A Ghost Algebra of the Double Burnside Algebra in ... - Robert Boltje
A Ghost Algebra of the Double Burnside Algebra in ... - Robert Boltje
A Ghost Algebra of the Double Burnside Algebra in ... - Robert Boltje
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
2.3 (<strong>Double</strong>) <strong>Burnside</strong> r<strong>in</strong>gs. (a) The <strong>Burnside</strong> r<strong>in</strong>g B(G) <strong>of</strong> a f<strong>in</strong>ite group G is <strong>the</strong> Gro<strong>the</strong>ndieckr<strong>in</strong>g <strong>of</strong> <strong>the</strong> category <strong>of</strong> f<strong>in</strong>ite left G-sets with respect to disjo<strong>in</strong>t unions and direct products. The element<strong>in</strong> B(G) associated to a f<strong>in</strong>ite left G-set X will be denoted by [X]. Thus, if S˜G ⊆ S G is a set <strong>of</strong>representatives <strong>of</strong> <strong>the</strong> conjugacy classes <strong>of</strong> subgroups <strong>of</strong> G <strong>the</strong>n <strong>the</strong> elements [G/U], U ∈ S ˜ G , form aZ-basis <strong>of</strong> B(G), <strong>the</strong> standard basis <strong>of</strong> B(G).(b) The Gro<strong>the</strong>ndieck group <strong>of</strong> <strong>the</strong> category <strong>of</strong> (G, H)-bisets will be denoted by B(G, H), and is called<strong>the</strong> double <strong>Burnside</strong> group <strong>of</strong> G and H. Identify<strong>in</strong>g (G, H)-bisets with left G×H-sets as <strong>in</strong> 2.2(a), we mayalso identify B(G, H) with <strong>the</strong> classical <strong>Burnside</strong> group B(G × H). As <strong>in</strong> Part (a), for every (G, H)-bisetX, <strong>the</strong> image <strong>of</strong> its isomorphism class <strong>in</strong> B(G, H) will be denoted by [X], and if S˜G×H ⊆ S G×H denotesa transversal for <strong>the</strong> conjugacy classes <strong>of</strong> subgroup <strong>of</strong> G × H <strong>the</strong>n <strong>the</strong> elements [G × H/L], L ∈ S ˜ G×H ,form a Z-basis <strong>of</strong> B(G, H).(c) The tensor product <strong>of</strong> bisets gives rise to a Z-bil<strong>in</strong>ear map− ·H − : B(G, H) × B(H, K) → B(G, K), ([X], [Y ]) ↦→ [X × H Y ],where X is a (G, H)-biset and Y is an (H, K)-biset. In <strong>the</strong> case where G = H = K this def<strong>in</strong>es amultiplication, turn<strong>in</strong>g B(G, G) <strong>in</strong>to a r<strong>in</strong>g with identity element [G] = [G × G/∆(G)]; we call B(G, G)<strong>the</strong> double <strong>Burnside</strong> r<strong>in</strong>g <strong>of</strong> G.with(d) Send<strong>in</strong>g each (G, H)-biset to its opposite biset <strong>in</strong>duces a group isomorphism− ◦ : B(G, H) → B(H, G), [X] ↦→ [X ◦ ]([X] ·H [Y ]) ◦ = [Y ] ◦ ·H [X] ◦ ∈ B(K, G) and ([X] ◦ ) ◦ = [X] ∈ B(G, H),where X is a (G, H)-biset and Y is an (H, K)-biset. Thus, <strong>in</strong> <strong>the</strong> case where G = H = K, this def<strong>in</strong>esan anti-<strong>in</strong>volution <strong>of</strong> <strong>the</strong> r<strong>in</strong>g B(G, G).The follow<strong>in</strong>g Mackey-type formula shows how to express <strong>the</strong> tensor product <strong>of</strong> a standard basiselement <strong>of</strong> B(G, H) and a standard basis element <strong>of</strong> B(H, K) as a sum <strong>of</strong> standard basis elements <strong>of</strong>B(G, K).2.4 Proposition ([Bc3], 2.3.34) For L G × H and M H × K, one has∑[G × H/L] ·H [H × K/M] =[G × K/(L ∗ (h,1) M)] ∈ B(G, K),h∈[p 2(L)\H/p 1(M)]where [p 2 (L)\H/p 1 (M)] ⊆ H denotes a set <strong>of</strong> double coset representatives.In order to analyze <strong>the</strong> map − ·H − : B(G, H) × B(H, K) → B(G, K) <strong>in</strong> more detail, it will, <strong>the</strong>refore,be important to exam<strong>in</strong>e <strong>the</strong> ∗-product <strong>of</strong> subgroups <strong>of</strong> G × H with subgroups <strong>of</strong> H × K.The first <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g two lemmas is a classical result due to Zassenhaus. The second one is mostlikely well known to experts; however, we have not been able to f<strong>in</strong>d a suitable reference, and <strong>the</strong>refore<strong>in</strong>clude a pro<strong>of</strong> for <strong>the</strong> reader’s convenience.2.5 Lemma (Butterfly Lemma, [Hup] Hilfssatz I.11.3) Let (B, A) and (D, C) be two sections <strong>of</strong>G. Then <strong>the</strong>re exists a canonical isomorphismβ(B ′ , A ′ ; D ′ , C ′ ): D ′ /C ′ → B ′ /A ′ ,6
G•P• 1H•P• 2H•K•φP• 3P• 4P ′ • 1K ′ • 1¯φP ′ • 2K ′ • 2βP ′ • 3K ′ • 3¯ψP ′ • 4K ′ • 4K• 1K• 2ψ1•1•K• 31•K• 41•Pro<strong>of</strong> For g ∈ G one hasg ∈ p 1 (L ∗ M) ⇐⇒ ∃h ∈ H, k ∈ K : (g, h) ∈ L, (h, k) ∈ M⇐⇒ ∃h ∈ P 2 ∩ P 3 : (g, h) ∈ L⇐⇒ gK 1 ∈ φ((P 2 ∩ P 3 )K 2 /K 2 ) .This implies that p 1 (L ∗ M) = P ′ 1. Similarly one shows that p 2 (L ∗ M) = P ′ 4. Next, for g ∈ G one hasg ∈ k 1 (L ∗ M) ⇐⇒ ∃h ∈ H : (g, h) ∈ L, (h, 1) ∈ M⇐⇒ ∃h ∈ k 1 (M) : (g, h) ∈ L⇐⇒ gK 1 ∈ φ((K 3 ∩ P 2 )K 2 /K 2 ) .This implies that k 1 (L ∗ M) = K ′ 1. Similarly one shows that k 2 (L ∗ M) = K ′ 4. F<strong>in</strong>ally, for (g, k) ∈ G × Kone has(g, k) ∈ L ∗ M ⇐⇒ ∃h ∈ H : (g, h) ∈ L, (h, k) ∈ M⇐⇒ ∃h ∈ P 2 ∩ P 3 : gK 1 = φ(hK 2 ), hK 3 = ψ(kK 4 )=⇒ ∃h ∈ P 2 ∩ P 3 : gK ′ 1 = ¯φ(hK ′ 2), hK ′ 3 = ¯ψ(kK ′ 4)=⇒ gK ′ 1 = ( ¯φ ◦ β(P′2 , K ′ 2; P ′ 3, K ′ 3) ◦ ¯ψ ) (kK ′ 4) .This implies that <strong>the</strong> isomorphism η L∗M : p 2 (L ∗ M)/k 2 (L ∗ M) → p 1 (L ∗ M)/k 1 (L ∗ M) is equal to¯φ ◦ β(P ′ 2, K ′ 2; P ′ 3, K ′ 3) ◦ ¯ψ.3 Natural embedd<strong>in</strong>gs <strong>of</strong> <strong>the</strong> (double) <strong>Burnside</strong> r<strong>in</strong>gRecall from 2.1 that, for every f<strong>in</strong>ite group G, we denote by S G <strong>the</strong> set <strong>of</strong> subgroups <strong>of</strong> G, and byS˜G ⊆ S G a transversal for <strong>the</strong> conjugacy classes <strong>of</strong> S G . Moreover, for U G, we denote by [U] G<strong>the</strong> G-conjugacy class <strong>of</strong> U. If R is a commutative r<strong>in</strong>g <strong>the</strong>n we denote by [U] + G ∈ RS G <strong>the</strong> sum <strong>of</strong><strong>the</strong> elements <strong>in</strong> [U] G ; here, RS G denotes <strong>the</strong> free R-module with basis S G . S<strong>in</strong>ce G acts on S G by8
conjugation, we can view RS G as a permutation RG-module. Its fixed po<strong>in</strong>ts are denoted by (RS G ) G .We use <strong>the</strong> same notation X G for <strong>the</strong> set <strong>of</strong> G-fixed po<strong>in</strong>ts on any G-set X.Recall that <strong>the</strong> Möbius function X × X → Z, (x, y) ↦→ µ X x,y, <strong>of</strong> a f<strong>in</strong>ite partially ordered set (poset),(X , ) is def<strong>in</strong>ed by sett<strong>in</strong>g µ X x,y = 0 if x ̸ y, and <strong>in</strong> <strong>the</strong> case that x y <strong>the</strong> <strong>in</strong>teger µ X x,y is def<strong>in</strong>edrecursively by <strong>the</strong> equation ∑ xzy µX x,z = δ x,y , where δ x,y denotes <strong>the</strong> Kronecker symbol.3.1 Def<strong>in</strong>ition We def<strong>in</strong>e additive mapsα G : B(G) → ZS G ,ρ G : B(G) → ZS G ,ζ G : ZS G → ZS G ,[X] ↦→ ∑ stab G (x) ,x∈X[X] ↦→ ∑ |X U | · U ,UGU ↦→ ∑U ′ .U ′ UThe map ρ G is <strong>the</strong> well-studied classical mark homomorphism. Clearly, ζ G is an isomorphism with <strong>in</strong>verseµ G given by µ G (U) = ∑ U ′ U µ U ′ ,U · U ′ , where µ U ′ ,U denotes <strong>the</strong> Möbius function with respect to <strong>the</strong>poset S G . Extend<strong>in</strong>g scalars from Z to R one obta<strong>in</strong>s R-module homomorphisms α G : RB(G) → RS G ,ζ G : RS G → RS G and ρ G : RB(G) → RS G . Then ζ G : RS G → RS G is an isomorphism <strong>of</strong> RG-modulesand <strong>in</strong>duces an isomorphismζ G : (RS G ) G → (RS G ) G .3.2 Proposition Let G be a f<strong>in</strong>ite group and let R be a commutative r<strong>in</strong>g.(a) For U G, one has α G ([G/U]) = [N G (U) : U] · [U] + G. In particular, if R has trivial |G|-torsion<strong>the</strong>n α G : RB(G) → RS G is <strong>in</strong>jective.(b) One has ζ G ◦ α G = ρ G .(c) The images <strong>of</strong> α G and ρ G are conta<strong>in</strong>ed <strong>in</strong> (RS G ) G . In particular, one obta<strong>in</strong>s a commutativediagramRB(G)α G (RS G ) G ⊆ RS Gρ Gζ Gζ G(RS G ) G ⊆ RS G<strong>of</strong> R-module homomorphisms <strong>in</strong> which both vertical maps ζ G are isomorphisms. If |G| is <strong>in</strong>vertible <strong>in</strong> R<strong>the</strong>n also α G and ρ G <strong>in</strong> <strong>the</strong> above diagram are isomorphisms. For R = Z one has[(ZS G ) G : α G (B(G))] =∏[N G (U) : U] = [(ZS G ) G : ρ G (B(G))].U∈S ˜ G9
Pro<strong>of</strong> (a) The stabilizer subgroup <strong>of</strong> gU is equal to g U and it occurs as <strong>the</strong> stabilizer <strong>of</strong> precisely[N G (U) : U] elements <strong>in</strong> G/U, namely <strong>the</strong> elements gnU for n ∈ N G (U).(b) For any f<strong>in</strong>ite G-set X one hasζ G (α G ([X])) = ∑ ∑∑K =K = ∑ |X K | · K = ρ G ([X]) .x∈XKGKstab G (x)(K,x)∈S G ×Xx∈X K(c) By Part (a), <strong>the</strong> image <strong>of</strong> α G is conta<strong>in</strong>ed <strong>in</strong> (RS G ) G and, s<strong>in</strong>ce ζ G is an isomorphism <strong>of</strong> RGmodules,Part (b) implies that ρ G (RB(G)) ⊆ (RS G ) G . The last two statements follow from Part (a)and <strong>the</strong> fact that <strong>the</strong> elements [U] + G , U ∈ S ˜ G , form an R-basis <strong>of</strong> (RS G ) G .3.3 Remark Let G and H be f<strong>in</strong>ite groups and let R be a commutative r<strong>in</strong>g.(a) Although we will not make use <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g fact <strong>in</strong> this paper it seems worth to po<strong>in</strong>t it out.One can endow ZS G with two r<strong>in</strong>g structures. The first multiplication is given by (U, V ) ↦→ U ∩ Vand <strong>the</strong> second one by (U, V ) ↦→ δ U,V U, for U, V ∈ S G . Extend<strong>in</strong>g scalars to R we obta<strong>in</strong> two R-algebra structures on RS G . It is easy to verify that <strong>the</strong> G-fixed po<strong>in</strong>ts (RS G ) G form a subalgebra forboth R-algebra structures. Moreover, it is easy to verify that all maps <strong>in</strong> <strong>the</strong> commutative diagram<strong>in</strong> Proposition 3.2(c) are R-algebra homomorphisms if one endows RB(G) with <strong>the</strong> usual multiplicationcom<strong>in</strong>g from <strong>the</strong> r<strong>in</strong>g structure <strong>of</strong> <strong>the</strong> <strong>Burnside</strong> r<strong>in</strong>g B(G), and if one endows RS G <strong>in</strong> <strong>the</strong> top and bottomrow with <strong>the</strong> first and second multiplication, respectively.(b) From Proposition 3.2(c) we obta<strong>in</strong> a commutative diagramRB(G, H) α G,H (RS G×H ) G×H ⊆ RS G×Hρ G,Hζ G,Hζ G,H (RS G×H ) G×H ⊆RS G×Hby replac<strong>in</strong>g G with G × H and slightly renam<strong>in</strong>g <strong>the</strong> maps. If also K is a f<strong>in</strong>ite group we will nextdef<strong>in</strong>e a multiplication map RS G×H × RS H×K → RS G×K that is compatible with <strong>the</strong> tensor productconstruction RB(G, H) × RB(H, K) → RB(G, K) via <strong>the</strong> embedd<strong>in</strong>g α.3.4 Def<strong>in</strong>ition Let G, H, and K be f<strong>in</strong>ite groups, and let R be a commutative r<strong>in</strong>g such that |H| is<strong>in</strong>vertible <strong>in</strong> R. For L G × H and M H × K we setand we def<strong>in</strong>e <strong>the</strong> R-bil<strong>in</strong>ear mapκ(L, M) := |k 2(L) ∩ k 1 (M)||H|∈ R− ∗ κ H −: RS G×H × RS H×K → RS G×KbyL ∗ κ H M := κ(L, M) · (L ∗ M) .10
3.5 Proposition Let G, H, K, and I be f<strong>in</strong>ite groups, and let R be a commutative r<strong>in</strong>g such that |H|and |K| are <strong>in</strong>vertible <strong>in</strong> R. For any L G × H, M H × K, and N K × I, <strong>the</strong> 2-cocycle relationκ(L, M) · κ(L ∗ M, N) = κ(L, M ∗ N) · κ(M, N)holds <strong>in</strong> R × . In particular, <strong>the</strong> bil<strong>in</strong>ear maps def<strong>in</strong>ed <strong>in</strong> Def<strong>in</strong>ition 3.4 behave associatively:(L ∗ κ H M) ∗ κ K N = L ∗ κ H (M ∗ κ K N) .Moreover, if |G| is <strong>in</strong>vertible <strong>in</strong> R <strong>the</strong>n <strong>the</strong> R-module RS G×G toge<strong>the</strong>r with <strong>the</strong> multiplication ∗ κ G is anR-algebra with identity element |G| · ∆(G).Pro<strong>of</strong> It suffices to show that|k 2 (L) ∩ k 1 (M)| · |k 2 (L ∗ M) ∩ k 1 (N)| = |k 2 (L) ∩ k 1 (M ∗ N)| · |k 2 (M) ∩ k 1 (N)|holds <strong>in</strong> Z. To show this it suffices to show that one has a group isomorphismk 2 (L) ∩ k 1 (M ∗ N)k 2 (L) ∩ k 1 (M)∼= k 2(L ∗ M) ∩ k 1 (N)k 2 (M) ∩ k 1 (N)In order to construct a homomorphism between <strong>the</strong>se two groups, let h ∈ k 2 (L) ∩ k 1 (M ∗ N). Then(1, h) ∈ L and (h, 1) ∈ M ∗ N. This implies that <strong>the</strong>re exists k ∈ K such that (h, k) ∈ M and (k, 1) ∈ N.Thus, k ∈ k 2 (L ∗ M) ∩ k 1 (N). If also k ′ ∈ k 1 (N) is such that (h, k ′ ) ∈ M <strong>the</strong>n k −1 k ′ ∈ k 2 (M) ∩ k 1 (N).Therefore we have a well-def<strong>in</strong>ed function that maps <strong>the</strong> class <strong>of</strong> h to <strong>the</strong> class <strong>of</strong> k, with (h, k) ∈ M and(k, 1) ∈ N. Symmetrically, one has a well-def<strong>in</strong>ed function <strong>in</strong> <strong>the</strong> o<strong>the</strong>r direction that maps <strong>the</strong> class <strong>of</strong>an element k ∈ k 2 (L ∗ M) ∩ k 1 (N) to <strong>the</strong> class <strong>of</strong> h, where (h, k) ∈ M and (1, h) ∈ L. Clearly <strong>the</strong>se tw<strong>of</strong>unctions are <strong>in</strong>verses <strong>of</strong> each o<strong>the</strong>r. It is also easy to see that <strong>the</strong>y are group homomorphisms.The last two statements are immediate consequences <strong>of</strong> <strong>the</strong> 2-cocycle relation..3.6 Proposition Let G, H, and K be f<strong>in</strong>ite groups, and let R be a commutative r<strong>in</strong>g such that |H| is<strong>in</strong>vertible <strong>in</strong> R. Moreover let a ∈ RB(G, H) and b ∈ RB(H, K). Thenα G,K (a ·H b) = α G,H (a) ∗ κ H α H,K (b) .Pro<strong>of</strong> We may assume that a = [X] and b = [Y ] for a f<strong>in</strong>ite (G, H)-biset X and a f<strong>in</strong>ite (H, K)-biset Y .Then we have∑α G,K ([X] ·H [Y ]) = α G,K ([X × H Y ]) =stab G×K (x × H y)==∑x× H y∈X× H Y∑(x,y)∈X×Yx× H y ∈X× H Ystab G×H (x) ∗ stab H×K (y)|k 2 (stab G×H (x)) ∩ k 1 (stab H×K (y))||H|= α G,H ([X]) ∗ κ H α H,K ([Y ]) .· stab G×H (x) ∗ stab H×K (y)11
For any f<strong>in</strong>ite group G and any commutative r<strong>in</strong>g R we sete G := ∑ ∑∆ g (G) = |Z(G)| · ∆ c (G) ∈ RS G×G .g∈Gc∈Inn(G)In <strong>the</strong> case where |G| is <strong>in</strong>vertible <strong>in</strong> R it follows immediately from <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> bil<strong>in</strong>ear map− ∗ κ H − <strong>in</strong> Def<strong>in</strong>ition 3.4 that e G is an idempotent <strong>in</strong> <strong>the</strong> R-algebra (RS G×G , ∗ κ G ).3.7 Proposition Let R be a commutative r<strong>in</strong>g, and let G and H be f<strong>in</strong>ite groups whose orders are<strong>in</strong>vertible <strong>in</strong> R.(a) One hasα G,H (RB(G, H)) = (RS G×H ) G×H = e G ∗ κ G (RS G×H ) ∗ κ H e H .(b) The double <strong>Burnside</strong> algebra RB(G, G) is isomorphic to e G ∗ κ G (RS G×G) ∗ κ G e G.Pro<strong>of</strong> (a) The first equation was already proved <strong>in</strong> Proposition 3.2(c). For <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> secondequation note that, for g ∈ G, h ∈ H and L G × H, one hasby Lemma 2.7. This implies thatNow <strong>the</strong> second equation is immediate.∆ g (G) ∗ L ∗ ∆ h (H) = (g,h−1) L ,e G ∗ κ G L ∗ κ H e H = |N G×H(L)||G × H|· [L] + G×H .(b) This is an immediate consequence <strong>of</strong> Proposition 3.6 and Part (a), s<strong>in</strong>ce α G,G is <strong>in</strong>jective.F<strong>in</strong>ally, we will show <strong>in</strong> <strong>the</strong> next proposition that <strong>the</strong> bil<strong>in</strong>ear map − ∗ κ H − from Def<strong>in</strong>ition 3.4 istranslated via <strong>the</strong> isomorphism ζ <strong>in</strong>to <strong>the</strong> follow<strong>in</strong>g bil<strong>in</strong>ear map.3.8 Def<strong>in</strong>ition Let G, H, and K be f<strong>in</strong>ite groups, and let R be a commutative r<strong>in</strong>g such that |H| is<strong>in</strong>vertible <strong>in</strong> R. We def<strong>in</strong>e <strong>the</strong> R-bil<strong>in</strong>ear map−˜∗ κ H−: RS G×H × RS H×K → RS G×K , (L, M) ↦→ ∑a L,MN · N ,NG×Kwhere, for L G × H, M H × K, and N G × K, <strong>the</strong> coefficient a L,MN∑∑a L,MN:= 1|H|(L ′ ,M ′ )(L,M)NL ′ ∗M ′µ S G×H×S H×K(L ′ ,M ′ ),(L,M) ·|k 2(L ′ )∩k 1 (M ′ )| =(L ′ ,M ′ )∈S G×H ×S H×KNL ′ ∗M ′∈ R is def<strong>in</strong>ed byµ S G×H×S H×K(L ′ ,M ′ ),(L,M) ·κ(L′ , M ′ ) .Here, µ S G×H×S H×K(L ′ ,M ′ ),(L,M) denotes <strong>the</strong> Möbius function on <strong>the</strong> poset S G×H × S H×K equipped with <strong>the</strong> directproduct partial order on S G×H ×S H×K , i.e., (L ′ , M ′ ) (L, M) if and only if L ′ L and M ′ M. Notethat a M ◦ ,L ◦N = ◦ aL,M Nand (a˜∗ κ Hb) ◦ = b ◦˜∗ κ Ha ◦ for a ∈ RS G×H and b ∈ RS H×K . Here, − ◦ : RS G×H →RS H×G is def<strong>in</strong>ed as <strong>the</strong> R-l<strong>in</strong>ear extension <strong>of</strong> <strong>the</strong> map S G×H → S H×G , L ↦→ L ◦ .12
3.9 Proposition Let G, H, and K be f<strong>in</strong>ite groups, and let R be a commutative r<strong>in</strong>g such that |H| is<strong>in</strong>vertible <strong>in</strong> R.(a) For all a ∈ RS G×H and b ∈ RS H×K one has ζ G,K (a ∗ κ H b) = ζ G,H(a) ˜∗ κ H ζ H,K (b).(b) If |G| is <strong>in</strong>vertible <strong>in</strong> R <strong>the</strong>n <strong>the</strong> map ρ G,G def<strong>in</strong>es an isomorphism between <strong>the</strong> double <strong>Burnside</strong>R-algebra RB(G, G) and <strong>the</strong> subr<strong>in</strong>g(RS G×G ) G×G = ẽ G ˜∗ κ G RS G×G ˜∗ κ G ẽ G<strong>of</strong> (RS G×G , ˜∗ κ G), where ẽ G := ζ G (e G ) is an idempotent <strong>in</strong> (RS G×G , ˜∗ κ G).Pro<strong>of</strong> (a) Recall<strong>in</strong>g from Def<strong>in</strong>ition 3.1 that <strong>the</strong> maps ζ are isomorphisms with <strong>in</strong>verse µ, it suffices toprove <strong>the</strong> equation for a = µ G,H (L) and b = µ H,K (M) with L G × H and M H × K. In this casewe haveζ G,K (a ∗ κ H b) = ∑ ∑µ L′ ,L · µ M ′ ,M · ζ G,K (L ′ ∗ κ H M ′ )L ′ L M ′ M=∑(L ′ ,M ′ )(L,M)= ∑NG×K= ∑NG×K( ∑µ S G×H×S H×K(L ′ ,M ′ ),(L,M) · κ(L′ , M ′ ) ·(L ′ ,M ′ )(L,M)NL ′ ∗M ′∑NL ′ ∗M ′ N)µ S G×H×S H×K(L ′ ,M ′ ),(L,M) · κ(L′ , M ′ )· Na L,MN · N = L˜∗κ HM = ζ G×H (a) ˜∗ κ H ζ H×K (b) .(b) This follows immediately from Part (a) and Proposition 3.7.4 Simplify<strong>in</strong>g <strong>the</strong> coefficient a L,MNThroughout this section, G, H, and K denote f<strong>in</strong>ite groups, and R denotes a commutative r<strong>in</strong>g such that|H| is <strong>in</strong>vertible <strong>in</strong> R. Moreover, we will consider subgroups L G × H, M H × K, and N G × K.The goal <strong>of</strong> this section is a simplification <strong>of</strong> <strong>the</strong> formula for <strong>the</strong> ‘multiplication’ structure constants a L,MN<strong>in</strong> Def<strong>in</strong>ition 3.8. For this we will need to work with <strong>the</strong> partially ordered set S G×H × S H×K endowedwith <strong>the</strong> direct product poset structure <strong>of</strong> S G×H and S H×K , cf. Def<strong>in</strong>ition 3.8. For N G × K, we setX N =:= {(L, M) ∈ S G×H × S H×K | N L ∗ M}and consider it as a subposet <strong>of</strong> S G×H × S H×K . Note that for any two elements (L ′ , M ′ ) (L, M) <strong>in</strong>X N one hasp 1 (N) p 1 (L ′ ∗ M ′ ) p 1 (L ′ ) p 1 (L) and p 2 (N) p 2 (L ′ ∗ M ′ ) p 2 (M ′ ) p 2 (M) . (2)Note also that X N is a convex subposet <strong>of</strong> S G×H × S H×K , i.e., for x, y, z ∈ S G×H × S H×K withx y z and x, z ∈ X N one also has y ∈ X N . Thus, we can rewrite a L,MNfrom Def<strong>in</strong>ition 3.8 as∑a L,MN=µ X N(L ′ ,M ′ ),(L,M) · κ(L′ , M ′ ) . (3)(L ′ ,M ′ )∈X NWe will simplify this sum us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g lemma.13
4.1 Lemma Let (X , ) be a f<strong>in</strong>ite poset and let A be an abelian group. Moreover, let φ: X → X andκ: X → A be maps such that(i) φ is a map <strong>of</strong> posets, φ ◦ φ = φ, and φ(x) x for all x ∈ X , and(ii) κ ◦ φ = κ: X → A.Set Y := φ(X ). Then, for each z ∈ X , one has⎧∑⎨0 if z /∈ Y ,µ X x,z · κ(x) = ∑⎩ µ Y y,z · κ(y) if z ∈ Y ,x∈Xy∈Ywhere µ X denotes <strong>the</strong> Möbius function <strong>of</strong> X , and µ Y denotes <strong>the</strong> Möbius function <strong>of</strong> Y , considered asa subposet <strong>of</strong> X .Pro<strong>of</strong> Consider <strong>the</strong> set C z <strong>of</strong> cha<strong>in</strong>s σ = (x 0 < . . . < x n = z) <strong>in</strong> X , and for each such σ ∈ C z , setκ(σ) := κ(x 0 ). Then we have∑µ X x,z · κ(x) = ∑ (−1) |σ| · κ(σ) ,σ∈C zx∈Xwhere |σ| denotes <strong>the</strong> length <strong>of</strong> <strong>the</strong> cha<strong>in</strong> σ, i.e., |σ| = n for <strong>the</strong> cha<strong>in</strong> σ above.We now denote by D z ⊆ C z <strong>the</strong> set <strong>of</strong> those cha<strong>in</strong>s all <strong>of</strong> whose terms belong to Y , and we def<strong>in</strong>e amap ψ : C z D z → C z D z such thatψ ◦ ψ = id, |ψ(σ)| − |σ| ∈ {±1}, κ(ψ(σ)) = κ(σ) .For this, let σ ∈ C z D z with σ = (x 0 < . . . < x n = z). Then <strong>the</strong>re is a m<strong>in</strong>imal <strong>in</strong>dex i ∈ {0, . . . , n}such that x i /∈ Y , that is, y i := φ(x i ) < x i , s<strong>in</strong>ce, by def<strong>in</strong>ition, Y := {x ∈ X | φ(x) = x}. If i 1 andx i−1 = y i <strong>the</strong>n we def<strong>in</strong>e ψ(σ) as <strong>the</strong> cha<strong>in</strong> obta<strong>in</strong>ed from σ by remov<strong>in</strong>g x i−1 , and if i = 0 or if i 1and x i−1 < y i <strong>the</strong>n we def<strong>in</strong>e ψ(σ) as <strong>the</strong> cha<strong>in</strong> obta<strong>in</strong>ed from σ by <strong>in</strong>sert<strong>in</strong>g y i . This yields <strong>the</strong> desiredmap ψ, and we thus get∑µ X x,z · κ(x) = ∑ (−1) |σ| · κ(σ) = ∑{(−1) |σ| 0 if z /∈ Y ,· κ(σ) = ∑σ∈C z σ∈D z y∈Y µY y,z · κ(y) if z ∈ Y .x∈XLet N G × K. We will apply Lemma 4.1 to <strong>the</strong> partially ordered set X := X N , to <strong>the</strong> mapφ: X → X , (L, M) ↦→ (˜L, ˜M), where˜L := {(g, h) ∈ L | g ∈ p 1 (N), ∃k ∈ p 2 (N): (h, k) ∈ M} ,˜M := {(h, k) ∈ M | k ∈ p 2 (N), ∃g ∈ p 1 (N): (g, h) ∈ L} ,to <strong>the</strong> additive group <strong>of</strong> <strong>the</strong> r<strong>in</strong>g R, and to <strong>the</strong> function κ: X → R, (L, M) ↦→ |k 2 (L) ∩ k 1 (M)|/|H| as<strong>in</strong> Def<strong>in</strong>ition 3.4. Note that for simplicity we used abusive notation: <strong>the</strong> subgroup ˜L depends on L andM, not just on L. Similarly, ˜M depends on L and M. It is now a straightforward verification that <strong>the</strong>conditions (i) and (ii) <strong>in</strong> Lemma 4.1 are satisfied and thatY N := φ(X N ) = {(L, M) ∈ X N | p 1 (L) = p 1 (N), p 2 (L) = p 2 (M), p 2 (M) = p 2 (N)} .14
For (L, M) ∈ Y N we also setY L,MN:= {(L ′ , M ′ ) ∈ Y N | (L ′ , M ′ ) (L, M)} .The follow<strong>in</strong>g <strong>the</strong>orem is now an immediate consequence <strong>of</strong> Lemma 4.1 applied to Equation (3).4.2 Theorem Let L G × H, M H × K and N G × K. Then⎧⎨0 if (L, M) /∈ Y N ,a L,M ∑N=⎩µ Y N(L ′ ,M ′ ),(L,M) · κ(L′ , M ′ ) if (L, M) ∈ Y N .(L ′ ,M ′ )∈Y L,MNFrom <strong>the</strong> above <strong>the</strong>orem and Def<strong>in</strong>ition 3.8 <strong>the</strong> follow<strong>in</strong>g corollary is immediate.4.3 Corollary Let L G × H and M H × K. Then L˜∗ κ HM is a l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> subgroupsN G × K satisfy<strong>in</strong>g p 1 (N) = p 1 (L) and p 2 (N) = p 2 (M). Moreover, if p 1 (L) ≠ p 2 (M) <strong>the</strong>n L˜∗ κ HM = 0.Next we consider <strong>the</strong> ‘multiplication’ <strong>of</strong> special types <strong>of</strong> subgroups L and M with respect to ˜∗ κ H.4.4 Proposition Assume that k 1 (L) = 1 and k 1 (M) = 1 (or that k 2 (L) = 1 and k 2 (M) = 1). ThenL˜∗ κ HM ={1|H| · L ∗ M if p 2(L) = p 1 (M),0 if p 2 (L) ≠ p 1 (M) .Pro<strong>of</strong> We only prove <strong>the</strong> statement under <strong>the</strong> assumption k 1 (L) = 1 and k 1 (M) = 1. In <strong>the</strong> o<strong>the</strong>rcase <strong>the</strong> result can be derived from <strong>the</strong> first one by apply<strong>in</strong>g − ◦ . If p 2 (L) ≠ p 1 (M) <strong>the</strong>n L˜∗ κ HM = 0, byCorollary 4.3. From now on we assume that p 2 (L) = p 1 (M).First we show that if N G × K is such that (L, M) ∈ Y N <strong>the</strong>n N = L ∗ M. In fact, s<strong>in</strong>ce(L, M) ∈ Y N , we have p 2 (N) = p 2 (M). Moreover, Lemma 2.7(i) implies that p 2 (M) = p 2 (L ∗ M) and1 = k 1 (L) = k 1 (L ∗ M). Thus, p 2 (N) = p 2 (L ∗ M), and N L ∗ M implies k 1 (N) = 1. Equation (1)yields|N| = |k 1 (N)| · |p 2 (N)| = |k 1 (L ∗ M)| · |p 2 (L ∗ M)| = |L ∗ M|,and with N L ∗ M we obta<strong>in</strong> N = L ∗ M. Thus, <strong>the</strong> claim holds and, by Def<strong>in</strong>ition 3.8, we obta<strong>in</strong>L˜∗ κ HM = a L,ML∗M · L ∗ M.Next we compute a L,ML∗M us<strong>in</strong>g <strong>the</strong> formula <strong>in</strong> Theorem 4.2. Assume that (L′ , M ′ ) ∈ Y L∗M with(L ′ , M ′ ) (L, M). Then clearly L ∗ M = L ′ ∗ M ′ . Moreover, s<strong>in</strong>ce p 2 (L ′ ) = p 1 (M ′ ) and p 2 (L) = p 1 (M),Lemma 2.7(i) implies p 2 (M) = p 2 (L ∗ M) = p 2 (L ′ ∗ M ′ ) = p 2 (M ′ ). Fur<strong>the</strong>r, k 1 (M ′ ) k 1 (M) = 1 impliesk 1 (M ′ ) = 1. Now Equation (1) yields M ′ = M, and we obta<strong>in</strong> p 2 (L ′ ) = p 1 (M ′ ) = p 1 (M) = p 2 (L).F<strong>in</strong>ally, Lemma 2.7(i) and k 1 (M) = k 1 (M ′ ) = 1 imply k 1 (L ∗ M) = k 1 (L) and k 1 (L ′ ∗ M ′ ) = k 1 (L ′ ).Thus k 1 (L) = k 1 (L ′ ), and Equation (1) implies L ′ = L. This shows that a L,ML∗M= κ(L, M) = 1/|H|, and<strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> proposition is complete.4.5 Remark (a) Proposition 4.4 allows us to recover Theorem 4.7 <strong>in</strong> [BD], where a ghost r<strong>in</strong>g for <strong>the</strong>left-free double <strong>Burnside</strong> r<strong>in</strong>g B ⊳ (G, G) was <strong>in</strong>troduced. This is <strong>the</strong> Z-span <strong>of</strong> <strong>the</strong> standard basis elements15
[(G×G)/L] <strong>of</strong> B(G, G), with L G×G satisfy<strong>in</strong>g k 1 (L) = 1. Warn<strong>in</strong>g: <strong>in</strong> [BD] <strong>the</strong> mark homomorphismρ G,G was def<strong>in</strong>ed differently, with an additional scal<strong>in</strong>g factor.(b) Note that <strong>in</strong> [BD] it was possible to def<strong>in</strong>e an <strong>in</strong>tegral version for <strong>the</strong> ghost r<strong>in</strong>g <strong>of</strong> B ⊳ (G, G),cf. [BD, Lemma 4.5(c)]. In order to generalize this result to our situation one would have to f<strong>in</strong>d non-zerorational numbers b L , for L ∈ S G×G , such that <strong>the</strong> product(bL · [L] + (G×G)˜∗κG bM · [M] + G×G )is conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Z-span <strong>of</strong> <strong>the</strong> elements b N · [N] + G×G , N ∈ S G×G. We do not know whe<strong>the</strong>r this ispossible.5 Twisted category algebrasThroughout this section, R denotes a commutative r<strong>in</strong>g and C denotes a category whose objects form aset, denoted by Ob(C). We denote by Mor(C) <strong>the</strong> set <strong>of</strong> morphisms <strong>of</strong> C.The ma<strong>in</strong> purpose <strong>of</strong> this section is to recall basic notions associated with Green’s <strong>the</strong>ory <strong>of</strong> idempotentcondensation and with twisted category algebras. We will mostly be concerned with <strong>the</strong> case where Cis a f<strong>in</strong>ite category, that is, where Mor(C) (and consequently Ob(C)) is a f<strong>in</strong>ite set. Category algebrasgeneralize <strong>the</strong> concept <strong>of</strong> monoid algebras: see [Gr1], [St], [L], [LS] for <strong>the</strong> development <strong>of</strong> <strong>the</strong>se topics.In Sections 6, 7 and 8 we will apply Green’s <strong>the</strong>ory, Theorem 5.8 (by L<strong>in</strong>ckelmann and Stolorz, cf. [LS])and Theorem 5.13 (by L<strong>in</strong>ckelmann, cf. [L]) to algebras related to <strong>the</strong> category <strong>of</strong> biset functors, which<strong>in</strong> turn are related to <strong>the</strong> double <strong>Burnside</strong> algebra by specializ<strong>in</strong>g to categories C with just one object.Two morphisms s: X → Y and t: Y ′ → Z are called composable if Y = Y ′ . In this case we also saythat t ◦ s exists.5.1 Def<strong>in</strong>ition (a) The category algebra RC is <strong>the</strong> R-algebra def<strong>in</strong>ed as follows: <strong>the</strong> underly<strong>in</strong>g R-module is free with basis Mor(C). The product ts <strong>of</strong> two morphisms s and t is def<strong>in</strong>ed as t ◦ s if t ◦ sexists, and it is def<strong>in</strong>ed to be 0 if t ◦ s does not exist.(b) A 2-cocycle <strong>of</strong> C with values <strong>in</strong> <strong>the</strong> unit group R × is a function α that assigns to any two morphismss and t such that t◦s exists an element α(t, s) ∈ R × with <strong>the</strong> follow<strong>in</strong>g property: for any three morphismss, t, u <strong>of</strong> C such that t ◦ s and u ◦ t exist, one has α(u ◦ t, s)α(u, t) = α(u, t ◦ s)α(t, s). The twisted categoryalgebra R α C is <strong>the</strong> free R-module with R-basis Mor(C), and with multiplication def<strong>in</strong>ed by{α(t, s) · t ◦ s if t ◦ s exists,t · s :=0 o<strong>the</strong>rwise.5.2 Remark If C has f<strong>in</strong>itely many objects <strong>the</strong>n <strong>the</strong> sum <strong>of</strong> <strong>the</strong> identity morphisms is an identity element<strong>of</strong> RC, and also R α C has an identity element as we will see. If C has <strong>in</strong>f<strong>in</strong>itely many objects <strong>the</strong>n nei<strong>the</strong>r<strong>of</strong> <strong>the</strong> R-algebras RC and R α C has an identity element.5.3 Idempotent morphisms <strong>in</strong> categories. We recall several notions from [LS].(a) The set <strong>of</strong> idempotent endomorphisms <strong>in</strong> Mor(C) carries a poset structure: if e, f ∈ End C (X) areidempotent morphisms <strong>of</strong> <strong>the</strong> same object X <strong>of</strong> C <strong>the</strong>n we sete f :⇐⇒ e = e ◦ f = f ◦ e .16
If e and f are idempotent morphisms <strong>of</strong> different objects <strong>the</strong>n <strong>the</strong>y are not comparable.(b) For any object X <strong>of</strong> C and any idempotent e ∈ End C (X), <strong>the</strong> group <strong>of</strong> <strong>in</strong>vertible elements <strong>in</strong>e ◦ End C (X) ◦ e is denoted by Γ e , and we set J e := e ◦ End C (X) ◦ e Γ e .(c) Let X and Y be objects <strong>of</strong> C, and let e ∈ End C (X) and f ∈ End C (Y ) be idempotents. We call eand f equivalent if <strong>the</strong>re exist morphisms s ∈ f ◦ Hom C (X, Y ) ◦ e and t ∈ e ◦ Hom C (Y, X) ◦ f such thatt ◦ s = e and s ◦ t = f; <strong>in</strong> this case, <strong>the</strong> morphisms s and t <strong>in</strong>duce mutually <strong>in</strong>verse group isomorphismsΓ e → Γ f , u ↦→ s ◦ u ◦ t; Γ f → Γ e , v ↦→ t ◦ v ◦ s .We remark that <strong>in</strong> [L], for <strong>in</strong>stance, <strong>the</strong> idempotents e and f are called isomorphic ra<strong>the</strong>r than equivalent.We will later consider categories whose morphisms are f<strong>in</strong>ite groups, and it will <strong>the</strong>n be important to notconfuse isomorphisms between groups with equivalence <strong>of</strong> morphisms <strong>in</strong> <strong>the</strong> relevant category, whence<strong>the</strong> different term<strong>in</strong>ology.(d) Assume now that C is f<strong>in</strong>ite. Let X and Y be objects <strong>of</strong> C and let e ∈ End C (X) and f ∈ End C (Y )be idempotents. The 2-cocycle α restricts to 2-cocycles on <strong>the</strong> groups Γ e and Γ f , and we may consider<strong>the</strong> twisted group algebras R α Γ e and R α Γ f as subr<strong>in</strong>gs <strong>of</strong> R α C. Let T be a simple R α Γ e -module and letT ′ be a simple R α Γ f -module. The pairs (e, T ) and (f, T ′ ) are called isomorphic if <strong>the</strong>re exist s and t as<strong>in</strong> (c) such that t ◦ s = e and s ◦ t = f, and such that <strong>the</strong> isomorphism classes <strong>of</strong> T and T ′ correspond toeach o<strong>the</strong>r under <strong>the</strong> R-algebra isomorphism R α Γ e∼ = Rα Γ f <strong>in</strong>duced by s and t, cf. [LS, Proposition 5.2]for a precise def<strong>in</strong>ition <strong>of</strong> this isomorphism. For different choices <strong>of</strong> s and t <strong>the</strong> different isomorphismsdiffer only by <strong>in</strong>ner automorphisms, cf. [LS, Proposition 5.4]. Thus, <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> (e, T ) and (f, T ′ )be<strong>in</strong>g isomorphic does not depend on <strong>the</strong> choice <strong>of</strong> s and t.5.4 Condensation functors. We recall Green’s <strong>the</strong>ory <strong>of</strong> idempotent condensation, cf. [Gr2, Section6.2].Suppose that A is any r<strong>in</strong>g with identity and that e ∈ A is an idempotent. Then eAe is a r<strong>in</strong>g withidentity e and one has an exact functorA-Mod → eAe-Mod, V ↦→ eV , (4)which is <strong>of</strong>ten called <strong>the</strong> condensation functor with respect to e.One also has a functoreAe-Mod → A-Mod, W ↦→ Ae ⊗ eAe W ; (5)this functor is <strong>in</strong> general not exact.Whenever S is a simple A-module, <strong>the</strong> eAe-module eS is ei<strong>the</strong>r 0 or aga<strong>in</strong> simple, and every simple eAemoduleoccurs <strong>in</strong> this way. The construction S ↦→ eS <strong>in</strong>duces a bijection between <strong>the</strong> isomorphism classes<strong>of</strong> simple A-modules that are not annihilated by e and <strong>the</strong> isomorphism classes <strong>of</strong> simple eAe-modules.Its <strong>in</strong>verse can be described as follows: for every simple eAe-module T , <strong>the</strong> A-module M := Ae ⊗ eAe Thas a unique simple quotient S, and eS ∼ = T as eAe-modules. Thus, S = Hd(M) := M/Rad(M), <strong>the</strong>head <strong>of</strong> M, where Rad(M) denotes <strong>the</strong> radical <strong>of</strong> <strong>the</strong> A-module M, i.e., <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> all its maximalsubmodules.With this notation, one also has <strong>the</strong> follow<strong>in</strong>g basic statements.5.5 Proposition Let A be a unitary r<strong>in</strong>g, let e ∈ A be an idempotent, and let T be a simple eAe-module.Moreover, set M := Ae ⊗ eAe T and S := M/Rad(M) = Hd(M). Then:17
(a) eM ∼ = T as eAe-modules;(b) eRad(M) = {0};(c) AeM = M.Pro<strong>of</strong> S<strong>in</strong>ce eS ∼ = T as eAe-modules, Parts (a) and (b) are equivalent. Moreover, Part (a) is proved<strong>in</strong> [Gr2, Section 6.2]. As for (c), recall that ei<strong>the</strong>r AeM = M or AeM ⊆ Rad(M), s<strong>in</strong>ce AeM is an A-submodule <strong>of</strong> M. If AeM ⊆ Rad(M) <strong>the</strong>n {0} = eAeM = (eAe) · eM, by (b), thus {0} = (eAe) · T = T ,by (a), which is impossible, whence (c).In Section 7 we will have to compare <strong>the</strong> annihilator <strong>of</strong> <strong>the</strong> simple A-module S with <strong>the</strong> annihilator <strong>of</strong><strong>the</strong> simple eAe-module T . The assertion <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g lemma is probably well known; we do, however,<strong>in</strong>clude a pro<strong>of</strong> for <strong>the</strong> reader’s convenience.5.6 Lemma Let A be a unitary r<strong>in</strong>g, let e ∈ A be an idempotent, let T be a simple eAe-module, andlet S be <strong>the</strong> simple head <strong>of</strong> <strong>the</strong> A-module Ae ⊗ eAe T . Then, for x ∈ A, one hasxS = {0} if and only if (eAxAe)T = {0} .Pro<strong>of</strong> Aga<strong>in</strong> we set M := Ae ⊗ eAe T . S<strong>in</strong>ce S = M/Rad(M), we <strong>in</strong>fer that xS = {0} if and only ifxM ⊆ Rad(M), which <strong>in</strong> turn is equivalent to AxM ⊆ Rad(M), s<strong>in</strong>ce Rad(M) is an A-submodule <strong>of</strong>M. S<strong>in</strong>ce AxM is an A-submodule <strong>of</strong> M, it is ei<strong>the</strong>r equal to M or is conta<strong>in</strong>ed <strong>in</strong> Rad(M). Thus,by Proposition 5.5 (b), AxM ⊆ Rad(M) if and only if eAxM = {0}. By Proposition 5.5 (c), we haveeAxM = eAxAeM = (eAxAe)eM, and by Proposition 5.5 (a), eM ∼ = T as eAe-modules. This nowimplies that eAxM = {0} if and only if (eAxAe) · T = {0}, and <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> lemma is complete.5.7 Condensation functors and twisted category algebras. Now consider <strong>the</strong> case where A =R α C, for a f<strong>in</strong>ite category C and a 2-cocycle α <strong>of</strong> C with coefficients <strong>in</strong> R × . Theorem 5.8 below is dueto L<strong>in</strong>ckelmann–Stolorz and describes how <strong>the</strong> simple A-modules can be constructed via <strong>the</strong> functor <strong>in</strong>(5). In order to state <strong>the</strong> <strong>the</strong>orem, we fix some fur<strong>the</strong>r notation: let e ∈ End C (X) be an idempotentendomorphism <strong>in</strong> C. Thene ′ := α(e, e) −1 eis an idempotent <strong>in</strong> R α C, and we also have e ′ · R α C · e ′ = R α (e ◦ End C (X) ◦ e). One has an R-moduledecompositionR α (e ◦ End C (X) ◦ e) = R α Γ e ⊕ RJ e , (6)where <strong>the</strong> second summand denotes <strong>the</strong> R-span <strong>of</strong> J e . Note that RJ e is an ideal and that R α Γ e is aunitary R-subalgebra <strong>of</strong> e ′ · R α C · e ′ . For every R α C-module V , <strong>the</strong> condensed module e ′ V becomes anR α Γ e -module by restriction from R α (e ◦ End C (X) ◦ e) to R α Γ e . Conversely, given an R α Γ e -module W ,we obta<strong>in</strong> <strong>the</strong> R α C-module R α Ce ′ ⊗ e′ R αCe ′ ˜W , where ˜W denotes <strong>the</strong> <strong>in</strong>flation <strong>of</strong> W from Rα Γ e to e ′ R α Ce ′with respect to <strong>the</strong> decomposition (6).With this notation one has <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem, due to L<strong>in</strong>ckelmann and Stolorz.5.8 Theorem ([LS], Theorem 1.2) Let C be a f<strong>in</strong>ite category, and let α be a 2-cocycle <strong>of</strong> C withcoefficients <strong>in</strong> R × . There is a bijection between <strong>the</strong> set <strong>of</strong> isomorphism classes <strong>of</strong> simple R α C-modulesand <strong>the</strong> set <strong>of</strong> isomorphism classes <strong>of</strong> pairs (e, T ), where e is an idempotent endomorphism <strong>in</strong> C and T is18
a simple R α Γ e -module; <strong>the</strong> isomorphism class <strong>of</strong> a simple R α C-module S is sent to <strong>the</strong> isomorphism class<strong>of</strong> <strong>the</strong> pair (e, e ′ S), where e is an idempotent endomorphism that is m<strong>in</strong>imal with <strong>the</strong> property e ′ S ≠ {0}.Conversely, <strong>the</strong> isomorphism class <strong>of</strong> a pair (e, T ) is sent to <strong>the</strong> isomorphism class <strong>of</strong> <strong>the</strong> R α C-moduleHd(R α Ce ′ ⊗ e ′ R αCe ′ ˜T ).5.9 Def<strong>in</strong>ition ([Ka]) The category C is called an <strong>in</strong>verse category if, for every X, Y ∈ Ob(C) and everys ∈ Hom C (X, Y ), <strong>the</strong>re is a unique ŝ ∈ Hom C (Y, X) such thats ◦ ŝ ◦ s = s and ŝ ◦ s ◦ ŝ = ŝ .5.10 Category algebras <strong>of</strong> <strong>in</strong>verse categories. From now on, let C be a f<strong>in</strong>ite <strong>in</strong>verse category.Note that if s is a morphism <strong>in</strong> C <strong>the</strong>n ŝ = s and <strong>the</strong> morphisms ŝ◦s and s◦ŝ are idempotent morphisms.We recall several constructions from [L], which are based on constructions <strong>in</strong> [St] for <strong>in</strong>verse monoids.(a) One can extend <strong>the</strong> poset structure on <strong>the</strong> set <strong>of</strong> idempotent morphisms <strong>of</strong> Mor(C) from 5.3(a)to <strong>the</strong> set Mor(C) <strong>of</strong> all morphisms: for X, Y ∈ Ob(C) and s, t ∈ Hom C (X, Y ), one def<strong>in</strong>ess t :⇐⇒ s = t ◦ e, for some idempotent e ∈ End C (X) .If s and t are morphisms with different doma<strong>in</strong> or codoma<strong>in</strong> <strong>the</strong>n <strong>the</strong>y are <strong>in</strong>comparable. For s ∈ Mor(C)we consider <strong>the</strong> elements := ∑ tsµ t,s t ∈ RCwhere µ t,s denotes <strong>the</strong> Möbius function with respect to <strong>the</strong> partial order on Mor(C).elements <strong>in</strong> {s | s ∈ Mor(C)} form an R-basis <strong>of</strong> RC.Note that <strong>the</strong>(b) Let X and Y be objects <strong>of</strong> C and let e ∈ End C (X) and f ∈ End C (Y ) be idempotent endomorphisms.Then 5.3(c) and Def<strong>in</strong>ition 5.9 show that e and f are equivalent if and only if <strong>the</strong>re exists somes ∈ f ◦ Hom C (X, Y ) ◦ e such that ŝ ◦ s = e and s ◦ ŝ = f. Moreover, <strong>the</strong> group Γ e <strong>the</strong>n consists <strong>of</strong> thoseendomorphisms u ∈ End C (X) with û ◦ u = e = u ◦ û.(c) From <strong>the</strong> <strong>in</strong>verse category C one can construct ano<strong>the</strong>r f<strong>in</strong>ite category G(C) as follows:(i) <strong>the</strong> objects <strong>in</strong> G(C) are <strong>the</strong> pairs (X, e), where X ∈ Ob(C) and e is an idempotent <strong>in</strong> End C (X);(ii) <strong>the</strong> morphisms <strong>in</strong> G(C) are triples (f, s, e) : (X, e) → (Y, f), where s ∈ f ◦ Hom C (X, Y ) ◦ e issuch that ŝ ◦ s = e and s ◦ ŝ = f; <strong>in</strong> particular, e and f are equivalent endomorphisms <strong>in</strong> C;(iii) if (f, s, e) : (X, e) → (Y, f) and (g, t, f) : (Y, f) → (Z, g) are morphisms <strong>in</strong> G(C) <strong>the</strong>n <strong>the</strong>ircomposition (X, e) → (Z, g) is def<strong>in</strong>ed as (g, t, f) ◦ (f, s, e) := (g, t ◦ f ◦ s, e).Note that G(C) is a groupoid, i.e., a category <strong>in</strong> which every morphism is an isomorphism.5.11 Lemma ([L], Theorem 4.1; [St], Theorem 4.2) Let C be a f<strong>in</strong>ite <strong>in</strong>verse category. Then <strong>the</strong>category algebras RC and RG(C) are isomorphic. More precisely, <strong>the</strong> mapsRG(C) → RC , (f, s, e) ↦→ s , and RC → RG(C) , s ↦→ ∑ ts(t ◦ ˆt, t, ˆt ◦ t) ,def<strong>in</strong>e mutually <strong>in</strong>verse R-algebra isomorphisms.19
5.12 Remark It is well known that <strong>the</strong> category algebra RD <strong>of</strong> a f<strong>in</strong>ite groupoid D is isomorphic to adirect product <strong>of</strong> matrix algebras over group algebras. More precisely, let E be a set <strong>of</strong> representatives<strong>of</strong> <strong>the</strong> isomorphism classes <strong>of</strong> objects e <strong>of</strong> D, and for each e ∈ E let n(e) denote <strong>the</strong> number <strong>of</strong> objectsisomorphic to e. S<strong>in</strong>ce D is a groupoid, every endomorphism <strong>of</strong> e ∈ E is an automorphism <strong>of</strong> e, and id eis <strong>the</strong> unique idempotent <strong>in</strong> End D (e); <strong>in</strong> particular, we have Γ ide = End D (e). For convenience we maythus denote End D (e) by Γ e .Note that, <strong>in</strong> <strong>the</strong> case where D = G(C) for some f<strong>in</strong>ite <strong>in</strong>verse category C, this is consistent with5.3(b): if (X, e) ∈ G(C) <strong>the</strong>n End G(C) ((X, e)) = {(e, s, e) | s ∈ e ◦ End C (X) ◦ e, ŝ ◦ s = e = s ◦ ŝ}, and{s ∈ e ◦ End C (X) ◦ e | ŝ ◦ s = e = s ◦ ŝ} is <strong>the</strong> set <strong>of</strong> <strong>in</strong>vertible elements <strong>in</strong> e ◦ End C (X) ◦ e, thus equal toΓ e as def<strong>in</strong>ed <strong>in</strong> 5.3(b).Suppose aga<strong>in</strong> that D is an arbitrary f<strong>in</strong>ite groupoid. Then <strong>the</strong>re exists an R-algebra isomorphismɛ: RD → ×e∈EMat n(e) (RΓ e ), (7)which can be def<strong>in</strong>ed as follows: we fix e ∈ E, denote by e = e 1 , . . . , e n(e) <strong>the</strong> objects that lie <strong>in</strong> <strong>the</strong>isomorphism class <strong>of</strong> e, and choose an isomorphism s i : e → e i for every i ∈ {1, . . . , n(e)}. Let s be amorphism <strong>in</strong> D. If <strong>the</strong> doma<strong>in</strong> <strong>of</strong> s is not isomorphic to e <strong>the</strong>n <strong>the</strong> matrix <strong>in</strong> <strong>the</strong> e-component <strong>of</strong> ɛ(s) isdef<strong>in</strong>ed to be 0. If <strong>the</strong> doma<strong>in</strong> <strong>of</strong> s is isomorphic to e <strong>the</strong>n <strong>the</strong>re exist unique elements i, j ∈ {1, . . . , n(e)}such that s: e j → e i . In this case <strong>the</strong> e-component <strong>of</strong> ɛ(s) is <strong>the</strong> matrix all <strong>of</strong> whose entries are equal to0 except for <strong>the</strong> (i, j)-entry, which is equal to s −1i ◦ s ◦ s j . The isomorphism ɛ depends on <strong>the</strong> order<strong>in</strong>g<strong>of</strong> <strong>the</strong> elements <strong>in</strong> an isomorphism class and on <strong>the</strong> choices <strong>of</strong> <strong>the</strong> isomorphisms s i . However, any twoisomorphisms def<strong>in</strong>ed as above differ only by an <strong>in</strong>ner automorphism.Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> two isomorphisms <strong>in</strong> Lemma 5.11 and Remark 5.12 one obta<strong>in</strong>s <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem,due to L<strong>in</strong>ckelmann, cf. [L, Corollary 4.2].5.13 Theorem Let C be a f<strong>in</strong>ite <strong>in</strong>verse category. Let E be a set <strong>of</strong> representatives <strong>of</strong> <strong>the</strong> equivalenceclasses <strong>of</strong> idempotents <strong>in</strong> Mor(C) and, for e ∈ E, let n(e) denote <strong>the</strong> card<strong>in</strong>ality <strong>of</strong> <strong>the</strong> equivalence class<strong>of</strong> e. Then <strong>the</strong>re exists an R-algebra isomorphismω : RC → ×e∈EMat n(e) (RΓ e ) . (8)5.14 Remark (a) Us<strong>in</strong>g <strong>the</strong> explicit description <strong>of</strong> <strong>the</strong> isomorphism ɛ <strong>in</strong> Remark 5.12 we obta<strong>in</strong> <strong>the</strong>follow<strong>in</strong>g description <strong>of</strong> <strong>the</strong> e-component <strong>of</strong> <strong>the</strong> isomorphism ω <strong>in</strong> Theorem 5.13: let e = e 1 , . . . , e n(e)denote <strong>the</strong> idempotent morphisms <strong>of</strong> C that are equivalent to e and for every i ∈ {1, . . . , n(e)} let s i bea morphism such that ŝ i ◦ s i = e and s i ◦ ŝ i = e i . For every morphism s <strong>of</strong> C, <strong>the</strong> e-component <strong>of</strong> ω(s) isdef<strong>in</strong>ed to be 0 if <strong>the</strong> idempotent ŝ ◦ s is not equivalent to e, and if it is equivalent to e <strong>the</strong>n <strong>the</strong>re existunique elements i, j ∈ {1, . . . , n(e)} such that ŝ ◦ s = e j and s ◦ ŝ = e i . In this case <strong>the</strong> e-component <strong>of</strong>ω(s) is <strong>the</strong> matrix all <strong>of</strong> whose entries are equal to 0 except for <strong>the</strong> (i, j)-entry, which is equal to s i ◦s◦ŝ j .(b) It follows immediately from (a) that <strong>the</strong> central idempotent <strong>of</strong> RC correspond<strong>in</strong>g to <strong>the</strong> identitymatrix <strong>in</strong> <strong>the</strong> e-component, for e ∈ E and with <strong>the</strong> notation <strong>in</strong>troduced <strong>in</strong> (a), is equal ton(e)∑ẽ := e i ∈ RC .i=120
This element is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> choices made when construct<strong>in</strong>g <strong>the</strong> isomorphism ω. Moreover, <strong>the</strong>e-th component Mat n(e) (RΓ e ) <strong>in</strong> (8) corresponds to a two-sided ideal I e = RC · ẽ, which is <strong>in</strong>dependent<strong>of</strong> <strong>the</strong> choices <strong>in</strong>volved <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> ω, and one has RC = ⊕ e∈E I e. By (a), <strong>the</strong> elements s ∈ RC,where s runs through all morphisms <strong>in</strong> C such that <strong>the</strong> idempotent ŝ◦s is equivalent to e, form an R-basis<strong>of</strong> I e .We will use Theorems 5.8 and 5.13 on category algebras <strong>in</strong> two situations. The follow<strong>in</strong>g exampledescribes <strong>the</strong> first one; it will be used <strong>in</strong> Sections 6 and 7.5.15 Example (a) We denote by B a category with <strong>the</strong> follow<strong>in</strong>g properties: its objects form a set <strong>of</strong>f<strong>in</strong>ite groups such that every isomorphism type <strong>of</strong> f<strong>in</strong>ite group is represented <strong>in</strong> Ob(B). The morphisms<strong>in</strong> B are def<strong>in</strong>ed byHom B (H, G) := S G×H ,for G, H ∈ Ob(B), and <strong>the</strong> composition is def<strong>in</strong>ed byL ◦ M := L ∗ M ,for L ∈ S G×H , M ∈ S H×K , with G, H, K ∈ Ob(B). The identity element <strong>of</strong> <strong>the</strong> object G <strong>of</strong> B is equalto ∆(G).(b) In <strong>the</strong> sequel we assume that C is a subcategory <strong>of</strong> B. For G, H ∈ Ob(C), we set C G,H :=Hom C (H, G). For completeness we also set C G,H := ∅ if G ∈ Ob(B) Ob(C) or H ∈ Ob(B) Ob(C). LetR be a commutative r<strong>in</strong>g such that |G| ∈ R × for all G ∈ Ob(C). Then, by Proposition 3.5, <strong>the</strong> functionκ def<strong>in</strong>ed byκ(L, M) := |k 2(L) ∩ k 1 (M)|∈ R × ,|H|with L ∈ C G,H , M ∈ C H,K , for G, H, K ∈ Ob(C), def<strong>in</strong>es a 2-cocycle on C. We obta<strong>in</strong> a twisted categoryalgebra R κ C, which we will denote by A κ C,R .(c) Recall from [W, Page 105] that biset functors over R, for an arbitrary commutative r<strong>in</strong>g R,can be considered as modules for <strong>the</strong> algebra ⊕ G,H∈Ob(B)RB(G, H), where <strong>the</strong> multiplication on twocomponents RB(G, H) and RB(H ′ , K) is <strong>in</strong>duced by <strong>the</strong> tensor product <strong>of</strong> bisets over H if H = H ′ , andis def<strong>in</strong>ed to be 0 if H ≠ H ′ . Note that this algebra has no identity element, s<strong>in</strong>ce Ob(B) is <strong>in</strong>f<strong>in</strong>ite. If Cis a subcategory <strong>of</strong> B and if C G,H ⊆ S G×H is closed under G × H-conjugation <strong>the</strong>n we def<strong>in</strong>eRB C (G, H) := 〈[(G × H)/L] | L ∈ C G,H 〉 R ⊆ RB(G, H) ,<strong>the</strong> R-span <strong>of</strong> <strong>the</strong> elements [G × H/L] with L ∈ C G,H . If C is f<strong>in</strong>ite <strong>the</strong>n <strong>the</strong> correspond<strong>in</strong>g R-subalgebra⊕G,H∈Ob(C) RBC (G, H) <strong>of</strong> ⊕ G,H∈Ob(B) RB(G, H) has an identity element. If, moreover, |G| ∈ R× forevery G ∈ Ob(C) <strong>the</strong>n <strong>the</strong> maps α G,H , G, H ∈ Ob(C), yield an R-algebra isomorphism⊕G,H∈Ob(C)RB C (G, H) ∼ = e C A κ C,Re C , (9)wheree C :=∑G∈Ob(C)e G21
∑is an idempotent <strong>in</strong> A κ C,R , cf. Proposition 3.7 and <strong>the</strong> paragraph preced<strong>in</strong>g it. Recall that e G :=g∈G ∆ g(G), for G ∈ Ob(C). Many considerations about biset functors on <strong>the</strong> category <strong>of</strong> all f<strong>in</strong>itegroups can be reduced to <strong>the</strong> case <strong>of</strong> f<strong>in</strong>itely many groups. Thus, <strong>the</strong> algebra A κ C,Rthrough its condensedalgebra (9) can be used to study biset functors over R.We will study <strong>the</strong> simple modules <strong>of</strong> A κ C,R and e CA κ C,R e C <strong>in</strong> Sections 6 and 7, respectively, for appropriatechoices <strong>of</strong> C and R.We will see <strong>in</strong> Section 8 that, <strong>in</strong> special cases, <strong>the</strong> multiplication ˜∗ κ H from Def<strong>in</strong>ition 3.8 can be relatedto <strong>the</strong> follow<strong>in</strong>g construction.For <strong>the</strong> rema<strong>in</strong>der <strong>of</strong> this section we fix a set D <strong>of</strong> f<strong>in</strong>ite groups. We will <strong>in</strong>troduce an <strong>in</strong>verse category˜C = ˜C(D) related to this set D. Later, <strong>in</strong> Section 8, we will see that <strong>in</strong> <strong>the</strong> case where <strong>the</strong> groups <strong>in</strong> D arecyclic we obta<strong>in</strong> an R-algebra isomorphism between <strong>the</strong> category algebra R˜C and ⊕ G,H∈DRB(G, H).There, R will denote a commutative r<strong>in</strong>g such that |G| and |Aut(G)| are units <strong>in</strong> R, for all G ∈ D.5.16 Def<strong>in</strong>ition For f<strong>in</strong>ite groups G and H and a subgroup L G × H, we setP(L) := {L ′ L | p 1 (L ′ ) = p 1 (L) and p 2 (L ′ ) = p 2 (L)} .Given <strong>the</strong> set D <strong>of</strong> f<strong>in</strong>ite groups, we def<strong>in</strong>e a category ˜C = ˜C(D) as follows:(i) Ob(˜C) = {(G, G ′ ) | G ∈ D, G ′ G};(ii) for (G, G ′ ), (H, H ′ ) ∈ Ob(˜C), we set Hom˜C((H, H ′ ), (G, G ′ )) := P(G ′ × H ′ );(iii) for (G, G ′ ), (H, H ′ ), (K, K ′ ) ∈ Ob(˜C), GL H ∈ Hom˜C((H, H ′ ), (G, G ′ )), and H M K ∈Hom˜C((K, K ′ ), (H, H ′ )), we def<strong>in</strong>e <strong>the</strong> composition G L H ◦ H M K := G L H ∗ H M K .Here, we use <strong>the</strong> notation G L H , s<strong>in</strong>ce every morphism needs to determ<strong>in</strong>e its source and target objects.While G ′ = p 1 (L) and H ′ = p 2 (L) are determ<strong>in</strong>ed by <strong>the</strong> notation L, G and H are not.With this notation, we have <strong>the</strong> follow<strong>in</strong>g proposition.5.17 Proposition (a) Let (G, G ′ ), (H, H ′ ) ∈ Ob(˜C), and let G L H ∈ Hom˜C((H, H ′ ), (G, G ′ )). Then( G L H ) ◦ is <strong>the</strong> unique element H M G ∈ Hom˜C((G, G ′ ), (H, H ′ )) such that<strong>in</strong> particular, ˜C is an <strong>in</strong>verse category.GL H ∗ H M G ∗ G L H = G L H and H M G ∗ G L H ∗ H M G = H M G ;(b) The idempotent endomorphisms <strong>in</strong> ˜C are precisely <strong>the</strong> endomorphisms <strong>of</strong> <strong>the</strong> formG(P, K, id, P, K) G (K P G ∈ D) .Moreover, two idempotent endomorphisms e := G (P, K, id, P, K) G and f := H (P ′ , K ′ , id, P ′ , K ′ ) H <strong>in</strong> ˜Care equivalent if and only if P/K ∼ = P ′ /K ′ .(c) If e := G (P, K, id, P, K) G is an idempotent endomorphism <strong>in</strong> ˜C <strong>the</strong>n one has Γ e ={ G (P, K, α, P, K) G | α ∈ Aut(P/K)}; <strong>in</strong> particular, Γ e∼ = Aut(P/K), by Lemma 2.7(ii).22
Pro<strong>of</strong> (a) It follows immediately from Lemma 2.7 that H M G := ( G L H ) ◦ has <strong>the</strong> desired property.Conversely, suppose that H M G ∈ Hom˜C((G, G ′ ), (H, H ′ )) satisfies L ∗ M ∗ L = L and M ∗ L ∗ M = M.By Lemma 2.7(i), this forces k 2 (L) = k 1 (M) as well as k 1 (L) = k 2 (M). Note that p 2 (L) = H ′ = p 1 (M)and p 1 (L) = G ′ = p 2 (M) by def<strong>in</strong>ition. Now, L ∗ M ∗ L = L and Lemma 2.7(i) aga<strong>in</strong> force thatη L ◦ η M ◦ η L = η L . This implies η L = η −1M and M = L◦ .Assertions (b) and (c) are now easy consequences <strong>of</strong> (a) and 5.10.5.18 Remark Proposition 5.17 thus shows, <strong>in</strong> particular, that <strong>the</strong> equivalence classes <strong>of</strong> idempotentendomorphisms <strong>in</strong> ˜C are <strong>in</strong> bijection with <strong>the</strong> isomorphism classes <strong>of</strong> groups occurr<strong>in</strong>g as subquotients <strong>of</strong>groups <strong>in</strong> D.6 The simple A κ C,R -modulesThroughout this section, let B be a category as <strong>in</strong> Example 5.15(a) and let C be a f<strong>in</strong>ite subcategory <strong>of</strong>B. Moreover, let R be a commutative r<strong>in</strong>g such that |G| is <strong>in</strong>vertible <strong>in</strong> R for each G ∈ Ob(C). In thissection we will use Theorem 5.8 to construct <strong>the</strong> simple modules <strong>of</strong> <strong>the</strong> twisted category R-algebra A κ C,R<strong>in</strong>troduced <strong>in</strong> 5.15(b). This is <strong>in</strong> preparation for Section 7, where we determ<strong>in</strong>e <strong>the</strong> simple modules <strong>of</strong> <strong>the</strong>R-algebra e C A κ C,R e C, which is related to <strong>the</strong> category <strong>of</strong> biset functors. Note that all <strong>the</strong> results apply, <strong>in</strong>particular, to <strong>the</strong> case where <strong>the</strong> category C has only one object G and C G,G = S G×G .We say that a f<strong>in</strong>ite group Q is realized (by a morphism) <strong>in</strong> C if <strong>the</strong>re exist G, H ∈ Ob(C) andL ∈ C G,H = Hom C (H, G) such that q(L) = [Q], <strong>the</strong> isomorphism class <strong>of</strong> Q; recall that q(L) denotes <strong>the</strong>isomorphism class <strong>of</strong> p 1 (L)/k 1 (L). Note that, <strong>in</strong> particular, each object G <strong>of</strong> C is realized <strong>in</strong> C by <strong>the</strong>identity morphism ∆(G) ∈ Hom C (G, G).Throughout this section, we will assume that C satisfies <strong>the</strong> follow<strong>in</strong>g property:If Q is a f<strong>in</strong>ite group that is realized <strong>in</strong> C, if G and H are objects <strong>in</strong> C, and if(P 1 , K 1 ) and (P 2 , K 2 ) are sections <strong>of</strong> G and H, respectively, such that P 1 /K 1∼ =Q ∼ ∼= P 2 /K 2 , <strong>the</strong>n <strong>the</strong>re exists an isomorphism α: P 2 /K 2 → P1 /K 1 such that(P 1 , K 1 , α, P 2 , K 2 ) ∈ C G,H .We first derive two consequences from Condition (10). For a section (P, K) <strong>of</strong> a group G we sete (P,K) := (P, K, id P/K , P, K) ∈ S G×G ;note that, by Lemma 2.7(ii), <strong>the</strong> element e P,K is an idempotent <strong>in</strong> <strong>the</strong> monoid (S G×G , ∗).6.1 Lemma Let Q be a f<strong>in</strong>ite group that is realized by a morphism <strong>in</strong> C. Let G be an object <strong>of</strong> C andlet (P, K) be a section <strong>of</strong> G such that P/K ∼ = Q. Then <strong>the</strong> idempotent e (P,K) belongs to C G,G .Pro<strong>of</strong> S<strong>in</strong>ce C satisfies (10), <strong>the</strong>re exists an automorphism α ∈ Aut(P/K) such that (P, K, α, P, K) ∈C G,G . By Lemma 2.7(ii), <strong>the</strong> |Aut(P/K)|-th power <strong>of</strong> (P, K, α, P, K) is equal to e (P,K) , show<strong>in</strong>g thate (P,K) belongs to C G,G .For a section (P, K) <strong>of</strong> an object G <strong>of</strong> C with e (P,K) ∈ C G,G , we setAut C (P/K) := {α ∈ Aut(P/K) | (P, K, α, P, K) ∈ C G,G } .(10)23
Clearly, this is a subgroup <strong>of</strong> Aut(P/K). The follow<strong>in</strong>g lemma shows that <strong>the</strong> isomorphism type <strong>of</strong>Aut C (P/K) does <strong>in</strong> fact only depend on <strong>the</strong> isomorphism type <strong>of</strong> <strong>the</strong> group P/K (not on <strong>the</strong> actualsection (P, K)). We omit <strong>the</strong> straightforward pro<strong>of</strong>.6.2 Lemma Assume that G and G ′ are objects <strong>of</strong> C and that (P, K) and (P ′ , K ′ ) are sections <strong>of</strong> G andG ′ , respectively, such that e (P,K) ∈ C G,G , e (P ′ ,K ′ ) ∈ C G ′ ,G ′ and P/K ∼ = P ′ /K ′ . Let γ : P ′ /K ′ ∼→ P/K bean isomorphism such that (P, K, γ, P ′ , K ′ ) ∈ C G,G ′ (which exists by (10)). Then <strong>the</strong> mapc γ : Aut C (P ′ /K ′ ) → Aut C (P/K) , α ↦→ γαγ −1 ,is a group isomorphism, and if also δ : P ′ /K ′ ∼→ P/K is an isomorphism with (P, K, δ, P ′ , K ′ ) ∈ C G,G ′<strong>the</strong>n c δ = c α ◦ c γ , where α := δ ◦ γ −1 ∈ Aut C (P/K).Recall from 5.3(c) that two idempotents e ∈ C G,G and f ∈ C H,H are called equivalent if <strong>the</strong>re existelements s ∈ f ∗ C H,G ∗ e and t ∈ e ∗ C G,H ∗ f such that t ∗ s = e and s ∗ t = f.6.3 Proposition Let G and H be objects <strong>in</strong> C.(a) A morphism L = (P 1 , K 1 , α, P 2 , K 2 ) ∈ C G,G is an idempotent if and only if (P 1 , K 1 ) and (P 2 , K 2 )are l<strong>in</strong>ked and α = β(P 1 , K 1 ; P 2 , K 2 ).(b) If L = (P 1 , K 1 , α, P 2 , K 2 ) ∈ C G,G is an idempotent morphism <strong>the</strong>n L is equivalent to e (Pi,K i), fori = 1, 2.(c) Two idempotent morphisms L ∈ C G,G and M ∈ C H,H are equivalent if and only if q(L) = q(M).Pro<strong>of</strong> (a) By Lemma 2.7, we have L ∗ L = L if and only if (P 2 , K 2 ) and (P 1 , K 1 ) are l<strong>in</strong>ked and α =α◦β(P 2 , K 2 ; P 1 , K 1 )◦α. But <strong>the</strong> last equality is equivalent to <strong>the</strong> equality β(P 2 , K 2 ; P 1 , K 1 )◦α = id P2/K 2.S<strong>in</strong>ce β(P 2 , K 2 ; P 1 , K 1 ) −1 = β(P 1 , K 1 ; P 2 , K 2 ), <strong>the</strong> result follows.(b) Suppose that L ∗ L = L. By Part (a), <strong>the</strong> sections (P 1 , K 1 ) and (P 2 , K 2 ) are l<strong>in</strong>ked and α =β(P 1 , K 1 ; P 2 , K 2 ). By Lemma 6.1, <strong>the</strong> morphisms M i := e (Pi,K i) belong to C G,G , for i = 1, 2. Moreover,Lemma 2.7 implies thatL = M 1 ∗ L , M 1 = L ∗ M 1 , L = L ∗ M 2 , and M 2 = M 2 ∗ L .Thus, L and M i are equivalent for i = 1, 2.(c) If L and M are equivalent <strong>the</strong>n <strong>the</strong>re exist S ∈ C H,G and T ∈ C G,H such that L = T ∗ S and M =S∗T . This implies L = L∗L = T ∗S∗T ∗S = T ∗M ∗S and M = M ∗M = S∗T ∗S∗T = S∗L∗T . Therefore,p 1 (L)/k 1 (L) is isomorphic to a subquotient <strong>of</strong> p 1 (M)/k 1 (M) and also p 1 (M)/k 1 (M) is isomorphic toa subquotient <strong>of</strong> p 1 (L)/k 1 (L). This implies q(L) = q(M). Conversely, assume that q(L) = q(M).By Lemma 6.1 and Part (b), we may assume that L = e (P1,K 1) ∈ C G,G and M = e (P2,K 2) ∈ C H,Hfor a section (P 1 , K 1 ) <strong>of</strong> G and a section (P 2 , K 2 ) <strong>of</strong> H, with P 1 /K 1∼ = P2 /K 2 . By (10), <strong>the</strong>re existisomorphisms α: P 1 /K 1∼→ P2 /K 2 and β : P 2 /K 2∼→ P1 /K 1 such that S := (P 2 , K 2 , α, P 1 , K 1 ) ∈ C H,Gand T := (P 1 , K 1 , β, P 2 , K 2 ) ∈ C G,H . For T ′ := T ∗ (S ∗ T ) |Aut(P2/K2)|−1 ∈ C G,H we <strong>the</strong>n obta<strong>in</strong>S ∗ T ′ = e (P2,K 2) and T ′ ∗ S = e (P1,K 1), and <strong>the</strong> pro<strong>of</strong> is complete.Recall from Section 5 that, for an idempotent morphism e <strong>in</strong> C G,G , we denote by Γ e <strong>the</strong> group <strong>of</strong><strong>in</strong>vertible elements <strong>of</strong> <strong>the</strong> monoid e ∗ C G,G ∗ e. The identity element <strong>of</strong> Γ e is equal to e.24
7 Simple e C A κ C,R e C-modules <strong>in</strong> characteristic 0Throughout this section we assume that R is a field <strong>of</strong> characteristic 0, that B is a category as <strong>in</strong>Example 5.15(a) and that C is a subcategory <strong>of</strong> B satisfy<strong>in</strong>g <strong>the</strong> condition <strong>in</strong> (10). We also assumethroughout this section that, for any two objects G and H <strong>of</strong> C, <strong>the</strong> set C G,H is closed under G × H-conjugation. However, we do not assume at this po<strong>in</strong>t that C is f<strong>in</strong>ite, but will do so <strong>in</strong> some parts <strong>of</strong>this section. Us<strong>in</strong>g Theorem 6.5 and <strong>the</strong> condensation results <strong>of</strong> Green, cf. 5.4, we will first determ<strong>in</strong>e<strong>the</strong> simple e C A κ C,R e C-modules when C is f<strong>in</strong>ite, cf. Theorem 7.1. The rema<strong>in</strong>der <strong>of</strong> this section is devotedto several consequences <strong>of</strong> Theorem 7.1.One consequence, presented at <strong>the</strong> end <strong>of</strong> <strong>the</strong> section, will be on simple biset functors: recall fromProposition 3.7 and Example 5.15(c) that, when C is f<strong>in</strong>ite, <strong>the</strong> maps α G,H , G, H ∈ Ob(C), <strong>in</strong>duce anisomorphism⊕α C : RB C (G, H) −→ ∼e C A κ C,Re CG,H∈Ob(C)<strong>of</strong> R-algebras. Thus, <strong>the</strong> simple biset functors for C over R are parametrized by <strong>the</strong> simple A κ C,R -modulesS with <strong>the</strong> property that e C · S ≠ {0}, cf. 5.4. In Theorem 7.8 we use <strong>the</strong> condensation functor approachto determ<strong>in</strong>e <strong>the</strong> simple biset functors on B, or on any subcategory C <strong>of</strong> B that satisfies <strong>the</strong> generalassumptions <strong>in</strong> this section and is closed under tak<strong>in</strong>g subquotients <strong>in</strong> a sense def<strong>in</strong>ed <strong>in</strong> Corollary 7.6.Recall from Theorem 6.5 that, <strong>in</strong> <strong>the</strong> case where C is f<strong>in</strong>ite, <strong>the</strong> simple A κ C,R-modules are described asS (P,K),T := Hd(Ae ′ (P,K) ⊗ e ′ (P,K) Ae′ (P,K)˜T ) ,where A = A κ C,R , (P, K) is a section <strong>of</strong> some G ∈ Ob(C), T is a simple RAut C(P/K)-module and˜T is <strong>the</strong> same R-module as T but viewed as an e ′ (P,K) Ae′ (P,K)-module via <strong>the</strong> canonical isomorphismR κ Γ e(P,K)∼ = RAutC (P/K) and <strong>the</strong> <strong>in</strong>flation from R κ Γ e(P,K) to e ′ (P,K) Ae′ (P,K) .In <strong>the</strong> case where C has only one object G we will obta<strong>in</strong> results on simple modules <strong>of</strong> RB C (G, G) and,<strong>in</strong> particular, on simple modules <strong>of</strong> RB(G, G). In [Bc3, Section 6.1], Bouc shows that <strong>the</strong> isomorphismclasses <strong>of</strong> simple RB(G, G)-modules can be parametrized by pairs consist<strong>in</strong>g <strong>of</strong> an isomorphism class <strong>of</strong>a section (P, K) <strong>of</strong> G and an isomorphism class <strong>of</strong> a simple ROut(P/K)-module T , where Out(P/K)denotes <strong>the</strong> outer automorphism group <strong>of</strong> P/K. More precisely, <strong>the</strong>re exists an <strong>in</strong>jective map from <strong>the</strong>set <strong>of</strong> isomorphism classes <strong>of</strong> simple RB(G, G)-modules S to <strong>the</strong> set <strong>of</strong> such pairs. In this section we givea necessary condition for such a pair to belong to <strong>the</strong> image <strong>of</strong> <strong>the</strong> parametrization, i.e., we bound <strong>the</strong>image <strong>of</strong> this map from above, cf. Theorem 7.5.7.1 Theorem Assume that <strong>the</strong> category C is f<strong>in</strong>ite, that it satisfies Condition (10), and assume that forany two objects G and H <strong>of</strong> C, <strong>the</strong> morphism set C G,H is closed under G × H-conjugation. Let G bean object <strong>of</strong> C, let (P, K) be a section <strong>of</strong> G such that e (P,K) ∈ C G,G , let T be a simple RAut C (P/K)-module, let S (P,K),T be <strong>the</strong> correspond<strong>in</strong>g simple A κ C,R-module from Theorem 6.5, and let χ denote <strong>the</strong>character <strong>of</strong> T . Then, e C · S (P,K),T ≠ {0} if and only if <strong>the</strong>re exist an object H <strong>of</strong> C and a morphismL = (P ′′ , K ′′ , τ, P ′ , K ′ ) ∈ C H,H with q(L) = [P/K] such that∑h∈H(P ′ ,K ′ h) (P ′′ ,K ′′ )|K ′ ∩ h K ′′ | · χ ′′ (τ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ ) ◦ ¯c h ) ≠ 0 (12)26
<strong>in</strong> <strong>the</strong> field R. Here χ ′′ is <strong>the</strong> character <strong>of</strong> <strong>the</strong> simple RAut C (P ′′ /K ′′ )-module T ′′ correspond<strong>in</strong>g to T(cf. Lemma 6.2) and ¯c h : P ′′ /K ′′ ∼−→ h P ′′ / h K ′′ is <strong>the</strong> isomorphism <strong>in</strong>duced by conjugation with h.Before we prove <strong>the</strong> <strong>the</strong>orem, note that <strong>the</strong> argument τ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ ) ◦ ¯c h <strong>of</strong> χ ′′ is actually anelement <strong>of</strong> Aut C (P ′′ /K ′′ ), s<strong>in</strong>ce it is <strong>the</strong> isomorphism η M for <strong>the</strong> group M := L ∗ (h,1) e (P ′′ ,K ′′ ) ∈ C H,H .Pro<strong>of</strong> We set e := e (P,K) and e ′ := [G : K]e. By Lemma 5.6, we have e C · S ≠ {0} if and only if(e ′ Ae C Ae ′ ) · ˜T ≠ {0}, and <strong>the</strong> latter is equivalent to <strong>the</strong> existence <strong>of</strong> an object H <strong>of</strong> C and morphismsL ∈ C G,H and M ∈ C H,G such thate ′ Le H Me ′ · ˜T ≠ {0} . (13)Let π : e ′ Ae ′ = R κ Γ e ⊕ RJ e → R κ Γ e denote <strong>the</strong> canonical projection. S<strong>in</strong>ce RJ e annihilates ˜T , <strong>the</strong>condition <strong>in</strong> (13) is equivalent to <strong>the</strong> condition π(e ′ Le H Me ′ ) · T ≠ {0}. This <strong>in</strong> turn is equivalent to<strong>in</strong> RΓ e , wheree χ :=∑σ∈Aut C (P/K)e χ · π(e ′ Le H Me ′ ) ≠ 0χ(σ −1 ) · L σ ,with L σ = (P, K, σ, P, K),which is (up to a unit <strong>in</strong> R) <strong>the</strong> primitive central idempotent <strong>of</strong> R κ Γ e correspond<strong>in</strong>g to T . Replac<strong>in</strong>g, ifnecessary, L by e ∗ L and M by M ∗ e, we may assume thatK k 1 (L) p 1 (L) P and K k 2 (M) p 2 (M) P .Fur<strong>the</strong>r, us<strong>in</strong>g Lemma 2.7, we may assume that K = k 1 (L) = k 2 (M) and P = p 1 (L) = p 2 (M), s<strong>in</strong>ceo<strong>the</strong>rwise π(e ′ Le H Me ′ ) = 0. Altoge<strong>the</strong>r, s<strong>in</strong>ce e ′ = [G : K]e, we obta<strong>in</strong> that e C · S ≠ {0} if and only if<strong>the</strong>re exist an object H ∈ Ob(C) and morphisms L ∈ C G,H and M ∈ C H,G satisfy<strong>in</strong>gandk 1 (L) = K = k 2 (M) , p 1 (L) = P = p 2 (M) , (14)e χ · π(e ′ Le H Me ′ ) ≠ 0 <strong>in</strong> R κ Γ e . (15)Sett<strong>in</strong>g (P ′ , K ′ ) := (p 2 (L), k 2 (L)), (P ′′ , K ′′ ) := (p 1 (M), k 1 (M)), φ := η L : P ′ /K ′ −→ P/K, and ψ :=η M : P/K −→ ∼P ′′ /K ′′ , and assum<strong>in</strong>g <strong>the</strong> conditions <strong>in</strong> (14), we obta<strong>in</strong>, by Lemma 2.7, thatπ(e ′ Le H Me ′ ) = ∑ h∈Hπ(e ′ L∆ h (H)Me ′ )where ¯c h : P ′′ /K ′′equivalent to∑=∑h∈H(P ′ ,K ′ h) (P ′′ ,K ′′ )|K ′ ∩ h K ′′ ||H| 2· (P, K, φ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ ) ◦ ¯c h ◦ ψ, P, K),∼−→ h P ′′ / g K ′′ is <strong>in</strong>duced by <strong>the</strong> conjugation map c h . Thus <strong>the</strong> condition <strong>in</strong> (15) is∑σ∈Aut C (P/K) h∈H(P ′ ,K ′ h) (P ′′ ,K ′′ )a h · χ(σ −1 ) · (σ◦ φ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ ) ◦ ¯c h ◦ ψ ) ≠ 0∼27
<strong>in</strong> RAut C (P/K), wherea h = |K ′ ∩ h K ′′ | ·|K||H| 2 · |G|(for h ∈ H and (P ′ , K ′ ) h (P ′′ , K ′′ )) .Apply<strong>in</strong>g <strong>the</strong> isomorphism c ψ : Aut C (P/K) −→ ∼Aut C (P ′′ /K ′′ ), σ ↦→ ψ ◦ σ ◦ ψ −1 := σ ′′ and switch<strong>in</strong>g <strong>the</strong>summation translates <strong>the</strong> last condition <strong>in</strong>to∑∑|K ′ ∩ h K ′′ | · χ ′′ ((σ ′′ ) −1 ) · (σ ′′ ◦ ψ ◦ φ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ )) ◦ ¯c h ≠ 0h∈H σ ′′ ∈Aut C (P ′′ /K ′′ )(P ′ ,K ′ h) (P ′′ ,K ′′ )<strong>in</strong> RAut C (P ′′ /K ′′ ), where χ ′′ is <strong>the</strong> character <strong>of</strong> <strong>the</strong> simple RAut C (P ′′ /K ′′ )-module T ′′ aris<strong>in</strong>g from Tvia c ψ . Substitut<strong>in</strong>g θ ′′ for σ ′′ ◦ ψ ◦ φ ◦ β(P ′ , K ′′ ; h P ′′ , h K ′′ ) ◦ ¯c h and <strong>the</strong>n switch<strong>in</strong>g <strong>the</strong> summation aga<strong>in</strong>,one obta<strong>in</strong>s <strong>the</strong> equivalent condition∑∑|K ′ ∩ h K ′′ | · χ ′′( (θ ′′ ) −1 ◦ ψ ◦ φ ◦ β(P ′ , K ′ ; h P ′′ , h K ′′ )) ◦ ¯c h · θ′′≠ 0θ ′′ ∈Aut C (P ′′ /K ′′ ) h∈H(P ′ ,K ′ h) (P ′′ ,K ′′ )<strong>in</strong> RAut C (P ′′ /K ′′ ); note that here we used <strong>the</strong> fact that χ ′′ is a class function. Thus, e C · S ≠ {0} if andonly if <strong>the</strong>re exist an object H <strong>of</strong> C, sections (P ′ , K ′ ) and (P ′′ , K ′′ ) <strong>of</strong> H that are isomorphic to (P, K),and an isomorphism τ : P ′ /K ′ → P ′′ /K ′′ with (P ′′ , K ′′ , τ, P ′ , K ′ ) ∈ C H,H such that∑|K ′ ∩ h K ′′ | · χ ′′( τ ◦ β(P ′ , K ′′ ; h P ′′ , h K ′′ )) ◦ ¯c h ≠ 0h∈H(P ′ ,K ′ h) (P ′′ ,K ′′ )<strong>in</strong> R. This completes <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>orem.We first derive an immediate corollary <strong>of</strong> <strong>the</strong> previous <strong>the</strong>orem.7.2 Corollary Assume that C satisfies <strong>the</strong> same hypo<strong>the</strong>ses as <strong>in</strong> Theorem 7.1, that G is an object <strong>of</strong>C, (P, K) is a section <strong>of</strong> G such that e P,K ∈ C G,G , that T is a simple RAut C (P/K)-module, and thatS := S (P,K),T is <strong>the</strong> correspond<strong>in</strong>g simple A κ C,R -module.(a) If <strong>the</strong>re exists an object H <strong>of</strong> C such that H and P/K are isomorphic as groups and if Inn(P/K)acts trivially on T <strong>the</strong>n e C · S ≠ {0}.(b) If P/K is abelian <strong>the</strong>n e C · S ≠ {0}.Pro<strong>of</strong> (a) The condition <strong>in</strong> (12) is satisfied for H and L = ∆(H) ∈ C H,H : <strong>in</strong> fact, <strong>the</strong> left-hand side <strong>of</strong>(12) is equal to ∑ c∈Inn(H) χ′′ (c). This element is non-zero if and only if Inn(H) acts trivially on T ′′ . Butthis is equivalent to Inn(P/K) act<strong>in</strong>g trivially on T . Now <strong>the</strong> result follows.(b) The condition <strong>in</strong> (12) is satisfied for H = G, (P ′ , K ′ ) = (P ′′ , K ′′ ) = (P, K), and τ = id P/K . Infact, <strong>the</strong> left-hand side is equal to |G| · |K| · χ ′′ (id P/K ), which is clearly non-zero.Before we can derive fur<strong>the</strong>r consequences from Theorem 7.1 we need first an auxiliary result. Let Gbe a f<strong>in</strong>ite group, let χ be <strong>the</strong> character <strong>of</strong> a f<strong>in</strong>ite-dimensional RG-module, and let X ⊆ G be a subset.28
We set X + := ∑ x∈X x ∈ RG and χ(X+ ) := ∑ x∈X χ(x). Note that if H is a subgroup <strong>of</strong> G <strong>the</strong>n χ(H+ )is a non-zero multiple <strong>of</strong> <strong>the</strong> Schur <strong>in</strong>ner product <strong>of</strong> <strong>the</strong> trivial character <strong>of</strong> H and <strong>the</strong> restriction <strong>of</strong> χ toH. With this notation <strong>the</strong> follow<strong>in</strong>g lemma holds. Its pro<strong>of</strong> will appear <strong>in</strong> [BK]. We repeat it here for<strong>the</strong> convenience <strong>of</strong> <strong>the</strong> reader.7.3 Lemma Let χ be <strong>the</strong> character <strong>of</strong> a f<strong>in</strong>ite-dimensional RG-module and assume that g ∈ G andH G satisfy χ((gH) + ) ≠ 0. Then also χ(H + ) ≠ 0 and, <strong>in</strong> particular, <strong>the</strong> restriction <strong>of</strong> χ to H conta<strong>in</strong>s<strong>the</strong> trivial character <strong>of</strong> H as a constituent.Pro<strong>of</strong> Let ∆: RG → Mat n (R) be a representation afford<strong>in</strong>g <strong>the</strong> character χ and assume that χ(H + ) = 0.Then also χ(e H ) = 0, where e H = 1|H| H+ is an idempotent <strong>in</strong> RG. S<strong>in</strong>ce e H is an idempotent, <strong>the</strong> matrix∆(e H ) is diagonalizable and its only eigenvalues are 0 and 1. S<strong>in</strong>ce 0 = χ(e H ) = tr(∆(e H )), we obta<strong>in</strong>∆(e H ) = 0. Thus, ∆(RG · e H ) = 0. This f<strong>in</strong>ally implies that χ((gH) + ) = |H| · χ(ge H ) = 0, and <strong>the</strong> pro<strong>of</strong><strong>of</strong> <strong>the</strong> lemma is complete.For any section (P, K) <strong>of</strong> a f<strong>in</strong>ite group G we set N G (P, K) := N G (P ) ∩ N G (K) and def<strong>in</strong>eAut G (P/K) := {¯c g | g ∈ N G (P, K)} .Note that Inn(P/K) Aut G (P/K) Aut(P/K). For each G ∈ Ob(C) and each section (P, K) <strong>of</strong>G with e (P,K) ∈ C G,G , one has Aut G (P/K) Aut C (P/K). In fact, for each g ∈ N G (P, K) one has(g,1) e (P,K) = (P, K, ¯c g , P, K) ∈ C G,G . Thus, we obta<strong>in</strong>Inn(P/K) Aut G (P/K) Aut C (P/K) Aut(P/K) .If also H ∈ Ob(C) and if (P ′ , K ′ ) is a section <strong>of</strong> H with P ′ /K ′ ∼ = P/K <strong>the</strong>n <strong>the</strong>re exists an isomorphismτ : P/K ∼ → P ′ /K ′ such that (P, K, τ, P ′ , K ′ ) ∈ C G,H , s<strong>in</strong>ce C satisfies (10). Conjugation by τ <strong>in</strong>duces anisomorphism Aut C (P ′ /K ′ ) → Aut C (P/K) that maps Aut H (P ′ /K ′ ) to a subgroup τAut H (P ′ /K ′ )τ −1 <strong>of</strong>Aut C (P/K) that also conta<strong>in</strong>s Inn(P/K). Different choices <strong>of</strong> τ yield conjugate subgroups <strong>of</strong> Aut C (P/K).We denote by A C (P/K) <strong>the</strong> set <strong>of</strong> subgroups <strong>of</strong> Aut C (P/K) that arise this way. Thus, A C (P/K) is acollection <strong>of</strong> subgroups <strong>of</strong> Aut C (P/K) that is closed under Aut C (P/K)-conjugation and all <strong>of</strong> whoseelements conta<strong>in</strong> Inn(P/K).7.4 Corollary Assume that C is a f<strong>in</strong>ite subcategory <strong>of</strong> B that satisfies Condition (10), and assumethat for any two objects G and H <strong>of</strong> C, <strong>the</strong> morphism set C G,H is closed under G × H-conjugation.Fur<strong>the</strong>rmore, let G be an object <strong>of</strong> C, let (P, K) be a section <strong>of</strong> G such that e (P,K) ∈ C G,G , let Tbe a simple RAut C (P/K)-module, and let S = S (P,K),T be <strong>the</strong> correspond<strong>in</strong>g simple A κ C,R -module,cf. Theorem 6.5. If e C · S ≠ {0} <strong>the</strong>n <strong>the</strong>re exists a subgroup B <strong>of</strong> Aut C (P/K) that belongs to A C (P/K)such that <strong>the</strong> restriction <strong>of</strong> T to B has <strong>the</strong> trivial module as constituent. In particular, Inn(P/K) actstrivially on T .Pro<strong>of</strong> By Theorem 7.1, <strong>the</strong>re exist H ∈ Ob(C) and sections (P ′ , K ′ ) and (P ′′ , K ′′ ) <strong>of</strong> H, both isomorphicto (P, K), and an isomorphism τ : P ′ /K ′ ∼→ P ′′ /K ′′ satisfy<strong>in</strong>g (12). Note that if h ∈ H satisfies(P ′ , K ′ ) h (P ′′ , K ′′ ) <strong>the</strong>n every element <strong>in</strong> <strong>the</strong> coset hN H (P ′′ , K ′′ ) satisfies this condition. Thus, <strong>the</strong>condition <strong>in</strong> (12) impliesχ ′′( (σ ′′ ◦ Aut H (P ′′ /K ′′ )) +) ≠ 029
for some σ ′′ ∈ Aut C (P ′′ /K ′′ ). Lemma 7.3 implies that χ ′′ (Aut H (P ′′ /K ′′ ) + ) ≠ 0. Here, χ denotes <strong>the</strong>character <strong>of</strong> T and χ ′′ denotes <strong>the</strong> correspond<strong>in</strong>g character <strong>of</strong> <strong>the</strong> group Aut C (P ′′ /K ′′ ). The last conditionimplies that χ(B + ) ≠ 0 for some B ∈ A C (P/K). Thus, <strong>the</strong> restriction <strong>of</strong> χ to B conta<strong>in</strong>s <strong>the</strong> trivialcharacter as a constituent. S<strong>in</strong>ce Inn(P/K) B, this also holds for χ restricted to Inn(P/K). F<strong>in</strong>ally,s<strong>in</strong>ce χ is <strong>the</strong> character <strong>of</strong> a simple RAut(P/K)-module and s<strong>in</strong>ce Inn(P/K) is normal <strong>in</strong> Aut(P/K),this implies that Inn(P/K) acts trivially on T .If C has only one object G <strong>the</strong>n we obta<strong>in</strong> results on <strong>the</strong> simple RB C (G, G)-modules. Let S denote aset <strong>of</strong> representatives for <strong>the</strong> isomorphism classes <strong>of</strong> sections (P, K) <strong>of</strong> G satisfy<strong>in</strong>g e (P,K) ∈ C, and for each(P, K) ∈ S, let T (P,K) denote a set <strong>of</strong> representatives for <strong>the</strong> isomorphism classes <strong>of</strong> simple RAut C (P/K)-modules. The simple RB C (G, G)-modules are parametrized by pairs ((P, K), T ) with (P, K) ∈ S andT ∈ T (P,K) such that <strong>the</strong>re exist sections (P ′ , K ′ ) and (P ′′ , K ′′ ) <strong>of</strong> G and an isomorphism τ : P ′′ /K ′′ ∼−→P ′ /K ′ with (P ′ , K ′ , τ, P ′′ , K ′′ ) such that <strong>the</strong> condition (12) is satisfied. In this case we say that ((P, K), T )parametrizes a simple RB C (G, G)-module.The follow<strong>in</strong>g <strong>the</strong>orem improves <strong>the</strong> results <strong>in</strong> [Bc3, Chapter 6] on <strong>the</strong> parametrization <strong>of</strong> simpleRB(G, G)-modules <strong>in</strong> <strong>the</strong> case that R is a field <strong>of</strong> characteristic 0. It follows immediately from Corollary7.4 and Corollary 7.2(b).7.5 Theorem Assume that G is a f<strong>in</strong>ite group and that C is a submonoid <strong>of</strong> (S G×G , ∗) satisfy<strong>in</strong>g <strong>the</strong>condition <strong>in</strong> (10) and that C is closed under G × G-conjugation, and assume <strong>the</strong> notation from above.Let (P, K) ∈ S and T ∈ T P,K .(a) If ((P, K), T ) parametrizes a simple RB C (G, G)-module <strong>the</strong>n <strong>the</strong> restriction <strong>of</strong> T to a subgroupB <strong>of</strong> Aut C (P/K) conta<strong>in</strong>s <strong>the</strong> trivial RB-module as a constituent; <strong>in</strong> particular, Inn(P/K) acts triviallyon T .(b) If P/K is abelian <strong>the</strong>n ((P, K), T ) parametrizes a simple RB C (G, G)-module.The follow<strong>in</strong>g corollary is also a consequence <strong>of</strong> Corollary 7.2(a) and Corollary 7.4.7.6 Corollary Assume that C satisfies Condition (10) and that for any two objects G and H <strong>of</strong> C <strong>the</strong>set C G,H is closed under G × H-conjugation. Assume fur<strong>the</strong>r that C is f<strong>in</strong>ite and that <strong>the</strong> objects <strong>of</strong> Care closed under tak<strong>in</strong>g subquotients <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sense: for any object G <strong>of</strong> C and any section (P, K)<strong>of</strong> G with e (P,K) ∈ C G,G <strong>the</strong>re exists an object H <strong>of</strong> C with H ∼ = P/K.Then <strong>the</strong> isomorphism classes <strong>of</strong> simple e C A κ C,R e C-modules are parametrized by pairs (G, T ), whereG runs through a set S <strong>of</strong> representatives <strong>of</strong> <strong>the</strong> isomorphism classes <strong>of</strong> groups G occurr<strong>in</strong>g as objects<strong>of</strong> C and, for each G ∈ S, T runs through a set <strong>of</strong> representatives for <strong>the</strong> isomorphism classes <strong>of</strong> simpleROut C (G)-modules. Here, Out C (G) is def<strong>in</strong>ed as Aut C (G)/Inn(G).Pro<strong>of</strong> First note that, s<strong>in</strong>ce C is closed under tak<strong>in</strong>g subquotients, <strong>the</strong> set S (<strong>in</strong> Theorem 6.5) <strong>of</strong>representatives for <strong>the</strong> isomorphism classes <strong>of</strong> sections (P, K) <strong>of</strong> objects G <strong>of</strong> C satisfy<strong>in</strong>g e (P,K) ∈ C G,Gcan be chosen such that P = G and K = 1. Next assume that if T is a simple RAut C (G)-module. Ife C · S = {0} for <strong>the</strong> correspond<strong>in</strong>g simple A κ C,R-module S <strong>the</strong>n Corollary 7.4 implies that Inn(G) actstrivially on T . Conversely, if Inn(G) acts trivially on T <strong>the</strong>n Corollary 7.2(a) implies that e C · S ≠ {0}.This completes <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> corollary.30
7.7 Remark Assume that C satisfies Condition (10), that for any two objects G and H <strong>of</strong> C <strong>the</strong> setC G,H is closed under G × H-conjugation, and that <strong>the</strong> objects <strong>of</strong> C are closed under tak<strong>in</strong>g subquotients<strong>in</strong> <strong>the</strong> sense <strong>of</strong> Corollary 7.6.Corollary 7.6 can be considered as a parametrization result for simple biset functors on C over R,when C is f<strong>in</strong>ite (cf. Example 5.15(c)). To make <strong>the</strong> transition from C be<strong>in</strong>g f<strong>in</strong>ite to C be<strong>in</strong>g arbitrary,it is straightforward to show that <strong>the</strong> standard techniques developed <strong>in</strong> [Bc3], especially those <strong>in</strong> Section3.3, 4.2 and 4.3 that are used <strong>in</strong> <strong>the</strong> parametrization <strong>of</strong> simple biset functors, still work if one weakens<strong>the</strong> requirement <strong>of</strong> an admissible subcategory, cf. [Bc3, Def<strong>in</strong>ition 4.1.3], to requir<strong>in</strong>g Condition (10), that<strong>the</strong> morphism sets C G,H are closed under G × H-conjugation, and that <strong>the</strong> objects <strong>of</strong> C are closed undertak<strong>in</strong>g sections <strong>in</strong> <strong>the</strong> sense <strong>of</strong> Corollary 7.6. These techniques allow to reduce <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong>simple biset functors on C over R to <strong>the</strong> case where C is f<strong>in</strong>ite. Toge<strong>the</strong>r with Corollary 7.6 we <strong>the</strong>nobta<strong>in</strong> <strong>the</strong> <strong>the</strong>orem stated below. There we use Bouc’s def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> simple biset functor S (G,T )associated to <strong>the</strong> pair (G, T ), where G is an object <strong>of</strong> C and T is a simple ROut C (G)-module. Twopairs (G, T ) and (G ′ , T ′ ) are called isomorphic if G and G ′ are isomorphic and if for one (or equivalentlyeach) τ : G ′ → G with (G, 1, τ, G ′ , 1) ∈ C G,G ′ <strong>the</strong> modules T ′ and T correspond to each o<strong>the</strong>r under <strong>the</strong>map c τ : Aut C (G ′ ) → Aut C (G). Note that such an isomorphism τ exists. The parametrization <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g <strong>the</strong>orem slightly generalizes Bouc’s parametrization <strong>in</strong> [Bc3, Theorem 4.3.10] where Aut C (P/K)is assumed to be equal to Aut(P/K). Unfortunately, our methods require R to be a field <strong>of</strong> characteristic0.7.8 Theorem Let C be a subcategory <strong>of</strong> B, not necessarily f<strong>in</strong>ite. Assume that C satisfies Condition (10),that for any two objects G and H <strong>of</strong> C <strong>the</strong> morphism set C G,H is closed under G × H-conjugation, andthat C is closed under tak<strong>in</strong>g sections <strong>in</strong> <strong>the</strong> sense <strong>of</strong> Corollary 7.6. Then <strong>the</strong> map (G, T ) ↦→ S (G,T )<strong>in</strong>duces a bijection between <strong>the</strong> set <strong>of</strong> isomorphism classes <strong>of</strong> pairs (G, T ), where G is an object <strong>of</strong> C andT is a simple ROut C (G)-module, and <strong>the</strong> set <strong>of</strong> isomorphism classes <strong>of</strong> simple biset functors for C overR.8 Cyclic GroupsThroughout this section R denotes a commutative r<strong>in</strong>g and D denotes a set <strong>of</strong> cyclic groups such that,for all G ∈ D, <strong>the</strong> group order |G| is a unit <strong>in</strong> R. By ϕ we denote Euler’s totient function. The aim<strong>of</strong>⊕this section is to show that if, <strong>in</strong> addition, also ϕ(|G|), for G ∈ D, are units <strong>in</strong> R <strong>the</strong>n <strong>the</strong> R-algebraG,H∈D RB(G, H) is isomorphic to <strong>the</strong> category algebra R˜C, where ˜C is <strong>the</strong> f<strong>in</strong>ite <strong>in</strong>verse categoryassociated with <strong>the</strong> set D that was <strong>in</strong>troduced <strong>in</strong> Def<strong>in</strong>ition 5.16. Thus we will, <strong>in</strong> particular, be ableto <strong>in</strong>voke <strong>the</strong> results quoted <strong>in</strong> Section 5 to deduce that if R is a field such that, for every G ∈ D, both|G| and ϕ(|G|) are non-zero <strong>in</strong> R and if D is f<strong>in</strong>ite <strong>the</strong>n ⊕ G,H∈DRB(G, H) is a semisimple R-algebra.In this case we will give an explicit decomposition <strong>of</strong> this algebra as a direct product <strong>of</strong> matrix algebrasover group algebras.We setBR D :=⊕RB(G, H) and à D R := ⊕RS G×H .G,H∈DG,H∈DThese two R-modules are equipped with <strong>the</strong> follow<strong>in</strong>g multiplications: for G, H, H ′ , K ∈ D, and for31
a ∈ RB(G, H), b ∈ RB(H ′ , K), x ∈ RS G×H , and y ∈ RS H′ ×K, we have{a ·H b if H = H ′ ,a · b :=0 if H ≠ H ′ ,cf. Example 5.15(c), andx˜∗ κ y :={x˜∗ κ Hy if H = H ′ ,0 if H ≠ H ′ .Note that G × H acts trivially on RS G×H when G and H are abelian. Therefore, Propositions 3.2, 3.6and 3.9 imply <strong>the</strong> follow<strong>in</strong>g proposition.8.1 Proposition The composition <strong>of</strong> <strong>the</strong> maps (α G,H ) G,H∈D : B D R → ⊕ G,H∈D RS G×H and(ζ G,H ) G,H∈D : ⊕ G,H∈D RS G×H → ÃD R def<strong>in</strong>es an isomorphism<strong>of</strong> R-algebras.γ : (B D R , ·)∼−→ (ÃD R, ˜∗ κ )Next we will focus on <strong>the</strong> structure <strong>of</strong> <strong>the</strong> R-algebra (ÃD R , ˜∗κ ). First we will <strong>in</strong>troduce a new R-basis<strong>of</strong> ÃD R and <strong>the</strong>n, <strong>in</strong> Theorem 8.6, show that <strong>the</strong> product <strong>of</strong> any two <strong>of</strong> <strong>the</strong>se basis elements is a multiple<strong>of</strong> a basis element, or is equal to 0. This will require several steps.8.2 Notation For f<strong>in</strong>ite groups G and H and a subgroup L G × H, we set˜L :=∑L ′ ∈ RS G×H ,whereL ′ ∈P(L)P(L) = {L ′ L | p 1 (L ′ ) = p 1 (L), p 2 (L ′ ) = p 2 (L)} ,cf. Def<strong>in</strong>ition 5.16. Note that <strong>the</strong> elements <strong>in</strong> {˜L | L G × H}, form aga<strong>in</strong> an R-basis <strong>of</strong> RS G×H . Wealso sets(L) := [p 1 (L) : k 1 (L)] = [p 2 (L) : k 2 (L)] .Note that s(L) = 1 if and only if L = p 1 (L) × p 2 (L) is a direct product.In order to see that <strong>the</strong> basis elements ˜L, L G × H, have <strong>the</strong> desired property we first consider <strong>the</strong>special case <strong>of</strong> cyclic p-groups G and H.8.3 Lemma Let p be prime, and let G and H be cyclic p-groups.(a) Let M ′ M G × H be such that p 2 (M ′ ) = p 2 (M) and p 1 (M ′ ) < p 1 (M). Then M =p 1 (M) × p 2 (M); <strong>in</strong> particular, M ′ U × p 2 (M) M, where U < p 1 (M) is such that [p 1 (M) : U] = p.(b) Let L ′ L G × H be such that p 1 (L ′ ) = p 1 (L) and p 2 (L ′ ) < p 2 (L). Then L = p 1 (L) × p 2 (L);<strong>in</strong> particular, L ′ p 1 (L) × V L, where V < p 2 (L) is such that [p 2 (L) : V ] = p.Pro<strong>of</strong> We verify Part (a); Part (b) is proved analogously. So let (g, h) ∈ M be such that 〈g〉 = p 1 (M),thus g /∈ p 1 (M ′ ). S<strong>in</strong>ce h ∈ p 2 (M) = p 2 (M ′ ), <strong>the</strong>re is some g ′ ∈ p 1 (M ′ ) such that (g ′ , h) ∈ M ′ . Moreover,〈g −1 g ′ 〉 = p 1 (M), and g −1 g ′ ∈ k 1 (M). Hence k 1 (M) = p 1 (M), that is, s(M) = 1.32
8.4 Proposition Let p be a prime that is <strong>in</strong>vertible <strong>in</strong> R, let G, H, and K be cyclic p-groups and letL G × H and M H × K be subgroups such that p 2 (L) = p 1 (M). Then, <strong>in</strong> RS G×K , one has˜L˜∗ κ H ˜M =(L ′ ,M ′ )∈P(L)×P(M){ ϕ(|k2(L)∩k 1(M)|)|H|· ˜L ∗ M if s(L) = 1 = s(M),|k 2(L)∩k 1(M)||H|· ˜L ∗ M o<strong>the</strong>rwise.Pro<strong>of</strong> By <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> −˜∗ κ H− <strong>in</strong> Def<strong>in</strong>ition 3.8 and by Corollary 4.3, we have˜L˜∗ κ ˜M∑H =L ′˜∗ ∑∑κHM ′ =a L′ ,M ′N· N , (16)(L ′ ,M ′ )∈P(L)×P(M)N∈P(L ′ ∗M ′ )s<strong>in</strong>ce a L′ ,M ′N= 0 if N /∈ P(L ′ ∗ M ′ ). Note that if (L ′ , M ′ ) ∈ P(L) × P(M) <strong>the</strong>n p 2 (L ′ ) = p 1 (M ′ ), s<strong>in</strong>cep 2 (L) = p 1 (M). Moreover, p 2 (L ′ ) = p 1 (M ′ ) and p 2 (L) = p 1 (M) toge<strong>the</strong>r with Lemma 2.7(i) imply thatp 1 (L ′ ∗ M ′ ) = p 1 (L ′ ) = p 1 (L) = p 1 (L ∗ M) and p 2 (L ′ ∗ M ′ ) = p 2 (M ′ ) = p 2 (M) = p 2 (L ∗ M) .Therefore we have P(L ′ ∗ M ′ ) ⊆ P(L ∗ M) and we can write˜L˜∗ κ ˜M∑H =· NN∈P(L∗M)with uniquely determ<strong>in</strong>ed elements b L,MN∈ R. Moreover, Equation (16) implies that, for N ∈ P(L ∗ M),we have∑∑b L,MN=a L′ ,M ′N=a L′ ,M ′N.(L ′ ,M ′ )∈P(L)×P(M)b L,MN(L ′ ,M ′ )∈Y L,M ∩(P(L)×P(M))NThe last equation holds, s<strong>in</strong>ce a L′ ,M ′N= 0 if (L ′ , M ′ ) /∈ Y L′ ,M ′Nand Y L′ ,M ′N⊆ Y L,MN.Next we fix an element N ∈ P(L ∗ M). To complete <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> proposition, it suffices to showthat{ ϕ(|k2(L)∩k 1(M)|)b L,M|H|if s(L) = 1 = s(M),N=(17)o<strong>the</strong>rwise.|k 2(L)∩k 1(M)||H|Note that by Möbius <strong>in</strong>version <strong>in</strong> <strong>the</strong> poset Y N we have∑κ(L, M) =µ Y N(L ′′ ,M ′′ ),(L ′ ,M ′ ) · κ(L′′ , M ′′ ) =(L ′′ ,M ′′ )(L ′ ,M ′ )<strong>in</strong> Y L,MN∑(L ′ ,M ′ )∈Y L,MNa L′ ,M ′N= b L,MN+ cL,M N(18)withc L,MN:=∑(L ′ ,M ′ )∈Y L,M (P(L)×P(M))Na L′ ,M ′N.Claim: If L ′ L with p 1 (L ′ ) = p 1 (L) and p 2 (L ′ ) < p 2 (L) <strong>the</strong>n k 2 (L ′ ) < k 2 (L). In fact, byEquation (1) we have |L| = |p 1 (L)| · |k 2 (L)| and |L ′ | = |p 1 (L ′ )| · |k 2 (L ′ )|, and p 2 (L ′ ) < p 2 (L) impliesL ′ < L. Similarly, one can see that if M ′ M with p 2 (M ′ ) = p 2 (M) and p 1 (M ′ ) < p 1 (M) <strong>the</strong>nk 1 (M ′ ) < k 1 (M). This settles <strong>the</strong> claim.To f<strong>in</strong>ish <strong>the</strong> pro<strong>of</strong> we dist<strong>in</strong>guish three cases (not mutually exclusive, but cover<strong>in</strong>g all possibilities):33
c L,MNb L,MN(i) If s(L) > 1 or s(M) > 1 <strong>the</strong>n Y L,MN= 0 and Equation (18) implies b L,MN(ii) If k 2 (L) = 1 or k 1 (M) = 1 <strong>the</strong>n <strong>the</strong> above claim implies c L,MN= κ(L, M) = 1/|H| = ϕ(|k 2 (L) ∩ k 1 (L)|)/|H|, as desired. (P(L) × P(M)) = ∅ by Lemma 8.3. Therefore we obta<strong>in</strong>= κ(L, M), as desired.= 0, and Equation (18) implies(iii) If s(L) = 1 = s(M), k 2 (L) > 1 and k 1 (M) > 1 <strong>the</strong>n, by Lemma 8.3, we have Y L,MN (P(L) ×p1(L)×V,V ×p2(M)P(M)) = YN, where V < p 2 (L) is <strong>the</strong> unique subgroup <strong>of</strong> <strong>in</strong>dex p. Thus,∑c L,MN=a L′ ,M ′N(L ′ ,M ′ )∈Y p 1 (L)×V,V ×p 2 (M)Nand this is equal to κ(p 1 (L) × V, V × p 2 (M)) = κ(L, M)/p, by look<strong>in</strong>g at <strong>the</strong> first and third term <strong>of</strong> <strong>the</strong>equations <strong>in</strong> (18) applied to (p 1 (L) × V, V × p 2 (M)). Now Equation (18) impliesb L,MN= κ(L, M) − c L,MNand <strong>the</strong> pro<strong>of</strong> is complete.= κ(L, M) − κ(L, M)/p = (1 − 1/p) · |k 2(L) ∩ k 1 (M)||H|= ϕ(|k 2(L) ∩ k 1 (M)|)|H|In <strong>the</strong> sequel we will denote by P <strong>the</strong> set <strong>of</strong> prime numbers. For a f<strong>in</strong>ite abelian group G and a primep we denote by G p <strong>the</strong> Sylow p-subgroup <strong>of</strong> G.8.5 Def<strong>in</strong>ition Assume that G, H, and K are f<strong>in</strong>ite abelian groups such that |H| is <strong>in</strong>vertible <strong>in</strong> R.Let L G × H and M H × K be subgroups. For each p ∈ P, we def<strong>in</strong>e λ p (L, M) ∈ R as follows: ifp 2 (L p ) ≠ p 1 (M p ) <strong>the</strong>n we set λ p (L, M) := 0, and if p 2 (L p ) = p 1 (M p ) <strong>the</strong>n we set{ ϕ(|k2(L p)∩k 1(M p)|)|Hλ p (L, M) :=p|if s(L p ) = 1 = s(M p ),|k 2(L p)∩k 1(M p)||H p|o<strong>the</strong>rwise.Note that if p does not divide |H| <strong>the</strong>n λ p (L, M) = 1. Moreover, we def<strong>in</strong>eλ(L, M) := ∏ p∈Pλ p (L, M) .,Thus, λ(L, M) ≠ 0 if and only if p 2 (L) = p 1 (M), and <strong>in</strong> this case λ(L, M) is <strong>in</strong>vertible <strong>in</strong> R providedthat ϕ(|H|) is also <strong>in</strong>vertible <strong>in</strong> R.8.6 Theorem Assume that G, H and K are f<strong>in</strong>ite cyclic groups such that |H| is <strong>in</strong>vertible <strong>in</strong> R and letL G × H and M H × K be subgroups. Then˜L˜∗ κ H ˜M = λ(L, M) · ˜L ∗ M .In particular, ˜L˜∗ κ H ˜M = 0 if and only if p 2 (L) ≠ p 1 (M).For <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 8.6 we will need two lemmas that will reduce <strong>the</strong> <strong>the</strong>orem to <strong>the</strong> case <strong>of</strong>cyclic p-groups and <strong>the</strong>refore to Proposition 8.4. For a f<strong>in</strong>ite abelian group G, one has <strong>the</strong> canonicalbijection∼−→ S Gp , U ↦→ (U p ) p∈P ,×p∈PS G34
which <strong>in</strong>duces an R-module isomorphism⊗∼θ G : RS G −→ RS Gp ,where <strong>the</strong> tensor product is taken over R. The <strong>in</strong>verse <strong>of</strong> θ maps <strong>the</strong> tensor product <strong>of</strong> a collectionU p , p ∈ P, <strong>of</strong> subgroups <strong>of</strong> G to <strong>the</strong>ir product ∏ p∈P U p <strong>in</strong> p. If also H is a f<strong>in</strong>ite abelian group <strong>the</strong>n(G × H) p = G p × H p and we obta<strong>in</strong> an R-module isomorphismp∈P⊗∼θ G,H : RS G×H −→ RS Gp×H p.The assertions <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g lemmas are straightforward verifications. The pro<strong>of</strong> <strong>of</strong> <strong>the</strong> first one isleft to <strong>the</strong> reader.8.7 Lemma Let G and H be f<strong>in</strong>ite abelian groups and let L G×H be a subgroup. Then <strong>the</strong> follow<strong>in</strong>gequations hold <strong>in</strong> ⊗ p∈P RS G p×H p:(a) θ G,H ( ∑ L ′ L L′ ) = ⊗ p∈P ( ∑ L ′ p Lp L′ p);(b) θ G,H (˜L) = ⊗ p∈P˜Lp .8.8 Lemma Let G, H and K be f<strong>in</strong>ite abelian groups such that |H| is <strong>in</strong>vertible <strong>in</strong> R. Then <strong>the</strong> diagramp∈PRS G×H ⊗ RS H×K− ∗ κ H − RS G×Kζ G,H ⊗ ζ H,Kζ G,K−˜∗ κ RS G×H ⊗ RSH−H×KRS G×K≀ ξ G,H,K ◦ (θ G,H ⊗ θ H,K )≀ ξ G,H,K ◦ (θ G,H ⊗ θ H,K )≀ θ G,K≀ θ G,K ⊗ ⊗ ( )RSGp×H p⊗ RS Hp×K pp∈Pp∈P⊗ ( )RSGp×H p⊗ RS Hp×K pp∈P(ζ Gp,H p⊗ ζ Hp,K p)⊗(−˜∗ κ H p−)p∈P⊗(− ∗ κ H p−)p∈P⊗⊗RS Gp×K pp∈Pζ Gp,K pp∈P ⊗RS Gp×K pp∈P35
is commutative. Hereξ G,H,K : ( ⊗ ) (⊗ ) ∼→ ⊗ ( )RS Gp×H p ⊗ RS Hp×K p RSGp×H p⊗ RS Hp×K pp∈Pdenotes <strong>the</strong> canonical isomorphism.p∈PPro<strong>of</strong> Let L G × H and M H × K. The two paths <strong>in</strong> <strong>the</strong> outer square map L ⊗ M to <strong>the</strong> sameelement s<strong>in</strong>ce|k 2 (L) ∩ k 1 (M)|= ∏ |(k 2 (L) ∩ k 1 (M)) p |= ∏ |k 2 (L p ) ∩ k 1 (M p )|.|H||H p ||H p |p∈Pp∈PFur<strong>the</strong>rmore, <strong>the</strong> top and bottom rectangles <strong>of</strong> <strong>the</strong> diagram commute, by Proposition 3.9, and <strong>the</strong> leftand right rectangles <strong>of</strong> <strong>the</strong> diagram commute, by Lemma 8.7(a). Lastly, s<strong>in</strong>ce <strong>the</strong> maps ζ with various<strong>in</strong>dices are isomorphisms, also <strong>the</strong> <strong>in</strong>ner square commutes.Pro<strong>of</strong> <strong>of</strong> Theorem 8.6. Consider <strong>the</strong> <strong>in</strong>ner square <strong>of</strong> <strong>the</strong> diagram <strong>in</strong> Lemma 8.8, and ˜L ⊗ ˜M ∈RS G×H ⊗ RS H×K <strong>in</strong> its top left corner. Us<strong>in</strong>g Lemma 8.7(b), <strong>the</strong> left-hand arrow <strong>in</strong> this <strong>in</strong>ner squareapplied to this element yields <strong>the</strong> tensor product <strong>of</strong> <strong>the</strong> elements ˜L p ⊗ ˜M p . By Proposition 8.4, this latterelement is mapped under <strong>the</strong> bottom map to <strong>the</strong> tensor product <strong>of</strong> <strong>the</strong> elements λ p (L, M) · ( L˜p ∗ M p ).S<strong>in</strong>ce L p ∗ M p = (L ∗ M) p , also λ(L, M) · ˜L ∗ M is mapped to this element under θ G,K , by Lemma 8.7.This completes <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>orem.Theorem 8.6 allows us to view <strong>the</strong> R-algebra ÃD R as a twisted category algebra R λ˜C: let ˜C = ˜C(D)denote <strong>the</strong> <strong>in</strong>verse category associated to D as <strong>in</strong> Def<strong>in</strong>ition 5.16, and recall that we are assum<strong>in</strong>g |G| tobe <strong>in</strong>vertible <strong>in</strong> R, for every G ∈ D. Recall fur<strong>the</strong>r that <strong>the</strong> objects <strong>of</strong> ˜C are pairs (G, G ′ ) with G ∈ D andG ′ G. Moreover, for objects (G, G ′ ) and (H, H ′ ) <strong>of</strong> ˜C, <strong>the</strong> set <strong>of</strong> morphisms from (H, H ′ ) to (G, G ′ ) isgiven by P(G ′ × H ′ ), and if (K, K ′ ) is also an object <strong>of</strong> ˜C and L ∈ P(G ′ × H ′ ) and M ∈ P(H ′ × K ′ )are morphisms <strong>in</strong> ˜C <strong>the</strong>n <strong>the</strong>ir composition is def<strong>in</strong>ed by L ∗ M. The identity morphism <strong>of</strong> (G, G ′ ) isequal to ∆(G ′ ). Recall also that, for a morphism L between (H, H ′ ) and (G, G ′ ), we will <strong>of</strong>ten writeGL H to <strong>in</strong>dicate that it is a morphism between <strong>the</strong> objects (H, H ′ ) and (G, G ′ ). The associativity <strong>of</strong> <strong>the</strong>R-algebra ÃD R and Theorem 8.6 imply that (L, M) ↦→ λ(L, M) def<strong>in</strong>es a 2-cocycle on C with values <strong>in</strong>R × (if also ϕ(|G|) is <strong>in</strong>vertible <strong>in</strong> R for all G ∈ D), and that <strong>the</strong> mapsp∈PRS G×H → R λ˜C , ˜L ↦→ L ∈ Hom˜C((H, p2 (L)), (G, p 1 (L)) ) ,for G, H ∈ D, <strong>in</strong>duce an R-algebra isomorphismδ : Ã D Ronto <strong>the</strong> twisted category algebra R λ˜C <strong>of</strong> <strong>the</strong> <strong>in</strong>verse category ˜C.∼−→ R λ˜C (19)Our next goal is to show that R λ˜C is isomorphic to <strong>the</strong> ‘untwisted’ category algebra R˜C. The nextproposition will achieve this by show<strong>in</strong>g that λ is a coboundary.8.9 Def<strong>in</strong>ition For objects (G, G ′ ), (H, H ′ ) <strong>of</strong> ˜C and a morphism G L H ∈ P(G ′ × H ′ ) from (H, H ′ ) to(G, G ′ ) we setµ( G L H ) := ∏ p∈Pµ p ( G L H ) ,36
whereµ p ( G L H ) :={ ϕ(|p1(L p)|)|H p|if s(L p ) = 1,|k 1(L p)||H p|if s(L p ) > 1.8.10 Proposition Assume that, for each G ∈ D, both |G| and ϕ(|G|) are <strong>in</strong>vertible <strong>in</strong> R.Let (G, G ′ ), (H, H ′ ), (K, K ′ ) ∈ Ob(˜C), and let G L H ∈ Hom˜C((H, H ′ ), (G, G ′ )) and H M K ∈Hom˜C((K, K ′ ), (H, H ′ )). Then one hasλ( G L H , H M K ) = µ( G L H ) · µ( H M K ) · µ( G(L ∗ M) K ) −1 .Thus <strong>the</strong> 2-cocycle λ on <strong>the</strong> category ˜C is a 2-coboundary, and <strong>the</strong> twisted category algebra R λ˜C isisomorphic to <strong>the</strong> category algebra R˜C, via <strong>the</strong> isomorphismfor G L H ∈ Mor(˜C).ɛ: R λ˜C → R˜C , GL H ↦→ µ( G L H ) · GL H ,Pro<strong>of</strong> For convenience, set L := G L H and M := H M K . By <strong>the</strong> def<strong>in</strong>itions <strong>of</strong> λ and µ, it suffices to showthatλ p (L p , M p )µ p (L p ) −1 µ p (M p ) −1 = µ p (L p ∗ M p ) −1 , (20)for all p ∈ P. To this end, let p ∈ P, and set l p := λ p (L p , M p )µ p (L p ) −1 µ p (M p ) −1 and r p := µ p (L p ∗M p ) −1 .We dist<strong>in</strong>guish four cases:(i) If s(L p ) = 1 = s(M p ) <strong>the</strong>n we have L p ∗ M p = p 1 (L p ) × p 2 (M p ), and thusl p =|G p |ϕ(|p 1 (L p )|) = |G p |ϕ(|p 1 (L p ∗ M p )|) = r p .(ii) If s(L p ) = 1 and s(M p ) > 1 <strong>the</strong>n L p ∗ M p = p 1 (L p ) × p 2 (M p ), andl p =|G p | · |H p | · |k 1 (M p )||H p | · ϕ(|p 1 (L p )|) · |k 1 (M p )| = |G p |ϕ(|p 1 (L p ∗ M p )|) = r p .(iii) If s(L p ) > 1 and s(M p ) = 1 <strong>the</strong>n L p ∗ M p = p 1 (L p ) × p 2 (M p ), andl p =|G p | · |H p | · |k 2 (L p )||H p | · ϕ(|p 2 (L p )|) · |k 1 (L p )| .S<strong>in</strong>ce s(L p ) > 1, we also have |p i (L p )| > 1, for i = 1, 2, and hence ϕ(|p i (L p )|) = |p i (L p )| − |p i (L p )|/p, fori = 1, 2. Thusϕ(|p 2 (L p )|)|k 2 (L p )|= |p 2(L p )||k 2 (L p )| − |p 2(L p )|p · |k 2 (L p )| = |p 1(L p )||k 1 (L p )| − |p 1(L p )|p · |k 1 (L p )| = ϕ(|p 1(L p )|).|k 1 (L p )|This shows thatl p =|G p |ϕ(|p 1 (L p )|) = |G p |ϕ(|p 1 (L p ∗ M p )|) = r p .37
(iv) If s(L p ) > 1 and s(M p ) > 1 <strong>the</strong>n, by Lemma 2.7, s(L p ∗ M p ) = m<strong>in</strong>{s(L p ), s(M p )} > 1, s<strong>in</strong>cep 2 (L p ) = p 1 (M p ). Thus we havel p = |G p| · |H p | · |k 2 (L p ) ∩ k 1 (M p )||H p | · |k 1 (M p )| · |k 1 (L p )|=|G p | · |k 1 (L p )| · |k 1 (M p )||k 1 (L p ∗ M p )| · |k 1 (L p )| · |k 1 (M p )| = |G p ||k 1 (L p ∗ M p )| = r p .This settles Equation (20), and <strong>the</strong> assertion <strong>of</strong> <strong>the</strong> proposition follows.In consequence <strong>of</strong> Proposition 8.1, Equation (19), Proposition 8.10, Theorem 5.13, and Proposition5.17 we have established <strong>the</strong> follow<strong>in</strong>g <strong>the</strong>orem.8.11 Theorem Let D be a f<strong>in</strong>ite set <strong>of</strong> cyclic groups, let ˜C be <strong>the</strong> f<strong>in</strong>ite <strong>in</strong>verse category associated withD <strong>in</strong> Def<strong>in</strong>ition 5.16, and let R be a commutative r<strong>in</strong>g. Suppose that, for all G ∈ D, both |G| and ϕ(|G|)are units <strong>in</strong> R. Then <strong>the</strong>re is a sequence <strong>of</strong> R-algebra isomorphisms⊕G,H∈DRB(G, H) = B D Rγà D RδR λ˜CɛR˜Cω×kMat n(k) (RAut(C k )) ;here k varies over all divisors <strong>of</strong> all group orders |G| (G ∈ D), C k denotes a cyclic group <strong>of</strong> order k, andn(k) <strong>the</strong> number <strong>of</strong> sections <strong>of</strong> groups <strong>in</strong> D isomorphic to C k . In particular, if R is a field <strong>the</strong>n B D R is asemisimple R-algebra.8.12 Remark Suppose that R is a field.(a) Specializ<strong>in</strong>g to <strong>the</strong> case where <strong>the</strong> set D consists <strong>of</strong> one cyclic group G only, Theorem 8.11 impliesthat <strong>the</strong> double <strong>Burnside</strong> algebra RB(G, G) is semisimple, provided |G| and ϕ(|G|) are non-zero <strong>in</strong> R.Suppose that, whenever p is a prime divisor <strong>of</strong> |G|, also p 2 is a divisor <strong>of</strong> |G|. In this case ϕ(|G|) ∈ R ×implies |G| ∈ R × , and we recover one half <strong>of</strong> [Bc3, Proposition 6.1.7], characteriz<strong>in</strong>g <strong>the</strong> fields R and f<strong>in</strong>itegroups G such that RB(G, G) is a semisimple R-algebra. In addition, Theorem 8.11 yields an explicitdecomposition.(b) Assume now that R has characteristic 0. Note that <strong>the</strong> R-algebra R˜C and <strong>the</strong> correspond<strong>in</strong>gisomorphism ω from Theorem 5.13 are def<strong>in</strong>ed for an arbitrary f<strong>in</strong>ite set D <strong>of</strong> groups. However, if D doesconta<strong>in</strong> a non-cyclic group G <strong>the</strong>n R˜C cannot be isomorphic to ÃD R , s<strong>in</strong>ce o<strong>the</strong>rwise RB(G, G) (which canbe considered as a condensed algebra <strong>of</strong> ÃD R ) would be semisimple, contradict<strong>in</strong>g Bouc’s characterization,cf. [Bc3, Proposition 6.1.7]. See also [Ba] for related results on <strong>the</strong> semisimplicity <strong>of</strong> biset functors <strong>in</strong>characteristic 0.8.13 Remark Recall from Remark 5.14 <strong>the</strong> explicit decomposition <strong>of</strong> R˜C as a direct sum <strong>of</strong> two-sidedideals I e that correspond to <strong>the</strong> matrix algebras under <strong>the</strong> above isomorphism. We close this sectionby determ<strong>in</strong><strong>in</strong>g <strong>the</strong> R-basis <strong>of</strong> R˜C correspond<strong>in</strong>g under ω to <strong>the</strong> obvious R-basis <strong>in</strong> <strong>the</strong> direct product<strong>of</strong> matrix r<strong>in</strong>gs over group algebras, consist<strong>in</strong>g <strong>of</strong> matrices that have only one non-zero entry, namely agroup element <strong>in</strong> <strong>the</strong> group algebra. We emphasize that <strong>in</strong> Remark 5.14, which explicitly described <strong>the</strong>isomorphism ω, R could be any commutative r<strong>in</strong>g; <strong>the</strong> additional assumptions <strong>in</strong> Theorem 8.11 were onlynecessary to establish <strong>the</strong> isomorphism ɛ ◦ δ ◦ ζ ◦ α: B D R ∼ = R˜C. For this purpose it is convenient to use amore arithmetical notation for <strong>the</strong> subgroups L <strong>of</strong> G × H <strong>in</strong> <strong>the</strong> case that G and H are cyclic groups.38
8.14 Notation Let G = 〈x〉 and H = 〈y〉 be cyclic groups with |G| = n and |H| = m. Suppose thata, b, k ∈ N are such that a | n, b | m, and k | gcd{a, b}. Then x n/a 〈x nk/a 〉 and y m/b 〈y mk/b 〉 generatesubquotients <strong>of</strong> order k <strong>of</strong> G and H, respectively. Moreover, let i ∈ Z be such that gcd{k, i} = 1. Then<strong>the</strong> mapα i : 〈y m/b 〉/〈y mk/b 〉 → 〈x n/a 〉/〈x nk/a 〉 , y m/b 〈y mk/b 〉 ↦→ x <strong>in</strong>/a 〈x nk/a 〉 ,def<strong>in</strong>es a group isomorphism. We denote <strong>the</strong> group (〈x n/a 〉, 〈x nk/a 〉, α i , 〈y m/b 〉, 〈y mk/b 〉) <strong>of</strong> G × H byG(k; a, i, b) H .Thus, if L = G (k; a, i, b) H <strong>the</strong>n one has |p 1 (L)| = a, |k 1 (L)| = a/k, |p 2 (L)| = b, |k 2 (L)| = b/k, s(L) = k.Clearly, each subgroup L <strong>of</strong> G × H can be written <strong>in</strong> this way with k, a, and b, uniquely determ<strong>in</strong>ed byL. Moreover, G (k; a, i, b) H = G (k; a, j, b) H if and only if i, j ∈ Z satisfy i ≡ j (mod k).Note that <strong>the</strong> subgroups 〈y m/b 〉, 〈y mk/b 〉, 〈x n/a 〉, and 〈x nk/a 〉 do not depend on <strong>the</strong> choice <strong>of</strong> <strong>the</strong>generators x and y. However, <strong>the</strong> isomorphism α i does depend on <strong>the</strong>se choices. Thus, when we willuse <strong>the</strong> notation G (k; a, i, b) H we assume that <strong>the</strong> groups G and H are equipped with a fixed choice <strong>of</strong>generators.With this notation <strong>the</strong> follow<strong>in</strong>g lemma is an immediate consequence <strong>of</strong> Lemma 2.7; we thus omit itspro<strong>of</strong>.8.15 Lemma With <strong>the</strong> notation from 8.14, let G, H, and K be cyclic groups, and let L G × H andM H × K with p 2 (L) = p 1 (M) be given byL = G (k; a, i, b) H and M = H (l; b, j, c) K ,for divisors a | |G|, b | |H|, c | |K|, k | gcd{a, b}, l | gcd{b, c}, and <strong>in</strong>tegers i, j ∈ Z with gcd{i, k} = 1 =gcd{j, l}. ThenL ∗ M = G (gcd{k, l}; a, ij, c) K .8.16 Remark Recall from Proposition 5.17 that <strong>the</strong> idempotent endomorphisms <strong>in</strong> ˜C are <strong>of</strong> <strong>the</strong> formG(k; a, 1, a) G , for G ∈ D, a | |G| and k | a. Moreover, idempotent endomorphisms G (k; a, 1, a) G andH(l; b, 1, b) H <strong>in</strong> ˜C are equivalent if and only if l = k.Let µ: N → N denote <strong>the</strong> number-<strong>the</strong>oretic Möbius function given by µ(n) = 0 if n is divisible byp 2 for some prime p, and µ(n) = (−1) r if n is <strong>the</strong> product <strong>of</strong> r pairwise dist<strong>in</strong>ct primes. Recall that ifone considers <strong>the</strong> divisors l <strong>of</strong> a fixed natural number k as a partially ordered set under <strong>the</strong> divisibilityrelation <strong>the</strong>n <strong>the</strong> Möbius function for this poset, applied to (l, k), is equal to µ(k/l).8.17 Lemma (a) For every idempotent endomorphism e := G (k; a, 1, a) G <strong>in</strong> ˜C, one has{s ∈ Mor(˜C) | ŝ ◦ s = e} = { H (k; b, i, a) G | H ∈ D, k | b, b | |H|, gcd{i, k} = 1} .(b) For every s := G (k; a, i, b) H ∈ Mor(˜C), one has{u s | u ∈ Mor(˜C)} = { G (l; a, i, b) H | l | k} .In particular, for u := G (l; a, i, b) H with u s <strong>in</strong> Mor(˜C), one has µ Mor(˜C)u,s= µ(k/l).39
Pro<strong>of</strong> Both parts <strong>of</strong> <strong>the</strong> lemma are easy consequences <strong>of</strong> 5.10, Proposition 5.17, and Lemma 8.15.8.18 Notation Suppose that k ∈ N is such that k divides |G|, for some G ∈ D. Let {e 1 , . . . , e n(k) } be<strong>the</strong> equivalence class <strong>of</strong> <strong>the</strong> idempotent endomorphism G (k; k, 1, k) G <strong>in</strong> ˜C. Thus, for each i = 1, . . . , n(k),one has a pair (G i , a i ), where G i ∈ D and a i ∈ N such that a i divides |G i |, k divides a i , and e i =G i(k; a i , 1, a i ) Gi .With this notation, <strong>the</strong> follow<strong>in</strong>g result is now a consequence <strong>of</strong> Lemma 8.17 and Remark 5.14. Itmakes <strong>the</strong> map ω <strong>in</strong> Theorem 8.11 as explicit as possible.8.19 Corollary Let D be a f<strong>in</strong>ite set <strong>of</strong> cyclic groups, let ˜C be <strong>the</strong> f<strong>in</strong>ite <strong>in</strong>verse category associatedwith D <strong>in</strong> Def<strong>in</strong>ition 5.16, and let R be any commutative r<strong>in</strong>g. Moreover, let k be a divisor <strong>of</strong> <strong>the</strong> order<strong>of</strong> some G ∈ D and assume <strong>the</strong> notation from 8.18. For i, j ∈ {1, . . . , n(k)}, and for an <strong>in</strong>teger t withgcd{t, k} = 1, setb(k; i, t, j) := ∑ µ(k/l) · Gi (l; a i , t, a j ) Gj ∈ R˜C .l|kThen ω(b(k; i, t, j)) is <strong>the</strong> standard basis element <strong>in</strong> × k Mat n(k) (RAut(C k )) that has zero entry everywhereexcept <strong>in</strong> <strong>the</strong> k-th component, and whose k-th component is equal to <strong>the</strong> matrix whose onlynon-zero entry is located <strong>in</strong> <strong>the</strong> (i, j)-th position and is equal to <strong>the</strong> element <strong>in</strong> Aut(C k ) that correspondsto t. In particular, <strong>the</strong> central idempotent e k <strong>of</strong> R˜C, correspond<strong>in</strong>g under ω to <strong>the</strong> tuple consist<strong>in</strong>g <strong>of</strong> <strong>the</strong>identity matrix <strong>in</strong> <strong>the</strong> k-th component and <strong>the</strong> zero matrix <strong>in</strong> all o<strong>the</strong>r components, is equal toReferencesn(k)∑ ∑µ(k/l) · Gi (l; a i , 1, a i ) Gi .i=1l|k[Ba] L. Barker: Rhetorical biset functors, rational p-biset functors and <strong>the</strong>ir semisimplicity <strong>in</strong> characteristiczero. J. <strong>Algebra</strong> 319 (2008), 3810–3853.[BD] R. <strong>Boltje</strong>, S. Danz: A ghost r<strong>in</strong>g for <strong>the</strong> left-free double <strong>Burnside</strong> r<strong>in</strong>g and an application t<strong>of</strong>usion systems. Adv. Math. 229 (2012), 1688–1733.[BK] R. <strong>Boltje</strong>, B. Külshammer: Central idempotents <strong>in</strong> double <strong>Burnside</strong> r<strong>in</strong>gs, <strong>in</strong> preparation.[Bc1] S. Bouc: Foncteurs d’ensembles munis d’une double action. J. <strong>Algebra</strong> 183 (1996), 664–736.[Bc2] S. Bouc: The functor <strong>of</strong> units <strong>of</strong> <strong>Burnside</strong> r<strong>in</strong>gs for p-groups. Comment. Math. Helv. 82 (2007),583–615.[Bc3] S. Bouc: Biset functors for f<strong>in</strong>ite groups. Lecture Notes <strong>in</strong> Ma<strong>the</strong>matics, 1990. Spr<strong>in</strong>ger-Verlag,Berl<strong>in</strong>, 2010.[BST] S. Bouc, R. Stancu, J. Thévenaz: Simple biset functors and double <strong>Burnside</strong> r<strong>in</strong>gs. Prepr<strong>in</strong>t2012. arXiv:1203.0195.40
[BT1] S. Bouc, J. Thévenaz: The group <strong>of</strong> endo-permutation modules. Invent. Math. 139 (2000),275–349.[BT2] S. Bouc, J. Thévenaz: Stabiliz<strong>in</strong>g bisets. Adv. Math. 229 (2012), 1610–1639.[BLO] C. Broto, R. Levi, B. Oliver: The homotopy <strong>the</strong>ory <strong>of</strong> fusion systems. J. Amer. Math. Soc. 16(2003), 779–856.[D] A. W. M. Dress: A characterization <strong>of</strong> solvable groups. Math. Z. 110 (1969), 213–217.[Gr1] J. A. Green: On <strong>the</strong> structure <strong>of</strong> semigroups. Ann. <strong>of</strong> Math. (2) 54 (1951), 163–172.[Gr2] J. A. Green: Polynomial representations <strong>of</strong> GL n . Second corrected and augmented edition. Withan appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M.Schocker. Lecture Notes <strong>in</strong> Ma<strong>the</strong>matics, 830. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 2007.[Hup] B. Huppert: Endliche Gruppen I. Die Grundlehren der Ma<strong>the</strong>matischen Wissenschaften, Band134. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>-New York, 1967.[Ka] J. Kastl: Inverse categories. <strong>in</strong>: <strong>Algebra</strong>ische Modelle, Kategorien und Gruppoide (ed. H.-J.Hoehnke), Akademie-Verlag, Berl<strong>in</strong> (1979), 51–60.[L]M. L<strong>in</strong>ckelmann: On <strong>in</strong>verse categories and transfer <strong>in</strong> cohomology. to appear <strong>in</strong> Skye conferenceproceed<strong>in</strong>gs.[LS] M. L<strong>in</strong>ckelmann, M. Stolorz: On simple modules over twisted f<strong>in</strong>ite category algebras. Proc.Amer. Math. Soc.˜140 (2012), 3725–3737.[MP] J. Mart<strong>in</strong>o, S. Priddy: Stable homotopy classification <strong>of</strong> BG ∧ p . Topology 34 (1995), 633–649.[RS] K. Ragnarsson, R. Stancu: Saturated fusion systems as idempotents <strong>in</strong> <strong>the</strong> double <strong>Burnside</strong>r<strong>in</strong>g. Prepr<strong>in</strong>t. arXiv:0911.0085.[St] B. Ste<strong>in</strong>berg: Möbius functions and semigroup representation <strong>the</strong>ory. II. Character formulas andmultiplicities. Adv. Math. 217 (2008), 1521–1557.[T] J. Thévenaz: Endo-permutation modules, a guided tour. In: Group representation <strong>the</strong>ory, 115–147,EPFL Press, Lausanne, 2007.[W] P. Webb: Stratifications and Mackey functors. II: globally def<strong>in</strong>ed Mackey functors. J. K-Theory6 (2010), 99–170.[Y] T. Yoshida: On <strong>the</strong> unit groups <strong>of</strong> <strong>Burnside</strong> r<strong>in</strong>gs. J. Math. Soc. Japan 42 (1990), 31–64.41