13.07.2015 Views

1 Remarks on Lebesgue Integral

1 Remarks on Lebesgue Integral

1 Remarks on Lebesgue Integral

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ivan Avramidi: Notes of Hilbert Spaces 11 <str<strong>on</strong>g>Remarks</str<strong>on</strong>g> <strong>on</strong> <strong>Lebesgue</strong> <strong>Integral</strong>Definiti<strong>on</strong> 1 Characteristic functi<strong>on</strong> of a set A ⊂ X is a mapping χ A :X → {0, 1} defined by⎧⎨ 1, if x ∈ Aχ A (x) =(1.1)⎩ 0, if x ∉ ADefiniti<strong>on</strong> 2 For a n<strong>on</strong>-zero functi<strong>on</strong> f : R n → R, the set, supp f, of allpoints x ∈ R n for which f(x) ≠ 0 is called the support of f, i.e.Clearly, supp χ A = A.supp f = {x ∈ R n |f(x) ≠ 0} . (1.2)Definiti<strong>on</strong> 3 Let I be a semi-open interval in R n defined byI = {x ∈ R n | a k ≤ x k < b k , k = 1, . . . , n} (1.3)for some a k < b k . The measure of the set I is defined to beµ(I) = (b 1 − a 1 ) · · · · (b n − a n ) . (1.4)The <strong>Lebesgue</strong> integral of a characteristic functi<strong>on</strong> of the set I is defined by∫χ I dx = µ(I) . (1.5)Definiti<strong>on</strong> 4 A finite linear combinati<strong>on</strong> of characteristic functi<strong>on</strong>s of semiopenintervalsN∑f = α k χ Ik (1.6)is called a step functi<strong>on</strong>.k=1Definiti<strong>on</strong> 5 The <strong>Lebesgue</strong> integral of a step functi<strong>on</strong> is defined by linearity∫N∑k=1α k χ Ik dx =N∑α k µ(I k ) . (1.7)Definiti<strong>on</strong> 6 A functi<strong>on</strong> f : R n → R is <strong>Lebesgue</strong> integrable if ∃ a sequenceof step functi<strong>on</strong>s {f k } such thatf ≃k=1∞∑f k , (1.8)k=1


Ivan Avramidi: Notes of Hilbert Spaces 2which means that two c<strong>on</strong>diti<strong>on</strong>s are satisfieda)∞∑∫|f k | dx < ∞ (1.9)k=1∞∑b) f(x) = f k (x) ∀x ∈ R n such thatk=1The <strong>Lebesgue</strong> integral of f is then defined by∫k=1∞∑|f k (x)| < ∞ . (1.10)k=1∞∑∫f dx = f k dx (1.11)Propositi<strong>on</strong> 1 The space, L 1 (R n ), of all <strong>Lebesgue</strong> integrable functi<strong>on</strong>s <strong>on</strong> R nis a vector space and ∫ is a linear functi<strong>on</strong>al <strong>on</strong> it.Theorem 1a) If f, g ∈ L 1 (R n ) and f ≤ g, then ∫ fdx ≤ ∫ gdx.b) If f ∈ L 1 (R n ), then |f| ∈ L 1 (R n ) and | ∫ f dx| ≤ ∫ |f|dx.Theorem 2 If {f k } is a sequence of integrable functi<strong>on</strong>s and∞∑f ≃ f k , (1.12)k=1then∫∞∑∫f =k=1f k , (1.13)Definiti<strong>on</strong> 7 The L 1 -norm in L 1 (R n ) is defined by∫||f|| = |f|dx (1.14)Definiti<strong>on</strong> 8 A functi<strong>on</strong> f is called a null functi<strong>on</strong> is it is integrable and||f|| = 0. Two functi<strong>on</strong>s f and g are said to be equivalent if f − g is a nullfuncti<strong>on</strong>.Definiti<strong>on</strong> 9 The equivalence class of f ∈ L 1 (R n ), denoted by [f], is the setof all functi<strong>on</strong>s equivalent to f.Remark. Strictly speaking, to make L 1 (R n ) a normed space <strong>on</strong>e has to c<strong>on</strong>siderinstead of functi<strong>on</strong>s the classes of equivalent functi<strong>on</strong>s.Definiti<strong>on</strong> 10 A set X ⊂ R n is called a null set (or a set of measure zero)if its characteristic functi<strong>on</strong> is a null functi<strong>on</strong>.


Ivan Avramidi: Notes of Hilbert Spaces 3Theorem 3a) Every countable set is a null set.b) A countable uni<strong>on</strong> of null sets is a null set.c) Every subset of a null set is a null set.Definiti<strong>on</strong> 11 Two integrable functi<strong>on</strong>s, f, g ∈ L 1 (R n ), are said to be equalalmost everywhere, f = g a.e., if the set of all x ∈ R n for which f(x) ≠ g(x)is a null set.Theorem 4∫f = g a.e ⇐⇒ ||f − g|| =|f − g| = 0 (1.15)Theorem 5 The space L 1 (R n ) is complete.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!