13.07.2015 Views

Scale transitions in solid mechanics based on computational ... - Cism

Scale transitions in solid mechanics based on computational ... - Cism

Scale transitions in solid mechanics based on computational ... - Cism

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Scale</str<strong>on</strong>g> <str<strong>on</strong>g>transiti<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>solid</str<strong>on</strong>g> <str<strong>on</strong>g>mechanics</str<strong>on</strong>g><str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> computati<strong>on</strong>al homogenizati<strong>on</strong>Marc G.D. Geers, V.G. KouznetsovaDepartment of Mechanical Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>gE<str<strong>on</strong>g>in</str<strong>on</strong>g>dhoven University of TechnologyP.O. Box 513, 5600 MB E<str<strong>on</strong>g>in</str<strong>on</strong>g>dhoven, The NetherlandsE-mail: m.g.d.geers@tue.nlAbstractThese lecture notes address basics and advanced topics <strong>on</strong> the computati<strong>on</strong>al homogenizati<strong>on</strong>of the <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> of highly n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>solid</str<strong>on</strong>g>s with (possibly evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g)microstructure under complex n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear load<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s. The key comp<strong>on</strong>entsof the computati<strong>on</strong>al homogenizati<strong>on</strong> scheme, i.e. the formulati<strong>on</strong> of the microstructuralboundary value problem and the coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the micro and macrolevel<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorems, are addressed. The numerical implementati<strong>on</strong>of the framework, particularly the computati<strong>on</strong> of the macroscopic stress tensorand extracti<strong>on</strong> of the macroscopic c<strong>on</strong>sistent tangent operator <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the totalmicrostructural stiffness, are treated <str<strong>on</strong>g>in</str<strong>on</strong>g> detail. The applicati<strong>on</strong> of the method isillustrated by the simulati<strong>on</strong> of pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g of porous alum<str<strong>on</strong>g>in</str<strong>on</strong>g>um. The classical noti<strong>on</strong>of a representative volume element is <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced and the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the spatialdistributi<strong>on</strong> of heterogeneities <strong>on</strong> the overall macroscopic behaviour is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatedby compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the results of multi-scale modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g for regular and random structures.F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, an extensi<strong>on</strong> of the classical computati<strong>on</strong>al homogenizati<strong>on</strong> schemeto a framework suitable for multi-scale modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of macroscopic localizati<strong>on</strong> andsize effects is briefly discussed.These lecture notes c<strong>on</strong>stitute the expanded versi<strong>on</strong> of a number of journal publicati<strong>on</strong>sand comprise l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks to other relevant material. For direct cit<str<strong>on</strong>g>in</str<strong>on</strong>g>g to theselecture notes, please make use of its associated references <str<strong>on</strong>g>in</str<strong>on</strong>g>stead:• V. G. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. An approachto micro-macro model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of heterogeneous materials. Computati<strong>on</strong>alMechanics, 27:37–48, 2001• M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Gradientenhancedcomputati<strong>on</strong>al homogenizati<strong>on</strong> for the micro-macro scale transiti<strong>on</strong>.Journal de Physique IV, 11(5):5145–5152, 2001• V. G. Kouznetsova, M. G. D. Geers, and W. A. M. Brekelmans. Advancedc<strong>on</strong>stitutive model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of heterogeneous materials with a gradient-enhancedcomputati<strong>on</strong>al homogenizati<strong>on</strong> scheme. Internati<strong>on</strong>al Journal for NumericalMethods <str<strong>on</strong>g>in</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 54:1235–1260, 2002• M.G.D. Geers, V.G. Kouznetsova, and W.A.M. Brekelmans. Multi-scale sec<strong>on</strong>dordercomputati<strong>on</strong>al homogenizati<strong>on</strong> of microstructures towards c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ua. Internati<strong>on</strong>alJournal for Multiscale Computati<strong>on</strong>al Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 1(4):371–386,2003


• V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Size of a representativevolume element <str<strong>on</strong>g>in</str<strong>on</strong>g> a sec<strong>on</strong>d-order computati<strong>on</strong>al homogenizati<strong>on</strong>framework. Internati<strong>on</strong>al Journal for Multiscale Computati<strong>on</strong>al Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g,2(4):575–598, 2004• V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale sec<strong>on</strong>dordercomputati<strong>on</strong>al homogenizati<strong>on</strong> of multi-phase materials: a nested f<str<strong>on</strong>g>in</str<strong>on</strong>g>iteelement soluti<strong>on</strong> strategy. Computer Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> Applied Mechanics and Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g,193:5525–5550, 2004• T.J. Massart, R.H.J. Peerl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, and M.G.D. Geers. An enhanced multi-scaleapproach for mas<strong>on</strong>ry wall computati<strong>on</strong>s with localizati<strong>on</strong> of damage. Internati<strong>on</strong>alJournal for Numerical Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 69(5):1022–1059, 2007• T.J. Massart, R.H.J. Peerl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, and M.G.D. Geers. Structural damage analysisof mas<strong>on</strong>ry walls us<str<strong>on</strong>g>in</str<strong>on</strong>g>g computati<strong>on</strong>a homogenizati<strong>on</strong>. Internati<strong>on</strong>al Journalof Damage Mechanics, 16:199–226, 2007• M. G. D. Geers, E. W. C. Coenen, and V. G. Kouznetsova. Multi-scale computati<strong>on</strong>alhomogenizati<strong>on</strong> of structured th<str<strong>on</strong>g>in</str<strong>on</strong>g> sheets. Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g Simul. Mater.Sci. Eng., 15:S393–S404, 2007• I. Özdemir, W. A. M. Brekelmans, and M. G. D. Geers. Computati<strong>on</strong>al homogenizati<strong>on</strong>for heat c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> heterogeneous <str<strong>on</strong>g>solid</str<strong>on</strong>g>s. Int. J. Numer. MethodsEngrg., 73:185–204, 2008• I. Özdemir, W. A. M. Brekelmans, and M. G. D. Geers. FE2 computati<strong>on</strong>alhomogenizati<strong>on</strong> for the thermo-mechanical analysis of heterogeneous <str<strong>on</strong>g>solid</str<strong>on</strong>g>s.Computer Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> Applied Mechanics and Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 198:602–613, 2008• I. Özdemir, W. A. M. Brekelmans, and M. G. D. Geers. Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermalshock damage <str<strong>on</strong>g>in</str<strong>on</strong>g> refractory materials via direct numerical simulati<strong>on</strong> (dns).Journal of the European Ceramic Society, 30(7):1585–1597, 2009• I. Özdemir, W. A. M. Brekelmans, and M. G. D. Geers. A thermo-mechanicalcohesive z<strong>on</strong>e model. Computati<strong>on</strong>al Mechanics, 2010. Accepted, <strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e availableso<strong>on</strong>• E. W. C. Coenen, V. G. Kouznetsova, and M. G. D. Geers. Computati<strong>on</strong>alhomogeneizati<strong>on</strong> for heterogeneous th<str<strong>on</strong>g>in</str<strong>on</strong>g> sheets. Internati<strong>on</strong>al Journal for NumericalMethods <str<strong>on</strong>g>in</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 2010. Published <strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> Early View• M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Multi-scalecomputati<strong>on</strong>al homogenizati<strong>on</strong>: trends & challenges. Journal of Computati<strong>on</strong>aland Applied Mathematics, 234(7):2175–2182, 2010Note that many other papers from different c<strong>on</strong>tributors <str<strong>on</strong>g>in</str<strong>on</strong>g> the scientific communityare directly cited <str<strong>on</strong>g>in</str<strong>on</strong>g> these lecture notes as well, for which the citati<strong>on</strong> details are<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> the list of references.2


1 Introducti<strong>on</strong>1.1 Mechanics across the scalesThe <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic role of different scales <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> of materials is nowadays well recognized.At the material level, it is the typical scale at which many heterogeneities can be identifiedthat matters. The <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> and physics of these multi-phase heterogeneous microstructuresis recognized as the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> driver for the macroscopic eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g resp<strong>on</strong>se of a materialup<strong>on</strong> mechanical load<str<strong>on</strong>g>in</str<strong>on</strong>g>g, up to the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of failure. The proper understand<str<strong>on</strong>g>in</str<strong>on</strong>g>g of thebehaviour, evoluti<strong>on</strong> and mechanical resp<strong>on</strong>se of materials at this scale is certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <strong>on</strong>e ofthe key factors at the micro scale. Over time, it has become clear that even smaller scalesand th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces may have a pr<strong>on</strong>ounced <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the micr<strong>on</strong> scale. In this sense,multi-scale methods have emerged which l<str<strong>on</strong>g>in</str<strong>on</strong>g>k up this scale to smaller and large scales. Asec<strong>on</strong>d characteristic of this multi-discipl<str<strong>on</strong>g>in</str<strong>on</strong>g>ary field, is the emphasis which is put <strong>on</strong> themechanical aspects, cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the role of stress, stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, deformati<strong>on</strong> and degradati<strong>on</strong>. Generally,this goes hand <str<strong>on</strong>g>in</str<strong>on</strong>g> hand with the material synthesis and microstructure evoluti<strong>on</strong>,s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal stress fields are an <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic characteristic of heterogeneous microstructures.It is obvious that this cannot be trivially separated from the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g physics. Mechanicalaspects generally represent a source of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal (stra<str<strong>on</strong>g>in</str<strong>on</strong>g>) energy, which is an essential<str<strong>on</strong>g>in</str<strong>on</strong>g>gredient of the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermodynamics. Vice verse, other physical mechanisms (e.g.diffusi<strong>on</strong>, dislocati<strong>on</strong> moti<strong>on</strong>) will have a pr<strong>on</strong>ounced <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the relaxati<strong>on</strong> of these<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal stresses, and c<strong>on</strong>sequently <strong>on</strong> the overall mechanical resp<strong>on</strong>se. In other words,multi-scale <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> nowadays covers (i) what <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> c<strong>on</strong>tributes to physics acrossthe scales and (ii) how physics at the smallest scales c<strong>on</strong>tributes to the <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> at themacro scale. This holds <str<strong>on</strong>g>in</str<strong>on</strong>g> particular when failure mechanisms come <str<strong>on</strong>g>in</str<strong>on</strong>g>to play.1.2 Some historical notes <strong>on</strong> multi-scale <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>The past years have been marked by a significant <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> the various length scales thatgovern the <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> of materials. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> issue c<strong>on</strong>sists <str<strong>on</strong>g>in</str<strong>on</strong>g> identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the relati<strong>on</strong>shipsthat bridge those various scales, i.e. multi-scale <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>. The multi-scale methodologyaims to predict, describe, quantify or qualify the ’macroscopic’ behaviour of eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>gmaterials through the c<strong>on</strong>sistent modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> and physics of the heterogeneous,multi-phase, anisotropic, discrete microstructure. Various techniques have beenproposed to c<strong>on</strong>tribute to this challeng<str<strong>on</strong>g>in</str<strong>on</strong>g>g task. Am<strong>on</strong>g them, a large class of homogenizati<strong>on</strong>techniques exists, also called coarse gra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the physics community [16, 17, 18].Early steps towards multi-scale or micro-scale modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g were taken l<strong>on</strong>g ago, when the <str<strong>on</strong>g>in</str<strong>on</strong>g>terestfor the <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> of heterogeneous materials became more pr<strong>on</strong>ounced. Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>arysteps go back to the 19th century, where the rule of mixtures was first <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced (Voigt,1887), followed by the Sachs model (1928) [19], Reuss estimate (1929) and the frequentlyused Taylor model (1938) [20]. Whereas Voigt and Reuss focused more <strong>on</strong> composite systems,Taylor and Sachs were typically derived for polycrystals. The grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terest forcomposite materials c<strong>on</strong>stituted the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> trigger for new developments. The best-knownearly c<strong>on</strong>tributi<strong>on</strong> of this type is probably the work of Eshelby (1957) [21]. Still today,these first steps have a pr<strong>on</strong>ounced impact, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise to alternative c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>frameworks (Eshelbian <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>; materials forces). The field of ’c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum micro<str<strong>on</strong>g>mechanics</str<strong>on</strong>g>’,which was formally established by Hill (1965) [22], extended tremendously s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce3


then. A survey of activities over the past forty years is given <str<strong>on</strong>g>in</str<strong>on</strong>g> [23].Homogenizati<strong>on</strong> techniques were first developed with<str<strong>on</strong>g>in</str<strong>on</strong>g> the framework of elasticity, as anexcellent tool to predict the effective or apparent l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear elastic properties of heterogeneousmaterials. Several closed-form homogenizati<strong>on</strong> techniques have been proposed <str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>text,e.g. the Voigt-Reuss-Hill bounds, the Hash<str<strong>on</strong>g>in</str<strong>on</strong>g>-Shtrikman variati<strong>on</strong>al pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, theself-c<strong>on</strong>sistent method, etc., see [24] for an overview. Asymptotic or mathematical homogenizati<strong>on</strong>schemes have been used frequently to assess effective properties of elasticheterogeneous materials [25, 26]. Extensi<strong>on</strong>s towards higher-order and n<strong>on</strong>local c<strong>on</strong>stitutiveequati<strong>on</strong>s have been c<strong>on</strong>sidered as well, e.g. developments <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g Cosserat media[27], couple stress theory [28], n<strong>on</strong>local effective c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ua [29] or higher-order gradienthomogenized elastic materials [30, 31, 32]. Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>g approaches towards the analysisof random (physically n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear) microstructures [33, 34, 35] are the Taylor-Bishop-Hillestimates, several generalizati<strong>on</strong>s of self-c<strong>on</strong>sistent schemes. The mathematical asymptotichomogenizati<strong>on</strong> theory [36, 37] applies an asymptotic expansi<strong>on</strong> of displacementand stress fields <strong>on</strong> a “natural scale parameter”, which is the ratio of a characteristicsize of the heterogeneities and a measure of the macrostructure [38, 39, 40, 41, 42]. Theasymptotic homogenizati<strong>on</strong> approach provides effective overall properties as well as localstress and stra<str<strong>on</strong>g>in</str<strong>on</strong>g> values. However, usually the c<strong>on</strong>siderati<strong>on</strong>s are restricted to verysimple microscopic geometries and simple material models, mostly at small stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Acomprehensive overview of different homogenizati<strong>on</strong> methods may be found <str<strong>on</strong>g>in</str<strong>on</strong>g> a book byNemat-Nasser and Hori. [24]. Homogenizati<strong>on</strong> of <str<strong>on</strong>g>solid</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a geometrically and physicallyn<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear regime is clearly more cumbersome.The <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g complexity of microstructural mechanical and physical behaviour, al<strong>on</strong>gwith the development of computati<strong>on</strong>al methods, made the class of so-called unit cellmethods attractive. These approaches have been used <str<strong>on</strong>g>in</str<strong>on</strong>g> a great number of differentapplicati<strong>on</strong>s [43, 44, 45, 46, 47, 48, 49]. A selecti<strong>on</strong> of examples <str<strong>on</strong>g>in</str<strong>on</strong>g> the field of metalmatrix composites has been collected, for example, <str<strong>on</strong>g>in</str<strong>on</strong>g> a book by Suresh et al.[50] Theunit cell methods serve a twofold purpose: they provide valuable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the localmicrostructural fields as well as the effective material properties. These properties aregenerally determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g the averaged microscopical stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> fields, result<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom the analysis of a microstructural representative cell subjected to a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> load<str<strong>on</strong>g>in</str<strong>on</strong>g>gpath, <strong>on</strong> macroscopic closed-form phenomenological c<strong>on</strong>stitutive equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a formatestablished a priori. Once the c<strong>on</strong>stitutive behaviour becomes n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear (geometrically,physically or both), it becomes <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sically difficult to make a well-motivated assumpti<strong>on</strong><strong>on</strong> a suitable macroscopic c<strong>on</strong>stitutive format. For example, McHugh et al. [51] havedem<strong>on</strong>strated that, when a composite is characterized by power-law slip system harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g,the power-law harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour is not preserved at the macroscale. Hence, most ofthe known homogenizati<strong>on</strong> techniques are not suitable for large deformati<strong>on</strong>s nor complexload<str<strong>on</strong>g>in</str<strong>on</strong>g>g paths, neither do they account for the geometrical and physical changes of themicrostructure (which is relevant, for example, when deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g with phase <str<strong>on</strong>g>transiti<strong>on</strong>s</str<strong>on</strong>g>).Closed-form homogenizati<strong>on</strong> towards c<strong>on</strong>stitutive material frameworks or effective (orrather apparent) material properties of composites turns out to be really cumbersomeif <strong>on</strong>e wishes to take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account more complex physics, geometrical n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>earities ordamage and localizati<strong>on</strong>.Another class of hierarchical techniques are generally known as variati<strong>on</strong>al multi-scalemethods [52, 53]. In here, the weak form of the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s is the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t ofdeparture, which can be separated <str<strong>on</strong>g>in</str<strong>on</strong>g> a coarse and a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale part <strong>on</strong> the basis of suitable4


assumpti<strong>on</strong>s <strong>on</strong> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale field. The key issue resides <str<strong>on</strong>g>in</str<strong>on</strong>g> the elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>escale from the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed formulati<strong>on</strong>. Though promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the method relies str<strong>on</strong>gly <strong>on</strong>the assumpti<strong>on</strong>s made <strong>on</strong> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale and the restricti<strong>on</strong>s that apply to enable theelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> practice. Well-known f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale patterns, e.g. displacement disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uitiesmodelled by Heaviside functi<strong>on</strong>s, can be easily implemented. The obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed method thenshows c<strong>on</strong>siderable similarities with the extended f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element method [54, 55].S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce a few years, substantial progress has been made <str<strong>on</strong>g>in</str<strong>on</strong>g> the two-scale computati<strong>on</strong>alhomogenizati<strong>on</strong> of complex multi-phase <str<strong>on</strong>g>solid</str<strong>on</strong>g>s. This technique is essentially <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> thesoluti<strong>on</strong> of nested boundary value problems, <strong>on</strong>e for each scale. If attenti<strong>on</strong> is focused<strong>on</strong> the n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear characteristics of the material behaviour, this technique proves to bea valuable tool <str<strong>on</strong>g>in</str<strong>on</strong>g> retriev<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>stitutive resp<strong>on</strong>se. First-order (i.e. <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g firstordergradients of the macroscopic displacement field <strong>on</strong>ly) computati<strong>on</strong>al homogenizati<strong>on</strong>schemes fit entirely <str<strong>on</strong>g>in</str<strong>on</strong>g> a standard c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>mechanics</str<strong>on</strong>g> framework (pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple of localacti<strong>on</strong>) and are now readily available <str<strong>on</strong>g>in</str<strong>on</strong>g> literature [1, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66]. Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> characteristics of this soluti<strong>on</strong> strategy are• The c<strong>on</strong>stitutive resp<strong>on</strong>se at the macro scale is a priori undeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. No explicitassumpti<strong>on</strong>s are required at that level, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the macroscopic c<strong>on</strong>stitutive behaviourensues from the soluti<strong>on</strong> of the micro scale boundary value problem.• The method deals with large displacements (large stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s and rotati<strong>on</strong>s) <str<strong>on</strong>g>in</str<strong>on</strong>g> a trivialway under the c<strong>on</strong>diti<strong>on</strong> that the microstructural c<strong>on</strong>stituents are modelled adequately.• The different phases <str<strong>on</strong>g>in</str<strong>on</strong>g> the microstructure can be modelled with arbitrary n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>earand time-dependent c<strong>on</strong>stitutive models.• The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the evoluti<strong>on</strong> of the microstructure (as described <strong>on</strong> the micro-scale)can be assessed directly <strong>on</strong> the macro-scale.• The micro scale problem is a classical boundary value problem, for which any appropriatesoluti<strong>on</strong> strategy can be used, e.g. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ite Element Method [1, 58, 61, 62],the boundary element method[67], the Vor<strong>on</strong>oi cell method [57, 68], a crystal plasticityframework [59, 60] or numerical methods <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> Fast Fourier Transforms[69, 70]and Transformati<strong>on</strong> Field Analysis[71].• Macroscopic c<strong>on</strong>stitutive tangent operators can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the microscopicoverall stiffness tensor through static c<strong>on</strong>densati<strong>on</strong>. C<strong>on</strong>sistency is preserved throughthis scale transiti<strong>on</strong>.In spite of the huge computati<strong>on</strong>al cost of a nested two-scale soluti<strong>on</strong> problem, efficiencycan be achieved by solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the problem through parallel computati<strong>on</strong>s ([61, 72]). Anotheropti<strong>on</strong> is selective usage, where n<strong>on</strong>-critical regi<strong>on</strong>s are modelled by c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uumclosed-form homogenized c<strong>on</strong>stitutive relati<strong>on</strong>s or by the c<strong>on</strong>stitutive tangents obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edfrom the microstructural analysis but kept c<strong>on</strong>stant <str<strong>on</strong>g>in</str<strong>on</strong>g> the elastic doma<str<strong>on</strong>g>in</str<strong>on</strong>g>, while <str<strong>on</strong>g>in</str<strong>on</strong>g> thecritical regi<strong>on</strong>s the multi-scale analysis of the microstructure is fully performed ([63]).Despite the required computati<strong>on</strong>al efforts the computati<strong>on</strong>al homogenizati<strong>on</strong> techniquehas proven to be a valuable tool to establish n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear micro-macro structure-propertyrelati<strong>on</strong>s, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> the cases where the complexity of the mechanical and geometrical5


microstructural properties and the evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g character prohibit the use of other homogenizati<strong>on</strong>methods. The first-order technique is by now well-established and widely used<str<strong>on</strong>g>in</str<strong>on</strong>g> the scientific and eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g community [73, 74, 75, 76, 77, 78]. The available paperscan be roughly classified <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g categories [15]:• First-order computati<strong>on</strong>al homogenizati<strong>on</strong>• Sec<strong>on</strong>d-order computati<strong>on</strong>al homogenizati<strong>on</strong>: to resolve some <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gsof the first-order scheme, <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the size of the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g microstructure.• C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous-disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous multi-scale approach for damage: the coarse scale is modelleddiscretely or with a discrete band (weak disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity), whereas the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scaleis modelled with a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum.• Computati<strong>on</strong>al homogenizati<strong>on</strong> of multi-physics problems, focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the homogenizati<strong>on</strong>of the thermal (heat c<strong>on</strong>ducti<strong>on</strong>) problem, and its coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a mechanicalhomogenizati<strong>on</strong> scheme.• Computati<strong>on</strong>al homogenizati<strong>on</strong> of structured th<str<strong>on</strong>g>in</str<strong>on</strong>g> sheets and shells: applicati<strong>on</strong> ofsec<strong>on</strong>d-order homogenizati<strong>on</strong> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples to through-thickness representative volumeelements, enabl<str<strong>on</strong>g>in</str<strong>on</strong>g>g its applicati<strong>on</strong> to shell-type c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ua.• Computati<strong>on</strong>al homogenizati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>terface problems, which is now emerg<str<strong>on</strong>g>in</str<strong>on</strong>g>g.These lecture notes focus <strong>on</strong> the basics underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g each of these categories, with an outreachto some of the extensi<strong>on</strong>s listed above. Note that there is a vast amount of recentliterature <strong>on</strong> other multi-scale (and multi-physics) methods [79, 80, 81, 82, 83, 84], oftenpartially c<strong>on</strong>nected to the subjects addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> these lecture notes.Cartesian tensors and associated tensor products will be used throughout these lecturenotes, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of a Cartesian vector basis {⃗e 1 ,⃗e 2 ,⃗e 3 }. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the E<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> summati<strong>on</strong>rule for repeated <str<strong>on</strong>g>in</str<strong>on</strong>g>dices, the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>venti<strong>on</strong>s are used <str<strong>on</strong>g>in</str<strong>on</strong>g> the notati<strong>on</strong>s of well-knowntensor productsC = ⃗a ⃗ b = a i b j ⃗e i ⃗e jC = A·B = A ij B jk ⃗e i ⃗e kC = 4 A : B = A ijkl B lk ⃗e i ⃗e jC = 4 A . 4 B = A iklm B mlkj ⃗e i ⃗e j2 Underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples and assumpti<strong>on</strong>s2.1 <str<strong>on</strong>g>Scale</str<strong>on</strong>g> separati<strong>on</strong>At the macro-scale, the material is c<strong>on</strong>sidered as a homogeneous c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum, whereas atthe micro level it is generally heterogeneous (the morphology c<strong>on</strong>sists of dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishablecomp<strong>on</strong>ents or phases, i.e. <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s, gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces, cavities, etc.). This is schematicallyillustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1. The microscopic length scale is much larger than the moleculardimensi<strong>on</strong>s l discrete , so that a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum approach is justified for every c<strong>on</strong>stituent. At thesame time, <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>text of the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple of separati<strong>on</strong> of scales, the microscopic length6


Figure 1: Macroscopic c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum po<str<strong>on</strong>g>in</str<strong>on</strong>g>t representati<strong>on</strong> (M) <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to its underly<str<strong>on</strong>g>in</str<strong>on</strong>g>gheterogeneous microstructure.scale l micro is assumed to be much smaller than the characteristic length l macro over whichthe size of the macroscopic load<str<strong>on</strong>g>in</str<strong>on</strong>g>g varies <str<strong>on</strong>g>in</str<strong>on</strong>g> space, i.e.l discrete ≪ l micro ≪ l macro (1)Note that it is not the size of the macroscopic doma<str<strong>on</strong>g>in</str<strong>on</strong>g> which is important, but rather thespatial variati<strong>on</strong> of the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic fields and stress fields with<str<strong>on</strong>g>in</str<strong>on</strong>g> that doma<str<strong>on</strong>g>in</str<strong>on</strong>g>.2.2 Local periodicityMost of the homogenizati<strong>on</strong> approaches rely <strong>on</strong> the assumpti<strong>on</strong> of global periodicity of themicrostructure, imply<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the whole macroscopic doma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sists of spatially repeatedunit cells. In a computati<strong>on</strong>al homogenizati<strong>on</strong> approach, a more realistic assumpti<strong>on</strong> ismade, which is comm<strong>on</strong>ly denoted by local periodicity. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to this assumpti<strong>on</strong>,the microstructure can have different morphologies corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to different macroscopicpo<str<strong>on</strong>g>in</str<strong>on</strong>g>ts, whereas it repeats itself <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> a small vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of each <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual macroscopicpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t. The c<strong>on</strong>cepts of local and global periodicity are schematically illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.The assumpti<strong>on</strong> of local periodicity adopted <str<strong>on</strong>g>in</str<strong>on</strong>g> the computati<strong>on</strong>al homogenizati<strong>on</strong> allowsto <str<strong>on</strong>g>in</str<strong>on</strong>g>corporate a n<strong>on</strong>-uniform distributi<strong>on</strong> of the microstructure at the macroscopic level(e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> functi<strong>on</strong>ally graded materials). Note that the local periodicity assumpti<strong>on</strong> is(a) local periodicity(b) global periodicityFigure 2: Local periodicity (a) versus global periodicity (b).directly l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple of separati<strong>on</strong> of scales.7


2.3 Homogenizati<strong>on</strong> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciplesThe basic pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples of computati<strong>on</strong>al homogenizati<strong>on</strong> have gradually evolved from thec<strong>on</strong>cepts employed <str<strong>on</strong>g>in</str<strong>on</strong>g> other homogenizati<strong>on</strong> methods and well fit <str<strong>on</strong>g>in</str<strong>on</strong>g>to the four-step homogenizati<strong>on</strong>scheme established by Suquet [56]:1. def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of a microstructural representative volume element (RVE), of which thec<strong>on</strong>stitutive behaviour of <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual c<strong>on</strong>stituents is assumed to be known;2. formulati<strong>on</strong> of the microscopic boundary c<strong>on</strong>diti<strong>on</strong>s from the macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>putvariables and their applicati<strong>on</strong> <strong>on</strong> the RVE (macro-to-micro transiti<strong>on</strong>);3. calculati<strong>on</strong> of the macroscopic output variables from the analysis of the deformedmicrostructural RVE (micro-to-macro transiti<strong>on</strong>);4. obta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the (numerical) relati<strong>on</strong> between the macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>put and output variables.The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> ideas of the first-order computati<strong>on</strong>al homogenizati<strong>on</strong> have been established <str<strong>on</strong>g>in</str<strong>on</strong>g>[40, 56, 57, 68, 85] and further developed and improved <str<strong>on</strong>g>in</str<strong>on</strong>g> more recent works [1, 58, 59,61, 63, 64, 65, 69, 72].2.4 Computati<strong>on</strong>al homogenizati<strong>on</strong> schemeA computati<strong>on</strong>al homogenizati<strong>on</strong> generally departs from the computati<strong>on</strong> of a macroscopicdeformati<strong>on</strong> (gradient) tensor F M , which is calculated for every material po<str<strong>on</strong>g>in</str<strong>on</strong>g>t ofthe macrostructure (e.g. the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts with<str<strong>on</strong>g>in</str<strong>on</strong>g> a macroscopic f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element doma<str<strong>on</strong>g>in</str<strong>on</strong>g>).Here and <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the subscript “M” refers to a macroscopic quantity,while the subscript “m” will denote a microscopic quantity. The deformati<strong>on</strong> tensor F Mfor a macroscopic po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is next used to formulate the boundary c<strong>on</strong>diti<strong>on</strong>s to be imposed<strong>on</strong> the RVE that is assigned to this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. Up<strong>on</strong> the soluti<strong>on</strong> of the boundaryvalue problem for the RVE, the macroscopic stress tensor P M is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by averag<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe result<str<strong>on</strong>g>in</str<strong>on</strong>g>g RVE stress field over the volume of the RVE. As a result, the (numerical)stress-deformati<strong>on</strong> relati<strong>on</strong>ship at the macroscopic po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is readily available. Additi<strong>on</strong>ally,the local macroscopic c<strong>on</strong>sistent tangent is extracted from the microstructural stiffness.The entire framework is schematically illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3. The computati<strong>on</strong>al homog-Figure 3: Computati<strong>on</strong>al homogenizati<strong>on</strong> scheme.8


enizati<strong>on</strong> technique def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this sense, is entirely c<strong>on</strong>sistent with the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple of localacti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>. Therefore, the resp<strong>on</strong>se at a (macroscopic) material po<str<strong>on</strong>g>in</str<strong>on</strong>g>tdepends <strong>on</strong>ly <strong>on</strong> the first gradient of the displacement field. This macroscopically localcomputati<strong>on</strong>al homogenizati<strong>on</strong> framework may therefore be categorized as a “first-order”approach.2.5 K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematically driven multi-scale schemeThe multi-scale procedure outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this framework is “deformati<strong>on</strong> driven”. The po<str<strong>on</strong>g>in</str<strong>on</strong>g>tof departure is thereby the macroscopic deformati<strong>on</strong> gradient tensor F M , which is usedto determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the stress P M and the c<strong>on</strong>stitutive tangent, <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the resp<strong>on</strong>se of theunderly<str<strong>on</strong>g>in</str<strong>on</strong>g>g microstructure. A “stress driven” procedure (given a local macroscopic stress,obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the deformati<strong>on</strong>) is also possible. However, such a procedure does not directly fit<str<strong>on</strong>g>in</str<strong>on</strong>g>to a standard displacement-<str<strong>on</strong>g>based</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element framework, which will be here employedto solve the macroscopic boundary value problem. Moreover, <str<strong>on</strong>g>in</str<strong>on</strong>g> case of large deformati<strong>on</strong>sthe macroscopic rotati<strong>on</strong>al effects have to be added to the stress tensor <str<strong>on</strong>g>in</str<strong>on</strong>g> order touniquely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the deformati<strong>on</strong> gradient tensor, thus complicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the implementati<strong>on</strong>.Therefore, the “stress driven” approach, which is often used <str<strong>on</strong>g>in</str<strong>on</strong>g> the analysis of s<str<strong>on</strong>g>in</str<strong>on</strong>g>gleunit cells, is generally not adopted <str<strong>on</strong>g>in</str<strong>on</strong>g> coupled multi-scale computati<strong>on</strong>al homogenizati<strong>on</strong>strategies of the type described here.3 The micro-scale problem3.1 The representative volume elementThe physical and geometrical properties of the microstructure are identified by a representativevolume element (RVE) [29, 86]. An example of a typical two-dimensi<strong>on</strong>al RVEis depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4. The actual choice of the RVE is a rather delicate task. The RVEshould be large enough to represent the microstructure, without <str<strong>on</strong>g>in</str<strong>on</strong>g>troduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g n<strong>on</strong>-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>gproperties (e.g. undesired anisotropy) and at the same time it should be small enough toallow efficient computati<strong>on</strong>al modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Some issues related to the c<strong>on</strong>cept of a representativecell are discussed further<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 7. Here it is supposed that an appropriateRVE has been already selected. Then the problem <strong>on</strong> the RVE level can be formulatedas a standard problem <str<strong>on</strong>g>in</str<strong>on</strong>g> quasi-static c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>solid</str<strong>on</strong>g> <str<strong>on</strong>g>mechanics</str<strong>on</strong>g>.3.2 Micro-scale characterizati<strong>on</strong> & equilibriumThe RVE deformati<strong>on</strong> field <str<strong>on</strong>g>in</str<strong>on</strong>g> a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t with the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial positi<strong>on</strong> vector X ⃗ (<str<strong>on</strong>g>in</str<strong>on</strong>g> the referencedoma<str<strong>on</strong>g>in</str<strong>on</strong>g> V 0 ) and the actual positi<strong>on</strong> vector ⃗x (<str<strong>on</strong>g>in</str<strong>on</strong>g> the current doma<str<strong>on</strong>g>in</str<strong>on</strong>g> V ) is described by themicrostructural deformati<strong>on</strong> gradient tensor Fm =( ∇ ⃗ 0,m ⃗x) c , where the gradient operator⃗∇ 0,m is taken with respect to the reference microstructural c<strong>on</strong>figurati<strong>on</strong>; the superscript“c” <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates c<strong>on</strong>jugati<strong>on</strong>.The RVE is <str<strong>on</strong>g>in</str<strong>on</strong>g> a state of equilibrium. This is mathematically expressed through thestandard equilibrium equati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the Cauchy stress tensor σ m or, alternatively,<str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the first Piola-Kirchhoff stress tensor P m =det(F m )σ m·(F c m )−1 accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to9


Figure 4: Schematic picture of a typical two-dimensi<strong>on</strong>al representative volume element(RVE).(<str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of body forces)⃗∇ m·σ m = ⃗0 <str<strong>on</strong>g>in</str<strong>on</strong>g> V, or ⃗ ∇0,m·P c m = ⃗0 <str<strong>on</strong>g>in</str<strong>on</strong>g> V 0 , (2)where ∇ ⃗ m is the the gradient operator with respect to the current c<strong>on</strong>figurati<strong>on</strong> at themicro-scale.The mechanical characterizati<strong>on</strong> of the microstructural comp<strong>on</strong>ents are described by theirc<strong>on</strong>stitutive laws, specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g a time and history dependent stress-deformati<strong>on</strong> relati<strong>on</strong>shipfor every microstructural c<strong>on</strong>stituentσ (α)m (t) =F (α)σ {F (α)m (τ), τ∈ [0,t]}, or P (α)m (t) =F (α)P{F(α) m (τ), τ∈ [0,t]}, (3)where t denotes the current time; α = 1,N, with N the number of microstructuralc<strong>on</strong>stituents to be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished (e.g. matrix, <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s, etc.). Note that the knowledgeof the separate c<strong>on</strong>stitutive laws for each of the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual phases is essential.3.3 The macro-micro scale transiti<strong>on</strong>The macro-micro scale transiti<strong>on</strong> requires a method to impose the macroscopic deformati<strong>on</strong>gradient tensor F M or stress tensor P M <strong>on</strong> the microstructural RVE. Classicalsimplified methods to do this are:• by impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g that all the microstructural c<strong>on</strong>stituents undergo a c<strong>on</strong>stant deformati<strong>on</strong>identical to the macroscopic <strong>on</strong>e (the Taylor or Voigt assumpti<strong>on</strong>).• by impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g an identical c<strong>on</strong>stant stress (and additi<strong>on</strong>ally identical rotati<strong>on</strong>) to allthe comp<strong>on</strong>ents (the Sachs or Reuss) assumpti<strong>on</strong>).• by <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate procedures, where the Taylor and Sachs assumpti<strong>on</strong>s are applied<strong>on</strong>ly to certa<str<strong>on</strong>g>in</str<strong>on</strong>g> comp<strong>on</strong>ents of the deformati<strong>on</strong> and stress tensors.These simplified procedures do not satisfy all local static equilibrium and compatibilityc<strong>on</strong>diti<strong>on</strong>s and generally provide <strong>on</strong>ly rough estimates of the overall material properties.They are therefore not well-suited <str<strong>on</strong>g>in</str<strong>on</strong>g> complex n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear deformati<strong>on</strong> regimes. The Taylorassumpti<strong>on</strong> usually overestimates the overall stiffness, while the Sachs assumpti<strong>on</strong> leads toan underestimati<strong>on</strong> of the stiffness. A computati<strong>on</strong>al homogenizati<strong>on</strong> scheme does enforce10


local equilibrium and compatibility between phases, and therefore necessitates a differentmacro-micro scale transiti<strong>on</strong> method.The first-order scheme naturally departs from the classical l<str<strong>on</strong>g>in</str<strong>on</strong>g>earizati<strong>on</strong> of the macroscopicn<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear deformati<strong>on</strong> map, ⃗x = φ( X), ⃗ applied to a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite material vector Δ⃗x <str<strong>on</strong>g>in</str<strong>on</strong>g> thedeformed state:Δ⃗x = F M·ΔX ⃗ + O(Δ X ⃗ )2 , (4)with ⃗x and X ⃗ associated positi<strong>on</strong> vectors <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed and reference state, respectively,and<str<strong>on</strong>g>in</str<strong>on</strong>g>whichF M =( ∇ ⃗ 0,M ⃗x) T is the macroscopic deformati<strong>on</strong> gradient tensor. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>gan undeformed volume V 0 of material with its centre positi<strong>on</strong>ed at X ⃗ c , permits to writethe deformed positi<strong>on</strong> of any po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of this volume (with respect to the centre of thatvolume) as the sum of a macroscopic (or coarse scale) and a microscopic (or f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale)c<strong>on</strong>tributi<strong>on</strong>:⃗x − ⃗x c = F M·( X ⃗ − X ⃗ c )+⃗w (5)The f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale c<strong>on</strong>tributi<strong>on</strong> is here represented by the microfluctuati<strong>on</strong> field ⃗w. Thevector ⃗x c is the actual positi<strong>on</strong> of the reference RVE center X ⃗ c . Obviously, rigid bodydisplacements have to be elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated to uniquely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e ⃗x. An arbitrary boundarypo<str<strong>on</strong>g>in</str<strong>on</strong>g>t may be fixed to this purpose, e.g. for a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t with label 1 (see figure 4) by impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g⃗x 1 = X ⃗ 1 . Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g this <str<strong>on</strong>g>in</str<strong>on</strong>g> (5) leads to⃗x = ⃗c + F M·( ⃗ X − ⃗ X c )+(⃗w − ⃗w 1 ) (6)where ⃗w 1 is the microfluctuati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t 1 and where vector ⃗c is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from ⃗ X 1 ,be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale field⃗c = ⃗ X 1 − F M·( ⃗ X 1 − ⃗ X c ) (7)The deformed positi<strong>on</strong> ⃗x c of the reference centre ⃗ X c is then (us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the trivial relati<strong>on</strong>⃗w c = ⃗0) given by⃗x c = ⃗c − ⃗w 1 (8)Note that this deformed positi<strong>on</strong> is unknown and implicitly depends <strong>on</strong> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scalefield. The scale transiti<strong>on</strong> between the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics at the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e and the coarse scale typically<str<strong>on</strong>g>in</str<strong>on</strong>g>volves the volume average ¯F m of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale deformati<strong>on</strong>s tensors, i.e.¯F m = 1 V 0∫V 0F m dV 0 (9)(10)This volume <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral can be rewritten to the boundary Γ 0 of the RVE by mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use ofthe divergence theorem¯F m = 1 ∫F m dV 0 = 1 ∫V 0 V 0( ) c⃗∇0,m·(I⃗x) dV0=V 0 V 0∫ ( ) c⃗N·(I⃗x) dΓ0V 0Γ 0=Γ 0∫⃗x NdΓV 0011


where I represents the sec<strong>on</strong>d-order unit tensor, Γ 0 the external boundary of the undeformedRVE V 0 and N ⃗ the outward unit normal <strong>on</strong> that boundary.Comput<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale deformati<strong>on</strong> gradient tensor F m by tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale spatialgradient of the positi<strong>on</strong> vector given <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (6) results <str<strong>on</strong>g>in</str<strong>on</strong>g>F m =( ⃗ ∇ 0,m ⃗x) c = F M +( ⃗ ∇ 0,m (⃗w − ⃗w 1 )) c = F M +( ⃗ ∇ 0,m ⃗w) c (11)Alternatively, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the micro-fluctuati<strong>on</strong> field, ¯F m can be expanded to¯F m = F M + 1 ∫[ ∇V ⃗ 0,m (⃗w − ⃗w 1 )] c dV 0 = F M + 1 ∫[ ∇0 V ⃗ 0,m ⃗w] c dV 00V 0 V 0= F M + 1 ∫(⃗w − ⃗w 1 ) NdΓΓ ⃗ 0 = F M + 1 ∫(12)⃗w NdΓ0 Γ ⃗ 00Γ 0 Γ 0InthecasewhereF M is known and displacements at the RVE boundary are to be prescribedare c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, use is made of a scale transiti<strong>on</strong> relati<strong>on</strong> that enforces the macroscopicdeformati<strong>on</strong> gradient F M to equal the volume average of its microscopic counterparts¯F m ,F M = ¯F m (13)Enforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the scale transiti<strong>on</strong> relati<strong>on</strong> (13) clearly leads to a c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of aboundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral ∫Γ 0∫Γ 0(⃗w − ⃗w 1 ) NdΓ ⃗ 0 = 0 = ⃗w NdΓ ⃗ 0 (14)The boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (14) is the necessary c<strong>on</strong>diti<strong>on</strong> that enforces the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorem(13), which will be used <str<strong>on</strong>g>in</str<strong>on</strong>g> the scale transiti<strong>on</strong>, see also [87]. Str<strong>on</strong>ger c<strong>on</strong>diti<strong>on</strong>s areobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g specific choices for ⃗w that enforce this boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral to vanish.A few possible choices for these boundary c<strong>on</strong>diti<strong>on</strong>s are discussed further <strong>on</strong>.The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g remarks can be made with respect to the macro-micro scale transiti<strong>on</strong>:• From equati<strong>on</strong> (6) and (14) it appears that the microfluctuati<strong>on</strong> field <strong>on</strong>ly enters thek<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics relative to ⃗w 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t 1, i.e. through ⃗w− ⃗w 1 . Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the microfluctuati<strong>on</strong>field <str<strong>on</strong>g>in</str<strong>on</strong>g> this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t ⃗w 1 equal to zero will not <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed soluti<strong>on</strong>, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce theaverag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorem rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s valid. The <strong>on</strong>ly difference resides <str<strong>on</strong>g>in</str<strong>on</strong>g> the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g vector⃗x c , which is entirely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the coarse scale, i.e. ⃗x c = ⃗c see equati<strong>on</strong> (8).Clearly, ⃗x c no l<strong>on</strong>ger represents the deformed positi<strong>on</strong> of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al RVE centre⃗X c , s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it is translated with respect to this positi<strong>on</strong>. The choice ⃗w 1 = ⃗0 isoftenmade <str<strong>on</strong>g>in</str<strong>on</strong>g> practical implementati<strong>on</strong>s of the first-order homogenizati<strong>on</strong> scheme, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ceit leads to the correct soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a practical way.• For the first-order case, any base po<str<strong>on</strong>g>in</str<strong>on</strong>g>t could have been taken to expand ⃗x accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gto (4) <str<strong>on</strong>g>in</str<strong>on</strong>g>to the RVE, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the same soluti<strong>on</strong> as the specific choice made here(the RVE center ⃗ X c ).• Logically, the soluti<strong>on</strong> does not depend <strong>on</strong> the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t that was fixed at the boundary.A po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g>side the volume V 0 can be taken as well to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate rigid body displacements<str<strong>on</strong>g>in</str<strong>on</strong>g> (6). Aga<str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed shape of the RVE and the stress state extractedfrom it, rema<str<strong>on</strong>g>in</str<strong>on</strong>g> the same.12


3.4 Micro-scale RVE boundary c<strong>on</strong>diti<strong>on</strong>sAs emphasized <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>, possible RVE boundary c<strong>on</strong>diti<strong>on</strong>s naturally resultfrom the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (14) imposed by the scale transiti<strong>on</strong>. Am<strong>on</strong>g the various choicespossible, <strong>on</strong>ly three particular cases will be c<strong>on</strong>sidered hereafter <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail. Note thatthe Taylor assumpti<strong>on</strong> trivially satisfies (14) s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the microfluctuati<strong>on</strong> field is then zero<str<strong>on</strong>g>in</str<strong>on</strong>g> the entire volume V 0 and hence also at its boundary Γ 0 .3.4.1 Displacement boundary c<strong>on</strong>diti<strong>on</strong>sThe first case c<strong>on</strong>sidered is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g each po<str<strong>on</strong>g>in</str<strong>on</strong>g>t at the RVE boundarythrough the macroscopic deformati<strong>on</strong> by⃗x = F M· ⃗X with ⃗ X <strong>on</strong> Γ0 , (15)This simply implies that the micro-fluctuati<strong>on</strong> field ⃗w is zero at the boundary Γ 0 ,whichtrivially satisfies (14). The positi<strong>on</strong> of all po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts at the boundary are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed throughthe macroscopic deformati<strong>on</strong> <strong>on</strong>ly, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the RVE boundary. Theboundary will therefore reproduce typical stretch (tensi<strong>on</strong>/compressi<strong>on</strong>) and shear modes<strong>on</strong>ly.3.4.2 Tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>sThis case departs from the assumpti<strong>on</strong> that P M is to be prescribed to the RVE. Theboundary c<strong>on</strong>diti<strong>on</strong>s are then def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g all tracti<strong>on</strong>s at the RVE boundaryto the macroscopic stress tensor by⃗t = ⃗n·σ M <strong>on</strong> Γ, or ⃗p = ⃗ N·P c M <strong>on</strong> Γ 0, (16)with ⃗n the normal to the current (Γ) RVE boundary. Note that the tracti<strong>on</strong> boundaryc<strong>on</strong>diti<strong>on</strong>s (16) do not completely def<str<strong>on</strong>g>in</str<strong>on</strong>g>e the microstructural boundary value problem,s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce rotati<strong>on</strong>s are yet undeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. As emphasized earlier, these boundary c<strong>on</strong>diti<strong>on</strong>sare a priori not appropriate <str<strong>on</strong>g>in</str<strong>on</strong>g> a deformati<strong>on</strong> driven procedure as pursued <str<strong>on</strong>g>in</str<strong>on</strong>g> the presentcomputati<strong>on</strong>al homogenizati<strong>on</strong> scheme. The <str<strong>on</strong>g>in</str<strong>on</strong>g>terested reader is referred to the work of[88, 89], where it is shown that the tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong> is the weakest c<strong>on</strong>diti<strong>on</strong>to enforce (14). From a practical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, these boundary c<strong>on</strong>diti<strong>on</strong>s generallyyield unsatisfactory results. Therefore, the RVE tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s will not beexplored further <str<strong>on</strong>g>in</str<strong>on</strong>g> these lecture notes.3.4.3 Periodic boundary c<strong>on</strong>diti<strong>on</strong>sMak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the earlier <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced c<strong>on</strong>cept of local periodicity, periodic boundary c<strong>on</strong>diti<strong>on</strong>sare next <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced. The periodicity c<strong>on</strong>diti<strong>on</strong>s for the microstructural RVE arewritten <str<strong>on</strong>g>in</str<strong>on</strong>g> a general format asor formulated <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the micro-fluctuati<strong>on</strong> fields⃗x + − ⃗x − = F M·( ⃗ X + − ⃗ X − ), (17)⃗w + = ⃗w − (18)13


Deformati<strong>on</strong>s are periodic s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce micro-fluctuati<strong>on</strong>s <strong>on</strong> opposite sides are identical. Herethe (opposite) parts of the RVE boundary Γ − 0 and Γ + 0 are def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed such that N ⃗ − = −N ⃗ +at corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> Γ − 0 and Γ + 0 , see figure 4. The periodicity c<strong>on</strong>diti<strong>on</strong> (17),be<str<strong>on</strong>g>in</str<strong>on</strong>g>g prescribed <strong>on</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially periodic RVE, preserves the periodicity of the RVE <str<strong>on</strong>g>in</str<strong>on</strong>g> thedeformed state.The periodic boundary c<strong>on</strong>diti<strong>on</strong>s (17) clearly satisfy the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (14). This is easilyobserved by splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g the RVE boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>to the parts Γ + 0 and Γ − 0∫∫∫⃗w NdΓ ⃗ 0 = ⃗w + N ⃗ + dΓ + 0 + ⃗w − N ⃗ − dΓ − 0Γ 0 Γ + 0Γ − 0∫∫= ⃗w + N ⃗ + dΓ + 0 − ⃗w + N ⃗ + dΓ − (19)0Γ + 0= 0Γ − 0Note that as a result of microstructural equilibrium, tracti<strong>on</strong>s will be anti-periodic <strong>on</strong>opposite sides:⃗p + = −⃗p − , (20)Note that, as has been observed by several authors (e.g. [62, 90]), periodic boundaryc<strong>on</strong>diti<strong>on</strong>s provide a better estimati<strong>on</strong> of the overall properties, than the prescribed displacementor prescribed tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s.4 The macro-scale problem4.1 The micro-macro scale transiti<strong>on</strong>Once the micro-scale problem has been solved, macroscopic quantities have to be extractedfrom the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed results. Whereas deformati<strong>on</strong> averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g was the key assumpti<strong>on</strong>for the macro-micro transiti<strong>on</strong>, energy averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>stitutes the key assumpti<strong>on</strong> forthe reverse transiti<strong>on</strong>. This energy averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorem, known <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature as theHill-Mandel c<strong>on</strong>diti<strong>on</strong> or macro-homogeneity c<strong>on</strong>diti<strong>on</strong> [56, 86], requires that the macroscopicvolume average of the variati<strong>on</strong> of work performed <strong>on</strong> the RVE is equal to the localvariati<strong>on</strong> of the work <strong>on</strong> the macro-scale, i.e.δW 0M = δW 0m (21)Formulated <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of a work c<strong>on</strong>jugated set, i.e. the deformati<strong>on</strong> gradient tensor andthe first Piola-Kirchhoff stress tensor, the Hill-Mandel c<strong>on</strong>diti<strong>on</strong> readsP M : δF c M} {{ }δW 0M= 1 V 0∫P m : δF c m dV 0(22)V}0{{ }δW 0mThe averaged microstructural work <str<strong>on</strong>g>in</str<strong>on</strong>g> the right-hand side of (22) may be expressed <str<strong>on</strong>g>in</str<strong>on</strong>g>terms of RVE boundary quantitiesδW 0m = 1 ∫P m : δF c mV dV 0 = 1 ∫⃗p ·δ⃗x dΓ 0 , (23)0 V 0Γ 0V 014


where the relati<strong>on</strong> (with account for microstructural equilibrium)P m : ∇ 0m δ⃗x = ∇ 0m·(P c m·δ⃗x) − (∇ 0m·P c m)·δ⃗x = ∇ 0m·(P c m·δ⃗x),and the divergence theorem have been used.As will be shown next, an important result of postulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Hill-Mandel c<strong>on</strong>diti<strong>on</strong> for anRVE with k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic boundary c<strong>on</strong>diti<strong>on</strong>s (fully prescribed or periodically tied), is the factthat the macroscopic stress tensor P M equals the volume average ¯P m of the microscopicstress tensors. To this purpose, it is c<strong>on</strong>venient to establish the boundary relati<strong>on</strong> for themean RVE stress ¯P m , i.e.¯P m = 1 ∫P m dV 0V 0V 0= 1 ∫V 0(24)=V 0 ∫V 0N·(P ⃗ cm X)dΓ0 ⃗∇0·(P ⃗ c ⃗ m X)dV 0Γ 0=Γ 0∫⃗p XV dΓ 004.1.1 Displacement boundary c<strong>on</strong>diti<strong>on</strong>sIn case of fully prescribed boundary displacements (15), substituti<strong>on</strong> of the variati<strong>on</strong> ofthe boundary positi<strong>on</strong> vectors δ⃗x = δF M· ⃗X <str<strong>on</strong>g>in</str<strong>on</strong>g>to the expressi<strong>on</strong> for the averaged microwork(23) with <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> of (33) gives⎡⎤δW 0m = 1 ∫⃗p·(δF M·V ⃗X) dΓ 0 = ⎣ 1 ∫⃗p X0 V ⃗ dΓ 0⎦ : δF c M = ¯P m : δF c M (25)0Γ 0Enforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Hill-Mandel c<strong>on</strong>diti<strong>on</strong> (22) thus implies thatΓ 0P M = ¯P m (26)4.1.2 Tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>sSubstituti<strong>on</strong> of the tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong> (16) <str<strong>on</strong>g>in</str<strong>on</strong>g>to (23), with account for the variati<strong>on</strong>of the average of the microscopic deformati<strong>on</strong> gradient tensor obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by vary<str<strong>on</strong>g>in</str<strong>on</strong>g>grelati<strong>on</strong> (9), leads to⎡⎤δW 0m = 1 ∫( N·PV ⃗ c M )·δ⃗x dΓ 0 = P M : ⎣ 1 ∫Nδ⃗x ⃗ dΓ0 ⎦ = P M : δ0 V ¯F c m . (27)0Γ 0In this case, the Hill-Mandel c<strong>on</strong>diti<strong>on</strong> (22) enforces the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g macroscopic deformati<strong>on</strong>gradient to be taken as the volume average of the microscopic deformati<strong>on</strong> gradients, i.e..F M = ¯F m = 1 V 0∫V 0F m dV 0 (28)15Γ 0


This implies that the tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s, complemented by the Hill-Mandelc<strong>on</strong>diti<strong>on</strong>s, c<strong>on</strong>stitute the weakest k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t for the boundary displacements,i.e. equati<strong>on</strong> (14). Comput<str<strong>on</strong>g>in</str<strong>on</strong>g>g the volume average of the micro-scale RVE stresses fromequati<strong>on</strong> (24) now yields¯P m = 1 ∫⃗p XV dΓ 00=Γ 0 ∫( N·PV M ) X ⃗ dΓ 00Γ 0⎡= P M· ⎣ 1 ∫V 0⃗ N ⃗ X dΓ0⎤⎦(29)Γ[0] 1= P M· V 0 IV 0= P MAga<str<strong>on</strong>g>in</str<strong>on</strong>g>, the macroscopic stress equals the volume average of the microscopic stress, butthis time this c<strong>on</strong>clusi<strong>on</strong> does not result from the Hill-Mandel c<strong>on</strong>diti<strong>on</strong>.4.1.3 Periodic boundary c<strong>on</strong>diti<strong>on</strong>sFor the periodic boundary c<strong>on</strong>diti<strong>on</strong>s (17) and the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g anti-periodic tracti<strong>on</strong>s (20)δW 0m = 1 {∫⃗p +·δ⃗x ∫+ dΓ 0 + ⃗p −·δ⃗x }− dΓ 0 = 1 ∫⃗p +·(δ⃗x + − δ⃗x − )dΓ + 0V 0 V 0Γ + 0⎡⎢= ⎣ 1 ∫V 0Γ + 0Γ − 0⎤ ⎡⃗p + ( X ⃗ + − X ⃗ − )dΓ + ⎥0 ⎦ : δF c M = ⎣ 1 ∫V 0Γ 0Γ + 0⃗p ⃗ X dΓ 0⎤⎦ : δF c M(30)= ¯P m : δF c MEnforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Hill-Mandel c<strong>on</strong>diti<strong>on</strong> (22) aga<str<strong>on</strong>g>in</str<strong>on</strong>g> implies thatP M = ¯P m (31)4.2 Macroscopic stress tensorsS<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the scale transiti<strong>on</strong> implies stress averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g for all c<strong>on</strong>sidered boundary c<strong>on</strong>diti<strong>on</strong>s,the macroscopic stress tensor is given byP M = 1 ∫P m dV 0 (32)V 0=V 0 ∫⃗p XV dΓ 0 (33)0Γ 016


The volume average of the microscopic Cauchy stress tensor σ m over the current RVEvolume V can be elaborated similarly to (33)σ ∗ M = 1 ∫σ m dV = 1 ∫⃗t⃗x dΓ. (34)VVVΓJust as it is the case for k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic quantities, the usual pull-back push-forward relati<strong>on</strong>sbetween stress measures (e.g. the Cauchy and the first Piola-Kirchhoff stress tensors)are, <str<strong>on</strong>g>in</str<strong>on</strong>g> general, not valid for the volume averages of the microstructural counterpartsσ ∗ M ≠ P M·F c M / det(F M). If the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> P M , the Cauchy stress tensor <strong>on</strong> themacrolevel should be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed asσ M =1det(F M ) P M·F c M. (35)Clearly, there is some arbitrar<str<strong>on</strong>g>in</str<strong>on</strong>g>ess <str<strong>on</strong>g>in</str<strong>on</strong>g> the choice of the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g deformati<strong>on</strong> and stresstensors, whose macroscopic measures are equal to the volume average of their microscopiccounterparts (through the imposed scale transiti<strong>on</strong> relati<strong>on</strong>s). Macroscopic measures def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<strong>on</strong> another c<strong>on</strong>figurati<strong>on</strong> are then expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g averagedquantities us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the standard pull-back push-forward relati<strong>on</strong>s. The specific selecti<strong>on</strong>made here is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> its ease of implementati<strong>on</strong>. The actual choice of the “primary”averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g measures used here, i.e. the deformati<strong>on</strong> gradient tensor F and the firstPiola-Kirchhoff stress tensor P (and their rates), has been advocated <str<strong>on</strong>g>in</str<strong>on</strong>g> [59, 91, 92] (<str<strong>on</strong>g>in</str<strong>on</strong>g>the last two references the nom<str<strong>on</strong>g>in</str<strong>on</strong>g>al stress S N =det(F)F −1·σ = P c has been used). Thisparticular choice is motivated by the fact that these two measures are work c<strong>on</strong>jugated,comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with the observati<strong>on</strong> that their volume averages can exclusively be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>terms of the microstructural quantities of the undeformed RVE boundary.5 Two-scale numerical soluti<strong>on</strong> strategyOnce the boundary c<strong>on</strong>diti<strong>on</strong>s have been properly def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through <strong>on</strong>e of the methodsoutl<str<strong>on</strong>g>in</str<strong>on</strong>g>e above and <strong>on</strong>ce all phases <str<strong>on</strong>g>in</str<strong>on</strong>g> the microstructure have been characterized, a standardboundary value problem (BVP) has been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. The soluti<strong>on</strong> of this BVP followsstandard procedures. In the present computati<strong>on</strong>al homogenizati<strong>on</strong> method, it will be assumedthat the f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element method has been used to this purpose. The soluti<strong>on</strong> ofthis BVP problem automatically leads to the proper determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of all positi<strong>on</strong> vectors<str<strong>on</strong>g>in</str<strong>on</strong>g> the RVE and all tracti<strong>on</strong>s al<strong>on</strong>g its boundary. The analysis is further restricted tok<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic RVE boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong>ly.5.1 RVE boundary value problemThe RVE problem to be solved is a standard n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear quasi-static boundary value problemwith k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic boundary c<strong>on</strong>diti<strong>on</strong>s. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the standard f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element procedurefor the microlevel RVE, after discretizati<strong>on</strong>, the weak form of equilibrium (2) with accountfor the c<strong>on</strong>stitutive relati<strong>on</strong>s (3) leads to a system of n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear algebraic equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> theunknown nodal displacements ũ˜<str<strong>on</strong>g>in</str<strong>on</strong>g>t f ( ũ) =f˜ext, (36)17


express<str<strong>on</strong>g>in</str<strong>on</strong>g>g the balance of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal and external nodal forces. This system has to becompleted by the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s. To this purpose, the earlier <str<strong>on</strong>g>in</str<strong>on</strong>g>troducedk<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic boundary c<strong>on</strong>diti<strong>on</strong>s (15) or (17) will be elaborated <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail.5.1.1 Fully prescribed boundary displacementsIn the case of the fully prescribed displacement boundary c<strong>on</strong>diti<strong>on</strong>s (15), the displacementsof all nodes <strong>on</strong> the boundary is simply given by⃗u p =(F M − I)· ⃗X p , p = 1,N p (37)where N p is the number of prescribed nodes, which <str<strong>on</strong>g>in</str<strong>on</strong>g> this case simply equals to the numberof boundary nodes. The boundary c<strong>on</strong>diti<strong>on</strong>s (37) are simply added to the system (36)<str<strong>on</strong>g>in</str<strong>on</strong>g> a standard manner by static c<strong>on</strong>densati<strong>on</strong>, Lagrange multipliers or penalty functi<strong>on</strong>s.5.1.2 Periodic boundary c<strong>on</strong>diti<strong>on</strong>sPrior to the <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> of the periodic boundary c<strong>on</strong>diti<strong>on</strong>s (17), they have to berewritten <str<strong>on</strong>g>in</str<strong>on</strong>g>to a format that is more suitable for a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element framework. C<strong>on</strong>sider atwo-dimensi<strong>on</strong>al periodic RVE schematically depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4. The boundary of thisRVE can be split <str<strong>on</strong>g>in</str<strong>on</strong>g>to four parts, here denoted as “T” top, “B” bottom, “R” right and“L” left. To ease applicati<strong>on</strong> of the periodicity c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t, a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element discretizati<strong>on</strong> isnext c<strong>on</strong>sidered which has a periodic distributi<strong>on</strong> of nodes <strong>on</strong> opposite edges. Exploit<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe <str<strong>on</strong>g>in</str<strong>on</strong>g>itial periodicity of the RVE (<str<strong>on</strong>g>in</str<strong>on</strong>g> its reference c<strong>on</strong>figurati<strong>on</strong>) allows to write for everyrespective pair of nodes <strong>on</strong> the top-bottom and right-left boundaries:⃗X T − X ⃗ B = X ⃗ 4 − X ⃗ 1 ,⃗X R − X ⃗ L = X ⃗ 2 − X ⃗ 1 , (38)where ⃗ X p , p = 1, 2, 4 are the positi<strong>on</strong> vectors of the corner nodes 1, 2 and 4 <str<strong>on</strong>g>in</str<strong>on</strong>g> theundeformed state. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g pairs of periodic nodes <strong>on</strong> opposite boundaries, allows toexpress (17) as⃗x T − ⃗x B = F M·( X ⃗ 4 − X ⃗ 1 ),⃗x R − ⃗x L = F M·( X ⃗ 2 − X ⃗ 1 ). (39)Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g these relati<strong>on</strong>s to the four corner nodes, permits to c<strong>on</strong>clude that the positi<strong>on</strong>vectors of the corner nodes <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed state are <str<strong>on</strong>g>in</str<strong>on</strong>g> fact prescribed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to⃗x p = F M· ⃗X p , p =1, 2, 4 (40)The periodic boundary c<strong>on</strong>diti<strong>on</strong>s may f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally be rewritten as⃗x T = ⃗x B + ⃗x 4 − ⃗x 1 ,⃗x R = ⃗x L + ⃗x 2 − ⃗x 1 . (41)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce these c<strong>on</strong>diti<strong>on</strong>s are trivially satisfied <str<strong>on</strong>g>in</str<strong>on</strong>g> the undeformed c<strong>on</strong>figurati<strong>on</strong>, they maybe formulated <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of displacements⃗u T = ⃗u B + ⃗u 4 − ⃗u 1 ,⃗u R = ⃗u L + ⃗u 2 − ⃗u 1 , (42)18


whereby⃗u p =(F M − I)· ⃗X p , p =1, 2, 4 (43)In a discretized format the relati<strong>on</strong>s (42) lead to a set of homogeneous c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of thetypeC a ũ a , (44)=0˜with C a a matrix c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g coefficients <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong>s and ũ a a column withthe degrees of freedom <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. Procedures for impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts(44) <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the direct elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the dependent degrees of freedom from the system ofequati<strong>on</strong>s, or the use of Lagrange multipliers or penalty functi<strong>on</strong>s. In the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts(44) are enforced by elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the dependent degrees of freedom. Althoughsuch a procedure may be found <str<strong>on</strong>g>in</str<strong>on</strong>g> many textbooks <strong>on</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite elements (e.g. [93]), it is heresummarized for the sake of clarity and completeness, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it will be applied <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 5.3for the derivati<strong>on</strong> of the macroscopic tangent stiffness.To this purpose, the homogeneous c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong>s (44) are partiti<strong>on</strong>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to[ ]ũi[C i C d ] , (45)u=0˜˜dwhere ũ i are the <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent degrees of freedom (to be reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the system) and ũ d arethe dependent degrees of freedom (to be elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from the system). Because there areas many dependent degrees of freedom ũ d as there are <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t equati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> (45), matrix C d is square and n<strong>on</strong>-s<str<strong>on</strong>g>in</str<strong>on</strong>g>gular. Soluti<strong>on</strong> for ũ d yieldsu = C di ũ i , with C di = −C˜d −1d C i. (46)This relati<strong>on</strong> may be further rewritten as[ ]ũi= T ũui , with T =˜d[IC di], (47)where I is a unit matrix of size [N i × N i ], with N i the number of the <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent degreesof freedom.With the transformati<strong>on</strong> matrix T def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed such that = T d d˜ ′ , the comm<strong>on</strong> transformati<strong>on</strong>sr ′˜˜ = T T and K r˜ ′ = T T KT can be applied to a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear system of equati<strong>on</strong>s of the formK = , lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a new system K d˜r˜ ′ d ′˜ = r′˜ .The standard l<str<strong>on</strong>g>in</str<strong>on</strong>g>earizati<strong>on</strong> of the n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear system of equati<strong>on</strong>s (36) leads to a l<str<strong>on</strong>g>in</str<strong>on</strong>g>earsystem <str<strong>on</strong>g>in</str<strong>on</strong>g> the iterative correcti<strong>on</strong>s δũ to the current estimate ũ. This system may bepartiti<strong>on</strong>ed as [ ][ ] [Kii K id δũi= δr˜iK di K dd δũ d δr˜dwith the residual nodal forces at the right-hand side.], (48)Not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that all the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>tequati<strong>on</strong>s c<strong>on</strong>sidered above are l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, and thus their l<str<strong>on</strong>g>in</str<strong>on</strong>g>earizati<strong>on</strong> is straightforward,applicati<strong>on</strong> of the transformati<strong>on</strong> (47) to the system (48) gives[Kii + K id C di + C T di K di + C T di K ]ddC di δũi = [ ]δr˜i + C T di δr˜d . (49)Note that the boundary c<strong>on</strong>diti<strong>on</strong>s (43) prescrib<str<strong>on</strong>g>in</str<strong>on</strong>g>g displacements of the corner nodeshave not yet been applied. The column of “<str<strong>on</strong>g>in</str<strong>on</strong>g>dependent” degrees of freedom ũ i <str<strong>on</strong>g>in</str<strong>on</strong>g>cludesthe prescribed corner nodes ũ p am<strong>on</strong>g other nodes. The boundary c<strong>on</strong>diti<strong>on</strong>s (43) shouldbe applied to the system (49) is a standard manner.The c<strong>on</strong>diti<strong>on</strong> of antiperiodic tracti<strong>on</strong>s (20) will be addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 5.2.2.19


5.2 Extracti<strong>on</strong> of the macroscopic stressAfter the analysis of a microstructural RVE is completed, the RVE averaged stress have tobe extracted. Of course, the macroscopic stress tensor can be calculated by numericallyevaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the volume <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (32). However it is computati<strong>on</strong>ally more efficient tocompute the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (33), which can be further simplified for the case of theperiodic boundary c<strong>on</strong>diti<strong>on</strong>s.5.2.1 Fully prescribed boundary displacementsFor the case of prescribed displacement boundary c<strong>on</strong>diti<strong>on</strong>s the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (33)simply leads toP M = 1 V 0N∑ pp=1⃗f p⃗ Xp , (50)where ⃗ f p are the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g external forces at the boundary nodes and ⃗ X p the positi<strong>on</strong>vectors of these nodes <str<strong>on</strong>g>in</str<strong>on</strong>g> the undeformed state; N p is the number of the nodes <strong>on</strong> theboundary.5.2.2 Periodic boundary c<strong>on</strong>diti<strong>on</strong>sIn order to simplify the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (33) for the case of periodic boundary c<strong>on</strong>diti<strong>on</strong>s,c<strong>on</strong>sider all the forces act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the RVE boundary subjected to the boundaryc<strong>on</strong>diti<strong>on</strong>s accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (42)–(43). At the three prescribed corner nodes the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g externalforces f ⃗ p,p=1, e 2, 4 act. Additi<strong>on</strong>ally, there are forces <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> every c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t(ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g) relati<strong>on</strong> (42). For example, for each c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong> between pairs of the nodes<strong>on</strong> the bottom-top boundaries there is a ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g force at the node <strong>on</strong> the bottom boundary⃗p t B , a ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g force at the node <strong>on</strong> the top boundary ⃗p t T and ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g forces at the cornernodes 1 and 4, ⃗p t B1 and ⃗p t B4 , respectively. Similarly there are forces ⃗p t L , ⃗p t R , ⃗p t L1 and ⃗p t L2corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the left-right c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. All these forces are schematically shown <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 5.fe4p t Tp t B4p t Rp t Lp t B1p t L1fe1p t Bp t L2fe2Figure 5: Tracti<strong>on</strong>s act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the boundary of a two-dimensi<strong>on</strong>al RVE subjected to periodicboundary c<strong>on</strong>diti<strong>on</strong>s.20


Each c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong> satisfies the c<strong>on</strong>diti<strong>on</strong> of zero virtual work, i.e.⃗p t B·δ⃗x B + ⃗p t T·δ⃗x T + ⃗p t B1 ·δ⃗x 1 + ⃗p t B4 ·δ⃗x 4 =0,⃗p t L·δ⃗x L + ⃗p t R·δ⃗x R + ⃗p t L1 ·δ⃗x 1 + ⃗p t L2 ·δ⃗x 2 =0. (51)Substituti<strong>on</strong> of the variati<strong>on</strong> of the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (41) <str<strong>on</strong>g>in</str<strong>on</strong>g>to (51) gives(⃗p t B + ⃗p t T )·δ⃗x B +(⃗p t B1 − ⃗p t T )·δ⃗x 1 +(⃗p t T + ⃗p t B4 )·δ⃗x 4 =0,(⃗p t L + ⃗p t R)·δ⃗x L +(⃗p t L1 − ⃗p t R)·δ⃗x 1 +(⃗p t R + ⃗p t L2 )·δ⃗x 2 =0. (52)These relati<strong>on</strong>s should hold for any δ⃗x B , δ⃗x L , δ⃗x 1 , δ⃗x 2 , δ⃗x 4 , therefore⃗p t B = −⃗p t T = −⃗p t B1 = ⃗p t B4 ,⃗p t L = −⃗p t R = −⃗p t L1 = ⃗p t L2 . (53)Equati<strong>on</strong> (53) reflects the antiperiodicity of ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g forces <strong>on</strong> the opposite boundaries, whichhas been <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced previously <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (20).With account for all forces act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the RVE boundary, the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (33) iswritten asP M = 1 (f ⃗1 e XV ⃗ 1 + f ⃗ 2 e X ⃗ 2 + f ⃗ 4 e X ⃗ 4 +0∫∫∫∫⃗p t ⃗ BX B dΓ 0 + ⃗p t TX ⃗ T dΓ 0 + ⃗p t LX ⃗ L dΓ 0 + ⃗p t RX ⃗ R dΓ 0 +Γ 0B Γ 0T Γ 0L Γ 0R( ∫ )⃗p t B1 dΓ ⃗X1 0 + (∫ )⃗p t L1 dΓ ⃗X1 0 + (∫ )⃗p t B4 dΓ ⃗X4 0 + (∫ )⃗p t L2 dΓ ⃗X2 0).Γ 0BΓ 0BΓ 0LMak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the relati<strong>on</strong> between ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g forces (53) givesP M = 1 ( ∑∫∫⃗f p e XV ⃗ p + ⃗p t B ( X ⃗ B − X ⃗ T )dΓ 0 + ⃗p t L ( X ⃗ L − X ⃗ R )dΓ 0 +0p=1,2,4Γ 0B Γ 0L( ∫ )⃗p t B1 dΓ ⃗X1 0 + (∫ )⃗p t L1 dΓ ⃗X1 0 + (∫ )⃗p t B4 dΓ ⃗X4 0 + (∫ )⃗p t L2 dΓ ⃗X2 0).Γ 0LInsert<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>diti<strong>on</strong>s of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial periodicity of the RVE (38) results <str<strong>on</strong>g>in</str<strong>on</strong>g>P M = 1 ( ∑∫∫⃗f p e XV ⃗ p + (⃗p t B + ⃗p t B1 ) X ⃗ 1 dΓ 0 + (⃗p t L + ⃗p t L1 ) X ⃗ 1 dΓ 0 +0p=1,2,4Γ 0B Γ 0L∫∫(⃗p t B4 − ⃗p t B) X ⃗ 4 dΓ 0 + (⃗p t L2 − ⃗p t L) X ⃗ 2 dΓ 0),Γ 0B Γ 0Lwhich after substituti<strong>on</strong> of the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong>s between ty<str<strong>on</strong>g>in</str<strong>on</strong>g>g forces (53) givesP M = 1 ∑⃗f p e XV ⃗ p . (57)0p=1,2,4Therefore, when the periodic boundary c<strong>on</strong>diti<strong>on</strong>s are used, all the terms with forces<str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g>to the periodicity c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts cancel out from the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (33) andthe <strong>on</strong>ly c<strong>on</strong>tributi<strong>on</strong> left is by the external forces at the three prescribed corner nodes.Γ 0BΓ 0BΓ 0LΓ 0L(54)(55)(56)21


5.3 Extracti<strong>on</strong> of the macroscopic tangent operatorWhen the micro-macro approach is implemented with<str<strong>on</strong>g>in</str<strong>on</strong>g> the framework of a n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>earf<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element code, the stiffness matrix at every macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is required.Because <str<strong>on</strong>g>in</str<strong>on</strong>g> the computati<strong>on</strong>al homogenizati<strong>on</strong> approach there is no explicit form of thec<strong>on</strong>stitutive behaviour <strong>on</strong> the macrolevel assumed a priori, the stiffness matrix has to bedeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed numerically from the relati<strong>on</strong> between variati<strong>on</strong>s of the macroscopic stressand variati<strong>on</strong>s of the macroscopic deformati<strong>on</strong> at such a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. This may be realized bynumerical differentiati<strong>on</strong> of the numerical macroscopic stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong>, for exampleus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a forward difference approximati<strong>on</strong> as has been suggested <str<strong>on</strong>g>in</str<strong>on</strong>g> [94]. Another approachis to c<strong>on</strong>dense the microstructural stiffness to the local macroscopic stiffness. This isachieved by reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the total RVE system of equati<strong>on</strong>s to the relati<strong>on</strong> between theforces act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the RVE boundary and the associated boundary displacements. Sucha procedure <str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with the Lagrange multiplier method to impose boundaryc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts has been elaborated <str<strong>on</strong>g>in</str<strong>on</strong>g> [65]. Here an alternative scheme, which employs thedirect c<strong>on</strong>densati<strong>on</strong> of the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed degrees of freedom, as has been presented <str<strong>on</strong>g>in</str<strong>on</strong>g> [1,72] will be c<strong>on</strong>sidered. After the c<strong>on</strong>densed microscopic stiffness relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the prescribeddisplacement and force variati<strong>on</strong>s is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, it needs to be transformed to arrive at anexpressi<strong>on</strong> relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g variati<strong>on</strong>s of the macroscopic stress and deformati<strong>on</strong> tensors, typicallyused <str<strong>on</strong>g>in</str<strong>on</strong>g> the f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element codes. These two steps are elaborated <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g.5.3.1 C<strong>on</strong>densati<strong>on</strong> of the microscopic stiffness matrix:fully prescribed boundary displacementsFirst the total microstructural system of equati<strong>on</strong>s (<str<strong>on</strong>g>in</str<strong>on</strong>g> its l<str<strong>on</strong>g>in</str<strong>on</strong>g>earized form) is partiti<strong>on</strong>edas [ ][ ] [ ]Kpp K pf δũp= δf˜p, (58)K fp K ff δũ f 0˜where δũ p and δf˜p are the columns with iterative displacements and external forces of theboundary nodes, respectively, and δũ f the column with the iterative displacements of therema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (<str<strong>on</strong>g>in</str<strong>on</strong>g>terior) nodes; K pp , K pf , K fp and K ff are the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g partiti<strong>on</strong>s ofthe total RVE stiffness matrix. The stiffness matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> the formulati<strong>on</strong> (58) is taken atthe end of a microstructural <str<strong>on</strong>g>in</str<strong>on</strong>g>crement, where a c<strong>on</strong>verged state is reached. Elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of δũ f from (58) leads to the reduced stiffness matrix K M relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary displacementvariati<strong>on</strong>s to boundary force variati<strong>on</strong>sK M δũ p = δf˜p, with K M = K pp − K pf (K ff ) −1 K fp . (59)5.3.2 C<strong>on</strong>densati<strong>on</strong> of the microscopic stiffness matrix:periodic boundary c<strong>on</strong>diti<strong>on</strong>sIn the case of the periodic boundary c<strong>on</strong>diti<strong>on</strong>s the po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of departure is the microscopicsystem of equati<strong>on</strong>s (49) from which the dependent degrees of freedom have been elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated(as described <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 5.1.2)K ⋆ δũ i = δr˜⋆ , (60)with K ⋆ = K ii + K id C di + C T di K di + C T di K ddC di ,δr˜⋆ = δr˜i + C T di δr˜d.22


Next, system (60) is further split, similarly to (58), <str<strong>on</strong>g>in</str<strong>on</strong>g>to the parts corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to thevariati<strong>on</strong>s of the prescribed degrees of freedom δũ p (which <str<strong>on</strong>g>in</str<strong>on</strong>g> this case are the variedpositi<strong>on</strong>s of the three corner nodes prescribed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (43)), variati<strong>on</strong>s of the external⋆forces at these prescribed nodes denoted by p , and the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (free) displacementvariati<strong>on</strong>s δũ f :δf˜[ ][ ] [ ]K⋆pp K ⋆ ⋆pf δũpK ⋆ fp K ⋆ p=ff δũ fδf˜ . (61)0˜Then the reduced stiffness matrix K ⋆ M <str<strong>on</strong>g>in</str<strong>on</strong>g> case of periodic boundary c<strong>on</strong>diti<strong>on</strong>s is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edasK ⋆ M δũ ⋆p = p δf˜, with K⋆ M = K⋆ pp − K⋆ pf (K⋆ ff )−1 K ⋆ fp . (62)Note that K ⋆ M is [6 × 6] matrix <strong>on</strong>ly (<str<strong>on</strong>g>in</str<strong>on</strong>g> the two-dimensi<strong>on</strong>al case).5.3.3 F<str<strong>on</strong>g>in</str<strong>on</strong>g>al macroscopic tangentF<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong> between displacement and force variati<strong>on</strong>s (relati<strong>on</strong> (59)if prescribed displacement boundary c<strong>on</strong>diti<strong>on</strong>s are used, or relati<strong>on</strong> (62) if periodicityc<strong>on</strong>diti<strong>on</strong>s are employed) needs to be transformed to arrive at an expressi<strong>on</strong> relat<str<strong>on</strong>g>in</str<strong>on</strong>g>gvariati<strong>on</strong>s of the macroscopic stress and deformati<strong>on</strong> tensorsδP M = 4 C P M : δFc M , (63)where the fourth order tensor 4 C P M represents the required c<strong>on</strong>sistent tangent stiffness atthe macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t level.In order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>stitutive tangent from the reduced stiffness matrix K M (or K ⋆ M ),first relati<strong>on</strong>s (59) and (62) are rewritten <str<strong>on</strong>g>in</str<strong>on</strong>g> a specific vector/tensor format∑K (ij)M ·δ⃗u (j) = δf ⃗ (i) , (64)jwhere <str<strong>on</strong>g>in</str<strong>on</strong>g>dices i and j take the values i, j = 1,N p for prescribed displacement boundaryc<strong>on</strong>diti<strong>on</strong>s (N p is the number of boundary nodes) and i, j =1, 2, 4 for the periodicboundary c<strong>on</strong>diti<strong>on</strong>s. In (64) the comp<strong>on</strong>ents of the tensors K (ij)Mare simply found <str<strong>on</strong>g>in</str<strong>on</strong>g>the tangent matrix K M (for displacement boundary c<strong>on</strong>diti<strong>on</strong>s) or <str<strong>on</strong>g>in</str<strong>on</strong>g> the matrix K ⋆ M (forperiodic boundary c<strong>on</strong>diti<strong>on</strong>s) at the rows and columns of the degrees of freedom <str<strong>on</strong>g>in</str<strong>on</strong>g> thenodes i and j. For example, for the case of the periodic boundary c<strong>on</strong>diti<strong>on</strong>s the totalmatrix K ⋆ M has the format⎡ [] [] [] ⎤K (11)11 K (11)12 K (12)K (11)21 K (11)11 K (12)12 K (14)22 K (12)21 K (12)11 K (14)1222 K (14)21 K (14)22[] [] []K ⋆ M = K (21)11 K (21)12 K (22)K (21)21 K (21)11 K (22)12 K (24)22 K (22)21 K (22)11 K (24)1222 K (24)21 K (24), (65)22⎢[] [] []⎣ K (41)11 K (41)12 K (42)K (41)21 K (41)11 K (42)12 K (44)22 K (42)21 K (42)11 K (44) ⎥12 ⎦22 K (44)21 K (44)22where the superscripts <str<strong>on</strong>g>in</str<strong>on</strong>g> round brackets refer to the nodes and the subscripts to thedegrees of freedom at those nodes. Then each submatrix <str<strong>on</strong>g>in</str<strong>on</strong>g> (65) may be c<strong>on</strong>sidered as therepresentati<strong>on</strong> of a sec<strong>on</strong>d-order tensor K (ij)M .23


Next, the expressi<strong>on</strong> for the variati<strong>on</strong> of the nodal forces (64) is substituted <str<strong>on</strong>g>in</str<strong>on</strong>g>to therelati<strong>on</strong> for the variati<strong>on</strong> of the macroscopic stress follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from (50) or (57)δP M = 1 ∑ ∑(K (ij)MV ·δ⃗u (j)) X ⃗ (i) . (66)0ijSubstituti<strong>on</strong> of the equati<strong>on</strong> δ⃗u (j) = X ⃗ (j)·δF c M <str<strong>on</strong>g>in</str<strong>on</strong>g>to (66) givesδP M = 1 ∑ ∑( XV ⃗ (i) K (ij)MX ⃗ (j) ) LC : δF c M , (67)0ijwhere the superscript LC denotes left c<strong>on</strong>jugati<strong>on</strong>, which for a fourth-order tensor 4 T isdef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as Tijkl LC = T jikl. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g (67) with (63) the c<strong>on</strong>sistent c<strong>on</strong>stitutivetangent is identified as4 C P M = 1 ∑ ∑( XV ⃗ (i) K (ij)MX ⃗ (j) ) LC . (68)0ijIf the macroscopic f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element scheme requires the c<strong>on</strong>stitutive tangent relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g thevariati<strong>on</strong> of the macroscopic Cauchy stress to the variati<strong>on</strong> of the macroscopic deformati<strong>on</strong>gradient tensor accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g toδσ M = 4 C σ M : δFc M , (69)this tangent may be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> equati<strong>on</strong> of the macroscopic Cauchystress tensor (35), followed by substituti<strong>on</strong> of (50) (or (57)) and (67). This gives[ 1 ∑ ∑δσ M =(⃗x (i) K (ij)MXV⃗ (j) ) LC + 1 ∑]⃗f (i) I XV⃗ (i) − σ M F −cM: δF c M , (70)ijwhere the expressi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> square brackets is identified as the required tangent stiffness tensor4 C σ M . In the derivati<strong>on</strong> of (70) it has been used that <str<strong>on</strong>g>in</str<strong>on</strong>g> case of prescribed displacements ofthe RVE boundary (15) or of periodic boundary c<strong>on</strong>diti<strong>on</strong>s (17), the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial and currentvolumes of an RVE are related accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to J M =det(F M )=V/V 0 .i5.4 Nested soluti<strong>on</strong> strategyBased <strong>on</strong> the above developments the actual implementati<strong>on</strong> of the computati<strong>on</strong>al homogenizati<strong>on</strong>strategy may be described by the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g subsequent steps.The macroscopic structure to be analyzed is discretized by f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite elements. The externalload is applied by an <str<strong>on</strong>g>in</str<strong>on</strong>g>cremental procedure. Increments can be associated with discretetime steps. The soluti<strong>on</strong> of the macroscopic n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear system of equati<strong>on</strong>s is performed<str<strong>on</strong>g>in</str<strong>on</strong>g> a standard iterative manner. To each macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t a discretized RVEis assigned. The geometry of the RVE is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the microstructural morphology of thematerial under c<strong>on</strong>siderati<strong>on</strong>.For each macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t the local macroscopic deformati<strong>on</strong> gradient tensorF M is computed from the iterative macroscopic nodal displacements (dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>itializati<strong>on</strong>step, zero deformati<strong>on</strong> is assumed throughout the macroscopic structure, i.e. F M = I,24


which allows to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial macroscopic c<strong>on</strong>stitutive tangent). The macroscopic deformati<strong>on</strong>gradient tensor is used to formulate the boundary c<strong>on</strong>diti<strong>on</strong>s accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (37)or (42)–(43) to be applied <strong>on</strong> the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g representative cell.The soluti<strong>on</strong> of the RVE boundary value problem employ<str<strong>on</strong>g>in</str<strong>on</strong>g>g a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite elementprocedure, provides the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g stress and stra<str<strong>on</strong>g>in</str<strong>on</strong>g> distributi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the microstructural cell.Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g forces at the prescribed nodes, the RVE averaged first Piola-Kirchhoffstress tensor P M is computed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (50) or (57) and returned to the macroscopic<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t as a local macroscopic stress. From the global RVE stiffness matrix thelocal macroscopic c<strong>on</strong>sistent tangent 4 C P M is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (68).When the analysis of all microstructural RVEs is f<str<strong>on</strong>g>in</str<strong>on</strong>g>ished, the stress tensor is available atevery macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. Thus, the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal macroscopic forces can be calculated.If these forces are <str<strong>on</strong>g>in</str<strong>on</strong>g> balance with the external load, <str<strong>on</strong>g>in</str<strong>on</strong>g>cremental c<strong>on</strong>vergence hasbeen achieved and the next time <str<strong>on</strong>g>in</str<strong>on</strong>g>crement can be evaluated. If there is no c<strong>on</strong>vergence,the procedure is c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ued to achieve an updated estimati<strong>on</strong> of the macroscopic nodal displacements.The macroscopic stiffness matrix is assembled us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>stitutive tangentsavailable at every macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t from the RVE analysis. The soluti<strong>on</strong> ofthe macroscopic system of equati<strong>on</strong>s leads to an updated estimati<strong>on</strong> of the macroscopicdisplacement field. The soluti<strong>on</strong> scheme is summarized <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 1. It is remarked thatthe two-level scheme outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed above can be used selectively depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the macroscopicdeformati<strong>on</strong>, e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> the elastic doma<str<strong>on</strong>g>in</str<strong>on</strong>g> the macroscopic c<strong>on</strong>stitutive tangents do not haveto be updated at every macroscopic load<str<strong>on</strong>g>in</str<strong>on</strong>g>g step.6 Example: two-scale coupled analysis <str<strong>on</strong>g>in</str<strong>on</strong>g> bend<str<strong>on</strong>g>in</str<strong>on</strong>g>gAs an example, the computati<strong>on</strong>al homogenizati<strong>on</strong> approach is applied to pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>gof a rectangular strip under plane stra<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Both the length and the heightof the sample equal 0.2 m, the thickness is taken 1 m. The macromesh is composed of5 quadrilateral 8 node plane stra<str<strong>on</strong>g>in</str<strong>on</strong>g> reduced <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> elements. The undeformed anddeformed geometries of the macromesh are schematically depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6. At theleft side the strip is fixed <str<strong>on</strong>g>in</str<strong>on</strong>g> axial (horiz<strong>on</strong>tal) directi<strong>on</strong>, the displacement <str<strong>on</strong>g>in</str<strong>on</strong>g> transverse(vertical) directi<strong>on</strong> is left free. At the right side the rotati<strong>on</strong> of the cross secti<strong>on</strong> isprescribed. As pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g is c<strong>on</strong>sidered the behaviour of the strip is uniform <str<strong>on</strong>g>in</str<strong>on</strong>g> axialdirecti<strong>on</strong> and, therefore, a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle layer of elements <strong>on</strong> the macrolevel suffices to simulatethe situati<strong>on</strong>.(a)(b)Figure 6: Schematic representati<strong>on</strong> of the undeformed (a) and deformed (b) c<strong>on</strong>figurati<strong>on</strong>sof the macroscopically bended specimen.25


Table 1: Incremental-iterative nested multi-scale soluti<strong>on</strong> scheme for the computati<strong>on</strong>alhomogenizati<strong>on</strong>.MACRO1. Initializati<strong>on</strong>⊲ <str<strong>on</strong>g>in</str<strong>on</strong>g>itialize the macroscopic model⊲ assign an RVE to every <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t⊲ loop over all <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>tsset F M = Istore the tangent⊲ end <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t loop2. Next <str<strong>on</strong>g>in</str<strong>on</strong>g>crement⊲ apply <str<strong>on</strong>g>in</str<strong>on</strong>g>crement of the macro load3. Next iterati<strong>on</strong>⊲ assemble the macroscopic tangent stiffness⊲ solve the macroscopic system⊲ loop over all <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>tscalculate F Mstore P Mstore the tangent⊲ end <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t loop⊲ assemble the macroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>ternalforces4. Check for c<strong>on</strong>vergence⊲ if not c<strong>on</strong>verged ⇒ step 3⊲ else ⇒ step 2F M−−−−−−−−→tangent←−−−−−−−−−FM−−−−−−−−→P M←−−−−−−−−−tangent←−−−−−−−−−MICROInitializati<strong>on</strong> RVE analysis⊲ prescribe boundary c<strong>on</strong>diti<strong>on</strong>s⊲ assemble the RVE stiffness⊲ calculate the tangent 4 C P MRVE analysis⊲ prescribe boundary c<strong>on</strong>diti<strong>on</strong>s⊲ assemble the RVE stiffness⊲ solve the RVE problem⊲ calculate P M⊲ calculate the tangent 4 C P MIn this example two heterogeneous microstructures c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a homogeneous matrixmaterial with <str<strong>on</strong>g>in</str<strong>on</strong>g>itially 12% and 30% volume fracti<strong>on</strong>s of voids are studied. To generatea random distributi<strong>on</strong> of cavities <str<strong>on</strong>g>in</str<strong>on</strong>g> the matrix with a prescribed volume fracti<strong>on</strong>,maximum diameter of holes and m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum distance between two neighbour<str<strong>on</strong>g>in</str<strong>on</strong>g>g holes, for atwo-dimensi<strong>on</strong>al RVE, the procedure from [95] and [96] has been adopted. The microstructuralcells used <str<strong>on</strong>g>in</str<strong>on</strong>g> the calculati<strong>on</strong>s are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7. It is worth menti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g thatthe absolute size of the microstructure is irrelevant for the first-order computati<strong>on</strong>al homogenizati<strong>on</strong>analysis (see also discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 8).The matrix material behaviour has been described by a modified elasto-visco-plasticBodner-Partom model [97]. This choice is motivated by the <str<strong>on</strong>g>in</str<strong>on</strong>g>tenti<strong>on</strong> to dem<strong>on</strong>strate thatthe method is well-suited for complex microstructural material behaviour, e.g. n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>earhistory and stra<str<strong>on</strong>g>in</str<strong>on</strong>g> rate dependent at large stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The material parameters for annealedalum<str<strong>on</strong>g>in</str<strong>on</strong>g>um AA 1050 determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> [97] have been used; elastic parameters: shear modulusG =2.6 × 10 4 MPa, bulk modulus K =7.8 × 10 4 MPa and viscosity parameters:Γ 0 =10 8 s −2 , m =13.8, n =3.4, Z 0 =81.4 MPa,Z 1 = 170 MPa.Micro-macro calculati<strong>on</strong>s for the heterogeneous structure, represented by the RVEs shown26


(a)(b)Figure 7: Microstructural cells used <str<strong>on</strong>g>in</str<strong>on</strong>g> the calculati<strong>on</strong>s with 12% voids (a) and 30%voids (b).<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7 have been carried out, simulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a prescribed moment rateequal to 5 × 10 5 Nms −1 . Figure 8 shows the distributi<strong>on</strong> plots of the effective plasticstra<str<strong>on</strong>g>in</str<strong>on</strong>g> for the case of the RVE with 12% volume fracti<strong>on</strong> voids at an applied momentequal to 6.8 × 10 5 N m <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed macrostructure and <str<strong>on</strong>g>in</str<strong>on</strong>g> three deformed, <str<strong>on</strong>g>in</str<strong>on</strong>g>itiallyidentical RVEs at different locati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the macrostructure. Each hole acts as a plasticstra<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrator and causes higher stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the RVE than those occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> thehomogenized macrostructure. In the present calculati<strong>on</strong>s the maximum effective plasticstra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the macrostructure is about 25%, whereas at RVE level this stra<str<strong>on</strong>g>in</str<strong>on</strong>g> reaches 50%.It is obvious from the deformed geometry of the holes <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8 that the RVE <str<strong>on</strong>g>in</str<strong>on</strong>g> theupper part of the bended strip is subjected to tensi<strong>on</strong> and the RVE <str<strong>on</strong>g>in</str<strong>on</strong>g> the lower partto compressi<strong>on</strong>, while the RVE <str<strong>on</strong>g>in</str<strong>on</strong>g> the vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of the neutral axis is loaded c<strong>on</strong>siderablymilder than the other RVEs. This c<strong>on</strong>firms the c<strong>on</strong>clusi<strong>on</strong> that the method realisticallydescribes the deformati<strong>on</strong> modes of the microstructure.Figure 8: Distributi<strong>on</strong> of the effective plastic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed macrostructure and<str<strong>on</strong>g>in</str<strong>on</strong>g> three deformed RVEs, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to different po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of the macrostructure.In figure 9 the moment-curvature (curvature def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for the bottom edge of the specimen)diagram result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the computati<strong>on</strong>al homogenizati<strong>on</strong> approach is presented. To givean impressi<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the holes also the resp<strong>on</strong>se of a homogeneous c<strong>on</strong>figurati<strong>on</strong>27


987Moment, N m654310 x 105 Curvature,1/mhomogeneous30% voids12% voids2100 0.2 0.4 0.6 0.8 1Figure 9: Moment-curvature diagram result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the first-order computati<strong>on</strong>al homogenizati<strong>on</strong>analysis.(without cavities) is shown. It can be c<strong>on</strong>cluded that even the presence of 12% voids<str<strong>on</strong>g>in</str<strong>on</strong>g>duces a reducti<strong>on</strong> of the bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g moment (at a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> curvature) of more than 25% <str<strong>on</strong>g>in</str<strong>on</strong>g>the plastic regime. This significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g moment may be attributedto the formati<strong>on</strong> of microstructural shear bands, which are clearly observed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.This <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that <str<strong>on</strong>g>in</str<strong>on</strong>g> order to capture such an effect a detailed microstructural analysisis required. A straightforward applicati<strong>on</strong> of, for example, the rule of mixtures would leadto err<strong>on</strong>eous results.7 The RVE <str<strong>on</strong>g>in</str<strong>on</strong>g> first-order computati<strong>on</strong>al homogenizati<strong>on</strong>7.1 General c<strong>on</strong>cept of an RVEThe computati<strong>on</strong>al homogenizati<strong>on</strong> approach, as well as most of other homogenizati<strong>on</strong>techniques, are <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the c<strong>on</strong>cept of a representative volume element (RVE). An RVE isa model of a material microstructure to be used to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the resp<strong>on</strong>se of the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>ghomogenized macroscopic c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum <str<strong>on</strong>g>in</str<strong>on</strong>g> a macroscopic material po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. Thus, the properchoice of the RVE largely determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the accuracy of the modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a heterogeneousmaterial.There appear to be two significantly different ways to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e a representative volume element[29]. The first def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> requires an RVE to be a statistically representative sampleof the microstructure, i.e. to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude virtually a sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of all possible microstructuralc<strong>on</strong>figurati<strong>on</strong>s that occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the composite. Clearly, <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of a n<strong>on</strong>-regular and n<strong>on</strong>uniformmicrostructure such a def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> leads to a c<strong>on</strong>siderably large RVE. Therefore,RVEs that rigorously satisfy this def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> are rarely used <str<strong>on</strong>g>in</str<strong>on</strong>g> actual homogenizati<strong>on</strong> analyses.This c<strong>on</strong>cept is usually employed when a computer model of the microstructure isbe<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>structed <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> experimentally obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed statistical <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> (see e.g. [98]).Another def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> characterizes an RVE as the smallest microstructural volume that sufficientlyaccurately represents the overall macroscopic properties of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. This usually28


leads to much smaller RVE sizes than the statistical def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> described above. However,<str<strong>on</strong>g>in</str<strong>on</strong>g> this case the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum required RVE size also depends <strong>on</strong> the type of materialbehaviour (e.g. for elastic behaviour usually much smaller RVEs suffice than for plasticbehaviour), macroscopic load<str<strong>on</strong>g>in</str<strong>on</strong>g>g path and difference of properties between heterogeneities.Moreover, the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum RVE size, that results <str<strong>on</strong>g>in</str<strong>on</strong>g> a good approximati<strong>on</strong> of the overall materialproperties, does not always lead to adequate distributi<strong>on</strong>s of the microfields with<str<strong>on</strong>g>in</str<strong>on</strong>g>the RVE. This may be important if, for example, microstructural damage <str<strong>on</strong>g>in</str<strong>on</strong>g>itiati<strong>on</strong> orevolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g microstructures are of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.The latter def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of an RVE is closely related to the <strong>on</strong>e established by Hill [86], whoargued that an RVE is well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed if it reflects the material microstructure and if theresp<strong>on</strong>ses under uniform displacement and tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s co<str<strong>on</strong>g>in</str<strong>on</strong>g>cide. If amicrostructural cell does not c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> sufficient microstructural <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>, its overallresp<strong>on</strong>ses under uniform displacement and tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s will differ. Thehomogenized properties determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this way are called “apparent”, a noti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>troducedby Huet [99]. The apparent properties obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by applicati<strong>on</strong> of uniform displacementboundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a microstructural cell usually overestimate the real effective properties,while the uniform tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s lead to underestimati<strong>on</strong>. As hasbeen verified by a number of authors [62, 90], for a given microstructural cell size, theperiodic boundary c<strong>on</strong>diti<strong>on</strong>s provide a better estimati<strong>on</strong> of the overall properties, thanthe uniform displacement and uniform tracti<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong>s. This c<strong>on</strong>clusi<strong>on</strong> alsoholds if the microstructure does not really possess geometrical periodicity [62]. Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe size of the microstructural cell leads to a better estimati<strong>on</strong> of the overall properties,and, f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, to a “c<strong>on</strong>vergence” of the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with the different boundary c<strong>on</strong>diti<strong>on</strong>sto the real effective properties of the composite material, as schematically illustrated<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 10. The c<strong>on</strong>vergence of the apparent properties towards the effective <strong>on</strong>es at <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gsize of the microstructural cell has been <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> [62, 99, 100, 101, 102, 103].displacement b.c.apparent propertyperiodic b.c.effective valuetracti<strong>on</strong> b.c.microstructural cell size(a)(b)Figure 10: (a) Several microstructural cells of different sizes. (b) C<strong>on</strong>vergence of theapparent properties to the effective values with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g microstructural cell size fordifferent types of boundary c<strong>on</strong>diti<strong>on</strong>s.7.2 Unit cells versus RVEsIn practice, <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of a representative volume element, a unit cell is often used as amicrostructural model, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it requires substantially less computati<strong>on</strong>al effort. This secti<strong>on</strong>exam<str<strong>on</strong>g>in</str<strong>on</strong>g>es the possible error, which is made <str<strong>on</strong>g>in</str<strong>on</strong>g> the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed overall resp<strong>on</strong>se of a29


multi-phase material, if the analysis is performed <strong>on</strong> a unit cell <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of an RVE.As the simplest unit cell, a piece (for example a square or cube) of the matrix materialc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle heterogeneity (e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> or void) could be suggested. The useof such a unit cell implicitly assumes a regular arrangement of the heterogeneities <str<strong>on</strong>g>in</str<strong>on</strong>g> thematrix, which c<strong>on</strong>tradicts the observati<strong>on</strong>s that almost all materials have a n<strong>on</strong>-periodicor even spatially random microstructural compositi<strong>on</strong>. Examples are precipitates <str<strong>on</strong>g>in</str<strong>on</strong>g> metalalloys arranged randomly by their nature and artificial fiber re<str<strong>on</strong>g>in</str<strong>on</strong>g>forced composites, possess<str<strong>on</strong>g>in</str<strong>on</strong>g>ga n<strong>on</strong>-regular distributi<strong>on</strong> of the fibers due to the producti<strong>on</strong> process. At thesame time, several experimental evidences exist show<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the spatial variability <str<strong>on</strong>g>in</str<strong>on</strong>g> themicrostructure significantly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the overall behaviour and particularly the fracturecharacteristics of composites, as reported <str<strong>on</strong>g>in</str<strong>on</strong>g> [104, 105].Different authors, e.g. [46, 47, 57, 70], have performed a comparis<strong>on</strong> of the overall compositeresp<strong>on</strong>ses result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of regular and random structures. Theyhave found a significant resp<strong>on</strong>se difference <str<strong>on</strong>g>in</str<strong>on</strong>g> the plastic regime, while there is almost nodeviati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> elastic regime. Also it has been shown [106], that soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour of aregularly composed structure may change to harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of a random compositi<strong>on</strong>.Most of these c<strong>on</strong>siderati<strong>on</strong>s, except for the latter, have been performed for smalldeformati<strong>on</strong>s, very simple elasto-plastic behaviour and relatively stiff <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s (fibers).In this secti<strong>on</strong> the overall behaviour of regular and random structures is compared at largedeformati<strong>on</strong>s, n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear history dependent material behaviour, for voided material (anappropriate approximati<strong>on</strong> for material with soft <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s). Apart from the calculati<strong>on</strong>s<strong>on</strong> the microstructural cell (tensile c<strong>on</strong>figurati<strong>on</strong>), also a full multi-scale analysis (purebend<str<strong>on</strong>g>in</str<strong>on</strong>g>g) of both regular and random structures is presented.A material with a 12% volume fracti<strong>on</strong> of voids is c<strong>on</strong>sidered. The regularly stackedstructure is modelled by a square unit cell c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle hole (figure 11a). For themodell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a random structure 10 different unit cells with n<strong>on</strong>-regular arrangements ofvoids with a distributi<strong>on</strong> of void sizes have been generated (figure 11b). The averagedbehaviour of these 10 unit cells is expected to be representative for the real randomstructure with a given volume fracti<strong>on</strong> of heterogeneities. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g several small n<strong>on</strong>-regularunit cells <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of <strong>on</strong>e larger RVE also allows to estimate the amount of deviati<strong>on</strong> ofthe apparent properties obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the unit cell modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, from the effective values fordifferent types of material models and load<str<strong>on</strong>g>in</str<strong>on</strong>g>g histories.In the subsequent secti<strong>on</strong>s a comparis<strong>on</strong> is performed for three different c<strong>on</strong>stitutive modelsof the matrix material: hyper-elastic, elasto-visco-plastic with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g and elastovisco-plasticwith <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g. First uniaxial extensi<strong>on</strong> (under plane stra<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s)of a macroscopic sample is c<strong>on</strong>sidered. Because <str<strong>on</strong>g>in</str<strong>on</strong>g> this case the macroscopicdeformati<strong>on</strong> field is homogeneous a full micro-macro modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g is not necessary and ananalysis of an isolated unit cell with adequate boundary c<strong>on</strong>diti<strong>on</strong>s (periodic) suffices.In the last secti<strong>on</strong> the results of a micro-macro simulati<strong>on</strong> of bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g random andregular microstructures are compared.Elastic behaviour, tensi<strong>on</strong>First, a comparis<strong>on</strong> of the overall behaviour of regular and random structures is carriedout for the case of hyper-elastic behaviour of the matrix material, modelled as a compressibleNeo-Hookean material. The material parameters used <str<strong>on</strong>g>in</str<strong>on</strong>g> the calculati<strong>on</strong>s are30


(a)(b)Figure 11: Unit cell with <strong>on</strong>e hole (a), represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g a regular structure, and 10 randomlycomposed unit cells (b).K = 2667 MPa, G = 889 MPa.Figure 12 shows the stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> curves for the unit cells with regular and random voidstack<str<strong>on</strong>g>in</str<strong>on</strong>g>g. For small deformati<strong>on</strong>s there is almost no difference <str<strong>on</strong>g>in</str<strong>on</strong>g> the resp<strong>on</strong>ses orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom the regular and random void distributi<strong>on</strong>s. This result is <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with theexperiences reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature for small deformati<strong>on</strong>s, see, e.g. [46, 47, 70]. Forlarge deformati<strong>on</strong>s the stiffer behaviour of the regular structure becomes a little bit morepr<strong>on</strong>ounced, however, the deviati<strong>on</strong>s rema<str<strong>on</strong>g>in</str<strong>on</strong>g> small. The difference between the resp<strong>on</strong>seof the regular structure and the resp<strong>on</strong>se averaged over the random unit cells does notexceed 2%. This small deviati<strong>on</strong> is expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by figure 13, present<str<strong>on</strong>g>in</str<strong>on</strong>g>g the distributi<strong>on</strong> ofthe equivalent v<strong>on</strong> Mises stress <str<strong>on</strong>g>in</str<strong>on</strong>g> the regular unit cell and <str<strong>on</strong>g>in</str<strong>on</strong>g> a random unit cell for 20%macroscopic stra<str<strong>on</strong>g>in</str<strong>on</strong>g>. The stress field around any hole of the random structure is almostthe same as around the hole of the regular structure, which <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates little <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>between voids. If <strong>on</strong>ly the averaged elastic c<strong>on</strong>stants are of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, it is c<strong>on</strong>cluded thatcalculati<strong>on</strong>s performed <strong>on</strong> the simplest regular unit cell usually provide an answer with<str<strong>on</strong>g>in</str<strong>on</strong>g>an acceptable tolerance.Elasto-visco-plastic behaviour with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g, tensi<strong>on</strong>The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the randomness of the microstructure <strong>on</strong> the macroscopic resp<strong>on</strong>se becomesmore significant when plastic yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <strong>on</strong>e or more c<strong>on</strong>stituents occurs. Thissecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigates the resp<strong>on</strong>ses of the regular and random unit cells under tensile load-31


400350300Axial stress, MPa25020015010050unit cell with <strong>on</strong>e holerandom void stackaveraged for random void stack00 5 10 15 20L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear axial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, %Figure 12: Tensile stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>ses (unit cell averages) of the regular and randomstructures <str<strong>on</strong>g>in</str<strong>on</strong>g> a voided hyper-elastic matrix material.(a)(b)0 200 400 600 800Figure 13: Distributi<strong>on</strong> of the equivalent v<strong>on</strong> Mises stress (MPa) <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed regular(a) and random (b) structures <str<strong>on</strong>g>in</str<strong>on</strong>g> a voided hyper-elastic matrix material.<str<strong>on</strong>g>in</str<strong>on</strong>g>g when the matrix material exhibits elasto-visco-plastic behaviour with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Thec<strong>on</strong>stitutive descripti<strong>on</strong> is given by the Bodner-Partom model [97]. The material parametersare the same as those used <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 6. The unit cells are subjected to uniaxialtensi<strong>on</strong> at a c<strong>on</strong>stant stra<str<strong>on</strong>g>in</str<strong>on</strong>g> rate of 0.5s −1 .In figure 14 the stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> curves are presented. In this case the difference betweenthe overall resp<strong>on</strong>se of the regular structure and the averaged resp<strong>on</strong>se of the randomstructures reaches 10%. The rather large scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the resp<strong>on</strong>ses of different randomcells is due to the small number of voids <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded. As has been dem<strong>on</strong>strated <str<strong>on</strong>g>in</str<strong>on</strong>g> [96], thescatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g is significantly reduced if microstructural cells c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> more heterogeneities.The averaged resp<strong>on</strong>se is, however, hardly affected, provided that a sufficient number ofrandom realizati<strong>on</strong>s has been c<strong>on</strong>sidered.The fundamental mechanism that governs the difference between the resp<strong>on</strong>se of theregular structure and the averaged resp<strong>on</strong>se of the random structures is illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 15, where the distributi<strong>on</strong> of the effective plastic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed regular andrandom unit cells at 15% applied macroscopic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> is presented. In the regular unit cellthe ligaments yield simultaneously rather than sequentially with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g macroscopicstra<str<strong>on</strong>g>in</str<strong>on</strong>g>, which is the case for the random unit cell. As a result, at the same value ofthe macroscopic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> the regular unit cell is deformed relatively smoothly, while some32


100908070Axial stress, MPa605040302010unit cell with <strong>on</strong>e holerandom void stackaveraged for random void stack00 5 10 15L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear axial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, %Figure 14: Tensile stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>ses (unit cell averages) of the regular and randomstructures for an elasto-visco-plastic matrix material with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g.ligaments <str<strong>on</strong>g>in</str<strong>on</strong>g> the random unit cell have already accumulated a significant amount of plasticstra<str<strong>on</strong>g>in</str<strong>on</strong>g>. C<strong>on</strong>sequently, the regular unit cell (<str<strong>on</strong>g>in</str<strong>on</strong>g> fact a structure with a periodic stack<str<strong>on</strong>g>in</str<strong>on</strong>g>g ofheterogeneities) has a larger overall stiffness than a random c<strong>on</strong>figurati<strong>on</strong>.(a)(b)0 20 40 60 80 100Figure 15: Distributi<strong>on</strong> of the effective plastic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed regular (a) andrandom (b) structures for an elasto-visco-plastic matrix material with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Elasto-visco-plastic behaviour with soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g, tensi<strong>on</strong>The difference <str<strong>on</strong>g>in</str<strong>on</strong>g> yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms for regular and random microstructures outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong> causes not <strong>on</strong>ly a quantitative deviati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the resp<strong>on</strong>ses of thesestructures (as illustrated by figure 14), but <str<strong>on</strong>g>in</str<strong>on</strong>g> some cases also the qualitative characterchanges, as has been shown <str<strong>on</strong>g>in</str<strong>on</strong>g> [106]. For example, such a phenomen<strong>on</strong> can be observedwhen the matrix material is described by a generalized compressible Le<strong>on</strong>ov model with<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g and subsequent harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The model is designed for the plastic deformati<strong>on</strong>of polymers and <str<strong>on</strong>g>in</str<strong>on</strong>g>corporates a stress dependent Eyr<str<strong>on</strong>g>in</str<strong>on</strong>g>g viscosity extended bypressure dependence and <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects. Details of this model can be found <str<strong>on</strong>g>in</str<strong>on</strong>g>[107, 108, 109].The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> curves for uniaxial tensi<strong>on</strong> of polycarb<strong>on</strong>ate at a c<strong>on</strong>stant stra<str<strong>on</strong>g>in</str<strong>on</strong>g>rate of 0.01 s −1 are given <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 16. The overall behaviour of the regular structure <str<strong>on</strong>g>in</str<strong>on</strong>g>the plastic regime exhibits some <str<strong>on</strong>g>in</str<strong>on</strong>g>itial soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g followed by harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The resp<strong>on</strong>se33


of the regular structure is, <str<strong>on</strong>g>in</str<strong>on</strong>g> fact, similar to the resp<strong>on</strong>se of <strong>on</strong>e s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle ligament, thatsoftens accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic material behaviour. A completely different resp<strong>on</strong>se canbe observed for the random c<strong>on</strong>figurati<strong>on</strong>s. Although some of the random unit cells alsodem<strong>on</strong>strate some soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour, orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the relatively simple compositi<strong>on</strong>of the unit cells used <str<strong>on</strong>g>in</str<strong>on</strong>g> the calculati<strong>on</strong>s, the average resp<strong>on</strong>se of the random unit cells doesnot show any soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g but exhibits c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This is caused by the sequentialappearance of elastic, soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g and harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g z<strong>on</strong>es with<str<strong>on</strong>g>in</str<strong>on</strong>g> the random microstructure.6050Axial stress, MPa40302010unit cell with <strong>on</strong>e holerandom void stackaveraged for random void stack00 5 10 15L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear axial stra<str<strong>on</strong>g>in</str<strong>on</strong>g>, %Figure 16: Tensile stress-stra<str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>ses (RVE averages) of the regular and random structuresfor an elasto-visco-plastic matrix material with <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g and subsequentharden<str<strong>on</strong>g>in</str<strong>on</strong>g>g.This example illustrates that the overall resp<strong>on</strong>se of heterogeneous materials, when detersi3joda!m<str<strong>on</strong>g>in</str<strong>on</strong>g>edfrom a modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g by a regular structure, should be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted with greatcare, particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of complex material behaviour (e.g. <str<strong>on</strong>g>in</str<strong>on</strong>g> case of soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g followedby harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g or vice versa).Elasto-visco-plastic behaviour with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g, bend<str<strong>on</strong>g>in</str<strong>on</strong>g>gThe comparis<strong>on</strong> of the overall behaviour of the regular and random microstructures performedabove has been <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the averaged behaviour of a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle unit cell subjected toa particular load<str<strong>on</strong>g>in</str<strong>on</strong>g>g history (uniaxial tensi<strong>on</strong>). The questi<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s how the randomnessof the microstructure does <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the overall behaviour when a macroscopic sample isdeformed heterogeneously, so that potentially every material po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of the sample is subjectedto a different load<str<strong>on</strong>g>in</str<strong>on</strong>g>g history. In order to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate this item the computati<strong>on</strong>alhomogenizati<strong>on</strong> approach is a helpful tool.As an example the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the spatial compositi<strong>on</strong> of the microstructure <strong>on</strong> the overallmoment-curvature resp<strong>on</strong>se of the voided material under pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g is studied. Thebehaviour of the matrix material is described by the Bodner-Partom elasto-visco-plasticmodel with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The macrogeometry and the material parameters are the same asthese used <str<strong>on</strong>g>in</str<strong>on</strong>g> secti<strong>on</strong> 6.Figure 17 shows the moment-curvature diagram result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the full micro-macro analysisof pure bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the material us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the regular and the random microstructures.Aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, the regular structure exhibits a stiffer resp<strong>on</strong>se than the averaged random result,while the maximum deviati<strong>on</strong> is <strong>on</strong>ly about 5%, which is c<strong>on</strong>siderably less than for the34


tensile test with the same material behaviour (figure 14). This smaller deviati<strong>on</strong> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>atesfrom the fact that <str<strong>on</strong>g>in</str<strong>on</strong>g> case of bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g all the unit cells assigned to the various macroscopicpo<str<strong>on</strong>g>in</str<strong>on</strong>g>ts over the height of the bended strip are loaded differently, see figure 8. The unit cellat the top of the bended strip experiences tensi<strong>on</strong>, so that the observati<strong>on</strong>s dealt with <str<strong>on</strong>g>in</str<strong>on</strong>g>the previous examples apply. At the same time, there are also unit cells that are stretchedless or still are <str<strong>on</strong>g>in</str<strong>on</strong>g> elastic regime, like for example the <strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> the vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of the neutrall<str<strong>on</strong>g>in</str<strong>on</strong>g>e, so that <str<strong>on</strong>g>in</str<strong>on</strong>g> average for the whole bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g process the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of randomness can beexpected to be smaller than for uniaxial extensi<strong>on</strong>.8 x 105 Curvature,1/m76Moment, N m54321unit cell with <strong>on</strong>e holerandom void stackaveraged for random void stack00 0.2 0.4 0.6 0.8 1Figure 17: Moment-curvature resp<strong>on</strong>ses of the regular and random structures for anelasto-visco-plastic matrix material with harden<str<strong>on</strong>g>in</str<strong>on</strong>g>g.8 Sec<strong>on</strong>d-order computati<strong>on</strong>al homogenizati<strong>on</strong>In spite of the attractive characteristics listed above, there are a few important limitati<strong>on</strong>sof the first-order framework, which can be summarized as follows• The pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple of separati<strong>on</strong> of scales must be respected. Hence, the characteristiclength that characterizes the spatial variati<strong>on</strong>s of the macroscopic load<str<strong>on</strong>g>in</str<strong>on</strong>g>g must bevery large with respect to the size of the microstructure. As a c<strong>on</strong>sequence, <strong>on</strong>lysimple first-order deformati<strong>on</strong> modes (tensi<strong>on</strong>, compressi<strong>on</strong>, shear or comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>sthereof) of the microstructure can be retrieved. The case shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8, whichis a typical bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g mode, which from a physical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view should appear forsmall, but f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite, microstructural cells, cannot be found.• The framework is completely <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive to the absolute size of the microstructuralc<strong>on</strong>stituents (scale <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent). Size effects emanat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the absolute size atthe micro scale cannot be dealt with properly.• Macroscopic gradients must rema<str<strong>on</strong>g>in</str<strong>on</strong>g> very small with respect to the micro scale. Localizati<strong>on</strong>problems, where n<strong>on</strong>-uniform macroscopic deformati<strong>on</strong>s arise, cannot besolved properly.Whenever str<strong>on</strong>g gradients appear at the macro-level (localizati<strong>on</strong>, size effects) care mustbe taken <str<strong>on</strong>g>in</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a first-order scheme. In all other cases, <strong>on</strong>e should c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue us<str<strong>on</strong>g>in</str<strong>on</strong>g>g it35


Figure 18: Sec<strong>on</strong>d-order computati<strong>on</strong>al homogenizati<strong>on</strong>and not jump to a sec<strong>on</strong>d-order scheme for which an additi<strong>on</strong>al price <str<strong>on</strong>g>in</str<strong>on</strong>g> complexity andcomputati<strong>on</strong>al costs is to be paid.In order to overcome these shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, the computati<strong>on</strong>al homogenizati<strong>on</strong> methodologyhas been extended recently to higher-order c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ua [2, 3, 4, 5, 6, 72, 110]. In this course,the methodology and the essential parts of the multi-scale k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics and statics will beoutl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed briefly, whereas more details can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> the cited references. The method isnext applied to heterogeneous multi-phase microstructures, as typically the case <str<strong>on</strong>g>in</str<strong>on</strong>g> mostmetals, polymer blends and composites. Some comments <strong>on</strong> the parallel implementati<strong>on</strong>of the multi-scale technique are given and an illustrative example is used to scrut<str<strong>on</strong>g>in</str<strong>on</strong>g>ize theadded value of the sec<strong>on</strong>d-order framework <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> to the more standard first-orderscheme.8.1 Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciplesThe sec<strong>on</strong>d-order case, which may be c<strong>on</strong>sidered as a generalizati<strong>on</strong> of the classical firstorderscheme, departs from a Taylor series expansi<strong>on</strong> of the classical n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear deformati<strong>on</strong>map, ⃗x = φ( X), ⃗ applied to a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite material vector Δ⃗x <str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed state:Δ⃗x = F M·ΔX ⃗ + 1Δ X·3G ⃗2 M·ΔX ⃗ + O(Δ X ⃗ )3 (71)Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this Taylor series expansi<strong>on</strong>, the macroscopic (coarse scale) k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>edthrough the deformati<strong>on</strong> gradient tensor F M and its Lagrangian gradient 3 G M = ∇ ⃗ 0,M F M .The key po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d-order two-scale framework, resides <str<strong>on</strong>g>in</str<strong>on</strong>g> apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong> (71) toa representative part of the microstructure, such that a classical boundary value problemis obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at the micro scale (or f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale). The scale bridg<str<strong>on</strong>g>in</str<strong>on</strong>g>g is then realized throughthe applicati<strong>on</strong> of averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorems. This is schematically depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 18. Notethat the tensor 3 G M has a m<str<strong>on</strong>g>in</str<strong>on</strong>g>or symmetry, 3 G M = 3 G T M (or G Mijk = G Mkji <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dexnotati<strong>on</strong>), which is used throughout these lecture notes.36


8.2 Two-scale higher-order k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematicsIn order to apply equati<strong>on</strong> (71) to the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale, all higher-order terms (represented byO(Δ ⃗ X 3 )) are c<strong>on</strong>densed <str<strong>on</strong>g>in</str<strong>on</strong>g>to an unknown microfluctuati<strong>on</strong> field ⃗w, which represents thef<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics. Hence,Δ⃗x = F M·Δ ⃗ X + 1 2 Δ ⃗ X·3G M·Δ ⃗ X + ⃗w (72)Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g this to an undeformed volume V 0 (the RVE) with a geometrical center ⃗ X c thatis located <str<strong>on</strong>g>in</str<strong>on</strong>g> ⃗x c after deformati<strong>on</strong> gives (notice the similarity and differences with theelaborati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>, equati<strong>on</strong> (5)).⃗x − ⃗x c = F M·( ⃗ X − ⃗ X c )+ 1 2 ( ⃗ X − ⃗ X c )·3G M·( ⃗ X − ⃗ X c )+⃗w (73)Elim<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g rigid body displacements like for the first-order case (e.g. by fix<str<strong>on</strong>g>in</str<strong>on</strong>g>g a boundarypo<str<strong>on</strong>g>in</str<strong>on</strong>g>t1)thenleadstowith⃗x = ⃗c + F M·( ⃗ X − ⃗ X c )+ 1 2 ( ⃗ X − ⃗ X c )·3G M·( ⃗ X − ⃗ X c )+(⃗w − ⃗w 1 ) (74)⃗c = X ⃗ 1 + F M·( X ⃗ 1 − X ⃗ c )+ 1( X ⃗ 2 1 − X ⃗ c )·3G M·( X ⃗ 1 − X ⃗ c ) (75)⃗x c = ⃗c − ⃗w 1 (76)The microscopic deformati<strong>on</strong> gradient tensor F m is easily rec<strong>on</strong>structed asF m=( ⃗ ∇ 0,m ⃗x) T= F M +( ⃗ X − ⃗ X c )·3GM +( ⃗ ∇ 0,m (⃗w − ⃗w 1 )) T (77)Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the earlier <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced scale transiti<strong>on</strong> relati<strong>on</strong> (13) with respect to equati<strong>on</strong> (77)then leads to two k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (to be imposed <strong>on</strong> the RVE)∫1( XV ⃗ − X ⃗ c )dV 0 = ⃗0 (78)0V∫01( ∇V ⃗ 0,m (⃗w − ⃗w 1 )) T dV 0 = 1 ∫(⃗w − ⃗w 1 ) NdΓ0 V ⃗ 0 = 0 (79)0V 0 Γ 0where the divergence theorem was used to derive the latter relati<strong>on</strong>. Equati<strong>on</strong> (78) isclearly satisfied here, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the Taylor series has been expanded with respect to the geometricalcentre ⃗ X c <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (73). This appears to be a necessary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> thesec<strong>on</strong>d-order case, which deviates from the first-order scheme where any po<str<strong>on</strong>g>in</str<strong>on</strong>g>t to develop(4) around (<str<strong>on</strong>g>in</str<strong>on</strong>g>stead of ⃗ X c ) gives the same result. The sec<strong>on</strong>d c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (79) appliesto the unknown fluctuati<strong>on</strong> field. Logically, the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <str<strong>on</strong>g>in</str<strong>on</strong>g>volves ( ⃗w − ⃗w 1 ), which impliesa c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> the boundary positi<strong>on</strong> vectors ⃗x through (74). There are various ways tomake this boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral zero, e.g. by c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (⃗w − ⃗w 1 )=⃗0 for all po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of theRVE (Taylor/Voigt), or by c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (⃗w − ⃗w 1 )=⃗0 at the boundary of the RVE <strong>on</strong>ly(displacement or k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic boundary c<strong>on</strong>diti<strong>on</strong>), or through the applicati<strong>on</strong> of periodicboundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the microfluctuati<strong>on</strong> field (the macroscopic field is generally notperiodic <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d-order case!). The latter c<strong>on</strong>diti<strong>on</strong>s are used here, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the37


Figure 19: Lagrangian undeformed 2D reference RVEfollow<str<strong>on</strong>g>in</str<strong>on</strong>g>g microperiodicity equati<strong>on</strong>s valid between the left(L)-right(R) and bottom(B)-top(T) boundaries of a two-dimensi<strong>on</strong>al rectangular RVE as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 19.⃗w L = ⃗w R ⃗w B = ⃗w T (80)Note that aga<str<strong>on</strong>g>in</str<strong>on</strong>g> all equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the microfluctuati<strong>on</strong> field with respect to ⃗w 1 . Anychoice for ⃗w 1 will then lead to the same soluti<strong>on</strong> (except for ⃗x c ). This is also obviousfrom the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong> (79), which can be easily elaborated to a format <str<strong>on</strong>g>in</str<strong>on</strong>g> which thec<strong>on</strong>tributi<strong>on</strong> of ⃗w 1 vanishes, i.e.∫∫(⃗w − ⃗w 1 ) NdΓ ⃗ 0 = ⃗w NdΓ ⃗ 0 = 0 (81)Γ 0 Γ 0It is easy to show that the micro scale problem def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the equati<strong>on</strong>s (72), (78), (80),applied to the rectangular 2D RVE depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 19 with periodic microfluctuati<strong>on</strong>s,fully determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics of the four corner po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts [2, 3]. This set of equati<strong>on</strong>simposes 8 macroscopic degrees-of-freedom to the 2D microstructure, whereas the fullmacroscopic k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics c<strong>on</strong>sists of 12 degrees-of-freedom (2 rigid body displacement, 4degrees-of-freedom <str<strong>on</strong>g>in</str<strong>on</strong>g> F M and 6 degrees-of-freedom <str<strong>on</strong>g>in</str<strong>on</strong>g> the m<str<strong>on</strong>g>in</str<strong>on</strong>g>or-symmetric 3 G M ). Themiss<str<strong>on</strong>g>in</str<strong>on</strong>g>g k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematical quantities appear to be the stretch gradients [2, 3], i.e. so far an RVEwith 8 macroscopic degrees-of-freedom has been established, where the displacements areprescribed through the four corner nodes. This is a typical example of couple stresshomogenizati<strong>on</strong>.In order to <str<strong>on</strong>g>in</str<strong>on</strong>g>corporate the entire gradient field, the set of averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong>s needs to becompleted <str<strong>on</strong>g>in</str<strong>on</strong>g> order to account for the miss<str<strong>on</strong>g>in</str<strong>on</strong>g>g stretch gradient degrees-of-freedom of 3 G M .On the basis of the Taylor series expansi<strong>on</strong> (72), it is easy to show that the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g38


averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g theorem can be derived (by means of some manipulati<strong>on</strong>s of the equati<strong>on</strong>sgiven <str<strong>on</strong>g>in</str<strong>on</strong>g> [3]), relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 G M to the positi<strong>on</strong> vectors ⃗x (implicitly <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scalec<strong>on</strong>tributi<strong>on</strong> through (74)) of all material po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> the the square RVE with <str<strong>on</strong>g>in</str<strong>on</strong>g>itial sizeW and volume V 0 :W 212[3 G M + 1 2( ) ]II : 3 G RT RTM +(I⃗c) RT = 1 ∫2V 0(⃗∇0,m (⃗x X)+[ ⃗ ∇ ⃗ 0,m (⃗x ⃗ )X)] T dV 0 (82)V 0In here, I is the sec<strong>on</strong>d-order unit tensor, and RT stands for the right transpose, i.e.TijkRT = T ikj <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dex notati<strong>on</strong>. The third term <str<strong>on</strong>g>in</str<strong>on</strong>g> the left-hand side of this equati<strong>on</strong> ispresent to account for the deformed positi<strong>on</strong> ⃗x c of the center of the undeformed RVE,which is generally no l<strong>on</strong>ger the center of the deformed RVE. Comput<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <str<strong>on</strong>g>in</str<strong>on</strong>g>the right-hand side of the latter equati<strong>on</strong> through substituti<strong>on</strong> of equati<strong>on</strong> (74), reveals∫1(⃗∇0,m (⃗x X)+[2V ⃗ ∇ ⃗ 0,m (⃗x ⃗ )X)] T dV 0 =0V 0W 23 G M + W 212 24( )II : 3 G RT RTM +[I⃗c] RT + 1 ∫2V 0Γ 0(⃗X(⃗w − ⃗w1 ) N ⃗ + N(⃗w ⃗ − ⃗w 1 ) X ⃗ )dΓ 0(83)Enforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong> (82) requires that the last <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <str<strong>on</strong>g>in</str<strong>on</strong>g> (83) should vanish,which leads to a new c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> the microfluctuati<strong>on</strong> field.∫ (⃗X(⃗w − ⃗w1 ) N ⃗ + N(⃗w ⃗ − ⃗w 1 ) X ⃗ )dΓ 0 = 3 0 (84)Γ 0This boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral clearly <str<strong>on</strong>g>in</str<strong>on</strong>g>corporates (⃗w− ⃗w 1 ), which c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s the positi<strong>on</strong> vectors⃗x of the boundary po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts through (74). The microfluctuati<strong>on</strong> ⃗w 1 (<str<strong>on</strong>g>in</str<strong>on</strong>g> the fixed boundarypo<str<strong>on</strong>g>in</str<strong>on</strong>g>t) cannot be elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>in</str<strong>on</strong>g> general as d<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> the previously <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced boundary<str<strong>on</strong>g>in</str<strong>on</strong>g>tegral (81). If c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (84) is enforced, it is easy to rewrite the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong> (82)as a boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral( ) 3 G M + 1 2 II : 3 G RT RT 12M +W 2 [I⃗c]RT = 6 ∫ ( )⃗X⃗x N ⃗ + N⃗x ⃗ X ⃗ dΓV 0 W 2 0 (85)Γ 0Equati<strong>on</strong> (85) typically illustrates that 3 G M is imposed <strong>on</strong> the RVE boundary, which isnecessary to c<strong>on</strong>struct a classical boundary value problem at the micro scale.For an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially square RVE (H = W <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 19), <strong>on</strong> which the microperiodicity equati<strong>on</strong>s(80) for the microfluctuati<strong>on</strong> field hold, the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (84) can be simplified to∫(⃗w L − ⃗w 1 )dΓ 0 = ⃗0Γ∫0L(86)(⃗w B − ⃗w 1 )dΓ 0 = ⃗0Γ 0BClearly, these two c<strong>on</strong>diti<strong>on</strong>s enforce the shape of a part of the boundary to be equal<str<strong>on</strong>g>in</str<strong>on</strong>g> average to the shape ensu<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the macroscopic field. Prescrib<str<strong>on</strong>g>in</str<strong>on</strong>g>g (86) at the39


oundaries can be d<strong>on</strong>e by generalized displacement c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (n<strong>on</strong>-homogeneous ty<str<strong>on</strong>g>in</str<strong>on</strong>g>grelati<strong>on</strong>s), see [3, 72] for more details <strong>on</strong> this topic. Aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, it is obvious that impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g⃗w 1 = ⃗0 does not <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the soluti<strong>on</strong> for the two-scale homogenizati<strong>on</strong>.Note that the macroscopic 3 G M is not the volume average of the microscopic 3 G m =⃗∇ 0,m F m . This not possible if <strong>on</strong>e wants to c<strong>on</strong>struct a classical boundary value problemat the micro scale. The scale transiti<strong>on</strong> is here driven by boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrals <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>gdisplacements of boundary po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of the RVE <strong>on</strong>ly. Enforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 G M to be the volumeaverage of 3 G m would lead to higher-order boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the microstructuralfluctuati<strong>on</strong> field, which would make the f<str<strong>on</strong>g>in</str<strong>on</strong>g>e scale problem sec<strong>on</strong>d-order as well.8.3 Extract<str<strong>on</strong>g>in</str<strong>on</strong>g>g stress tensorsThe macroscopic stress quantities are next extracted from the analysis of the deformedRVE by equat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the macroscopic work per unit of volume to the average work performed<strong>on</strong> the RVE (Hill-Mandel or macrohomogeneity c<strong>on</strong>diti<strong>on</strong>). For the sec<strong>on</strong>d-order case,this c<strong>on</strong>diti<strong>on</strong> reads∫1P m : δF T mV dV 0 = P M : δF T M + 3 Q M . δ 3 G M (87)0V 0In here, P M is the macroscopic first Piola-Kirchhoff stress tensor, P m its microstructuralcounterpart and 3 Q M the higher-order stress tensor which is work-c<strong>on</strong>jugated to 3 G M .Note that equati<strong>on</strong> (87) <str<strong>on</strong>g>in</str<strong>on</strong>g> fact def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the two macroscopic stress tensors P M and 3 Q M .The microstructural work (per unit of volume <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference state) can be written asδW 0M = 1 ∫P m : δF c mV dV 0 = 1 ∫⃗p·δΔ⃗x dΓ 0 , (88)0 V 0Γ 0V 0where use has been made of the divergence theorem and the static equilibrium equati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> the microstructure (2). Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the variati<strong>on</strong> of the positi<strong>on</strong> vector δΔ⃗x accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to(72) leads toδΔ⃗x = δF M· ⃗X + 1 2 ⃗ X·δ 3 G M· ⃗X + δΔ⃗w, (89)which after substituti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (88) yieldsδW 0M = 1 ∫⃗p XV ⃗ dΓ 0 : δF c M + 1 ∫X⃗p ⃗ X ⃗ dΓ0 . δ 3 G M + 1 ∫0 2V 0 V 0Γ 0 Γ 0Γ 0⃗p·δΔ⃗w dΓ 0 . (90)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the boundary c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (80) do not c<strong>on</strong>tribute to the total work and account<str<strong>on</strong>g>in</str<strong>on</strong>g>gfor (86), the last term <str<strong>on</strong>g>in</str<strong>on</strong>g> (90) can be proven to disappear∫Γ 0⃗p·δΔ⃗w dΓ 0 =0, (91)manifest<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fact that the microstructural fluctuati<strong>on</strong> field does not affect the averagevariati<strong>on</strong> of the microscopic work.40


Elaborati<strong>on</strong> of this equati<strong>on</strong> leads to two boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrals that permit to compute thestress tensors P M and 3 Q M :P M = 1 ∫⃗p XdΓV 0 (92)0 3 Q M =Γ 0 ∫X⃗p ⃗ X ⃗ dΓ0 (93)2V 0Γ 0Both stress tensors can be easily computed <strong>on</strong>ce the boundary value problem <strong>on</strong> the microscale has been solved.The above formulas relate the macroscopic stress tensor and the macroscopic higher-orderstress tensor to microstructural variables def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> the RVE boundary. The relati<strong>on</strong>s (92)and (93) can also be transformed <str<strong>on</strong>g>in</str<strong>on</strong>g>to volume <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrals, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the macroscopic stressmeasures to be expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of volume averages of microstructural quantities. Themacroscopic stress tensor P M aga<str<strong>on</strong>g>in</str<strong>on</strong>g> equals the volume average of the microscopic stresstensor P mP M = 1 ∫P m dV 0 (94)V 0V 0The proof of this equati<strong>on</strong> is identical to that for the first-order framework (for the derivati<strong>on</strong>see (32)-(33)).The derivati<strong>on</strong> for the higher-order stress tensor 3 Q M followsthesameprocedure. Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe divergence theorem to transform the boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <str<strong>on</strong>g>in</str<strong>on</strong>g> (93) to a volume<str<strong>on</strong>g>in</str<strong>on</strong>g>tegral gives3 Q M = 1 ∫∫2V 0 2V 0= 12V 0∫Γ 0⃗ X⃗p ⃗ XdΓ0 = 1V 0(∇ 0m·(P c m ⃗ X ⃗ X)) LC dV 0 ,Γ 0(( ⃗ N·P c m) ⃗ X ⃗ X) LC dΓ 0(95)where the superscript LC denotes left c<strong>on</strong>jugati<strong>on</strong>, T LCijk= T jik. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the equality∇ 0m·(P c m ⃗ X ⃗ X)=(∇ 0m·P c m ) ⃗ X ⃗ X + P m·(∇ 0m⃗ X) ⃗ X +( ⃗ XPm·(∇ 0m⃗ X))LC= P m⃗ X +( ⃗ XPm ) LC ,(96)where equilibrium has been exploited, the relati<strong>on</strong> between the macroscopic higher-orderstress tensor and microstructural quantities is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed3 Q M = 1 ∫2V 0V 0(P T ⃗ mX + XP ⃗ )m dV 0 (97)Note that the macroscopic higher-order stress tensor 3 Q M does not equal the volumeaverage of its microscopic counterpart ∇ ⃗ 0,m P m .Likefor 3 G M this is due to the fact thatthe micro scale problem is formulated as a classical boundary value problem. It is clearfrom (97) that 3 Q M can be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as the first moment (with respect to the RVE center)of the microscopic first Piola-Kirchhoff stress tensor P m over the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial RVE volume V 0 .41


8.4 Two-scale computati<strong>on</strong>al soluti<strong>on</strong> strategyThe boundary c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (86) can be explicitly written <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the displacementvectors of the boundary po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> the form∫∫⃗u L dΓ 0 = ⃗u L ∗(F M , 3 G M ), ⃗u B dΓ 0 = ⃗u B ∗(F M , 3 G M ) (98)Γ 0L Γ 0Bwhere ⃗u L ∗ and ⃗u B ∗ solely depend <strong>on</strong> the given F M and 3 G M and RVE geometry as apparentfrom their def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s∫∫⃗u L ∗ =(F M − I)· ( X ⃗ L − X ⃗ 1 )dΓ 0 + 1 3 G LC2 M : ( X ⃗ LXL ⃗ − X ⃗ 1X1 ⃗ )dΓ 0Γ 0L Γ∫0L∫⃗u B ∗ =(F M − I)· ( X ⃗ B − X ⃗ 1 )dΓ 0 + 1 3 G LC2 M : ( X ⃗ BXB ⃗ − X ⃗ 1X1 ⃗ )dΓ 0 (99)Γ 0B Γ 0BOnce the BVP associated to the microstructural RVE problem is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (boundary c<strong>on</strong>diti<strong>on</strong>s,c<strong>on</strong>stitutive equati<strong>on</strong>s) the micro-problem can be solved with a standard f<str<strong>on</strong>g>in</str<strong>on</strong>g>iteelement method. On the basis of the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary tracti<strong>on</strong>s, the RVE averagedstress tensors are extracted (see equati<strong>on</strong>s (94), (97))) and transported to the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gmacroscopic material po<str<strong>on</strong>g>in</str<strong>on</strong>g>t.For the f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element soluti<strong>on</strong> of the macroscopic problem a stiffness matrix at everymacroscopic <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t is required. As emphasized earlier, <str<strong>on</strong>g>in</str<strong>on</strong>g> computati<strong>on</strong>al homogenizati<strong>on</strong>schemes there is no explicit form of the macroscopic c<strong>on</strong>stitutive behaviourassumed a priori. Like for the first-order case, the tangent operator is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed numericallyby c<strong>on</strong>densati<strong>on</strong> of the microscopic stiffness matrix. For this, first the elaboratedc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t relati<strong>on</strong>s between boundary nodes (equati<strong>on</strong>s (80), (86)) are applied to thetotal assembled stiffness matrix of the RVE follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a similar procedure as presented forthe first-order case. Details for the sec<strong>on</strong>d-order case are given <str<strong>on</strong>g>in</str<strong>on</strong>g> [5, 6, 72]. This results<str<strong>on</strong>g>in</str<strong>on</strong>g> the elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the dependent degrees of freedom from the system of equati<strong>on</strong>s. Thenext step is to partiti<strong>on</strong> the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g system of equati<strong>on</strong>s as[ ][ ] [ ]Kpp K pf δũp= δf˜p(100)K fp K ff δũ f 0˜where the subscript p refers to “prescribed” degrees of freedom (degrees of freedom throughwhich the macroscopic tensors F M and 3 G M are imposed <strong>on</strong> the RVE). In the presentframework these are the degrees of freedom corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the four corner nodes of theRVE (⃗u i ,i = 1, 4) and to the degrees of freedom enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g the RVE system of equati<strong>on</strong>sthrough the boundary c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (98). The subscript f <str<strong>on</strong>g>in</str<strong>on</strong>g> (100) refers to all rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g“free” nodes. Elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of δũ f from the system (100) then leads to the reduced stiffnessmatrix K M that relates the variati<strong>on</strong>s of the prescribed degrees of freedom to the variati<strong>on</strong>sof the associated forcesK M δũ p = δf˜p, with K M = K pp − K pf (K ff ) −1 K fp (101)The l<str<strong>on</strong>g>in</str<strong>on</strong>g>earized c<strong>on</strong>stitutive relati<strong>on</strong>s for the sec<strong>on</strong>d gradient c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum can be written asδP M = 4 C (1)M : δFc M + 5 C (2)Mδ 3 Q M = 5 C (3)M : δFc M + 6 C (4)M. δ 3 G RCM (102). δ 3 G RCM (103)42


where the fourth-order tensor 4 C (1)M , the fifth-order tensors 5 C (2)M and 5 C (3)Mand the sixthordertensor 6 C (4)Mare the macroscopic c<strong>on</strong>sistent tangents. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the RVE reduced stiffnessmatrix K M rewritten <str<strong>on</strong>g>in</str<strong>on</strong>g> a tensor format such that∑jK (ij)M ·δ⃗u (j) = δ ⃗ f (i) , i,j =1, 2, 3, 4,L ∗ ,B ∗ (104)permits to extract the macroscopic c<strong>on</strong>sistent tangents <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g format (see [6] forthe derivati<strong>on</strong>)4 C (1)M= 1 ∑ ∑( XV ⃗ (i)K ⋆ (ij)MX ⃗ (j)) ⋆ LC ,05 C (3)M = 1 ∑ ∑2V 0iijj(Y ⋆ (i)K (ij)M ⃗ X ⋆ (j)) C 23,5 C (2)M = 12V 0∑6 C (4)M = 14V 0∑ii∑j∑j( ⃗ X ⋆ (i)K (ij)M(Y ⋆ (i)K (ij)Y⋆ (j)) LCM Y⋆ (j)) C 23(105)with the superscript C 23 <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>jugati<strong>on</strong> <strong>on</strong> the sec<strong>on</strong>d and third <str<strong>on</strong>g>in</str<strong>on</strong>g>dices and⎧⃗X (i) − X ⃗ (1) , for i =1, 2, 3, 4,⎪⎨ ∫⃗X (i) ⋆ ( X=⃗ L − X ⃗ (1) )dΓ 0 , for i = L ∗ ,Γ 0L(106)∫⎪⎩ ( X ⃗ B − X ⃗ (1) )dΓ 0 , for i = B ∗Γ 0B⎧⃗X (i) X(i) ⃗ − X ⃗ (1) X(1) ⃗ , for i =1, 2, 3, 4,⎪⎨ ∫Y(i) ⋆ ( X=⃗ LXL ⃗ − X ⃗ (1) X(1) ⃗ )dΓ 0 , for i = L ∗ ,Γ 0L(107)∫⎪⎩ ( X ⃗ BXB ⃗ − X ⃗ (1) X(1) ⃗ )dΓ 0 , for i = B ∗Γ 0BIn the sec<strong>on</strong>d-order computati<strong>on</strong>al homogenizati<strong>on</strong> framework the macroscopic problemrepresents a full sec<strong>on</strong>d gradient c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum [111, 112, 113]. For such a sec<strong>on</strong>d gradientc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum the local equilibrium equati<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of body forces and bodymoments) is written as∇ (P0M· c M − (∇ 0M·3QM ) c) = ⃗0 (108)The natural boundary c<strong>on</strong>diti<strong>on</strong>s associated with this system of partial differential equati<strong>on</strong>sare expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> (i) the surface tracti<strong>on</strong> ⃗t M⃗t M = ⃗ N M· (P c M − (∇ 0M·3QM ) c) +(∇ s 0M· ⃗N M ) ⃗ N M·( ⃗ N M·3QM ) c −∇ s 0M·( ⃗ N M·3QM ) c (109)where the surface gradient operator is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as ∇ s 0M =(I− ⃗ N M⃗ NM )·∇ 0M with ⃗ N M the unitoutward normal <strong>on</strong> the surface of the macroscopic body <str<strong>on</strong>g>in</str<strong>on</strong>g> the undeformed c<strong>on</strong>figurati<strong>on</strong>and (ii) the double stress tracti<strong>on</strong> ⃗r M⃗r M = ⃗ N M·3Q M· ⃗N M (110)In the case of a n<strong>on</strong>-smooth surface of the body (with edges) also an additi<strong>on</strong>al l<str<strong>on</strong>g>in</str<strong>on</strong>g>eload appears. The k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic boundary c<strong>on</strong>diti<strong>on</strong>s for the sec<strong>on</strong>d gradient c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uum43


<str<strong>on</strong>g>in</str<strong>on</strong>g>clude prescribed displacements ⃗u M and normal gradients of displacements D 0M ⃗u M withD 0M = N ⃗ M·∇ 0M .The c<strong>on</strong>stitutive equati<strong>on</strong>s relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the macroscopic first Piola-Kirchhoff stress tensor P Mand the higher-order stress tensor 3 Q M to the history of the macroscopic deformati<strong>on</strong>tensor F M and its gradient 3 G M are thus obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed numerically, whereas their variati<strong>on</strong>sare obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>earized form (102)–(103) with the macroscopic c<strong>on</strong>sistent tangentscalculated from the c<strong>on</strong>densed microscopic stiffness matrix accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to (105).8.5 Parallel soluti<strong>on</strong> of the multi-scale nested boundary valueproblemsIn spite of the large computati<strong>on</strong>al effort required by a computati<strong>on</strong>al homogenizati<strong>on</strong>scheme, it is well possible to make an efficient analysis if optimal use is made of the <str<strong>on</strong>g>in</str<strong>on</strong>g>herentparallel nature of this multi-scale framework. Whenever microstructural c<strong>on</strong>stitutive<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is needed <str<strong>on</strong>g>in</str<strong>on</strong>g> a macroscopic (<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong>) po<str<strong>on</strong>g>in</str<strong>on</strong>g>t, a separate subrout<str<strong>on</strong>g>in</str<strong>on</strong>g>e can bestarted <strong>on</strong> the RVE-level that solves the requested boundary value problem. This can bed<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel <str<strong>on</strong>g>in</str<strong>on</strong>g> as many <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts as available processors. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g PVM (ParallelVirtual Mach<str<strong>on</strong>g>in</str<strong>on</strong>g>e) or MPI (Message Pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g Interface), it is relatively easy to c<strong>on</strong>structsuch a parallel implementati<strong>on</strong> for this type of problems, as schematically depicted <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 20. Evidently, this procedure drastically reduces the total calculati<strong>on</strong> time.Figure 20: Schematic overview of the parallel soluti<strong>on</strong> of the multi-scale nested BVPs9 Higher-order issues9.1 First-order versus sec<strong>on</strong>d-orderThe first example c<strong>on</strong>cerns the comparis<strong>on</strong> of the mechanical and k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematical resp<strong>on</strong>seof a heterogeneous microstructure for the first-order and the sec<strong>on</strong>d-order scale transiti<strong>on</strong>.To this purpose, an RVE is c<strong>on</strong>sidered, which is depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> its undeformed state44


<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 21. The material c<strong>on</strong>sidered is a metal with very weak <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s, which have aFigure 21: Undeformed two-dimensi<strong>on</strong>al RVE of a voided metalnegligible mechanical c<strong>on</strong>tributi<strong>on</strong> (e.g. voids). The matrix material is elasto-viscoplastic,c<strong>on</strong>stitutively prescribed by a Bodner-Partom viscosity functi<strong>on</strong>. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>venti<strong>on</strong>almultiplicative split of F, the elastic resp<strong>on</strong>se is modelled by a classical (isotropic)Neo-Hookean relati<strong>on</strong>ship, where the Kirchhoff stress tensor is given byτ = K(J − 1)I + G¯b d e (111)In here, J is the volume change ratio, K is the bulk modulus, G is the shear modulus, ¯b d eis the deviatoric part of the isochoric elastic left Cauchy-Green deformati<strong>on</strong> tensor. Theplastic part is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through the plastic deformati<strong>on</strong> rate tensor D pD p= σd2η(112)where the viscosity η is related to the v<strong>on</strong> Mises equivalent stress σ e and the effectiveplastic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> ɛ p by( [ ] ) 2nσ e 1 Zη = √ exp 12Γ0 2 σ e (113)Z = Z 1 +(Z 0 − Z 1 )e −mɛpwith Γ 0 , n, Z 0 , Z 1 and m material c<strong>on</strong>stants. In the present analysis, an alum<str<strong>on</strong>g>in</str<strong>on</strong>g>ummatrix (AA 1050) has been c<strong>on</strong>sidered for which the material parameters are given byG =2.6·10 4 MPa, K =7.8·10 4 MPa, Γ 0 =10 8 s −2 , m =13.8, n =3.4, Z 0 =81.4 MPa,Z 1 = 170 MPa.The comparis<strong>on</strong> between the first and sec<strong>on</strong>d-order formulati<strong>on</strong> is next made for a microstructurewith a sec<strong>on</strong>d phase (12% volume fracti<strong>on</strong> of voids <str<strong>on</strong>g>in</str<strong>on</strong>g> this case) with an averagesize of about 6.6 μm. The macroscopic deformati<strong>on</strong> history of a specific material po<str<strong>on</strong>g>in</str<strong>on</strong>g>trepresent<str<strong>on</strong>g>in</str<strong>on</strong>g>g bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g with superimposed tensi<strong>on</strong> is extracted. This history is imposed tothe RVE, after which the micro scale BVP can be solved. The deformed microstructuresshown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 22 are then obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for the c<strong>on</strong>sidered po<str<strong>on</strong>g>in</str<strong>on</strong>g>t (with the same macroscopicdeformati<strong>on</strong> history!). The deformati<strong>on</strong> modes obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed and the small scale stra<str<strong>on</strong>g>in</str<strong>on</strong>g> fieldsare obviously different, which reflects the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematical enrichment of the sec<strong>on</strong>d-order approximati<strong>on</strong>.Note that the RVE is clearly bend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d-order case, which is theresult of the presence of the higher-order deformati<strong>on</strong> modes that properly account forthe size of the microstructure. The periodicity of the microfluctuati<strong>on</strong> field can also benoticed. The macro field however, is no l<strong>on</strong>ger periodic for the sec<strong>on</strong>d-order case.45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!