12.07.2015 Views

Abhaya Datye - Department of Chemical Engineering

Abhaya Datye - Department of Chemical Engineering

Abhaya Datye - Department of Chemical Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nanostructured Catalysts<strong>Abhaya</strong> K. <strong>Datye</strong>University <strong>of</strong> New Mexico


Issues• Control <strong>of</strong> surface composition• Facile synthesis via self assembly• Aggregation <strong>of</strong> nanoparticles


Control <strong>of</strong> Surface Compositionand Structure in Nanoparticles• Selective catalysts <strong>of</strong>ten involve more thanone element• Thermodynamics, preparation variables,<strong>of</strong>ten dictate the surface composition andstructure• How do we generate tailored surfacestructures


Restructuring <strong>of</strong> Pd-Ag CatalystsDuring Selective Hydrogenation<strong>of</strong> Trace Acetylene in EthyleneK. Lester, Y. Jin, H. Zea and A. K. <strong>Datye</strong>University <strong>of</strong> New Mexico, Center for Microengineered Materials and a<strong>Department</strong> <strong>of</strong> <strong>Chemical</strong> & Nuclear <strong>Engineering</strong>, Albuquerque, NM 87131,USAE. G. Rightor 1 , R. J. Gulotty 1 , J. J. Maj 1 , J. Blackson 1 , M. Holbrook 2 and C.Michael Smith 3 The Dow <strong>Chemical</strong> Company, 1 Midland, MI, 48674,2Plaquemine, LA 77565, 3 Freeport, TX 77541, , USA.Financial support provided by the U. S. DOE, Office<strong>of</strong> Basic Energy Sciences, grant DE-FG03-98ER14917 and by the Dow <strong>Chemical</strong> Company


Operating Conditions• Our reaction conditions correspond to the‘front end’ hydrogenation, where acetylene ispresent with a large excess <strong>of</strong> ethylene andalso an excess <strong>of</strong> hydrogen and some CO.• Feed:30% C 2 H 4 , 0.4% C 2 H 2 , 0.1% CO,16% H 2 and balance N 2 .


Hydrocarbon byproduct formation issuppressed on Pd-Ag after HTRSelectivity to Oligomers vs DeltaTemperature0.350.3Pd/Al 2O 3No pretreatmentSelectivity toOligomers0.250.20.150.1Pd+Ag/Al 2O 3500 C Pretreatment0.050-25 -20 -15 -10 -5 0 5 10 15 20 25Delta Temperature


High Temperature Reduction Causes a Drop inActivation Energy for Ethylene Hydrogenationon Bimetallic Pd-Ag catalystsC 2H 2 C 2H 4 C 2H 6Selectivity = moles ethylene producedmoles acetylene reacted0.5Pd-0.5Ag / SiO 2 Catalysts - Selectivity VsDelta Temperature.Arrhenius plot for 0.5 Pd - 0.5 Ag/SiO2catalystsEthylene Selectivity10.50-0.5-1-1.5-2-2.50 10 20 30 40Delta Temperature (oC)Reduced at 500 CReduced at 100 Cln(Ethene formed)-13-15-17-19Eactivation (kcal/mol) = 20.5 + 0.4Eactivation (kcal/mol) = 13.5 + 0.30.0024 0.0026 0.00281/T (1/K)Reduced at 500 C Reduced at 100 C∆T = reaction temperature – clean up temperatureClean up temperature is the temperature at which 99% <strong>of</strong> acetylene conversion isobtained


Ethylene Hydrogenation Is AStructure-InsensitiveReactionWhy should the activation energyfor ethylene hydrogenation beaffected by pretreatment?


Effect <strong>of</strong> CO adsorption onActivation Energy for EthyleneHydrogenationIf the surface is covered by CO, the activationenergy for ethylene reaction is simply theheat <strong>of</strong> desorption <strong>of</strong> COTherefore, changes in the heat <strong>of</strong> desorption<strong>of</strong> CO can change the activation energy forethylene hydrogenation


On Pd/SiO 2 , CO isadsorbed mainly in abridged modeThere is no effect <strong>of</strong>pretreatmentBridgeBridgeLinearLinearReduced at 70 CReduced at 400 C


On Pd-Ag/SiO2 , we see morelinearly bound CO thanbridged. High temperaturereduction further affects therelative concentrations <strong>of</strong> linearvs bridged COLinearBridgeLinearBridgeReduced at 70 CReduced at 400 C


Effect <strong>of</strong> Reduction TemperaturePd-Ag alloy, with some phasesegregationAg redistributes causing abreakup <strong>of</strong> the Pd ensemblesLow temperature reductionHigh Temperaturereduction


Pd/ SiO 2We see no effect <strong>of</strong> pretreatment onethylene hydrogenation activation energyPretreatmentActivation Energy as a function 100 C <strong>of</strong> Pretreatment500 CActivation Energy(Apparent) kcal/mol28 27The apparent activation energy for ethylene hydrogenation on Pdis consistent with the heat <strong>of</strong> adsorption <strong>of</strong> CO. From theliterature, the heat <strong>of</strong> adsorption for bridged CO ranges from 22-40kcal/mol depending on coverage.


Bridged CO is more stronglybound than linearly bonded COHeats <strong>of</strong> Adsortion <strong>of</strong> the Adsorbed CO Species on the VariousPd-Cointaining Solids at Low (E0) and High (E1) Coverage [1]Linear CO species Bridged CO SpeciesSample E0 (kcal/mol) E1(kcal/mol) E0 (kcal/mol) E1(kcal/mol)Pd (Cl-free)/Al2O3 22 13 40 22Pd (Cl)/Al2O3 22 13 40 18Pd (Cl-f)/CeO2/Al2O3 22 13 40 22Pd (Cl)/CeO2/Al2O3 22 13 40 16Pd (Cl)/La2O3/CeO2/Al2O3 22 13 40 25(Cl-f): Chlorine free solid(Cl): Chlorine containing solid[1] Dulaurent O, Chandes K, Bouly C and Bianchi D, Journal <strong>of</strong> Catalysis, v 192(#2), 2000


Arrhenius plot for Ethylene Hydrogenation on 0.5 Pd - 0.5Ag/SiO2 catalysts-13Eactivation (kcal/mol) = 20.5 + 0.4ln(Ethane formed)-15-17Eactivation (kcal/mol) = 13.5 + 0.3-190.0024 0.0026 0.00281/T (1/K)Reduced at 500 CReduced at 100 C


Schematic <strong>of</strong> RestructuringPhenomena in Pd-AgHigh Temperature ReductionHigh Temp OxidationPdOAgPd-Ag alloyEnrichment <strong>of</strong> Ag on Pd surfaceLow Temp OxidationPdAg 2O


Summary• High temperature pretreatments causerestructuring <strong>of</strong> Pd and Ag• Reducing the number <strong>of</strong> Pd nearestneighbors affects selectivity to oligomerformation• By modifying the adsorption <strong>of</strong> coadsorbedCO, we can control the activation energyfor ethylene hydrogenation and modify theselectivity for the reaction


Aerosol Synthesis <strong>of</strong> Nanostructured CatalystsMangesh Bore, Hien Pham, Timothy Ward,C. J. Brinker, <strong>Abhaya</strong> <strong>Datye</strong>Financial Support provided by NSF – NIRT, Centerfor Ceramic and Composite Materials and by theMaterials Corridor Council


Autoclave RouteReaction MixtureAutoclave150 o C48 hoursFiltrationCalcination• Liquid-Crystal Template Mechanism– Proposed by C. T. Kresge et al., Nature (1992)J. S. Beck et al., J. A. C. S. (1992)


MCM-41Irregular shapes


Aerosol RouteCalcination• Evaporation Induced Self Assembly (EISA)– Proposed by Jeffrey Brinker et. al., Nature (1999)– Evaporation <strong>of</strong> solvent leads to ordering <strong>of</strong> surfactantstructures– Condensation <strong>of</strong> silica follows the formation <strong>of</strong> templatedstructures to lock in the structure


Control <strong>of</strong> Particle StructureY. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker,Nature 398 (1999) 223Hexagonal nanostructure:interconnected hexagonallypacked spherical pores,1200 m 2 /g, d=3.2 nm (5 wt%CTAB)cubic nanostructure:interconnected poresarranged in simple cubiclattice (4.2 wt% B56)lamellar “onion-skin”structure: concentricshells <strong>of</strong> silica separatedby pore volume, 478m 2 /g, d=9.2 nm (5wt%P123)


ComparisonAerosol Synthesis• Continuous process• Reaction time seconds• Spherical particles• 3-D interconnected porestructure (local order ishexagonal)Autoclave Synthesis• Batch process• Reaction time hours• Irregular shapes• Most common is the 2-Dstructure


TEMRegular shapesParticle consists <strong>of</strong> small ordered domains <strong>of</strong> pores


After Hydrothermal Stability Test at 750°C10% water vapor, 2 hoursSiO 2Si/Al 20Aluminum incorporation improves the hydrothermal stability <strong>of</strong> mesoporous silicaparticles.


Hydrothermal Stability Test (batch vs. aerosol route)10% water vapor, 2 hours16001400Si/Al molar ratio 20Surface Area (sq m/gm)12001000800600Batch Si-AlAerosol Si-Al400Davisil silica gelAerosol Silica2000Initial 500 550 600 650 700 750Temperature (C)Batch Silica


TEM/STEM images <strong>of</strong> Au/NH 2 -MCM-41The average Au nanoparticle diameter is small (~1 nm), andthe nanoparticles are dispersed inside the pores.3-aminopropyltrimethoxysilane is used as the amine source


TEM Images <strong>of</strong> Ordered Nanocrystal/Silica Nanostructures[100]Before calcinationA20 nmBCCourtesy <strong>of</strong> Hongyou Fan, Jeff BrinkerSandiaNationalLaboratories


Diffusion <strong>of</strong> Three-Dimensional Metal Particleson an Oxide Substrate: Implications for theSintering <strong>of</strong> Heterogeneous CatalystsLani Miyoshi Sanders<strong>Abhaya</strong> K. <strong>Datye</strong>Univ. <strong>of</strong> New Mexico, Albuquerque, NMBrian SwartzentruberSandia National Labs, Albuquerque, NM


Experimental Approach:Atom-Tracking ScanningTunneling Microscopy <strong>of</strong>Pd/TiO (110)2


Conventional STMEach image takes severalseconds, missing many rotationevents…time resolution 1000xSi-Ge Ad-Dimer onSi(001)Atom TrackingTipSTMDeveloped by Brian Swartzentruber, Sandia Labsygt1t2x


TiO 2 (110) Surface100x100Å 23Åx6.5ÅUnit cellFrom: M.J.J.Jak, Ph.D. Dissertation, Nov.2000.


DepositingPd300x300Å 2 300x300Å 2ast deposit @ 4 W, 2 sSlow deposit @ 3 W, 4 min


DiffusionCharacteristicsDiffusion isessentially confinedto the [001] directionPresence <strong>of</strong>small, mobileparticlesrapidlydecays due topinning andgrowthStepdecoration isprevalent onlyon stepsperpendicularto [001]400x600Å 2Diffusing particles hop discretely with length<strong>of</strong> underlying unit cell <strong>of</strong> substrate


Atom-Tracking <strong>of</strong> PdParticle Diffusion[001]Y (Angstrom)165160155150145140135130145 155X (Angstrom)165160155150145140135130100x100Å 20 10 20 30 40 50Time (s)


Scaling Analysis for Pd ParticleDiffusion1E-14Diffusion Coefficient (cm^2/s)1E-151E-161E-17n=0.86±0.09n=1.06±0.10n=1.07±0.1042°C36°C25°C1 10 100Particle Size (# <strong>of</strong> Atoms)


3-D D Monte Carlo model gives insights intodecreased motion <strong>of</strong> larger particlesdisordered surfaceshigh surface free energyhoppingd -1very small particlesshift indiffusionmechanismgrowshift inscaling lawlarger particlesperiphery diffusiond -7faceting300x300Å 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!