Random lasers based on organic epitaxial nanofibers
Random lasers based on organic epitaxial nanofibers
Random lasers based on organic epitaxial nanofibers
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
IOP PUBLISHINGJOURNAL OF OPTICSJ. Opt. 12 (2010) 024003 (11pp) doi:10.1088/2040-8978/12/2/024003REVIEW ARTICLE<str<strong>on</strong>g>Random</str<strong>on</strong>g> <str<strong>on</strong>g>lasers</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>organic</strong> <strong>epitaxial</strong><strong>nanofibers</strong>Francesco QuochiDipartimento di Fisica, Università di Cagliari, SLACS-INFM/CNR,I-09042 M<strong>on</strong>serrato (CA), ItalyE-mail: francesco.quochi@dsf.unica.itReceived 7 July 2009, accepted for publicati<strong>on</strong> 6 August 2009Published 11 January 2010Online at stacks.iop.org/JOpt/12/024003AbstractWe present a review <strong>on</strong> random lasing in <strong>organic</strong> <strong>nanofibers</strong> made of oligophenyl nanocrystalsgrown by molecular epitaxy <strong>on</strong> polar substrates. The <strong>nanofibers</strong> have sub-wavelengthcross-secti<strong>on</strong>al dimensi<strong>on</strong>s and can extend in length up to the millimeter scale. We report <strong>on</strong>random lasing properties of <strong>nanofibers</strong>, under subpicosec<strong>on</strong>d photopumping, both in thecoherent and incoherent regimes. With the aid of both optical and morphological studies <strong>on</strong>individual fibers, we get insight into <strong>on</strong>e-dimensi<strong>on</strong>al coherent feedback taking place al<strong>on</strong>g the<strong>nanofibers</strong>’ axes. Model calculati<strong>on</strong>s of light propagati<strong>on</strong> in disordered media allow us to give asemiquantitative descripti<strong>on</strong> of <strong>on</strong>e-dimensi<strong>on</strong>al coherent random lasing near the lasingthreshold. We also report <strong>on</strong> amplified simulated emissi<strong>on</strong> in individual <strong>nanofibers</strong> anddem<strong>on</strong>strate that nanoscale linear optical amplifiers can be obtained by molecular self-assemblyat surfaces. Photophysical studies of <strong>nanofibers</strong> resorting to subpicosec<strong>on</strong>d luminescence andpump–probe spectroscopy give us valuable informati<strong>on</strong> <strong>on</strong> temperature-dependent, excited-staten<strong>on</strong>linear processes, such as excit<strong>on</strong>–excit<strong>on</strong> annihilati<strong>on</strong> and photoinduced absorpti<strong>on</strong>.Excited-state effects str<strong>on</strong>gly influence lasing thresholds under quasi-c<strong>on</strong>tinuous-wavephotoexcitati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, as dem<strong>on</strong>strated in photoexcitati<strong>on</strong> experiments performed withnanosec<strong>on</strong>d pulses. Last, we briefly discuss the potential of <strong>organic</strong> <strong>epitaxial</strong> <strong>nanofibers</strong>featuring low-threshold random lasing for phot<strong>on</strong>ic sensing applicati<strong>on</strong>s.Keywords: molecular epitaxy, self-assembly, <strong>nanofibers</strong>, random lasing, amplified sp<strong>on</strong>taneousemissi<strong>on</strong>, excit<strong>on</strong>–excit<strong>on</strong> annihilati<strong>on</strong>, photoinduced absorpti<strong>on</strong>, phot<strong>on</strong>ic sensing(Some figures in this article are in colour <strong>on</strong>ly in the electr<strong>on</strong>ic versi<strong>on</strong>)1. Introducti<strong>on</strong><str<strong>on</strong>g>Random</str<strong>on</strong>g> lasing is an active field of research from bothexperimental and theoretical points of view. In a random laser,optical feedback is provided by a chain of disorder-inducedlight scattering events inside the gain medium. Sequentialscattering can result in field res<strong>on</strong>ance c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> closedlooppropagati<strong>on</strong> paths or just in increase of the opticalpropagati<strong>on</strong> path length <strong>on</strong> open-loop paths. In the former case<strong>on</strong>e refers to coherent random lasing, while in the latter caserandom lasing is incoherent and feedback does not apply tothe field amplitude, but just to radiant energy [1]. Incoherentrandom lasing could be exploited to turn moderate materialgain coefficients into large amplificati<strong>on</strong> factors in opticaldevices. Coherent random lasing retains the basic propertiesof c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>lasers</str<strong>on</strong>g>, i.e., spectrally narrow emissi<strong>on</strong> modes,which greatly enhance the range of potential applicati<strong>on</strong>s. Instr<strong>on</strong>gly scattering material systems, phot<strong>on</strong> localizati<strong>on</strong> canoccur, leading to lasing modes with spatial extensi<strong>on</strong> <strong>on</strong> theorder of the light wavelength in the medium [2]. Recently,applicati<strong>on</strong>s of random <str<strong>on</strong>g>lasers</str<strong>on</strong>g> in the str<strong>on</strong>g localizati<strong>on</strong> regimehave been envisaged in nanophot<strong>on</strong>ics and remote sensing [3].Biomedical applicati<strong>on</strong>s of coherent random lasing in cancerdiagnostics have also been proposed [4].Organic materials <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> molecular or polymeraggregates with some degree of disorder are suitable for therealizati<strong>on</strong> of random <str<strong>on</strong>g>lasers</str<strong>on</strong>g> with different dimensi<strong>on</strong>alitiesand spatial and spectral properties. Two-dimensi<strong>on</strong>al <strong>organic</strong>2040-8978/10/024003+11$30.00 1© 2010 IOP Publishing Ltd Printed in the UK
J. Opt. 12 (2010) 024003 Review ArticleFigure 3. Cw epifluorescence micrograph of a p-6P film grown <strong>on</strong>(001)-oriented muscovite mica by OMBD.Figure 1. 10 × 10 μm 2 AFM topographic image of the surfacemorphology of a p-6P film grown by HWE <strong>on</strong> (001)-orientedmuscovite mica. The growth time (t), data color scale (range), andnanofiber average base width 〈b〉 and height 〈h〉 are as follows:t = 40 min, range = 0–220 nm, 〈b〉 ≈210 nm, 〈h〉 ≈110 nm.Figure 4. Room temperature epifluorescence spectrum of p-6Pcrystalline <strong>nanofibers</strong> grown <strong>on</strong> (001)-oriented muscovite mica.Figure 2. Grayscale AFM topographic image of the surfacemorphology of p-6P <strong>nanofibers</strong> grown <strong>on</strong> (001)-oriented muscovitemica by OMBD. The grayscale range is 0–95 nm.the fiber waveguide modes, thereby enabling the establishingof <strong>on</strong>e-dimensi<strong>on</strong>al coherent feedback al<strong>on</strong>g the <strong>nanofibers</strong>’axes (see secti<strong>on</strong> 4).Epifluorescence micrographs of the <strong>nanofibers</strong>’ ensemblesprovide valuable informati<strong>on</strong> <strong>on</strong> the fibers’ optical quality(figure 3). The fluorescence emissi<strong>on</strong> profiles of individualfibers are homogeneous, except for special locati<strong>on</strong>s where theintensity of the emissi<strong>on</strong> scattered out of the substrate plane isstr<strong>on</strong>gly enhanced, yielding bright spots in the epifluorescenceimages. Fluorescence waveguiding is inferred to take placeover segments ranging in length from micrometers to tens ofmicrometers.Figure 4 shows the emissi<strong>on</strong> spectrum of p-6P <strong>nanofibers</strong>at room temperature. The spectrum shows the typical featuresof H aggregates, that is, a weak electr<strong>on</strong>ic (0–0) transiti<strong>on</strong>and a more intense vibr<strong>on</strong>ic progressi<strong>on</strong> involving the C–Cstretching mode.3. Coherent versus incoherent random lasing in p-6P<strong>epitaxial</strong> <strong>nanofibers</strong>To investigate nanofiber lasing, ensembles of p-6P <strong>nanofibers</strong>are optically pumped using ultrashort (∼150 fs) laser pulsesof a frequency-doubled (380–390 nm) Ti:sapphire regenerativeamplifier running at a repetiti<strong>on</strong> frequency of 1 kHz. The pumpbeam is focused to circular spots ranging from 120 to 180 μmin diameter <strong>on</strong> the samples, allowing us to achieve pumpfluence values as high as 1 mJ cm −2 /pulse. The pump fieldpolarizati<strong>on</strong> is set perpendicular to the axis of the <strong>nanofibers</strong>(and thus parallel to the l<strong>on</strong>g axis of the p-6P molecules) formaximum optical absorpti<strong>on</strong>. The optical emissi<strong>on</strong> spot is3
J. Opt. 12 (2010) 024003 Review ArticleFigure 5. Ensemble-averaged optical emissi<strong>on</strong> spectra ofclose-packed p-6P <strong>nanofibers</strong> excited by subpicosec<strong>on</strong>d pulses, fordifferent pulse fluences given in relative units / th ,where th isthe fluence value at the random lasing threshold. The spectra aretaken at room temperature. Inset: spectrally integrated intensity ofthe n<strong>on</strong>linear emissi<strong>on</strong> (above threshold) up<strong>on</strong> removal of theluminescence background. Power-law functi<strong>on</strong>s (exp<strong>on</strong>ent n) arerepresented by the solid lines.focused <strong>on</strong>to the input slit of a single imaging spectrometerequipped with a liquid N 2 (LN 2 ) cooled charge-coupled device(CCD) for high-sensitivity measurements [25].Evidence of coherent random lasing is provided infigure 5, where the sum of the emissi<strong>on</strong> spectrum of sometens of close-packed, interc<strong>on</strong>nected <strong>nanofibers</strong> (ensembleaveragedspectrum) is reported for different values of theexcitati<strong>on</strong> fluence, at room temperature. At low excitati<strong>on</strong>levels, <strong>on</strong>ly sp<strong>on</strong>taneous emissi<strong>on</strong> is observed. When theexcitati<strong>on</strong> fluence exceeds threshold values ( th ) as low as1 μJ cm −2 /pulse, resoluti<strong>on</strong>-limited peaks emerge from thesp<strong>on</strong>taneous emissi<strong>on</strong> spectrum for the 0–1 vibr<strong>on</strong>ic band.As pump fluence is further increased the visibility of thenarrow lines decreases until spectral narrowing of the vibr<strong>on</strong>icpeak dominates the system resp<strong>on</strong>se. Laser-like peaks denotethe presence of field res<strong>on</strong>ance paths within the p-6P films,while spectral narrowing of the 0–1 and 0–2 emissi<strong>on</strong> peaksindicates that incoherent amplificati<strong>on</strong> (ASE) occurs at thehighest pump levels. In the inset, the emissi<strong>on</strong> intensity isplotted as a functi<strong>on</strong> of the normalized pump excess fluence,defined as / th = ( − th )/ th . The signal intensity isspectrally integrated over the 0–1 band up<strong>on</strong> subtracti<strong>on</strong> of theluminescence background. The n<strong>on</strong>linear dependence of theemissi<strong>on</strong> intensity <strong>on</strong> / th is explained c<strong>on</strong>sidering thatthe number of coherent modes that reach oscillati<strong>on</strong> thresholdincreases with pump fluence and by the ASE process.Spatial and polarizati<strong>on</strong> sensitivities of coherent randomlasing in p-6P crystalline <strong>nanofibers</strong> are reported in figure 6.Figure 6(a) shows that random lasing spectrum is very sensitiveto the positi<strong>on</strong> of the pump spot <strong>on</strong> the sample surface.The excitati<strong>on</strong> of different <strong>nanofibers</strong>’ ensembles results inlaser oscillati<strong>on</strong> of coherent modes having different res<strong>on</strong>anceFigure 6. Ensemble-averaged emissi<strong>on</strong> spectra of close-packed p-6P<strong>nanofibers</strong> excited by subpicosec<strong>on</strong>d pulses: (a) two different areasof the sample; (b) after polarizati<strong>on</strong> filtering al<strong>on</strong>g the directi<strong>on</strong>parallel (‖) and perpendicular (⊥) to the l<strong>on</strong>g molecular axis of p-6P.Dots: intensity ratio between the two polarizati<strong>on</strong>-filtered spectra.The spectra are taken at room temperature.wavelengths and losses. This also explains why str<strong>on</strong>gvariati<strong>on</strong> in lasing threshold fluence is registered as the excitedarea is changed. As expected from the film anisotropy and<strong>epitaxial</strong> alignment, both linear and n<strong>on</strong>linear optical emissi<strong>on</strong>exhibit str<strong>on</strong>g polarizati<strong>on</strong> anisotropy with intensity ratios <strong>on</strong>the order of 10 dB (figure 6(b)).Characteristics of random lasing excited by subpicosec<strong>on</strong>dpulses, shown here in room temperature measurements, arefound to be weakly dependent <strong>on</strong> temperature in the 80–300 Krange. The twofold or threefold increase in the random lasingthreshold typically observed up<strong>on</strong> the sample cooling to 80 Kis attributed to blueshift of the p-6P absorpti<strong>on</strong> bandgap, withc<strong>on</strong>sequent reducti<strong>on</strong> of the photoexcitati<strong>on</strong> density created ata fixed pump wavelength near the gap (380–390 nm). Thelasing threshold fluence becomes extremely sensitive to thelattice temperature when laser acti<strong>on</strong> is induced by pulseswhose durati<strong>on</strong> is l<strong>on</strong>ger than the p-6P excited-state lifetime(see secti<strong>on</strong> 6).4. One-dimensi<strong>on</strong>al coherent random lasing inindividual p-6P <strong>epitaxial</strong> <strong>nanofibers</strong>Optical studies <strong>on</strong> isolated p-6P <strong>nanofibers</strong> allow us toelucidate the mechanisms at the origin of the coherent opticalfeedback resp<strong>on</strong>sible for random lasing. While opticalfeedback realized in interc<strong>on</strong>nects of close-packed <strong>nanofibers</strong>has allegedly two-dimensi<strong>on</strong>al character, isolated <strong>nanofibers</strong>represent a test bed for <strong>on</strong>e-dimensi<strong>on</strong>al random lasing in<strong>organic</strong> <strong>epitaxial</strong> nanostructures.We investigate p-6P films exhibiting l<strong>on</strong>g and isolated<strong>nanofibers</strong> by means of microspectrographic measurementswith ultrafast pumping. The samples are excited at normalincidence from the back surface of the substrate. The emissi<strong>on</strong>is collected from the fr<strong>on</strong>t surface using a microscope objective4
J. Opt. 12 (2010) 024003 Review ArticleFigure 7. Time integrated emissi<strong>on</strong> micrographs of <strong>nanofibers</strong> excited by ultrafast pulses, for pump fluences 1 = 33 (a) and 2 = 170 μJ cm −2 /pulse (b). Panel (c): time and spectrally integrated spatial profiles of the emissi<strong>on</strong> intensity of the nanofiber placed at thecenter of the micrographs shown in panels (a) and (b). Panel (d): time integrated emissi<strong>on</strong> spectra of the same nanofiber for different values ofthe excitati<strong>on</strong> fluence. Sample temperature: 300 K.which focuses it <strong>on</strong>to the input slit of the spectrometer. Settingthe spectrograph to zeroth-order diffracti<strong>on</strong> and fully openingthe input slit, <strong>on</strong>e can image the fluorescence spot at thesample surface with ∼2 μm spatial resoluti<strong>on</strong>. Tuning thespectrometer to first-order diffracti<strong>on</strong> and narrowing the inputslit, the detecti<strong>on</strong> system becomes a microspectrometer thatenables us to spectrally resolve the emissi<strong>on</strong> of individual<strong>nanofibers</strong> aligned parallel to the input slit [9].Figure 7 depicts emissi<strong>on</strong> micrographs of isolated<strong>nanofibers</strong> taken (a) below and (b) above the lasing threshold.Lasing acti<strong>on</strong> produces a dramatic enhancement of thevisibility of optical scattering centers. This result is clearalso from figure 7(c), which displays spatial profiles of theepifluorescence emissi<strong>on</strong> of the nanofiber ∼100 μm l<strong>on</strong>gplaced at the center of the micrographs. Spatially integratedemissi<strong>on</strong> spectra of the same nanofiber are reported infigure 7(d). The random lasing threshold is first reached at the0–1 peak, and, at a slightly higher fluence, also at the 0–2 peak.As expected for a single laser emitter, sp<strong>on</strong>taneous emissi<strong>on</strong>saturates at the value reached at threshold. Fluorescenceclamping is not observed in ensemble-averaged measurements,since not all excited fibers reach the lasing threshold (figure 5).Correlated lasing measurements and AFM topographicmeasurements give insight into the origin of <strong>on</strong>e-dimensi<strong>on</strong>alcoherent feedback in individual p-6P <strong>nanofibers</strong>. Figure 8(a)shows the AFM topographic image of a nanofiber ∼100 μml<strong>on</strong>g. When the fiber morphology is compared to the lasingintensity profile for the same regi<strong>on</strong> (figures 8(b) and (c)), itturns out that scattering of the guided lasing emissi<strong>on</strong> occursat the fiber breaks. In fact, excellent corresp<strong>on</strong>dence is foundbetween the positi<strong>on</strong>s of the bright lasing spots and those ofthe fiber breaks. Measurements in other isolated <strong>nanofibers</strong>give very similar results. These findings str<strong>on</strong>gly support theidea that back-reflecti<strong>on</strong>s of the fiber waveguide modes at thefiber break interfaces are the main source of optical feedbackal<strong>on</strong>g the <strong>nanofibers</strong>’ axes.Our interpretati<strong>on</strong> of the experimental data in termsof <strong>on</strong>e-dimensi<strong>on</strong>al coherent random lasing is supportedby calculati<strong>on</strong>s of the res<strong>on</strong>ant optical modes of <strong>on</strong>edimensi<strong>on</strong>allydisordered systems. Neglecting modaleffects relating to lateral optical c<strong>on</strong>finement, coherent lightpropagati<strong>on</strong> is computed across a multilayered structure (madeof material slabs, simulating fiber segments, separated bythin air gaps, which stand for fiber breaks) using a transfermatrixformalism. The refractive index step between thematerial (n = 1.7) and air causes partial back-reflecti<strong>on</strong>of the optical field at each material–air interface. Sincethe theoretical spectrum varies str<strong>on</strong>gly with the disorderrealizati<strong>on</strong>, calculati<strong>on</strong>s are carried out using actual structuraldata derived from AFM topography. With reference tothe nanofiber displayed in figure 8, 17 slabs of differentlengths, separated by 240 nm wide air gaps, are used for thecalculati<strong>on</strong>s. As fiber breaks are not delimited by well definedfacets and thus do not possess well defined widths, the samevalue is used for all air gap widths. Losses caused by out-ofplanelight scattering at the fiber breaks’ positi<strong>on</strong>s are takeninto account. Distributed propagati<strong>on</strong> losses, such as materialself-absorpti<strong>on</strong>, are compensated by optical gain to simulatethe system resp<strong>on</strong>se near the lasing instability [30], where thelinewidth of res<strong>on</strong>ant modes drops to zero.In figure 9 we show the emissi<strong>on</strong> spectrum measured atthe positi<strong>on</strong> of the fiber break labeled as ‘break 2’ in figure 8and compare it to the optical intensity spectrum calculatedat the same positi<strong>on</strong>. The calculated intensity spectrum ismultiplied by a Gaussian with 14 nm width (FWHM), centeredat 424 nm, to simulate the 0–1 vibr<strong>on</strong>ic band of the p-5
J. Opt. 12 (2010) 024003 Review ArticleFigure 8. (a) Gray-level scale AFM topographic image of the surface morphology of a single p-6P nanofiber. The gray-level scale range is0–95 nm. (b) AFM image of the same nanofiber zoomed in <strong>on</strong> a smaller regi<strong>on</strong>. (c) Spatial profile of the lasing emissi<strong>on</strong> intensity zoomed in<strong>on</strong> the same fiber regi<strong>on</strong>. The vertical markers placed across panels (b) and (c) dem<strong>on</strong>strate the positi<strong>on</strong> corresp<strong>on</strong>dence between brightemissi<strong>on</strong> spots and fiber breaks.6P emissi<strong>on</strong>. Our distributed feedback model accounts wellfor the experimental random lasing spectra <strong>on</strong> a qualitativebasis. As regards the spectral domain, the model is able toreproduce the density of lasing modes, although inclusi<strong>on</strong> ofmodal propagati<strong>on</strong> effects in the calculati<strong>on</strong>s turns out to benecessary for predicting res<strong>on</strong>ance wavelengths and intensitiesin a quantitative way. The central role played by fiber breaksin realizing random res<strong>on</strong>ance modes through <strong>on</strong>e-dimensi<strong>on</strong>almultipath interference is highlighted by the results of c<strong>on</strong>trolcalculati<strong>on</strong>s d<strong>on</strong>e with decreasing air gap widths. When thewidth of the air gaps goes to zero, random modes disappearand the intensity spectrum tends to that of a Fabry–Perotres<strong>on</strong>ator having the length of the nanofiber (∼101 μm), thusexhibiting spectral fringes with ∼0.5 nm spacing (top curve infigure 9). As regards the spatial domain, since (i) out-of-planelight scattering occurs at the fiber breaks and (ii) breaks’ actualpositi<strong>on</strong>s are used in the model multilayered structure, modelcalculati<strong>on</strong>s automatically reproduce the intensity profile of thelasing emissi<strong>on</strong>.5. Linear amplified sp<strong>on</strong>taneous emissi<strong>on</strong> inindividual p-6P <strong>epitaxial</strong> <strong>nanofibers</strong>Determinati<strong>on</strong> of net modal gain in individual fibers yieldsthe ultimate amplificati<strong>on</strong> performance of p-6P crystallinenanofiber waveguides. With this purpose, we selecthomogeneous, break-free <strong>nanofibers</strong>, in which retrieval ofnet gain is not hindered by random laser acti<strong>on</strong> [24], andapply the same microspectrographic technique as was used tocharacterize coherent random lasing in segmented fibers.Typical results are reported in figure 10. At low excitati<strong>on</strong>levels, the emissi<strong>on</strong> micrograph of a selected nanofiber showsthe absence of scattering centers in between the fiber tips(figure 10(a)). Increasing the pump fluence above a thresholdvalue of ∼100 μJcm −2 /pulse, enhancement of the emissi<strong>on</strong>Figure 9. ‘Exp’: random lasing spectrum of a single p-6P nanofiberprobed at the positi<strong>on</strong> of a fiber break. The pump fluence is justabove the lasing threshold. ‘Theory’: the corresp<strong>on</strong>ding coherentfield intensity spectrum calculated <strong>on</strong> the basis of a transfer-matrixmodel, using fiber morphological parameters extracted from AFMtopography. ‘Theory no gaps’: the intensity spectrum calculatedup<strong>on</strong> setting the width of the air gaps equal to zero. Spectra aredrawn with vertical offsets for clarity.intensity is detected near the fiber tips (figure 10(b)). Theemissi<strong>on</strong> intensity increases c<strong>on</strong>tinuously as the positi<strong>on</strong>approaches the tips, where the guided light is efficientlyoutcoupled (figure 10(c)). Assuming linear amplificati<strong>on</strong> ofsp<strong>on</strong>taneous emissi<strong>on</strong> and uniform scattering efficiency acrossthe fiber, the emissi<strong>on</strong> intensity profile can be fitted by the6
J. Opt. 12 (2010) 024003 Review ArticleFigure 10. Time integrated emissi<strong>on</strong> micrographs of a single nanofiber excited by ultrafast pulses, for pump fluences of 1 = 75 (a) and 2 = 370 μJ cm −2 /pulse (b). Panel (c): time and spectrally integrated spatial profiles of the emissi<strong>on</strong> intensity. The dashed line is a fit to themeasured emissi<strong>on</strong> profile (fluence 2 ). Panel (d): time integrated emissi<strong>on</strong> spectra for different values of the excitati<strong>on</strong> fluence. The spectraare spatially integrated over the nanofiber regi<strong>on</strong>. Sample temperature: 300 K.functi<strong>on</strong> I T (z) = I (z) + I (L − z), whereI (z) ∼[exp(gz) −1]/g; z is the distance from a fiber tip, g the net modal gaincoefficient, and L the fiber length.Occurrence of ASE with negligible coherent feedback isc<strong>on</strong>firmed by the spectral analysis of the emissi<strong>on</strong> intensityabove the amplificati<strong>on</strong> threshold, which shows line narrowingof the emissi<strong>on</strong> towards the center of the vibr<strong>on</strong>ic bands(figure 10(d)), while spectral fringes relating to a Fabry–Perotres<strong>on</strong>ator ∼40 μm l<strong>on</strong>g are not visible. Curve fitting ofintensity profiles yields g 1 ∼ 1200 cm −1 for the 0–1 emissi<strong>on</strong>band and g 2 ∼ 700 cm −1 for the 0–2 emissi<strong>on</strong> band at thehighest excitati<strong>on</strong> fluence of 750 μJcm −2 /pulse. Assumingan excitati<strong>on</strong> density of ∼10 20 cm −3 , typical fiber propagati<strong>on</strong>losses of ∼300 cm −1 [20] and an optical c<strong>on</strong>finement factorof ∼1%, <strong>on</strong>e estimates the stimulated emissi<strong>on</strong> cross-secti<strong>on</strong>of p-6P to be ∼10 −15 cm −2 at the 0–1 emissi<strong>on</strong> peak.Time-resolved differential transmissi<strong>on</strong> measurements yielda smaller value, ≈2 × 10 −16 cm 2 (see secti<strong>on</strong> 6). Theoverestimati<strong>on</strong> of the cross-secti<strong>on</strong> value yielded by the presentanalysis of the ASE spatial profiles is attributed to the lack ofaccurate knowledge of the optical c<strong>on</strong>finement factor of gainguidedmodes and the optical loss coefficient in singly selected<strong>nanofibers</strong>.6. Optical gain performance and n<strong>on</strong>linearexcited-state dynamics of p-6P <strong>epitaxial</strong> filmsThe potential of <strong>organic</strong> films for laser technologies stemsfrom the ability to achieve lasing thresholds compatible withindirect electrical pumping by inexpensive and c<strong>on</strong>venientlight sources. Lasing performance results from both extrinsicfactors (i.e., optical c<strong>on</strong>finement of lasing modes in the gainmedium, propagati<strong>on</strong> and feedback losses) and intrinsic gainperformance of the active medium. The latter is quantifiedby the figure of merit (FOM) for optical amplificati<strong>on</strong>, definedas FOM = σ G B G τ, with σ G being the net-gain cross-secti<strong>on</strong>,B G its bandwidth, and τ the excited-state lifetime at operatingexcitati<strong>on</strong> intensity. These parameters can be retrieved fromanalysis of the excited-state dynamics of the system.We resort to time-resolved fluorescence and pump–probemeasurements with ultrafast excitati<strong>on</strong> to study the excitedstatedynamics of p-6P crystalline nanofiber films. Weinvestigate ensembles of close-packed <strong>nanofibers</strong> displayinghigh ASE/lasing thresholds (>100 μJcm −2 /pulse) to ensurethat the populati<strong>on</strong> dynamics is not perturbed by stimulatedemissi<strong>on</strong>. Ultrafast excitati<strong>on</strong> experiments are performedusing pulses 150 fs l<strong>on</strong>g delivered by an optical parametricamplifier pumped by the Ti:sapphire amplified laser with 1 kHzrepetiti<strong>on</strong> rate. The sample emissi<strong>on</strong> is spectrally dispersed ina single spectrometer and temporally resolved with a visiblestreak camera having a temporal resoluti<strong>on</strong> of ∼20 ps [26].A c<strong>on</strong>tinuous-flow, low-vibrati<strong>on</strong> cold-finger cryostat fed withliquid air is used to vary the sample temperature in the80–300 K range. Complementary differential transmissi<strong>on</strong>(T/T ) measurements are performed using broadband pulses,obtained by superc<strong>on</strong>tinuum generati<strong>on</strong> <strong>on</strong> a sapphire plate, asthe optical probe. Pump–probe time delay is c<strong>on</strong>trolled by amotorized optical delay stage [31].6.1. Time-resolved fluorescence studiesThe results of time-resolved fluorescence studies are summarizedin figure 11, where the fluorescence decay rate c<strong>on</strong>stantis reported as a functi<strong>on</strong> of excitati<strong>on</strong> fluence. A seriesof fluorescence decay traces taken at 80 K is shown in theinset of figure 11. It is clear that at high pump fluences the7
J. Opt. 12 (2010) 024003 Review Articlewith just lifetime shortening due to bimolecular effects, anddem<strong>on</strong>strates the importance of PA at room temperature.Numerical simulati<strong>on</strong>s of the nanofiber laser dynamics arecarried out to quantify the effects of optical and populati<strong>on</strong>losses. A rate-equati<strong>on</strong> model is developed for the coupleddensities of singlet excit<strong>on</strong>s (N S ), charge-transfer excit<strong>on</strong>s(N CT ) and phot<strong>on</strong>s (N P ). In the single-mode approximati<strong>on</strong>for the laser res<strong>on</strong>ator, the model equati<strong>on</strong>s areFigure 13. False-color image of the temporally and spectrallyresolved emissi<strong>on</strong> intensity of <strong>nanofibers</strong> excited by subpicosec<strong>on</strong>dpulses at 360 nm. Sample temperature: 80 K; excitati<strong>on</strong> fluence:7 μJcm −2 /pulse. Vertical (horiz<strong>on</strong>tal) white lines delimit the areafor temporal (spectral) integrati<strong>on</strong>. Right panel: emissi<strong>on</strong> spectrum,integrated in the first 30 ps after excitati<strong>on</strong> pulse arrival. Bottompanel: emissi<strong>on</strong> decay traces integrated over the 0–1 vibr<strong>on</strong>ic band ofp-6P. The solid (dashed) line is the time profile at 80 (300) K.subpicosec<strong>on</strong>d pulses. The spectral profile (right panel) showsevidence of lasing emissi<strong>on</strong> <strong>on</strong> top of the 0–1 sp<strong>on</strong>taneousemissi<strong>on</strong> band. The time profile analysis (bottom panel)dem<strong>on</strong>strates that at 80 K prompt laser emissi<strong>on</strong> leaves thesystem with a populati<strong>on</strong> of singlet excit<strong>on</strong>s that undergoesm<strong>on</strong>omolecular recombinati<strong>on</strong> with ∼1 ns decay time.6.3. Nanofiber lasing with nanosec<strong>on</strong>d-pulsed excitati<strong>on</strong>:experiment and theoryTo assess lasing performance of p-6P <strong>nanofibers</strong> underpractical pumping c<strong>on</strong>diti<strong>on</strong>s, we investigate lasing acti<strong>on</strong> withpulses 4 ns l<strong>on</strong>g at 355 nm as the excitati<strong>on</strong> source. Thepulses are delivered by an optical parametric oscillator pumpedby a Q-switched neodymium-doped yttrium aluminum garnet(Nd:YAG) laser with 10 Hz repetiti<strong>on</strong> rate. The emissi<strong>on</strong>is sent through a single spectrometer and acquired by animage-intensified, time-gateable CCD camera with ∼3 nstemporal resoluti<strong>on</strong>. We study a nanofiber ensemble exhibitinga low lasing threshold of ∼6 μJcm −2 /pulse under ultrafastpumping [26].At 80 K, the lasing threshold occurs at a pump intensity(I th ) of ∼15 kW p cm −2 . Assuming that the system is in am<strong>on</strong>omolecular regime, the equivalent lasing threshold underultrafast pumping ( th,eq ) is close to the experimental <strong>on</strong>e( th,eq = I th /k 0 ≈ 10 μJcm −2 /pulse). Thus, at cryogenictemperatures nanosec<strong>on</strong>d lasing performance is found not to beaffected by PA of sec<strong>on</strong>dary excitati<strong>on</strong>s. When the temperatureis raised from 80 to 300 K, a 50-fold increase in lasingthreshold is observed, from 16 to ∼800 kW p cm −2 . Thisdramatic increase in threshold intensity cannot be explaineddN SdtdN Pdt= G(t) + k CT N CT − k 0 N S − 1 2 κ SSN 2 S − σ SEvN P N SdN CTdt= 1 4 κ SSN S − k CT N CT − σ PA vN P N CT= εk R N S + σ SE vN P N S − σ PA vN P N CT − k L N Pwhere G(t) is the time-dependent pump rate, k CT the decayrate c<strong>on</strong>stant of charge-transfer excit<strong>on</strong>s, σ SE(PA) the stimulatedemissi<strong>on</strong> (photoinduced absorpti<strong>on</strong>) cross-secti<strong>on</strong> of singlet(charge-transfer) excit<strong>on</strong>s, v the speed of light in the medium,k R the radiative emissi<strong>on</strong> rate c<strong>on</strong>stant of singlet excit<strong>on</strong>s, εthe fracti<strong>on</strong> of sp<strong>on</strong>taneous emissi<strong>on</strong> captured into the lasingmode, and k L the linear optical loss c<strong>on</strong>stant of the lasingmode. The parameter values are as follows: ε = 10 −4 , k R =0.7 × 10 9 s −1 (k R /k 0 ∼ 0.3), σ SE = 2 × 10 −16 cm 2 , σ PA =1 × 10 −17 cm 2 (the ratio σ PA /σ SE is c<strong>on</strong>sistent with differentialtransmissi<strong>on</strong> measurements). The temperature-dependentvalues of the singlet excit<strong>on</strong> recombinati<strong>on</strong> c<strong>on</strong>stants (k 0 ,κ SS ) are the experimental <strong>on</strong>es. Charge-transfer excit<strong>on</strong>sare assumed to recombine into singlet excit<strong>on</strong>s with k CT =1ns −1 . Gaussian-shaped pump pulses 4 ns l<strong>on</strong>g have 100%efficiency of c<strong>on</strong>versi<strong>on</strong> into singlet excit<strong>on</strong>s; the singletexcit<strong>on</strong> generati<strong>on</strong> rate is thus given by G(t) = I (t)/(E p d),I (t) being the pump intensity profile, E p the pump phot<strong>on</strong>energy and d the film thickness.In figure 14, the calculated lasing threshold is plottedagainst the loss coefficient (α L = k L /v) of the fiber res<strong>on</strong>ator,which includes both internal linear losses and feedback losses.At small values of α L , lasing is achieved in the m<strong>on</strong>omolecularregime and the lasing threshold increases linearly with α L .Forhigh enough α L values, bimolecular recombinati<strong>on</strong>s becomeimportant and the lasing threshold starts growing superlinearlywith α L . The superlinear behavior becomes very sensitive totemperature <strong>on</strong>ce PA by charge-transfer excit<strong>on</strong>s is turned <strong>on</strong>(solid curves).Calculated thresholds are c<strong>on</strong>sistent with experimental<strong>on</strong>es assuming that the <strong>nanofibers</strong> investigated have anaverage res<strong>on</strong>ator loss coefficient of about 200 cm −1 . Fromthe results of model calculati<strong>on</strong>s, we c<strong>on</strong>clude that lossvalues as small as 10 cm −1 are necessary to lower thelasing threshold with nanosec<strong>on</strong>d-pulsed excitati<strong>on</strong> to values
J. Opt. 12 (2010) 024003 Review ArticleFigure 14. Calculated lasing threshold intensity of a p-6P nanofiberversus the loss coefficient (α L ) of the fiber res<strong>on</strong>ator. Pulsedexcitati<strong>on</strong> with pulses 4 ns l<strong>on</strong>g is assumed. C<strong>on</strong>tinuous lines:bimolecular recombinati<strong>on</strong> and photoinduced absorpti<strong>on</strong> are bothincluded in the calculati<strong>on</strong>s. Dashed lines: photoinduced absorpti<strong>on</strong>is turned off. Black (red) lines refer to 80 (300) K. The thin straightline highlights the lasing resp<strong>on</strong>se of the same nanofiber in theabsence of bimolecular recombinati<strong>on</strong> (at 80 K). Solid squares arethe experimental data obtained with nanosec<strong>on</strong>d-pulsed excitati<strong>on</strong>.be integrated in distributed feedback structures to decreasefeedback losses. Grating structures printed <strong>on</strong> suitable polymercoatings by nanoimprint techniques [12] could serve as costeffectivesoluti<strong>on</strong>s.7. Organic <strong>epitaxial</strong> <strong>nanofibers</strong> for phot<strong>on</strong>ic sensingLow-threshold random lasing can be exploited to achieve highphot<strong>on</strong>ic sensitivity to various agents. Miniaturized randomlaser sources have been envisaged to enable new functi<strong>on</strong>alitiesfor next-generati<strong>on</strong> informati<strong>on</strong> technologies [3, 38].On the basis of model simulati<strong>on</strong>s of the coherent opticalresp<strong>on</strong>se of a random medium, we estimate that a typical p-6P <strong>epitaxial</strong> nanofiber with a length of ∼100 μm and a dozenthin (∼200 nm) breaks would display attoliter sensitivityin detecting small volumes of index matching fluids (seefigure 15(a)). Also, strain sensors with very large (>10 3 )gauge factor and high dynamic range could be obtained byoptical interrogati<strong>on</strong> of single <strong>nanofibers</strong> aligned parallel to thestrain axis (figures 15(b) and (c)).We add that surface adsorpti<strong>on</strong> of molecular species in<strong>nanofibers</strong> assembled from suitably functi<strong>on</strong>alized oligomers[39] could generate phot<strong>on</strong>ic chemosensing, e.g., bymodulati<strong>on</strong> of the effective refractive index of the nanofiberres<strong>on</strong>ance modes. Phot<strong>on</strong>ic sensitivity could be furtherenhanced near the lasing threshold, as recently dem<strong>on</strong>stratedin detecting ultralow molecular traces using an <strong>organic</strong>distributed feedback laser [40].8. SummaryWe presented experimental data <strong>on</strong> coherent and incoherentrandom lasing in para-sexiphenyl <strong>epitaxial</strong> <strong>nanofibers</strong> grownFigure 15. Model calculati<strong>on</strong>s of the phot<strong>on</strong>ic sensitivity of a<strong>on</strong>e-dimensi<strong>on</strong>al random medium such as a p-6P <strong>epitaxial</strong> nanofiber.(a) Coherent emissi<strong>on</strong> spectrum before and after opticalneutralizati<strong>on</strong> of a fiber break up<strong>on</strong> air gap filling with indexmatching fluid. (b) Res<strong>on</strong>ance wavelength shift in resp<strong>on</strong>se to a100 ppm axial strain. (c) Strain gauge factor as a functi<strong>on</strong> of thestrain strength. The gauge factor (GF) is defined from the relati<strong>on</strong>I/I (ppm) = GF · strain (ppm), where I is the optical emissi<strong>on</strong>intensity.<strong>on</strong> muscovite mica. One-dimensi<strong>on</strong>al random lasing andlinear optical amplificati<strong>on</strong> are dem<strong>on</strong>strated in individual<strong>nanofibers</strong>. Model calculati<strong>on</strong>s of coherent light propagati<strong>on</strong>in <strong>on</strong>e-dimensi<strong>on</strong>al random media are in agreement withexperimental observati<strong>on</strong>s. N<strong>on</strong>linear excited-state losses, i.e.,the bimolecular recombinati<strong>on</strong> and photoinduced absorpti<strong>on</strong>,are measured by ultrafast spectroscopy techniques, and theirimpact <strong>on</strong> random lasing performance under nanosec<strong>on</strong>dpulsedpumping is determined. Model calculati<strong>on</strong>s ofthe nanofiber laser dynamics are able to reproduce lasingthresholds measured under nanosec<strong>on</strong>d pumping. Lastly,potential applicati<strong>on</strong>s of <strong>organic</strong> <strong>epitaxial</strong> <strong>nanofibers</strong> inphot<strong>on</strong>ic sensing are discussed.AcknowledgmentsWe acknowledge the scientific collaborati<strong>on</strong> of F Cordella,M Saba, R Orrù, J E Communal, P Verzeroli, M Marceddu,A Anedda, A Andreev, G Hlawacek, C Teichert, H Sitter,N S Sariciftci, F Balzer, V G Bordo, S B Petersen, M T Neves-Petersen, K Thilsing-Hansen, H-G Rubahn, A Mura, andG B<strong>on</strong>giovanni. We also thank G Del Fiacco for technicalassistance.References[1] Cao H 2003 Waves <str<strong>on</strong>g>Random</str<strong>on</strong>g> Media 13 R1Cao H 2005 J. Phys. A: Math. Gen. 38 10497[2] Cao H, Xu J Y, Zhang D Z, Chang S-H, Ho S T, Seelig E W,Liu X and Chang R P H 2000 Phys.Rev.Lett.84 558410
J. Opt. 12 (2010) 024003 Review ArticleWiersma D S, Bartolini P, Lagendijk A and Righini R 1997Nature 390 671[3] Wiersma D S 2000 Nature 406 132[4] Pols<strong>on</strong> R C and Vardeny Z V 2004 Appl. Phys. Lett. 85 1289[5] Samuel I D W and Turnbull G A 2007 Chem. Rev. 107 1272[6] McGehee M D and Heeger A J 2000 Adv. Mater. 12 1655[7] Frolov S V, Vardeny Z V, Yoshino K, Zakhidov A andBaughman R H 1999 Phys. Rev. B 59 R5284[8] Anni M, Lattante S, Cingolani R, Gigli G, Barbarella G andFavaretto L 2003 Appl. Phys. Lett. 83 2754Anni M, Lattante S, Stomeo T, Cingolani R, Gigli G,Barbarella G and Favaretto L 2004 Phys. Rev. B 70 195216[9] Quochi F, Cordella F, Mura A, B<strong>on</strong>giovanni G, Balzer F andRubahn H-G 2005 J. Phys. Chem. B 109 21690[10] Zhao Y S, Peng A, Fu H, Ma Y and Yao J 2008 Adv. Mater.20 1661[11] O’Carroll D, Lieberwirth I and Redm<strong>on</strong>d G 2007 Nat.Nanotechnol. 2 180[12] Camposeo A, Di Benedetto F, Stabile R, Neves A A R,Gingolani R and Pisignano D 2009 Small 5 562Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L,Stabile R, Cingolani R and Pisignano D 2008 Nat.Nanotechnol. 3 614[13] Yanagi H and Morikawa T 1999 Appl. Phys. Lett. 75 187[14] Andreev A, Matt G, Brabec C J, Sitter H, Badt D,Seyringer H and Sariciftci N S 2000 Adv. Mater. 12 629[15] Balzer F and Rubahn H-G 2001 Appl. Phys. Lett. 79 3860[16] Andreev A, Quochi F, Cordella F, Mura A, B<strong>on</strong>giovanni G,Sitter H, Hlawacek G, Teichert C and Sariciftci N S 2006J. Appl. Phys. 99 034305[17] Plank H, Resel R, Sitter H, Andreev A, Sariciftci N S,Hlawacek G, Teichert C, Thierry A and Lotz B 2003 ThinSolid Films 443 108Teichert C, Hlawacek G, Andreev A, Sitter H andSariciftci N S 2005 Appl. Phys. A 82 665[18] Kjelstrup-Hansen J, Henrichsen H H, Bøggild P andRubahn H-G 2006 Thin Solid Films 515 827[19] Birendra-Singh T, Hernandez-Sosa G, Neugebauer H,Andreev A, Sitter H and Sariciftci N S 2006 Phys. StatusSolidi b 243 3329[20] Balzer F, Bordo V G, Sim<strong>on</strong>sen A C and Rubahn H-G 2003Phys. Rev. B 67 115408[21] Volkov V S, Bozhevolnyi S I, Bordo V G andRubahn H-G 2004 J. Microsc. 215 241[22] Yanagi H and Yoshiki A 2004 Appl. Phys. Lett. 84 4783[23] Yanagi H, Ohara T and Morikawa T 2001 Adv. Mater. 13 1452[24] Quochi F, Cordella F, Mura A, B<strong>on</strong>giovanni G, Balzer F andRubahn H-G 2006 Appl. Phys. Lett. 88 041106[25] Quochi F, Cordella F, Orrù R, Communal J E, Verzeroli P,Mura A, B<strong>on</strong>giovanni G, Andreev A, Sitter H andSariciftci N S 2004 Appl. Phys. Lett. 84 4454[26] Quochi F et al 2008 Adv. Mater. 20 3017[27] Balzer F, Beermann J, Bozhevolnyi S I, Sim<strong>on</strong>sen A C andRubahn H-G 2003 Nano Lett. 3 1311[28] Plank H, Resel R, Purger S, Keckes J, Thierry A, Lotz B,Andreev A, Sariciftci N S and Sitter H 2001 Phys. Rev. B64 235423[29] Andreev A, Sitter H, Brabec C J, Hinterdorfer P,Springholz G and Sariciftci N S 2001 Synth. Met. 121 1379[30] Burin A L, Ratner M A, Cao H and Chang R P H 2001 Phys.Rev. Lett. 87 215503[31] Cordella F, Quochi F, Saba M, Andreev A, Sitter H,Sariciftci N S, Mura A and B<strong>on</strong>giovanni G 2007 Adv. Mater.19 2252[32] Pope M and Swenberg C E 1999 Electr<strong>on</strong>ic Processes inOrganic Crystals and Polymers (New York: OxfordUniversity Press)[33] Baldo M A, Holmes R J and Forrest S R 2002 Phys. Rev. B66 035321[34] Wiesenhofer H, Zojer E, List E J W, Scherf U, Brédas J-L andBelj<strong>on</strong>ne D 2006 Adv. Mater. 18 310[35] Kadashchuk A, Andreev A, Sitter H, Sariciftci N S,Skryshevsky Y, Piryatinski Y, Bl<strong>on</strong>sky I andMeissner D 2004 Adv. Funct. Mater. 14 970[36] Zenz C, Cerullo G, Lanzani G, Graupner W, Meghdadi F,Leising G and De Silvestri S 1999 Phys. Rev. B 59 14336[37] Cerullo C, Lanzani G, De Silvestri S, Egelhaaf H-J, Lüer L andOelkrug D 2000 Phys. Rev. B 62 2429[38] Wiersma D S and Cavalieri S 2001 Nature 414 708[39] Schiek M, Lützen A, Koch R, Al-Shamery K, Balzer F,Frese R and Rubahn H-G 2005 Appl. Phys. Lett. 86 153107[40] Rose A, Zhu Z, Madigan C F, Swager T M and Bulović V 2005Nature 434 87611