies for Future Computing Systems, A. V. Krishnamoorthy, Oracle, San Diego, CA, USA<br />

AWARDS PRESENTATION 5:15pm - 6:00pm - GRAND BALLROOM D<br />

WELCOME RECEPTION 6:00pm - 7:30pm - GRAND PENINSULA ABC/CORRIDOR<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol<br />

Page 31


Announcing an Issue of the <strong>IEEE</strong><br />

JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS on<br />

Semiconductor Lasers<br />

The <strong>IEEE</strong> Journal of Selected Topics in Quantum Electronics invites manuscripts that document the current state of the art in Semiconductor<br />

Lasers. Technical areas include but are not limited to:<br />

• high-speed VCSELs and edge-emitting lasers<br />

• low energy/bit lasers<br />

• Vertical External Cavity Surface Emitting Lasers (VECSELs)<br />

• novel high power laser schemes<br />

• short pulse sources<br />

• micro- and nanolasers<br />

• short wavelength and visible lasers<br />

• quantum dot/wire lasers<br />

• photonic crystal lasers<br />

• lasers on new semiconductor materials<br />

• tunable lasers<br />

• lasers in photonic and electronic integrated circuits<br />

• quantum cascade, interband and mid-IR lasers<br />

• THz lasers<br />

• coupled semiconductor lasers<br />

• semiconductor ring lasers<br />

• lasers in microwave photonics<br />

• synchronization of chaotic lasers, laser dynamics<br />

• SOA and LED topics closely related to lasers<br />

• new applications of semiconductor lasers<br />

The Primary Guest Editor for this issue is Luke F. Lester, University of New Mexico, USA, and the Guest Editors are Sze-Chun Chan, City<br />

University of Hong Kong, China, Vassilios Kovanis, Air Force Research Laboratory, USA, Tomoyuki Miyamoto, Tokyo Institute of Technology,<br />

Japan, and Stephen Sweeney, University of Surrey, UK.<br />

The deadline for submission of manuscripts is November 1, <strong>2012</strong>. Preprints of accepted manuscripts will be posted on the <strong>IEEE</strong> Xplore website<br />

within 2 weeks of authors correctly uploading their final files in the Scholar One Manuscripts “Awaiting Final Files” queue. Final page proofs of<br />

accepted papers are normally posted online in <strong>IEEE</strong> Xplore within 6 weeks of authors uploading their final files, if there are no page proof<br />

corrections. Hardcopy publication of the issue is scheduled for July/August 2013.<br />

All submissions will be reviewed in accordance with the normal procedures of the Journal.<br />

For inquiries regarding this Special Issue, please contact:<br />

JSTQE Editorial Office - Chin Tan Lutz<br />

<strong>IEEE</strong>/<strong>Photonics</strong> Society<br />

445 Hoes Lane,<br />

Piscataway, NJ 08854, U.S.A.<br />

Phone: 732-465-5813,<br />

Email: c.tanlutz@ieee.org<br />

Call for Papers<br />

Submission Deadline: November 1, <strong>2012</strong><br />

The following supporting documents are required during the mandatory online submission at http://mc.manuscriptcentral.com/pho-ieee (please select<br />

the Journal of Selected Topics in Quantum Electronics from the drop down menu).<br />

1) PDF or MS Word manuscript (double column format, up to 12 pages for an invited paper, up to 8 pages for a contributed paper). Manuscripts<br />

over the standard page limit will have an overlength charge of $220.00 per page imposed. Biographies of all authors are mandatory, photographs are<br />

optional. You may find the Tools for Authors link useful: http://www.ieee.org/web/publications/authors/transjnl/index.html<br />

2) Completed Color Printing Agreement/Decline form. Please email c.tanlutz@ieee.org to request this form.<br />

3) MS Word document with full contact information for all authors as indicated below:<br />

Last name (Family name), First name, Suffix (Dr./Prof./Ms./Mr.), Affiliation, Department, Address, Telephone, Facsimile, Email.


8:30 AM - 9:30 AM<br />

Session TuA: Tutorial II<br />

Session Chair: Misha Sumetsky, OFS<br />

Laboratories, Somerset, NJ, USA<br />

TuA1 8:30 AM - 9:30 AM (Tutorial)<br />

Cavity Optomechanics, K. J. Vahala,<br />

California Institute of Technology, Pasadena, CA,<br />

USA<br />

ABSTRACT NOT AVAILABLE<br />

Page 34<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

8:30 AM - 10:00 AM<br />

Session TuB: Photonic Biosensors II<br />

Session Chair: TBD<br />

TuB1 8:30 AM - 8:45 AM<br />

High-Sensitivity Sensing based on<br />

Intensity-Interrogated Bloch Surface<br />

Wave Sensors, W. Kong, Y. Wan, Z. Zheng,<br />

X. Zhao, Y. Liu and Y. Bian, Beihang University,<br />

Beijing, China<br />

A high-sensitivity sensing scheme based on<br />

Bloch surface wave at a one-dimensional<br />

photonic crystal surface is demonstrated with the<br />

simple intensity interrogation configuration<br />

achieving a detection limit as low as 7.5*10 -7<br />

RIU.<br />

TuB2 8:45 AM - 9:00 AM<br />

DNA Biosensor Based On A Double Tilted<br />

Fiber Bragg Grating, A. Candiani, M. Sozzi,<br />

A. Cucinotta, R. Veneziano, R. Corradini,<br />

University of Parma, Parma, Italy, P. Childs,<br />

S. Pissadakis, Foundation for Research &<br />

Technology-Hellas, Heraklion, Greece and<br />

S. Selleri, University of Parma, Parma, Italy<br />

A label-free DNA biosensor based on a double<br />

tilted fiber Bragg grating is presented. The<br />

biosensor detects up to 10nM DNA solution,<br />

inducing a 10% modulation of the<br />

corresponding transmission spectral.<br />

TuB3 9:00 AM - 9:15 AM<br />

A Highly Optimized Plasmon Waveguide<br />

Resonance Biosensor, F. Bahrami,<br />

J. Aitchison and M. Mojahedi, University of<br />

Toronto, Toronto, ON, Canada<br />

A plasmon waveguide resonance biosensor is<br />

designed and optimized for bulk index sensing<br />

using a genetic algorithm. The optimized<br />

biosensor has a large combined sensitivity factor<br />

(4116 RIU -1 ) and penetration depth (7.2µm) for<br />

TM polarization.<br />

TuB4 9:15 AM - 9:30 AM<br />

Distributed Feedback Laser Biosensor<br />

Noise Reduction, Y. Tan, A. Chu, M. Lu<br />

and B. T. Cunningham, University of Illinois<br />

at Urbana-Champaign, Urbana, IL, USA<br />

We report on a signal processing approach that<br />

enables detection of lasing wavelength shifts as<br />

small as Δλ−1.5pm from a distributed feedback<br />

laser biosensor (DFBLB) fabricated upon a<br />

plastic substrate and incorporated into<br />

microplates.<br />

8:30 AM - 10:00 AM<br />

Session TuC: Microwave Photonic<br />

Techniques<br />

Session Chair: A.M.J. Koonen, Eindhoven<br />

University of Technology, Eindhoven, The<br />

Netherlands<br />

TuC1 8:30 AM - 9:00 AM (Invited)<br />

Optical Time-Domain Processing of<br />

Broadband Microwave Signals, J. Azaña,<br />

Institut National de la Recherche Scientifique,<br />

Montréal, QC, Canada<br />

This communication reviews recent work on<br />

time-domain processing, e.g. temporal correlation,<br />

time integration and differentiation,<br />

real-time Fourier transformation etc., of broadband<br />

microwave signals using incoherent<br />

lightwave systems based on the time-spectrum<br />

convolution concept.<br />

TuC2 9:00 AM - 9:15 AM<br />

Interferer Cancellation in Coherent<br />

Optical RF Receivers via Optical Phase<br />

Modulation, E. J. Adles, T. R. Clark,<br />

M. L. Dennis, A. Karim and T. P. McKenna,<br />

Johns Hopkins University, Laurel, MD, USA<br />

Cancellation of interfering and resultant distortion<br />

signals in a coherent optical<br />

down-converting RF receiver is demonstrated.<br />

The technique requires no additional signal path<br />

hardware, introduces no signal degradation and<br />

offers an attractive off-antenna cancellation<br />

capability.<br />

TuC3 9:15 AM - 9:30 AM<br />

<strong>Photonics</strong>-Enabled Ka-band Subscale<br />

Radar Ranging Feasibility<br />

Demonstration, M. B. Lohr, M. L. Dennis,<br />

K. B. Funk, R. E. Pavek and R. M. Sova, Johns<br />

Hopkins University, Laurel, MD, USA<br />

Concept feasibility of a photonics-enabled<br />

Ka-band subscale “radar” is demonstrated for<br />

ranging. Experimental results using a corner<br />

cube reflector and stretch processing are<br />

presented, with a 28-GHz carrier modulated by<br />

40-ns, 4-GHz chirp pulses.<br />

8:30 AM - 10:00 AM<br />

Session TuD: Imaging Detector<br />

Arrays: Visible to Tera Hertz<br />

Session Chair: Andrew M. Sarangan,<br />

University of Dayton, Dayton, OH, USA<br />

TuD1 8:30 AM - 9:00 AM (Invited)<br />

Detectors for THz Astronomical Imaging<br />

and Spectroscopy, J. Zmuidzinas, California<br />

Institute of Technology, Pasadena, CA, USA<br />

The universe shines very brightly in the THz<br />

band. I will describe some of the technological<br />

developments that have led to an exponential,<br />

Moore’s-law improvement in our ability to study<br />

the universe at THz frequencies.<br />

TuD2 9:00 AM - 9:15 AM<br />

Highly Efficient, Polarization Insensitive<br />

Terahertz Metamaterial Perfect Absorber<br />

and Imaging, S. M. Kim, University of<br />

Alabama, Tuscaloosa, AL, USA<br />

We demonstrate performance and characteristics<br />

of a metamaterial absorber designed for operation<br />

in the THz regime. This absorber exhibits up<br />

to 90% absorbance with polarization independence,<br />

and shows potential for use in sensor and<br />

detector devices.<br />

TuD3 9:15 AM - 9:45 AM (Invited)<br />

Spectral-Polarization Imaging with<br />

CMOS-Metallic Nanowires Sensor,<br />

V. Gruev and M. Kulkarni, Washington University<br />

in Saint Louis, St. Louis, MO, USA<br />

We present an imaging sensor, realized by<br />

monolithic integration of vertically stacked<br />

photodiodes with aluminum nanowire polarization<br />

filters, which can simultaneously perceive<br />

spectral and polarization information with high<br />

spatial resolution at every frame.


8:30 AM - 9:45 AM<br />

Session TuE: Coherent Transmission<br />

Session Chair: Fabian Hauske, Huawei<br />

Technologies Duesseldorf GmbH, Munich,<br />

Germany<br />

TuE1 8:30 AM - 9:00 AM (Invited)<br />

Comparison of ISI-Mitigation Techniques<br />

for 128 Gb/s PDM QPSK Channels in<br />

Ultra-Dense Coherent Systems,<br />

J. Renaudier, P. Tran, H. Mardoyan, M. Salsi,<br />

F. Vacondio, G. Charlet and S. Bigo, Alcatel-<br />

Lucent, Nozay, Ile de France, France<br />

We investigate the possibility of packing<br />

100Gb/s PDM-QPSK channels with 28% overhead<br />

into a 33GHz-grid. We compare different<br />

inter-symbol mitigation techniques and show<br />

moderate penalties compared to a standard<br />

50GHz-grid.<br />

TuE2 9:00 AM - 9:15 AM<br />

100 Gbps DP-QPSK Performance over<br />

DCF-Free and Legacy System<br />

Infrastructure, E. Pincemin, J. Karaki,<br />

M. Selmi, D. Grot, T. Guillossou, France<br />

Telecom Orange Labs, Lannion, France,<br />

C. Gosset, Y. Jaouen and P. Ciblat, Telecom<br />

ParisTech, Paris, France<br />

We experimentally compare over 1000 km of<br />

G.652 fiber the performance of coherent DP-<br />

QPSK for 100 Gbps long-haul WDM<br />

transmission over DCF-free and legacy infrastructure<br />

supporting a 10 Gbps WDM system.<br />

TuE3 9:15 AM - 9:30 AM<br />

Novel Optical Quaternary Minimum Shift<br />

Keying Technology with Direct<br />

Modulation of Conventional DFB Laser<br />

and Digital Coherent Detection,<br />

N. Yasuhiko, NTT Corporation, Atsugi-city,<br />

Japan<br />

We propose an optical quaternary minimum<br />

shift keying technology with direct modulation<br />

for the first time. Error-free operation is obtained<br />

by using a digital coherent demodulator<br />

employing 1-bit delay detection and an adaptive<br />

FIR filter.<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30 AM - 10:00 AM<br />

Session TuF: Vertical-Cavity Surface<br />

Emitting Lasers II<br />

Session Chair: Alexei Sirbu, École<br />

Polytechnique Fédérale de Lausanne, Lausanne,<br />

Switzerland<br />

TuF1 8:30 AM - 8:45 AM<br />

Beam Steering Modulation with Phased<br />

Vertical Cavity Laser Arrays, M. Johnson,<br />

University of Illinois at Urbana-Champaign,<br />

Urbana, IL, USA, D. F. Siriani, MIT Lincoln<br />

Laboratories, Lexington, MA, USA, and<br />

K. D. Choquette, University of Illinois at Urbana-<br />

Champaign, Urbana, IL, USA<br />

Beam steering with phased vertical cavity laser<br />

arrays is demonstrated at equipment-limited<br />

rates up to 100 MHz. The dominant phaseshifting<br />

mechanism is found to shift from<br />

thermal to carrier-induced effects with increasing<br />

modulation speed.<br />

TuF2 8:45 AM - 9:00 AM<br />

On-Chip Electro-Thermal Beam Steering<br />

based on Slow-light Bragg Reflector<br />

Waveguide Laterally Integrated with<br />

VCSEL, T. Shimada, A. Matsutani and<br />

F. Koyama, Tokyo Institute of Technology,<br />

Yokohama, Kanagawa, Japan<br />

We demonstrate on-chip beam steering based on<br />

a slow-light Bragg reflector waveguide laterally<br />

integrated with VCSEL. Electro-thermal tuning of<br />

the slow-light waveguide enables continuous<br />

beam steering over 9° with a diffraction-limited<br />

divergence angle of 2.2°<br />

TuF3 9:00 AM - 9:15 AM<br />

Frequency Dependent Polarization<br />

Dynamics in Vertical Cavity Surface<br />

Emitting Lasers with Electrical Injection,<br />

A. V. Barve, Y. Zheng, L. A. Johansson and<br />

L. A. Coldren, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We report on the polarization dynamics in<br />

VCSELs with a small frequency modulation. The<br />

polarization state of a VCSEL is shown to be<br />

controlled by only changing the frequency of the<br />

modulation to electrical injection.<br />

TuF4 9:15 AM - 9:30 AM<br />

Electro-Thermal Tuning of Athermal<br />

850nm VCSELs with Thermally Actuated<br />

T-shape Membrane Structure, H. Sano,<br />

N. Nakata, M. Nakahama, A. Matsutani and<br />

F. Koyama, Tokyo Institute of Technology,<br />

Yokohama, Kanagawa, Japan<br />

We demonstrate the athermal operation and the<br />

wavelength tuning of 850nm-GaAs-VCSELs<br />

using thermally actuated MEMS structure at the<br />

same time. A small temperature dependence of -<br />

0.011 nm/K and wavelength tuning of 4 nm was<br />

obtained.<br />

8:30 AM - 10:00 AM<br />

Session TuG: MRP III<br />

Session Chair: TBD<br />

TuG1 8:30 AM - 8:45 AM<br />

Determination of Waveguide Core and<br />

Cladding Refractive Indices using Single<br />

Wavelength Microring Reflectors,<br />

A. Arbabi and L. L. Goddard, University of Illinois<br />

at Urbana-Champaign, Urbana, IL, USA<br />

We present a method for accurate determination<br />

of refractive indices of waveguide core and<br />

cladding layers using reflective microrings. The<br />

resonant mode azimuthal order ambiguity is<br />

resolved by introducing a grating on the<br />

microrings.<br />

TuG2 8:45 AM - 9:00 AM<br />

High-Speed Silicon Microring Modulator<br />

based on Zigzag PN Junction, X. Xiao,<br />

X. Li, H. Xu, Z. Li, T. Chu, J. Yu and Y. Yu,<br />

Institute of Semiconductors, Chinese Academy of<br />

Sciences, Beijing, China<br />

We present a compact silicon microring modulator<br />

with record modulation speed. A novel<br />

zigzag PN junction is designed for high efficiency<br />

and high bandwidth. 44 Gbit/s NRZ modulation<br />

is demonstrated with 3 dB extinction ratio.<br />

TuG3 9:00 AM - 9:15 AM<br />

Electro-Mechanically Induced GHz Rate<br />

Optical Frequency Modulation in Silicon,<br />

S. Tallur and S. A. Bhave, Cornell University,<br />

Ithaca, NY, USA<br />

We present a monolithic silicon acousto-optic<br />

frequency modulator (AOFM) operating at<br />

1.09GHz. Employing mechanical levers to<br />

enhance displacement of the optical resonator<br />

enables an optical frequency modulation index of<br />

0.067.<br />

TuG4 9:15 AM - 9:30 AM<br />

An On-chip Tunable Add-Drop Filter using<br />

a Microtoroid Resonator, F. Monifi,<br />

Washington University in Saint Louis, St. Louis,<br />

MO, USA<br />

We present an add-drop filter with drop efficiency<br />

of 57% and quality factor of 4.5*10 6 composed<br />

of an on-chip microtoroid side coupled to two<br />

fiber tapers and investigate the thermal tunability<br />

and robustness of it.<br />

8:30 AM - 10:00 AM<br />

Session TuH: Photonic Crystals and<br />

Devices I<br />

Session Chair: Zongfu Yu, Stanford<br />

University, Stanford, CA, USA<br />

TuH1 8:30 AM - 9:00 AM (Invited)<br />

Multifunctional Fiber Sensors Based on<br />

Photonic Crystals, O. Solgaard, Stanford<br />

University, Stanford, CA, USA<br />

Optical interactions in 2D and 3D nanostructures<br />

enable multifunctional sensors. This talk<br />

describes the concepts, designs, fabrication, and<br />

system integration of sensors for a variety of<br />

measurands, including temperature, refractive<br />

index, force, and pressure.<br />

TuH2 9:00 AM - 9:15 AM<br />

Wideband Tunable Photonic Crystal<br />

Cavity with Electrostatic Actuation,<br />

M. Miri and M. Sodagar, Georgia Institute of<br />

Technology, Atlanta, GA, USA<br />

We present a wideband tunable optical cavity<br />

based on electrostatic actuation. Over 60nm shift<br />

in wavelength is achieved by applying less than<br />

1 Volt corresponds to a mechanical displacement<br />

of 30nm.<br />

TuH3 9:15 AM - 9:30 AM<br />

Electromagnetic Modes Localized at the<br />

Edges of a Three-Dimensional Photonic<br />

Crystal, L. Lu, J. D. Joannopoulos and<br />

M. Soljacic, Massachusetts Institute of<br />

Technology, Cambridge, MA, USA<br />

We find electromagnetic waves can be guided at<br />

the edge of a three-dimensional photonic crystal<br />

in air. A cell-counting approach describes its<br />

periodic evolution with interesting interplays<br />

among edge, surface and bulk states.<br />

Page 35


10:30 AM - 12:15 PM<br />

Session TuI: OI III - Architecture &<br />

Devices<br />

Session Chair: Pradeep Srinivasan, Intel<br />

Corporation, Santa Clara, CA, USA<br />

TuI1 10:30 AM - 11:00 AM (Invited)<br />

Large-Scale Integrated <strong>Photonics</strong> for<br />

High-Performance Interconnects,<br />

R. G. Beausoleil, HP Laboratories, Palo Alto, CA,<br />

USA<br />

High-end computing systems are expected to<br />

scale from petascale to exascale over the next<br />

decade. We describe requirements and architectures<br />

for high-bandwidth interconnects based on<br />

integrated photonic components that could<br />

enable this performance growth.<br />

Page 36<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

TuB5 9:30 AM - 9:45 AM<br />

Photonic Biosensors for Determining<br />

Simultaneous Parameters via Multiple<br />

Resonance Peaks, R. Magnusson, University<br />

of Texas at Arlington, Arlington, TX, USA,<br />

D. Wawro, S. Zimmerman, Resonant Sensors<br />

Incorporated, Arlington, TX, USA, and W. Wu,<br />

University of Texas at Arlington, Arlington, TX,<br />

USA<br />

Guided-mode resonance sensors employing<br />

modal-polarization diversity are presented. In an<br />

application example, we quantify the variations in<br />

the refractive index of an attaching biolayer and<br />

show that the background is stable.<br />

TuB6 9:45 AM - 10:00 AM<br />

Optical Cavity-based Biosensor Utilizing<br />

Differential Detection, C. Mounce and<br />

S. Kim, LeTourneau University, Longview, TX,<br />

USA<br />

We report an optical cavity-based biosensor<br />

utilizing differential detection for increased sensitivity,<br />

lower cost, and multiplexing capability.<br />

Calculated differential values show linear and<br />

monotonic change for the sensing layer thickness<br />

with a sensitivity of 0.061/nm.<br />

10:30 AM - 11:45 AM<br />

Session TuJ: Photonic Tools for<br />

Biology and Manipulation<br />

Session Chair: Rene G. Heideman, LioniX<br />

BV, Enschede, The Netherlands<br />

TuJ1 10:30 AM - 10:45 AM<br />

Polarization Maintaining Single Mode<br />

Color Combining Using TriPleXTM based<br />

Integrated Optics for Biophotonic<br />

Applications, R. Dekker, E. J. Klein and<br />

D. H. Geuzebroek, XiO <strong>Photonics</strong> BV, Enschede,<br />

The Netherlands<br />

This paper will discuss and demonstrate the<br />

advantages of laser beam combining using<br />

single mode integrated optics based on<br />

TriPleXTM waveguide technology. Color<br />

combining through integrated optics yields<br />

compact, robust an low cost devices.<br />

TuJ2 10:45 AM - 11:00 AM<br />

Pulsewidth Switchable, Wavelength<br />

Tuneable Ultrafast Fiber Laser Modelocked<br />

by Carbon Nanotubes, F. Wang,<br />

D. Popa, Z. Sun, T. Hasan, F. Torrisi, R. Going<br />

and A. C. Ferrari, University of Cambridge,<br />

Cambridge, UK<br />

Employing a nanotube-based saturable absorber,<br />

we demonstrate a continuously tunable (1533-<br />

1563nm) ultrafast fiber laser, with output<br />

pulsewidth switchable between picosecond<br />

(1.2 ps) and femtosecond (610 fs) regimes<br />

TuC4 9:30 AM - 9:45 AM<br />

A Subranging Photonic ADC Based on<br />

Cyclic Code, N. K. Kim and N. Dagli,<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA<br />

A subranging photonic ADC based on cyclic<br />

code was introduced. 6-bit operation was verified<br />

using two 3-bit photonic ADCs. Required laser,<br />

receiver and high speed sampler count was<br />

reduced almost a factor of 4.<br />

TuC5 9:45 AM - 10:00 AM<br />

Parametric Sampling Gate Linearization<br />

by Pump Intensity Modulation, V. Ataie,<br />

University of California - San Diego, La Jolla,<br />

CA, USA<br />

We present a novel technique for parametric<br />

sampling gate linearization. The method relies on<br />

partial transfer of the signal modulation to the<br />

pump. A 25 dB improvement in even-harmonics<br />

distortion is demonstrated experimentally.<br />

10:30 AM - 11:45 AM<br />

Session TuK: Microwave Photonic<br />

Processing and Measurements<br />

Session Chair: Franklyn J. Quinlan,<br />

National Institute of Standards and Technology,<br />

Boulder, CO, USA<br />

TuK1 10:30 AM - 11:00 AM (Invited)<br />

Microwave Photonic Filters Based on<br />

Optical Frequency Combs, A. M. Weiner,<br />

Purdue University, West Lafayette, IN, USA<br />

Optical frequency combs generated by electrooptic<br />

modulation form a coherent multi-carrier<br />

light source for flexible microwave photonic<br />

filtering. Various filter experiments demonstrating<br />

high sidelobe suppression, deep<br />

submicrosecond tuning, and pulse compression<br />

capability are described.<br />

TuD4 9:45 AM - 10:00 AM<br />

Pixel-to-Pixel Cross-Talk of Infrared<br />

Focal Plane Arrays, S. D. Gunapala, Jet<br />

Propulsion Laboratory, Pasadena, CA, USA<br />

We have measured the pixel-to-pixel optical and<br />

electrical cross-talk of superlattice and QWIP<br />

focal plane arrays (FPAs). The figures of merits<br />

and modulation transfer functions of these FPAs<br />

will be presented during this presentation.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:15 PM<br />

Session TuL: High Speed Detectors<br />

Session Chair: Bora M. Onat, Princeton<br />

Lightwave, Inc., Cranbury, NJ, USA<br />

TuL1 10:30 AM - 11:00 AM (Invited)<br />

Ultra-Fast Near-Ballistic Uni-Traveling<br />

Carrier Photodiode for Photonic Few-<br />

Cycle Sub-THz Pulse Generation and<br />

Wireless Communication, J.-W. Shi,<br />

National Central University, Taoyuan, Taiwan,<br />

R.O.C.<br />

We review our work about near-ballistic unitraveling<br />

carrier photodiode (NBUTC-PD). By<br />

utilizing its ultra-fast switching and high outputpower<br />

characteristics, a few cycle electrical pulse<br />

generation and extremely-high data rate wireless<br />

communication at W-band is achieved.


TuE4 9:30 AM - 9:45 AM<br />

Colorless Reception of a Single 100Gb/s<br />

Channel from 80 Coincident Channels via<br />

an Intradyne Coherent Receiver,<br />

L. E. Nelson, X. Zhou, R. Isaac, AT&T,<br />

Middletown, NJ, USA, Y.-M. Lin, J. Chon and<br />

W. Way, Neo<strong>Photonics</strong>, San Jose, CA, USA<br />

We have demonstrated use of an OIF-compliant,<br />

intradyne coherent receiver to perform colorless<br />

reception. After 1000km WDM transmission, a<br />

single 100Gb/s PM-QPSK signal was detected<br />

from among 80 incident channels, with 0.5dB<br />

additional OSNR penalty.<br />

10:30 AM - 11:45 AM<br />

Session TuM: Constellation<br />

Optimization & Nonlinearities<br />

Session Chair: Nikola Alic, University of<br />

California - San Diego, La Jolla, CA, USA<br />

TuM1 10:30 AM - 11:00 AM (Invited)<br />

Satellite Constellations: Towards the<br />

Nonlinear Channel Capacity, E. Agrell and<br />

M. Karlsson, Chalmers University of Technology,<br />

Göteborg, Sweden<br />

We present a family of adaptive constellations<br />

that, in a nonlinear optical fiber channel model,<br />

has a mutual information (modulationconstrained<br />

capacity) that does not decrease with<br />

signal power.<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

TuF5 9:30 AM - 9:45 AM<br />

Buried Heterostructure VCSEL Using<br />

Epitaxial Mirrors, G. Zhao, Y. Zhang,<br />

D. G. Deppe, University of Central Florida,<br />

Orlando, FL, USA, K. Konthasinghe and<br />

A. Muller, University of South Florida,<br />

Tampa, FL, USA<br />

A buried heterostructure VCSEL is fabricated<br />

using InGaAs quantum wells and a regrown<br />

semiconductor cavity. A high quality cavity is<br />

obtained with the regrowth demonstrating a lens<br />

semiconductor microcavity.<br />

TuF6 9:45 AM - 10:00 AM<br />

VCSELs for Neuronal Dynamics<br />

Emulation, A. Hurtado, K. Schires,<br />

I. D. Henning and M. J. Adams, University of<br />

Essex, Colchester, Essex, UK<br />

We report a novel approach based upon Vertical<br />

Cavity Surface Emitting Lasers (VCSELs) to<br />

reproduce a wide range of dynamics observed in<br />

biological neurons on a much faster time scale.<br />

10:30 AM - 12:00 PM<br />

Session TuN: Integrated Laser<br />

Sources and Communication Lasers<br />

Session Chair: Valery I. Tolstikhin,<br />

OneChip <strong>Photonics</strong> Inc., Ottawa, ON, Canada<br />

TuN1 10:30 AM - 11:00 AM (Invited)<br />

Integrated Laser Sources for WDM<br />

Coherent Transmission, M. Ziari, P. Evans,<br />

M. Kato, S. Corzine, V. Lal, J. Rahn, A. Nilsson,<br />

M. Kuntz, M. Fisher, T. Vallaitis, B. Taylor,<br />

R. Salvatore, J. Zhang, P. Studenkov, D. Lambert,<br />

F. Sedgwick, J. Summers, E. Strzelecka,<br />

A. James O. Khayam, , R. Malendevich,<br />

V. Dominic, M. Mitchell, J. Pleumeekers,<br />

M. Missey, R. Schneider, M. Reffle, T. Butrie,<br />

R. Nagarajan, K.T. Wu, F. Kish, D. Welch,<br />

Infinera, Sunnyvale, CA, USA<br />

We will present state of the art performance of<br />

monolithically integrated 500 Gb/sec and 1 Tb/s<br />

coherent transmitter and receiver PICs with<br />

integrated multi-channel tunable laser arrays<br />

optimized for coherent transmission.<br />

TuG5 9:30 AM - 10:00 AM (Invited)<br />

Chemically-Etched Ultra-High-Q<br />

Resonator on a Silicon Chip, T. Chen,<br />

H. Lee, J. Li and K. J. Vahala, California Institute<br />

of Technology, Pasadena, CA, USA<br />

Optical resonators with quality factor as high as<br />

875 million are demonstrated. These siliconchip-based<br />

devices are fabricated using only<br />

lithography and chemical etching, thereby<br />

expanding integration opportunities and possible<br />

applications.<br />

10:30 AM - 12:00 PM<br />

Session TuO: MRP IV<br />

Session Chair: Tal Carmon, University of<br />

Michigan, Ann Arbor, MI, USA<br />

TuO1 10:30 AM - 11:00 AM (Invited)<br />

Optical Resonator-based Biosensors:<br />

Plasmonic Enhancements for Label-free<br />

Single Molecule Detection, F. Vollmer, Max<br />

Planck Institute for the Science of Light,<br />

Erlangen, Germany<br />

Microcavity biosensors derive their sensitivity<br />

from monitoring frequency shifts induced by<br />

protein binding at sites of highly confined field<br />

intensities, where field strengths can be further<br />

amplified by excitation of plasmon resonances in<br />

nanoparticle layers.<br />

TuH4 9:30 AM - 9:45 AM<br />

Novel Photonic Crystal Nanocavity<br />

Design with high Tolerance to Disorder,<br />

K. Welna, University of St. Andrews, St Andrews,<br />

UK, S. L. Portalupi, M. Galli, University of Pavia,<br />

Pavia, Italy, L. O’Faolain and T. F. Krauss,<br />

University of St. Andrews, St. Andrews, UK<br />

We propose and experimentally demonstrate a<br />

new approach to the design of Photonic Crystal<br />

cavities. Rather than simply maximizing the<br />

design Q-factor, we take the effects of disorder<br />

into account.<br />

TuH5 9:45 AM - 10:00 AM<br />

Design of Photonic Crystal Cavity for<br />

Hexagonal Islands, J. O. Kjellman, A. Higo<br />

and Y. Nakano, University of Tokyo, Tokyo, Japan<br />

A novel photonic crystal cavity is proposed for<br />

applications with strict area limitations. Initial<br />

FDTD simulations shows higher Q-factor at the<br />

cost of a larger mode volume when compared<br />

with an optimized H1 cavity.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:15 PM<br />

Session TuP: Photonic Crystals and<br />

Novel Devices II<br />

Session Chair: Olav Solgaard, Stanford<br />

University, Stanford, CA, USA<br />

TuP1 10:30 AM - 10:45 AM<br />

Integrated Optical Auto-Correlator based<br />

on THG in a Silicon Photonic Crystal<br />

Waveguide, C. Monat, Universite de Lyon,<br />

Ecully, France, C. Grillet, M. Collins, C. Xiong,<br />

University of Sydney, Sydney, Australia, J. Li,<br />

L. O’Faolain, T. F. Krauss, University of St.<br />

Andrews, St. Andrews, UK, B. J. Eggleton and<br />

D. J. Moss, University of Sydney, Sydney,<br />

Australia<br />

We demonstrate an all-optical device that<br />

measures single picosecond pulses near<br />

1550nm. The 96 micron long device relies on<br />

optical THG in a slowlight silicon photonic<br />

crystal waveguide.<br />

TuP2 10:45 AM - 11:00 AM<br />

High Light Extraction Efficiency of InGaN-<br />

Based Light-Emitting Diodes Using the<br />

Systematic Design of Sub-Wavelength<br />

Photonic Crystals, V.-C. Su, Y.-H. You,<br />

M.-L. Lee, Y.-J. Chen, C.-H. Kuang, P.-H. Chen,<br />

C.-J. Hsieh, R.-M. Lin and S.-F. Yu, National<br />

Taiwan University, Taipei, Taiwan, R.O.C.<br />

This paper reports the high light extraction<br />

efficiency will be obtained by considering the<br />

systematic design of two-dimensional subwavelength<br />

photonic crystals, which is created<br />

on the p-side of InGaN-based light emitting<br />

diodes.<br />

Page 37


TuI2 11:00 AM - 11:15 AM<br />

Chip-scale Optical Interconnects Based<br />

on Hybrid Integrated Multiple Quantum<br />

Well Devices, T. Gu, R. Nair and M. W. Haney,<br />

University of Delaware, Newark, DE, USA<br />

Hybrid integrated chip-scale optical interconnects<br />

based on small-footprint coupling to<br />

surface-normal MQW devices are advanced.<br />

Refinements to the grayscale lithographic fabrication<br />

process provide a path to ultra-high-density<br />

seamless interfacing between the on- and offchip<br />

domains.<br />

TuI3 11:15 AM - 11:30 AM<br />

49 Gbit/s Optical Transmission through<br />

Long-Range Surface Plasmon Polariton<br />

Waveguide, B. Banan, M. S. Hai, McGill<br />

University, Montreal, QC, Canada, E. Lisicka,<br />

P. Berini, University of Ottawa, Ottawa, ON,<br />

Canada and O. Liboiron-Ladouceur, McGill<br />

University, Montreal, QC, Canada<br />

We experimentally characterize a plasmonic<br />

waveguide and demonstrate its capability of<br />

transmitting an optical signal at 49 Gbit/s. The<br />

3.6 mm long gold strip embedded in Cytop<br />

polymer exhibits 13.2 dB optical insertion loss.<br />

TuI4 11:30 AM - 11:45 AM<br />

Reduced Surface Roughness with<br />

Improved Imprinting Technique for<br />

Polymer Optical Components, X. Lin,<br />

University of Texas at Austin, Austin, TX, USA,<br />

A. Hosseini, Omega Optics Inc., Austin, TX, USA,<br />

A. Wang, Oregon State University, Corvallis, OR,<br />

USA and R. T. Chen, University of Texas at<br />

Austin, Austin, TX, USA<br />

We demonstrate a molding process to imprint<br />

optical components on polymer. The hard mold<br />

is fabricated by either evaporation or electroplating.<br />

The roughness of molded polymer<br />

surface is reduced compared to those fabricated<br />

by ion-etching.<br />

TuI5 11:45 AM - 12:00 PM<br />

Short SiGe HBT Electro-Absorption<br />

Modulator, P. Wu, S. Deng and R. Huang,<br />

Rensselaer Polytechnic Institute, Troy, NY, USA<br />

A SiGe HBT electro-absorption modulator with a<br />

device length of 69 \u956µm is proposed.<br />

Calculations show that the modulator works at a<br />

speed of 25 GHz and can achieve a 10 dB extinction<br />

ratio.<br />

Page 38<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

TuJ3 11:00 AM - 11:15 AM<br />

Generation and Potential Applications of<br />

White-Light Propelling Beams, D. Cannan,<br />

P. Zhang and Z. Chen, San Francisco State<br />

University, San Francisco, CA, USA<br />

We demonstrate experimentally the generation of<br />

white-light propelling beams by employing the<br />

Moiré technique without mechanical movement<br />

or phase-sensitive interference. We discuss the<br />

possibility of using such incoherent beams for<br />

dynamic optical tweezing and micro-manipulation.<br />

TuJ4 11:15 AM - 11:30 AM<br />

Growth Pattern of Yeast Cells Studied<br />

Under Optical Tweezers, S. Charrunchon,<br />

J. Limtrakul and N. Chattham, Kasetsart<br />

University, Bangkok, Thailand<br />

The patterns of yeast growth were studied under<br />

1064 nm optical tweezers generated by timeshared<br />

multiple optical traps. Yeast growth was<br />

found following the path of the laser line possibly<br />

resulted from localized heating effect.<br />

TuJ5 11:30 AM - 11:45 AM<br />

Simulation and Experiment on<br />

Manipulation of Micro Particles by using<br />

a Flexural Acoustic Wave, E.-S. Kim,<br />

J.-T. Kim, M.-H. Lee, S.-H. Kim and I.-K. Hwang,<br />

Chonnam National University, Gwangju,<br />

Chonnam, Korea<br />

We demonstrate acoustic manipulation of micro<br />

fluorescence particles in a micro-capillary tube.<br />

The forces applied to particles under flexural<br />

acoustic wave was analyzed for various conditions<br />

using finite element method.<br />

TuK2 11:00 AM - 11:15 AM<br />

Femtometer-Resolution Wavelength<br />

Interrogation Using an Optoelectronic<br />

Oscillator, M. Li, Institut National de la<br />

Recherche Scientifique, Varennes, QC, Canada,<br />

W. Li, J. Yao, University of Ottawa, Ottawa, ON,<br />

Canada and J. Azaña, Institut National de la<br />

Recherche Scientifique, Varennes, QC, Canada<br />

A novel technique to achieve femtometer-resolution<br />

wavelength interrogation of a phase-shifted<br />

fiber Bragg grating sensor is proposed and<br />

demonstrated using an optoelectronic oscillator.<br />

Wavelength interrogation with a realizable resolution<br />

of 360fm is demonstrated.<br />

TuK3 11:15 AM - 11:30 AM<br />

Sensitivity and Dynamic Range of a<br />

Wideband RF Analyzer Based on<br />

Parametric Multicasting, S. Zlatanovic,<br />

C. K. Huynh, J. M. Kvavle, J. R. Adleman,<br />

B. Williams, Space and Naval Warfare Systems<br />

Center - Pacific, San Diego, USA, A. O. Wiberg,<br />

Z. Tong, B. P. P. Kuo, E. Myslivets, S. Radic,<br />

University of California - San Diego, La Jolla,<br />

CA, USA and E. W. Jacobs, SPAWAR Systems<br />

Center - Pacific, San Diego, CA, USA<br />

Sensitivity and dynamic range data is presented<br />

for a wideband staring RF spectrum analyzer<br />

based on parametric multicasting and spectral<br />

slicing with a periodic optical filter.<br />

TuK4 11:30 AM - 11:45 AM<br />

Fast Arbitrary Waveform Generation by<br />

Using Digital Micro-Mirror Arrays,<br />

S. K. Kalyoncu, Q. Song, Y. Huang and<br />

O. Boyraz, University of California - Irvine, Irvine,<br />

CA, USA<br />

We demonstrate fast optical arbitrary waveform<br />

generation by using MEMS digital micro-mirror<br />

arrays. Experimentally, we obtain ~120MHz<br />

waveforms that can be controlled by using<br />

1024x768 mirror arrays. 1GHz waveforms reconfigurable<br />

in 1µs are also achievable.<br />

TuL2 11:00 AM - 11:15 AM<br />

High-Power High-Bandwidth Flip-Chip<br />

Bonded Modified Uni-traveling Carrier<br />

Photodiodes, Q. Zhou, University of Virginia,<br />

Charlottesville, VA, USA<br />

Modified uni-traveling carrier (MUTC) photodiodes<br />

with diameter of 28 µm and 20 µm flip-chip<br />

bonded on AlN substrate demonstrated RF<br />

output power of 25 dBm and 19 dBm at 25 GHz<br />

and 30 GHz, respectively.<br />

TuL3 11:15 AM - 11:30 AM<br />

A High Linear and High Power<br />

Photoreceiver Suitable for Analog<br />

Applications, S. Fedderwitz, C. C. Leonhardt,<br />

J. Honecker, P. Müller and A. Steffan, u2t<br />

photonics AG, Berlin, Germany<br />

We present a photoreceiver optimized for use in<br />

analog applications requiring highly linear operation<br />

and high rf-output power. The analog<br />

photoreceiver exhibits an rf-output power<br />

exceeding +20 dBm at a central frequency of 54<br />

GHz.<br />

TuL4 11:30 AM - 11:45 AM<br />

Mushroom-Mesa GaAs/In0.5Ga0.5P Based<br />

Laser Power Converter for Simultaneous<br />

10 Gbit/sec Data Detection and DC<br />

Electrical Power Generation,<br />

J.-W. Shi, J.-M. Wun, C.-Y. Tsai, National Central<br />

University, Taoyuan, Taiwan, R.O.C., and<br />

J. E. Bower, University of California – Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We demonstrate a novel high-speed<br />

GaAs/In0.5Ga0.5P based laser power converter with<br />

under-cut mesa to minimize junction capacitance.<br />

Under near turn-on voltage (+0.8 V),<br />

high-speed (10Gbit/sec) data detection with<br />

~20% power generation efficiency can be<br />

achieved.<br />

TuL5 11:45 AM - 12:00 PM<br />

High-Speed High-Responsivity Low<br />

Temperature Grown GaAs Detector,<br />

M. Currie, US Naval Research Laboratory,<br />

Washington, DC, USA, P. Dianat, Drexel<br />

University, Philadelphia, PA, USA, A. Persano,<br />

A. Cola, C. Martucci, F. Quaranta, Institute for<br />

Microelectronics and Microsystems, Lecce, Italy<br />

and B. Nabet, Drexel University, Philadelphia, PA,<br />

USA<br />

Low temperature grown GaAs (LT-GaAs) used in<br />

THz detection suffers from low responsivity. An<br />

LT-GaAs device with high response speed as well<br />

as high responsivity that is comparable to regular<br />

temperature GaAs is presented.


TuM2 11:00 AM - 11:15 AM<br />

Multidimensional Optimum Signal<br />

Constellation Design for Few-Mode Fiber<br />

based High-Speed Optical Transport,<br />

T. Liu, University of Arizona, Tucson, AZ, USA<br />

We propose an algorithm to determine the Ndimensional<br />

optimum signal constellation<br />

design (ND-OSCD), in MMSE sense, for channel<br />

capacity achieving source distribution. The<br />

simulation results indicate that the proposed ND-<br />

OSCD outperforms QAM and sphere packing.<br />

TuM3 11:15 AM - 11:30 AM<br />

BER Calculation of a Single Channel<br />

Nonlinear Fiber Optic Transmission<br />

System Based on QPSK, S. Naderi Shahi<br />

and S. Kumar, McMaster University, Hamilton,<br />

ON, Canada<br />

An analytical expression for the PSD of the<br />

nonlinear distortions is derived which significantly<br />

reduces the computational time of the BER<br />

estimation.<br />

TuM4 11:30 AM - 11:45 AM<br />

Direct Measurement of Nonlinear WDM<br />

Crosstalk Using Coherent Optical<br />

Detection, M. A. Reimer, A. Borowiec, X. Tang,<br />

C. Laperle and M. S. O’Sullivan, Ciena<br />

Corporation, Ottawa, ON, Canada<br />

We present a direct measurement of the interchannel<br />

Kerr effect on the optical field of a<br />

continuous-wave probe affected by an on-offkeyed<br />

10 Gb/s pump. Measurements are used to<br />

verify predictions of the Manakov-PMD equation.<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

TuN2 11:00 AM - 11:15 AM<br />

Passive Polarization Mode Convertor<br />

Monolithically Integrated Within a<br />

Semiconductor Laser, M. A. Naeem,<br />

B. M. Holmes, A. E. Kelly, J. H. Marsh and<br />

D. C. Hutchings, University of Glasgow,<br />

Glasgow, Scotland, UK<br />

A passive polarization mode convertor monolithically<br />

integrated within the cavity of a<br />

semiconductor laser is reported. A TE-to-TM<br />

conversion efficiency of more than 90% is<br />

obtained using back-to-back sub-wavelength air<br />

trenches.<br />

TuN3 11:15 AM - 11:30 AM<br />

Monolithic Tunable Laser based on<br />

Selectively Intermixed GaAs/AlGaAs QW<br />

Structure, A. Zakariya and P. LiKamWa,<br />

University of Central Florida, Orlando, FL, USA<br />

We demonstrate a monolithic 10nm tunable<br />

integrated laser on a QW structure. Wavelength<br />

switching is achieved by steering an optical gain<br />

media laterally over two adjacent quantum well<br />

regions selectively intermixed to varying extents.<br />

TuN4 11:30 AM - 11:45 AM<br />

Single-Mode Narrow-Linewidth and<br />

Tunable Two-Electrode Corrugated-Ridge<br />

Waveguide DFB Lasers, K. Dridi,<br />

A. Benhsaien, University of Ottawa, Ottawa, ON,<br />

Canada, J. Zhang, CMC Microsystem, Ottawa,<br />

ON, Canada and T. J. Hall, University of Ottawa,<br />

Ottawa, ON, Canada<br />

A single-mode and narrow linewidth two-electrode<br />

corrugated-ridge waveguide DFB laser has<br />

been fabricated. The preliminary characterization<br />

shows side-mode suppression ratios over 50 dB,<br />

a tuning range over 3.2 nm, and a linewidth of<br />

205 kHz.<br />

TuN5 11:45 AM - 12:00 PM<br />

Influence of Facet Phases on Adiabatic<br />

Chirp Behavior of Index-Coupled<br />

Distributed-Feedback Lasers, K. Kechaou,<br />

B. Thedrez, F. Grillot, Telecom ParisTech, Paris,<br />

France, G. Aubin, Laboratoire de Photonique et<br />

de Nanostructures, Marcoussis, France,<br />

C. Kazmierski, Alcatel Thales III-V Lab,<br />

Marcoussis, France and D. Erasme, Telecom<br />

ParisTech, Paris, France<br />

The adiabatic chirp for antireflection/high-reflection<br />

DFB laser is mostly dependent on<br />

high-reflection facet phase independently of the<br />

antireflection quality while very low reflectivity<br />

allows chirp predicting from the laser emission<br />

spectrum.<br />

TuO2 11:00 AM - 11:30 AM (Invited)<br />

Interference Between Nanophotonic<br />

Resonances, S. Fan, Stanford University,<br />

Stanford, CA, USA<br />

We discuss some of the effects when strong<br />

interference occurs between nanophotonic resonances<br />

and the applications of such interference<br />

including dynamic control.<br />

TuO3 11:30 AM - 11:45 AM<br />

Beating the Diffraction Limit with Perfect<br />

Confinement Inside a Right-Handed<br />

Cavity, V. Ginis, Vrije University Brussels,<br />

Brussels, Belgium, P. Tassin, Iowa State<br />

University, Ames, IA, USA, J. Danckaert, Vrije<br />

University Brussels, Brussels, Belgium,<br />

C. Soukoulis, Iowa State University, Ames, IA,<br />

USA and I. Veretennicoff, Vrije University<br />

Brussels, Brussels, Belgium<br />

We develop a novel approach to create optical<br />

resonators by applying the geometrical technique<br />

of transformation optics and we show that the<br />

fundamental diffraction limit can be overcome<br />

inside metamaterials with right-handed material<br />

parameters.<br />

TuO4 11:45 AM - 12:00 PM<br />

Quality Factor for High Contrast Grating<br />

Resonators, L. Zhu, W. Yang and<br />

C. J. Chang-Hasnain, University of California -<br />

Berkeley, Berkeley, CA, USA<br />

The quality (Q) factor values of the high contrast<br />

subwavelength grating (HCG) resonator with<br />

different numbers of grating periods are studied.<br />

Q-factor >400 is achieved with only 2-period<br />

HCG having very small 0.58 λ 3 volume.<br />

TuP3 11:00 AM - 11:15 AM<br />

Wide-Bandwidth Sub-100 µm Si Photonic<br />

Crystal MZI Optical Modulators at 10<br />

Gb/s, H. C. Nguyen, M. Shinkawa, N. Ishikura<br />

and T. Baba, Yokohama National University,<br />

Yokohama, Kanagawa, Japan<br />

We demonstrate the first sub-100 µm, 10 Gb/s<br />

Si MZI optical modulator. Slow-light photonic<br />

crystal waveguides enable carrier-depletion,<br />

near-error-free modulation in a 90 µm device by<br />

a 4.3 Vpp drive signal, with 17 nm bandwidth.<br />

TuP4 11:15 AM - 11:30 AM<br />

Larger-Area Single-Mode Photonic<br />

Crystal Surface-Emitting Lasers Enabled<br />

by the Accidental Dirac-Point, S.-L. Chua,<br />

L. Lu and M. Soljacic, Massachusetts Institute of<br />

Technology, Cambridge, MA, USA<br />

We propose to obtain larger-area single-mode<br />

photonic crystal surface-emitting lasers by<br />

increasing the mode-spacing at the bandedge<br />

where the dispersions form an accidental Diracpoint<br />

at the center of the Brillouin zone.<br />

TuP5 11:30 AM - 11:45 AM<br />

Wide-Band Vertical Waveguide for<br />

Three-Dimensional Light Guiding in<br />

Photonic Crystals, K. Ishizaki, M. Koumura,<br />

K. Suzuki, K. Gondaira and S. Noda, Kyoto<br />

University, Kyoto, Japan<br />

A new design of vertical waveguide is investigated<br />

for on-demand three-dimensional light<br />

guiding in three-dimensional photonic crystals.<br />

Optical characterization successfully demonstrates<br />

that the wide-band vertical guiding is<br />

realized in a fabricated photonic crystal.<br />

TuP6 11:45 AM - 12:00 PM<br />

CMOS Compatible Subwavelength<br />

Grating Couplers for Silicon Integrated<br />

<strong>Photonics</strong>, X. Xu, University of Texas at Austin,<br />

Austin, TX, USA, H. Subbaraman, Omega Optics<br />

Inc., Austin, TX, USA, J. Covey, D. Kwong,<br />

University of Texas at Austin, Austin, TX, USA,<br />

A. Hosseini, Omega Optics Inc., Austin, TX, USA,<br />

and R. T. Chen, University of Texas at Austin,<br />

Austin, TX, USA<br />

We demonstrate a through etched subwavelength<br />

grating coupler, which can be patterned together<br />

with other photonic components. It achieves a<br />

very high coupling efficiency of 59% with a 3dB<br />

bandwidth of 60 nm.<br />

Page 39


TuI6 12:00 PM - 12:15 PM<br />

All-Optical Token Technique for<br />

Distributed Contention Resolution in<br />

AWGR-based Optical Interconnects,<br />

R. Proietti, C. Nitta, Y. Yin, V. Akella and<br />

S. J. Yoo, University of California - Davis, Davis,<br />

CA, USA<br />

This paper studies the networking performance<br />

of a 10Gb/s 64-port AWGR-based optical switch<br />

with distributed all-optical contention resolution<br />

based on saturation effect in R-SOAs. Significant<br />

reduction in latency compared to FBF architecture<br />

is observed.<br />

1:30 PM - 3:00 PM<br />

Session TuQ: OI IV - Technology<br />

Platforms<br />

Session Chair: Kannan Raj, Oracle, San<br />

Diego, CA, USA<br />

TuQ1 1:30 PM - 2:00 PM (Invited)<br />

Heterogeneous Photonic Integrated<br />

Circuits, A. W. Fang, G. A. Fish and E. M. Hall,<br />

Aurrion, Goleta, CA, USA<br />

In the last decade, we’ve witnessed the<br />

complexity of InP based PICs with high active<br />

device content scale to device counts in the 100’s<br />

in a singular chip. Meanwhile silicon photonic<br />

platforms have advanced with demonstrations of<br />

advanced passive circuits, silicon design &<br />

manufacturing environments applied to<br />

photonics, and intimate electronic co-design<br />

(SiP and SoC). In this talk we discuss the advantages<br />

of the convergence of InP and Silicon<br />

technologies through heterogeneous integration.<br />

TuQ2 2:00 PM - 2:30 PM (Invited)<br />

A CMOS <strong>Photonics</strong> Platform for High-<br />

Speed Optical Interconnects, A. Mekis,<br />

S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey,<br />

S. Jackson, Y. Liang, M. P. Mack, G. Masini,<br />

M. Peterson, T. J. Pinguet, S. Sahni, M. Sharp,<br />

P. Sun, D. T. H. Tan, L. Verslegers, B. Welch,<br />

K. Yokoyama, S. Yu and P. M. De Dobbelaere,<br />

Luxtera, Inc., Carlsbad, CA, USA<br />

We review a technology platform that enables<br />

monolithic integration of optical and electronic<br />

circuits in a mainstream CMOS process and<br />

demonstrate a grating coupler with 0.75 dB<br />

insertion loss.<br />

Page 40<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session TuR: Photonic Lattices &<br />

Solitons<br />

Session Chair: Roberto Morandotti, Institut<br />

National de la Recherche Scientifique, Varennes,<br />

QC, Canada<br />

TuR1 1:30 PM - 2:00 PM (Invited)<br />

Optical Control with Specially-<br />

Engineered Photonic Lattices and<br />

Intelligently-Designed Optical Beams,<br />

Z. Chen, San Francisco State University, San<br />

Francisco, CA, USA<br />

We will provide a brief overview of our work on<br />

optical control of light beams in photonic lattices<br />

and of particles with nonconventional optical<br />

beams, including trapping and manipulation with<br />

propelling beams, bottle beams, and self-accelerating<br />

Airy beams.<br />

TuR2 2:00 PM - 2:15 PM<br />

Interactions of Gap Solitons in Linearly<br />

Coupled Bragg Gratings with Dispersive<br />

Reflectivity, B. H. Baratali and J. Atai,<br />

University of Sydney, Darlington, Australia<br />

Interactions of in-phase quiescent gap solitons in<br />

a system of two linearly-coupled Bragg gratings<br />

with dispersive reflectivity are investigated. It is<br />

found that the interactions may lead to merger,<br />

destruction, or separation of solitons.<br />

TuR3 2:15 PM - 2:30 PM<br />

Dynamics of Moving Bragg Grating<br />

Solitons in Cubic-Quintic Non-Linear<br />

Media, S. Dasanayaka and J. Atai, University of<br />

Sydney, Darlington, Australia<br />

Stability and collisions of moving Bragg grating<br />

solitons in a cubic-quintic medium are investigated.<br />

The effect of solitons’ initial velocity on the<br />

outcome of the collisions is analyzed.<br />

1:30 PM - 3:00 PM<br />

Session TuS: Microwave Photonic<br />

Links and Systems<br />

Session Chair: Thomas R. Clark, Johns<br />

Hopkins University, Laurel, MD, USA<br />

TuS1 1:30 PM - 2:00 PM (Invited)<br />

Injection Locked VCSELs for Microwave<br />

Photonic Applications in Analog RF Links<br />

and Real Time Arbitrary Waveform<br />

Generation, P. J. Delfyett, S. Bhooplapur,<br />

N. Hoghooghi and E. Sarailou, University of<br />

Central Florida, Orlando, FL, USA<br />

Injection locked vertical cavity semiconductor<br />

lasers are used as true linear intensity modulators<br />

and narrowband optical filters that can be<br />

exploited for applications in RF analog links,<br />

optical sampling and real time arbitrary waveform<br />

generation.<br />

TuS2 2:00 PM - 2:15 PM<br />

Digital Broadband Linearization of<br />

Analog Optical Links, D. Lam, A. Fard and<br />

B. Jalali, University of California - Los Angeles,<br />

Los Angeles, CA, USA<br />

We present a digital post-processing linearization<br />

technique to suppress dynamic distortions added<br />

to a wideband signal in an analog optical link.<br />

We demonstrate record spurious-free dynamic<br />

range of 120 dB.Hz 2/3 over 6-GHz electrical<br />

signal bandwidth.<br />

TuS3 2:15 PM - 2:30 PM<br />

Optical Phase Feed Network and Ultrawideband<br />

Phased Array, S. Shi, J. Bai,<br />

G. J. Schneider and D. W. Prather, University of<br />

Delaware, Newark, DE, USA<br />

An optically addressed phase feed network,<br />

consisting of orthogonal polarization, EO phase<br />

modulators, dynamic polarization controller, is<br />

proposed for an ultra-wideband RF phased array<br />

and multifunctional aperture applications.<br />

TuL6 12:00 PM - 12:15 PM<br />

Integrated 180 nm CMOS Phototransistor<br />

with an Optimized Responsivity-<br />

Bandwidth-Product, P. Kostov, W. Gaberl,<br />

M. Hofbauer and H. Zimmermann, Vienna<br />

University of Technology, Vienna, Austria<br />

A 40x40µm² phototransistor built in an 180nm<br />

CMOS process with an optimized Responsivity-<br />

Bandwidth-Product (RBP) is presented. An<br />

optimized design of emitter, base and collector<br />

leads to RBPs up to 171.1 A/W*MHz.<br />

1:30 PM - 3:00 PM<br />

Session TuT: Thin Film Detectors<br />

Session Chair: TBD<br />

TuT1 1:30 PM - 2:00 PM (Invited)<br />

High Responsivity, Low Dark Current,<br />

Large Area, Heterogeneously Bonded<br />

Annular Thin-Film Silicon<br />

Photodetectors, S. Dhar and N. M. Jokerst,<br />

Duke University, Durham, NC, USA<br />

Thin-film crystalline silicon photodiodes with the<br />

highest uncooled responsivity to dark current<br />

density ratio (0.30-0.54 cm 2 /nW for = 470 nm-<br />

600 nm) reported to date are described herein for<br />

integrated biomedical imaging and biochemical<br />

sensing.<br />

TuT2 2:00 PM - 2:15 PM<br />

Flexible Thin-Film Nanocrystal Quantum<br />

Dot Photodetectors on Unmodified<br />

Transparency Films, J. Wu and L. Y. Lin,<br />

University of Washington, Seattle, WA, USA<br />

We demonstrated a flexible thin-film CdSe<br />

quantum dot (QD) photodetector by sandwiching<br />

a piece of QD drop-casted tracing paper between<br />

two PEDOT:PSS electrodes printed by a desktop<br />

inkjet printer on a transparency film.<br />

TuT3 2:15 PM - 2:30 PM<br />

Filterless Vacuum Ultraviolet<br />

Photoconductive Detector Fabricated on<br />

NdF3 Thin Film, M. Ieda, T. Ishimaru, S. Ono,<br />

Nagoya Institute of Technology, Nagoya, Aichi,<br />

Japan, Y. Yokota, T. Yanagida and A. Yoshikawa,<br />

Tohoku University, Sendai, Japan<br />

We report on the growth of neodymium fluoride<br />

(NdF3) thin films on quarts glass substrates by<br />

pulsed laser deposition (PLD) and evaluation of<br />

NdF3 thin films as VUV photoconductive<br />

detectors.


1:30 PM - 2:45 PM<br />

Session TuU: Nonliearity<br />

Compensation in Coherent Transmission<br />

Session Chair: Nikola Alic, University of<br />

California – San Diego, La Jolla, CA, USA<br />

TuU1 1:30 PM - 2:00 PM (Invited)<br />

Nonlinear Compensation Algorithms with<br />

Reduced Algorithmic Complexity, E. Ip,<br />

NEC Laboratories America, Inc., Princeton, NJ,<br />

USA<br />

We review reduced-complexity nonlinear<br />

compensation methods and find that filtered back<br />

propagation and equivalent-span backpropagation<br />

enable large complexity reduction for<br />

dispersion managed and unmanaged systems.<br />

TuU2 2:00 PM - 2:15 PM<br />

Intra-Channel Nonlinear Compensation<br />

for 112 Gb/s Dual Polarization 16QAM<br />

Systems, Y. Gao, J. H. Ke, K. P. Zhong,<br />

J. C. Cartledge and S. S.-H. H. Yam, Queen’s<br />

University, Kingston, ON, Canada<br />

The performance of the standard and low-pass<br />

filter assisted digital back propagation algorithms<br />

is investigated for a single 112 Gb/s dual polarization<br />

16-ary quadrature amplitude modulation<br />

(DP-16QAM) signal and a transmission distance<br />

of 2400 km.<br />

TuU3 2:15 PM - 2:30 PM<br />

Digital Pre-Compensation of Inter-<br />

Channel Crosstalk for Superchannel<br />

System, J. Pan, C. Liu, T. F. Detwiler and<br />

S. E. Ralph, Georgia Institute of Technology,<br />

Atlanta, GA, USA<br />

A digital inter-channel-crosstalk pre-compensator<br />

for WDM “superchannel” systems is<br />

proposed and demonstrated to outperform a<br />

conventional ISI pre-compensator with 2dB<br />

crosstalk suppression at the optimum optical<br />

filter bandwidth and increase tolerance to net<br />

filter bandwidth.<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

1:30 PM - 3:00 PM<br />

Session TuV: Dynamics of<br />

Semiconductor Lasers<br />

Session Chair: Randal A. Salvatore,<br />

Infinera, Sunnyvale, CA, USA<br />

TuV1 1:30 PM - 2:00 PM (Invited)<br />

Ultrashort Pulse Generation in Diode<br />

Laser Devices, I. H. White, P. Vasil’ev and<br />

R. V. Penty, University of Cambridge, Cambridge,<br />

UK<br />

The generation of high-power femtosecond<br />

pulses in visible and IR wavelength ranges by<br />

superradiant emission in 3D, 2D and 0D semiconductor<br />

laser structures is reviewed.<br />

Advantages of this technique over mode locking<br />

are discussed.<br />

TuV2 2:00 PM - 2:15 PM<br />

Direct RF Synchronization of a 22 GHz<br />

Monolithic AlInGaAs Quantum Well Laser<br />

with Sub-picosecond Pulse Generation,<br />

E. Sarailou, A. Ardey and P. J. Delfyett, University<br />

of Central Florida, Orlando, FL, USA<br />

A 22 GHz AlInGaAs two-section mode-locked<br />

laser is presented here. 860 fs optical pulses with<br />

timing jitter of 280 fs (1 Hz-100 MHz) are generated<br />

by direct RF modulation of the saturable<br />

absorber.<br />

TuV3 2:15 PM - 2:30 PM<br />

Theoretical Demonstration of<br />

Stabilization of Active Modelocking in<br />

Quantum Cascade Lasers with Quantum<br />

Coherent Absorption, S. S. Shimu,<br />

A. Docherty, M. A. Talukder and C. R. Menyuk,<br />

University of Maryland Baltimore County,<br />

Baltimore, MD, USA<br />

We theoretically incorporate quantum coherent<br />

absorption in an actively modelocked quantum<br />

cascade laser. The laser self-starts from initial<br />

quantum noise and produces a stable train of<br />

modelocked pulses at high pump powers.<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session TuW: MRP V<br />

Session Chair: Misha Sumetsky, OFS<br />

Laboratories, Somerset, NJ, USA<br />

TuW1 1:30 PM - 2:00 PM (Invited)<br />

Integrable All-Optical Random-Access<br />

Memories on InP-based Photonic Crystal<br />

Platform, K. Nozaki, A. Shinya, S. Matsuo,<br />

T. Sato, K. Takeda, C.-H. Chen, Y. Suzaki,<br />

T. Segawa and M. Notomi, NTT Corporation,<br />

Atsugi, Kanagawa, Japan<br />

The on-chip integration of all-optical randomaccess<br />

memories based on a photonic crystal<br />

nanocavity was achieved. Their ultralow power<br />

consumption, small footprint, and 40-Gb/s<br />

optical signal capability might be beneficial for<br />

future optical packet processing.<br />

TuW2 2:00 PM - 2:30 PM (Invited)<br />

Quantum Light from CMOS-Compatible<br />

Silicon Microresonators, S. Mookherjea,<br />

University of California - San Diego, La Jolla,<br />

CA, USA<br />

Semiconductors with a high optical nonlinearity,<br />

e.g., silicon, which can be lithographically<br />

patterned into nanophotonic waveguides or<br />

micro-resonators, may lead to on-chip roomtemperature<br />

telecommunications-band quantum<br />

light sources for complex and scalable systems.<br />

TuP7 12:00 PM - 12:15 PM<br />

Tunable Narrowband Filters Based on<br />

SiN-on-SOI Platform, Q. Li, A. A. Eftekhar,<br />

M. Sodagar, A. H. Atabaki and A. Adibi, Georgia<br />

Institute of Technology, Atlanta, GA, USA<br />

We propose a new scheme for tunable narrowband<br />

filters using a silicon nitride on<br />

silicon-on-insulator platform, which enables<br />

reconfigurability, low propagation loss, and high<br />

power handling capability. Preliminary results are<br />

provided.<br />

1:30 PM - 3:00 PM<br />

Session TuX: Special Symposium on<br />

Quantum <strong>Photonics</strong> I<br />

Session Chair: Satoshi Iwamoto, University<br />

of Tokyo, Tokyo, Japan<br />

TuX1 1:30 PM - 2:00 PM (Invited)<br />

Entangbling: Quantum Correlations in<br />

Room-Temperature Diamond,<br />

I. A. Walmsley, University of Oxford, Oxford, UK<br />

We demonstrate entanglement between the<br />

vibrations of two macroscopic, spatially-separated<br />

diamonds at room temperature by means of<br />

off-resonant Raman scattering of ultrashort<br />

optical pulses and quantum erasure.<br />

TuX2 2:00 PM - 2:30 PM (Invited)<br />

Interactions Between Entangled Photons<br />

Emitted by a Diode, M. Stevenson,<br />

J. Nilsson, C. L. Salter, K. C. A. Chan,<br />

A. J. Bennett, M. B. Ward, J. Skiba-Szymanska,<br />

A. J. Shields, Toshiba Research Europe Ltd.,<br />

Cambridge, UK, I. Farrer, D. A. Ritchie, University of<br />

Cambridge, Cambridge, UK, and A. Shields,<br />

Toshiba Research Europe Ltd., Cambridge, UK<br />

Entangled photons are essential for scalable optical<br />

quantum communication and processing. We<br />

demonstrate electrical generation of entangled<br />

light using a quantum dot within an LED, and<br />

interactions between entangled photons by twophoton-interference.<br />

Page 41


TuQ3 2:30 PM - 3:00 PM (Invited)<br />

TBD, M. Asghari, Kotura, Monterey Park, CA,<br />

USA<br />

ABSTRACT NOT AVAILABLE<br />

Page 42<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

TuR4 2:30 PM - 2:45 PM<br />

Cavity Soliton Oscillations in a One-<br />

Dimensional Fiber Resonator, L. Gelens,<br />

Vrije Universiteit Brussel, Brussels, Belgium,<br />

F. Leo, Ghent University, Ghent, Belgium,<br />

P. Emplit, M. Haelterman, Universite Libre de<br />

Bruxelles, Brussels, Belgium and S. Coen,<br />

University of Auckland, Auckland, New Zealand<br />

We present the first experimental observation of a<br />

time-periodic oscillating cavity soliton excited in<br />

a homogeneously driven nonlinear fiber cavity.<br />

We theoretically predict several dynamical instabilities,<br />

such as oscillations, excitability and<br />

different chaotic states.<br />

TuR5 2:45 PM - 3:00 PM<br />

Disturbance of Soliton Pulse Propagation<br />

from Higher-Order Dispersive<br />

Waveguides, M. D. Marko, US Naval Air<br />

Warfare Center, New York, NY, USA, X. Li,<br />

J. Zheng and C. W. Wong, Columbia University,<br />

New York, NY, USA<br />

We use the split-step Nonlinear Schrödinger<br />

Equation numerical method to investigate fundamental<br />

soliton pulse propagation, to determine<br />

the maximum acceptable higher-order group<br />

velocity dispersions which a fundamental soliton<br />

can sustain itself in a given waveguide.<br />

TuS4 2:30 PM - 2:45 PM<br />

SOA based Switchable Photonic Delay<br />

Line for Broadband Phased Array<br />

Antenna Control, A. Joyo and<br />

N. Madamopoulos, City College of New<br />

York/CUNY, New York, NY, USA<br />

A single channel 3-bit PDL is demonstrated<br />

using SOA as switching elements. Optimum RF<br />

performance is obtained by optimizing input<br />

optical powers and bias current of the SOAs and<br />

filtering ASE noise at each bit.<br />

TuS5 2:45 PM - 3:00 PM<br />

Development of Optical-RF Transmitter<br />

Modules for an Optically Addressed 2-<br />

40-GHz Phased Array, J. Bai, University of<br />

Delaware, Newark, DE, USA<br />

The architecture and front-end modules of an<br />

optically addressed ultra-wideband (2-40 GHz)<br />

phased array, based on microwave photonic<br />

down-conversion techniques, is described.<br />

TuT4 2:30 PM - 2:45 PM<br />

Tunable Visible Response of ZnO Thin-<br />

Film Phototransistors with Atomic Layer<br />

Deposition Technique, L. E. Aygün,<br />

F. Bozkurt-Oruc and A. K. Okyay, Bilkent<br />

University, Bilkent, Ankara, Turkey<br />

A ZnO thin film phototransistor is fabricated at<br />

80°C by atomic layer deposition technique. The<br />

photo response of the device and its control with<br />

gate bias under visible and ultraviolet light illumination<br />

is investigated.<br />

TuT5 2:45 PM - 3:00 PM<br />

Solution-Processed Photodetectors Using<br />

Colloidal Germanium Nanoparticles,<br />

E. M. Sanehira, C.-C. Tu and L. Y. Lin, University<br />

of Washington, Seattle, WA, USA<br />

A photodetector comprised of a colloidal germanium<br />

nanoparticle active material is reported. The<br />

non-toxic, heavy-metal free germanium nanoparticles<br />

are synthesized from solution and reap the<br />

benefits of solution-processing.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm - GRAND PENINSULA FOYER<br />

Session PLE2: PLENARY II - 3:30pm - 5:15pm - GRAND BALLROOM D<br />

Session Chair: Dalma Novak, Pharad, LLC, Glen Burnie, MD, USA<br />

PLE2.1 3:30 PM - 4:15 PM<br />

3D Photonic Metamaterials and Transformation Optics, M. Wegener, Karlsruhe Institute of Technology, Karlsruhe, Germany<br />

PLE2.2 4:15 PM - 5:15 PM<br />

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells, E. Yablonovitch, University of California - Berkeley, Berkeley, CA, USA<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol


TuU4 2:30 PM - 2:45 PM<br />

Performance Limitation of Coherent<br />

Optical OFDM Systems with non-ideal<br />

Optical Phase Conjugation, M. Morshed,<br />

L. B. Du and A. J. Lowery, Monash University,<br />

Clayton, Victoria, Australia<br />

A theoretical analysis of the performance of CO-<br />

OFDM systems that use optical phase<br />

conjugation is presented, showing excellent<br />

agreement with simulations and experiments. We<br />

identify two two-stage mixing mechanisms that<br />

limit the signal quality.<br />

TECHNICAL PROGRAM TUESDAY 25 SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

TuV4 2:30 PM - 2:45 PM<br />

Increased Laser Modulation Bandwidth<br />

by Exploiting the Photon-Photon<br />

Resonance, M. Dumitrescu, A. Laakso,<br />

J. Viheriala, T. Uusitalo, Tampere University of<br />

Technology, Tampere, Finland, M. Kamp,<br />

University of Wuerzburg, Wuerzburg, Germany<br />

and P. Uusimaa, Modulight Inc., Tampere,<br />

Finland<br />

Multi-section distributed-feedback lasers with<br />

surface gratings have been fabricated without regrowth<br />

by employing nanoimprint lithography.<br />

High-frequency photon-photon resonance was<br />

exploited to extend the direct modulation bandwidth<br />

beyond the conventional limits set by the<br />

carrier-photon resonance.<br />

TuV5 2:45 PM - 3:00 PM<br />

Steady State and Resonance Free Small<br />

Signal Response of a Transistor Laser<br />

with Multiple Quantum-Wells in the<br />

Base, R. Basu, University of Calcutta, Kolkata,<br />

India<br />

Threshold base currents calculated analytically<br />

are lower for Transistor Lasers with symmetric<br />

and asymmetric multiple quantum wells in base<br />

than with single quantum well. The conditions<br />

for resonance free modulation response are<br />

found.<br />

TuW3 2:30 PM - 3:00 PM (Invited)<br />

Brillouin MEMS, T. Carmon, University of<br />

Michigan, Ann Arbor, MI, USA<br />

ABSTRACT NOT AVAILABLE<br />

TuX3 2:30 PM - 3:00 PM (Invited)<br />

Ultrafast Switching of Photonic<br />

Entanglement, N. N. Oza, Y.-P. Huang and<br />

P. Kumar, Northwestern University, Evanston, IL,<br />

USA<br />

We present our recent development of fiber-optic<br />

technology for all-optical switching and routing<br />

of entangled photons at high speeds, with<br />

minimal loss and added in-band noise, andmost<br />

importantly-without disturbing the photons’<br />

quantum state.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm - GRAND PENINSULA FOYER<br />

Session PLE2: PLENARY II - 3:30pm - 5:15pm - GRAND BALLROOM D<br />

Session Chair: Dalma Novak, Pharad, LLC, Glen Burnie, MD, USA<br />

PLE2.1 3:30 PM - 4:15 PM<br />

3D Photonic Metamaterials and Transformation Optics, M. Wegener, Karlsruhe Institute of Technology, Karlsruhe, Germany<br />

PLE2.2 4:15 PM - 5:15 PM<br />

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells, E. Yablonovitch, University of California - Berkeley, Berkeley, CA, USA<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol<br />

Page 43


Announcing an Issue of the <strong>IEEE</strong><br />

JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS on<br />

Numerical Simulation of Optoelectronic Devices<br />

The <strong>IEEE</strong> Journal of Selected Topics in Quantum Electronics invites manuscript submissions in the area of Numerical<br />

Simulation of Optoelectronic Devices. The purpose of this issue of JSTQE is to document the current state of the art and the<br />

variety of leading-edge work in this field through a collection of original papers. Papers are solicited on theory, modeling,<br />

simulation, and analysis of modern optoelectronic devices including materials, fabrication and application. Optoelectronic devices<br />

are based on the interaction of photons and electrons, including laser diodes, light emitting diodes, optical modulators, optical<br />

amplifiers, solar cells, photodetectors, and optoelectronic integrated circuits. Validation of theoretical results by measurements is<br />

desired.<br />

The Primary Guest Editor for this issue is Joachim Piprek, NUSOD Institute, USA, and the Guest Editors are Enrico Bellotti,<br />

Boston University, USA; Seoung-Hwan Park, Catholic University of Daegu, South Korea; Bernd Witzigmann, University of<br />

Kassel, Germany; Beat Ruhstaller, Fluxim AG, Switzerland.<br />

The deadline for submission of manuscripts is December 1, <strong>2012</strong>. Preprints of accepted manuscripts will be posted on the <strong>IEEE</strong><br />

Xplore website within 2 weeks of authors correctly uploading their final files in the Scholar One Manuscripts “Awaiting Final<br />

Files” queue. Final page proofs of accepted papers are normally posted online in <strong>IEEE</strong> Xplore within 6 weeks of authors<br />

uploading their final files, if there are no page proof corrections. Hardcopy publication of the issue is scheduled for<br />

September/October 2013.<br />

All submissions will be reviewed in accordance with the normal procedures of the Journal.<br />

For inquiries regarding this Special Issue, please contact:<br />

JSTQE Editorial Office - Chin Tan Lutz<br />

<strong>IEEE</strong>/<strong>Photonics</strong> Society<br />

445 Hoes Lane,<br />

Piscataway, NJ 08854, U.S.A.<br />

Phone: 732-465-5813,<br />

Email: c.tanlutz@ieee.org<br />

Call for Papers<br />

Submission Deadline: December 1, <strong>2012</strong><br />

The following supporting documents are required during the mandatory online submission at http://mc.manuscriptcentral.com/phoieee<br />

(please select the Journal of Selected Topics in Quantum Electronics from the drop down menu).<br />

1) PDF or MS Word manuscript (double column format, up to 12 pages for an invited paper, up to 8 pages for a contributed paper).<br />

Manuscripts over the standard page limit will have an overlength charge of $220.00 per page imposed. Biographies of all authors are<br />

mandatory, photographs are optional. You may find the Tools for Authors link useful:<br />

http://www.ieee.org/web/publications/authors/transjnl/index.html<br />

2) Completed Color Printing Agreement/Decline form. Please email c.tanlutz@ieee.org to request this form.<br />

3) MS Word document with full contact information for all authors as indicated below:<br />

Last name (Family name), First name, Suffix (Dr./Prof./Ms./Mr.), Affiliation, Department, Address, Telephone, Facsimile, Email.


8:30 AM - 9:30 AM<br />

Session WA: Tutorial III<br />

Session Chair: Thomas R. Clark, Johns<br />

Hopkins University, Laurel, MD, USA<br />

WA1 8:30 AM - 9:30 AM (Tutorial)<br />

Microwave Photonic Filters, L. Maleki,<br />

OEwaves, Inc., Pasadena, CA, USA<br />

ABSTRACT NOT AVAILABLE<br />

Page 46<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

8:30 AM - 10:00 AM<br />

Session WB: NLO & Linear-Optical<br />

Devices<br />

Session Chair: Yujie J. Ding, Lehigh<br />

University, Bethlehem, PA, USA<br />

WB1 8:30 AM - 9:00 AM (Invited)<br />

Nonlinear Diffusion Model for Annealed<br />

Proton-Exchanged Waveguides in<br />

Zirconium-doped Lithium Niobate,<br />

C. Langrock, Stanford University, Stanford, CA,<br />

USA, R. V. Roussev, Corning, Inc., NY, USA and<br />

M. M. Fejer, Stanford University, Stanford, CA,<br />

USA<br />

We are presenting the development of a<br />

nonlinear diffusion model to aid the design and<br />

fabrication of annealed proton-exchanged (APE)<br />

channel waveguides in zirconium-doped lithium<br />

niobate (Zr:LiNbO3 or Zr:LN). This work follows<br />

research at Stanford by Bortz [1, 8] and Roussev<br />

[2], who developed nonlinear diffusion models<br />

for congruently melting LiNbO3 (CLN).<br />

WB2 9:00 AM - 9:15 AM<br />

Novel Technology for Producing LiNbO3<br />

Nonlinear Optical Waveguides, X. Mu,<br />

H. E. Meissner and S. K. Meissner, Onyx Optics<br />

Inc., Dublin, CA, USA<br />

The birefringent property of LiNbO3 (LN) is used<br />

for producing nonlinear optical and electrooptical<br />

waveguides with adhesive-free bonding<br />

(AFB) technology. Cerenkov type secondharmonic<br />

generation (CSHG) has been observed.<br />

8:30 AM - 10:30 AM<br />

Session WC: Novel Inorganic LEDs<br />

Session Chair: TBD<br />

WC1 8:30 AM - 9:00 AM (Invited)<br />

Advances in GaN Semiconductors for<br />

Energy Efficienct Solid State Lighting,<br />

S. P. DenBaars, C.-C. Pan, N. Pfaff, S. Tanaka,<br />

J. S. Speck and S. Nakamura, University of<br />

California – Santa Barbara, CA, USA<br />

LEDs fabricated from gallium nitride have lead to<br />

the realization of high-efficiency white solid-state<br />

lighting. Currently, GaN white LEDs exhibit<br />

luminous efficacy greater than 150 lm/Watt, and<br />

external quantum effiencies higher than 60%.<br />

This has enabled LEDs to compete with traditional<br />

lighting technologies such as incandescent<br />

and CFL. Further improvements in materials<br />

quality and cost reduction are necessary for<br />

wide-spread adoption of LEDs for lighting. A<br />

review of the unique polarization anisotropy in<br />

GaN is included for the different crystal orientations.<br />

Emphasis on nonpolar LEDs will highlight<br />

high-power violet and blue emitters and<br />

considers the effects of indium incorporation and<br />

substrate miscut. Recently, semipolar LEDs have<br />

demonstrated high EQE of 50% at high current<br />

densities. Semipolar GaN materials have enable<br />

the development of LEDs in green, and recent<br />

achievements of green laser diodes at 520nm.<br />

WC2 9:00 AM - 9:30 AM (Invited)<br />

Ultrahigh-Efficiency Phosphor-Free<br />

InGaN/GaN Nanowire White Light-<br />

Emitting Diodes on Silicon, Z. Mi,<br />

H. P. T. Nguyen, S. Zhang and M. Djavid, McGill<br />

University, Montreal, QC, Canada<br />

We report on the achievement of InGaN/GaN dotin-a-wire<br />

phosphor-free white light-emitting<br />

diodes, which can exhibit a record internal<br />

quantum efficiency of ~57% and virtually zero<br />

efficiency droop for injection currents up to<br />

~2,200 A/cm 2 .<br />

8:30 AM - 10:00 AM<br />

Session WD: Integrated Optical<br />

Sensors<br />

Session Chair: Sarath D. Gunapala, Jet<br />

Propulsion Laboratory, Pasadena, CA, USA<br />

WD1 8:30 AM - 9:00 AM (Invited)<br />

Ultra-Compact Multiplexed Lab-on-Chip<br />

Sensors Using Miniaturized Integrated<br />

Photonic Resonators, A. A. Eftekhar, Z. Xia,<br />

F. Ghasemi and A. Adibi, Georgia Institute of<br />

Technology, Atlanta, GA, USA<br />

We present a highly-sensitive and selective<br />

multiplexed sensing platform based on an array<br />

of compact resonators in a small footprint on<br />

chip. The application of this sensing platform for<br />

multiplexed bio and gas sensing will be<br />

discussed.<br />

WD2 9:00 AM - 9:15 AM<br />

Light-Emitting Diodes Operating Above<br />

Unity Efficiency for Infrared Absorption<br />

Spectroscopy, P. Santhanam and R. J. Ram,<br />

Massachusetts Institute of Technology,<br />

Cambridge, MA, USA<br />

Recent work has experimentally demonstrated<br />

that heated infrared light-emitting diodes can<br />

absorb lattice heat to generate photons above<br />

unity efficiency. We present new record-high<br />

conversion efficiencies and use these sources for<br />

absorption spectroscopy at 2.5um.


8:30 AM - 9:45 AM<br />

Session WE: DSP for Coherent<br />

Systems II<br />

Session Chair: Maurice S. O’Sullivan,<br />

Ciena Corporation, Ottawa, ON, Canada<br />

WE1 8:30 AM - 8:45 AM<br />

Training Sequences in 16-QAM and<br />

QPSK Coherent Pol-Mux Single-Carrier<br />

Systems, C. Do, University of Melbourne,<br />

Parkville, Australia<br />

We provide a performance comparison of new<br />

training sequences in 16-QAM and QPSK<br />

coherent polarization-multiplexed single-carrier<br />

system. Two types of binary sequences are<br />

compared under various impairments to confirm<br />

similar performance to ideal Chu sequences.<br />

WE2 8:45 AM - 9:00 AM<br />

Two-Stage Frequency Domain Blind<br />

Equalization for Coherent Pol-Mux 16-<br />

QAM System with CD Prediction and<br />

Dual-Mode Adaptive Algorithm, C. Zhu,<br />

A. V. Tran, S. Chen, University of Melbourne,<br />

Parkville, Victoria, Australia, L. B. Du, Monash<br />

University, Clayton, Victoria, Australia,<br />

T. B. Anderson, University of Melbourne,<br />

Melbourne, Australia, A. J. Lowery, Monash<br />

University, Clayton, Victoria, Australia and E.<br />

Skafidas, University of Melbourne, Parkville,<br />

Victoria, Australia<br />

We report a two-stage frequency domain equalization<br />

method for non-data-aided coherent<br />

polarization-multiplexed 16-QAM system.<br />

Robust performance against polarization-modedispersion<br />

and long-haul transmission is<br />

experimentally demonstrated using cascaded<br />

blind CD compensation and dual-mode adaptive<br />

equalization.<br />

WE3 9:00 AM - 9:15 AM<br />

Fixed Point Precision Requirements of<br />

the CMA for Digital Coherent Access,<br />

H.-M. Chin, D. S. Millar and S. J. Savory,<br />

University College London, London, UK<br />

We investigate the bit precision required for the<br />

implementation of a fixed point constant<br />

modulus algorithm equalizer with least mean<br />

squares tap updating for coherent receivers at<br />

10Gbit/s PM-QPSK over 80km transmission.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30 AM - 10:00 AM<br />

Session WF: Nanocavity and Ring<br />

Resonator Lasers<br />

Session Chair: TBD<br />

WF1 8:30 AM - 9:00 AM (Invited)<br />

Photonic Crystal Nanocavity Lasers and<br />

Modulators, J. Vuckovic, G. Shambat,<br />

J. Petykiewicz, A. Majumdar, T. Sarmiento,<br />

Stanford University, Stanford, CA, USA,<br />

M. Mayer, University of California - Berkeley,<br />

Berkeley, CA, USA, J. S. Harris, Stanford<br />

University, Stanford, CA, USA and E. Haller,<br />

University of California - Berkeley, Berkeley, CA,<br />

USA<br />

We have demonstrated electrically driven<br />

photonic crystal nanocavity lasers, LEDs and<br />

modulators with record low operation powers<br />

(e.g., lasing threshold of 180nA and sub-fJ/bit<br />

modulator operation), and with the modulation<br />

speeds exceeding 10GHz.<br />

WF2 9:00 AM - 9:15 AM<br />

95°C CW Operation of InGaAlAs Multiple-<br />

Quantum-Well Photonic-Crystal<br />

Nanocavity Laser with Ultra-low<br />

Threshold Current, T. Sato, K. Takeda,<br />

A. Shinya, K. Nozaki, H. Taniyama,<br />

W. Kobayashi, K. Hasebe, T. Kakitsuka,<br />

M. Notomi and S. Matsuo, NTT Corporation,<br />

Atsugi, Kanagawa, Japan<br />

An electrically driven photonic-crystal nanocavity<br />

laser with a buried heterostructure exhibits a<br />

record low threshold current of 14 µA at 25°C.<br />

High-temperature operation up to 95°C is<br />

achieved by using the InGaAlAs-based multiplequantum-well<br />

active region.<br />

8:30 AM - 10:00 AM<br />

Session WG: Special Symposium on<br />

Quantum <strong>Photonics</strong> II<br />

Session Chair: TBD<br />

WG1 8:30 AM - 9:00 AM (Invited)<br />

New Results in Quantum Nonlinear<br />

Optics, M. Agnew, E. Bolduc, University of<br />

Ottawa, Ottawa, ON, Canada, R. W. Boyd,<br />

University of Rochester, Rochester, NY, USA,<br />

A. S. Johnson, J. Leach, University of Ottawa,<br />

Ottawa, ON, Canada, O. S. Magana-Loaiza,<br />

M. Malik, M. Mirhosseini, M. N. O’Sullivan,<br />

University of Rochester, Rochester, NY, USA,<br />

J. Z. Salvail, University of Ottawa, Ottawa, ON,<br />

Canada and Z. Shi, University of Rochester,<br />

Rochester, NY, USA<br />

The methods of nonlinear optics lead to important<br />

capabilities within the field of quantum<br />

information science. Applications such as highcapacity<br />

quantum key distribution and enhanced<br />

measurement sensitivity are described.<br />

WG2 9:00 AM - 9:30 AM (Invited)<br />

A Photonic Quantum Interface for Visibleto-Telecommunication<br />

Wavelength<br />

Conversion, T. Yamamoto, R. Ikuta, Osaka<br />

University, Toyonaka, Osaka, Japan, M. Koashi,<br />

University of Tokyo, Bunkyo-ku, Tokyo, Japan<br />

and N. Imoto, Osaka University, Toyonaka,<br />

Osaka, Japan<br />

We report an experimental demonstration of a<br />

photonic quantum interface for wavelength<br />

conversion from visible to telecommunication<br />

bands by using difference frequency generation<br />

from a nonlinear optical crystal.<br />

8:30 AM - 10:00 AM<br />

Session WH: Large-Area<br />

Nanophotonics and Novel Fabrication<br />

Techniques<br />

Session Chair: Ahmet A. Yanik, Harvard<br />

Medical School, Boston, MA, USA<br />

WH1 8:30 AM - 8:45 AM<br />

Large-Area (> 50 cm x 50 cm),<br />

Freestanding, Flexible, Optical<br />

Membranes of Cd-Free Nanocrystal<br />

Quantum Dots, E. Mutlugun, P. Hernandez<br />

Martinez, Nanyang Technological University,<br />

Singapore, C. Eroglu, Y. Coskun, T. Erdem,<br />

V. K. Sharma, E. Unal, Bilkent University, Bilkent,<br />

Ankara, Turkey, S. K. Panda, S. G. Hickey,<br />

N. Gaponik, A. Eychmüller, Technical University<br />

of Dresden, Dresden, Germany and H. V. Demir,<br />

Bilkent University, Bilkent, Ankara, Turkey<br />

We propose and demonstrate large-area (> 50<br />

cm × 50 cm) freestanding, flexible membranes of<br />

InP/ZnS quantum dot (QD)-polymeric composites<br />

for high quality solid state lighting, achieving<br />

high photometric performance using bilayered<br />

QD architectures.<br />

WH2 8:45 AM - 9:00 AM<br />

Large-Area Semi-Transparent Light-<br />

Sensitive Nanocrystal Skins, S. Akhavan,<br />

Bilkent University, Bilkent, Ankara, Turkey<br />

Large area and semi-transparent highly light<br />

sensitive nanocrystal skin is demonstrated via<br />

spray-coating nanocrystals on top of polyelectrolyte-polymers<br />

based on photogenerated<br />

potential buildup where no external bias is<br />

applied.<br />

WH3 9:00 AM - 9:15 AM<br />

Transfer Printing of Nanoplasmonic Color<br />

Filters onto Flexible Polymer Substrates<br />

from a Rigid Stamp, C. Martin, University of<br />

Glasgow, Glasgow, Scotland, UK<br />

Plasmonic color filters and polarizers were<br />

produced using nanotransfer printing to create<br />

aluminium nanostructures, as small as 75nm, on<br />

a polycarbonate sheet measuring 10mm x<br />

12mm. Plasmonic filters showed good agreement<br />

with simulations.<br />

Page 47


Page 48<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

WB3 9:15 AM - 9:30 AM<br />

Instantaneous Phase Conjugation at mW<br />

Pump Power based on Backward<br />

Difference-Frequency Generation,<br />

Y. J. Ding, Lehigh University, Bethlehem, PA,<br />

USA<br />

Instantaneous phase conjugation based on<br />

backward difference-frequency generation in a<br />

second-order nonlinear medium is proposed.<br />

A reflectivity of approaching 100% is achievable<br />

from a 1 mW pump laser.<br />

WB4 9:30 AM - 9:45 AM<br />

Optical Parametric Oscillator<br />

Longitudinal Modes Suppression Based<br />

on Smith Predictor Control Scheme,<br />

A. Salehiomran, R. Modirnia, B. Boulet and<br />

M. Rochette, McGill University, Montréal, QC,<br />

Canada<br />

Fiber optic parametric oscillators are inherently<br />

mulimode and thus relatively noisy, due to<br />

relatively long resonant cavity length. We<br />

propose to use a Smith predictor control scheme<br />

to drastically suppress longitudinal modes.<br />

WB5 9:45 AM - 10:00 AM<br />

Efficient Conversion Between Counter-<br />

Propagating Fundamental and<br />

High-Order Modes in Optical Fiber with<br />

Tilted Gratings Being Incorporated for<br />

Applications in Nonlinear Optics, D. Li,<br />

Y. J. Ding, Lehigh University, Bethlehem, PA,<br />

USA, I. B. Zotova, ArkLight, Center Valley, PA,<br />

USA and N. S. Prasad, NASA Langley Research<br />

Center, Hampton, VA, USA<br />

We show that it is feasible to achieve efficient<br />

conversion between the fundamental and highorder<br />

modes propagating in a multimode optical<br />

fiber containing reflective singly-tilted gratings.<br />

WC3 9:30 AM - 9:45 AM<br />

Characteristics of InGaN Quantum Wells<br />

Light-Emitting Diodes with Thin AlGaInN<br />

Barrier Layers, G. Liu, J. Zhang, C. K. Tan and<br />

N. Tansu, Lehigh University, Bethlehem, PA, USA<br />

The characteristics of InGaN quantum wells lightemitting<br />

diodes with thin large bandgap AlGaInN<br />

barriers were analyzed with taking into account<br />

the carrier transport effect, which resulted in<br />

efficiency-droop suppression.<br />

WC4 9:45 AM - 10:00 AM<br />

FDTD Modeling of InGaN-Based Light-<br />

Emitting Diodes with Microsphere<br />

Arrays, P. Zhu, J. Zhang, G. Liu and N. Tansu,<br />

Lehigh University, Bethlehem, PA, USA<br />

The light extraction efficiency of InGaN lightemitting<br />

diodes employing microsphere arrays<br />

with different refractive indices and diameters<br />

were studied, and the use of anatase TiO 2 microsphere<br />

arrays resulted in 2.4-times increase in<br />

light extraction efficiency.<br />

WC5 10:00 AM - 10:15 AM<br />

Directly Color-Tunable Smart Display<br />

based on a CMOS-Controlled Micro-LED<br />

Array, S. Zhang, J. McKendry, Z. Gong,<br />

University of Strathclyde, Glasgow, Scotland, UK,<br />

B. R. Rae, University of Edinburgh, Edinburgh,<br />

Scotland, UK, S. Watson, University of Glasgow,<br />

Glasgow, Scotland, UK, E. Xie, P. Tian,<br />

E. Richardson, E. Gu, University of Strathclyde,<br />

Glasgow, Scotland, UK, Z. Chen, G. Zhang,<br />

Peking University, Beijing, China, A. E. Kelly,<br />

University of Glasgow, Glasgow, Scotland, UK,<br />

R. K. Henderson, University of Edinburgh,<br />

Edinburgh, Scotland, UK and M. D. Dawson,<br />

University of Strathclyde, Glasgow, Scotland, UK<br />

We demonstrate a CMOS-controlled colortunable<br />

micro-display system based on a<br />

WD3 9:15 AM - 9:30 AM<br />

Silicon Photonic Crystal Microcavity<br />

Biosensors for Label Free Highly<br />

Sensitive and Specific Lung Cancer<br />

Detection, W.-C. Lai, University of Texas at<br />

Austin, Austin, TX, USA, S. Chakravarty, Omega<br />

Optics Inc., Austin, TX, USA, Y. Zou, University<br />

of Texas at Austin, Austin, TX, USA,<br />

H. A. A. Drabkin, R. M. M. Gemmill,<br />

G. R. R. Simon, S. H. H. Chin, Medical<br />

University of South Carolina, Charleston, SC,<br />

USA and R. T. Chen, University of Texas at<br />

Austin, Austin, TX, USA<br />

We experimentally detect lung cancer cell lysates<br />

with high sensitivity down to 2 cells per microliter<br />

with silicon based photonic crystal<br />

microcavity sensors. Label free specificity is<br />

achieved via sandwiched assays and simultaneous<br />

multiplexed detection.<br />

WD4 9:30 AM - 9:45 AM<br />

Integrated Differential Pressure Sensor<br />

in Silicon-on-Insulator, E. Hallynck and<br />

P. Bienstman, Ghent University, Gent, Belgium<br />

We have fabricated and characterized a compact<br />

integrated optical pressure sensor in silicon-oninsulator.<br />

Measurements have shown that<br />

spectral features in our device can shift up to<br />

1585 pm going from -20 to 80 kPa.<br />

WD5 9:45 AM - 10:00 AM<br />

Multiplexed Gas Sensing Based on<br />

Raman Spectroscopy in Photonic Crystal<br />

Fiber, X. Yang, A. S. P. Chang, Lawrence<br />

Livermore National Laboratory, Livermore, CA,<br />

USA, B. Chen, C. Gu, University of California -<br />

Santa Cruz, Santa Cruz, CA, USA and<br />

T. C. Bond, Lawrence Livermore National<br />

Laboratory, Livermore, CA, USA<br />

We present the highly-sensitive Raman detection<br />

of various gases (nitrogen, oxygen, carbon<br />

dioxide, toluene, acetone and 1,1,1trichloroethane)<br />

using a hollow core photonic<br />

crystal fiber probe and demonstrate its multiplexed<br />

gas sensing capability quantitatively.


WE4 9:15 AM - 9:30 AM<br />

Frequency Domain Training-Aided<br />

Channel Estimation and Equalization in<br />

Time-Varying Optical Transmission<br />

Systems, F. Pittalà, Huawei Technologies<br />

Duesseldorf GmbH, Munich, Germany,<br />

M. Msallem, Technical University of Munich,<br />

Munich, Germany, F. Hauske, Y. Ye, Huawei<br />

Technologies Duesseldorf GmbH, Munich,<br />

Germany, I. T. Monroy, Technical University of<br />

Denmark, Lyngby, Denmark and J. A. A. Nossek,<br />

Technical University of Munich, Munich,<br />

Germany<br />

We propose a non-weighted feed-forward equalization<br />

method with filter update by averaging<br />

channel estimations based on short CAZAC<br />

sequences. Three averaging methods are<br />

presented and tested by simulations in a timevarying<br />

2×2 MIMO optical system.<br />

WE5 9:30 AM - 9:45 AM<br />

Real Time 1.55 µm VCSEL-based<br />

Coherent Detection Link, R. Rodes,<br />

Technical University of Denmark, Lyngby,<br />

Denmark, D. Parekh, University of California -<br />

Berkeley, Berkeley, CA, USA, J. B. Jensen,<br />

Technical University of Denmark, Lyngby,<br />

Denmark, C. J. Chang-Hasnain, University of<br />

California - Berkeley, Berkeley, CA, USA and<br />

I. T. Monroy, Technical University of Denmark,<br />

Lyngby, Denmark<br />

This paper presents an experimental demonstration<br />

of VCSEL-based PON with simplified<br />

real-time coherent receiver at 2.5 Gbps. Receiver<br />

sensitivity of -37 dBm is achieved proving splitting<br />

ratio up to 2048 after 17 km fiber<br />

transmission.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

WF3 9:15 AM - 9:30 AM<br />

Single Mode Photonic Crystal Vertical<br />

Cavity Surface Emitting Lasers with<br />

Modulation Bandwidth > 13 GHz at Low<br />

Current Density, M. P. P. Tan, S. T. M. Fryslie,<br />

University of Illinois at Urbana-Champaign,<br />

Urbana, IL, USA, J. A. Lott, N. N. Ledentsov,<br />

VI Systems GmbH, Berlin, Germany and<br />

K. D. Choquette, University of Illinois at Urbana-<br />

Champaign, Urbana, IL, USA<br />

Single mode photonic crystal vertical cavity<br />

surface emitting lasers with a modulation bandwidth<br />

exceeding 13 GHz are achieved at current<br />

density as low as 3.7 kA/cm 2 by separating the<br />

current and lasing apertures.<br />

WF4 9:30 AM - 9:45 AM<br />

Coupled Semiconductor Ring Lasers,<br />

W. Coomans, G. Van der Sande, Vrije University<br />

Brussels, Brussels, Belgium, G. Mezosi,<br />

M. Sorel, University of Glasgow, Glasgow,<br />

Scotland, UK, G. Verschaffelt and J. Danckaert,<br />

Vrije University Brussels, Brussels, Belgium<br />

We experimentally and theoretically study<br />

coupled semiconductor ring lasers. We report on<br />

the destabilization of unidirectional operation for<br />

large coupling strengths and the appearance of a<br />

coupling-induced bidirectional state, both undesirable<br />

for optical memory operation.<br />

WF5 9:45 AM - 10:00 AM<br />

Semiconductor Ring Lasers as Optical<br />

Neurons, L. Gelens, W. Coomans, L. Mashal,<br />

S. Beri, G. Van der Sande, J. Danckaert and<br />

G. Verschaffelt, Vrije University Brussels,<br />

Brussels, Belgium<br />

Pulses emitted by an excitable (asymmetric)<br />

semiconductor ring laser are experimentally and<br />

theoretically characterized. We numerically show<br />

that it is possible to mimic neural functionality by<br />

considering them in a coupled configuration.<br />

WG3 9:30 AM - 9:45 AM<br />

Linear-Optics Realization of the Qubit<br />

Amplitude-Damping Channel using<br />

Phase Modulation, J. Capmany, Universidad<br />

Politécnica de Valencia, Valencia, Spain and<br />

C. R. Fernández-Pousa, Miguel Hernández<br />

Universidad of Miguel Hernandez, Elche,<br />

Alicante, Spain<br />

A conditional realization of the single-qubit<br />

amplitude damping channel is proposed. Kraus<br />

operators are probabilistically realized in dual-rail<br />

frequency basis by use of phase modulation and<br />

a fiber Bragg grating, resulting in success probabilities<br />

>31.5%.<br />

WG4 9:45 AM - 10:00 AM<br />

Tamper-Indicating Quantum Optical<br />

Seals, T. Humble, D. Earl, Oak Ridge National<br />

Laboratory, Oak Ridge, TN, USA and B. Williams,<br />

University of Tennessee, Knoxville, TN, USA<br />

We demonstrate a quantum optical seal using<br />

entangled photons to monitor the integrity of a<br />

fiber-optic channel subject to tampering. This<br />

application of quantum photonics provides a<br />

basis for physical layer security in cyber-physical<br />

systems.<br />

WH4 9:15 AM - 9:30 AM<br />

Design of Three-Dimensional Photonic<br />

Crystals for Large-Area Membrane<br />

Stacking, L. Lu, L. L. Cheong, H. I. Smith,<br />

S. G. Johnson, J. D. Joannopoulos and<br />

M. Soljacic, Massachusetts Institute of<br />

Technology, Cambridge, MA, USA<br />

We designed “Mesh-Stack” three-dimensional<br />

photonic crystals of 14% bandgap, that is fully<br />

compatible with the fabrication method to align<br />

and stack large-area single-crystal membranes<br />

containing engineered defects. A single-mode<br />

waveguide and disorder effects are presented.<br />

WH5 9:30 AM - 9:45 AM<br />

Fabrication Technique of Highly Dense<br />

Aligned Semiconducting Single-Walled<br />

Carbon Nanotubes Devices, A. Elkadi,<br />

E. Decrossas and S. El-Ghazaly, University of<br />

Arkansas, Fayetteville, AR, USA<br />

A fabrication technique using dielectrophoresis<br />

is demonstrated to align semiconducting singlewalled<br />

carbon nanotubes (s-SWCNTs) and<br />

improve electronic devices performance. The<br />

proposed method produces highly dense<br />

aligned nanotubes (>40 s-SWCNTs/µm) and<br />

low sheet resistance (


10:30 AM - 12:00 PM<br />

Session WI: Optical Frequency<br />

Combs<br />

Session Chair: Robert A. Kaindl, Lawrence<br />

Berkeley National Laboratory, Berkeley, CA, USA<br />

WI1 10:30 AM - 11:00 AM (Invited)<br />

Generation, Characterization, and<br />

Applications of High Repetition Rate<br />

Optical Frequency Combs, A. M. Weiner,<br />

Purdue University, West Lafayette, IN, USA<br />

High repetition rate frequency combs and pulse<br />

trains are generated from continuous-wave lasers<br />

either by strong electro-optic modulation or by<br />

nonlinear wave mixing in microresonators.<br />

Applications to optical and RF arbitrary waveform<br />

generation and signal processing are discussed.<br />

WI2 11:00 AM - 11:15 AM<br />

Self-referenced Spectral Phase Retrieval<br />

of Dissimilar Optical Frequency Combs<br />

via Multiheterodyne Detection, A. Klee,<br />

J. Davila-Rodriguez, M. Bagnell and<br />

P. J. Delfyett, University of Central Florida,<br />

Orlando, FL, USA<br />

We present a method to independently measure<br />

the spectral phase of an optical frequency comb<br />

by heterodyning it with a second comb of arbitrarily<br />

detuned repetition rate and appropriately<br />

processing the resulting electrical frequency<br />

comb.<br />

WI3 11:15 AM - 11:30 AM<br />

Novel Terabit Optical Waveform<br />

Synthesizer and Digital Holographic<br />

Analyzer based on 400 GHz Optical<br />

Frequency Comb, T. Shioda, Nagaoka<br />

University of Technology, Nagaoka, Niigata,<br />

Japan<br />

A novel arbitral waveform synthesizing and<br />

analyzing system in terabit range has been<br />

proposed and demonstrated with the 400 GHz<br />

high-speed optical frequency comb. 2-Tbit/s 4bit<br />

packets were experimentally synthesized and<br />

analyzed for the demonstration.<br />

Page 50<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

10:30 AM - 12:00 PM<br />

Session WJ: Fiber Lasers &<br />

Applications<br />

Session Chair: Narasimha S. Prasad,<br />

NASA Langley Research Center, Hampton, VA,<br />

USA<br />

WJ1 10:30 AM - 11:00 AM (Invited)<br />

High Power Monolithic Pulsed Fiber<br />

Lasers in Nanosecond Regime for<br />

Nonlinear Frequency Applications, W. Shi,<br />

Tianjin University, Tianjin, China<br />

All-fiber-based narrow linewidth nanosecond<br />

pulsed lasers in MOPA configuration are<br />

reviewed, and their applications in nonlinear<br />

frequency conversion are discussed.<br />

WJ2 11:00 AM - 11:15 AM<br />

Fiber Taper based Raman Spectroscopic<br />

Sensing, P. Edwards, Pennsylvania State<br />

University, University Park, PA, USA<br />

A method for performing Raman spectroscopic<br />

analysis of micro-particles adhered to a tapered<br />

optical fiber as they interact with the taper guided<br />

evanescent pump wave is explored as a chemically<br />

selective, label-free taper-particle sensing<br />

technique.<br />

WJ3 11:15 AM - 11:30 AM<br />

All Normal Dispersion Erbium-Doped<br />

Fiber Oscillator with Tunable Intracavity<br />

Phase Modulation, H.-W. Chen, National<br />

Tsing Hua University, Hsinchu, Taiwan<br />

Tunable intracavity phase modulation is applied<br />

to an all normal dispersion fiber oscillator to<br />

suppress wave-breaking and increase the pulse<br />

energy. Spectral broadening beyond 1200-2000<br />

nm is achieved by 15-m-long high nonlinear<br />

fiber.<br />

micro-light emitting diode array made from one<br />

InGaN epitaxial structure. This system can also<br />

be used for high speed optical data transmission.<br />

WC6 10:15 AM - 10:30 AM<br />

Monolithic Single Output Dual<br />

Wavelength LED, A. Zakariya and<br />

P. LiKamWa, University of Central Florida,<br />

Orlando, FL, USA<br />

A monolithic dual-wavelength LED based on<br />

selectively intermixed QW structure is fabricated<br />

and investigated experimentally. The device has a<br />

single output beam of two independently<br />

controlled intensities whose peak emission<br />

wavelengths at 800nm and 772nm.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:30 PM<br />

Session WK: Organic LEDs &<br />

AMOLED Displays<br />

Session Chair: Peyman Servati, University<br />

of British Columbia, Vancouver, BC, Canada<br />

WK1 10:30 AM - 11:00 AM (Invited)<br />

Recent Advances in Printable OLED<br />

Materials and Devices, B. Kippelen,<br />

W. Haske, D. Cai, K. A. Knauer, E. M. Najafabadi,<br />

C. Fuentes-Hernandez, C. Zuniga, Y. Zhang,<br />

X. He, S. Barlow, J. S. Sears, J.-L. Bredas and<br />

S. R. Marder, Georgia Institute of Technology,<br />

Atlanta, GA, USA<br />

In this talk we will discuss recent advances in<br />

solution-processed materials and in device<br />

geometries that can lead to next generation<br />

AMOLED displays with improved performance<br />

and lower cost.<br />

WK2 11:00 AM - 11:30 AM (Invited)<br />

Considerations in Device Design and<br />

Materials Selection in Organic Light<br />

Emitting Diodes, Z. Wang, M. G. Helander,<br />

J. Qiu and Z.-H. Lu, University of Toronto,<br />

Toronto, ON, Canada<br />

An approach to significantly increase the external<br />

quantum efficiency (EQE) of organic light emitting<br />

diodes (OLEDs) in a highly simplified device<br />

structure is discussed in this paper.<br />

10:30 AM - 11:45 AM<br />

Session WL: Interferometric Sensors<br />

Session Chair: Ali Adibi, Georgia Institute<br />

of Technology, Atlanta, GA, USA<br />

WL1 10:30 AM - 11:00 AM (Invited)<br />

Ultra-Low-Loss Delay Lines and<br />

Resonators on a Silicon Chip, H. Lee,<br />

T. Chen, J. Li and K. J. Vahala, California Institute<br />

of Technology, Pasadena, CA, USA<br />

A monolithic, 27-meter long waveguide having<br />

optical loss of less than 0.1dB/m is demonstrated.<br />

The same process produces resonators<br />

having Q factors as high as 875 million.<br />

Applications are reviewed.<br />

WL2 11:00 AM - 11:15 AM<br />

A Novel Modified Mach-Zender<br />

Interferometer For Highly Sensitive<br />

Sensing, S. Li, J. Liu, Z. Zheng, X. Li and<br />

J. Xiao, Beihang University, Beijing, China<br />

An all fiber modified Mach-Zehnder interferometer<br />

with a ring-down configuration is proposed.<br />

A nanometer level sensitivity and a high dynamic<br />

range of 40dB are readily achievable.<br />

WL3 11:15 AM - 11:30 AM<br />

Sensitive Waveguide-Coupled Surface<br />

Plasmon Resonance Imaging, Z. Wang,<br />

National Center for Nanoscience and Technology<br />

of China, Beijing, China, Z. Zheng, Beihang<br />

University, Beijing, China, J. Zhu, L. Song,<br />

National Center for Nanoscience and Technology<br />

of China, Beijing, China and Y. Bian, Beihang<br />

University, Beijing, China<br />

We propose sensitive imaging measurements<br />

enabled by waveguide-coupled surface plasmon<br />

resonance sensors. In the measurement, almost<br />

all the sensors with different waveguide thicknesses<br />

show around 60% sensitivity<br />

improvement compared with traditional surface


10:30 AM - 11:45 AM<br />

Session WM: FEC Techniques<br />

Session Chair: Ivan B. Djordjevic,<br />

University of Arizona, Tucson, AZ, USA<br />

WM1 10:30 AM - 11:00 AM (Invited)<br />

Nonbinary LDPC-coded Modulation for<br />

Multi-Tb/s Optical Transport, M. Arabaci<br />

and I. B. Djordjevic, University of Arizona,<br />

Tucson, AZ, USA<br />

Nonbinary LDPC codes and their use in multi-<br />

Tb/s optical transport networks are discussed.<br />

Comparisons are made against prior-art binary<br />

LDPC-coded modulation schemes.<br />

WM2 11:00 AM - 11:15 AM<br />

Soft-Information Quality Analysis for<br />

Optimum Soft-Decision Forward Error<br />

Correction, F. Hauske, Huawei Technologies<br />

Duesseldorf GmbH, Munich, Germany,<br />

D. Pflueger, Universität der Bundeswehr<br />

München, Neubiberg, Bavaria, Germany,<br />

Y. Zhao, J. Qi, Huawei Technologies Duesseldorf<br />

GmbH, Munich, Germany and G. Bauch,<br />

Universität der Bundeswehr München,<br />

Neubiberg, Bavaria, Germany<br />

For optimum soft-decision FEC decoding the<br />

reduction of the pre-FEC BER but also the quality<br />

of the input signal are crucial. We propose the Lvalue<br />

test for reliable prediction of post-FEC BER<br />

performance.<br />

WM3 11:15 AM - 11:30 AM<br />

Use of High Gain FEC to Counteract XPM<br />

in Metro Networks Combining 40G<br />

Coherent DP-QPSK and 10G OOK<br />

Channels, N. L. Swenson, S. C. Wang, J. Cho,<br />

R. Kwak, D. Tauber, F. Zhang, ClariPhy<br />

Communications, Inc., Irvine, CA, USA,<br />

J. Larikova, R. Younce, Tellabs, Inc., Naperville,<br />

IL, USA, J.-M. Caia, J.-C. Calderon and J. Kirsten,<br />

Cortina Systems, Inc., Sunnyvale, CA, USA<br />

We present real-time experimental results using<br />

high-overhead, high-gain FEC to overcome<br />

impairments caused by XPM in dispersioncompensated<br />

metro/regional WDM networks that<br />

combine 10G OOK and 40G DP-QPSK channels.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:00 PM<br />

Session WN: High-Power and<br />

Quantum Cascade Lasers<br />

Session Chair: TBD<br />

WN1 10:30 AM - 11:00 AM (Invited)<br />

Recent Advances in Modeling of High-<br />

Power Single Mode Diode Lasers,<br />

V. P. Kalosha, K. Posilovic and D. Bimberg,<br />

Technical University Berlin, Berlin, Germany<br />

Modeling results for lateral-longitudinal mode<br />

discrimination in longitudinally inhomogeneous<br />

finite length waveguides of ridge lasers are<br />

presented, obtained by numerical solutions of the<br />

wave equation and calculations of the mode<br />

thresholds, predicting high-brightness singlemode<br />

output of wide stripes.<br />

WN2 11:00 AM - 11:15 AM<br />

Adiabatically Tapered Slab-Coupled<br />

Optical Waveguide Lasers, K. Anglin,<br />

G. M. Smith, J. P. Donnelly, L. J. Missaggia,<br />

M. K. Connors, R. B. Swint, W. T. Goodhue and<br />

G. W. Turner, MIT Lincoln Laboratory, Lexington,<br />

MA, USA<br />

Adiabatically flared slab-coupled optical waveguide<br />

lasers (SCOWLs) at 1.06 µm wavelength<br />

have been studied, achieving a large fundamental<br />

mode and a 32% increase in COD power.<br />

Capabilities and limitations of the taper mechanism<br />

are discussed.<br />

WN3 11:15 AM - 11:30 AM<br />

In-Situ Wavelength Aging Study and<br />

Reliability Thermal Model of C-band<br />

100mW High-Power DWDM Lasers,<br />

J.-S. Huang, Emcore Corp., Alhambra, CA, USA<br />

We study the wavelength aging behavior of<br />

100mW high-power semiconductor lasers.<br />

Using in-situ high-resolution wavelength<br />

measurement, the activation energy is determined<br />

to be 0.96eV. Physical model of the aging<br />

behavior is discussed.<br />

10:30 AM - 12:00 PM<br />

Session WO: Special Symposium on<br />

Quantum <strong>Photonics</strong> III<br />

Session Chair: Gregor Weihs, University of<br />

Innsbruck, Innsbruck, Austria<br />

WO1 10:30 AM - 11:00 AM (Invited)<br />

Microwave Quantum <strong>Photonics</strong> in<br />

Superconducting Circuits, Y. Nakamura,<br />

University of Tokyo, Meguro-ku, Tokyo, Japan<br />

Can we play quantum photonics in the<br />

microwave domain? Thanks to the recent<br />

progress, it is now possible to handle microwave<br />

energy quanta, both localized and flying, in<br />

superconducting quantum circuits.<br />

WO2 11:00 AM - 11:30 AM (Invited)<br />

On-Chip Quantum Plasmonics, R. Heeres<br />

and V. Zwiller, Kavli Institute of Nanoscience,<br />

Delft University of Technology, Delft, The<br />

Netherlands<br />

We realize quantum plasmonics devices based<br />

on the integration of plasmonic waveguides,<br />

beamsplitters and superconducting detectors,<br />

enabling us to perform a Hong-Ou-Mandel<br />

interference experiment with plasmons.<br />

10:30 AM - 12:15 PM<br />

Session WP: Bio-Nanophotonics<br />

Session Chair: Rupert F. Oulton, Imperial<br />

College London, London, UK<br />

WP1 10:30 AM - 11:00 AM (Invited)<br />

Nanoscale Optofluidics, H. Schmidt,<br />

University of California - Santa Cruz, Santa Cruz,<br />

CA, USA<br />

Recent advances in optofluidic platforms for<br />

nano-particle detection and analysis will be<br />

reviewed.<br />

WP2 11:00 AM - 11:30 AM (Invited)<br />

Breaking the Diffusion Barrier with<br />

Optofluidic-Nanoplasmonic Devices and<br />

Surface Enhanced Isolation of Rare<br />

Circulating Tumor Cells, A. A. Yanik,<br />

Harvard Medical School, Boston, MA, USA<br />

In this talk, I will mainly focus on nanoplasmonics<br />

applied in life sciences and point-of-care<br />

diagnostics. I will show how the nanoscale<br />

optical/fluidic phenomena can be applied to realworld<br />

problems.<br />

Page 51


WI4 11:30 AM - 11:45 AM<br />

Comparison of Semiconductor-based,<br />

Etalon-Stabilized 10 GHz Frequency<br />

Comb Sources, J. Davila-Rodriguez, I. Ozdur<br />

and P. J. Delfyett, University of Central Florida,<br />

Orlando, FL, USA<br />

A comparative study of the performance of 10<br />

GHz, semiconductor-based comb sources is<br />

presented with regard to the optical linewidth,<br />

stability of the comb modes, total optical bandwidth<br />

and timing jitter.<br />

WI5 11:45 AM - 12:00 PM<br />

Measuring the Temporal Focusing of<br />

Ultrashort Airy-Bessel Wave Packets,<br />

P. Piksarv, H. Valtna-Lukner, A. Valdmann,<br />

M. Lõhmus, R. Matt and P. Saari, University of<br />

Tartu, Tartu, Estonia<br />

A technique for full spatio-temporal characterization<br />

of impulse responses of optical systems<br />

with an almost one-wave-cycle temporal resolution<br />

was developed. It was employed to<br />

characterize ultrashort Airy-Bessel light bullets<br />

generated by a circular diffraction grating.<br />

Page 52<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

WJ4 11:30 AM - 11:45 AM<br />

Dual-Wavelength, Carbon Nanotube<br />

Mode-Locked Fiber Laser, F. Wang,<br />

Z. Jiang, Z. Sun, D. Popa, T. Hasan, F. Torrisi and<br />

A. C. Ferrari, University of Cambridge,<br />

Cambridge, UK<br />

We demonstrate a dual-wavelength, carbon<br />

nanotube mode-locked Er fiber laser. The laser<br />

outputs two wavelengths at 1549nm and<br />

1562nm, and each wavelength corresponds to<br />

pulse duration of ~1.3ps and repetition rate of<br />

~11.27MHz.<br />

WJ5 11:45 AM - 12:00 PM<br />

40 Gb/s All-Optical Clock Recovery Using<br />

a Semiconductor Fiber Laser and<br />

Nonlinear Optical Loop Mirror, T. Huang,<br />

J. Sun, Wuhan National Laboratory for<br />

Optoelectronics, Wuhan, Hubei, China, J. Li and<br />

L. R. Chen, McGill University, Montréal, QC,<br />

Canada<br />

We demonstrate 40 Gb/s all-optical clock<br />

recovery using semiconductor fiber laser modelocked<br />

by a nonlinear optical loop mirror. Clock<br />

signal with a timing jitter of 372 fs, and a power<br />

fluctuation of 0.089 are obtained.<br />

WK3 11:30 AM - 12:00 PM (Invited)<br />

Transparent Composite Electrode for<br />

High-Efficiency Polymer OLEDs, Q. Pei,<br />

University of California - Los Angeles, Los<br />

Angeles, CA, USA<br />

Polymer composite electrodes based on silver<br />

nanowires or carbon nanotubes have been<br />

prepared with high transparency, surface conductivity,<br />

and low roughness suitable for the<br />

fabrication of OLEDs. The resulting OLEDs<br />

exhibit high efficiency and mechanical flexibility.<br />

WK4 12:00 PM - 12:15 PM<br />

Optical Outcoupling by Oriented<br />

Emission in Top and Bottom Emitting<br />

OLEDs, L. Penninck and K. Neyts, Ghent<br />

University, Ghent, Belgium<br />

Recently preferential orientation was demonstrated<br />

in phosphorescent emitters. We simulate<br />

the efficiency of oriented emitters in bottom and<br />

top-emitting OLEDs. The oucoupling is<br />

increased by a factor 1.4 and 1.68 for bottom and<br />

top emission.<br />

WK5 12:15 PM - 12:30 PM<br />

A Novel 4-TFT Pixel Circuit with<br />

Threshold Voltage Compensation for<br />

AMOLED Displays, M. Yang,<br />

N. P. Papadopoulos, W. S. Wong and<br />

M. Sachdev, University of Waterloo, Waterloo,<br />

Canada<br />

The proposed pixel circuit for active-matrix<br />

organic-light-emitting diode display compensates<br />

threshold-voltage-shift (ΔVth) of drive TFT<br />

by utilizing ΔVth-dependent charge injection<br />

caused by TFT-based Metal-Insulator-<br />

Semiconductor capacitor. Its effectiveness is<br />

verified by the simulation results.<br />

plasmon resonance sensor.<br />

WL4 11:30 AM - 11:45 AM<br />

Experimental Study of the<br />

Supercontinuum Laser Propagation<br />

Characteristics in the Atmosphere, Z. Lei<br />

and Z. Qihua, China Academy of Engineering<br />

Physics, Mianyang, Sichuan, China<br />

Propagation characteristics of the supercontinuum<br />

laser in the atmosphere are studied<br />

experimentally by a wide aperture expanding and<br />

launching system without aberration. Near field,<br />

angle drift, wavefront and far field are measured<br />

and analyzed.


WM4 11:30 AM - 11:45 AM<br />

A 45 GS/s Optical Soft-Decision Frontend,<br />

M. N. Sakib, M. Moayedi Pour Fard and<br />

O. Liboiron-Ladouceur, McGill University,<br />

Montreal, QC, Canada<br />

A low complexity 45 GS/s soft-decision optical<br />

front-end is demonstrated for low-density paritycheck<br />

(LDPC) decoders. A net coding gain of<br />

7.06 dB at 10 -7 is experimentally achieved for 45<br />

Gb/s NRZ-OOK optical signal.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

WN4 11:30 AM - 11:45 AM<br />

Terahertz Quantum Cascade Laser<br />

Sources Based on Cherenkov Intra-Cavity<br />

Difference-Frequency Generation,<br />

K. Vijayraghavan, University of Texas at Austin,<br />

Austin, TX, USA, A. Vizbaras, Walter Schottky<br />

Institut, Technische Universität München,<br />

Munich, Germany, M. Jang, University of Texas<br />

at Austin, Austin, TX, USA, C. Grasse, G. Boehm,<br />

M. C. Amann, Walter Schottky Institut,<br />

Technische Universität München, Munich,<br />

Germany and M. Belkin, University of Texas at<br />

Austin, Austin, TX, USA<br />

Directional room-temperature terahertz emission<br />

is observed with a peak power of 16µW and a<br />

maximum conversion efficiency of approximately<br />

600µW/W 2 .<br />

WN5 11:45 AM - 12:00 PM<br />

Effects of Resonant Tunneling on Intrinsic<br />

Linewidth of Quantum Cascade Lasers,<br />

T. Liu, Nanyang Technological University,<br />

Singapore<br />

The quantum Langevin analysis for QCLs show<br />

that coupling strength and dephasing rate<br />

strongly affect linewidth of THz QCLs in incoherent<br />

resonant-tunneling transport regime, but<br />

induce insignificant influence for mid-infrared<br />

QCLs due to strong coupling.<br />

WO3 11:30 AM - 12:00 PM (Invited)<br />

Optomechanical Crystals and Their<br />

Quantum Optical Applications,<br />

O. J. Painter, California Institute of Technology,<br />

Pasadena, CA, USA<br />

In this talk I will describe these advances, and<br />

discuss our own work to realize radiation pressure<br />

within nanoscale structures in the form of<br />

coupled photonic and phononic crystals (dubbed<br />

optomechanical crystals).<br />

WP3 11:30 AM - 11:45 AM<br />

On-Chip Multiplexed Photonic Gas<br />

Sensing for VOC Detection, Z. Xia,<br />

A. A. Eftekhar, Q. Li and A. Adibi, Georgia<br />

Institute of Technology, Atlanta, GA, USA<br />

By selective drop coating of different polymers<br />

onto an array of microring resonators, a sensitive<br />

multiplexed photonic gas sensor is demonstrated<br />

for VOC detection. On-chip reference is used to<br />

achieve high accuracy.<br />

WP4 11:45 AM - 12:00 PM<br />

Double-Layer Silicon Photonic Crystal<br />

Fiber Tip Temperature Sensor, B. Park,<br />

Stanford University, Stanford, CA, USA,<br />

I. W. Jung, Argonne National Laboratory,<br />

Argonne, IL, USA, J. Provine, R. T. Howe and<br />

O. Solgaard, Stanford University, Stanford, CA,<br />

USA<br />

We describe the fabrication and the thermal<br />

response of a double-layer silicon photonic<br />

crystal fiber tip sensor assembled using<br />

template-assisted epoxy bonding. The sensor<br />

has sharper resonances and higher temperature<br />

sensitivity than previously-reported single-layer<br />

sensor.<br />

WP5 12:00 PM - 12:15 PM<br />

Integrations of Slanted Silicon<br />

Nanostructures on 3D Microstructures<br />

and It Application in Surface Enhanced<br />

Raman Spectroscopy, Z. Xu, J. Jiamg,<br />

M. R. Gartia and G. L. Liu, University of Illinois at<br />

Urbana-Champaign, Urbana, IL, USA<br />

Black silicon with slanted nanopillar array on<br />

planar and microstructure was produced for<br />

surface-enhanced Raman spectroscopy (SERS).<br />

The angle dependence of etching angle and<br />

nanopillar slanted angle was investigated with<br />

scanning electron microscopy.<br />

Page 53


1:30 PM - 3:00 PM<br />

Session WQ: Mid-IR/THz & NLO<br />

Phenomena<br />

Session Chair: Zhigang Chen, San<br />

Francisco State University, San Francisco, CA,<br />

USA<br />

WQ1 1:30 PM - 1:45 PM<br />

Nonlinear Terahertz Metamaterials, I. Al-<br />

Naib, G. Sharma, Institut National de la<br />

Recherche Scientifique, Varennes, QC, Canada,<br />

M.M. Dignam, Queen’s University, Kingston, ON,<br />

Canada, D. G. Cooke, McGill University,<br />

Montreal, QC, Canada, T. Ozaki and R.<br />

Morandotti, Institut National de la Recherche<br />

Scientifique, Varennes, QC, Canada<br />

WQ2 1:45 PM - 2:00 PM<br />

Investigation of Giant Kerr Nonlinearity in<br />

Quantum Cascade Lasers Using fs Mid-<br />

IR Pulses, H. Cai, University of Maryland<br />

Baltimore County, Baltimore, MD, USA, S. Liu,<br />

Sandia National Laboratories, Albuquerque, NM,<br />

USA, E. N. Lalanne, University of Maryland<br />

Baltimore County, Baltimore, MD, USA, P. Q. Liu,<br />

P. Bouzi, Princeton University, Princeton, NJ,<br />

USA, X. Wang, Adtech Optics, City of Industry,<br />

CA, USA and A. Johnson, University of<br />

Maryland Baltimore County, Baltimore, MD, USA<br />

Femtosecond mid-IR pulses were coupled into a<br />

quantum cascade laser. The spectral broadening<br />

and far-field profile of the transmitted pulses<br />

showed an intensity dependence. n 2 was experimentally<br />

estimated to be on the order of<br />

~10 -9 cm 2 /W.<br />

WQ3 2:00 PM - 2:15 PM<br />

Dispersion Engineering and Mid-IR<br />

Supercontinuum Generation in As 2 S 3<br />

Step-Index Fiber, S. C.S., S. K. Varshney and<br />

S. Mahapatra, Indian Institute of Technology,<br />

Kharagpur, India<br />

We numerically design silica cladding chalcogenide<br />

core (As 2 S 3 ) step-index fiber by solving<br />

the nonlinear Schrödinger equation to achieve<br />

broad supercontinuum over mid-IR(1000nm-<br />

4800nm) range in a 1-cm long fiber, pumped by<br />

60fs pulses at 1550nm.<br />

Page 54<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session WR: NLO Applications<br />

Session Chair: Martin M. Fejer, Stanford<br />

University, Stanford, CA, USA<br />

WR1 1:30 PM - 2:00 PM (Invited)<br />

Efficient, Phase Matched keV High<br />

Harmonic Generation using Mid-IR<br />

Driving Laser Wavelengths, M.-C. Chen,<br />

|T. Popmintchev, D. Popmintchev, P. Arpin,<br />

M. Murnane, H. C. Kapteyn, JILA, University of<br />

Colorado at Boulder, Boulder, CO, USA,<br />

S. Alisauskas, G. Andriukaitis, T. Balciunas,<br />

A. Pugzlys and A. Baltuska, Vienna University of<br />

Technology, Vienna, Austria<br />

Using a 3.9µm driving laser focused into a highpressure<br />

gas-filled waveguide, we generate<br />

bright, phase matched, fully spatially coherent<br />

high harmonic beams in the keV region for the<br />

first time.<br />

WR2 2:00 PM - 2:15 PM<br />

Multiphoton Microscope Using Spatially-<br />

Modulated Line-Cursor, D. Winters,<br />

Colorado State University, Fort Collins, CO, USA,<br />

J. Speirs, E. Block, J. Squier, Colorado School of<br />

Mines, Golden, CO, USA and R. A. Bartels,<br />

Colorado State University, Fort Collins, CO, USA<br />

We demonstrate a method for encoding spatial<br />

information across a line cursor using chirped<br />

amplitude modulation for application to onedimensional<br />

multiphoton microscopy using a<br />

single-element detector. Resolution, along with<br />

imaging speed and quality, will be discussed.<br />

1:30 PM - 2:45 PM<br />

Session WS: Radio over Fiber<br />

Techniques<br />

Session Chair: Hiroshi Murata, Osaka<br />

University, Toyonaka, Osaka, Japan<br />

WS1 1:30 PM - 1:45 PM<br />

Fully Fiber-Remoted 80 GHz Wireless<br />

Communication with Multi-Subcarrier 16-<br />

QAM, T. P. McKenna, J. A. Nanzer, M. L. Dennis<br />

and T. R. Clark, Johns Hopkins University,<br />

Laurel, MD, USA<br />

The experimental results of a fully fiber-remoted<br />

millimeter-wave wireless link are presented. A 3<br />

Gb/s rate with a BER of 10 -3 for a received power<br />

of -45 dBm/subcarrier is achieved using<br />

3 16-QAM subcarriers.<br />

WS2 1:45 PM - 2:00 PM<br />

Enabling Uncompressed Video<br />

Transmission in Double-Sideband 60 GHz<br />

Radio-over-Fiber Links, A. Lebedev,<br />

J. J. Vegas Olmos, M. Iglesias, S. Forchhammer<br />

and I. T. Monroy, Technical University of<br />

Denmark, Lyngby, Denmark<br />

We experimentally investigate the 60 GHz<br />

double-sideband radio-over-fiber link. We<br />

present the bit error rate performance of the<br />

system for HD video transmission in the access<br />

architecture and the phase noise measurements<br />

for metro-access scenarios.<br />

WS3 2:00 PM - 2:15 PM<br />

Modulation Depth Enhancement in<br />

Radio-over-Fiber Systems Using a Si 3 N 4<br />

Ring Resonator Notch Filter for Optical<br />

Carrier Reduction, A. Perentos, University of<br />

Cyprus, Nicosia, Cyprus, F. Cuesta-Soto, DAS<br />

<strong>Photonics</strong>, Valencia, Spain, A. Canciamilla,<br />

Politecnico di Milano, Milano, Italy, B. Vidal,<br />

Universidad Politécnica de Valencia, Valencia,<br />

Spain, L. Pierno, SELEX Sistemi Integrati S.p.A.,<br />

Rome, Italy, N. Sanchez-Losilla, F. Lopez-Royo,<br />

Universidad Politécnica de Valencia, Valencia,<br />

Spain, A. Melloni, Politecnico di Milano, Milano,<br />

Italy and S. Iezekiel, University of Cyprus,<br />

Nicosia, Cyprus<br />

Optical carrier reduction via the use of a Si 3 N 4<br />

ring resonator notch filter (RRNF) is proposed<br />

and experimentally demonstrated for improving<br />

the modulation efficiency in a 10 GHz radio-overfiber<br />

(RoF) system.<br />

1:30 PM - 3:00 PM<br />

Session WT: Compressive and<br />

Spectral Imaging<br />

Session Chair: Majeed M. Hayat,<br />

University of New Mexico, Albuquerque, NM,<br />

USA<br />

WT1 1:30 PM - 2:00 PM (Invited)<br />

Compressed Sensing for Practical<br />

Optical Imaging Systems, R. Willett, Duke<br />

University, Durham, NC, USA, R. F. Marcia,<br />

University of California - Merced, Merced, CA,<br />

USA and J. M. Nichols, US Naval Research<br />

Laboratory, Washington, DC, USA<br />

This tutorial discusses compressed sensing in<br />

the context of optical imaging devices, emphasizing<br />

the practical hurdles related to building<br />

such devices and offering suggestions for overcoming<br />

these hurdles.<br />

WT2 2:00 PM - 2:15 PM<br />

Classifier-Enhanced Algorithm for<br />

Compressive Spatio-Spectral Edge<br />

Detection, S. E. Godoy, M. M. Hayat,<br />

W.-Y. Jang and S. Krishna, University of New<br />

Mexico, Albuquerque, NM, USA<br />

A novel compressive edge-detection algorithm<br />

for spectral imagery is demonstrated using real<br />

long-wave spectral imagery. The idea of the<br />

algorithm is based on identifying joint spatial<br />

and spectral features via statistical learning.


1:30 PM - 2:45 PM<br />

Session WU: Space Divsion<br />

Multiplexing<br />

Session Chair: Ezra Ip, NEC Laboratories<br />

America, Inc., Princeton, NJ, USA<br />

WU1 1:30 PM - 2:00 PM (Invited)<br />

Spatial Multiplexing for Long Haul<br />

Transmission, S. Randel, R. Ryf, and<br />

P. J. Winzer, Alcatel-Lucent, Holmdel, NJ, USA<br />

Spatial multiplexing has the potential to overcome<br />

the capacity-bottleneck of single-fiber<br />

long-haul links. We review recent experimental<br />

progress and discuss relevant performance vs.<br />

complexity trade-offs from a systems perspective.<br />

WU2 2:00 PM - 2:15 PM<br />

Effect of Bend Radius on Equalizer<br />

Complexity for Multimode Coherent<br />

MIMO Transmission, H. H. Al-Hashimi,<br />

University Erlangen-Nuernberg, Erlangen,<br />

Germany, H. Buelow, Alcatel-Lucent, Erlangen,<br />

Germany and B. Schmauss, University of<br />

Erlangen-Nuremberg, Erlangen, Germany<br />

The required equalizer complexity for GI-MMF<br />

(graded index multi-mode fiber) transmitting 15<br />

spatial modes is numerically calculated with<br />

different bend radius in 112 Gb/s DP-QPSK<br />

transmission<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 2:45 PM<br />

Session WV: New Semiconductor<br />

Laser Materials<br />

Session Chair: TBD<br />

WV1 1:30 PM - 2:00 PM (Invited)<br />

Bismide Alloys for Photonic Devices:<br />

Potential and Progress, S. J. Sweeney,<br />

University of Surrey, Guildford, Surrey, UK<br />

This paper discusses how the addition of<br />

Bismuth to III-V alloys gives rise to improved<br />

band structure potentially offering reduced nonradiative<br />

losses and improved temperature<br />

stability for de devices in the near- and midinfrared.<br />

WV2 2:00 PM - 2:30 PM (Invited)<br />

III-Nitride Lasers Based on Bulk<br />

Nonpolar/Semipolar GaN, J. W. Raring,<br />

Soraa, Fremont, CA, USA<br />

GaN laser diodes will fuel a market explosion for<br />

emerging display and specialty lighting applications.<br />

Here we report performance advances in<br />

nonpolar/semipolar orientated blue and green<br />

laser diodes with high efficiency and high output<br />

power.<br />

1:30 PM - 2:45 PM<br />

Session WW: Special Symposium on<br />

Quantum <strong>Photonics</strong> IV<br />

Session Chair: Mark Stevenson, Toshiba<br />

Research Europe Ltd., Cambridge, UK<br />

WW1 1:30 PM - 2:00 PM (Invited)<br />

Efficient Generation and Wavelength<br />

Conversion of Single Photons from<br />

Quantum Nanophotonic Devices,<br />

K. Srinivasan, S. Ates, I. Agha, M. Davanço,<br />

M. T. Rakher, National Institute of Standards and<br />

Technology, Gaithersburg, MD, USA and A.<br />

Badolato, University of Rochester, Rochester, NY,<br />

USA<br />

Single photon sources based on a self-assembled<br />

quantum dot in nanophotonic waveguides,<br />

gratings, and cavities are interfaced with<br />

nonlinear media and electro-optic modulators to<br />

demonstrate quantum frequency conversion and<br />

amplitude modulation of single photon states.<br />

WW2 2:00 PM - 2:30 PM (Invited)<br />

Low Photon Number Nonlinear a Single<br />

Quantum Dot Coupled to a Photonic<br />

Crystal Cavity, E. Waks, D. Sridharan, R. Bose,<br />

H. Kim, University of Maryland, College Park,<br />

MD, USA and G. S. Solomon, National Institute<br />

of Standards and Technology, Gaithersburg, MD,<br />

USA<br />

We describe our work on engineering nonlinear<br />

optical devices using quantum dots coupled to<br />

optical resonators. These systems enable large<br />

optical Stark shifts and all optical switching with<br />

low photon numbers.<br />

1:30 PM - 3:00 PM<br />

Session WX: Gain and Loss in<br />

Plasmonics<br />

Session Chair: Holger Schmidt, University<br />

of California - Santa Cruz, Santa Cruz, CA, USA<br />

\<br />

WX1 1:30 PM - 2:00 PM (Invited)<br />

Laser Science in a Nanoscopic Gap,<br />

R. F. Oulton, Imperial College London, London,<br />

UK<br />

We review recent progress on plasmonic lasers<br />

that exhibit confinement to 1/20th of the wavelength.<br />

Our new experiments now exploit this<br />

confinement to strongly enhance light-matter<br />

interactions suggesting possible applications for<br />

plasmonic lasers.<br />

WX2 2:00 PM - 2:15 PM<br />

Spontaneous Emission Rate<br />

Enhancement using Gold Nanorods,<br />

N. Kumar, K. Messer and M. Eggleston,<br />

University of California - Berkeley, Berkeley, CA,<br />

USA<br />

We present a 7nm bare InGaAsP quantum well<br />

coupled to a gold nanorod. Photoluminescence<br />

measurements show an increased spontaneous<br />

emission rate of at least 4.5x without sacrificing<br />

efficiency.<br />

Page 55


WQ4 2:15 PM - 2:30 PM<br />

Indirect Modulation of a Terahertz<br />

Quantum Cascade Laser Using Gate<br />

Tunable Graphene, S. Badhwar, University of<br />

Cambridge, Cambridge, UK<br />

We use single layer graphene to indirectly modulate<br />

a THz QCL operating at 2.0 THz. The THz<br />

transmission is controlled by sweeping the<br />

frequency of gate bias on graphene to well<br />

beyond cutoff.<br />

WQ5 2:30 PM - 2:45 PM<br />

Trapping a Terahertz Wave in a Photonic-<br />

Crystal Slab, R. Kakimi, M. Fujita, M. Nagai,<br />

M. Ashida and T. Nagatsuma, Osaka University,<br />

Toyonaka, Osaka, Japan<br />

We trap a terahertz-wave in a photonic-crystal<br />

slab using in-plane resonance. Spectrograms<br />

made from time-domain spectroscopy visualize<br />

the dynamics of trapping successfully.<br />

Absorption is introduced as a test bed for<br />

controlling the trapped wave.<br />

WQ6 2:45 PM - 3:00 PM<br />

Dynamic Characterization of Silicon<br />

Nanowires Using a Terahertz Optical<br />

Asymmetric Demultiplexer-based Pump-<br />

Probe Scheme, H. Ji, Technical University of<br />

Denmark, Lyngby, Denmark, C. S. Cleary,<br />

J. M. Dailey, R. P. Webb, R. J. Manning, Tyndall<br />

National Institute, Cork, Ireland, M. Galili,<br />

P. Jeppesen, M. Pu, K. Yvind and<br />

L. K. Oxenløwe, Technical University of Denmark,<br />

Lyngby, Denmark<br />

Dynamic phase and amplitude all-optical<br />

responses of silicon nanowires are characterized<br />

using a terahertz optical asymmetric demultiplexer<br />

(TOAD) based pump-probe scheme.<br />

Ultra-fast recovery is observed for moderate<br />

pump powers.<br />

3:30 PM - 4:45 PM<br />

Session WY: Attosecond &<br />

Supercontinuum<br />

Session Chair: Shang-Da Yang, National<br />

Tsing Hua University, Hsinchu, Taiwan<br />

WY1 3:30 PM - 4:00 PM (Invited)<br />

Attosecond <strong>Photonics</strong>, F. X. Kärtner, Center<br />

for Free-Electron Laser Science - UHH,<br />

Hamburg, Germany<br />

Mode-locked lasers show femtosecond and even<br />

attosecond level short term timing jitter. Such<br />

ultralow jitter sources enable novel systems:<br />

timing distribution systems for next generation<br />

light sources and high-speed, high-resolution<br />

photonic analog-to-digital converters.<br />

Page 56<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

WR3 2:15 PM - 2:30 PM<br />

Event horizon and four-wave mixing in<br />

optical fibers, G. N. Genty, Tampere University<br />

of Technology, Tampere, Finland, M. Erkintalo,<br />

University of Auckland, Auckland, New Zealand<br />

and J. M. Dudley, University of Franche-Comte,<br />

Besancon, France<br />

We discuss the physics of optical event horizons<br />

and clarify how the horizon dynamics can be<br />

naturally interpreted in the framework of wave<br />

mixing between a soliton and a weak linear wave.<br />

WR4 2:30 PM - 2:45 PM<br />

Controllable Hysteresis Characteristics<br />

via Spatial Gain Overlap in Multimode<br />

Interferometer-based Bistable Laser<br />

Diodes, F. F. Foda and H. A. Bastawrous,<br />

German University in Cairo, Cairo, Egypt<br />

While saturable absorber can control the<br />

hysteresis window width in multi-mode-interferometer<br />

bi-stable laser diodes, spatial gain<br />

overlap showed significant effect on the<br />

threshold currents of the hysteresis window.<br />

WR5 2:45 PM - 3:00 PM<br />

A Graphene based Saturable Absorber on<br />

Stable Mode-Locked Fiber Lasers<br />

Employing Nano-Mica Dispersant,<br />

P. L. Huang, B.-Z. Hsieh, S.-H. Huang, C.-Y. Yeh,<br />

J.-J. Lin and W.-H. Cheng, National Sun Yat-Sen<br />

University, Kaohsiung, Taiwan<br />

A homogeneously dispersed graphene saturable<br />

absorber employing nano-mica dispersant on<br />

mode-locked fiber laser is proposed. A stable<br />

ultrafast fiber laser with pulses as short as 382 fs<br />

and 3-dB bandwidth of 6.66 nm was obtained.<br />

3:30 PM - 5:00 PM<br />

Session WZ: Silicon Nanophotonics<br />

and Other Integration Platforms<br />

Session Chair: Brian Koch, Aurrion, Santa<br />

Barbara, CA, USA<br />

WZ1 3:30 PM - 4:00 PM (Invited)<br />

Monolithic Integration of Silicon<br />

Nanophotonics with CMOS, S. Assefa,<br />

W. M. J. Green, A. V. Rylyakov, C. L. Schow, IBM<br />

Research, Yorktown Heights, NY, USA, F. Horst,<br />

IBM Research, Rueschlikon, Switzerland and<br />

Y. A. Vlasov, IBM Research, Yorktown Heights, NY,<br />

USA<br />

Monolithic integration of deeply-scaled silicon<br />

optical components with CMOS analog and<br />

WS4 2:15 PM - 2:30 PM<br />

X-Cut LiNbO3 Microwave-Lightwave<br />

Converters Using Patch-Antennas with a<br />

Narrow-Gap for Wireless-Over-Fiber<br />

Networks, Y. N. Wijayanto, H. Murata, Osaka<br />

University, Toyonaka, Osaka, Japan,<br />

T. Kawanishi, National Institute of Information<br />

and Communications Technology, Koganei,<br />

Tokyo, Japan and Y. Okamura, Osaka University,<br />

Toyonaka, Osaka, Japan<br />

X-cut LiNbO3 microwave-lightwave converters<br />

using patch-antennas with a narrow-gap are<br />

proposed for direct wireless to optical conversion.<br />

Conversion efficiency of the proposed<br />

devices was improved by 6dB for <strong>26</strong>GHz bands<br />

compared with z-cut LiTaO3 devices.<br />

WS5 2:30 PM - 2:45 PM<br />

UWB Doublet Pulse Generation Using the<br />

Combination of Parametric Amplification<br />

and Cross Phase Modulation, J. Lee,<br />

Y. M. Chang and J. H. Lee, University of Seoul,<br />

Seoul, Korea<br />

An all-optical, UWB doublet pulse generation<br />

scheme based on nonlinear optical loop mirror<br />

with parametric amplification is experimentally<br />

demonstrated. The scheme is shown to be<br />

capable of producing high quality UWB doublet<br />

pulses<br />

3:30 PM - 4:30 PM<br />

Session WAA: Optical Wireless<br />

Session Chair:<br />

WAA1 3:30 PM - 4:00 PM (Invited)<br />

Coherent Wired/Wireless Seamless<br />

Transmission with Combination of<br />

Photonic Digital and Analogue<br />

Techniques, A. Kanno, T. Kuri, I. Hosako,<br />

T. Kawanishi, National Institute of Information<br />

and Communications Technology, Koganei,<br />

Tokyo, Japan, Y. Yoshida and K.-I. Kitayama,<br />

Osaka University, Suita, Osaka, Japan<br />

Digital coherent detection and radio over fiber<br />

WT3 2:15 PM - 2:30 PM<br />

Virtual Contrast Enhancement Intelligent<br />

Illumination Adjustment Processing with<br />

Field Programmable Gate Array based<br />

Camera Systems for Imaging<br />

Applications enhancing Contrast in multi<br />

AOI Applications, M. Rosenberger, Ilmenau<br />

University of Technology, Ilmenau, Germany<br />

Virtual contrast enhancement allows a high<br />

speed illumination sequence set optimization for<br />

high precision measurement tasks. Therefore an<br />

FPGA controls the illumination and processes a<br />

captured image stack inside the camera.<br />

WT4 2:30 PM - 2:45 PM<br />

Smart Multispectral Imager, M. Preissler<br />

and M. Rosenberger, Ilmenau University of<br />

Technology, Ilmenau, Germany<br />

The Multispectral Imager combines parallel<br />

FPGA Hardware with modular and high dynamic<br />

mechanical design. Integrated processing and an<br />

interconnection to all electromechanical parts<br />

enable a real time image correction and<br />

processing with lowest latency time.<br />

WT5 2:45 PM - 3:00 PM<br />

Novel Tomography of Simultaneous<br />

Imaging and Material Characterization by<br />

Spatially-Resolved Spectroscopy,<br />

M. Sakatsume, Y. Mikawa, T. Q. Banh and<br />

T. Shioda, Nagaoka University of Technology,<br />

Nagaoka, Niigata, Japan<br />

Novel tomography was developed to observe<br />

both tomographic imaging and tomographic<br />

spectroscophic simultaneously. This method can<br />

obtain the electric field spectra of each slice in<br />

sample with optical parameters, as complex<br />

refractive index, refractivity, transmittance,…<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm GRAND PENINSULA FOYER<br />

3:30 PM - 5:00 PM<br />

Session WBB: Digital Holography,<br />

Microscopy and LADAR<br />

Session Chair: Pietro Ferraro, Istituto<br />

Nazionale di Ottica Applicata, Pozzuoli, Italy<br />

WBB1 3:30 PM - 4:00 PM (Invited)<br />

High-Resolution Digital Holographic<br />

Microscopy, C.-J. Cheng, Y.-L. Lee and<br />

Y.-C. Lin, National Taiwan Normal University,<br />

Taipei, Taiwan,<br />

This study describes a novel technique for<br />

performing digital holographic microscopy with<br />

nano-meter axial resolution. The high-resolution<br />

digital holographic microscopy is applied to the<br />

three-dimensional tomographic imaging of


WU3 2:15 PM - 2:30 PM<br />

Nonbinary LDPC-Coded OFDM Over<br />

Four/Eight-Mode Fibers with Mode-<br />

Dependent Loss, C. Lin, I. B. Djordjevic,<br />

D. Zou, M. Arabaci and M. Cvijetic, University of<br />

Arizona, Tucson, AZ, USA<br />

We propose a non-binary LDPC coded modemultiplexed<br />

coherent optical OFDM system<br />

suitable for transmission of 1.28 Tb/s 16-QAM<br />

signals over 2000 km of few-mode fiber with<br />

mode dependent loss, in strong coupling regime.<br />

WU4 2:30 PM - 2:45 PM<br />

Demonstration of Add/Drop Multiplexer<br />

for 100-Gbit/s RZ-QPSK Channels over<br />

Spatially Multiplexed Orbital Angular<br />

Momentum Modes, N. Ahmed, H. Huang,<br />

Y. Yue, Y. Yan, Y. Ren and A. E. Willner,<br />

University of Southern California, Los Angeles,<br />

CA, USA<br />

We experimentally demonstrate the add/drop<br />

multiplexer for two orbital angular momentum<br />

(OAM) modes carrying 100-Gbit/s RZ-QPSK<br />

channels. An OSNR penalty of < 1.6 dB for<br />

added and dropped channels is observed.<br />

3:30 PM - 5:00 PM<br />

Session WCC: All Optical Signal<br />

Processing II<br />

Session Chair: Leif K. Oxenløwe, Technical<br />

University of Denmark, Lyngby, Denmark<br />

WCC1 3:30 PM - 4:00 PM (Invited)<br />

Optics in the Signal Processing Chain,<br />

T. K. Woodward, A. Agarwal, T. Banwell and<br />

P. C. Toliver, Applied Communication Sciences,<br />

Red Bank, NJ, USA<br />

Technologies useful in optical communications,<br />

particularly coherent methods and nonlinear<br />

optics, are also applicable to signal processing<br />

in other domains. Inter-relationships between the<br />

two fields in these areas will be reviewed,<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

WV3 2:30 PM - 2:45 PM<br />

Gain and Laser Characteristics of InGaN<br />

Quantum Wells on Ternary InGaN<br />

Substrates, J. Zhang and N. Tansu, Lehigh<br />

University, Bethlehem, PA, USA<br />

Optical gain properties of InGaN quantum wells<br />

on ternary substrates are analyzed for visible<br />

lasers. Larger optical gains are obtained by<br />

employing ternary substrates, which indicate its<br />

potential for green-emitting diode lasers.<br />

3:30 PM - 5:00 PM<br />

Session WDD: Fiber Lasers<br />

Session Chair: Kyunghwan Oh, Yonsei<br />

University, Seoul, Korea<br />

WDD1 3:30 PM - 3:45 PM<br />

Pulse Repetition Frequency Tunability in<br />

a Highly-Compact Erbium-Doped Mode-<br />

Locked Fiber Laser, G. E. Villanueva,<br />

Universidad Politécnica de Valencia, Valencia,<br />

Valencia, Spain and P. Pérez-Millán, Universitat<br />

de València, Valencia, Valencia, Spain<br />

We present experimental and theoretical validation<br />

of the performance of a short-cavity<br />

mode-locked fiber laser with fine repetition<br />

WW3 2:30 PM - 2:45 PM<br />

Intra-Cavity Frequency Doubling in<br />

Photonic Crystal Nanocavity Quantum<br />

Dot Lasers, Y. Ota, K. Watanabe, S. Iwamoto<br />

and Y. Arakawa, University of Tokyo, Tokyo,<br />

Japan<br />

We report visible light generation via intra-cavity<br />

frequency doubling in photonic crystal<br />

nanocavity quantum dot lasers. A strong field<br />

enhancement in the nanocavity enables the<br />

efficient conversion process, even with only a few<br />

intra-cavity photons.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm GRAND PENINSULA FOYER<br />

3:30 PM - 4:30 PM<br />

Session WEE: Special Symposium on<br />

Quantum <strong>Photonics</strong> V<br />

Session Chair: Valery Zwiller, Kavli Institute<br />

of Nanoscience, Delft University of Technology,<br />

Delft, The Netherlands<br />

WEE1 3:30 PM - 4:00 PM (Invited)<br />

Deterministic Photon Cascade from<br />

Resonant Two-Photon Excitation of a<br />

Single InAs Quantum Dot, G. Weihs,<br />

H. Jayakumar, A. Predojevic, T. Huber, T. Kauten,<br />

University of Innsbruck, Innsbruck, Austria and<br />

G. S. Solomon, National Institute of Standards<br />

and Technology, Gaithersburg, MD, USA<br />

We demonstrate the coherent creation of a biexciton<br />

in an InAs/GaAs quantum dot embedded in<br />

WX3 2:15 PM - 2:30 PM<br />

Metal Quenching of Radiative Emission<br />

in Metal-Clad Nanolasers, D. G. Deppe,<br />

M. Li and X. Yang, University of Central Florida,<br />

Orlando, FL, USA<br />

Metal quenching of the radiative emission is<br />

analyzed for metal-clad nanolasers. Emission<br />

effects due the metal quenching are shown to be<br />

mistaken for laser operation of metal-clad<br />

nanolasers.<br />

WX4 2:30 PM - 2:45 PM<br />

Estimation of the Upper Bound of the<br />

Modal Gain Sustainable by MDM<br />

Waveguides, D. Handapangoda, I. Rukhlenko<br />

and M. Premaratne, Monash University -<br />

Clayton, Melbourne, Victoria, Australia<br />

Knowing the upper limit of gain ensuring<br />

complete loss compensation is vital for engineering<br />

plasmonic waveguides. We analytically<br />

estimate the maximal modal gain of active metaldielectric-metal<br />

waveguides operating below the<br />

plasmon resonance frequency.<br />

WX5 2:45 PM - 3:00 PM<br />

Comparison of Confinement and Loss of<br />

Plasmonic Waveguides, X. Sun, M. Alam,<br />

J. Aitchison and M. Mojahedi, University of<br />

Toronto, Toronto, ON, Canada<br />

We have compared a number of well known<br />

plasmonic guides in terms of power confinement,<br />

normalized power density and propagation<br />

loss. We have identified the relative advantages<br />

and limitations of these guides.<br />

3:30 PM - 5:00 PM<br />

Session WFF:<br />

Integrated<br />

Plasmonic Devices<br />

Session Chair:<br />

Ahmet A. Yanik,<br />

Harvard Medical<br />

School, Boston, MA,<br />

USA<br />

WFF1 3:30 PM -<br />

3:45 PM<br />

Broadband Efficient<br />

Hybrid Plasmonic<br />

Nano-Junctions,<br />

C. Lin, H. M. K. Wong,<br />

B. Lau, M. A. Swillam<br />

and A. S. Helmy,<br />

University of Toronto,<br />

Toronto, ON, Canada<br />

SANDPEBBLE C<br />

3:30 PM - 5:00 PM<br />

Session WGG:<br />

Compound Material<br />

Growth I<br />

Session Chair:<br />

Seth R. Bank,<br />

University of Texas at<br />

Austin, Austin, TX, USA<br />

WGG1 3:30 PM -<br />

4:00 PM (Invited)<br />

Selective Area<br />

Epitaxial Growth of<br />

III-V Semiconductors<br />

though 3D<br />

Templates: Pathway<br />

to Optoelectronically<br />

Active 3D Photonic<br />

Crystals, P. Braun,<br />

Page 57


WY2 4:00 PM - 4:30 PM (Invited)<br />

Probing Attosecond Electron Dynamics in<br />

Atoms, M. Chini, X. Wang, W. Cheng, Y. Wu,<br />

K. Zhao, Q. Zhang, E. Cunningham, Y. Wang,<br />

H. Zang and Z. Chang, University of Central<br />

Florida, Orlando, FL, USA<br />

Isolated pulses as short as 67 attoseconds were<br />

generated with Double Optical Gating. They were<br />

used to probe autoionization and AC Stark shift<br />

induced by a few-cycle near infrared laser field in<br />

attosecond transient absorption.<br />

Page 58<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

digital circuits has potential to provide costeffective<br />

and low-power optical interconnects.<br />

This paper will review recent progress in monolithic<br />

integration and deeply-scaled photonic<br />

devices.<br />

WZ2 4:00 PM - 4:15 PM<br />

Low Dark Current Ge PIN Photodiode for<br />

a High-Performance, Photonic BiCMOS<br />

Process for Radio-over-Fibre<br />

Applications, S. Lischke, Innovations for High<br />

Performance Microelectronics, Frankfurt,<br />

Brandenburg, Germany<br />

A waveguide coupled Ge PIN photodiode<br />

showing 0.7A/W responsivity and 13GHz optical<br />

bandwidth at a low dark current of 12mA/cm² is<br />

presented. Its unique features facilitate integration<br />

in a high-performance, photonic BiCMOS.<br />

technologies help realize direct seamless conversion<br />

between optical and radio networks. Recent<br />

photonic digital transmission with analogue<br />

signal synthesis technique provides high-speed<br />

optical and radio transmissions.<br />

WAA2 4:00 PM - 4:15 PM<br />

High-Speed Optical Wireless<br />

Communication System with Steering-<br />

Mirror Based Receiver for Personal Area<br />

Applications, K. Wang, A. Nirmalathas, C. Lim<br />

and E. Skafidas, University of Melbourne,<br />

Melbourne, Australia<br />

Up to 12.5 Gb/s optical wireless personal area<br />

communication system with a steering-mirror<br />

based receiver is proposed and experimentally<br />

demonstrated in this paper. Compared with<br />

previous system, the coverage area can be<br />

improved by ~20%.<br />

refractive index inside an object.<br />

WBB2 4:00 PM - 4:15 PM<br />

Diffraction Phase Microscopy for Wafer<br />

Inspection, R. Zhou, C. Edwards, G. Popescu<br />

and L. L. Goddard, University of Illinois at<br />

Urbana-Champaign, Urbana, IL, USA<br />

We built a compact, common path, laser epiillumination<br />

diffraction phase microscope<br />

(epi-DPM) for defect detection on a patterned<br />

semiconductor wafer. The wafer’s underlying<br />

structure and buried defects with ~ 100 nm size<br />

were measured.


including some recent results.<br />

WCC2 4:00 PM - 4:15 PM<br />

Stereopsis-Inspired Time-Stretched<br />

Amplified Real-Time Spectrometer<br />

(STARS), M. H. Asghari and B. Jalali,<br />

University of California - Los Angeles, Los<br />

Angeles, CA, USA<br />

We introduce and experimentally demonstrate a<br />

single-shot real-time optical vector analyzer<br />

(OVA). This instrument combines amplified<br />

dispersive Fourier transform with stereopsis<br />

reconstruction and is inspired by binocular<br />

vision in biological eyes.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

frequency tunability. The use of saturable<br />

absorbers and fiber dichroic mirrors results in a<br />

cost-efficient compact source.<br />

WDD2 3:45 PM - 4:00 PM<br />

Q-switched Mode-Locking of an Erbiumdoped<br />

Fiber Laser through Subharmonic<br />

Cavity Modulation, J. Lee, Y. M. Chang and<br />

J. H. Lee, University of Seoul, Seoul, Korea<br />

A Q-switched, mode-locked fiber laser based on<br />

cavity loss modulation at a subharmonic<br />

frequency of the fundamental intermode<br />

frequency spacing is experimentally demonstrated.<br />

This simple approach is shown to<br />

produce high quality Q-switched, mode-locked<br />

pulses.<br />

WDD3 4:00 PM - 4:15 PM<br />

Analysis of Fiber Optical Parametric<br />

Oscillator for High-Repetition-Rate Pulse<br />

Generation, J. Li, McGill University, Montreal,<br />

QC, Canada, T. Huang, Huazhong University of<br />

Science and Technology, Wuhan, Hubei, China<br />

and L. R. Chen, McGill University, Montréal, QC,<br />

Canada<br />

We analyze the effects of pump settings and<br />

cavity designs of a mode-locked fiber optical<br />

parametric oscillator on the characteristics of the<br />

output pulses. Pulse generation at different<br />

repetition rates are demonstrated and characterized.<br />

a planar microcavity through resonant twophoton<br />

excitation. This results in laser<br />

scattering-free cascaded single photons with<br />

excellent two-photon suppression.<br />

WEE2 4:00 PM - 4:15 PM<br />

Alignment between a single quantum dot<br />

and a photonic crystal nanocavity by a<br />

microscopic photoluminescence<br />

imaging, T. Kojima, K. Kojima, T. Asano and<br />

S. Noda, Kyoto University, Kyoto, Japan<br />

An accurate and reliable method to realize position<br />

and wavelength alignment between a single<br />

quantum dot and a two-dimensional slab<br />

photonic crystal nanocavity is developed using a<br />

photoluminescence imaging technique.<br />

The experimental<br />

realization of a<br />

nanoscale, high efficiency,<br />

and<br />

non-resonant broadband<br />

orthogonal<br />

junction as a coupling<br />

scheme between plasmonic<br />

slot and silicon<br />

waveguide is<br />

presented. This serves<br />

as an enabling platform<br />

for hybrid plasmonic<br />

interconnects.<br />

WFF2 3:45 PM -<br />

4:00 PM<br />

Dual Structures for<br />

Ultra-compact On-<br />

Chip Plasmonic<br />

Light Concentration<br />

on Silicon<br />

M. Chamanzar and<br />

A. Adibi, Georgia<br />

Institute of Technology,<br />

Atlanta, GA, USA<br />

We present two dual<br />

types of Si-based<br />

hybrid photonic-plasmonic<br />

structures for<br />

extreme light concentration.<br />

Both structures<br />

are ultra-compact<br />

(length < 1µm) and<br />

highly efficient.<br />

SANDPEBBLE C<br />

University of Illinois at<br />

Urbana-Champaign,<br />

Urbana, IL, USA<br />

Photonic crystals<br />

provide unprecedented<br />

control over light. In<br />

this work we demonstrate<br />

a method of<br />

forming 3D photonic<br />

and plasmonic crystals<br />

from single crystal III-V<br />

semiconductors by<br />

self-assembly and<br />

metal-organic vapor<br />

phase epitaxy.<br />

WFF3 4:00 PM - WGG2 4:00 PM -<br />

4:15 PM 4:15 PM<br />

Long-Range Twinning<br />

Plasmonic Superlattice in VLS<br />

Waveguides Grown Planar GaAs<br />

Controlled by Nanowires Induced<br />

Nematic Liquid by Impurity Doping,<br />

Crystals,<br />

R. Dowdy, P. Mohseni,<br />

R. Beccherelli, and S. A. Fortuna, J. Wen<br />

D. C. Zografopoulos, and X. Li, University of<br />

CNR-Institute for Illinois at Urbana-<br />

Microelectronics and Champaign, Urbana, IL,<br />

Microsystems, Rome, USA<br />

Italy<br />

In situ doping with Zn<br />

The optical properties and C impurities<br />

of gold stripe waveg- induces periodic twin<br />

uides enhanced with a plane boundaries along<br />

liquid-crystal overlayer the axis of planar<br />

are theoretically investi- GaAs nanowires<br />

gated. Extensive grown via Au-catalyzed<br />

tunability of modal vapor-liquid-solid<br />

effective index, area (VLS) mechanism in a<br />

and losses can be<br />

achieved via the<br />

electro-optic control of<br />

the nematic molecules.<br />

MOCVD environment.<br />

Page 59


WY3 4:30 PM - 4:45 PM<br />

Practical Supercontinuum Source for Few<br />

Hundred Femtosecond Seed Pulses,<br />

S. Domingue and R. A. Bartels, Colorado State<br />

University, Fort Collins, CO, USA<br />

We present measurements and theoretical work<br />

demonstrating the drastic reduction of polarization<br />

instability driven noise, improving the<br />

stability of polarized supercontinuum generated<br />

in all normal dispersion highly nonlinear fiber.<br />

Page 60<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

WZ3 4:15 PM - 4:30 PM<br />

Silicon Waveguide Wavelength-selective<br />

Switch for On-chip WDM<br />

Communications, K. Miura, Y. Shoji and<br />

T. Mizumoto, Tokyo Institute of Technology,<br />

Meguro-ku, Tokyo, Japan<br />

A wavelength selective switch composed of<br />

microring resonators and MZI-based thermooptic<br />

switches is fabricated in an SOI waveguide.<br />

A wavelength-selective transmittance change of<br />

9.7 dB is demonstrated at a wavelength channel<br />

of 1.548 µm.<br />

WZ4 4:30 PM - 4:45 PM<br />

Encapsulation of a Microtoroid Resonator<br />

Side-Coupled to a Fiber Taper into a<br />

Polymer Matrix, F. Monifi, Washington<br />

University in Saint Louis, St. Louis, MO, USA<br />

We have packaged an ultra-high-quality factor<br />

(over 10 million) on-chip micro-toroid inside a<br />

low-refractive index polymer and showed its<br />

roboustness in harsh environment and its ability<br />

for thermal sensing.<br />

WZ5 4:45 PM - 5:00 PM<br />

Compact TE/TM-pass Polarizer Based on<br />

Lithium Niobate on Insulator Ridge<br />

Waveguides, E. Saitoh, K. Saitoh and<br />

M. Koshiba, Hokkaido University, Sapporo,<br />

Hokkaido, Japan<br />

We propose TE/TM-pass polarizer based on loss<br />

mechanism in leaky lithium niobate on insulator<br />

ridge waveguides. We show compact polarizers<br />

can be designed for both TE and TM polarizations<br />

by changing the height of waveguide.<br />

WAA3 4:15 PM - 4:30 PM<br />

BER Performance of Non-Line-of-Sight<br />

Ultraviolet Links with Spatial Diversity in<br />

Turbulence Atmosphere, H. Xiao, Y. Zuo,<br />

J. Wu, Y. Li and J. Lin, Beijing University of<br />

Posts & Telecommunications, Beijing, China<br />

The BER performance of NLOS UV links with ML<br />

spatial diversity scheme is investigated for<br />

various fading correlation at different receivers.<br />

We also compare ML diversity detection with OC<br />

scheme with different turbulence intensity.<br />

WBB3 4:15 PM - 4:30 PM<br />

Compensation of Group Delay Ripple in<br />

Chirped Fiber Bragg Gratings and its<br />

Application in Chirped Pulse Laser<br />

Radar, M. U. Piracha, D. Nguyen and<br />

P. J. Delfyett, University of Central Florida,<br />

Orlando, FL, USA<br />

Spectral phase modulation is used to compensate<br />

the group delay ripple (< +/-50ps) of a<br />

chirped fiber Bragg grating (dispersion =<br />

1651ps/nm) to achieve a range resolution of<br />

320µm in a chirped pulse laser radar.<br />

WBB4 4:30 PM - 4:45 PM<br />

Optoelectronic 3D Laser Scanning<br />

Technical Vision System based on<br />

Dynamic Triangulation, L. C. Basaca,<br />

O. Sergiyenko, J. C. Rodriguez and M. Rivas,<br />

Universidad Autónoma de Baja California,<br />

Mexicali, Mexico<br />

Using a laser as emitter and a scanning aperture<br />

as sensor we developed a vision system capable<br />

of measuring the 3D coordinates of detected<br />

objects. This system is intended for autonomous<br />

robot navigation.<br />

WBB5 4:45 PM - 5:00 PM<br />

Holographic Capability for Imaging<br />

Through Scattering Colloidal Flowing<br />

Fluids, M. Paturzo, P. Ferraro, A. Finizio,<br />

P. Memmolo, Istituto Nazionale di Ottica<br />

Applicata, Pozzuoli, Italy, D. Balduzzi, R. Puglisi<br />

and A. Galli, Istituto Sperimentale Italiano<br />

“Lazzaro Spallanzani”, Rivolta d’Adda, Cremona,<br />

Italy<br />

We show that sharp imaging is possible in<br />

microfluidics in flowing turbid media by digital<br />

holography. In flowing liquids with suspended<br />

colloidal particles, a clear vision cannot be<br />

recovered by any other microscopic imaging<br />

technique.


WCC3 4:15 PM - 4:30 PM<br />

Ultra-Fast All-Optical Nth-Order<br />

Differentiators based on Transmission<br />

Fiber Bragg Gratings, M. d. R. Fernández-<br />

Ruiz, Institut National de la Recherche<br />

Scientifique, Montreal, QC, Canada, A. Carballar,<br />

Universidad de Sevilla, Sevilla, Spain and J.<br />

Azaña, Institut National de la Recherche<br />

Scientifique, Montréal, QC, Canada<br />

A new technique to design ultra-broadband<br />

(~THz) all-optical signal processing devices<br />

based on linearly chirped fiber Bragg gratings<br />

operated in transmission is presented. Efficient<br />

and feasible Nth-order differentiators are numerically<br />

demonstrated based on this technique.<br />

WCC4 4:30 PM - 4:45 PM<br />

Time-Domain Holography,<br />

M. d. R. Fernández-Ruiz, M. Li and J. Azaña,<br />

Institut National de la Recherche Scientifique,<br />

Montréal, QC, Canada<br />

The exact time-domain counterpart of spatialdomain<br />

holography is introduced and formalized.<br />

Its application for arbitrary complex optical signal<br />

generation based on intensity-only devices (e.g.<br />

single Mach-Zehnder modulator and optical<br />

bandpass filter) is experimentally demonstrated.<br />

WCC5 4:45 PM - 5:00 PM<br />

Arbitrary-Order Photonic Differentiators<br />

Based on Phase-Shifted Long-Period<br />

Gratings, R. Ashrafi and J. Azaña, Institut<br />

National de la Recherche Scientifique, Montréal,<br />

QC, Canada<br />

A novel design of THz-bandwidth all-optical<br />

arbitrary-order differentiators based on phaseshifted<br />

long period fiber/waveguide gratings is<br />

proposed and numerically demonstrated. This<br />

solution offers a dramatically increased tolerance<br />

against practical variations in the grating parameters.<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

WDD4 4:15 PM - 4:30 PM<br />

Dual-Wavelength Lasing Around 800 nm<br />

in a Tm:ZBLAN Fibre Laser, B. Frison,<br />

A. R. Sarmani, L. R. Chen, McGill University,<br />

Montréal, QC, Canada, X. Gu, Ryerson<br />

University, Toronto, ON, Canada, S. Thomas,<br />

P. Long, O/E Land, Inc., Lasalle, QC, Canada and<br />

M. Saad, IRphotonics, Saint-Laurent, QC,<br />

Canada<br />

We demonstrate dual wavelength operation,<br />

wavelength switching, and bistable behaviour in<br />

a Tm:ZBLAN fibre laser operating at 800 nm. The<br />

lasers are built in both single and cascadedcavity<br />

configurations.<br />

WDD5 4:30 PM - 4:45 PM<br />

Investigation of Strain-Induced Effects on<br />

Microwave Signals from an PM-EDF<br />

based Short Cavity DBR Laser, M. Jiang,<br />

X.-Q. Dinh, P. Shum, Nanyang Technological<br />

University, Singapore, S. Molin, Thales Research<br />

and Technology - France, Palaiseau, France,<br />

Z. F. Wu, Nankai University, Tianjin, China and P.<br />

Nouchi, Thales Research and Technology -<br />

France, Palaiseau, France<br />

Axial strain-induced effects on beating frequency<br />

from a short cavity PM-EDF based distributed<br />

Bragg reflector (DBR) laser was investigated and<br />

experimentally demonstrated for the first time. A<br />

linear strain sensitivity of 0.640 GHz/m was<br />

obtained.<br />

WDD6 4:45 PM - 5:00 PM<br />

Down-conversion Praseodymium Doped<br />

Fiber Laser: Modeling and Analysis,<br />

M. Tang, , J. Shi, S. Fu and P. Shum, Huazhong<br />

University of Science and Technology, Wuhan,<br />

Hubei, China<br />

We proposed a fiber Bragg grating based Pr 3+ -<br />

doped down conversion fiber lasers for red and<br />

green light generation. Numerical simulations<br />

investigate both steady state and Q-switching<br />

dynamics that qualitatively agree well with<br />

previous experimental demonstrations.<br />

WEE3 4:15 PM - 4:30 PM<br />

Blue Single Photon Emission from a<br />

Single InGaN/GaN Quantum Dot in<br />

Nanowire up to 200K, S. Deshpande,<br />

L. Zhang, T. Hill, A. Das, H. Deng and<br />

P. Bhattacharya, University of Michigan, Ann<br />

Arbor, MI, USA<br />

We report single photon emission from a single<br />

InGaN quantum dot inserted in a GaN nanowire<br />

(grown on Silicon by MBE) with a g2(0)=0.29 at<br />

200K.<br />

WFF4 4:15 PM -<br />

4:30 PM<br />

Optical-Frequency<br />

Signal<br />

Transmission via<br />

Localized Surface<br />

Plasmons,<br />

M. Fukuhara, T. Aihara,<br />

Y. Ishii and M. Fukuda,<br />

Toyohashi University of<br />

Technology, Toyohashi,<br />

Aichi, Japan<br />

We report results from<br />

a numerical study of<br />

optical-frequency<br />

signal transmission via<br />

localized surface<br />

plasmons (LSPs).<br />

LSPs excited within a<br />

Au disk on a Si<br />

substrate propagate<br />

over a chain of disks<br />

providing the signal.<br />

WFF5 4:30 PM -<br />

4:45 PM<br />

Spectral<br />

Deformation of<br />

Propagating<br />

Surface Plasmon<br />

Polaritons, T. Aihara,<br />

M. Fukuhara,<br />

K. Nakagawa, Y. Ishii<br />

and M. Fukuda,<br />

Toyohashi University of<br />

Technology, Toyohashi,<br />

Aichi, Japan<br />

We discuss an analytic<br />

expression for the<br />

spectral shape of<br />

propagating surface<br />

plasmon polaritons<br />

(SPPs). Based on<br />

Drude’s model, the<br />

SPP spectral deformation,<br />

determined by<br />

differences in the<br />

intensity decay length,<br />

has been confirmed.<br />

WFF6 4:45 PM -<br />

5:00 PM<br />

Novel Polarization<br />

Splitting Through<br />

Asymmetric<br />

Plasmonic-<br />

Dielectric<br />

Coupling, L. Gao,<br />

F. Hu and Z. Zhou,<br />

Peking University,<br />

Beijing, China<br />

A novel polarization<br />

splitting is proposed<br />

through plasmonicdielectric<br />

coupling with<br />

ultrashort coupling<br />

length. Extinction<br />

ratios of 20.8dB and<br />

17.0dB for TE and TM<br />

SANDPEBBLE C<br />

WGG3 4:15 PM -<br />

4:30 PM<br />

Dilute-As GaNAs<br />

Semiconductor for<br />

Visible Emitters,<br />

C. K. Tan, J. Zhang,<br />

X.-H. Li, G. Liu and<br />

N. Tansu, Lehigh<br />

University, Bethlehem,<br />

PA, USA<br />

First-principle analysis<br />

of the band structure for<br />

dilute-As GaNAs semiconductor<br />

was carried<br />

out, and the finding<br />

showed the direct<br />

bandgap properties of<br />

this alloy covering the<br />

entire visible spectral<br />

regime applicable for<br />

new visible emitters.<br />

WGG4 4:30 PM -<br />

4:45 PM<br />

P-Doped Effect on<br />

Dot density in<br />

InP/AlGaInP Laser<br />

Diode Structures,<br />

M. Al-Ghamdi, King<br />

Abdulaziz University,<br />

Jeddah, Saudi Arabia,<br />

P. M. Smowton, Cardiff<br />

University, Cardiff, UK<br />

and A. B. Krysa,<br />

University of Sheffield,<br />

Sheffield, UK<br />

We demonstrate the pdoping<br />

influence on<br />

number of dots<br />

explained by comparison<br />

with structures has<br />

different quantity of<br />

material deposited.<br />

Peak modal gain at<br />

high temperatures is<br />

higher in p-doped<br />

structure compare to<br />

undoped one.<br />

WGG5 4:45 PM -<br />

5:00 PM<br />

Transmission<br />

Electron<br />

Microscopy Study<br />

of Metamorphic III-<br />

Sb VECSELs on<br />

GaAs/AlGaAs<br />

Distributed Bragg<br />

Reflectors,<br />

P. Ahirwar, D. Shima,<br />

T. J. Rotter, S. Clark,<br />

C. P. Hains, University<br />

of New Mexico,<br />

Albuquerque, NM,<br />

USA, A. Laurain,<br />

Y.-Y. Lai, T.-L. Wang,<br />

M. Yarborough,<br />

J. V. Moloney,<br />

Page 61


Page 62<br />

TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

POSTDEADLINE SESSIONS 5:30pm - 6:30pm - GRAND PENINSULA D<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol


TECHNICAL PROGRAM WEDNESDAY <strong>26</strong> SEPTEMBER <strong>2012</strong><br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

polarizations are<br />

achieved at a coupling<br />

length of 4.13µm.<br />

POSTDEADLINE SESSIONS 5:30pm - 6:30pm - GRAND PENINSULA D<br />

SANDPEBBLE C<br />

University of Arizona,<br />

Tucson, AZ, USA and<br />

G. Balakrishnan,<br />

University of New<br />

Mexico, Albuquerque,<br />

NM, USA<br />

We present epitaxial<br />

strategies for the growth<br />

of III-Sb vertical<br />

external cavity surface<br />

emitting lasers<br />

(VECSELs) on<br />

GaAs/AlGaAs<br />

Distributed Bragg<br />

Reflectors (DBR) and<br />

compare the results to<br />

all antimonide latticematched<br />

VECSELs on<br />

GaSb substrates.<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol<br />

Page 63


Announcing an Issue of the <strong>IEEE</strong><br />

JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS on<br />

Graphene Optoelectronics<br />

The <strong>IEEE</strong> Journal of Selected Topics in Quantum Electronics (JSTQE) invites manuscript submissions in the area of Graphene<br />

Optoelectronics. The purpose of this issue of JSTQE is to document leading-edge work in this field through a collection of original<br />

and invited papers ranging from fundamental physics to applications.<br />

The Primary Guest Editor for this issue is Thomas Müller, Vienna University of Technology, Austria.<br />

The deadline for submission of manuscripts is April 1, 2013. Unedited preprints of accepted manuscripts are normally posted online<br />

on <strong>IEEE</strong> Xplore within 1 week of authors uploading their final files in the ScholarOne Manuscripts submission system. The final<br />

copy-edited and XML-tagged version of a manuscript is posted on <strong>IEEE</strong> Xplore as soon as possible once page numbers can be<br />

assigned. This version replaces the preprint and is usually posted well before the hardcopy of the issue is published. Hardcopy<br />

publication of the issue is scheduled for January/February 2014.<br />

All submissions will be reviewed in accordance with the normal procedures of the Journal.<br />

For inquiries regarding this Special Issue, please contact:<br />

JSTQE Editorial Office - Chin Tan Lutz<br />

<strong>IEEE</strong>/<strong>Photonics</strong> Society<br />

445 Hoes Lane,<br />

Piscataway, NJ 08854, U.S.A.<br />

Phone: 732-465-5813,<br />

Email: c.tanlutz@ieee.org<br />

Preliminary Call for Papers<br />

Submission Deadline: April 1, 2013<br />

The following supporting documents are required during the mandatory online submission at:<br />

http://mc.manuscriptcentral.com/jstqe-pho<br />

1) PDF or MS Word manuscript (double column format, up to 12 pages for an invited paper, up to 8 pages for a contributed paper).<br />

Manuscripts over the standard page limit will have an overlength charge of $220.00 per page imposed. Biographies of all authors are<br />

mandatory, photographs are optional. You may find the Tools for Authors link useful:<br />

http://www.ieee.org/web/publications/authors/transjnl/index.html<br />

2) Completed Color Printing Agreement/Decline form. Please email c.tanlutz@ieee.org to request this form.<br />

3) MS Word document with full contact information for all authors as indicated below:<br />

Last name (Family name), First name, Suffix (Dr./Prof./Ms./Mr.), Affiliation, Department, Address, Telephone, Facsimile, Email.


8:30 AM - 9:30 AM<br />

Session ThA: Tutorial IV<br />

Session Chair: TBD<br />

ThA1 8:30 AM - 9:30 AM (Tutorial)<br />

Coherent Communication, P. J. Winzer,<br />

Alcatel-Lucent, Holmdel, NJ, USA<br />

We review hardware, digital signal processing,<br />

and networking trade-offs when scaling coherent<br />

transport systems beyond 100-Gb/s per-channel<br />

interface rates and beyond 10-Tb/s fiber capacities<br />

using higher-order modulation formats and<br />

optical superchannels.<br />

Page 66<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

8:30 AM - 10:00 AM<br />

Session ThB: Silicon <strong>Photonics</strong><br />

Session Chair: James J. Coleman,<br />

University of Illinois at Urbana-Champaign,<br />

Urbana, IL, USA<br />

ThB1 8:30 AM - 8:45 AM<br />

Integration of Ultra-Low-Loss Silica<br />

Waveguides with Silicon <strong>Photonics</strong>,<br />

J. F. Bauters, M. L. Davenport, M. Heck,<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA, J. Gleason, A. Chen,<br />

A. W. Fang, Aurrion, Goleta, CA, USA and<br />

J. E. Bowers, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We demonstrate an integrated silicon and ultralow-loss<br />

silica waveguide platform. Coupling<br />

between layers is achieved with (0.4±0.2) dB of<br />

loss per transition and a 20 nm 3-dB bandwidth.<br />

ThB2 8:45 AM - 9:00 AM<br />

Nonreciprocal Transmission of 10 Gbps<br />

OOK Data through an All-Silicon Passive<br />

Optical Diode, J. Wang, L. Fan, L. Varghese,<br />

Purdue University, West Lafayette, USA, F. Gan,<br />

X. Wang, Chinese Academy of Sciences,<br />

Shanghai, China, J. Wirth, B. Niu, Y. Xuan,<br />

D. E. Leaird, A. M. Weiner and M. Qi, Purdue<br />

University, West Lafayette, IN, USA<br />

An optical diode transmits forward 10Gbps data<br />

with less than 0.5dB power penalty, while<br />

suppressing and distorting backward data with a<br />

11dB nominal power penalty. The nonreciprocal<br />

transmission is also demonstrated with a silicon<br />

modulator.<br />

ThB3 9:00 AM - 9:15 AM<br />

Highly Compact Ultra-low Loss<br />

Polarization Insensitive 1-to-2 Multimode<br />

Interference Splitter, Z. Xiao, F. Luan,<br />

Nanyang Technological University, Singapore,<br />

X. Luo, Institute of Microelectronics, A*STAR,<br />

Singapore, P. Lim, S. T. T. H. Silalahi, Nanyang<br />

Technological University, Singapore, T.-Y. Liow,<br />

J. Zhang, Institute of Microelectronics, A*STAR,<br />

Singapore and P. Shum, Nanyang Technological<br />

University, Singapore<br />

We experimentally demonstrated a highly<br />

compact 1-to-2 multimode interference splitter to<br />

achieve polarization insensitive ultra-low loss<br />

behavior. The excess loss is 0.112 dB and 0.184<br />

dB for TE and TM mode, respectively.<br />

ThB4 9:15 AM - 9:30 AM<br />

On-chip Mode Multiplexer Based on a<br />

Single Grating Coupler, Y. Ding, H. Ou,<br />

J. Xu, Technical University of Denmark, Lyngby,<br />

Denmark, M. Xiong, Huazhong University of<br />

Science and Technology, Wuhan, Hubei, China<br />

and C. Peucheret, Technical University of<br />

Denmark, Lyngby, Denmark<br />

A two-mode multiplexer based on a single<br />

grating coupler is proposed and demonstrated<br />

on a silicon chip. The LP01 and LP11 modes of a<br />

few-mode fiber are excited from TE0 and TE1<br />

silicon waveguide modes.<br />

8:30 AM - 9:45 AM<br />

Session ThC: Optical Access<br />

Session Chair: Ivan Andonovic, University<br />

of Strathclyde, Glasgow, Scotland, UK<br />

ThC1 8:30 AM - 9:00 AM (Invited)<br />

Optoelectronic Integration for Broadband<br />

Optical Access Networks, P. Z. Dashti,<br />

C. F. Lam, R. Urata, H. Liu and M. Medin,<br />

Google Inc., Mountain View, CA, USA<br />

In this paper we discuss the emerging enabling<br />

technologies for next generation broadband<br />

optical access networks. These technologies are<br />

discussed in the context of different passive<br />

optical network architectures and the role they<br />

play to alleviate various <strong>technical</strong> and economic<br />

hurdles.<br />

ThC2 9:00 AM - 9:15 AM<br />

40 Gb/s REAM-based WDM-PON Utilizing<br />

Dicode Encoding and Electrical<br />

Equalization, Q. Guo and A. V. Tran, University<br />

of Melbourne, Melbourne, Victoria, Australia<br />

We propose to apply dicode encoding with<br />

electrical equalization in 40-Gb/s REAM-based<br />

WDM-PON. Rayleigh-backscattering tolerance<br />

and receiver sensitivity at BER of 2×10 -4 are<br />

improved by 6.5 dB and 1.5 dB, respectively,<br />

compared with non-coded NRZ.<br />

ThC3 9:15 AM - 9:30 AM<br />

A 20-GSample/s (10 GHz x 2 clocks)<br />

burst-mode CDR based on injectionlocking<br />

and space sampling for access<br />

networks, B. J. Shastri, P. R. Prucnal, Princeton<br />

University, Princeton, NJ, USA and D. V. Plant,<br />

McGill University, Montréal, QC, Canada<br />

We demonstrate a novel 20-GSample/s burstmode<br />

CDR circuit featuring instantaneous (0-bit)<br />

phase acquisition with BER


8:30 AM - 9:45 AM<br />

Session ThE: High-Intensity, Short-<br />

Pulse Lasers and Their Applications<br />

Session Chair: Koichi Yamakawa, Japan<br />

Atomic Energy Agency, Kizu, Kyoto, Japan<br />

ThE1 8:30 AM - 9:00 AM (Invited)<br />

Break Ti:sapphire Laser Power to<br />

Petawatt with High Contrast Ratio, Z. Wei,<br />

Z. Wang, C. Liu, Z. Sheng, H. Fan, H. Teng,<br />

H. Han, Q. Zhang, J. Ma, Y. Li and J. Zhang,<br />

Beijing National Laboratory for Condensed<br />

Matter, Beijing, China<br />

Peak Power above 1 PW was obtained from a<br />

femtosecond Ti:sapphire laser facility based on<br />

DCPA technique. With optical parametric amplification<br />

clean the seeding pulse, we measured<br />

contrast ratio up to 10 10 in picosecond range.<br />

ThE2 9:00 AM - 9:15 AM<br />

ThF3 9:00 AM - 9:15 AM<br />

Experimental Demonstration of PW A Ferrofluid Infiltrated Polymeric<br />

Beamline based on an Injected Elliptical Microstructured Optical Fiber Sensor for<br />

Beam, W. Tao, Shanghai Institute of Laser Magnetic Field Measurements,<br />

Plasma, Shanghai, China, L. Dawei, Shanghai A. Candiani, University of Parma, Parma, Italy,<br />

Institute of Optics and Fine Mechanics, Shanghai, A. Argyros, S. G. Leon-Saval, R. Lwin, University<br />

China, L. Zhaoyang, Shanghai Institute of Laser of Sydney, Sidney, Australia, G. Zito, Foundation<br />

Plasma, Shanghai, China,<br />

for Research & Technology-Hellas, Heraklion,<br />

X. Guang, Shanghai Institute of Optics and Fine Greece, S. Selleri, University of Parma, Parma,<br />

Mechanics, Shanghai, China and D. Yaping, Italy and S. Pissadakis, Foundation for Research<br />

Shanghai Institute of Laser Plasma, Shanghai, & Technology-Hellas, Heraklion, Greece<br />

Shanghai, China<br />

A magnetic-field sensor implemented on a poly-<br />

An elliptical beam is employed for maximum meric microstructured optical fiber infiltrated<br />

energy while using pulse compression gratings using ferrofluid is presented. The fiber sensor is<br />

with a size of 380mm×430mm. The experimental operating in transmission mode, measuring<br />

demonstration of PW beamline for amplification magnetic fields up to 1250Gauss, revealing high<br />

and pulse compression has been implemented. polarization sensitivity.<br />

ThE3 9:15 AM - 9:30 AM<br />

Ultrabroadband Phase-Matching Optical-<br />

Parametric Chirped-Pulse Amplification<br />

with a Diverged Pump Beam, Y. Akahane,<br />

K. Ogawa, M. Aoyama, Japan Atomic Energy<br />

Agency, Kizugawa, Kyoto, Japan, T. Harimoto,<br />

University of Yamanashi, Kofu, Yamanashi, Japan<br />

and K. Yamakawa, Japan Atomic Energy Agency,<br />

Kizugawa, Kyoto, Japan<br />

We have demonstrated a novel optical–parametric<br />

chirped-pulse amplification scheme with<br />

diverged pump beam for ultraboradband phasematching.<br />

Over 400nm ultrabroadband amplified<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

8:30 AM - 10:00 AM<br />

Session ThF: Fiber Measurements<br />

and Sensors<br />

Session Chair: John M. Ballato, Clemson<br />

University, Clemson, SC, USA<br />

ThF1 8:30 AM - 8:45 AM<br />

Optical Dispersion Spectroscopy using<br />

Optical Frequency Comb, M. Nakamura,<br />

Nagaoka University of Technology, Nagaoka,<br />

Nigata Japan<br />

Novel optical dispersion spectroscopy has been<br />

developed with a dynamic range of 2500 ps/nm<br />

and a resolution of < 1 ps/nm. It was realized<br />

using dual-heterodyne mixing with 25 GHz- and<br />

2 GHz-optical frequency combs.<br />

ThF2 8:45 AM - 9:00 AM<br />

Verification of Reflection at Optical<br />

Connector in High-power range using<br />

Coherent-OTDR, S. Sasaki, KDDI Corporation,<br />

Tokyo, Japan, K. Takeshima, N. Yoshikane,<br />

T. Tsuritani, KDDI R&D Laboratories, Fujimino,<br />

Saitama, Japan and E. Shibano, KDDI<br />

Corporation, Tokyo, Japan<br />

The reflection at the optical connector in highpower<br />

range was experimentally verified by using<br />

Coherent-OTDR for the first time. The result<br />

shows less reflectivity and the possibility of<br />

increasing optical absorption in higher range.<br />

ThF4 9:15 AM - 9:30 AM<br />

Sagnac Interferometer based<br />

Temperature Sensor by Using Selectively<br />

Filled Photonic Crystal Fiber, Y. Cui,<br />

P. Shum, Nanyang Technological University,<br />

Singapore, D. J. J. Hu, A*STAR Institute for<br />

Infocomm Research, Singapore, G. Wang,<br />

Chinese University of Hong Kong, Shatin, NT,<br />

Hong Kong, G. Humbert, University of Limoges,<br />

Limoges, France and X.-Q. Dinh, Nanyang<br />

Technological University, Singapore<br />

A Sagnac interferometer based temperature<br />

sensor is proposed by using a piece of selec-<br />

8:30 AM - 9:45 AM<br />

Session ThG: Heterogenious<br />

Integration Technology and Devices<br />

Session Chair: Nobuhiko Nishiyama, Tokyo<br />

Institute of Technology, Tokyo, Japan<br />

ThG1 8:30 AM - 9:00 AM (Invited)<br />

Advances in III-V Heterogeneous<br />

Integration on Silicon, G. A. Fish, J. E. Roth,<br />

V. Kaman and A. W. Fang, Aurrion, Goleta, CA,<br />

USA<br />

In this talk, we review the advances in a heterogeneous<br />

silicon integration platform that<br />

provides state of the art active and passive<br />

devices integrated on silicon substrates for<br />

advanced photonic systems-on-chip.<br />

ThG2 9:00 AM - 9:30 AM (Invited)<br />

Status of Bonding Technology for Hybrid<br />

Integration - A Review of the Surface<br />

Activated Bonding (SAB), T. Suga,<br />

University of Tokyo, Tokyo, Japan<br />

The present paper describes the current status of<br />

direct wafer bonding techniques for hybrid integration<br />

at low temperatures, including a modified<br />

plasma activation bonding and the surface activated<br />

bonding using nano-adhesion layer at the<br />

interface.<br />

8:30 AM - 10:00 AM<br />

Session ThH: Quantum Confined<br />

Light Sources<br />

Session Chair: Shuang Zhang, University<br />

of Birmingham, Birmingham, UK<br />

ThH1 8:30 AM - 9:00 AM (Invited)<br />

Si Nanocrystals for Photon Management,<br />

T. Gregorkiewicz, University of Amsterdam,<br />

Amsterdam, The Netherlands<br />

In my presentation I will discuss two recent<br />

results recently obtained by optical spectroscopy<br />

on solid state dispersions of SiNCs in an SiO 2 -<br />

matrix.<br />

ThH2 9:00 AM - 9:15 AM<br />

Individually-Addressed Planar Nanoscale<br />

InGaN-based Light Emitters, D. Massoubre,<br />

P. R. Edwards, E. Xie, E. Richardson,<br />

I. M. Watson, E. Gu, R. Martin and<br />

M. D. Dawson, University of Strathclyde,<br />

Glasgow, Scotland, UK<br />

We report on a new fabrication approach to<br />

create individually-addressable InGaN-based<br />

nanoscale-LEDs. It is based on the creation by<br />

LEEBI of a spatially confined sub-micron-size<br />

charge injection path within the p-GaN of an LED<br />

structure.<br />

ThH3 9:15 AM - 9:30 AM<br />

Observation of Biexcitons in the presence<br />

of Trions generated via Sequential<br />

Absorption of Multiple Photons in<br />

Colloidal Quantum Dot Solids, A. F. Cihan,<br />

P. L. Hernandez Martinez, Y. Kelestemur and<br />

H. V. Demir, Bilkent University, Bilkent, Ankara,<br />

Turkey<br />

Spectrally resolved temporal recombination<br />

behavior of biexcitons in near unity quantum<br />

yield CdSe/CdS nanocrystals are studied in the<br />

presence of photocharging. Experimental results<br />

showing that biexcitons resolved from trions are<br />

Page 67


10:30 AM - 12:00 PM<br />

Session ThI: Ultrafast & Nonlinear<br />

Plasmonics<br />

Session Chair: Andrew M. Weiner, Purdue<br />

University, West Lafayette, IN, USA<br />

ThI1 10:30 AM - 11:00 AM (Invited)<br />

Ultrafast Nanoplasmonic Circuits and<br />

Devices, A. Y. Elezzabi and S. Sederberg,<br />

University of Alberta, Edmonton, AB, Canada<br />

We present various classes of monolithicallyintegrated<br />

nanoplasmonic devices and circuits<br />

on a complementary metal-oxide-semiconductor<br />

(CMOS) platform for electronic-plasmonic<br />

hybrid integration. Through this investigation, we<br />

demonstrate ultrafast switching, modulation and<br />

routing of such devices.<br />

Page 68<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

ThB5 9:30 AM - 9:45 AM<br />

Ultra-Compact Integrated Hybrid<br />

Plasmonic Mode Evolution Polarization<br />

Rotator, J. Caspers, M. Alam and M. Mojahedi,<br />

University of Toronto, Toronto, ON, Canada<br />

We propose a novel ultra-compact (4.7 µm)<br />

hybrid-plasmonic polarization rotator at telecommunication<br />

wavelength for integrated Si photonic<br />

circuits. The device shows an extinction ratio of<br />

>17 dB, and low insertion losses of 1.6 dB.<br />

ThB6 9:45 AM - 10:00 AM<br />

OSNR Measurements Using Silicon<br />

Grating Coupler and Integrated<br />

Photodiode, K. Xu, Y. M. Chen, Z. Cheng,<br />

X. Chen and H. K. Tsang, Chinese University of<br />

Hong Kong, Hong Kong<br />

We demonstrate a simple technique for OSNR<br />

monitoring using integrated grating coupler and<br />

PN diode. Measurement of OSNR between 10 dB<br />

and 25 dB was achieved via the polarization<br />

dependence of the grating coupler.<br />

10:30 AM - 12:15 PM<br />

Session ThJ: Photonic Crystals &<br />

Integration<br />

Session Chair: Mario Dagenais, University<br />

of Maryland, College Park, MD, USA<br />

ThJ1 10:30 AM - 11:00 AM (Invited)<br />

Photonic Crystal Lasers on Silicon,<br />

A. Bazin, Y. Halioua, T. J. Karle, P. Monnier,<br />

I. Sagnes, R. Raj and F. Raineri, Laboratoire de<br />

Photonique et de Nanostructures, Marcoussis,<br />

France<br />

III-V semiconductor photonic crystal nanolasers<br />

are heterogeneously integrated on a SOI waveguides<br />

circuitry. We demonstrate this approach<br />

constitutes an efficient way to interface these<br />

ultimate lasers. Coupling efficiency and optical<br />

bistability will be discussed.<br />

ThC4 9:30 AM - 9:45 AM<br />

On the Electrical Power Distribution for<br />

Coexisting OFDM-based Signals in<br />

Converged Long-Reach Passive Optical<br />

Networks, F. W. Carvalho, Instituto de<br />

Telecomunicações, Lisboa, Portugal<br />

Three electrical power distributions (EPD) for a<br />

mix of five coexisting OFDM-based signals in<br />

converged long-reach passive optical networks<br />

are compared. Using the optimum EPD, a<br />

network reach of 105~km is shown.<br />

10:30 AM - 11:45 AM<br />

Session ThK: Optical Networking<br />

Session Chair: TBD<br />

ThK1 10:30 AM - 11:00 AM (Invited)<br />

SDN Based Unified Control Architecture,<br />

S. Das, G. Parulkar and N. W. McKeown,<br />

Stanford University, Stanford, CA, USA<br />

We discuss the motivations and progress made<br />

towards the development of a unified control<br />

architecture based on Software Defined<br />

Networking (SDN) for packet and circuit switched<br />

networks.<br />

ThD4 9:30 AM - 9:45 AM<br />

Si Photonic Device Uniformity<br />

Improvement Using Wafer-Scale<br />

Location Specific Processing,<br />

S. K. Selvaraja, Ghent University, Gent, Belgium<br />

We report two-fold improvement in Si photonic<br />

device uniformity over a 200mm SOI wafer<br />

through location specific processing. A within<br />

wafer thickness non-uniformity of 0.8nm yielding<br />

a grating fiber-coupler peak-wavelength nonuniformity<br />

of 1.8nm is achieved.<br />

ThD5 9:45 AM - 10:00 AM<br />

Demonstration of High-Q Microspheres<br />

in Indium Fluoride, a New Mid-IR Glass<br />

Host, R. K. Jain, B. Way, M. Klopfer, I. Small,<br />

University of New Mexico, Albuquerque, NM,<br />

USA, M. Saad, IRphotonics, Saint-Laurent, QC,<br />

Canada and M. Hossein-Zadeh, University of<br />

New Mexico, Albuquerque, NM, USA<br />

We have demonstrated fabrication of high-Q<br />

WGM (Whispering Gallery Mode) optical microcavities<br />

for the first time in a relatively new<br />

mid-IR glass, namely Indium Fluoride. Intrinsic<br />

quality factors of 3×10 6 have already been<br />

demonstrated.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:00 PM<br />

Session ThL: Nonlinear and Meta-<br />

Materials<br />

Session Chair: Seth R. Bank, University of<br />

Texas at Austin, Austin, TX, USA<br />

ThL1 10:30 AM - 11:00 AM (Invited)<br />

Direct Observation of Optical Magnetism<br />

from a Dielectric Resonator<br />

Metamaterial Using Time-Domain<br />

Spectroscopy in the Mid-Infrared, S. Liu,<br />

I. Brener, T. Mahony, J. Ginn, D. A. Bender,<br />

J. Wright, J. R. Wendt, J. F. Ihlefeld, P. G. Clem<br />

and M. B. Sinclair, Sandia National Laboratories,<br />

Albuquerque, NM, USA<br />

We use phase-locked time-domain spectroscopy<br />

in the mid-infrared to directly demonstrate the<br />

“infrared magnetic mirror” behavior of an alldielectric<br />

metamaterial. This metamaterial surface<br />

consists of micron-sized cubes of tellurium<br />

fabricated on a dielectric substrate.


pulses was successfully obtained at 1000 nm<br />

center wavelength with a gain of 1.2×10 5 .<br />

ThE4 9:30 AM - 9:45 AM<br />

High Temporal Contrast Femtosecond<br />

Petawatt Ti:Sapphire Laser Facility and<br />

Its Applications, Y. Xu, Y. Leng, X. Liang,<br />

J. Liu, R. Li and Z. Xu, Shanghai Institute of<br />

Optics and Fine Mechanics, Shanghai, China<br />

The recent <strong>technical</strong> progress on the<br />

femtosecond petawatt Ti:sapphire laser are<br />

presented, which include the peak power<br />

(1.<strong>26</strong>PW) and temporal contrast (~10 11 )<br />

enhancement. Further, the significant applications<br />

achieved from the petawatt laser facility are<br />

summarized.<br />

10:30 AM - 12:00 PM<br />

Session ThM: High-Power Fiber and<br />

Solid-State Lasers<br />

Session Chair: Zhiyi Wei, Beijing National<br />

Laboratory for Condensed Matter and Institute of<br />

Physics, Beijing, China<br />

ThM1 10:30 AM - 11:00 AM (Invited)<br />

Spectral Beam Combining of High Power<br />

Fiber Lasers, T. Schreiber, N. Haarlammert,<br />

R. Eberhardt and A. Tunnermann, Fraunhofer-<br />

Institute for Applied Optics and Precision<br />

Engineering, Jena, Germany<br />

We review the technique of spectral beam<br />

combining and discuss detailed limitations in the<br />

laser systems used for combination of multiple<br />

cw and pulsed fiber amplifiers to kW average<br />

power and mJ’s of pulse energy.<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

tively filled polarization maintaining photonic<br />

crystal fiber. The sensitivity dependence on the<br />

infiltration length ratio was studied for the first<br />

time.<br />

ThF5 9:30 AM - 10:00 AM (Invited)<br />

Fiber-Optic Current Sensors for<br />

Applications in the Electrowinning<br />

Industry and in Electrical Power<br />

Transmission, G. M. Müller, A. Frank,<br />

M. Lenner, K. Bohnert, P. Gabus and<br />

B. Guelenaltin, ABB Corporate Research Ltd.,<br />

Baden-Dättwil, Aargau, Switzerland<br />

The previously demonstrated inherent temperature<br />

compensation of an interferometric<br />

fiber-optic current sensor is extended to the<br />

cases of large Faraday phase shifts and strong<br />

bend-induced birefringence in the sensing fiber.<br />

10:30 AM - 12:00 PM<br />

Session ThN: Novel Fibers and<br />

Applications<br />

Session Chair: Thierry F. Taunay, OFS<br />

Laboratories, Somerset, NJ, USA<br />

ThN1 10:30 AM - 11:00 AM (Invited)<br />

Longitudinally-Graded Optical Fibers,<br />

A. Evert, Clemson University, Clemson, SC,<br />

USA, P. D. Dragic, University of Illinois at<br />

Urbana-Champaign, Urbana, IL, USA, A. James,<br />

T. Hawkins, P. Foy, L. Dong, R. Stolen, Clemson<br />

University, Clemson, SC, USA, R. Rice,<br />

Dreamcatchers Consulting, Simi Valley, CA, USA<br />

and J. M. Ballato, Clemson University, Clemson,<br />

SC, USA<br />

Reported here are optical fibers exhibiting significant<br />

longitudinal changes in optical properties<br />

over short lengths. The Brillouin gain is found to<br />

decrease by over 6 dB relative to a standard<br />

optical fiber as a result.<br />

ThG3 9:30 AM - 9:45 AM<br />

An Integrated and Compact Hybrid<br />

Silicon 2R Regenerator, G. Kurczveil,<br />

M. Heck, J. D. Peters and J. E. Bowers,<br />

University of California - Santa Barbara, Santa<br />

Barbara, CA, USA<br />

An optical 2R regenerator is presented. The<br />

device consists of an optical amplifier integrated<br />

with a saturable absorber. Over 3 dB improvement<br />

in the extinction ratio is seen for 1 Gb/s<br />

signals at 1560 nm.<br />

10:30 AM - 12:15 PM<br />

Session ThO: Hybrid Lasers<br />

Session Chair: Martijn Heck, University of<br />

California - Santa Barbara, Santa Barbara, CA,<br />

USA<br />

ThO1 10:30 AM - 11:00 AM (Invited)<br />

Hybrid Silicon Lasers for Optical<br />

Interconnect, Y. De Koninck, S. Keyvaninia,<br />

S. Stankovic, D. Van Thourhout, G. Roelkens<br />

and R. G. Baets, Ghent University, Gent, Belgium<br />

Hybrid III-V/silicon lasers for short reach optical<br />

interconnect applications need to have a modest<br />

power dissipation and preferably also a small<br />

footprint. Furthermore they should be free of<br />

mode hops even under varying temperature<br />

conditions. In this paper a number of designs<br />

will be discussed that address this set of requirements.<br />

ThO2 11:00 AM - 11:15 AM<br />

Thermal Analysis of Self-Heating Effect<br />

in GaInAsP/InP Membrane DFB Laser on<br />

Si Substrate, K. Doi, T. Shindo, M. Futami,<br />

T. Amemiya, N. Nishiyama and S. Arai, Tokyo<br />

Institute of Technology, Meguro-ku, Tokyo,<br />

Japan<br />

Thermal analysis of BCB bonded GaInAsP<br />

membrane DFB laser on Si substrate has been<br />

demonstrated by numerical simulation. Due to<br />

ultra-low power consumption, internal temperature<br />

rising was very small even with high thermal<br />

supported with theoretical calculations.<br />

ThH4 9:30 AM - 9:45 AM<br />

High-Quality InP/ZnS Nanocrystals with<br />

High Photometric Performance and Their<br />

Application to White Quantum Dot Light-<br />

Emitting Diodes, X. Yang, Nanyang<br />

Technological University, Singapore<br />

Full visible range covering InP/ZnS core-shell<br />

nanocrystals with high photometric performance<br />

have been prepared. Making use of these<br />

nanocrystals, we demonstrate a white quantum<br />

dot LED with a high color rendering index of 91.<br />

ThH5 9:45 AM - 10:00 AM<br />

Phonon-Assisted Nonradiative Energy<br />

Transfer from Colloidal Quantum Dots to<br />

Monocrystalline Bulk Silicon, A. Yeltik,<br />

B. Guzelturk, P. L. Hernandez Martinez and<br />

H. V. Demir, Bilkent University, Bilkent, Ankara,<br />

Turkey<br />

We show nonradiative energy transfer (NRET)<br />

from colloidal quantum dots (QDs) to bulk<br />

silicon using phonon assisted absorption and<br />

demonstrate its physical model to explain<br />

temperature-dependent lifetime dynamics of<br />

NRET in these QD-Si hybrids.<br />

COFFEE BREAK / EXHIBITS 10:00am - 10:30am GRAND PENINSULA FOYER<br />

10:30 AM - 12:00 PM<br />

Session ThP: Infrared Nanophotonics<br />

Session Chair: Tom Gregorkiewicz,<br />

University of Amsterdam, Amsterdam, The<br />

Netherlands<br />

ThP1 10:30 AM - 10:45 AM<br />

Probing Vibrational Absorption of Ultra-<br />

Thin Samples by Tip-Enhanced<br />

Photoexpansion Nano-Spectroscopy,<br />

F. Lu, J. Lee and M. Belkin, University of Texas at<br />

Austin, Austin, TX, USA<br />

We report a novel mid-IR nano-spectroscopy<br />

technique. Absorption is detected by measuring<br />

associated sample expansion. High sensitivity<br />

and spatial resolution are obtained using local<br />

intensity enhancement below a metallic atomic<br />

force microscope tip.<br />

ThP2 10:45 AM - 11:00 AM<br />

Mid-infrared Guided Mode Resonance<br />

Filters for Applications in High Power<br />

Laser Systems, I. R. Srimathi, E. Johnson,<br />

M. Poutous, A. Pung, Y. Li, R. Woodward,<br />

Clemson University, Clemson, SC, USA and<br />

R. Magnusson, University of Texas at Arlington,<br />

Arlington, TX, USA<br />

A mid-infrared guided-mode resonance based<br />

reflector was designed, fabricated and tested for<br />

applications at 2.94µm. The proposed polarization<br />

insensitive devices were fabricated using a<br />

Page 69


ThI2 11:00 AM - 11:30 AM (Invited)<br />

Nonlinear Fiber Plasmonics: Discovery of<br />

the Self-Frequency Blueshift of Solitons,<br />

F. Biancalana, Max Planck Institute for the<br />

Science of Light, Erlangen, Germany<br />

Based on a recently developed model that is able<br />

to describe pulse propagation in gas-filled<br />

hollow-core PCFs, we show that the photoionization<br />

process can lead to soliton self-frequency<br />

blue-shift, self-phase modulation, and modulation<br />

instability.<br />

ThI3 11:30 AM - 11:45 AM<br />

Nonlinear “Rainbow” Trapping effect for<br />

Broadband Third-Harmonic Generation,<br />

Z. Xin, Y. Gao, Lehigh University, Bethlehem, PA,<br />

USA, Q. Gan, State University of New York at<br />

Buffalo, Buffalo, NY, USA and F. J. Bartoli, Lehigh<br />

University, Bethlehem, PA, USA<br />

We studied a plasmonic graded grating structure<br />

that can simultaneously generate third harmonic<br />

ultraviolet light of different wavelengths at<br />

different positions along the grating. Such broadband<br />

discrete ultraviolet generation is achieved<br />

through surface dispersion engineering.<br />

ThI4 11:45 AM - 12:00 PM<br />

Enhancing Nonlinear Effects with Micron-<br />

Scale Graphene-Coated Plasmonic<br />

Structures, A. Banerjee and H. Grebel, New<br />

Jersey Institute of Technology, Newark, NJ, USA<br />

We demonstrated efficient nonlinear coupling<br />

between local vibrating molecules and propagating<br />

polariton modes at the vibration frequency<br />

(namely, mid-IR frequencies) using suspended<br />

graphene waveguides.<br />

Page 70<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

ThJ2 11:00 AM - 11:30 AM (Invited)<br />

Low Insertion Loss Nanocavity Optical<br />

Modulators, L. O’Faolain, K. Debnath and<br />

T. F. Krauss, University of St. Andrews, St.<br />

Andrews, Fife, UK<br />

We propose and experimentally demonstrate a<br />

novel optical modulator based on a photonic<br />

crystal resonator vertically coupled to large mode<br />

area bus waveguide.<br />

ThJ3 11:30 AM - 11:45 AM<br />

Photonic-Crystal Slab for Terahertz-Wave<br />

Integrated Circuits, T. Ishigaki, M. Fujita,<br />

M. Nagai, M. Ashida and T. Nagatsuma, Osaka<br />

University, Toyonaka, Osaka, Japan<br />

We propose a terahertz-wave integrated circuit<br />

based on a photonic-crystal slab to ma-nipulate<br />

terahertz waves in a planar structure. Propagation<br />

loss of terahertz photon-ic-crystal waveguides<br />

can be much smaller than that of metallic transmission<br />

lines.<br />

ThJ4 11:45 AM - 12:15 PM (Invited)<br />

Nanopores and Quantum Dots by<br />

Selective Area Metalorganic Chemical<br />

Vapor Deposition, J. J. Coleman, University<br />

of Illinois, Urbana, IL, USA<br />

We describe the metalorganic chemical vapor<br />

deposition and patterning by electron beam<br />

lithography and selective area growth or wet<br />

chemical etching of quantum dot and inverted<br />

quantum dot (nanopore) structures suitable for<br />

diode lasers.<br />

ThK2 11:00 AM - 11:30 AM (Invited)<br />

Optical Networking Solutions for Data<br />

Centre LANs, J. Dunne, Intune Networks Ltd.,<br />

Dublin, Ireland<br />

The Data Center LAN has traditionally been a<br />

network contained within a single location and<br />

has not required carrier class capabilities.<br />

However the optical networking component of<br />

the Data Center LAN will become increasingly<br />

important as this LAN will be forced to grow into<br />

something between a carrier class metro network<br />

and a campus WAN due to the trend to distribute<br />

Data Centers and move them closer to the end<br />

users of the services they provide, both over the<br />

internet and over private networks.<br />

ThK3 11:30 AM - 11:45 AM<br />

Hybrid Reconfiguration for Upgrading<br />

Datacenter Interconnection Topology,<br />

G. L. Vassoler, F. de Souza, P. Filho and<br />

M. Ribeiro, Federal University of Espirito Santo,<br />

Vitória, Espírito Santo, Brazil<br />

This paper proposes the introduction of 2x2<br />

magneto-optical switches as a reconfigurable<br />

physical layer with no link loss to provide higher<br />

throughput, and simultaneously, reduce CPU<br />

packet forwarding load in server-centric datacenters.<br />

ThL2 11:00 AM - 11:15 AM<br />

Mid-Infrared Designer Metals, S. Law,<br />

University of Illinois at Urbana-Champaign,<br />

Urbana, IL, USA, D. Adams, University of<br />

Massachusetts Lowell, Lowell, MA, USA,<br />

A. Taylor and D. M. Wasserman, University of<br />

Illinois at Urbana-Champaign, Urbana, IL, USA<br />

We demonstrate the utility of epitaxially-grown,<br />

highly-doped semiconductors as plasmonic<br />

designer metals, with plasma wavelengths across<br />

a broad range of the mid-infrared. Micro-particles<br />

fabricated from these materials are shown to<br />

support localized surface plasmon modes.<br />

ThL3 11:15 AM - 11:30 AM<br />

Silver-doped Arsenic Selenide (Ag-<br />

As2Se3) Waveguides for Compact<br />

Nonlinear Optical Devices, D.-Y. Choi,<br />

X. Gai, S. Madden, R. Wang and B. Luther-<br />

Davies, Australian National University, Canberra,<br />

Australia<br />

We developed a novel approach to produce silver<br />

doped As2Se3 rib-type waveguide. By employing<br />

continuous wave four-wave mixing we verified<br />

that the medium has very high nonlinearity,<br />

which is promising for compact devices.<br />

ThL4 11:30 AM - 11:45 AM<br />

Nonlinear Optical Responses of<br />

Photopolymerizable CdSe Quantum Dot-<br />

Polymer Nanocomposites Capable of<br />

Holographically Patterning Photonic<br />

Lattice Structures, Y. Tomita, Y. Adachi,<br />

X. Liu, University of Electro-Communications,<br />

Chofu, Tokyo, Japan, J. Oshima, Nissan<br />

Chemical Industries, Ltd., Funabashi, Chiba,<br />

Japan, T. Nakashima and T. Kawai, Nara Institute<br />

of Science and Technology, Ikoma, Nara, Japan<br />

We report degenerate multi-wave mixing and<br />

nonlinear Bragg diffraction in a photopolymerizable<br />

semiconductor CdSe quantum dot-polymer<br />

nanocomposite by a 532-nm picosecond laser.<br />

We show that the composite possesses the<br />

simultaneous third- and fifth-order nonlinear<br />

refraction.<br />

ThL5 11:45 AM - 12:00 PM<br />

Giant Light-induced Capacitance<br />

Enhancements in an Unconventional<br />

Capacitor with Two-dimensional Hole<br />

Gas, P. Dianat, R. W. Prusak, Drexel University,<br />

Philadelphia, PA, USA, A. Persano, F. Quaranta,<br />

A. Cola, Institute for Microelectronics and<br />

Microsystems, Lecce, Italy and B. Nabet, Drexel<br />

University, Philadelphia, PA, USA<br />

We report on observation of giant enhancements<br />

in light-induced capacitance of an unconventional<br />

capacitor based on a two-dimensional hole<br />

gas. Manipulation of inter-particle interactions in<br />

2DHG through light-generated carriers can


ThM2 11:00 AM - 11:15 AM<br />

All-Fiber Wavelength Tunable Tm-Doped<br />

Fiber Laser Using FBG Tuning Methods,<br />

C. H. Tse, Nanyang Technological University,<br />

Singapore<br />

In this paper, we demonstrate experimentally a<br />

wavelength-tunable, CW Tm-doped all-fiber<br />

laser. The wavelength tunability is enabled by<br />

strain and temperature change of the FBG in the<br />

cavity. Tuning range of 1.7nm, 12nm are demonstrated.<br />

ThM3 11:15 AM - 11:30 AM<br />

Orthogonally Coded Frequency-Tagging<br />

for Active Coherent Beam Combination,<br />

A. Azarian, P. Bourdon, L. Lombard, ONERA,<br />

Palaiseau, France, Y. Jaouen, Telecom ParisTech,<br />

Paris, France and O. Vasseur, ONERA, Palaiseau,<br />

France<br />

We present active phase-locking of fiber amplifiers<br />

using Walsh coded modulations. Numerical<br />

simulations demonstrate the potential of this<br />

technique to tag multiple fibers with a single<br />

frequency and enhance power scaling capability.<br />

ThM4 11:30 AM - 11:45 AM<br />

Passive Mode-Locking of Fiber Laser<br />

Based on Diamond Thin Film, T. Hu,<br />

H. Wan, W. Jiang and X. Sun, Southeast<br />

University, Nanjing, Jiangsu, China<br />

We demonstrate a novel saturable absorber<br />

based on diamond thin film directly synthesized<br />

on quartz substrates by microwave plasma<br />

chemical vapor deposition method. The function<br />

of mode-locking for the fiber laser is achieved.<br />

ThM5 11:45 AM - 12:00 PM<br />

Long Term Performance of NASA’s High<br />

Output Maximum Efficiency Resonator<br />

(HOMER) Laser for Earth and Planetary<br />

Altimetry, D. B. Coyle, NASA, Greenbelt, MD,<br />

USA, R. B. Kay, D. Poulios, American University,<br />

Washington, DC, USA, P. R. Stysley, NASA,<br />

Greenbelt, MD, USA, G. Clarke, American<br />

University, Washington, DC, USA, K. C. Cory<br />

and R. M. Frederickson, Sigma Space Corp.,<br />

Lanham, MD, USA<br />

We report the results of a 2 year life test of the<br />

HOMER laser flight- quality prototype, producing<br />

over 15 billion, 15 mJ, 10 ns Q-Switched laser<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

ThN2 11:00 AM - 11:15 AM<br />

Hybrid Photonic Crystal Fiber Selectively<br />

Infiltrated with Liquid Crystal, K. Milenko,<br />

Nanyang Technological University, Singapore,<br />

D. J. J. Hu, A*STAR Institute for Infocomm<br />

Research, Singapore, P. Shum, Nanyang<br />

Technological University, Singapore, J. L. Lim,<br />

Y. Wang, A*STAR Institute for Infocomm<br />

Research, Singapore and T. R. Wolinski, Warsaw<br />

University of Technology, Warszawa, Poland<br />

We present hybrid propagation in a photonic<br />

liquid crystal fiber (PLCF) fabricated by selective<br />

infiltration of photonic crystal fiber (PCF) air<br />

channels with a liquid crystal (LC). Temperature<br />

tuning of photonic bandgaps is demonstrated.<br />

ThN3 11:15 AM - 11:30 AM<br />

A Directional Coupler based on Nematic<br />

Liquid Crystal Filled Photonic Crystal<br />

Fiber, D. J. J. Hu, J. L. Lim, A*STAR Institute<br />

for Infocomm Research, Singapore, Y. Cui,<br />

Nanyang Technological University, Singapore,<br />

K. Milenko, Y. Wang, A*STAR Institute for<br />

Infocomm Research, Singapore and<br />

T. R. Wolinski, Warsaw University of Technology,<br />

Warszawa, Poland<br />

A highly temperature sensitive directional coupler<br />

is demonstrated experimentally by selectively<br />

filling nematic liquid crystal into a single void of<br />

the photonic crystal fiber. The temperature<br />

response of the device exhibits good linearity.<br />

ThN4 11:30 AM - 11:45 AM<br />

Liquid Core Photonic Crystal Fiber with<br />

the Enhanced Light Coupling Efficiency,<br />

J. Park, J. Kim, B. Paulson and K. Oh, Yonsei<br />

University, Seoul, Korea<br />

We proposed a novel method to fabricate liquidcore<br />

photonic crystal fibers by utilizing a<br />

ring-core hollow optical fiber, which could overcome<br />

the previous structural limitation, enhance<br />

the light coupling efficiency, and prevent the<br />

liquid evaporation.<br />

ThN5 11:45 AM - 12:00 PM<br />

Thermal-Induced Refractive Index<br />

Change Effects on Distributed Modal<br />

Filtering Properties of Rod-Type Photonic<br />

Crystal Fibers, E. Coscelli, F. Poli, University<br />

of Parma, Parma, Italy, M. M. Joergensen,<br />

M. Laurila, J. Lægsgaard, Technical University of<br />

Denmark, Lyngby, Denmark, T. T. Alkeskjold,<br />

L. Leick, J. Broeng, NKT <strong>Photonics</strong> A/S,<br />

Birkerød, Denmark, A. Cucinotta and S. Selleri,<br />

University of Parma, Parma, Italy<br />

The effects of thermally-induced refractive index<br />

change on distributed modal filtering rod-type<br />

photonic crystal fibers are numerically investi-<br />

resistance.<br />

ThO3 11:15 AM - 11:30 AM<br />

A Hybrid Silicon Colliding Pulse Modelocked<br />

Laser with Integrated Passive<br />

Waveguide Section, M. L. Davenport,<br />

University of California - Santa Barbara, Goleta,<br />

CA, USA<br />

A hybrid silicon colliding pulse mode-locked<br />

laser with an integrated passive waveguide<br />

section is shown. The laser operates at 18GHz<br />

with a 20dB RF bandwidth of 1.6MHz.<br />

ThO4 11:30 AM - 11:45 AM<br />

GaInAsP/Si Hybrid Fabry-Perot Laser<br />

using N2 Plasma Activated Low<br />

Temperature Bonding, Y. Hayashi, R. Osabe,<br />

K. Fukuda, Y. Atsumi, J. Kang, N. Nishiyama and<br />

S. Arai, Tokyo Institute of Technology, Meguroku,<br />

Tokyo, Japan<br />

A GaInAsP/Si hybrid Fabry-Perot laser, fabricated<br />

by low temperature N2 plasma surface activated<br />

bonding on a Si substrate, was demonstrated.<br />

Lasing operation at room temperature was realized<br />

with a threshold current density of 0.85<br />

kA/cm2.<br />

ThO5 11:45 AM - 12:15 PM (Invited)<br />

III-V Quantum Dot Lasers on Si<br />

Substrates by Wafer Bonding, K. Tanabe<br />

and Y. Arakawa, University of Tokyo, Tokyo,<br />

Japan<br />

We present 1.3 µm InAs/GaAs quantum dot<br />

Fabry-Perot and photonic crystal nanocavity<br />

lasers on Si substrates fabricated by wafer<br />

bonding, with thresholds of 205 A/cm 2 and 2<br />

µW, respectively, the lowest of lasers on silicon.<br />

quartz/hafnium dioxide system.<br />

ThP3 11:00 AM - 11:15 AM<br />

Optimizing Motheye Antireflective<br />

Structures for Maximum Coupling<br />

Through As2S3 Optical Fibers,<br />

R. J. Weiblen, University of Maryland Baltimore<br />

County, Baltimore, MD, USA, C. Florea, Sotera<br />

Defense Solutions, McLean, VA, USA,<br />

A. Docherty, C. R. Menyuk, University of<br />

Maryland Baltimore County, Baltimore, MD,<br />

USA, B. Shaw, US Naval Research Laboratory,<br />

Washington, DC, USA, J. S. Sanghera, Sotera<br />

Defense Solutions, Crofton, MD, USA, L. Busse<br />

and I. D. Aggarwal, US Naval Research<br />

Laboratory, Washington, DC, USA<br />

We study theoretically the transmissivity of As2S3<br />

chalcogenide optical fibers with motheye antireflective<br />

nanostructures. We show that it is<br />

possible to design structures giving greater than<br />

99% transmission from 2–5 µm.<br />

ThP4 11:15 AM - 11:30 AM<br />

2.78 µm Fluoride Glass Fiber Laser<br />

Using Guided Mode Resonance Filter as<br />

External Cavity Mirror, Y. Li, R. Woodward,<br />

A. Pung, M. Poutous, I. R. Srimathi, E. Johnson,<br />

Clemson University, Clemson, SC, USA and<br />

R. K. Shori, US Naval Air Warfare Center, China<br />

Lake, CA, USA<br />

A diode pumped CW Erbium (Er)-doped Zr-Ba-<br />

La-Al-Na (ZBLAN) fluoride glass fiber laser<br />

operating at 2.78 µm was demonstrated using a<br />

guided mode resonance filter (GMRF) as an<br />

external cavity mirror.<br />

ThP5 11:30 AM - 11:45 AM<br />

Resolving Split Resonant Modes in<br />

Microrings, Y. M. Kang, A. Arbabi and<br />

L. L. Goddard, University of Illinois at Urbana-<br />

Champaign, Urbana, IL, USA<br />

A computational method for spectrally resolving<br />

closely spaced resonant modes of a high Q<br />

microring resonator is developed based on the<br />

modal expansion method. It can be used to<br />

obtain split degenerate mode complex eigenfrequencies.<br />

ThP6 11:45 AM - 12:00 PM<br />

High Spatial Resolution Subsurface<br />

Microscopy using Radially Polarized<br />

Beam, A. Yurt, M. D. W. Grogan, Y. Lu,<br />

E. Ramsay, M. Unlu, S. Ramachandran and<br />

B. B. Goldberg, Boston University, Boston, MA,<br />

USA<br />

We experimentally study spot size reduction by<br />

using radially polarized beam for subsurface<br />

silicon integrated circuit microscopy. Metallic<br />

lines fabricated on a silicon substrate with<br />

linewidth/spacing = ~130nm/70nm were<br />

resolved through the substrate at 0=1310nm.<br />

Page 71


1:30 PM - 3:00 PM<br />

Session ThQ: Si <strong>Photonics</strong> &<br />

Ultrafast Techniques<br />

Session Chair: Greg Sun, University of<br />

Massachusetts Boston, Boston, MA, USA<br />

ThQ1 1:30 PM - 1:45 PM<br />

40 Gbit/s serial data signal regeneration<br />

using self-phase modulation in a silicon<br />

nanowire, H. Ji, J. Wang, H. Hu, M. Pu,<br />

M. Galili, P. Jeppesen, K. Yvind and<br />

L. K. Oxenløwe, Technical University of Denmark,<br />

Lyngby, Denmark<br />

We experimentally demonstrate self-phase<br />

modulation based all-optical regeneration of a 40<br />

Gbit/s serial data signal in a silicon nanowire. Bit<br />

error rate characterization shows 2 dB receiver<br />

power improvement.<br />

ThQ2 1:45 PM - 2:00 PM<br />

Silicon Single Microring Resonator<br />

Mach-Zehnder Modulator with Low-<br />

Power Consumption Using Thermo-Optic<br />

Effect, R. Gautam, Yokohama National<br />

University, Yokohama, Japan<br />

We demonstrate a single silicon microring<br />

resonator Mach-Zehnder modulator driven by<br />

thermo-optic effect. The proposed was fabricated<br />

using CMOS-compatible process. The modulation<br />

characteristics show that the power<br />

consumption can be reduced to one fifteenth.<br />

ThQ3 2:00 PM - 2:15 PM<br />

Monte Carlo Simulations of Timing Jitter<br />

Attenuation in Silicon Nanowires,<br />

M. D. Marko, US Naval Air Warfare Center, New<br />

York, NY, USA, X. Li, A. Veitia, J. Zheng and<br />

C. W. Wong, Columbia University, New York, NY,<br />

USA<br />

We used novel Monte-Carlo simulations with the<br />

Nonlinear Schrödinger Equation to analyze<br />

changes in timing-jitter after optical propagation<br />

within silicon nanowire-waveguides subjected to<br />

two-photon absorption; this absorption was<br />

found to attenuate the timing jitter.<br />

Page 72<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 3:00 PM<br />

Session ThR: III-V Photonic<br />

Integration I<br />

Session Chair: Fumio Koyama, Tokyo<br />

Institute of Technology, Yokohama, Kanagawa,<br />

Japan<br />

ThR1 1:30 PM - 1:45 PM<br />

Very Fast (>10^ 7 degree/s) 2D Optical<br />

Beam Steering through an InP Photonic<br />

Integrated Circuit, W. Guo, P. R. A. Binetti,<br />

C. Althouse, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA,<br />

H. P. M. M. Ambrosius, Eindhoven University of<br />

Technology, Eindhoven, The Netherlands,<br />

L. A. Johansson and L. A. Coldren, University of<br />

California - Santa Barbara, Santa Barbara, CA,<br />

USA<br />

Very fast (>10 7 degree/s) 2D optical beam<br />

steering through an InP photonic integrated<br />

circuit has been demonstrated.<br />

ThR2 1:45 PM - 2:00 PM<br />

A Highly Integrated Optical Phase-locked<br />

Loop for Laser Wavelength Stablization,<br />

M. Lu, University of California - Santa Barbara,<br />

Santa Barbara, CA, USA<br />

A highly-integrated optical phase-locked loop<br />

has been applied to stabilize the laser wavelength<br />

for the first time. Preliminary results show that<br />

the slave laser is stably phase-locked to a reference<br />

laser within 2.3K temperature fluctuation.<br />

ThR3 2:00 PM - 2:15 PM<br />

Offset Locking of an SG-DBR to an<br />

InGaAsP/InP Mode-Locked Laser,<br />

J. S. Parker, M. Lu, H. Park, University of<br />

California - Santa Barbara, Santa Barbara, CA,<br />

USA, E. Bloch, Technion, Haifa, Israel,<br />

A. Sivananthan, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA, Z. Griffith,<br />

Teledyne Scientific Company, Thousand Oaks,<br />

CA, USA, L. A. Johansson, M. J. W. Rodwell and<br />

L. A. Coldren, University of California - Santa<br />

Barbara, Santa Barbara, CA, USA<br />

We demonstrate a Sampled Grating-Distributed<br />

Bragg Reflector (SG-DBR) laser offset locked at<br />

6.5 GHz from a diode mode-locked laser comb<br />

using an integrated optical phase-locked loop<br />

(OPLL).<br />

1:30 PM - 3:00 PM<br />

Session ThS: Optical Transmission<br />

Session Chair: Loukas Paraschis, Cisco<br />

Systems, Inc., San Jose, CA, USA<br />

ThS1 1:30 PM - 2:00 PM (Invited)<br />

Super-Channels: DWDM Transmission<br />

Beyond 100 Gb/s, J. T. Rahn, S. Kumar,<br />

M. Mitchell, Infinera, Sunnyvale, CA, USA,<br />

H. Sun, K.-T. Wu, Infinera Canada, Kanata, ON,<br />

Canada, G. Goldfarb, M. Kato, Infinera,<br />

Sunnyvale, CA, USA, D. J. Krause, Infinera<br />

Canada, Kanata, ON, Canada, R. Nagarajan,<br />

F. A. Kish and D. F. Welch, Infinera, Sunnyvale,<br />

CA, USA<br />

Super-channels promise high-bandwidth transmission<br />

while decoupling channel capacity from<br />

baud rate. Photonic Integrated Circuits (PICs) are<br />

optimal for delivering super-channels at over 100<br />

Gb/s, with flexibility in modulation format, baud<br />

rate, dispersion tolerance, and reach.<br />

ThS2 2:00 PM - 2:15 PM<br />

Realtime Processed 12 x 120 Gb/s<br />

Unrepeatered Transmission over 383.5<br />

km PSC Fiber and 342.7 km SMF without<br />

ROPA, D. I. Chang, P. G. Patki, S. Burtsev and<br />

W. Pelouch, Xtera Communications Inc., Allen,<br />

TX, USA<br />

Unrepeatered transmission of 12 x 120 Gb/s<br />

PM-NRZ-QPSK signals over the legacy spans<br />

has been demonstrated. Transmission has been<br />

achieved by forward and backward distributed<br />

Raman amplification using 100G channel card<br />

with real-time ASIC processor.<br />

account for this distinctive feature.<br />

1:30 PM - 3:00 PM<br />

Session ThT: Compound Material<br />

Growth II<br />

Session Chair: Martin D. Dawson,<br />

University of Strathclyde, Glasgow, Scotland, UK<br />

ThT1 1:30 PM - 2:00 PM (Invited)<br />

Tunable 1550-nm VCSEL Using High<br />

Contrast Gratings, Y. Rao, University of<br />

California - Berkeley, Berkeley, CA, USA,<br />

C. Chase, M. C.-Y. Huang, Bandwidth10 Inc.,<br />

Newark, CA, USA, S. Khaleghi, M. R. Chitgarha,<br />

M. Ziyadi, University of Southern California, Los<br />

Angeles,CA, USA, D. Worland, Bandwidth10<br />

Inc., Newark, CA, USA, A. E. Willner, University<br />

of Southern California, Los Angeles, CA, USA<br />

and C. J. Chang-Hasnain, University of<br />

California - Berkeley, Berkeley, CA, USA<br />

We report monolithic, tunable 1550-nm HCG-<br />

VCSELs with <strong>26</strong>.3 nm continuous tuning. Room<br />

temperature power of 2.3 mW, 85°C power of<br />

0.5 mW, and 10 Gb/s direct modulation over 100<br />

km of fiber is demonstrated.<br />

ThT2 2:00 PM - 2:30 PM (Invited)<br />

2D and 3D Photonic Crystal Nanocavity<br />

Lasers with Quantum Dot Gain,<br />

S. Iwamoto, M. Nomura, A. Tandaechanurat,<br />

D. Cao and Y. Arakawa, University of Tokyo,<br />

Tokyo, Japan<br />

We report our recent advanced on quantum-dot<br />

nanocavity lasers in 2D and 3D photonic crystals.<br />

A silicon-based 3D photonic crystal<br />

nanocaity laser using InAs quantum dots as<br />

active media is also discussed.


pulses with a very low decay rate.<br />

1:30 PM - 3:00 PM<br />

Session ThU: High-Order Harmonic<br />

Generation<br />

Session Chair: Andre Staudte, National<br />

Research Council, Ottawa, ON, Canada<br />

ThU1 1:30 PM - 2:00 PM (Invited)<br />

Isolated High-Harmonics Pulse from<br />

Two-Color-Driven Bloch Oscillations in<br />

Bulk Semiconductors, O. D. Mücke,<br />

Deutsches Elektronen-Synchrotron DESY,<br />

Hamburg, Germany<br />

The time-frequency characteristics of high-order<br />

harmonic generation (HHG) from Bloch-oscillating<br />

electrons in bulk ZnO crystals is<br />

investigated. Spectrally filtering out the Bloch-<br />

HHG cutoff radiation allows the generation of an<br />

isolated Bloch-HHG pulse of ~1.6-fs duration.<br />

ThU2 2:00 PM - 2:30 PM (Invited)<br />

High-Harmonic Generation using a kHz,<br />

2.1- m OPCPA Pumped by a ps Cryogenic<br />

Yb:YAG Amplifier, K. H. Hong, C.-J. Lai,<br />

S.-W. Huang, J. Moses, V.-M. Gkortsas,<br />

E. Granados, S. Bhardwaj and L. E. Zapata,<br />

Massachusetts Institute of Technology,<br />

Cambridge, MA, USA<br />

We study the cutoff extension and efficiency<br />

scaling of high-harmonic generation in Xe, Kr,<br />

and Ar using a kHz 2.1µm OPCPA pumped by a<br />

picosecond cryogenic Yb:YAG amplifier. Highharmonic<br />

spectroscopy and propagation effect<br />

are discussed.<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

gated. Results have shown a significant blueshift<br />

of the single-mode range for increasing<br />

temperature.<br />

LUNCH 12:00pm - 1:30pm<br />

1:30 PM - 2:45 PM<br />

Session ThV: Multicore Fibers<br />

Session Chair: TBD<br />

ThV1 1:30 PM - 2:00 PM (Invited)<br />

Multicore Optical Fibers and Connectors<br />

for Short Reach, Computer Compatible,<br />

High Density Links, D. Butler, M.-J. Li,<br />

B. J. Hoover, V. N. Nazarov, D. D. Fortusini,<br />

J. P. Luther, Y. Geng and R. R. Grzybowski,<br />

Corning, Inc., Corning, NY, USA<br />

Adoption of multicore fibers will accelerate in<br />

high bandwidth density applications in next<br />

generation data centers once multicore connectors,<br />

transceiver coupling elements, cabling and<br />

other components are available to complement<br />

transceivers in end-to-end optical interconnects.<br />

ThV2 2:00 PM - 2:30 PM (Invited)<br />

Recent Advance in Multicore Fibers for<br />

Spatial Division Multiplexing, T. F. Taunay,<br />

OFS Laboratories, Somerset, NJ, USA<br />

Recent MCF transmission results will be<br />

reviewed and will illustrate great improvement in<br />

the fibres themselves, including record spectral<br />

efficiency, low loss and cross-talk and lengths<br />

compatible with real links.<br />

1:30 PM - 3:00 PM<br />

Session ThW: Direct Growth on Si<br />

Session Chair: Katsuaki Tanabe, University<br />

of Tokyo, Tokyo, Japan<br />

ThW1 1:30 PM - 2:00 PM (Invited)<br />

InAs/GaAs Quantum-Dot Lasers<br />

Monolithically Grown on Si Substrate,<br />

H. Liu, A. Lee, Q. Jiang and A. J. Seeds,<br />

University College London, London, UK<br />

We present the studies on the development of<br />

InAs/GaAs quantum-dot lasers monolithically<br />

grown on Si for Si photonics. Room-temperature<br />

lasing near 1.3 µm has been demonstrated for<br />

the devices on Si and Ge substrates.<br />

ThW2 2:00 PM - 2:30 PM (Invited)<br />

Monolithic Integration of III/V Devices on<br />

Si(001), K. Volz, Philipps University, Marburg,<br />

Germany<br />

This presentation will summarize our current<br />

knowledge on the nucleation of III/V semiconductors<br />

on Silicon substrates. A specific focus<br />

will be on the avoidance of defects as well as on<br />

the atomic structure of the GaP/Si interface.<br />

1:30 PM - 3:00 PM<br />

Session ThX: Nanoplasmonics I<br />

Session Chair: Tom Gregorkiewicz,<br />

University of Amsterdam, Amsterdam, The<br />

Netherlands<br />

ThX1 1:30 PM - 2:00 PM (Invited)<br />

Symmetry Related Phenomena in<br />

Metamaterials, S. Zhang, University of<br />

Birmingham, Birmingham, UK<br />

ABSTRACT NOT AVAILABLE<br />

ThX2 2:00 PM - 2:15 PM<br />

Coupling of Light from Microdisk Lasers<br />

to Nano-Antennas with Nano-Tapers,<br />

Z. Li, H. T. Hattori, University of New South<br />

Wales, Canberra, Australia, F. Karouta, J. Tian,<br />

P. Parkinson, L. Fu, H. H. Tan and C. Jagadish,<br />

Australian National University, Canberra,<br />

Australia<br />

Optical dipole nano-antennas are passive devices<br />

needing light from external sources. In this work,<br />

highly efficient coupling of light from microdisk<br />

lasers into plasmonic nano-antennas by using<br />

nano-tapers is proposed.<br />

Page 73


ThQ4 2:15 PM - 2:30 PM<br />

Ultrashort Flat-Top Pulse Generation<br />

Using an Integrated Mach-Zehnder<br />

Interferometers, M. Li, Institut National de la<br />

Recherche Scientifique, Varennes, Canada,<br />

P. Dumais, Communications Research Center,<br />

Ottawa, Canada, R. Ashrafi, H. P. Bazargani,<br />

J.-B. Quélène, Institut National de la Recherche<br />

Scientifique, Varennes, Canada, C. Callender,<br />

Communications Research Center, Ottawa,<br />

Canada and J. Azaña, Institut National de la<br />

Recherche Scientifique, Varennes, Canada<br />

Re-shaping of an ultrashort Gaussian-like-pulse<br />

into a flat-top pulse is demonstrated using an<br />

integrated Mach-Zehnder interferometer (MZI).<br />

7.8-ps Gaussian-like-pulses are reshaped into<br />

nearly chirp-free 17.1-ps and 20.0-ps flat-toppulses<br />

based on two different linear filtering<br />

schemes.<br />

ThQ5 2:30 PM - 2:45 PM<br />

Spectral Pulse Shaping with Adaptive<br />

Feedback in Fiberized CPA Systems for<br />

Sub-Picosecond, High Contrast Pulses,<br />

D. Nguyen, M. U. Piracha and P. J. Delfyett,<br />

University of Central Florida, Orlando, FL, USA<br />

Sub-picosecond, transform-limited pulses with<br />

parabolic optical intensity profile were generated<br />

for fiber CPA systems. By utilizing spectral<br />

modulation, pulse peak power was increased by<br />

5 times with CFBG stretcher, and 6.2 times with<br />

fiber stretcher.<br />

ThQ6 2:45 PM - 3:00 PM<br />

Generation of 1.5 Cycle Phase Stabilized<br />

Intense Laser Pulses at 1.8 um, L. Song,<br />

Y. Bai, R. Xu, C. Li, P. Liu and R. Li, Shanghai<br />

Institiute of Optics and Fine Mechanics,<br />

Shanghai, China<br />

The Generation of 8.9fs 0.5mJ carrier-envelope<br />

phase stabilized pulses at 1.8um is reported.<br />

Pulses from an optical parametric amplifier are<br />

injected into a gas filled hollow fiber. Fuse silicon<br />

wedges are used to compensate the dispersion.<br />

3:30 PM - 5:00 PM<br />

Session ThY: Phosphor and Displays<br />

Session Chair: TBD<br />

ThY1 3:30 PM - 4:00 PM (Invited)<br />

Phosphors and Quantum Dots for Solid<br />

State Lighting, L. Shea-Rohwer, Sandia<br />

National Laboratories, Albuquerque, NM, USA<br />

Solid state lighting is a demanding application<br />

for luminescent materials. We will discuss the<br />

challenges facing rare-earth-doped oxide phosphors<br />

and II-VI semiconductor quantum dots as<br />

potential narrowband red emitters for warm white<br />

LEDs.<br />

Page 74<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

ThR4 2:15 PM - 2:30 PM<br />

Coherent Comb Generation using<br />

Integrated Slotted Fabry-Pérot<br />

Semiconductor Lasers, W. Cotter,<br />

P. Morrissey, D. Goulding, Y. Hua, B. Roycroft,<br />

J. O’Callaghan, B. Corbett, Tyndall National<br />

Institute, Cork, Ireland and F. H. Peters,<br />

University College Cork, Cork, Ireland<br />

A photonics integrated circuit for demultiplexing<br />

and amplification of coherent combs is demonstrated.<br />

The circuit utilises injection locking to<br />

amplifiy and maintain coherence between optical<br />

lines. Coherence between optical lines of the<br />

device is analysed.<br />

ThR5 2:30 PM - 2:45 PM<br />

EAM Integrated SOA for Low-Pattern<br />

Dependence and Chirp Compensation,<br />

Y.-J. Chiu and J.-P. Wu, National Sun Yat-Sen<br />

University, Kaohsiung, Taiwan<br />

A low-pattern-dependent-and-chirp-compensated<br />

data transmission is demonstrated from<br />

monolithic integration of EAM and SOA. By<br />

reversed saturation behaviors between EAM and<br />

SOA, clear 10Gbit/s eye diagram with 0.6 GHz<br />

chirp-compensation and enhanced signal-tonoise<br />

ratio is realized.<br />

ThR6 2:45 PM - 3:00 PM<br />

Semiconductor Laser Integrated with a<br />

Thermoelectrophotonic Light Emitting<br />

Diode Heat Pump, D. G. Deppe, X. Liu,<br />

G. Zhou and Y. Zhang, University of Central<br />

Florida, Orlando, FL, USA<br />

Data are presented demonstrating, to our knowledge,<br />

the first monolithic chip integrating a<br />

semiconductor laser with a spontaneous light<br />

emitting diode optical pump that can also serve<br />

as a heat pump.<br />

3:30 PM - 5:15 PM<br />

Session ThZ: III-V Photonic<br />

Integration II<br />

Session Chair: TBD<br />

ThZ1 3:30 PM - 4:00 PM (Invited)<br />

An InP-based Generic Integration<br />

Technology Platform, F. M. Soares,<br />

K. Janiak, A. Seeger, Fraunhofer-Institut,<br />

Heinrich-Hertz Institute, Berlin, Germany,<br />

R. G. Broeke, Bright <strong>Photonics</strong>, Maarssen, The<br />

Netherlands and N. Grote, Fraunhofer-Institut<br />

Heinrich-Hertz Institute, Berlin, Germany<br />

This paper describes an InP foundry for receiver<br />

type photonic-integrated circuits. A low-contrast-<br />

ThS3 2:15 PM - 2:30 PM<br />

Optimal Home Circuit Grouping in LOBS-<br />

HC Rings, J. Li, Information Engineering<br />

College, Minzu University of China, Beijing,<br />

China, X. Gao, University of Electronic Science<br />

and Technology of China, Chengdu, Sichuan,<br />

China, W. Tang, South-Central University for<br />

Nationalities, Wuhan, China and C. Qiao, State<br />

University of New York at Buffalo, Buffalo, NY,<br />

USA<br />

We investigate the open problem of optimal<br />

home circuit (HC) grouping in LOBS-HC rings,<br />

and formulate it using Integer Linear<br />

Programming (ILP). Numerical results show that<br />

our ILP solutions require minimum wavelengths.<br />

ThS4 2:30 PM - 2:45 PM<br />

Accurate PMD Measurement by<br />

Observation of Data-Bearing Signals,<br />

M. Taylor, Tektronix, Inc., Beaverton, OR, USA<br />

and R. M. Sova, Johns Hopkins University,<br />

Laurel, MD, USA<br />

PMD is measured by the exact distortion it<br />

applies to a 10Gbaud DP-QPSK signal recorded<br />

by a coherent digitizer. Accuracies were obtained<br />

of 0.7ps (no noise loading) and 1.0ps (signal<br />

noise-loaded to 10dB Q-factor).<br />

ThS5 2:45 PM - 3:00 PM<br />

In-Band Crosstalk Tolerance of Direct<br />

Detection DQPSK Optical Systems,<br />

L. Cancela, J. L. Rebola, Instituto de<br />

Telecomunicações, Lisbon, Portugal and<br />

J. J. O. Pires, Instituto Superior Técnico, Lisboa,<br />

Portugal<br />

An analytical formalism for evaluating the impact<br />

of in-band crosstalk in optical DQPSK systems is<br />

developed and its results are confirmed by<br />

simulation. The crosstalk tolerance is reduced by<br />

5dB in comparison to DPSK systems.<br />

3:30 PM - 4:45 PM<br />

Session ThAA: Optical Nodes<br />

Session Chair: TBD<br />

ThAA1 3:30 PM - 4:00 PM (Invited)<br />

Optical Networking Systems-on-a-Chip,<br />

K. Bergman, Columbia University, New York, NY,<br />

USA<br />

Computing performance scalability is increasingly<br />

constrained by the power dissipation<br />

associated with system wide data movement. We<br />

examine chip-scale silicon photonic interconnection<br />

networks architectures highly energy efficient<br />

processor-memory communications and can<br />

ThT3 2:30 PM - 2:45 PM<br />

Cavity Design of Nanomembrane MR-<br />

VCSELs on Silicon, D. Zhao, University of<br />

Texas at Arlington, Arlington, USA, H. Yang,<br />

Semerane, Inc., Arlington, TX, USA, J.-H. Seo,<br />

Z. Ma, University of Wisconsin-Madison,<br />

Madison, WI, USA and W. Zhou, University of<br />

Texas at Arlington, Arlington, TX, USA<br />

We report a lasing cavity design of transfer<br />

printed Fano resonance photonic crystal<br />

membrane reflector VCSEL on silicon, with III-V<br />

QW active region sandwiched in between two<br />

single-layer Fano resonance Si photonic crystal<br />

nanomembrane reflectors.<br />

ThT4 2:45 PM - 3:00 PM<br />

Instabilities in Optically-Pumped 1300nm<br />

Dilute Nitride Spin-VCSELs: Experiment<br />

and Theory, K. Schires, R. K. Al Seyab,<br />

A. Hurtado, University of Essex, Colchester,<br />

Essex, UK, V.-M. Korpijärvi, M. D. Guina,<br />

Tampere University of Technology, Tampere,<br />

Finland, I. D. Henning and M. J. Adams,<br />

University of Essex, Colchester, Essex, UK<br />

We present the first experimental demonstration<br />

of tuneable 10 GHz oscillations in a continuouswave<br />

room-temperature optically-pumped dilute<br />

nitride 1300 nm spin-VCSEL. Excellent agreement<br />

is found with theoretical predictions based<br />

on the spin flip model.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm GRAND PENINSULA FOYER<br />

3:30 PM - 5:00 PM<br />

Session ThBB: Emerging Material<br />

Technologies<br />

Session Chair: Weidong Zhou, University<br />

of Texas at Arlington, Arlington, TX, USA<br />

ThBB1 3:30 PM - 3:45 PM<br />

Optical Properties of Ge1-zSnz/ SixGe1-xySny<br />

Heterostructures, H. Lin, R. Chen,<br />

Stanford University, Stanford, CA, USA, W. Lu,<br />

University of Strathclyde, Glasgow, Scotland, UK,<br />

Y. Huo, T. I. Kamins and J. S. Harris, Stanford<br />

University, Stanford, CA, USA<br />

GeSn/SiGeSn heterostructures were grown by<br />

MBE and their optical properties were studied by<br />

photoluminescence at different temperatures.


ThU3 2:30 PM - 3:00 PM (Invited)<br />

Improved Efficiency and Divergence of<br />

Intense High-Order Harmonics from<br />

Carbon Plasma, Y. Pertot, J. Fouquet and<br />

T. Ozaki, Institut National de la Recherche<br />

Scientifique, Varennes, QC, Canada<br />

We improve the efficiency and divergence of<br />

high-order harmonics from carbon plasma,<br />

which could be pumped with sub-mJ laser. This<br />

opens the possibility for high repetition rate<br />

experiments with intense attosecond pulses.<br />

3:30 PM - 4:45 PM<br />

Session ThCC: Applications of<br />

Attosecond and Short-Wavelength<br />

Sources<br />

Session Chair: Tsuneyuki Ozaki, Institut<br />

National de la Recherche Scientifique, Varennes,<br />

QC, Canada<br />

ThCC1 3:30 PM - 4:00 PM (Invited)<br />

Imaging of Valence Shell Dynamics<br />

using Intense Laser Pulses, A. Fleischer,<br />

L. Arissian, L. R. Liu, M. Meckel, Joint<br />

Laboratory for Attosecond Science, Ottawa, ON,<br />

Canada, R. Dörner, J.W. Goethe Universitaet,<br />

Frankfurt, Germany, D. M. Villeneuve,<br />

P. B. Corkum and A. Staudte, Joint Laboratory for<br />

Attosecond Science, Ottawa, ON, Canada<br />

Using few cycle laser pulses to sequentially<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

ThV3 2:30 PM - 2:45 PM<br />

Laminated Polymer Waveguide Fan-out<br />

Device for Uncoupled Multi-core Fiber,<br />

Y. Kokubun and T. Watanabe, Yokohama National<br />

University, Yokohama, Kanagawa, Japan<br />

A compact waveguide-type fan-out device for<br />

uncoupled multi-core fibers was demonstrated<br />

using laminated polymer waveguide. The<br />

measured coupling losses from a 7-core fiber to<br />

seven single-core fibers were as low as 0.2 - 4.4<br />

dB.<br />

3:30 PM - 5:15 PM<br />

Session ThDD: Fiber Biophotonics and<br />

Devices<br />

Session Chair: Ping Shum, Nanyang<br />

Technological University, Singapore<br />

ThDD1 3:30 PM - 4:00 PM (Invited)<br />

Nonlinear Optical Fiber Endomicroscopy<br />

Towardds Clinical Applications, Y. Zhang,<br />

W. Liang, M. L. Akins, Johns Hopkins University,<br />

Baltimore, MD, USA, M.-J. Li, Corning, Inc.,<br />

Corning, NY, USA, K. Luby-Phelps, University<br />

Texas Southwestern Medical Center, Dallas, TX,<br />

USA, M. Mahendroo and X. Li, Johns Hopkins<br />

University, Baltimore, MD, USA<br />

We present recent advances on scanning<br />

ThW3 2:30 PM - 2:45 PM<br />

Growth of InAs Quantum Dot Laser<br />

Structures on Silicon, A. Liu, C. Zhang,<br />

A. C. Gossard and J. E. Bowers, University of<br />

California - Santa Barbara, Santa Barbara, CA,<br />

USA<br />

We report on the direct epitaxial growth of InAs<br />

quantum dot based laser structures on silicon<br />

substrates. Aspects of the heteroepitaxy and<br />

quantum dot growth are examined.<br />

ThW4 2:45 PM - 3:00 PM<br />

Development of Lattice-Matched<br />

GaPN/AlGaPN DBR on Si, H. Okada,<br />

K. Kumagai, T. Kawai, H. Sekiguchi and<br />

A. Wakahara, Toyohashi University of<br />

Technology, Toyohashi, Aichi, Japan<br />

Development of GaPN/AlGaPN heterostructures<br />

by solid source MBE for distributed Bragg<br />

reflector (DBR) for optical device on Si was<br />

investigated. Preliminary fabricated eight-pair<br />

DBR successfully demonstrated reflection spectrum<br />

having peak at 850 nm as expected.<br />

3:30 PM - 4:45 PM<br />

Session ThEE: Novel Hybrid Devices<br />

Session Chair: Masayuki Fujita, Osaka<br />

University, Suita, Osaka, Japan<br />

ThEE1 3:30 PM - 4:00 PM (Invited)<br />

High-Density Hybrid Integrated Light<br />

Sources for <strong>Photonics</strong>-Electronics<br />

Convergence System, M. Okano, National<br />

Institute of Advanced Industrial Science and<br />

Technology, Tsukuba, Ibaraki, Japan, N. Hatori,<br />

T. Shimizu, M. Ishizaka, Y. Urino, <strong>Photonics</strong><br />

Electronics Technology Research Association,<br />

Tsukuba, Ibaraki, Japan, M. Mori, National<br />

Institute of Advanced Industrial Science and<br />

ThX3 2:15 PM - 2:30 PM<br />

Amplifying Optical Gradient Forces with<br />

Metamaterials, V. Ginis, Vrije University<br />

Brussels, Brussel, Belgium, P. Tassin, Iowa State<br />

University, Ames, IA, USA and I. Veretennicoff,<br />

Vrije University Brussels, Brussel, Belgium<br />

We demonstrate how transformation optics can<br />

be used to amplify optical gradient forces. We<br />

show how metamaterials allow to enhance<br />

optical forces between two optical waveguides<br />

over several magnitudes even when realistic<br />

losses are included.<br />

ThX4 2:30 PM - 2:45 PM<br />

Designing a Nanoantenna-Superlens<br />

System for Sensing Applications, Z. Liu,<br />

E.-P. Li, Institute of High Performance<br />

Computing, Singapore, V. M. Shalaev and<br />

A. V. Kildishev, Purdue University, West<br />

Lafayette, IN, USA<br />

We demonstrate near field enhancement generation<br />

in a silver nanoantenna-superlens system.<br />

Using near-field coupling effect and genetic<br />

algorithm for optimization we can design a<br />

nanoantenna-superlens system with mismatched<br />

permittivities for sensing applications.<br />

ThX5 2:45 PM - 3:00 PM<br />

2D Plasmon Propagation Inside a Two-<br />

Dimensional Electron Gas Layer with a<br />

Low Loss Metallic Gate, M. A. Khorrami<br />

and S. El-Ghazaly, University of Arkansas,<br />

Fayetteville, AR, USA<br />

We have used perturbation theory to analytically<br />

characterize 2D plasmons’ propagation inside<br />

gated two dimensional electron gas layers of<br />

hetero-structures. Using this analysis, the attenuations<br />

due to ohmic losses of the metallic gate<br />

are calculated.<br />

COFFEE BREAK / EXHIBITS 3:00pm - 3:30pm GRAND PENINSULA FOYER<br />

3:30 PM - 5:00 PM<br />

Session ThFF: Nanoplasmonics II<br />

Session Chair: Shuang Zhang, University<br />

of Birmingham, Birmingham, UK<br />

ThFF1 3:30 PM - 3:45 PM<br />

Nonlinear MIM Nanoplasmonic<br />

Waveguide Based on Electron Tunneling<br />

for Ultrafast Optical Pulse Rectification,<br />

X. Lei and V. Van, University of Alberta,<br />

Edmonton, AB, Canada<br />

We investigated nonlinear pulse propagation in<br />

Metal-Insulator-Metal nanoplasmonic waveguides<br />

in the presence of electron tunneling<br />

across the gap layer. The device is shown to be<br />

Page 75


ThY2 4:00 PM - 4:15 PM<br />

High-Mobility Low-Power Flexible ZnO<br />

Thin Film Transistors on Plastic<br />

Substrates, S. Ebrahimi Takalloo, University of<br />

British Columbia, Vancouver, Canada<br />

This paper presents a high-mobility low-power<br />

ZnO thin film transistor deposited at low temperature<br />

on plastic substrates. A mobility of 52<br />

cm 2 /Vs is achieved for this transistor, signifying<br />

its application in flexible electronics and<br />

displays.<br />

ThY3 4:15 PM - 4:30 PM<br />

10-bit HD Monochrome Display for<br />

Medical Applications, K. Chahal, J. Huras<br />

and G. Chaji, Ignis Innovation, Inc., Waterloo,<br />

ON, Canada<br />

The 7.5-inch 286-ppi display provides high<br />

contrast ratio, smooth gray scales and wide<br />

viewing angles that are essential for medical<br />

applications. The display uses IGNIS proprietary<br />

compensation and calibration technology to<br />

improve uniformity.<br />

ThY4 4:30 PM - 4:45 PM<br />

Effect of SiO2 Coatings on Halophosphate<br />

Phosphors for Near UV-Emitting LEDs,<br />

J. K. Han, University of California - San Diego,<br />

La Jolla, CA, USA,<br />

A. Piquette, M. E. Hannah, Osram Sylvania Inc.,<br />

Beverly, MA, USA, J. B. Talbot, University of<br />

California - San Diego, La Jolla, CA, USA, K.<br />

C. Mishra, Osram Sylvania Inc., Beverly, MA,<br />

USA and J. McKittrick, University of California -<br />

San Diego, La Jolla, CA, USA<br />

SiO2 coatings on the blue emitting halophos-<br />

Page 76<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

, a mediumcontrast-, and a high-contrast waveguide<br />

is offered to interconnect the various<br />

devices. A multi-project wafer has been fabricated<br />

containing 7 different designs.<br />

ThZ2 4:00 PM - 4:15 PM<br />

On-Chip Wavelength-Division<br />

(De)Multiplexers for Multi-Guide Vertical<br />

Integration in InP, Y. Logvin, F. Wu, H. Deng,<br />

V. I. Tolstikhin and C. Brooks, OneChip<br />

<strong>Photonics</strong> Inc., Ottawa, ON, Canada<br />

On-chip wavelength-division (de)multiplexers,<br />

compatible with multi-guide vertical integration<br />

platform in InP, are reported. Designs, based on<br />

AWG and Echelle grating, are demonstrated to<br />

work well within this platform and be suitable for<br />

100Gb/s receive applications.<br />

ThZ3 4:15 PM - 4:30 PM<br />

GaInAsP Mach-Zehnder Interferometric<br />

Waveguide Optical Isolator Integrated<br />

with Spot Size Converter, Y. Sobu,<br />

K. Sakurai, Y. Shoji and T. Mizumoto, Tokyo<br />

Institute of Technology, Meguro-ku, Tokyo, Japan<br />

We fabricated an optical isolator in a GaInAsP<br />

waveguide integrated with SSCs by using a<br />

direct bonding technique. A maximum isolation<br />

ratio of 15.7 dB was obtained at a wavelength of<br />

1558 nm.<br />

ThZ4 4:30 PM - 5:00 PM (Invited)<br />

Monolithic Integration of Passive<br />

Components with High Performance<br />

Quantum Dot Lasers, P. Bhattacharya,<br />

University of Michigan, Ann Arbor, MI, USA,<br />

W. Guo, University of Michigan - Dearborn,<br />

Dearborn, MI, USA, C.-S. Lee and T. Frost,<br />

University of Michigan, Ann Arbor, MI, USA<br />

The monolithic integration of quantum dot lasers<br />

with low loss silicon nitride single mode waveguide<br />

for high temperature operation is<br />

demonstrated. And a true single mode cross<br />

significantly improve computing performance.<br />

ThAA2 4:00 PM - 4:30 PM (Invited)<br />

160 Gbit/s Optical Packet Switching<br />

Using a Silicon Chip, H. Hu, H. Ji, M. Galili,<br />

M. Pu, K. Yvind and P. Jeppesen, Technical<br />

University of Denmark, Lyngby, Denmark<br />

We have successfully demonstrated 160 Gbit/s<br />

all-optical packet switching based on crossphase<br />

modulation using a silicon chip. Error free<br />

performance is achieved for the 4-to-1 switched<br />

160 Gbit/s packet.<br />

ThAA3 4:30 PM - 4:45 PM<br />

Quasi-Passive and Reconfigurable<br />

Optical Node: Implementations with<br />

Discrete Latching Switches, J. Jin, Y. Bi,<br />

Stanford University, Stanford, CA, USA,<br />

M. D. Leenheer, Ghent University, Ghent,<br />

Belgium, L. G. Kazovsky, Stanford University,<br />

Stanford, CA, USA, J. P. K. Perin and M. Ribeiro,<br />

Federal University of Espirito Santo, Vitoria,<br />

Espírito Santo, Brazil<br />

Quasi-Passive and Reconfigurable (QPAR)<br />

optical nodes are implemented using two<br />

Strong direct bandgap photoluminescence peaks<br />

were observed and the energy shift of the peaks<br />

was characterized.<br />

ThBB2 3:45 PM - 4:00 PM<br />

Thermal Annealing Induced Relaxation of<br />

Compressive Strain in Porous GaN<br />

Structures, A. Ben Slimane, A. Najar, T. Ng and<br />

B. S. Ooi, King Abdullah University of Science<br />

and Technology, Thuwal - Jeddah, Saudi Arabia,<br />

The effect of annealing on strain relaxation in<br />

porous GaN is presented. We report a high<br />

Raman shift in phonon frequency corresponding<br />

to a relaxation of compressive strain by 0.41 ±<br />

0.04 GPa.<br />

ThBB3 4:00 PM - 4:15 PM<br />

Process and Device Uniformity of Low-<br />

Loss a-Si:H, T. Lipka, J. Amthor and<br />

J. Mueller, Technical University of Hamburg-<br />

Harburg, Hamburg, Germany<br />

The a-Si:H deposition process is systematically<br />

investigated in intrawafer and wafer-to-wafer<br />

experiments. Photonic ring resonators were<br />

studied within-chip and chip-to-chip, showing<br />

±1.2 nm resonance peak variations and deviations<br />

of 0.25%(intrachip) and 0.9%(interchip) for<br />

group index and FSR.<br />

ThBB4 4:15 PM - 4:30 PM<br />

Sub-Wavelength Diffraction Losses in a<br />

Silicon Nano-Patterned Membrane<br />

Reflector, M. Rakhmanov, T. Miller,<br />

A. Gribovskiy, B. Frost, University of Texas at<br />

Brownsville, Brownsville, TX, USA, S.<br />

Chuwongin, D. Zhao, and W. Zhou, University of<br />

Texas at Arlington, Arlington, TX, USA<br />

Silicon nano-patterned photonic-crystal reflectors<br />

promise near-100% reflectivity.<br />

High-sensitivity measurements of the reflected<br />

field reveal the presence of a sub-wavelength<br />

diffraction which ultimately limits the reflectivity<br />

of these ultra-compact mirrors.<br />

ThBB5 4:30 PM - 4:45 PM<br />

40Gb/s NRZ All-Optical Wavelength<br />

Converter Using InGaAsP/InAlGaAs<br />

Quantum Wells, Y.-J. Chiu, J.-P. Wu and<br />

R.-R. Chen, National Sun Yat-Sen University,<br />

Kaohsiung, Taiwan<br />

A new type InGaAsP/InGaAlAs quantum well is<br />

employed for high-speed, high-efficiency alloptical<br />

wavelength conversion. Less than 6.4ps<br />

all-optical impulse response with a successful<br />

40Gb/s NRZ data transmission is demonstrated.


emove two electrons, we show a path to realtime<br />

probing of multielectron correlations in<br />

complex systems - launched and probed by<br />

multiphoton tunnel ionization.<br />

ThCC2 4:00 PM - 4:15 PM<br />

A Narrow Linewidth Picosecond Pulsed<br />

Laser System for Hydrogen Ion Beam<br />

Stripping, Y. Liu, C. Huang and C. Deibele,<br />

Oak Ridge National Laboratory, Oak Ridge, TN,<br />

USA<br />

We report a picosecond pulsed, narrow<br />

linewidth, mode-hopping free laser system in a<br />

MOPA configuration. The laser can produce 70<br />

ps/402.5 MHz/MW micro-pulses operating in a<br />

10 µs/10 Hz macropulse mode.<br />

ThCC3 4:15 PM - 4:45 PM (Invited)<br />

Development of Highly Spatial-Coherent,<br />

13.5-nm High-Order Harmonics for EUVL<br />

Mask Inspection Using Coherent EUV<br />

Scatterometry Microscope, Y. Nagata,<br />

RIKEN, Wako, Saitama, Japan, T. Harada,<br />

M. Nakasuji, University of Hyogo, Kamigori,<br />

Hyogo, Japan, H. Kinoshita and K. Midorikawa,<br />

RIKEN, Wako, Saitama, Japan<br />

We have developed low divergence, spatially<br />

coherent, high-order harmonics using commercial<br />

sub-TW laser system. A 2nm-wide line<br />

defect in an 88-nm line-and-space pattern was<br />

successfully detected in the diffraction image<br />

using the 59th harmonics.<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

endomicroscopy technologies which can<br />

perform nonlinear optical imaging with an ultracompact<br />

fiber-optic platform of a 2mm diameter.<br />

Two-photon fluorescence and SHG imaging of<br />

unstained biological tissues will be reported.<br />

ThDD2 4:00 PM - 4:15 PM<br />

The Optical Manipulation of Micron<br />

Particles and Bio-Samples with Counter-<br />

Propagating Bessel-Like Beam of All<br />

Fiber Structure, S. Lee, I. Shin, K. Oh, Yonsei<br />

University, Seoul, Korea, M. Son and J.-S. Shin,<br />

Yonsei University College of Medicine, Seoul,<br />

Korea<br />

All-fiber Bessel-like beam generator achieved<br />

optical trapping and displacement control of<br />

micron particles. A pair of generators being<br />

compatible with lab on a chip system can be<br />

good tools for manipulation and analysis of biosample.<br />

ThDD3 4:15 PM - 4:30 PM<br />

Radiation Pressure Induced Optical<br />

Syringe Within Micro Fluidic Channel,<br />

H. Choi, M. Park and K. Oh, Yonsei University,<br />

Seoul, Korea<br />

Laser induced optical force within a micro liquid<br />

channel has been demonstrated by mode<br />

conversion between different refractive index<br />

boundaries. We modulated input laser power and<br />

refractive indexes and measured optical power.<br />

ThDD4 4:30 PM - 4:45 PM<br />

Analyses of Micro-Fluid Flow in a Hollow<br />

Core Fiber based on Optical Interference,<br />

M.-H. Lee, S.-H. Kim, E.-S. Kim, J.-T. Kim, and<br />

I.-K. Hwang, Chonnam National University,<br />

Gwangju, Chonnam, Korea<br />

Speed and position of a fluid in a hollow optical<br />

fiber was successfully monitored based on<br />

optical interference. The change of surface curvature<br />

of the fluid related to optical reflectivity could<br />

be also measured.<br />

Technology, Tsukuba, Ibaraki, Japan,<br />

T. Yamamoto, T. Nakamura, <strong>Photonics</strong><br />

Electronics Technology Research Association,<br />

Tsukuba, Ibaraki, Japan and Y. Arakawa,<br />

University of Tokyo, Tokyo, Japan<br />

We present high-density hybrid integrated light<br />

sources for a photonics-electronics convergence<br />

system. We have developed a hybrid integration<br />

scheme of high-density multichannel laser-diode<br />

chips on a silicon photonics platform with a<br />

novel spot size converter.<br />

ThEE2 4:00 PM - 4:30 PM (Invited)<br />

CMOS-Compatible VCSEL, P. Viktorovitch,<br />

C. Sciancalepore, Institut des Nanotechnologies<br />

de Lyon, Ecully, France, B. Ben Bakir,<br />

Commissariat à l’Énergie Atomique, Grenoble,<br />

France, X. Letartre, Institut des Nanotechnologies<br />

de Lyon, Ecully, France, N. Olivier, Commissariat<br />

à l’Énergie Atomique, Grenoble, France,<br />

C. Seassal, Institut des Nanotechnologies de<br />

Lyon, Ecully, France and J. Harduin,<br />

Commissariat à l’Énergie Atomique, Grenoble,<br />

France<br />

CMOS-compatible III-V/Si vertical-cavity<br />

surface-emitting lasers (VCSELs) based on a<br />

double set of photonic crystal reflectors are<br />

demonstrated, showing single-mode continuous-wave<br />

operation at 1.55-µm with thresholds<br />

in the sub-mW range.<br />

ThEE3 4:30 PM - 4:45 PM<br />

Nanomembrane Transfer Printing for MR-<br />

VCSELs on Silicon, D. Zhao, S. Chuwongin,<br />

University of Texas at Arlington, Arlington, TX,<br />

USA, H. Yang, Semerane, Inc., Arlington, TX,<br />

USA, J.-H. Seo, University of Wisconsin-<br />

Madison, Madison, WI, USA, Y. Shuai, W. Yang,<br />

University of Texas at Arlington, Arlington, TX,<br />

USA, J. Berggren, M. Hammar, Royal Institute of<br />

Technology, Stockholm, Sweden, Z. Ma,<br />

University of Wisconsin-Madison, Madison, WI,<br />

USA and W. Zhou, University of Texas at<br />

capable of rectifying ultrafast pulses of less than<br />

100fs duration.<br />

ThFF2 3:45 PM - 4:00 PM<br />

Surface Enhanced Raman Scattering<br />

Excited by Dielectric-loaded Surface<br />

Plasmon Polariton Waveguides, J. Xiao,<br />

J. Liu, Z. Zheng, Y. Bian, G. Wang and S. Li,<br />

Beihang University, Beijing, China<br />

By leveraging the plasmonic mode of dielectricloaded<br />

surface plasmon waveguide, a strong<br />

enhancement of the SERS signal between adjacent<br />

core-shell nanoparticles could be realized<br />

through coupling to the propagating SPP.<br />

ThFF3 4:00 PM - 4:15 PM<br />

Closed-Form Modelling of Plasmonic<br />

Mesh Structures, C. Lin, M. A. Swillam and<br />

A. S. Helmy, University of Toronto, Toronto, ON,<br />

Canada<br />

A general purpose analytical model for Metal-<br />

Insulator-Metal mesh structures is developed by<br />

incorporating a modified characteristic<br />

impedance model into S-matrix formalism. The<br />

model provides intensity and phase information<br />

within 2% discrepancy compared to numerical<br />

methods.<br />

ThFF4 4:15 PM - 4:30 PM<br />

Minimal Formulation of the Resonance<br />

Properties of Metallic Nanoslit Arrays,<br />

J. W. Yoon, University of Texas at Arlington,<br />

Arlington, TX, USA, M. J. Jung, S. H. Song,<br />

Hanyang University, Seoul, Korea and<br />

R. Magnusson, University of Texas at Arlington,<br />

Arlington, TX, USA<br />

We propose an analytic theory of resonances in<br />

metallic nanoslit arrays. This is a minimal formulation<br />

of the essential physics involved in the<br />

resonance interactions of surface plasmonpolaritons<br />

and cavity modes.<br />

ThFF5 4:30 PM - 4:45 PM<br />

The Mie Theory and Its Nanocircuits and<br />

Nanoimpedances for Plasmonic<br />

Nanoparticles, L. A. Ambrosio and<br />

H. E. Hernandez-Figueroa, State University of<br />

Campinas, Campinas, São Paulo, Brazil<br />

We outline the differences between the nanocircuits<br />

derived from the dipole and the Mie<br />

theories, revealing how important a more accurate<br />

theory is in the derivation of the<br />

nanoimpedances of plasmonic nanospheres.<br />

Page 77


phate phosphors were studied. Luminescence<br />

output and moisture stability of micron-sized<br />

blue emitting halophosphate phosphors are 15-<br />

20% improved by SiO2 coatings.<br />

ThY5 4:45 PM - 5:00 PM<br />

White-Emitting Solid State Lighting by<br />

Electrophoretic Deposition of Phosphors,<br />

J. I. Choi, University of California - San Diego,<br />

La Jolla, CA, USA, M. Anc, A. Piquette,<br />

M. E. Hannah, K. C. Mishra, Osram Sylvania<br />

Inc., Beverly, MA, USA, J. McKittrick and<br />

J. B. Talbot, University of California - San Diego,<br />

La Jolla, CA, USA<br />

Electrophoretic deposition has been applied for<br />

depositing phosphors for application to solid<br />

state lighting. A “remote phosphor” configuration<br />

was employed in a UV-LED-based white light<br />

source for better light extraction efficiency.<br />

Page 78<br />

TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

HARBOUR ROOM B GRAND BALLROOM B GRAND BALLROOM C GRAND BALLROOM E<br />

laser will be presented.<br />

ThZ5 5:00 PM - 5:15 PM<br />

Giant Electro-thermal Phase-shift in Low-<br />

Polarization Dependent Slow Light Bragg<br />

Reflector Waveguide, A. Fuchida,<br />

A. Matsutani and F. Koyama, Tokyo Institute of<br />

Technology, Yokohama, Kanagawa, Japan<br />

We demonstrate a giant phase-shift in a slowlight<br />

Bragg reflector waveguide. A low<br />

polarization dependence of group index is clearly<br />

shown. We observed a large phase shift over 4π<br />

in 20µm-long waveguide thanks to slowing light.<br />

different discrete optical latching switches based<br />

on Micro-Opto-Mechanical and Magneto-Optic<br />

principles. A clear trade-off between speed and<br />

power consumption is noticed for those QPAR<br />

realizations.<br />

Join us next year!<br />

<strong>IEEE</strong> <strong>Photonics</strong> 2013<br />

Bellevue Washington, USA<br />

ThBB6 4:45 PM - 5:00 PM<br />

Theoretical Study of Continuous-Wave<br />

Lasing in Cr:ZnSe:Glass Composite<br />

Waveguides, M. Gorjan and M. Rochette,<br />

McGill University, Montréal, QC, Canada<br />

We study continuous-wave laser operation of a<br />

Cr:ZnSe:glass composite waveguide. Results<br />

show the influence of propagation losses on the<br />

power conversion efficiency, pumping range and<br />

the wavelength tunability of the laser.<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol


TECHNICAL PROGRAM THURSDAY 27 SEPTEMBER<br />

GRAND BALLROOM F GRAND BALLROOM G HARBOUR ROOM A GRAND BALLROOM A<br />

ThDD5 4:45 PM - 5:15 PM (Invited)<br />

Fiber Bragg Sensors Made with IR<br />

Femtosecond Radiation, S. Mihailov,<br />

Communications Research Centre, Ottawa, ON,<br />

Canada<br />

Fiber Bragg grating (FBG) sensors have become<br />

a mainstream sensing technology. High temperature<br />

stable gratings based on femtosecond<br />

infrared laser writing have been used in extreme<br />

environments such as high temperature, pressure<br />

or ionizing radiation.<br />

Arlington, Arlington, TX, USA<br />

We report a polydimethylsiloxane PDMS<br />

nanomembrane transfer printing technique for an<br />

optically-pumped ultra-compact membrane<br />

reflector VCSEL on silicon, with transfer printed<br />

InGaAsP QW sandwiched in between two singlelayer<br />

Fano resonance Si photonic crystal<br />

nanomembrane reflectors.<br />

ThFF6 4:45 PM - 5:00 PM<br />

Modal Analysis of a Novel Nanophotonic<br />

Plasmon Hollow Waveguide, F. Dell’Olio,<br />

C. Ciminelli and M. Armenise, Politecnico di<br />

Bari, Bari, Italy<br />

A novel nanophotonic hollow waveguide has<br />

been accurately investigated. Waveguide modal<br />

properties and performance have been evaluated<br />

by the 3D Finite Element Method. Potential<br />

applications have been envisaged.<br />

PHOTOGRAPHY<br />

Attendance at, or participation in, this conference constitutes consent to the use and distribution by <strong>IEEE</strong> of the attendee’s image or voice for informational, publicity, promotional<br />

and/or reporting purposes in print or electronic communications media. No flash photography will be used.<br />

Video recording by participants and other attendees during any portion of the conference is not allowed without special prior written permission of <strong>IEEE</strong>.<br />

Photographs of copyrighted PowerPoint or other slides are for personal use only and are not to be reproduced or distributed. Do not photograph any such images that are labeled<br />

as confidential and/or proprietary.<br />

NON DISCRIMINATION POLICY<br />

<strong>IEEE</strong> is committed to the principle that all persons shall have equal access to <strong>program</strong>s, facilities, services, and employment without regard to personal characteristics not related to<br />

ability, performance, or qualifications as determined by <strong>IEEE</strong> policy and/or applicable laws. For more information on the <strong>IEEE</strong> policy<br />

visit, http://www.ieee.org/about/corporate/governance/p9-<strong>26</strong>.html?WT.mc_id=hpf_pol<br />

Join us next year!<br />

<strong>IEEE</strong> <strong>Photonics</strong> 2013<br />

Bellevue Washington, USA<br />

Page 79


2011 AUTHOR INDEX<br />

Page 80<br />

A<br />

Abdalla, S. TuQ2<br />

Acerbi, F. ML2<br />

Adachi, Y. ThL4<br />

Adams, D. ThL2<br />

Adams, M. J. ThT4, TuF6<br />

Adibi, A. TuP7, WD1, WFF2, WL,<br />

WP3<br />

Adleman, J. R. MK4, TuK3<br />

Adles, E. J. TuC2<br />

Agarwal, A. WCC1<br />

Aggarwal, I. D. ThP3<br />

Agha, I. WW1<br />

Agnew, M. WG1<br />

Agrell, E. TuM1<br />

Ahirwar, P. WGG5<br />

Ahmed, N. WU4<br />

Aihara, T. WFF4, WFF5<br />

Aitchison, J. TuB3, WX5<br />

Ajayi, I. L. MX2<br />

Akahane, Y. ThE3<br />

Akella, V. TuI6<br />

Akhavan, S. WH2<br />

Akins, M. L. ThDD1<br />

Akiyama, T. MP4<br />

Aksyuk, V. A. MI3, MI4<br />

Al Seyab, R. K. ThT4<br />

Alam, M. ThB5, WX5<br />

Al-Bermani, A. MU3<br />

Al-Ghamdi, M. WGG4<br />

Al-Hashimi, H. H. WU2<br />

Ali, M. A. ME2<br />

Alic, N. TuM<br />

Alisauskas, S. WR1<br />

Alkeskjold, T. T. ThN5<br />

Al-Naib, I. WQ1<br />

Alouini, M. MC4<br />

Althouse, C. ThR1<br />

Amann, M. C. MN1, WN4<br />

Ambrosio, L. A. ThFF5<br />

Ambrosius, H. P. ThR1<br />

Amemiya, T. ThO2<br />

Amirloo, J. MW4<br />

Amthor, J. ThBB3<br />

Anc, M. ThY5<br />

Anderson, T. B. WE2<br />

Andonovic, I. ThC<br />

Andriukaitis, G. WR1<br />

Anet Neto, L. MU4<br />

Anglin, K. WN2<br />

Anti, M. ML2<br />

Antoniades, N. ME2<br />

Aoyama, M. ThE3<br />

Arabaci, M. WM1, WU3<br />

Arai, S. MS3, ThO2, ThO4<br />

Arakawa, Y. ThEE1, ThO5, ThT2, WW3<br />

Arbabi, A. ThP5, TuG1<br />

Ardey, A. TuV2<br />

Argyros, A. ThF3<br />

Arissian, L. ThCC1<br />

Armenise, M. MQ1, ThFF6<br />

Arpin, P. WR1<br />

Arzel, M. MU4<br />

Asada, M. MS3<br />

Asano, T. WEE2<br />

Asghari, M. TuQ3<br />

Asghari, M. H. WCC2<br />

Ashida, M. ThJ3, WQ5<br />

Ashrafi, R. MM2, ThQ4, WCC5<br />

Assefa, S. WZ1<br />

Atabaki, A. H. TuP7<br />

Atai, J. TuR2, TuR3<br />

Ataie, V. TuC5<br />

Ates, S. WW1<br />

Atsumi, Y. ThO4<br />

Aubin, G. TuN5<br />

Aygün, L. E. TuT4<br />

Azaña, J. MM2, ThQ4, TuC1, TuK2,<br />

WCC3, WCC4, WCC5<br />

Azarian, A. ThM3<br />

B<br />

Baba, T. TuP3<br />

Badhwar, S. WQ4<br />

Badolato, A. WW1<br />

Baets, R. G. ThO1<br />

Bagnell, M. MC2, WI2<br />

Bahgat Shehata, A. MD4, ML2<br />

Bahrami, F. TuS3, TuS5<br />

Bai, Y. ThQ6<br />

Baili, G. MC4<br />

Baks, C. MP2<br />

Balakrishnan, G. WGG5<br />

Balciunas, T. WR1<br />

balduzzi, d. MJ2, WBB5<br />

Ballato, J. M. ThF, ThN1<br />

Baltuska, A. WR1<br />

Banan, B. TuI3<br />

Banerjee, A. MR5, ThI4<br />

Bank, S. R. ThL, WGG<br />

Banwell, T. WCC1<br />

Baratali, B. H. TuR2<br />

Barlow, S. WK1<br />

Barnum, T. MK2<br />

Bartels, R. A. MB2, MB5, WR2, WY3<br />

Bartoli, F. J. ThI3<br />

Barve, A. V. MP3, TuF3<br />

Basaca, L. C. MJ4,WBB4<br />

Bashir, R. MR1<br />

Bastawrous, H. A. WR4<br />

Basu, R. TuV5<br />

Bauch, G. WM2<br />

Bauters, J. F. MQ4, ThB1<br />

Bazargani, H. P. ThQ4<br />

Bazin, A. ThJ1<br />

Beausoleil, R. G. TuI1<br />

Beccherelli, R. WFF3<br />

Beling, A. MS2<br />

Belkin, M. WN4<br />

Bellisai, S. MD2, MD3, MD4<br />

Ben Bakir, B. MV2, ThEE2<br />

Ben Slimane, A. ThBB2<br />

Bender, D. A. ThL1<br />

Benhsaien, A. TuN4<br />

Bennett, A. J. TuX2<br />

Ben-Yakar, A. MG4<br />

Berggren, J. ThEE3<br />

Bergman, K. ThAA1<br />

Beri, S. WF5<br />

Berini, P. TuI3<br />

Bertran-Pardo, O. TuE1<br />

Bhardwaj, S. ThU2<br />

Bhattacharya, P. ThZ4, WEE3<br />

Bhave, S. A. TuG3<br />

Bhooplapur, S. MN5, MS4, TuS1<br />

Bi, Y. ThAA3<br />

Bian, Y. ME4, ThFF2, TuB1, WL3<br />

Biancalana, F. ThI2<br />

Bienstman, P. WD4<br />

Bigo, S. TuE1<br />

Bimberg, D. WN1<br />

Binetti, P. R. ThR1<br />

Bloch, E. ThR3<br />

Block, E. WR2<br />

Boehm, G. WN4<br />

Bogaerts, W. MX4<br />

Bohnert, K. ThF5<br />

Bolduc, E. WG1<br />

Bond, T. C. WD5<br />

Bordel, D. MV2<br />

Borowiec, A. TuM4<br />

Bose, R. WW2<br />

Boso, G. MD2, MD3, MD4<br />

Boulet, B. WB4<br />

Bourdon, P. ThM3<br />

Bouzi, P. WQ2<br />

Bowers, J. E. MQ4, ThB1, ThG3, ThW3,<br />

TuL4<br />

Boyd, R. W. WG1<br />

Boyraz, O. TuK4<br />

Bozkurt-Oruc, F. TuT4<br />

Braun, P. WGG1<br />

* Bold Indicates Session Presider<br />

Bredas, J. WK1<br />

Brener, I. ThL1<br />

Brockherde, W. MD3<br />

Broeke, R. G. ThZ1<br />

Broeng, J. ThN5<br />

Brongersma, M. L. MG<br />

Bronzi, D. MD2, MD3, MD4<br />

Brooks, C. ThZ2<br />

Buelow, H. WU2<br />

Burresi, M. MO4<br />

Burtsev, S. ThS2<br />

Busse, L. ThP3<br />

Butler, D. ThV1<br />

Butrie, T. TuN1<br />

C<br />

C.S., S. WQ3<br />

Cai, D. WK1<br />

Cai, H. WQ2<br />

Caia, J. WM3<br />

Calderon, J. WM3<br />

Callender, C. ThQ4<br />

Callis, P. R. MJ5<br />

Campanella, C. E. MQ1<br />

Campbell, J. C. MC1, MC3, ML, L4, MS2<br />

Cancela, L. ThS5<br />

Canciamilla, A. WS3<br />

Candiani, A. ThF3, TuB2<br />

Cannan, D. TuJ3<br />

Cao, D. ThT2<br />

Capmany, J. WG3<br />

Carballar, A. WCC3<br />

Carmon, T. TuO, TuW3<br />

Cartledge, J. C. TuU2<br />

Carvalho, F. W. ThC4<br />

Caspers, J. ThB5<br />

Castrillon, M. A. MU2<br />

Catchpole, K. R. MG2<br />

Chahal, K. ThY3<br />

Chaji, G. ThY3<br />

Chakraborty, S. MR5<br />

Chakravarty, S. MR3, WD3<br />

Chamanzar, M. WFF2<br />

Chan, K. A. TuX2<br />

Chang, A. S. WD5<br />

Chang, D. ThS2<br />

Chang, Y. WDD2, WS5<br />

Chang, Z. WY2<br />

Chang-Hasnain, C. J.MX3, ThT1, TuO4, WE5<br />

Charlet, G. TuE1<br />

Charrunchon, S. TuJ4<br />

Chase, C. ThT1<br />

Chattham, N. TuJ4<br />

Chen, A. ThB1<br />

Chen, B. WD5<br />

Chen, C. TuW1<br />

Chen, H. WJ3<br />

Chen, L. MI3, MI4<br />

Chen, L. R. WDD3, WDD4, WJ5<br />

Chen, M. WR1<br />

Chen, P. TuP2<br />

Chen, R. ThBB1, ThBB5<br />

Chen, R. T. MR3, TuI4, TuP6, WD3<br />

Chen, S. WE2<br />

Chen, T. TuG5, WL1<br />

Chen, W. MK2<br />

Chen, X. MH2, ThB6<br />

Chen, Y. MH2, ThB6, TuP2<br />

Chen, Z. TuJ3, TuR1, WC5, WQ<br />

Cheng, C. WBB1<br />

Cheng, W. WR5, WY2<br />

Cheng, Z. ThB6<br />

Cheong, L. WH4<br />

Childs, P. TuB2<br />

Chin, H. WE3<br />

Chin, S. WD3<br />

Chini, M. WY2<br />

Chitgarha, M. R. ThT1<br />

Chiu, Y. ThBB5, ThR5<br />

Cho, J. WM3<br />

Choi, D. ThL3


Choi, H. ThDD3, WH6<br />

Choi, J. I. ThY5<br />

Chon, J. TuE4<br />

Choquette, K. D. MN4, MV3, TuF1,<br />

WF3<br />

Chu, T. TuG2<br />

Chua, S. TuP4<br />

Chuwongin, S. ThBB4, ThEE3<br />

Ciblat, P. TuE2<br />

Cihan, A. ThH3<br />

Ciminelli, C. MQ1, ThFF6<br />

Clark, S. WGG5<br />

Clark, T. R. TuC2, TuS, WA,<br />

WS1<br />

Clarke, G. ThM5<br />

Cleary, C. S. WQ6<br />

Clem, P. G. ThL1<br />

Coen, S. TuR4<br />

Cogman, A. ME5<br />

Cola, A. ThL5, TuL5<br />

Coldren, L. A. MN3, ThR1, ThR3,<br />

TuF3<br />

Coleman, J. J. ThB, ThJ4<br />

Collins, M. TuP1<br />

Connor, J. MR2<br />

Connors, M. K. WN2<br />

Cooke, D. G. WQ1<br />

Coomans, W. WF4, WF5<br />

Corbett, B. ThR4<br />

Corkum, P. B. ThCC1<br />

Corradini, R. TuB2<br />

Cory, K. C. ThM5<br />

Corzine, S. W. TuN1<br />

Coscelli, E. ThN5<br />

Coskun, Y. WH1<br />

Cotter, W. ThR4<br />

Covey, J. TuP6<br />

Coyle, D. B. ThM5<br />

Cucinotta, A. ThN5, TuB2<br />

Cuesta-Soto, F. WS3<br />

Cui, Y. ThF4, ThN3<br />

Cunningham, E. WY2<br />

Currie, M. TuL5<br />

Cvijetic, M. WU3<br />

D<br />

Daaboul, G. MR2<br />

Dagenais, M. MW4, ThJ<br />

Dagli, N. MS5, TuC4<br />

Dailey, J. M. WQ6<br />

Dalal, V. MA1<br />

Danckaert, J. TuO3, WF4, WF5<br />

Dang, C. MF5<br />

Das, A. WEE3<br />

Das, S. ThK1<br />

Dasanayaka, S. TuR3<br />

Dashti, P. Z. ThC1<br />

Davanço, M. WW1<br />

Davenport, M. L. ThB1, ThO3<br />

David, J. P. MT3<br />

Davidovic, M. MD5<br />

Davila-Rodriguez, J. MC2, WI2, WI4<br />

Dawei, L. ThE2<br />

Dawson, M. D. ME5, ThH2, ThT,<br />

WC5<br />

de Bruin, D. MJ1<br />

de Souza, F. ThK3<br />

De Dobbelaere, P. M. TuQ2<br />

De Koninck, Y. ThO1<br />

Debnath, K. ThJ2<br />

Decrossas, E. WH5<br />

Deibele, C. ThCC2<br />

Dekker, R. TuJ1<br />

Delfyett, P. J. MC2, MN5, MS4,<br />

ThQ5, TuS1, TuV2,<br />

WBB3, WI2, WI4<br />

Del’Haye, P. MI1<br />

Della Frera, A. MD2, MD4<br />

Dell’Olio, F. MQ1, ThFF6<br />

Demir, H. V. MX, ThH3, ThH5,<br />

WH1<br />

DenBaars, S. P. WC1<br />

Deng, H. ThZ2, WEE3<br />

Deng, S. TuI5<br />

Dennis, M. L. TuC2, TuC3, WS1<br />

Deppe, D. G. ThR6, TuF5, WX3<br />

Descos, A. MV2<br />

Deshpande, S. WEE3<br />

Detwiler, T. F. TuU3<br />

Dhar, S. TuT1<br />

Dianat, P. ThL5, TuL5<br />

Diddams, S. A. MC1, MC3, MI1<br />

Dignam, M. WQ1<br />

Ding, Y. ThB4<br />

Ding, Y. J. WB, WB3, WB5<br />

Dinh, X. ThF4, WDD5<br />

Djavid, M. WC2<br />

Djordjevic, I. B. WM, WM1, WU3<br />

Do, C. WE1<br />

Docherty, A. ThP3, TuV3<br />

Doerner, R. ThCC1<br />

Dogru, S. MS5<br />

Doi, K. ThO2<br />

Dolfi, D. MC4<br />

Domingue, S. WY3<br />

Dominic, V. G. TuN1<br />

Dong, L. ThN1<br />

Donnelly, J. P. WN2<br />

Dorsinville, R. ME2<br />

Dowdy, R. WGG2<br />

Dowling, J. P. MW1<br />

Drabkin, H. WD3<br />

Dragic, P. D. ThN1<br />

Dridi, K. TuN4<br />

Drobizhev, M. MJ5<br />

Du, L. B. TuU4, WE2<br />

Duarte, C. MR1<br />

Dudley, J. M. WR3<br />

Dumais, P. ThQ4<br />

Dumitrescu, M. TuV4<br />

Dunne, J. ThK2<br />

Durini, D. MD3<br />

E<br />

Earl, D. WG4<br />

Eberhardt, R. ThM1<br />

Ebrahimi Takalloo, S. ThY2<br />

Edwards, C. WBB2<br />

Edwards, P. WJ2<br />

Edwards, P. R. ThH2<br />

Eftekhar, A. A. TuP7, WD1, WP3<br />

Eggleston, M. WX2<br />

Eggleton, B. J. TuP1<br />

Elezzabi, A. Y. ThI1<br />

El-Ghazaly, S. ThX5, WH5<br />

Elkadi, A. WH5<br />

Ellis, B. C. WF1<br />

Emplit, P. TuR4<br />

Emsia, A. ME3<br />

Entwistle, M. ML1<br />

Erasme, D. TuN5<br />

Erdem, T. WH1<br />

Erkintalo, M. WR3<br />

Eroglu, C. WH1<br />

Estaran, J. ME1<br />

Evans, P. TuN1<br />

Even, J. MF3<br />

Evert, A. ThN1<br />

Eychmüller, A. WH1<br />

F<br />

Faber, D. J. MB, MJ1<br />

Fainman, Y. MH1<br />

Fan, H. ThE1<br />

Fan, L. ThB2<br />

Fan, S. MX1, ThD2, TuO2<br />

Fang, A. W. ThB1, ThG1, TuQ1<br />

Fard, A. TuS2<br />

Farr, W. H. MD1<br />

Farrer, I. TuX2<br />

Fauchet, P. M. MW3<br />

Fawcett, H. MR2<br />

Fedderwitz, S. TuL3<br />

Fedeli, J. MV2<br />

Fei, E. MH2<br />

Fejer, M. M. WB1, WR<br />

Ferdous, F. MI3, MI4<br />

Fernández-Pousa, C. R. WG3<br />

Fernández-Ruiz, M. d. WCC3, WCC4<br />

Ferrari, A. C. TuJ2, WJ4<br />

Ferraro, P. MJ2, WBB, WBB5<br />

Ferry, V. MG1<br />

Filho, P. ThK3<br />

Finizio, A. MJ2, WBB5<br />

Finley, J. J. ThD3<br />

Fish, G. A. ThG1, TuQ1<br />

Fisher, M. TuN1<br />

Fleischer, A. ThCC1<br />

Florea, C. ThP3<br />

Foda, F. F. WR4<br />

Foltz, D. TuQ2<br />

Forchhammer, S. WS2<br />

Fortier, T. M. MC1, MC3<br />

Fortuna, S. A. WGG2<br />

Fortusini, D. D. ThV1<br />

Fouquet, J. ThU3<br />

Foy, P. ThN1<br />

Frank, A. ThF5<br />

Frederickson, R. M. ThM5<br />

Freedman, D. S. MR2<br />

Frison, B. WDD4<br />

Frost, B. ThBB4<br />

Frost, T. ThZ4<br />

Fryslie, S. T. MN4, WF3<br />

Fu, L. MG3, ThX2<br />

Fu, S. WDD6<br />

Fu, Y. MC1, MC3, MS2<br />

Fuchida, A. ThZ5<br />

Fuentes-Hernandez, C. WK1<br />

Fujita, M. MO2, ThEE, ThJ3,<br />

WQ5<br />

Fukuda, K. ThO4<br />

Fukuda, M. WFF4, WFF5<br />

Fukuhara, M. WFF4, WFF5<br />

Funk, K. B. TuC3<br />

Fusco, R. MO4<br />

Futami, M. ThO2<br />

G<br />

G. Baltar, L. MU1<br />

Gaberl, W. MD5, TuL6<br />

Gabus, P. ThF5<br />

Gai, X. ThL3<br />

Galili, M. MM4, ThAA2, ThQ1,<br />

WQ6<br />

Galli, A. MJ2, WBB5<br />

Galli, M. TuH4<br />

Gan, F. ThB2<br />

Gan, Q. ThI3<br />

Ganapati, V. MW2<br />

Gao, L. WFF6<br />

Gao, X. ThS3<br />

Gao, Y. ThI3, TuU2<br />

Gaponik, N. WH1<br />

Gartia, M. R. WP5<br />

Gautam, R. ThQ2<br />

Ge, C. MR4<br />

Gelens, L. TuR4, WF4, WF5<br />

Gemmill, R. WD3<br />

Geng, Y. ThV1<br />

* Bold Indicates Session Presider<br />

Genty, G. N. WR3<br />

Geuzebroek, D. H. TuJ1<br />

Ghasemi, F. WD1<br />

Giese, J. MX2<br />

Ginis, V. ThX3, TuO3<br />

Ginn, J. ThL1<br />

Gkortsas, V. ThU2<br />

Gleason, J. ThB1<br />

Gloeckner, S. TuQ2<br />

Goddard, L. L. ThP5, TuG1, WBB2<br />

Godoy, S. E. WT2<br />

Going, R. TuJ2<br />

Goldberg, B. B. ThP6<br />

Goldfarb, G. ThS1<br />

Gondaira, K. TuP5<br />

Gong, Z. WC5<br />

Goodhue, W. T. WN2<br />

Gorjan, M. ThBB6<br />

Gossard, A. C. ThW3<br />

Gosset, C. TuE2<br />

Goulding, D. ThR4<br />

Granados, E. ThU2<br />

Granier, C. H. MW1<br />

Grasse, C. MN1, WN4<br />

Gready, D. MF2, MF4<br />

Grebel, H. MR5, ThI4<br />

Green, W. M. WZ1<br />

Gregorkiewicz, T. ThH1, ThP, ThX<br />

Gribovskiy, A. ThBB4<br />

Griffith, Z. ThR3<br />

Grillet, C. TuP1<br />

Grillot, F. MF3, TuN5<br />

Grogan, M. D. ThP6<br />

Grosse, P. MV2<br />

Grot, D. TuE2<br />

Grote, N. ThZ1<br />

Gruendl, T. MN1<br />

Gruev, V. TuD3<br />

Grzybowski, R. R. ThV1<br />

Gu, C. WD5<br />

Gu, E. ME5, ThH2, WC5<br />

Gu, T. TuI2<br />

Gu, X. WDD4<br />

Guang, X. ThE2<br />

Gubenko, A. E. MH3<br />

Guelenaltin, B. ThF5<br />

Guillossou, T. TuE2<br />

Guina, M. D. ThT4<br />

Gunapala, S. D. TuD4, WD<br />

Guo, Q. ThC2<br />

Guo, W. ThR1, ThZ4<br />

Guzelturk, B. ThH5<br />

Gwilliam, R. M. MT2<br />

H<br />

Ha, R. WH6<br />

Haarlammert, N. ThM1<br />

Haelterman, M. TuR4<br />

Hai, M. TuI3<br />

Hains, C. P. WGG5<br />

Halioua, Y. ThJ1<br />

Hall, E. M. TuQ1<br />

Hall, T. J. TuN4<br />

Haller, E. WF1<br />

Hallynck, E. WD4<br />

Hammar, M. ThEE3<br />

Han, H. ThE1<br />

Han, J. K. ThY4<br />

Handapangoda, D. WX4<br />

Haney, M. W. MP, TuI2<br />

Hannah, M. E. ThY4, ThY5<br />

Harada, T. ThCC3<br />

Harduin, J. ThEE2<br />

Harimoto, T. ThE3<br />

Harris, J. S. MH2, ThBB1, WF1<br />

Harrison, R. K. MG4<br />

Harvey, E. P. MC5<br />

Hasan, T. TuJ2, WJ4<br />

Hasebe, K. WF2<br />

Haske, W. WK1<br />

Hati, A. MC1, MC3<br />

Page 81


Hatori, N. ThEE1<br />

Hattori, H. T. ThX2<br />

Hauske, F. MU1, TuE, WE4,<br />

WM2<br />

Hawkins, T. ThN1<br />

HAYASHI, Y. ThO4<br />

Hayat, M. M. ML5, WT, WT2<br />

He, X. WK1<br />

Heck, M. MQ4, ThB1, ThG3,<br />

ThO<br />

Hedler, H. ThD3<br />

Heeres, R. WO2<br />

Heideman, R. G. TuJ<br />

Helander, M. G. WK2<br />

Helmy, A. S. ThFF3, WFF1<br />

Henderson, R. K. ME5, WC5<br />

Hening, A. MK4<br />

Henning, I. D. ThT4, TuF6<br />

Hernandez, P. L. ThH3, ThH5, WH1<br />

Hernandez-Figueroa, H. E. ThFF5<br />

Hickey, S. G. WH1<br />

Higley, D. MB5<br />

Higo, A. TuH5<br />

Hill, T. WEE3<br />

Hisano, D. MM3<br />

Hofbauer, M. MD5, TuL6<br />

Hoghooghi, N. MN5, MS4, TuS1<br />

Holmes, B. M. TuN2<br />

Honecker, J. TuL3<br />

Hong, K. ThU2<br />

Hoover, B. J. ThV1<br />

Horst, F. WZ1<br />

Hosako, I. WAA1<br />

Hosseini, A. TuI4, TuP6<br />

Hossein-Zadeh, M. MQ5, ThD5<br />

Hovey, S. TuQ2<br />

Howe, D. MC1<br />

Howe, R. T. WP4<br />

Hsieh, B. WR5<br />

Hsieh, C. TuP2<br />

Hu, D. ThF4, ThN3<br />

Hu, F. WFF6<br />

Hu, H. MM4, ThAA2, ThQ1<br />

Hu, T. ThM4<br />

Hua, Y. ThR4<br />

Huang, C. ThCC2<br />

Huang, H. WU4<br />

Huang, J. WN3<br />

Huang, M. C. ThT1<br />

Huang, P. WR5<br />

Huang, R. TuI5<br />

Huang, S. ThU2, WR5<br />

Huang, T. WDD3, WJ5<br />

Huang, Y. TuK4, TuX3<br />

Huber, T. WEE1<br />

Hueda, M. R. MU2<br />

Humbert, G. ThF4<br />

Humble, T. WG4<br />

Huntington, A. S. ML5<br />

Huo, Y. MH2, ThBB1<br />

Huras, J. ThY3<br />

Hurtado, A. ThT4, TuF6<br />

Hutchings, D. C. TuN2<br />

Huynh, C. K. TuK3<br />

Hwang, I. ThDD4, TuJ5<br />

I<br />

Ieda, M. TuT3<br />

Iezekiel, S. WS3<br />

Iglesias, M. WS2<br />

Ihlefeld, J. F. ThL1<br />

Ikuta, R. WG2<br />

Im, S. WH6<br />

Imoto, N. WG2<br />

Ip, E. TuU1, WU<br />

Isaac, R. TuE4<br />

Ishigaki, T. ThJ3<br />

Ishii, Y. WFF4, WFF5<br />

Ishikura, N. TuP3<br />

Ishimaru, T. TuT3<br />

Ishizaka, M. ThEE1<br />

Ishizaki, K. TuP5<br />

Itzler, M. A. ML1, ML3, ML4<br />

Iwamoto, S. ThT2, TuX, WW3<br />

J<br />

Jackson, K. P. MP2<br />

Jackson, S. TuQ2<br />

Jacobs, E. W. MC, MK4, TuK3<br />

Jacobson, R. ThD2<br />

Jagadish, C. MA, MG3, MO, ThX2<br />

Jahan, B. MU4<br />

Jain, R. K. MQ5, ThD5<br />

Jalali, B. TuS2, WCC2<br />

James, A. ThN1, TuN1<br />

Jang, M. WN4<br />

Jang, W. WT2<br />

Janiak, K. ThZ1<br />

Jaouen, Y. ThM3, TuE2<br />

Jayakumar, H. WEE1<br />

Jensen, J. B. WE5<br />

Jeon, P. WH6<br />

Jeong, H. MV3<br />

Jeong, S. MP4<br />

Jeppesen, P. MM4, MM5, ThAA2,<br />

ThQ1, WQ6<br />

Jezequel, M. MU4<br />

Ji, H. MM4, ThAA2, ThQ1,<br />

WQ6<br />

Jiamg, J. WP5<br />

Jiang, H. MC3<br />

Jiang, M. WDD5<br />

Jiang, Q. ThW1<br />

Jiang, W. ThM4<br />

Jiang, X. ML1, ML4<br />

Jiang, Z. WJ4<br />

Jin, J. ThAA3<br />

Joannopoulos, J. D. TuH3, WH4<br />

Joergensen, M. M. ThN5<br />

Johansson, L. A. ThR1, ThR3, TuF3<br />

John, S. MO3<br />

Johnson, A. WQ2<br />

Johnson, A. S. WG1<br />

Johnson, E. MH, MX2, ThP2,<br />

ThP4<br />

Johnson, M. TuF1<br />

Johnson, S. G. WH4<br />

Jokerst, N. M. TuT1<br />

Joshi, A. MS1<br />

Joyo, A. TuS4<br />

Jung, I. WP4<br />

Jung, M. J. ThFF4<br />

Page 82 2* Bold Indicates Session Presider<br />

K<br />

Kaindl, R. A. WI<br />

Kakimi, R. WQ5<br />

Kakitsuka, T. WF2<br />

Kalosha, V. P. WN1<br />

Kalyoncu, S. K. TuK4<br />

Kaman, V. ThG1<br />

Kamins, T. I. MH2, ThBB1<br />

Kamp, M. TuV4<br />

Kang, I. ThO4<br />

Kang, Y. ThP5<br />

Kanno, A. WAA1<br />

Kapteyn, H. C. WR1<br />

Karaki, J. TuE2<br />

Karim, A. TuC2<br />

Karle, T. J. ThJ1<br />

Karlsson, M. TuM1<br />

Karouta, F. ThX2<br />

Kärtner, F. X. WY1<br />

Kato, M. ThS1, TuN1<br />

Kauten, T. WEE1<br />

Kawai, T. ThL4, ThW4<br />

Kawanishi, T. WAA1, WS4<br />

Kay, R. B. ThM5<br />

Kazmierski, C. TuN5<br />

Kazovsky, L. G. ThAA3<br />

Ke, J. TuU2<br />

Kechaou, K. TuN5<br />

Kelestemur, Y. ThH3<br />

Kelly, A. E. ME5, TuN2, WC5<br />

Keyvaninia, S. ThO1<br />

Khaleghi, S. ThT1<br />

Khanna, S. P. MT1<br />

Khayam, O. TuN1<br />

Khorrami, M. A. ThX5<br />

Kildishev, A. V. ThX4<br />

Kim, D. MB4<br />

Kim, E. ThDD4, TuJ5<br />

Kim, H. WW2<br />

Kim, J. ThDD4, ThN4, TuJ5<br />

Kim, M. S. MB4<br />

Kim, N. TuC4<br />

Kim, R. MV3<br />

Kim, S. ThDD4, TuB6, TuJ5<br />

Kim, S. M. TuD2<br />

Kinoshita, H. ThCC3<br />

Kippelen, B. WK1<br />

Kirsten, J. WM3<br />

Kish, F. A. ThS1, TuN1<br />

Kitayama, K. MM3, WAA1<br />

Kjellman, J. O. TuH5<br />

Klee, A. WI2<br />

Klein, E. J. TuJ1<br />

Klopfer , M. ThD5<br />

Knauer, K. A. WK1<br />

Koashi, M. WG2<br />

Kobayashi, W. WF2<br />

Koch, B. R. MV, WZ<br />

Kojima, K. WEE2<br />

Kojima, T. WEE2<br />

Kokubun, Y. ThV3<br />

Kong, W. ME4, TuB1<br />

Konthasinghe, K. TuF5<br />

Koonen, A. TuC<br />

Kopp, C. MV2<br />

Korpijärvi, V. ThT4<br />

Koshiba, M. WZ5<br />

Kostov, P. MD5, TuL6<br />

Koumura, M. TuP5<br />

Koyama, F. ThR, ThZ5, TuF2,<br />

TuF4<br />

Kraeh, C. ThD3<br />

Krause, D. J. ThS1<br />

Krauss, T. F. ThJ2, TuH4, TuP1<br />

Krestnikov, I. L. MH3<br />

Krishna, S. MT, WT2<br />

Krishnamoorthy, A. V. PLE1.2<br />

Krysa, A. B. WGG4<br />

Kuang, C. TuP2<br />

Kulkarni, M. TuD3<br />

Kumagai, K. ThW4<br />

Kumar, N. WX2<br />

Kumar, P. TuX3<br />

Kumar, S. ThS1, TuM3<br />

Kuntz, M. TuN1<br />

Kuo, B. P. TuK3<br />

Kurczveil, G. ThG3<br />

Kuri, T. WAA1<br />

Kvavle, J. M. TuK3<br />

Kwak, R. WM3<br />

Kwong, D. TuP6<br />

L<br />

Laakso, A. TuV4<br />

Lægsgaard, J. ThN5<br />

Lagally, M. ThD2<br />

Lai, C. ThU2<br />

Lai, W. MR3, WD3<br />

Lai, Y. WGG5<br />

Lal, V. TuN1<br />

Lalanne, E. N. WQ2<br />

Lam, C. F. ThC1<br />

Lam, D. TuS2<br />

Lambert, D. TuN1<br />

Langrock, C. WB1<br />

Lao , Y. MT1<br />

Laperle, C. TuM4<br />

Larikova, J. WM3<br />

Lasher, M. MK4<br />

Lau, B. WFF1<br />

Laurain, A. WGG5<br />

Laurila, M. ThN5<br />

Law, S. ThL2<br />

Le, H. N. MB4<br />

Leach, J. WG1<br />

Leaird, D. E. MI3, MI4, ThB2<br />

Lebedev, A. WS2<br />

Ledentsov, N. N. MF1, MN, WF3<br />

Lee, A. ThW1<br />

Lee, B. G. MP2<br />

Lee, C. ThZ4<br />

Lee, H. TuG5, WL1<br />

Lee, J. WDD2, WS5<br />

Lee, K. J. MX2<br />

Lee, M. ThDD4, TuJ5, TuP2<br />

Lee, S. ThDD2, WH6<br />

Lee, Y. WBB1<br />

Leenheer, M. D. ThAA3<br />

Lei, X. ThFF1<br />

Lei, Z. WL4<br />

Leick, L. ThN5<br />

Leisher, P. O. WV<br />

Lemke, N. MC1<br />

Leng, Y. ThE4<br />

Lenner, M. ThF5<br />

Leo, F. TuR4<br />

Leonhardt, C. C. TuL3<br />

Leon-Saval, S. G. ThF3<br />

Letartre, X. ThEE2<br />

Li, C. ThQ6<br />

Li, D. WB5<br />

Li, E. ThX4<br />

Li, J. ThS3, TuG5, TuP1,<br />

WDD3, WJ5, WL1<br />

Li, L. MT1<br />

Li, M. MM2, ThDD1, ThQ4,<br />

ThV1, TuK2, WCC4,<br />

WX3<br />

Li, N. MP2<br />

Li, Q. TuP7, WP3<br />

Li, R. ThE4, ThQ6<br />

Li, S. ThFF2, WL2<br />

Li, T. MW4<br />

Li, W. TuK2<br />

Li, X. ThDD1, ThQ3, TuG2,<br />

TuR5, WGG2, WGG3,<br />

WL2<br />

Li, Y. ThE1, ThP2, ThP4,<br />

WAA3<br />

Li, Z. ThX2, TuG2<br />

Liang, W. ThDD1<br />

Liang, Y. TuQ2


Liboiron-Ladouceur, O. TuI3, WM4<br />

Liebrandt, D. MC1<br />

LiKamWa, P. TuN3, WC6<br />

Lillieholm, M. MM5<br />

Lim, C. WAA2<br />

Lim, J. ThN3<br />

Lim, P. ThB3<br />

Limtrakul, J. TuJ4<br />

Lin, C. MK4, MN3, ThFF3,<br />

WFF1, WU3<br />

Lin, G. MI5<br />

Lin, H. MU4, ThBB1<br />

Lin, J. WAA3, WR5<br />

Lin, L. Y. TuT2, TuT5<br />

Lin, R. TuP2<br />

Lin, X. TuI4<br />

Lin, Y. TuE4, WBB1<br />

Linfield, E. H. MT1<br />

Liow, T. MX5, ThB3<br />

Lipka, T. ThBB3<br />

Lischke, S. WZ2<br />

Lisicka, E. TuI3<br />

Little, J. MW4<br />

Liu, A. ThW3<br />

Liu, C. ThE1, TuU3<br />

Liu, G. WC3, WC4, WGG3<br />

Liu, G. L. MJ3, WP5<br />

Liu, H. MF, MT3, ThC1,<br />

ThW1<br />

Liu, J. ThE4, ThFF2, WL2<br />

Liu, L. R. ThCC1<br />

Liu, P. ThQ6<br />

Liu, P. Q. WQ2<br />

Liu, S. ThL1, WQ2<br />

Liu, T. TuM2, WN5<br />

Liu, X. MH2, ThL4, ThR6<br />

Liu, Y. ME4, ThCC2, TuB1<br />

Liu, Z. ThX4<br />

Livshits, D. A. MH3<br />

Locke, T. P. MC5<br />

Logvin, Y. ThZ2<br />

Lõhmus, M. WI5<br />

Lohr, M. B. TuC3<br />

Lombard, L. ThM3<br />

Long, P. WDD4<br />

Lopez-Royo, F. WS3<br />

Lott, J. A. WF3<br />

Lowery, A. J. TuU4, WE2<br />

Lu, H. MG3<br />

Lu, L. TuH3, TuP4, WH4<br />

Lu, M. ThR2, ThR3<br />

Lu, W. ThBB1<br />

Lu, Y. ThP6<br />

Lu, Z. ML4, WK2<br />

Luan, F. MX5, ThB3<br />

Luby-Phelps, K. ThDD1<br />

Ludlow, A. D. MC1<br />

Luo, X. ThB3<br />

Luo, Y. WFF2<br />

Luther, J. P. ThV1<br />

Luther-Davies, B. ThL3<br />

Lwin, R. ThF3<br />

M<br />

Ma, J. ThE1<br />

Ma, Z. ThD2, ThEE3, ThT3<br />

Mack, M. P. TuQ2<br />

Madamopoulos, N. ME2, TuS4<br />

Madden, S. ThL3<br />

Magana-Loaiza, O. S. WG1<br />

Magnusson, R. MX2, ThFF4, ThP2,<br />

TuB5<br />

Mahapatra, S. WQ3<br />

Mahendroo, M. ThDD1<br />

Mahony, T. ThL1<br />

Majumdar, A. WF1<br />

Maleki, L. MI2, WA1<br />

Malendevich, R. TuN1<br />

Malfanti, I. MO4<br />

Malik, M. WG1<br />

Manning, R. J. WQ6<br />

Marcia, R. F. WT1<br />

Marder, S. R. WK1<br />

Mardoyan, H. TuE1<br />

Marko, M. D. ThQ3, TuR5<br />

Markovic, B. MD2, MD3, MD4<br />

Marpaung, D. MK1<br />

Marsh, J. H. TuN2<br />

Martin, C. WH3<br />

Martin, R. ThH2<br />

Martucci, C. TuL5<br />

Maruta, A. MM3<br />

Maruyama, K. MS3<br />

Mashal, L. WF5<br />

Masini, G. TuQ2<br />

Massoubre, D. ME5, ThH2<br />

Matsko, A. B. MI2, MQ<br />

Matsuo, S. TuW1, WF2<br />

Matsutani, A. ThZ5, TuF2, TuF4<br />

Matt, R. WI5<br />

Mayer, M. WF1<br />

McKendry, J. ME5, WC5<br />

McKenna, T. P. TuC2, WS1<br />

McKeown, N. W. ThK1<br />

McKittrick, J. ThY4, ThY5<br />

Meckel, M. ThCC1<br />

Medin, M. ThC1<br />

Meissner, H. E. WB2<br />

Meissner, S. K. WB2<br />

Mekis, A. TuQ2<br />

Melloni, A. WS3<br />

Memmolo, P. MJ2, WBB5<br />

Menezo, S. MV2<br />

Menyuk, C. R. ThP3, TuV3<br />

Messer, K. WX2<br />

Mezghani, A. MU1<br />

Mezosi, G. WF4<br />

Mi, Z. WC2<br />

Miao, H. MI3, MI4<br />

Midorikawa, K. ThCC3<br />

Mihailov, S. ThDD5<br />

Mikhrin, S. S. MH3<br />

Mikhrin, V. MH3<br />

Milenko, K. ThN3<br />

Millar, D. S. WE3<br />

Miller, O. MW2, PLE2.2<br />

Miller, T. ThBB4<br />

Min, C. MW1<br />

Mirhosseini, M. WG1<br />

Miri, M. TuH2<br />

Mishra, K. C. ThY4, ThY5<br />

Missaggia, L. J. WN2<br />

Missey, M. TuN1<br />

Mitchell, J. G. MP5<br />

Mitchell, M. ThS1, TuN1<br />

Miura, K. WZ3<br />

Mizumoto, T. ThZ3, WZ3<br />

Moayedi Pour Fard, M. WM4<br />

Modirnia, R. WB4<br />

Mohseni, P. WGG2<br />

Mojahedi, M. ThB5, TuB3, WX5<br />

Mokkapati, S. MG3<br />

Molin, S. WDD5<br />

Moloney, J. V. WGG5<br />

Monat, C. TuP1<br />

* Bold Indicates Session Presider<br />

Monifi, F. TuG4, WZ4<br />

Monnier, P. ThJ1<br />

Monroy, I. T. ME1, WE4, WE5,<br />

WS2<br />

Mookherjea, S. TuW2<br />

Morandotti, R. TuR, WQ1<br />

Morero, D. A. MU2<br />

Mori, M. ThEE1<br />

Morito, K. MP4<br />

Morrissey, P. ThR4<br />

Morshed, M. TuU4<br />

Morvan, L. MC4<br />

Moses, J. ThU2<br />

Moss, D. J. TuP1<br />

Mounce, C. TuB6<br />

Msallem, M. WE4<br />

Mu, X. WB2<br />

Muecke, O. D. ThU1<br />

Mueller, J. ThBB3<br />

Mueller, M. MN1<br />

Muller, A. TuF5<br />

Müller, G. M. ThF5<br />

Müller, P. TuL3<br />

Mulvad, H. H. MM4, MM5<br />

Munday, J. MW4<br />

Mupparapu, R. MO4<br />

Murata, H. WS, WS4<br />

Murnane, M. WR1<br />

Murray, J. MW4<br />

Mutlugun, E. WH1<br />

Myslivets, E. TuK3<br />

N<br />

Nabet, B. ThL5, TuL5<br />

Naderi Shahi, S. TuM3<br />

Naeem, M. TuN2<br />

Nagai, M. ThJ3, WQ5<br />

Nagarajan, R. ThS1, TuN1<br />

Nagata, Y. ThCC3<br />

Nagatsuma, T. ThJ3, WQ5<br />

Nair, R. TuI2<br />

Najafabadi, E. M. WK1<br />

Najar, A. ThBB2<br />

Nakagawa, K. WFF5<br />

Nakahama, M. TuF4<br />

Nakamura, M. ThF1<br />

Nakamura, S. WC1<br />

Nakamura, T. ThEE1<br />

Nakamura, Y. WO1<br />

Nakano, Y. TuH5<br />

Nakashima, T. ThL4<br />

Nakasuji, M. ThCC3<br />

Nakata, N. TuF4<br />

Nanzer, J. A. WS1<br />

Nazarov, V. N. ThV1<br />

Nelson, C. W. MC1, MC3<br />

Nelson, L. E. TuE4<br />

Nelson, R. L. MK2<br />

Neuner III, B. MK4<br />

Neyts, K. WK4<br />

Ng, J. MT3<br />

Ng, T. ThBB2<br />

Nguyen, D. ThQ5, WBB3<br />

Nguyen, H. C. TuP3<br />

Nguyen, H. P. WC2<br />

Nichols, J. M. WT1<br />

Nilsson, A. TuN1<br />

Nilsson, J. TuX2<br />

Nippa, D. W. MK2<br />

Nirmalathas, A. WAA2<br />

Nishiyama, N. MS3, ThG, ThO2,<br />

ThO4<br />

Nitta, C. TuI6<br />

Niu, B. ThB2<br />

Noda, S. MO2, TuP5, WEE2<br />

Nomura, M. ThT2<br />

Nossek, J. MU1, WE4<br />

Notomi, M. TuW1, WF2<br />

Nouchi, P. PLE1, PLE2<br />

Novitski, R. MQ3<br />

Nozaki, K. TuW1, WF2<br />

O<br />

Oates, C. W. MC1<br />

O’Callaghan, J. ThR4<br />

O’Donnell, K. ML1<br />

O’Faolain, L. ThJ2, TuH4, TuP1<br />

Offrein, B. MV1<br />

Ogawa, H. MO2<br />

Ogawa, K. ThE3<br />

Oh, K. ThDD2, ThDD3,<br />

ThN4, WDD, WH6<br />

Okada, H. ThW4<br />

Okamura, Y. WS4<br />

Okano, M. ThEE1<br />

Okyay, A. K. TuT4<br />

Olivier, N. MV2, ThEE2<br />

Onat, B. M. MD, ML3, TuL<br />

Ono, S. TuT3<br />

Ooi, B. S. ThBB2<br />

Osabe, R. ThO4<br />

Oshima, J. ThL4<br />

Oskooi, A. MO2<br />

O’Sullivan, M. N. WG1<br />

O’Sullivan, M. S. TuM4, WE<br />

Ota, Y. WW3<br />

Ou, H. ThB4<br />

Oulton, R. F. WP, WX1<br />

Oxenloewe, L. ThAA2<br />

Oxenløwe, L. K. MM4, MM5, ThQ1,<br />

WCC, WQ6<br />

Oza, N. N. TuX3<br />

Ozaki, T. ThCC, ThU3, WQ1<br />

Ozdur, I. WI4<br />

P<br />

Painter, O. J. WO3<br />

Palushani, E. MM4, MM5<br />

Pan, C. WC1<br />

Pan, H. MS2<br />

Pan, J. TuU3<br />

Panda, S. K. WH1<br />

Papadopoulos, N. P. WK5<br />

Papp, S. MI1<br />

Paraschis, L. ThS<br />

Parekh, D. WE5<br />

Park, B. WP4<br />

Park, H. ThR3<br />

Park, J. ThN4<br />

Park, M. ThDD3<br />

Parker, J. S. MN3, ThR3<br />

Parkinson, P. ThX2<br />

Parulkar, G. ThK1<br />

Pascoguin, B. M. MK4<br />

Pashen, U. MD3<br />

Patki, P. G. ThS2<br />

Paturzo, M. MJ2, WBB5<br />

Paulson, B. ThN4<br />

Pavek, R. E. TuC3<br />

Pavone, F. S. MB1, MJ<br />

Pei, Q. WK3<br />

Peiris, S. ME2<br />

Pelouch, W. ThS2<br />

Penninck, L. WK4<br />

Penty, R. V. TuV1<br />

Perentos, A. WS3<br />

Perera, U. . MT1<br />

Pérez-Millán, P. WDD1<br />

Perin, J. P. ThAA3<br />

Persano, A. ThL5, TuL5<br />

Pertot, Y. ThU3<br />

Peters, F. H. ThR4<br />

Peters, J. D. ThG3<br />

Peterson, M. TuQ2<br />

Petykiewicz, J. WF1<br />

Peucheret, C. MM5, ThB4<br />

Pfaff, N. WC1<br />

Pflueger, D. WM2<br />

Pierno, L. WS3<br />

Piksarv, P. WI5<br />

Pillet, G. MC4<br />

Pincemin, E. TuE2<br />

Pinguet, T. J. TuQ2<br />

Page 83


Piquette, A. ThY4, ThY5<br />

Piracha, M. ThQ5, WBB3<br />

Pires, J. J. ThS5<br />

Pissadakis, S. ThF3, TuB2<br />

Pitigala, P. MT1<br />

Pittalà, F. WE4<br />

Plant, D. V. ThC3, ThD2<br />

Pleumeekers, J. TuN1<br />

Pochet, M. C. MC5<br />

Poli, F. ThN5<br />

Popa, D. TuJ2, WJ4<br />

Popescu, A. ThD3<br />

Popescu, G. WBB2<br />

Popmintchev, D. WR1<br />

Popmintchev, T. WR1<br />

Portalupi, S. L. TuH4<br />

Posilovic, K. WN1<br />

Poulios, D. ThM5<br />

Poutous, M. ThP2, ThP4<br />

Prasad, N. S. WB5, WJ<br />

Prather, D. W. MK2, TuS3<br />

Predojevic, A. WEE1<br />

Preissler, M. WT4<br />

Premaratne, M. WX4<br />

Proesel, J. E. MP2<br />

Proietti, R. TuI6<br />

Provine, J. WP4<br />

Prucnal, P. R. ThC3<br />

Prusak, R. W. ThL5<br />

Pu, M. ThAA2, ThQ1, WQ6<br />

puglisi, r. MJ2, WBB5<br />

Pugzlys, A. WR1<br />

Pung, A. ThP2, ThP4<br />

Puntsri, K. MU5<br />

Q<br />

Qi, J. WM2<br />

Qi, M. ThB2<br />

Qiao, C. ThS3<br />

Qihua, Z. WL4<br />

Qiu, J. WK2<br />

Qiu, Y. MB3<br />

Quaranta, F. ThL5, TuL5<br />

Quélène, J. ThQ4<br />

Quinlan, F. J. MC1, MC3, TuK<br />

R<br />

Radic, S. TuK3<br />

Rae, B. R. WC5<br />

Rahn, J. T. ThAA, ThS1, TuN1<br />

Raineri, F. ThJ1<br />

Raj, K. TuQ<br />

Raj, R. ThJ1<br />

Rakher, M. T. WW1<br />

Rakhmanov, M. ThBB4<br />

Ralph, S. E. TuU3<br />

Ram, R. J. WD2<br />

Ramachandran, S. ThP6<br />

Ramirez, D. A. ML5<br />

Ramsay, E. ThP6<br />

Randel, S. MU, WU1<br />

Rao, Y. MX3, ThT1<br />

Raring, J. W. WV2<br />

Rebane, A. MJ5<br />

Rebola, J. ThS5<br />

Reddington, A. MR2<br />

Reffle, M. TuN1<br />

Reimer, M. A. TuM4<br />

Ren, Y. WU4<br />

Renaudier, J. TuE1<br />

Ribeiro, M. ThAA3, ThK3<br />

Rice, R. ThN1<br />

Richardson, E. ThH2, WC5<br />

Ritchie, D. A. TuX2<br />

Rivas, M. MJ4, WBB4<br />

Rochette, M. ThBB6, WB4<br />

Rodes, G. ME1<br />

Rodes, R. WE5<br />

Rodgers, J. MK4<br />

Rodriguez, J. C. MJ4, WBB4<br />

Rodwell, M. J. MN3, ThR3<br />

Roelkens, G. ThO1<br />

Roeloffzen, C. G. MK1<br />

Rogers, J. A. MV3<br />

Rosenband, T. MC1<br />

Rosenberger, M. WT3, WT4<br />

Roth, J. E. ThG1<br />

Rotter, T. J. WGG5<br />

Roussev, R. V. WB1<br />

Rouvalis, E. MK3<br />

Roycroft, B. ThR4<br />

Rukhlenko, I. WX4<br />

Ryf, R. WU1<br />

Rylyakov, A. V. MP2, WZ1<br />

S<br />

Saad, M. ThD5, WDD4<br />

Saari, P. WI5<br />

Sablon, K. A. MW4<br />

Sachdev, M. WK5<br />

Sagnes, I. MC4, ThJ1<br />

Sahni, S. TuQ2<br />

Saitoh, E. WZ5<br />

Saitoh, K. WZ5<br />

Sakatsume, M. WT5<br />

Sakib, M. WM4<br />

Sakurai, K. ThZ3<br />

Salehiomran, A. WB4<br />

Salm, E. MR1<br />

Salsi, M. TuE1<br />

Salter, C. L. TuX2<br />

Salvail, J. Z. WG1<br />

Salvatore, R. A. TuN1, TuV<br />

Sanchez-Losilla, N. WS3<br />

Sandall, I. C. MT2, MT3<br />

Sanehira, E. M. TuT5<br />

Sanghera, J. S. ThP3<br />

Sano, H. TuF4<br />

Santhanam, P. WD2<br />

Sarailou, E. TuS1, TuV2<br />

Sarangan, A. M. TuD<br />

Sarmani, A. R. WDD4<br />

Sarmiento, T. WF1<br />

Sasaki, S. ThF2<br />

Sato, T. TuW1, WF2<br />

Savchenkov, A. A. MI2<br />

Savory, S. J. WE3<br />

Scarcella, C. MD2, MD3, MD4<br />

Scheuer, J. . MQ3<br />

Scheutz, C. MK2<br />

Schieber, M. ThD3<br />

Schires, K. ThT4, TuF6<br />

Schmauss, B. WU2<br />

Schmidt, H. WP1, WX<br />

Schmidt, O. G. ThD1<br />

Schneider, G. J. TuS3<br />

Schneider, R. P. TuN1<br />

Schow, C. L. MP2, WZ1<br />

Schreiber, T. ThM1<br />

Sciancalepore, C. ThEE2<br />

Scott, J. N. MJ5<br />

Scudo, P. MO4<br />

Sears, J. S. WK1<br />

Seassal, C. ThEE2<br />

Sederberg, S. ThI1<br />

Sedgwick, F. G. TuN1<br />

Seeds, A. J. ThW1<br />

Seeger, A. ThZ1<br />

Segawa, T. TuW1<br />

Sekiguchi, H. ThW4<br />

Sekiguchi, S. MP4<br />

Selleri, S. ThF3, ThN5, TuB2<br />

Selmi, M. TuE2<br />

Selvaraja, S. K. ThD4<br />

Seo, J. ThD2, ThEE3, ThT3<br />

Sergiyenko, O. MJ4, WBB4<br />

Servati, P. WK<br />

Shalaev, V. M. ThX4<br />

Shambat, G. MH2, WF1<br />

Sharma, G. WQ1<br />

Sharma, V. K. WH1<br />

Page 84 * Bold Indicates Session Presider<br />

Sharma, Y. MT5<br />

Sharp, M. TuQ2<br />

Shastri, B. J. ThC3<br />

Shaw, B. ThP3<br />

Shea-Rohwer, L. ThY1<br />

Sheng, Z. ThE1<br />

Shi, J. TuL1, TuL4, WDD6<br />

Shi, S. MK2, TuS3<br />

Shi, W. WJ1<br />

Shi, Z. WG1<br />

Shibano, E. ThF2<br />

Shields, A. J. TuX2<br />

Shigeta, H. MO2<br />

Shima, D. WGG5<br />

Shimada, T. TuF2<br />

Shimizu, T. ThEE1<br />

Shimu, S. S. TuV3<br />

Shin, I. ThDD2, WH6<br />

Shin, J. ThDD2<br />

Shindo, T. ThO2<br />

Shinkawa, M. TuP3<br />

Shinya, A. TuW1, WF2<br />

Shioda, T. WI3<br />

Shirao, M. MS3<br />

Shoji, Y. ThZ3, WZ3<br />

Shori, R. K. ThP4<br />

Shuai, Y. ThD2, ThEE3<br />

Shum, P. MX5, ThB3, ThDD,<br />

ThF4, WDD5, WDD6<br />

Silalahi, S. ThB3<br />

Simon , G. WD3<br />

Sinclair, M. B. ThL1<br />

Sirbu, A. MN2, TuF<br />

Siriani, D. F. MN4, TuF1<br />

Sivananthan, A. ThR3<br />

Skafidas, E. WAA2, WE2<br />

Skiba-Szymanska, J. TuX2<br />

Slim, I. MU1<br />

Slomkowski, K. ML1, ML3<br />

Small, I. ThD5<br />

Smith, A. J. MT2<br />

Smith, D. MB2<br />

Smith, G. M. WN2<br />

Smith, H. I. WH4<br />

Smowton, P. M. WGG4<br />

Soares, F. M. ThZ1<br />

Sobu, Y. ThZ3<br />

Sodagar, M. TuH2, TuP7<br />

Solgaard, O. TuH1, TuP, WP4<br />

Soljacic, M. TuH3, TuP4, WH4<br />

Solomon, G. S. WEE1, WW2<br />

Someya, T. PLE1.1<br />

Son, M. ThDD2<br />

Song, L. ThQ6, WL3<br />

Song, Q. TuK4<br />

Song, S. H. ThFF4<br />

Sorel, M. WF4<br />

Soukoulis, C. TuO3<br />

Sova, R. M. ThS4, TuC3<br />

Sozzi, M. TuB2<br />

Speck, J. S. WC1<br />

Speirs, J. WR2<br />

Spencer, D. T. MQ4<br />

Sprafke, A. N. MO1<br />

Squier, J. WR2<br />

Sridharan, D. WW2<br />

Srimathi, I. R. ThP2, ThP4<br />

Srinivasan, K. MI3, MI4, WW1<br />

Srinivasan, P. TuI<br />

Stankovic, S. ThO1<br />

Staudte, A. ThCC1, ThU<br />

Steffan, A. TuL3<br />

Steinberg, B. MQ3<br />

Stevenson, M. TuX2, WW<br />

Stolen, R. ThN1<br />

Strekalov, D. MI5<br />

Strzelecka, E. M. TuN1<br />

Studenkov, P. V. TuN1<br />

Stysley, P. R. ThM5<br />

Su, V. TuP2<br />

Subbaraman, H. TuP6<br />

Suga, T. ThG2<br />

Sulkin, J. MV3<br />

Sumetsky, M. MQ2, TuA, TuW<br />

Summers, J. A. TuN1<br />

Sun, G. ThQ<br />

Sun, H. ThS1<br />

Sun, J. WJ5<br />

Sun, P. TuQ2<br />

Sun, T. MX3<br />

Sun, W. ML4, MT4<br />

Sun, X. ThM4, WX5<br />

Sun, Z. TuJ2, WJ4<br />

Suzaki, Y. TuW1<br />

Suzuki, K. TuP5<br />

Sweeney, S. J. WV1<br />

Swenson, N. L. WM3<br />

Swillam, M. A. ThFF3, WFF1<br />

Swint, R. B. WN2<br />

T<br />

Take, D. MS3<br />

Takeda, K. TuW1, WF2<br />

Takeshima, K. ThF2<br />

Talbot, J. B. ThY4, ThY5<br />

Tallur, S. TuG3<br />

Talukder, M. A. TuV3<br />

Tan, C. MT2, MT3<br />

Tan, C. K. WC3, WGG3<br />

Tan, D. T. TuQ2<br />

Tan, H. MG3, ThX2<br />

Tan, M. P. WF3<br />

Tan, Y. TuB4<br />

Tanabe, K. ThO5, ThW<br />

Tanaka, S. MP4, WC1<br />

Tanaka, Y. MO2, MP4<br />

Tandaechanurat, A. ThT2<br />

Tang, M. WDD6<br />

Tang, W. ThS3<br />

Tang, X. TuM4<br />

Tang, Y. MQ4<br />

Taniyama, H. WF2<br />

Tansu, N. WC3, WC4, WGG3,<br />

WN, WV3<br />

Tao, W. ThE2<br />

Tassin, P. ThX3, TuO3<br />

Tauber, D. WM3<br />

Taunay, T. F. ThN, ThV2<br />

Taylor, A. ThL2<br />

Taylor, B. TuN1<br />

Taylor, J. MC1<br />

Taylor, M. ThS4<br />

Teng, H. ThE1<br />

Thedrez, B. TuN5<br />

Thibeault, B. MN3<br />

Thomas, S. WDD4<br />

Tian, J. ThX2<br />

Tian, P. WC5<br />

Tian, Z. ThD2<br />

Toliver, P. C. WCC1<br />

Tolstikhin, V. I. ThZ2, TuN<br />

Tomita, Y. ThL4<br />

Tong, Z. TuK3<br />

Torrisi, F. TuJ2, WJ4<br />

Tosi, A. MD2, MD3, MD4,<br />

ML2<br />

Tran, A. V. ThC2, WE2<br />

Tran, P. TuE1<br />

Trueb, J. T. MR2<br />

Truong, T. MU4<br />

Tsai, C. TuL4<br />

Tsang, H. K. ThB6<br />

TSE, C. ThM2<br />

Tsia, K. K. MB3<br />

Tsuda, Y. MO2<br />

Tsuritani, T. ThF2<br />

Tu, C. TuT5<br />

Tunnermann, A. ThM1<br />

Turner, G. W. WN2<br />

Turner, S. MG3


U<br />

Ummy, M. A. ME2<br />

Unal, E. WH1<br />

Unlu, M. MR, MR2, ThP6<br />

Uppal, P. MW4<br />

Urata, R. ThC1<br />

Urick, V. J. MS<br />

Urino, Y. ThEE1<br />

Usechak, N. G. MC5<br />

Uusimaa, P. TuV4<br />

Uusitalo, T. TuV4<br />

V<br />

Vacondio, F. TuE1<br />

Vahala, K. J. TuA1, TuG5, WL1<br />

Valdmann, A. WI5<br />

Vallaitis, T. TuN1<br />

Valtna-Lukner, H. WI5<br />

Van der Sande, G. WF4, WF5<br />

van Leeuwen, T. G. MJ1<br />

Van Thourhout, D. J. MX4, ThO1<br />

Van, V. ThFF1<br />

Varghese, L. ThB2<br />

Varshney, S. K. WQ3<br />

Vasil’ev, P. TuV1<br />

Vasseur, O. ThM3<br />

Vassoler, G. L. ThK3<br />

Vegas Olmos, J. J. ME1, WS2<br />

Veitia, A. ThQ3<br />

Veneziano, R. TuB2<br />

Verbist, M. MX4<br />

Veretennicoff, I. ThX3, TuO3<br />

Veronis, G. MW1<br />

Verschaffelt, G. WF4, WF5<br />

Verslegers, L. TuQ2<br />

Vidal, B. WS3<br />

Vignolini, S. MO4<br />

Viheriala, J. TuV4<br />

Vijayraghavan, K. WN4<br />

Viktorovitch, P. ThEE2<br />

Villa, F. MD2, MD3, MD4<br />

Villanueva, G. E. WDD1<br />

Villeneuve, D. ThCC1<br />

Vizbaras, A. WN4<br />

Vizbaras, K. MN1<br />

Vlasov, Y. A. WZ1<br />

Vollmer, F. TuO1<br />

Volz, K. ThW2<br />

Vuckovic, J. MH2, WF1<br />

Vynck, K. MO4<br />

W<br />

Wakahara, A. ThW4<br />

Waks, E. WW2<br />

Walmsley, I. A. TuX1<br />

Wan , H. ThM4<br />

Wan, Y. ME4, TuB1<br />

Wang, A. TuI4<br />

Wang, C. MF3<br />

Wang, F. TuJ2, WJ4<br />

Wang, G. ThF4, ThFF2<br />

Wang, H. ME6<br />

Wang, J. MI4, MM4, ThB2,<br />

ThQ1<br />

Wang, K. WAA2<br />

Wang, P. MI3, MI4<br />

Wang, R. ThL3<br />

Wang, S. WM3<br />

Wang, T. MT3, WGG5<br />

Wang, X. MJ3, ThB2, WQ2,<br />

WY2<br />

Wang, Y. ThN3, WY2<br />

Wang, Z. MG2, ThE1, WK2,<br />

WL3<br />

Ward, M. TuX2<br />

Wasserman, D. M. ThL2<br />

Watanabe, K. WW3<br />

Watanabe, T. ThV3<br />

Watson, I. M. ThH2<br />

Watson, S. ME5, WC5<br />

Watts, M. R. MH4<br />

Wawro, D. TuB5<br />

Way, B. MQ5, ThD5<br />

Way, W. TuE4<br />

Webb, R. P. WQ6<br />

Wegener, M. PLE2.1<br />

Wehrspohn, R. B. MO1<br />

Wei, Z. ThE1, ThM<br />

Weiblen, R. J. ThP3<br />

Weihs, G. WEE1, WO<br />

Weiner, A. M. MI3, MI4, ThB2, ThI,<br />

TuK1, WI1<br />

Welch, B. TuQ2<br />

Welch, D. F. ThS1, TuN1<br />

Welna, K. TuH4<br />

Wen, J. WGG2<br />

Wendt, J. ThL1<br />

Wessels, R. MJ1<br />

Weyers, S. MD3<br />

White, I. H. TuV1<br />

White, T. P. MG2<br />

Wiberg, A. O. TuK3<br />

Wiersma, D. S. MO4<br />

Wijayanto, Y. WS4<br />

Willett, R. WT1<br />

Williams, B. TuK3, WG4<br />

Williams, G. M. ML5<br />

Willner, A. E. ThT1, WU4<br />

Winters, D. MB2, MB5, WR2<br />

Winzer, P. J. ThA1, WU1<br />

Wirth, J. ThB2<br />

Wolinski, T. R. ThN3<br />

Wong, C. ThQ3, TuR5<br />

Wong, H. M. WFF1<br />

Wong, K. K. MB3<br />

Wong, W. S. WK5<br />

Woodward, R. ThP2, ThP4<br />

Woodward, T. K. MM, WCC1<br />

Worland, D. ThT1<br />

Wright, J. ThL1<br />

Wu, F. ThZ2<br />

Wu, J. ThBB5, ThR5, TuT2,<br />

WAA3<br />

Wu, K. ThS1, TuN1<br />

Wu, P. TuI5<br />

Wu, W. TuB5<br />

Wu, Y. WY2<br />

Wu, Z. WDD5<br />

Wun, J. TuL4<br />

X<br />

Xia, Z. WD1, WP3<br />

Xiao, H. WAA3<br />

Xiao, J. ThFF2, WL2<br />

Xiao, X. TuG2<br />

Xiao, Z. MX5, ThB3<br />

Xiaoyan, L. ThE4<br />

Xie, C. MP2<br />

Xie, E. WC5<br />

Xie, E. ThH2<br />

Xin, Z. ThI3<br />

Xiong, C. TuP1<br />

Xiong, M. ThB4<br />

Xu, H. TuG2<br />

Xu, J. MB3, ThB4<br />

Xu, K. ThB6<br />

Xu, R. ThQ6<br />

Xu, X. TuP6<br />

Xu, Y. ThE4<br />

Xu, Z. MJ3, ThE4, WP5<br />

Xuan, Y. ThB2<br />

* Bold Indicates Session Presider<br />

Y<br />

Yablonovitch, E. MW2, PLE2.2<br />

Yam, S. S. TuU2<br />

Yamakawa, K. ThE, ThE3<br />

Yamamoto, T. ThEE1, WG2<br />

Yan, Y. WU4<br />

Yanagida, T. TuT3<br />

Yang , X. ThH4<br />

Yang, H. ThEE3, ThT3<br />

Yang, M. WK5<br />

Yang, S. WY<br />

Yang, W. MX3, ThEE3, TuO4<br />

Yang, X. WD5, WX3<br />

Yanik, A. A. WFF, WH, WP2<br />

Yao, J. MK,TuK2<br />

Yaping, D. ThE2<br />

Yarborough, M. WGG5<br />

Yasuhiko, N. TuE3<br />

Ye, Y. WE4<br />

Yeh, C. WR5<br />

Yeltik, A. ThH5<br />

Yin, Y. TuI6<br />

Yokota, Y. TuT3<br />

Yokoyama, K. TuQ2<br />

Yoo, S. TuI6<br />

Yoon, J. W. ThFF4<br />

Yoshida, Y. WAA1<br />

Yoshikane, N. ThF2<br />

Yoshikawa, A. TuT3<br />

You, Y. TuP2<br />

Younce, R. WM3<br />

Yu, J. MM4, TuG2<br />

Yu, N. MI5<br />

Yu, S. TuP2, TuQ2<br />

Yu, Y. TuG2<br />

Yu, Z. MX1, TuH<br />

Yue, Y. WU4<br />

Yurt, A. ThP6<br />

Yvind, K. ThAA2, ThQ1, WQ6<br />

Z<br />

Zakariya, A. TuN3, WC6<br />

Zang, H. WY2<br />

Zang, K. MH2<br />

Zapata, L. E. ThU2<br />

Zappa, F. ML2<br />

Zhan, Q. MK2<br />

Zhang, C. ThW3<br />

Zhang, F. WM3<br />

Zhang, G. WC5<br />

Zhang, J. MX5, ThB3, ThE1,<br />

TuN1, TuN4, WC3,<br />

WC4, WGG3, WV3<br />

Zhang, L. WEE3<br />

Zhang, P. TuJ3<br />

Zhang, Q. ThE1, WY2<br />

Zhang, S. ME5, ThFF, ThH,<br />

ThX1, WC2, WC5<br />

Zhang, Y. ThDD1, ThR6, TuF5,<br />

WK1<br />

Zhao, D. ThBB4, ThD2, ThEE3,<br />

ThT3<br />

Zhao, G. TuF5<br />

Zhao, K. WY2<br />

Zhao, W. MP1<br />

Zhao, X. ME4, TuB1<br />

Zhao, Y. WM2<br />

Zhaoyang, L. ThE2<br />

Zheng, J. ThQ3, TuR5<br />

Zheng, Y. MN3, MP3, TuF3<br />

Zheng, Z. ME4, ThFF2, TuB1,<br />

WL2, WL3<br />

Zhong, K. TuU2<br />

Zhou, G. ThR6<br />

Zhou, Q. TuL2<br />

Zhou, R. WBB2<br />

Zhou, W. ThBB, ThBB4, ThD,<br />

ThD2, ThEE3, ThT3,<br />

WAA<br />

Zhou, X. TuE4<br />

Zhou, Z. WFF6<br />

Zhu, C. WE2<br />

Zhu, J. WL3<br />

Zhu, L. TuO4<br />

Zhu, P. WC4<br />

Ziari, M. TuN1<br />

Zimmerman, S. TuB5<br />

Zimmermann, H. MD5, TuL6<br />

Zito, G. ThF3<br />

Ziyadi, M. ThT1<br />

Zlatanovic, S. TuK3<br />

Zmuidzinas, J. TuD1<br />

Zografopoulos, D. C. WFF3<br />

Zotova, I. B. WB5<br />

Zou, D. WU3<br />

Zou, Y. MR3, WD3<br />

Zuniga, C. WK1<br />

Zuo, Y. WAA3<br />

Zwiller, V. WEE, WO2<br />

Page 85


NOTES<br />

Page 86


NOTES<br />

Page 87

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!