13.07.2015 Views

Hydromagnetic waves in Earth's core and their influence on ...

Hydromagnetic waves in Earth's core and their influence on ...

Hydromagnetic waves in Earth's core and their influence on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

iAbstractIn this thesis east-west moti<strong>on</strong>s of Earth’s magnetic field <strong>on</strong> time scales of centuriesto millennia <str<strong>on</strong>g>and</str<strong>on</strong>g> associated patterns of field evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface are studied.The hypothesis that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> c<strong>on</strong>tribute to such changes is<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g analysis of historical <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagnetic observati<strong>on</strong>s withpredicti<strong>on</strong>s from analytical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical wave models.Geomagnetic field models are analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to quantify the characteristics of radialmagnetic field (B r ) evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. In the historical model gufm1, spatially<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent (wave-like) patterns are identified <str<strong>on</strong>g>in</str<strong>on</strong>g> B r . Particularly strik<str<strong>on</strong>g>in</str<strong>on</strong>g>gis a low latitude signal with azimuthal wavenumber m=5 that travels westwards at∼17 km yr −1 . Study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the archeomagnetic model CALS7K.1, episodes of both eastward<str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong> of wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r are observed. Analysis of the evoluti<strong>on</strong>of fields <str<strong>on</strong>g>and</str<strong>on</strong>g> underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g flows from geodynamo simulati<strong>on</strong>s is used to illustrate that<str<strong>on</strong>g>in</str<strong>on</strong>g>ability to resolve the smallest length scales of the field makes quantitative <str<strong>on</strong>g>in</str<strong>on</strong>g>ferencesc<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the flow difficult, unless the flow is large scale. Furthermore, it is foundazimuthal moti<strong>on</strong>s of patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r can be produced by hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> thesimulati<strong>on</strong>s. The rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der of the thesis addresses whether hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<str<strong>on</strong>g>core</str<strong>on</strong>g> could be the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of azimuthal geomagnetic secular variati<strong>on</strong>.Magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by c<strong>on</strong>vecti<strong>on</strong> (with a dynamical balance between magneticforces, latitude-dependent Coriolis forces, <str<strong>on</strong>g>and</str<strong>on</strong>g> buoyancy forces) are proposed as asuitable c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. When driven by thermal c<strong>on</strong>vecti<strong>on</strong>,such <str<strong>on</strong>g>waves</str<strong>on</strong>g> propagate <strong>on</strong> the thermal diffusi<strong>on</strong> time scale. C<strong>on</strong>vecti<strong>on</strong>-drivenmagneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> are found to exhibit dispersive behaviour <str<strong>on</strong>g>and</str<strong>on</strong>g> a dependence ofpropagati<strong>on</strong> speed <strong>on</strong> latitude. It is shown that such hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>could produce wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r <str<strong>on</strong>g>in</str<strong>on</strong>g> two ways. One mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g>volves the distorti<strong>on</strong>of toroidal magnetic field with<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> by wave flows produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g new, spatiallyperiodic <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>centrati<strong>on</strong>s of B r . This mechanism is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 3D, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, dynamical model with spherical geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> an imposed toroidalmagnetic field. When this toroidal magnetic field is equatorially symmetric, wave-likepatterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r centred <strong>on</strong> the equator are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. Wave flows are found to c<strong>on</strong>sist ofalternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence close to the outer boundary. Asec<strong>on</strong>d mechanism whereby hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> can produce spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r <str<strong>on</strong>g>in</str<strong>on</strong>g>volves advecti<strong>on</strong> of exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r by the wave flows. This mechanismis studied us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 1D, diffusi<strong>on</strong>less, analytical model <str<strong>on</strong>g>and</str<strong>on</strong>g> a 2D numerical model<strong>on</strong> a spherical surface <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g limited magnetic diffusi<strong>on</strong>. It is found that propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r are produced that pulsate <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude if the wave propagati<strong>on</strong>speed is faster than the fluid moti<strong>on</strong>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave. Both mechanisms could feasiblybe <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r identified at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.


iiiC<strong>on</strong>tents1 Introducti<strong>on</strong> 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Earth’s magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Observati<strong>on</strong>s of the geomagnetic field . . . . . . . . . . . . . . . . 11.2.2 Geomagnetic secular variati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 31.3 Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the geomagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> . . . . . . . . . . . . 51.3.1 Internal source of the geomagnetic field . . . . . . . . . . . . . . . 51.3.2 Physical properties of the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . 71.3.3 Energy sources <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . 81.3.4 The geodynamo mechanism . . . . . . . . . . . . . . . . . . . . . . 81.3.5 Causes of geomagnetic secular variati<strong>on</strong>, flow at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface<str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day . . . . . . . . . . . . . . . . . . . 101.4 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong> . . . 121.4.1 An example of a hydromagnetic wave <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its possibleeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4.2 Previous studies l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagneticsecular variati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.5 Thesis aims <str<strong>on</strong>g>and</str<strong>on</strong>g> structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 A space-time process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> spectral analysis methodology 162.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2 Visualisati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis techniques . . . . . . . . . . . . . . . . . . . . . 172.2.1 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g models <str<strong>on</strong>g>in</str<strong>on</strong>g> space <str<strong>on</strong>g>and</str<strong>on</strong>g> time . . . . . . . . . . . . . . . . . . . 172.2.2 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of time-l<strong>on</strong>gitude (TL) plots . . . 172.2.3 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of frequency-wavenumber (FK)power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2.4 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of latitude-azimuthal speed (LAS)power plots, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Rad<strong>on</strong> transform technique . . . . . . . . . . 232.3 Synthetic field models used for methodology test<str<strong>on</strong>g>in</str<strong>on</strong>g>g . . . . . . . . . . . . 272.4 Removal of the time-averaged axisymmetric field . . . . . . . . . . . . . . 302.5 High-pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.5.1 Motivati<strong>on</strong> for high-pass temporal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g of field models . . . . . 342.5.2 Filter specificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> implementati<strong>on</strong> . . . . . . . . . . . . . . . 34


iv2.5.3 Filter warm-up effects <str<strong>on</strong>g>and</str<strong>on</strong>g> choice of filter order. . . . . . . . . . . 352.5.4 Influence of filter type <strong>on</strong> processed field . . . . . . . . . . . . . . . 362.5.5 Criteria for choice of filter cut-off period t c . . . . . . . . . . . . . 372.5.6 Measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g field variati<strong>on</strong>s captured as a functi<strong>on</strong> of t c . . . . . . . 372.5.7 Discussi<strong>on</strong> of properties of form of processed field for a range offilter cut-off periods . . . . . . . . . . . . . . . . . . . . . . . . . . 392.6 Geographical distributi<strong>on</strong> of azimuthal speeds of field features . . . . . . . 432.7 Temporal variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude-azimuthal speed (LAS) power plots . . . . 442.8 Analysis of hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed signals . . . . . . . . . . . . . . . . . 452.9 Frequency-wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques . . . . . . . . . . . . . . . . . 492.10 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 Applicati<strong>on</strong> of the space-time spectral analysis technique to the historicalgeomagnetic field model gufm1 543.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.2 Descripti<strong>on</strong> of field evoluti<strong>on</strong> processes <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal directi<strong>on</strong> . . . . . 553.2.1 Unprocessed radial magnetic field (B r ) . . . . . . . . . . . . . . . . 553.2.2 Radial magnetic field without time-averaged axisymmetric part(B r − ¯B r ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2.3 Radial magnetic field with time averaged axisymmetric comp<strong>on</strong>entremoved <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered (˜B r ) . . . . . . . . . . . . . . . . . 613.2.4 Comparis<strong>on</strong> of ˜B r when filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g threshold is 400 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 years 653.2.5 Spherical harm<strong>on</strong>ic power spectrum for ˜B r . . . . . . . . . . . . . 673.3 Isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> descripti<strong>on</strong> of field evoluti<strong>on</strong> modes <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r . . . . . . . . . . 683.4 Geographical trends <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of field features . . . . . . . . . . 703.5 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processes . . . . . . . . . . . . 713.6 Temporal variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processes . . . . . . . . . . . . . . . 723.7 Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of dispersi<strong>on</strong> by wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g ˜B r from gufm1 . . . 753.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 Applicati<strong>on</strong> of the space-time spectral analysis technique to the archeomagneticfield model CALS7K.1 804.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.2 Comparis<strong>on</strong> of CALS7K.1h to gufm1d . . . . . . . . . . . . . . . . . . . . 814.2.1 Creati<strong>on</strong> of gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g> spherical harm<strong>on</strong>ic power spectra . . . . . 814.2.2 Comparis<strong>on</strong> of unprocessed radial magnetic field (B r ) . . . . . . . 814.2.3 High pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the variability captured by gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g>CALS7K.1h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.3 Space-time analysis of CALS7K.1 . . . . . . . . . . . . . . . . . . . . . . . 88


v4.3.1 Analysis of unprocessed radial magnetic field (B r ) for full span ofCALS7K.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.3.2 Analysis of ˜B r from 2000 B.C. to 1700 A.D. . . . . . . . . . . . . . 914.3.3 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processes . . . . . . . . 954.3.4 Discussi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954.4 Summary of applicati<strong>on</strong> of space-time spectral analysis to CALS7K.1 . . . 985 Applicati<strong>on</strong> of the space-time spectral analysis technique to outputfrom a c<strong>on</strong>vecti<strong>on</strong>-driven geodynamo model 995.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995.2 DYN1: (E=2×10 −2 , P r=1, P r m =10, Ra/Ra c ∼ 3, R m ∼ 100) . . . . . . 1005.2.1 Radial magnetic field (B r ) from DYN1 . . . . . . . . . . . . . . . . 1015.2.2 Velocity field from DYN1 . . . . . . . . . . . . . . . . . . . . . . . 1085.2.3 Discussi<strong>on</strong> of results from DYN1 . . . . . . . . . . . . . . . . . . . 1155.3 DYN2: (E=3×10 −4 , P r=1, P r m =3, Ra/Ra c ∼ 32, R m ∼ 500) . . . . . . 1165.3.1 Undamped radial magnetic field (B r ) from DYN2 . . . . . . . . . 1175.3.2 Radial magnetic field from DYN2 (B r ) with l > 10 damped . . . . 1225.3.3 Velocity field from DYN2 . . . . . . . . . . . . . . . . . . . . . . . 1255.3.4 Discussi<strong>on</strong> of results from DYN2 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2d . . . . . . . . . . . . 1285.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326 Theory of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids 1346.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346.2 Survey of hydromagnetic wave literature . . . . . . . . . . . . . . . . . . . 1356.3 Lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order force balance associated with hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1366.4 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by c<strong>on</strong>vecti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g plane layer . . . 1396.4.1 Effect of diffusi<strong>on</strong> <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . . . . . . . 1416.5 Influence of spherical geometry <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . . . . 1436.5.1 Variati<strong>on</strong> of Coriolis force with latitude: Hide’s β-plane model . . 1436.5.2 Full spherical geometry: the special case of the Malkus field . . . . 1476.6 Instability mechanisms for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . . . . . . . . 1506.6.1 Magnetically-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid . . . . . 1516.6.2 C<strong>on</strong>vecti<strong>on</strong>-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a magnetic field<str<strong>on</strong>g>and</str<strong>on</strong>g> rapid rotati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 1536.7 N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . . . . . . . . . . 1656.8 Influence of stratificati<strong>on</strong> <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . . . . . . . 1686.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687 C<strong>on</strong>vecti<strong>on</strong>-driven, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere 1707.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707.2 Manipulati<strong>on</strong> of govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to eigenvalue form . . . . . . . . . 171


vi7.2.1 Govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . 1717.2.2 Toroidal-poloidal expansi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong>of the scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1727.2.3 Assumpti<strong>on</strong>s regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g equatorial symmetry of <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . . . . . 1737.2.4 Expansi<strong>on</strong> of scalars <str<strong>on</strong>g>in</str<strong>on</strong>g>to spherical harm<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chebyshev polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737.2.5 Boundary c<strong>on</strong>diti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . 1747.2.6 Formulati<strong>on</strong> of the eigenvalue problem . . . . . . . . . . . . . . . . 1767.3 Numerical soluti<strong>on</strong> of eigenvalue problem . . . . . . . . . . . . . . . . . . 1777.3.1 Criteria for except<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> rejected eigenvalues . . . . . . . . . . . 1787.3.2 Benchmark<str<strong>on</strong>g>in</str<strong>on</strong>g>g the eigenvalue solver code . . . . . . . . . . . . . . 1787.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797.4.1 Wave types <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> structure . . . . . . . . . . . . . . . . . . . . 1807.4.2 Dependence <strong>on</strong> E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877.4.3 Dependence <strong>on</strong> Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1887.4.4 Dependence <strong>on</strong> P r . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907.4.5 Dependence <strong>on</strong> P r m . . . . . . . . . . . . . . . . . . . . . . . . . . 1917.5 Discussi<strong>on</strong> of implicati<strong>on</strong>s for <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> . . . . . . . . . . . . . 1927.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1938 Patterns of magnetic field evoluti<strong>on</strong> caused by wave flows 1948.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1948.2 1D model of a wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a magnetic field . . . . . . . . . . . . . 1958.2.1 Frozen-flux equati<strong>on</strong> for field evoluti<strong>on</strong> . . . . . . . . . . . . . . . . 1958.2.2 Chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame to move al<strong>on</strong>g with wave flow . . . . . . 1978.2.3 Soluti<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the method of characteristics . . . . . . . . . . . . . 1988.2.4 Discussi<strong>on</strong> of soluti<strong>on</strong>s to 1D frozen flux wave flow problem . . . . 2028.2.5 Steady state balance between advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> . . . . . . . 2088.3 2D wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a radial magnetic field at a spherical surface . . . 2128.3.1 2D model equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> imposed flow . . . . . . . . . . . . . . . . 2128.3.2 Numerical soluti<strong>on</strong> of 2D wave flow model . . . . . . . . . . . . . . 2148.3.3 A parameter survey of results from the 2D wave flow model . . . . 2188.3.4 Spatial characteristics of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the 2D wave flow model 2228.3.5 Evoluti<strong>on</strong> of realistic magnetic fields produced by wave flows . . . 2308.3.6 Impact of crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> sources of hemispherical asymmetry 2348.3.7 Discussi<strong>on</strong> of implicati<strong>on</strong>s for mechanisms of geomagnetic secularvariati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> techniques . . . . . . . . . . . . . 2378.3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2409 C<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> suggesti<strong>on</strong>s for further research 2419.1 A synthesis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2419.2 Summary of work carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . 245


vii9.3 Suggesti<strong>on</strong>s of extensi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s for future research . . . . . . . . 246A Historical geomagnetic field model gufm1 249A.1 Historical observati<strong>on</strong>s of Earth’s magnetic field . . . . . . . . . . . . . . . 249A.2 Field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodology . . . . . . . . . . . . . . . . . . . . . . . . . 249A.3 Comparis<strong>on</strong> to observatory data . . . . . . . . . . . . . . . . . . . . . . . 254A.4 Limitati<strong>on</strong>s of gufm1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257A.5 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g of gufm1 for analysis <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . . . . . . 258B The archeomagnetic field model CALS7K.1 259B.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259B.2 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259B.3 Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal distributi<strong>on</strong> of data . . . . . . . . . . . . . . . . . . 260B.4 Uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262B.5 Field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodology . . . . . . . . . . . . . . . . . . . . . . . . . 263B.6 Characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> of the model CALS7K.1 . . . . . . . . . . . 264B.7 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g of CALS7K.1 for analysis <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . . . . 264C A 3D, c<strong>on</strong>vecti<strong>on</strong>-driven, spherical shell dynamo model (MAGIC) 265C.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265C.2 Model equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s . . . . . . . . . . . . . . . . . . 265C.3 Numerical soluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266C.4 Parameters of models studied . . . . . . . . . . . . . . . . . . . . . . . . . 267C.5 Relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g geodynamo model output to the Earth: problems with time scales268D Equati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> 270D.1 Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq hydromagnetic equati<strong>on</strong>s for c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid . . 270D.2 L<str<strong>on</strong>g>in</str<strong>on</strong>g>earised govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 271D.3 N<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the viscous time scale . . . . . . . . . . . . 272E Equatorial symmetry c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry 274E.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274E.2 Equatorial symmetry operati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . 274E.3 Symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of thermally-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> . . . 276E.4 Equatorial symmetry of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> its relati<strong>on</strong> to equatorialsymmetry of flows at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . . . . . . . . 277F Animati<strong>on</strong>s 278F.1 Animati<strong>on</strong>s as a visualisati<strong>on</strong> tool . . . . . . . . . . . . . . . . . . . . . . 278F.2 C<strong>on</strong>structi<strong>on</strong> of animati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . 278F.3 Locati<strong>on</strong>s of animati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278References 283


viiiList of Figures1.1 The geomagnetic field at Earth’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D. . . . . . . . . . . . 21.2 Westward drift of the geomagnetic field from 1600 to 1950 A.D. . . . . . . 41.3 Structure of Earth’s <str<strong>on</strong>g>in</str<strong>on</strong>g>terior <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from seismology . . . . . . . . . . . . 51.4 Radial magnetic field B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D. . . . . . . . . . 61.5 Flow at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from 1840 to 1990 A.D. . . . . . . . . . . . . . . 111.6 A possible hydromagnetic wave <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> . . . . . . . . . . . . . . . 132.1 Relati<strong>on</strong> of latitude-l<strong>on</strong>gitude maps to time-l<strong>on</strong>gitude (TL) plots . . . . . 182.2 Time-l<strong>on</strong>gitude (TL) plots from meteorology <str<strong>on</strong>g>and</str<strong>on</strong>g> oceanography . . . . . . 192.3 Example of frequency-wavenumber (FK) power spectra . . . . . . . . . . . 212.4 Rad<strong>on</strong> transform of a time-l<strong>on</strong>gitude plot. . . . . . . . . . . . . . . . . . . 242.5 C<strong>on</strong>structi<strong>on</strong> of latitude-azimuthal speed (LAS) power plots . . . . . . . . 262.6 Analysis of H from SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB field models . . . . . . . . . 282.7 Analysis of background field evoluti<strong>on</strong> model (BACK) . . . . . . . . . . . 292.8 Properties of field H from synthetic models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE . . . . . . 312.9 Time-averaged, axisymmetric fields ¯H from SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE . . . . . . 322.10 SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (H- ¯H) field models. . . . . . . . . . . . . . . . . . . . . 332.11 Amplitude resp<strong>on</strong>se of filter |F H | 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g>. . . . . . . . . 352.12 Trials with 2nd, 3rd <str<strong>on</strong>g>and</str<strong>on</strong>g> 4th order Butterworth filters. . . . . . . . . . . . 352.13 Trials with Butterworth, Chebyshev <str<strong>on</strong>g>and</str<strong>on</strong>g> Elliptic types of filters . . . . . . 362.14 Field variati<strong>on</strong>s captured as a functi<strong>on</strong> of filter cut-off period . . . . . . . 382.15 SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c = 200yrs. . . . . . . . . . 402.16 SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c = 400yrs. . . . . . . . . . 412.17 SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c = 600yrs. . . . . . . . . . 422.18 Geographical distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> speeds of field features. . . . . . . . . . . . 442.19 Temporal changes <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude-azimuthal speed power plots . . . . . . . . . 452.20 Analysis of a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave. . . . . . . . . . . . . . . . . . 472.21 Analysis of hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave <str<strong>on</strong>g>and</str<strong>on</strong>g> background field. . . . . . . 482.22 FK-filtered, rec<strong>on</strong>structed SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB field models. . . . . . 512.23 FK-filtered, rec<strong>on</strong>structed SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE field models. . . . . . . . . . 52


ix3.1 Snapshots of B r from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . . . . . 563.2 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from gufm1 . . . . . . . . . . . . . 573.3 Latitude-aziumuthal speed (LAS) power plot of B r from gufm1 . . . . . . 583.4 Snapshots of (B r − ¯B r ) from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . 593.5 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of (B r − ¯B r ) from gufm1 . . . . . . . . . 603.6 Latitude-azimuthal speed power plot of (B r - ¯B r ) from gufm1 . . . . . . . . 613.7 B r variati<strong>on</strong>s captured by ˜B r . . . . . . . . . . . . . . . . . . . . . . . . . . 623.8 Snapshots of ˜B r from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface . . . . . . . . . . . . . . . 633.9 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r . . . . . . . . . . . . . . . . . . . . 643.10 Latitude-azimuthal speed (LAS) power plot of ˜B r from gufm1 . . . . . . . 653.11 ˜B r from gufm1, for filter cut-offs of t c =400yrs <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 yrs . . . . . . . . . 663.12 Spherical harm<strong>on</strong>ic power spectra of B r , (B r - ¯B r ), <str<strong>on</strong>g>and</str<strong>on</strong>g> ˜B r from gufm1 . . 673.13 Snapshots <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots of˜Brecr from gufm1; m= 7, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 . . . . . . . 693.14 Geographical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of ˜B r from gufm1 . . . . . . 703.15 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1. . . . . . . . . . . . . 733.16 Temporal evoluti<strong>on</strong> of LAS plots of ˜B r from gufm1 . . . . . . . . . . . . . 743.17 LAS plots from gufm1 of (B r − ¯B r ) filtered by wavenumber . . . . . . . . 763.18 Wavenumber versus azimuthal speed of (B r − ¯B r ) at 0 ◦ N. . . . . . . . . . 784.1 Spectra from gufm1 compared to CALSK7.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d . . . . . . . . . 824.2 Comparis<strong>on</strong> of snapshots of B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d . . . . . . . 834.3 TL plots of B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d . . . . . . . . . . . . . . . . 854.4 Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h compared to gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1. . . . . . . . . . 864.5 LAS power plots of ˜B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d . . . . . . . . . . . 874.6 Snapshots of B r from CALS7K.1 from 5000B.C. to 1750A.D. . . . . . . . 894.7 TL plots of B r from CALS7K.1. . . . . . . . . . . . . . . . . . . . . . . . 904.8 Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 as a functi<strong>on</strong> of filter threshold period. . . . . . . 924.9 TL <str<strong>on</strong>g>and</str<strong>on</strong>g> FK plots of ˜B r from CALS7K.1 2000B.C to 1700A.D. . . . . . . . 934.10 LAS plots of ˜B r of CALS7K.1 from 2000B.C to 1700A.D. . . . . . . . . . 944.11 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1. . . . . . . . . . 964.12 TL, FK <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots from CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1. . . . . . . . . . . . . . 975.1 Snapshots of B r from DYN1 at r = r 0 . . . . . . . . . . . . . . . . . . . . 1025.2 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN1 . . . . . . . . . . . . . 1035.3 B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 as functi<strong>on</strong> of filter cut-off. . . . . . 1045.4 LAS plots of ˜B r from DYN1 for a range of filter thresholds . . . . . . . . 105


x5.5 Snapshots of ˜B r from DYN1 at r = r 0 . . . . . . . . . . . . . . . . . . . . 1065.6 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN1 . . . . . . . . . . . . . 1075.7 Snapshots of u r from DYN1 at 0.96r 0 . . . . . . . . . . . . . . . . . . . . 1095.8 TL plots, FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plot of u r from DYN1 . . . . . . . . 1105.9 Snapshots of u φ from DYN1 at 0.96r 0 . . . . . . . . . . . . . . . . . . . . 1135.10 TL plots, FK plot <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plot of u φ from DYN1 . . . . . . . . . . . . . 1145.11 Snapshots of B r from DYN2 at r = r 0 . . . . . . . . . . . . . . . . . . . . 1185.12 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN2 . . . . . . . . . . . . . 1195.13 B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2. . . . . . . . . . . . . . . . . . . . 1205.14 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN2 . . . . . . . . . . . . . 1215.15 Snapshots of B r from DYN2d at r = r 0 . . . . . . . . . . . . . . . . . . . 1235.16 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN2d . . . . . . . . . . . . . 1245.17 B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g filter cut-off. . . . . . . . 1255.18 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN2d . . . . . . . . . . . . . 1265.19 Snapshots of U r from DYN2 at r = 0.975r 0 . . . . . . . . . . . . . . . . . 1275.20 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of u r from DYN2 . . . . . . . . . . . . . . 1295.21 Snapshots of u φ from DYN2 at r = 0.975r 0 . . . . . . . . . . . . . . . . . 1305.22 TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of u φ from DYN2 . . . . . . . . . . . . . 1316.1 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> wave mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid . . . . . . . . 1386.2 Geometry of plane layer model of diffusi<strong>on</strong>less MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>. . . . . . . . . 1396.3 The β-plane geometry employed by Hide (1966). . . . . . . . . . . . . . . 1446.4 Movement of fluid columns <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thick spherical shells. . . . . . . . 1466.5 Quasi-geostrophic (QG) annulus model geometry . . . . . . . . . . . . . . 1546.6 Stability diagram from Fearn (1979b) . . . . . . . . . . . . . . . . . . . . 1627.1 Benchmark<str<strong>on</strong>g>in</str<strong>on</strong>g>g of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear Magnetoc<strong>on</strong>vecti<strong>on</strong> code . . . . . . . . . . . . . . 1797.2 Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave with m = 8, Λ=0.1, Λ=0.1, P r=1, P r m =1, E=10 −6 . . . 1817.3 Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave for Λ=1, m=5, P r = 10 −3 , P r m = 1, E = 10 −6 . . . . . . 1827.4 Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave with Λ=1, m=5, P r=0.1, P r m =10 −6 , E = 10 −6 . . . . . 1837.5 Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave with Λ=1, m=8, P r=1, P r m = 10 3 , E = 10 −6 . . . . . . . . 1847.6 Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave for m=3, Λ=10, P r=1, P r m =1, E=10 −6 . . . . . . . . . 1857.7 Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> E for m=5, 8 . . . . . . . . . . . . . . . . . . 1877.8 Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> Λ for m=2 to 9 . . . . . . . . . . . . . . . . . 1897.9 Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> m for Λ=0.1 to 10 . . . . . . . . . . . . . . . 1907.10 Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> P r for m=5, 8 . . . . . . . . . . . . . . . . . 1917.11 Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> P r m for m=5, 8 . . . . . . . . . . . . . . . . 1928.1 Incompressible wave flow used <str<strong>on</strong>g>in</str<strong>on</strong>g> simple k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic model. . . . . . . . . . 196


xi8.2 Soluti<strong>on</strong> for evoluti<strong>on</strong> of B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| > |c ph |. . . . . . 2038.3 Soluti<strong>on</strong>s for B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| = |c ph |. . . . . . . . . . . . . 2058.4 Soluti<strong>on</strong>s for B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| < |c ph |. . . . . . . . . . . . . 2068.5 1D advecti<strong>on</strong>-diffusi<strong>on</strong> balance: Field amplitude as a functi<strong>on</strong> of R clm. . . . 2118.6 2D wave flows <strong>on</strong> a spherical surface at an impenetrable boundary. . . . . 2138.7 Acti<strong>on</strong> of 2D wave flow <strong>on</strong> a axial dipole <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic field. . . . . . . 2198.8 Time series of evoluti<strong>on</strong> of maximum amplitude of B NADr . . . . . . . . . . 2218.9 Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =0.05, U=5. . . . . . . 2238.10 Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =0.05, U=5. . . . . . . 2248.11 Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =5, U=5. . . . . . . . . 2258.12 Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =5, U=5. . . . . . . . . 2268.13 Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =50, U=5. . . . . . . . 2278.14 Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =50, U=5. . . . . . . . 2288.15 Evoluti<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r with m = 1, 4. . . . . . . . . . . . . . . . . . . . . . 2308.16 B r from gufm1 at <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1790. . . . . . . . . . . . . . . 2318.17 Acti<strong>on</strong> of E S , m=8 flow <strong>on</strong> 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field after 200yrs. . . . . . . . . . 2328.18 Acti<strong>on</strong> of E A , m=8 flow <strong>on</strong> 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field after 200yrs. . . . . . . . . . 2338.19 B D r due to E S , m=8 flows act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> 1590 B r for 150, 400 yrs. . . . . . . . 2369.1 B r perturbati<strong>on</strong> caused by a m=5 hydromagnetic wave . . . . . . . . . . 2439.2 m=5 spatially coherent pattern <str<strong>on</strong>g>in</str<strong>on</strong>g>˜Brecr from gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830. . . . . . . . . 244A.1 Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> spatial distributi<strong>on</strong> of observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1. . . . . . . . . . . 250A.2 Temporal distributi<strong>on</strong> of gufm1 observati<strong>on</strong>s. . . . . . . . . . . . . . . . . 251A.3 Comparis<strong>on</strong> of gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> observatory annual means (ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field) . . . . . 255A.4 Comparis<strong>on</strong> of gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> observatory annual means (SV) . . . . . . . . . 256A.5 Spherical harm<strong>on</strong>ic power spectra from gufm1. . . . . . . . . . . . . . . . 258B.1 Spatial locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of data <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 . . . . . . . . . 260B.2 Temporal distributi<strong>on</strong> of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 . . . . . . . 261


xiiList of Tables6.1 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, thermally c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. . . . . . . 1697.1 Comparis<strong>on</strong> of results from eigenvalue <str<strong>on</strong>g>and</str<strong>on</strong>g> time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g codes . . . . . . 180C.1 Parameters of dynamo models <str<strong>on</strong>g>and</str<strong>on</strong>g> estimates for Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> . . . . . . . 268F.1 Animati<strong>on</strong>s from chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 279F.2 Animati<strong>on</strong>s from chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 279F.3 Animati<strong>on</strong>s from chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 280F.4 Animati<strong>on</strong>s from chapter 8 (Part i) . . . . . . . . . . . . . . . . . . . . . . 281F.5 Animati<strong>on</strong>s from chapter 8 (Part ii) . . . . . . . . . . . . . . . . . . . . . 282


xiiiNotati<strong>on</strong>, physical c<strong>on</strong>stants, abbreviati<strong>on</strong>s<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>sNotati<strong>on</strong> for symbolsα Coefficient of volume expansi<strong>on</strong>β L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear rate of change of Coriolis force <str<strong>on</strong>g>in</str<strong>on</strong>g> northward directi<strong>on</strong>β’ Magntitude of the background temperature gradientβ ∗ Upper boundary slope <str<strong>on</strong>g>in</str<strong>on</strong>g> QG model (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)γ Magnitude of gravitati<strong>on</strong>al accelerati<strong>on</strong>Secular variati<strong>on</strong> coefficients∆ Differential operator that is the angular part of r 2 ∇ 2∆T Temperature difference across spherical shell <str<strong>on</strong>g>in</str<strong>on</strong>g> dynamo model∆θ Grid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude∆φ Grid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude∆t Grid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> timeδλ Difference between eigenvalues at two choices of trunctati<strong>on</strong>ɛ Heat per unit mass <str<strong>on</strong>g>in</str<strong>on</strong>g> the Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq thermal equati<strong>on</strong>Θ Perturbati<strong>on</strong> temperature field̂θ Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the meridi<strong>on</strong>al (north-south) directi<strong>on</strong>θ Spherical polar co-latitude (angle south from North pole for Earth)η Magnetic diffusivity (1/µσ)κ Thermal diffusivity of the fluidΛ Elsasser number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)Λ c Critical Elasser number for the <strong>on</strong>set of magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityλ Complex eigenvalue <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> problemλ lat Latitudeλ ∗ latFixed latitude studied <str<strong>on</strong>g>in</str<strong>on</strong>g> β-plane modelλ <str<strong>on</strong>g>in</str<strong>on</strong>g> Eigenvalue of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave problemλ S Spatial damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor used to regularise field modelλ T Temporal damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor used to regularise field modelµ Magnetic permeabilityµ 0 Magnetic permeability of n<strong>on</strong>-permanently magnetised materialν K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic viscosity of the fluid∇ Gradient operator∇ H Horiz<strong>on</strong>tal comp<strong>on</strong>ent of the gradient operatorρ Fluid densityρ 0 C<strong>on</strong>stant density of <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible fluid, used <str<strong>on</strong>g>in</str<strong>on</strong>g> Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq approx.Φ Objective functi<strong>on</strong> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> for field modelγ mc/sl


xiv̂φ Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometryAlso denotes eastward comp<strong>on</strong>ent when appears as a subscriptφ Spherical polar l<strong>on</strong>gitude (angle east from Greenwich meridi<strong>on</strong> for Earth)φ’ L<strong>on</strong>gitude co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with 2D wave flowΨ Streamfuncti<strong>on</strong> of k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematically prescribed, simple wave flowψ Spatial co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with 1D wave flowσ Electrical c<strong>on</strong>ductivityτ η Magnetic diffusi<strong>on</strong> time (D 2 /η)τ ν Viscous diffusi<strong>on</strong> time (D 2 /ν)Ω Angular rotati<strong>on</strong> rate of system̂Ω Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the angular rotati<strong>on</strong> rate vectorΩ Magnitude of the angular rotati<strong>on</strong> rate of systemω Angular frequency of wave or signalω M Angular frequency of simple hydromagnetic (Alfven) waveω A Angular frequency of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal gravity waveω C Angular frequency of <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial waveω MC Angular frequency of slow Magnetic-Coriolis (MC) waveω c Angular frequency of wave at the <strong>on</strong>set of <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityχ Streamfuncti<strong>on</strong> of flow <str<strong>on</strong>g>in</str<strong>on</strong>g> Quasi-Geostrophic annulus modelAlso the normalised misfit of data to field modelΥ Accumlated drift rate of reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with wave flowζ Comp<strong>on</strong>ent of fluid vorticity al<strong>on</strong>g the rotati<strong>on</strong> axis <str<strong>on</strong>g>in</str<strong>on</strong>g> QG modelA Matrix of terms without time dependence <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> problemA ijk Array l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g comp<strong>on</strong>ents of secular variati<strong>on</strong>, magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> flowB Matrix of terms with time dependence <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> problemB Vector magnetic field (strictly referred to as magnetic flux density)B 0 Background magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised around̂B 0 Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the background magnetic fieldB 0 Magnitude of background (imposed) magnetic fieldB 0x Comp<strong>on</strong>ent of background magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian x directi<strong>on</strong>B 0y Comp<strong>on</strong>ent of background magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian y directi<strong>on</strong>B 0z Comp<strong>on</strong>ent of background magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian z directi<strong>on</strong>B r Magntitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong>¯B r Time-averaged, axisymmetric, part of radial magnetic field˜B r (B r - ¯B r ), high pass filtered with cut-off period t c˜B rrec Rec<strong>on</strong>structi<strong>on</strong> of particular modes of B r after mask-FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g ˜B rB r0 Background radial magnetic fieldB r ’ Perturbati<strong>on</strong> radial magnetic fieldBrNAD N<strong>on</strong>-axial dipole part of radial magnetic fieldB θ Amplitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the southward directi<strong>on</strong>B φ Amplitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward directi<strong>on</strong>B Typical order of magnitude of magnetic field, used <str<strong>on</strong>g>in</str<strong>on</strong>g> scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g argumentsb ′ Perturbati<strong>on</strong> magnetic fieldb Perturbati<strong>on</strong> magnetic field after dropp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of ’


xvb Tb Pb xb yb zb mc/slb mc/s′lC eC mToroidal comp<strong>on</strong>ent of magnetic field perturbati<strong>on</strong>Poloidal comp<strong>on</strong>ent of magnetic field perturbati<strong>on</strong>Perturbati<strong>on</strong> magnetic field comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian x directi<strong>on</strong>Perturbati<strong>on</strong> magnetic field comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian y directi<strong>on</strong>Perturbati<strong>on</strong> magnetic field comp<strong>on</strong>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian z directi<strong>on</strong>Spherical harm<strong>on</strong>ic coefficients for magnetic fieldSpherical harm<strong>on</strong>ic coefficients for magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frameCovariance matrix for observati<strong>on</strong>s of the geomagnetic fieldCovariance matrix for geomagnetic field modelC Correcti<strong>on</strong> factor applied to Rad<strong>on</strong> transform to remove directi<strong>on</strong>al biasC p Specific heat capacity at c<strong>on</strong>stant pressurec az Azimuthal speed of field featuresc ph Phase speed of wavec Radius of outer spherical shell <str<strong>on</strong>g>in</str<strong>on</strong>g> models, r cmb for EarthD Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>: angle between the magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the northward directi<strong>on</strong>Also the spherical shell thickness for dynamo modelsAlso gap between cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>ders for Quasi-Geostrophic annulus modelD L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear operator aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g under double curl of momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> eqnsd Vector of observati<strong>on</strong>s (data)d 0 Length scale of system under studyE Ekman number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)E S Equatorially symmetricE A Equatorially anti-symmetrice Toroidal scalar for the velocity fieldF Magnitude of magnetic field vector, known as total <str<strong>on</strong>g>in</str<strong>on</strong>g>tensityF w Functi<strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g time-dependent field morphology produced by wave flowF C Coriolis forceF H Frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g> representati<strong>on</strong> of high pass filter used <strong>on</strong> H − ¯H to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> ˜HF I Inertial forceF L Lorentz forceF Ohmic heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g norm m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>structi<strong>on</strong> of field modelf Functi<strong>on</strong>al relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g data to model <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of field modelf Frequency (Fourier transform partner with time t)Also poloidal scalar for the velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometryf c Coriolis parameter (2 Ω s<str<strong>on</strong>g>in</str<strong>on</strong>g> λ lat ) <str<strong>on</strong>g>in</str<strong>on</strong>g> plane modelsf c0 C<strong>on</strong>stant Coriolis parameter <str<strong>on</strong>g>in</str<strong>on</strong>g> β-plane model (2 Ω s<str<strong>on</strong>g>in</str<strong>on</strong>g> λ ∗ lat )G v Summed absolute deviati<strong>on</strong> of H from Ĥg Vector gravitati<strong>on</strong>al accelerati<strong>on</strong>ĝ Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the gravitati<strong>on</strong>al accelerati<strong>on</strong>g toroidal scalar for the perturbati<strong>on</strong> magnetic fieldglm Cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e Gauss coefficientsH Generic time-dependent scalar field <strong>on</strong> a spherical surfaceH Fourier transform of generic scalar field HH R Rad<strong>on</strong> transform of generic scalar field H¯H Time-averaged, axisymmetric part of H˜H H with time-averaged axisymmetric part removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered


xviĤ Time-averaged Ĥ˜H Time-averaged ˜HH rec Rec<strong>on</strong>structi<strong>on</strong> of H after mask filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK doma<str<strong>on</strong>g>in</str<strong>on</strong>g>H slope Difference <str<strong>on</strong>g>in</str<strong>on</strong>g> height btw <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>ders <str<strong>on</strong>g>in</str<strong>on</strong>g> QG modelh Poloidal scalar for the perturbati<strong>on</strong> magnetic fieldh m lS<str<strong>on</strong>g>in</str<strong>on</strong>g>e Gauss coefficientsI Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>: angle between the magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the horiz<strong>on</strong>tal planeI 0 Zeroth-order spherical Bessel functi<strong>on</strong>√i −1, used with imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary numbersJ Electrical current densityJ H Internal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate per unit volumej Axial comp<strong>on</strong>ent of the perturbati<strong>on</strong> electrical currentk Wavevector <str<strong>on</strong>g>in</str<strong>on</strong>g> directi<strong>on</strong> of wave propagati<strong>on</strong>k x Comp<strong>on</strong>ent of wavevector <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian x directi<strong>on</strong>k y Comp<strong>on</strong>ent of wavevector <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian y directi<strong>on</strong>k z Comp<strong>on</strong>ent of wavevector <str<strong>on</strong>g>in</str<strong>on</strong>g> the cartesian z directi<strong>on</strong>k Wavenumber (Fourier transform partner with x)Also wavenumber of disturbance ( 2πL λ)L Number of spherical harm<strong>on</strong>ic degrees used <str<strong>on</strong>g>in</str<strong>on</strong>g> representati<strong>on</strong> of variablesL MC Typical length scale of MC wave disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> the field <str<strong>on</strong>g>and</str<strong>on</strong>g> flowL SV Maximium spherical harm<strong>on</strong>ic degree of secular variati<strong>on</strong>L U Maximium spherical harm<strong>on</strong>ic degree used <str<strong>on</strong>g>in</str<strong>on</strong>g> expansiosn of flow scalarsL λ Wavelength of a general disturbanceL 1 L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear operator premultiply<str<strong>on</strong>g>in</str<strong>on</strong>g>g (ẑ × u) <str<strong>on</strong>g>in</str<strong>on</strong>g> Malkus model of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>L 2 L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear operator premultiply<str<strong>on</strong>g>in</str<strong>on</strong>g>g u <str<strong>on</strong>g>in</str<strong>on</strong>g> Malkus model of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>L 2 Angular momentum operator (angular part of Laplacian)l Spherical harm<strong>on</strong>ic degreeM n Fourth order B-spl<str<strong>on</strong>g>in</str<strong>on</strong>g>e basis functi<strong>on</strong>sm Field model obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>in</str<strong>on</strong>g>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>sm Azimuthal wavenumber (Fourier transform partner with φ)Also <str<strong>on</strong>g>in</str<strong>on</strong>g>dex for discrete po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> z axis <str<strong>on</strong>g>in</str<strong>on</strong>g> Rad<strong>on</strong> transformAlso order of associated Legendre functi<strong>on</strong> Plmm c Azimuthal wavenumber of wave at the <strong>on</strong>set of <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityN Number of Chebyshev modes used <str<strong>on</strong>g>in</str<strong>on</strong>g> representati<strong>on</strong> of variablesN t Number of discete time sample po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> a time series under studyN φ Number of discete spatial sample po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> a regi<strong>on</strong> under studyn In c<strong>on</strong>text of Rad<strong>on</strong> transform, is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dex for discrete angles of qO Order of magnitudeP Comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed mechanical <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifugal pressuresP 0 Background pressureP ′ Perturbati<strong>on</strong> pressure fieldP v Percentage ratio of R v to G v , each summed over all locati<strong>on</strong>sP r Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)P r m Magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)Plm Associated Legendre functi<strong>on</strong> of degree l <str<strong>on</strong>g>and</str<strong>on</strong>g> order mQ Operator aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g from double curl of momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> eqns


xviiq Angle used <str<strong>on</strong>g>in</str<strong>on</strong>g> def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of Rad<strong>on</strong> transform (see figure 2.4)Also used to represent discrete time-steps <str<strong>on</strong>g>in</str<strong>on</strong>g> time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g algorithmR v Summed absolute deviati<strong>on</strong>s of ˜H from ̂˜HRa Rayleigh number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)Ra c Critical Rayleigh number mark<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>Ra m Modified Rayleigh number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)R m Magnetic Reynolds number (see n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters)Rm cl Magnetic Reynolds number used by Clark (1965)̂r Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometryr Displacement <str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong>Also denotes radial comp<strong>on</strong>ent when appears as a subscriptr cmb Core-mantle boundary radiusr i Inner radius of spherical shell under studyr 0 Outer radius of spherical shell under studyS Covariance matrix for spatial norm used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> for field modelS Distributi<strong>on</strong> of square of Rad<strong>on</strong> transform amplitudes summed al<strong>on</strong>g zs Cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical radiusAlso used <str<strong>on</strong>g>in</str<strong>on</strong>g> method of characteristics to def<str<strong>on</strong>g>in</str<strong>on</strong>g>e positi<strong>on</strong> <strong>on</strong> characteristicAlso surface poloidal scalar for flow <strong>on</strong> a spherical surfaceSL Array c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g S (see previous entry) for all latitudesT Covariance matrix for temporal norm used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> for field modelT Temperature fieldAlso flow toroidal scalar, for flow <strong>on</strong> a spherical surfaceT 0 Background temperature field l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised around∇T 0 Vector background temperature gradient̂∇T 0 Unit vector al<strong>on</strong>g the background temperature gradientT H Time doma<str<strong>on</strong>g>in</str<strong>on</strong>g> representati<strong>on</strong> of high pass filter used <strong>on</strong> H − ¯H to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> ˜HT MC Typical time scale of MC wave disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> the field <str<strong>on</strong>g>and</str<strong>on</strong>g> flowT k Chebyschev polynomial of degree kt Timet c Threshold period for high-pass filter; signals slower than this are removedU 0 Background velocity fieldU Maximum amplitude of flow with<str<strong>on</strong>g>in</str<strong>on</strong>g> prescribed wave flowU rms Root mean square flow speedU zhang Form of <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave flows <strong>on</strong> spherical boundary from Zhang et al. (2000)U Typical order of fluid flow (velocity), used <str<strong>on</strong>g>in</str<strong>on</strong>g> scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g argumentsu Vector flow field (velocity field)Also perturbati<strong>on</strong> to flow field after re-labell<str<strong>on</strong>g>in</str<strong>on</strong>g>gu ′ Flow perturbati<strong>on</strong>Also flow <str<strong>on</strong>g>in</str<strong>on</strong>g> reference frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the flowu T Toroidal comp<strong>on</strong>ent of flowu P Poloidal comp<strong>on</strong>ent of flowu r Flow magntiude <str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong>u θ Flow magntiude <str<strong>on</strong>g>in</str<strong>on</strong>g> the meridi<strong>on</strong>al (southward) directi<strong>on</strong>u φ Flow magntiude <str<strong>on</strong>g>in</str<strong>on</strong>g> the z<strong>on</strong>al/azimuthal (eastward) directi<strong>on</strong>Flow magntitude <str<strong>on</strong>g>in</str<strong>on</strong>g> cartesian x directi<strong>on</strong>u x


xviiiu yu zVv nXx̂xxYŷyZẑzFlow magntitude <str<strong>on</strong>g>in</str<strong>on</strong>g> cartesian y directi<strong>on</strong>Flow magntitude <str<strong>on</strong>g>in</str<strong>on</strong>g> cartesian z directi<strong>on</strong>Magnetic potentialArray of azimuthal speeds derived us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform methodAmplitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the northwards directi<strong>on</strong>Vector of unknown expansi<strong>on</strong> coefficients <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> problemUnit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the cartesian x-axisSpatial displacement (distance) al<strong>on</strong>g cartesian x-axisAlso displacement <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> β-plane modelsAmplitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastwards directi<strong>on</strong>Also represents spherical harm<strong>on</strong>ic functi<strong>on</strong>sUnit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the cartesian y-axisSpatial displacement (distance) al<strong>on</strong>g cartesian y-axisAmplitude of magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the radially <str<strong>on</strong>g>in</str<strong>on</strong>g>wards directi<strong>on</strong>Unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the cartesian z-axisSpatial displacement al<strong>on</strong>g the cartesian y-axisAlso x axis rotated by angle q when referr<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the Rad<strong>on</strong> transformN<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parametersE =ν2Ωd 2 0Ekman numberP r = ν κPr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl NumberP r m = ν ηMagnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl numberRa = |g| α |∇T 0| d 4 0κνRayleigh numberRa m = ERaP rModified Rayleigh numberR m = Urmsd 0ηMagnetic Reynolds numberR m = U kηMagnetic Reynolds number of Clark (1965)Λ = B2 02Ωµρ 0 ηβ ∗ = tan H slopeDElsasser numberAngle of slop<str<strong>on</strong>g>in</str<strong>on</strong>g>g upper boundary <str<strong>on</strong>g>in</str<strong>on</strong>g> QG modelValues adopted for physical c<strong>on</strong>stants, relevant to Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>α=1.3 × 10 −5 K −1η=1.6 m 2 s −1κ=8.6×10 −6 m 2 s −1ν=10 −6 m 2 s −1ρ 0 =1×10 4 kg m −3µ 0 =4π × 10 −7 H m −1Ω=7.29 × 10 −5 s −1B 0 ∼ 1× 10 −3 Td 0 = r cmb − r i =3485 km - 1215 km=2260 kmγ=9.8 s −2|∇T 0 | ∼ 0.1 K km −1 (superadiabatic)(values taken from Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2000))


xixAbbreviati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> model namesA.D.BACKB.C.CALS7K.1CHAMPFKgufm1HEMIHEMINBIGRFLASMACMCSAC-CSPOTSPOTNBTLWAVEWAVENBAnno Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>i (denotes year after 0 <str<strong>on</strong>g>in</str<strong>on</strong>g> the Christian calender)Synthetic field evoluti<strong>on</strong> model derived from spectrally smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1Before Christ (denotes years prior to 0 <str<strong>on</strong>g>in</str<strong>on</strong>g> the Christian calender)Geomagnetic field model of Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2005): 5000B.C.—1950A.D.CHAlleng<str<strong>on</strong>g>in</str<strong>on</strong>g>g M<str<strong>on</strong>g>in</str<strong>on</strong>g>isatellite Payload (German Earth-observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g satellite)Frequency-wavenumber; refers to frequency-wavenumber power spectraGeomagnetic field model of Jacks<strong>on</strong> et al. (2000): 1590—1990A.D.HEMINB with realistic background field BACK addedHemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave-like synthetic field evoluti<strong>on</strong> modelInternati<strong>on</strong>al Geomagnetic reference FieldLatitude-azimuthal speed; refers to latitude-azimuthal speed power plotsMagnetic-Archimedes-Coriolis, Archimedes means buoyancyMagnetic-CoriolisScientific Applicati<strong>on</strong>s Satellite - C (Argent<str<strong>on</strong>g>in</str<strong>on</strong>g>e)Synthetic field model of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g spot plus background fieldSynthetic field model of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g spot without a background fieldTime-l<strong>on</strong>gitude; refers to time-l<strong>on</strong>gitude plotsSynthetic field model of a wave plus background fieldSynthetic field model of a wave without a background fieldC<strong>on</strong>venti<strong>on</strong>sS.I. units are employed throughout this thesisBlue-Orange colour scale is used to represent radial magnetic fieldsBlue-White-Red colour scale is used to represent temperature fieldsBlue-Green-Red colour scale is used to represent radial <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal flows


xxAcknowledgementsI would like first to express my gratitude to Andrew Jacks<strong>on</strong> for supervis<str<strong>on</strong>g>in</str<strong>on</strong>g>g my researchover the past four years. This thesis owes much to his suggesti<strong>on</strong>s for fruitful researchideas. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g our many discussi<strong>on</strong>s I have benefited immensely from his deep knowledgeof geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> received sound advice <strong>on</strong> a wide range of practical matters. Hiswill<str<strong>on</strong>g>in</str<strong>on</strong>g>gness <str<strong>on</strong>g>in</str<strong>on</strong>g> allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g me to pursue my own ideas <str<strong>on</strong>g>and</str<strong>on</strong>g> to provide c<strong>on</strong>structive criticismhave been particularly appreciated.The geomagnetism group <str<strong>on</strong>g>in</str<strong>on</strong>g> Leeds has provided an extremely stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g work envir<strong>on</strong>mentdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g my time as a PhD student. I have learnt a great deal <str<strong>on</strong>g>in</str<strong>on</strong>g> discussi<strong>on</strong>swith David Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s who has always been generous with his time <str<strong>on</strong>g>and</str<strong>on</strong>g> been a c<strong>on</strong>stantsource of challeng<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> provocative ideas. Philip Livermore’s help <str<strong>on</strong>g>and</str<strong>on</strong>g> advice <strong>on</strong> howto survive as a research student were <str<strong>on</strong>g>in</str<strong>on</strong>g>valuable <str<strong>on</strong>g>in</str<strong>on</strong>g> my first few years. Ashley Willis hasprovided useful advice <strong>on</strong> numerics <str<strong>on</strong>g>and</str<strong>on</strong>g> dynamo related matters. Discussi<strong>on</strong>s with NickTeanby <str<strong>on</strong>g>and</str<strong>on</strong>g> Nicola Pressl<str<strong>on</strong>g>in</str<strong>on</strong>g>g have improved my underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of palaeomagnetism, <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>versati<strong>on</strong>s with James While have helped illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the subtleties of spectral analysis.Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al six m<strong>on</strong>ths of this thesis the advice <str<strong>on</strong>g>and</str<strong>on</strong>g> encouragement of MathieuDumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Nicolas Gillet have been a great help. Their efforts <str<strong>on</strong>g>in</str<strong>on</strong>g> proof read<str<strong>on</strong>g>in</str<strong>on</strong>g>g areparticularly appreciated. I am also <str<strong>on</strong>g>in</str<strong>on</strong>g>debted to Stuart Borthwick <str<strong>on</strong>g>and</str<strong>on</strong>g> Nick Barber forrunn<str<strong>on</strong>g>in</str<strong>on</strong>g>g the geophysics computer system <str<strong>on</strong>g>and</str<strong>on</strong>g> to the secretarial staff for adm<str<strong>on</strong>g>in</str<strong>on</strong>g>istrativesupport.I have benefited greatly from the generosity of those who provided me with data, models<str<strong>on</strong>g>and</str<strong>on</strong>g> code. Andrew Jacks<strong>on</strong> provided the historical geomagnetic field model gufm1that was used <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> flow codes that were modified <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8.M<strong>on</strong>ika Korte provided the archeomagnetic field model CALS7K.1 that was analysed <str<strong>on</strong>g>in</str<strong>on</strong>g>chapter 4. Johannes Wicht provided output from the geodynamo model MAGIC thatwas analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 5. Christopher J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> Steven Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> provided the basisof the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong> code that was used <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7. I would also like toacknowledge the <str<strong>on</strong>g>in</str<strong>on</strong>g>sight of Stanislav Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky <str<strong>on</strong>g>and</str<strong>on</strong>g> Raym<strong>on</strong>d Hide who first suggestedthat <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> might c<strong>on</strong>tribute to geomagnetic secular variati<strong>on</strong>.I am <str<strong>on</strong>g>in</str<strong>on</strong>g>debted to Emmanuel Dormy for host<str<strong>on</strong>g>in</str<strong>on</strong>g>g me dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a three m<strong>on</strong>th stay <str<strong>on</strong>g>in</str<strong>on</strong>g> Parisdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g which my underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of hydromagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities greatly improved. Thewarm welcome given by V<str<strong>on</strong>g>in</str<strong>on</strong>g>cent Mor<str<strong>on</strong>g>in</str<strong>on</strong>g>, Aude Chambodut <str<strong>on</strong>g>and</str<strong>on</strong>g> Arnaud Chulliat as wellas the friendship of Ingo Ward<str<strong>on</strong>g>in</str<strong>on</strong>g>ski dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this time was much appreciated.F<str<strong>on</strong>g>in</str<strong>on</strong>g>ancially I must acknowledge the NERC for the studentship that supported me for thefirst three years of my study <str<strong>on</strong>g>and</str<strong>on</strong>g> the EU for the Marie-Curie fellowship which fundedmy time <str<strong>on</strong>g>in</str<strong>on</strong>g> Paris.I should also like to thank all my friends <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth Sciences department who havemade the past four years so enjoyable. In particular I would like to menti<strong>on</strong> Kristof,L<str<strong>on</strong>g>in</str<strong>on</strong>g>dsey, Trudi, David Green, James Wookey, James Hamm<strong>on</strong>d, Andy C., Dan, Bry<strong>on</strong>y,Andy G., Lucy, Siska, Steve, Laura, Carlos, Sim<strong>on</strong>, Tung, as well as Murray, Andy B.,Dave B., Cathal, Nathan, James Cleverley <str<strong>on</strong>g>and</str<strong>on</strong>g> all the other regulars at the Eld<strong>on</strong>. Iam especially grateful to Ian Bastow, who has shared both an office <str<strong>on</strong>g>and</str<strong>on</strong>g> the stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s ofwrit<str<strong>on</strong>g>in</str<strong>on</strong>g>g up with me dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the past year <str<strong>on</strong>g>and</str<strong>on</strong>g> somehow always managed to keep smil<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Special thanks are due to my parents for <str<strong>on</strong>g>their</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g support, <str<strong>on</strong>g>and</str<strong>on</strong>g> to Edith for herunfail<str<strong>on</strong>g>in</str<strong>on</strong>g>g love <str<strong>on</strong>g>and</str<strong>on</strong>g> positivity.


1Chapter 1Introducti<strong>on</strong>1.1 OverviewEarth possesses a global magnetic field that shields the planet from the effects of thesolar w<str<strong>on</strong>g>in</str<strong>on</strong>g>d (Jacobs, 1974; Kivels<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Russell, 1995; Langel <str<strong>on</strong>g>and</str<strong>on</strong>g> H<str<strong>on</strong>g>in</str<strong>on</strong>g>ze, 1998). Thisgeomagnetic field is not static, but fluctuates <strong>on</strong> a wide range of time scales from sec<strong>on</strong>dsto milli<strong>on</strong>s of years (Bloxham, 1995). Changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g over decades to millennia areknown as geomagnetic secular variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> have <str<strong>on</strong>g>their</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> moti<strong>on</strong>s of liquid metal<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. This thesis focuses <strong>on</strong> the mechanism beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d east-west moti<strong>on</strong>s of thegeomagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> the hypothesis that this <str<strong>on</strong>g>in</str<strong>on</strong>g>volves hydromagnetic wave moti<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>.In this <str<strong>on</strong>g>in</str<strong>on</strong>g>troductory chapter the background to the thesis is given. The observed natureof Earth’s magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> are described. Possible <str<strong>on</strong>g>core</str<strong>on</strong>g>dynamics govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field evoluti<strong>on</strong> are discussed, with particular attenti<strong>on</strong>given to the wave hypothesis of geomagnetic secular variati<strong>on</strong>. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally the aims of thethesis are set out <str<strong>on</strong>g>and</str<strong>on</strong>g> an outl<str<strong>on</strong>g>in</str<strong>on</strong>g>e of its structure is given.1.2 Earth’s magnetic field1.2.1 Observati<strong>on</strong>s of the geomagnetic fieldThe presence <str<strong>on</strong>g>and</str<strong>on</strong>g> structure of a magnetic field can be deduced by measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the force itexerts <strong>on</strong> mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g charged particles <str<strong>on</strong>g>and</str<strong>on</strong>g> how this varies with locati<strong>on</strong>. The geomagneticfield is today measured by high precisi<strong>on</strong> vector <str<strong>on</strong>g>and</str<strong>on</strong>g> scalar magnetometers (see, forexamples, Forbes (1987)) <str<strong>on</strong>g>in</str<strong>on</strong>g> a worldwide network of geomagnetic observatories as well asby the Earth observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g satellites Ørsted, CHAMP <str<strong>on</strong>g>and</str<strong>on</strong>g> SAC-C. The vector geomagneticfield B can be described by its strength <str<strong>on</strong>g>in</str<strong>on</strong>g> particular directi<strong>on</strong>s (northwards (X = −B θ ),eastwards (Y = B φ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> radially <str<strong>on</strong>g>in</str<strong>on</strong>g>wards (Z = −B r )), or by the angle between itsorientati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the horiz<strong>on</strong>tal plane <str<strong>on</strong>g>and</str<strong>on</strong>g> the northward directi<strong>on</strong> (decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D), the


2 Chapter 1 — Introducti<strong>on</strong>angle between its orientati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the horiz<strong>on</strong>tal plane at Earth’s surface (<str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> I),<str<strong>on</strong>g>and</str<strong>on</strong>g> the total <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the field (F = |B| = (X 2 +Y 2 +Z 2 ) 1/2 ). Measurements of thesecomp<strong>on</strong>ents made at different locati<strong>on</strong>s are collected <str<strong>on</strong>g>and</str<strong>on</strong>g> used to produce geomagneticfield models (see, for example, Langel (1987)). An example of the D <str<strong>on</strong>g>and</str<strong>on</strong>g> F comp<strong>on</strong>entsof the IGRF (Internati<strong>on</strong>al Geomagnetic Reference field) at Earth’s surface for the year1122 M. MANDEA AND S. MACMILLAN: INTERNATIONAL GEOMAGNETIC REFERENCE FIELD: THE EIGHTH GENERATION2000 A.D. (M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea <str<strong>on</strong>g>and</str<strong>on</strong>g> Macmillan, 2000) is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.1.(a) Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D(b) Total <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity F1124 M. MANDEA AND S. MACMILLAN: INTERNATIONAL GEOMAGNETIC REFERENCE FIELD: THE EIGHFig. 1. C<strong>on</strong>tour maps of the IGRF 2000 for D comp<strong>on</strong>ent (W<str<strong>on</strong>g>in</str<strong>on</strong>g>kel’s Tripel projecti<strong>on</strong>). Fig. 7. C<strong>on</strong>tour maps of the IGRF 2000 for F comp<strong>on</strong>ent (W<str<strong>on</strong>g>in</str<strong>on</strong>g>kel’s Tripel projecti<strong>on</strong>).Figure 1.1: The geomagnetic field at Earth’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D.The decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the total <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity F <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) of the geomagnetic field atEarth’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D. from the eighth generati<strong>on</strong> IGRF (M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea <str<strong>on</strong>g>and</str<strong>on</strong>g> Macmillan,2000). C<strong>on</strong>tours of D are <str<strong>on</strong>g>in</str<strong>on</strong>g> degrees with dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g negative values (magneticnorth to the east of true north means positive D) while <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) the c<strong>on</strong>tours of Fare <str<strong>on</strong>g>in</str<strong>on</strong>g> nano-Tesla (nT). Plots are <str<strong>on</strong>g>in</str<strong>on</strong>g> W<str<strong>on</strong>g>in</str<strong>on</strong>g>kel’s Tripel projecti<strong>on</strong>.Acknowledgments. We would like to thank the Ørsted team, thestaff of magnetic observatories <str<strong>on</strong>g>and</str<strong>on</strong>g> survey organisati<strong>on</strong>s worldwidefor provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g data <strong>on</strong> which the IGRF depends <str<strong>on</strong>g>and</str<strong>on</strong>g> the World DataCentres for data services. We also thank Stuart Mal<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> VolodyaPapitashvili for comments, <str<strong>on</strong>g>and</str<strong>on</strong>g> the associate editor Frank Lowesfor useful discussi<strong>on</strong>s. All maps have been plotted us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the GMTsoftware (Wessel <str<strong>on</strong>g>and</str<strong>on</strong>g> Smith, 1991). This paper is published withthe permissi<strong>on</strong> of the Director, British Geological Survey (NaturalEnvir<strong>on</strong>ment Research Council). This is IPGP c<strong>on</strong>tributi<strong>on</strong> 1703.The positi<strong>on</strong>s of c<strong>on</strong>vergence of c<strong>on</strong>tours of D <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.1a are the magnetic northReferencesBart<strong>on</strong>, C. E., Internati<strong>on</strong>al Geomagnetic Reference Field: the seventh generati<strong>on</strong>,J. Geomag. Geoelectr., 49, 123–148, 1997.Chapman, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Bartels, Geomagnetism, 2 vols., pp. 1049, Oxford UniversityPress, L<strong>on</strong>d<strong>on</strong>, 1940.Golovkov, V. P., T. N. B<strong>on</strong>dar, <str<strong>on</strong>g>and</str<strong>on</strong>g> I. A. Burdelnaya, Spatial-temporal model<str<strong>on</strong>g>in</str<strong>on</strong>g>gof the geomagnetic field for 1980–2000 period <str<strong>on</strong>g>and</str<strong>on</strong>g> a c<str<strong>on</strong>g>and</str<strong>on</strong>g>idateIGRF secular-variati<strong>on</strong> model for 2000–2005, Earth Planets Space, 52,this issue, 1125–1135, 2000.Fig. 2. C<strong>on</strong>tour maps of the IGRF 2000 for H comp<strong>on</strong>ent (W<str<strong>on</strong>g>in</str<strong>on</strong>g>kel’s Tripel projecti<strong>on</strong>).Internati<strong>on</strong>alNoteAstr<strong>on</strong>omicalthat the apparentUni<strong>on</strong>,s<str<strong>on</strong>g>in</str<strong>on</strong>g>gularityProc. 12th<str<strong>on</strong>g>in</str<strong>on</strong>g>Generalthe northernAssembly,polar regi<strong>on</strong>Hamburg,isan artifact of the plott<str<strong>on</strong>g>in</str<strong>on</strong>g>g rout<str<strong>on</strong>g>in</str<strong>on</strong>g>e.12B, 594–595, 1966.Langel, R. A., Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field, <str<strong>on</strong>g>in</str<strong>on</strong>g> Geomagnetism, edited by J. A. Jacobs, pp. 249–512, vol. I, Academic Press, L<strong>on</strong>d<strong>on</strong>, 1987.Langlais, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> M. M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea, An IGRF c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate ma<str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic fieldmodel for epoch 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> a secular variati<strong>on</strong> model for 2000–2005, Earth<str<strong>on</strong>g>and</str<strong>on</strong>g> south poles <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated by navigati<strong>on</strong>al compasses. The high amplitude of F at highlatitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> its low amplitude at low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.1b shows the predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antlydipolar structure of the field at Earth surface. A c<strong>on</strong>sequence of the low F observed atSouth America is that solar radiati<strong>on</strong> affects satellites most severely above this positi<strong>on</strong>.Underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the structure of the geomagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its changes is therefore importantnot just from the st<str<strong>on</strong>g>and</str<strong>on</strong>g>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of scientific curiosity, but also to telecommunicati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> other <str<strong>on</strong>g>in</str<strong>on</strong>g>dustries reliant <strong>on</strong> the operati<strong>on</strong> of near-Earth satellites.In the past 1000 years humans have made direct measurements of the geomagneticfield us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a variety of techniques. The first known observati<strong>on</strong>s of the directi<strong>on</strong> of thegeomagnetic field were made by the Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>ese scholar Shen Kua <str<strong>on</strong>g>in</str<strong>on</strong>g> 1088 A.D. (Needham,1962) but <strong>on</strong>ly isolated observati<strong>on</strong>s were made before the 16th century when use ofcompasses for l<strong>on</strong>g maritime voyages became widespread. Carl-Fredrich Gauss (1777A.D.— 1855 A.D.) devised a method for measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the geomagneticfield, stimulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the establishment of a global network of geomagnetic observatories by1840 A.D.. Magnetic Fig. surveys 3. C<strong>on</strong>tour maps of of remote the IGRF 2000 parts for Z comp<strong>on</strong>ent of the(W<str<strong>on</strong>g>in</str<strong>on</strong>g>kel’s globe Tripel provided projecti<strong>on</strong>). valuable additi<strong>on</strong>almeasurements before true global coverage was achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> the satellite era, most notablyus<str<strong>on</strong>g>in</str<strong>on</strong>g>g vector field measurements made dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Magsat missi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1980. Jacks<strong>on</strong> et al.(2000) have c<strong>on</strong>structed a time-dependent geomagnetic field model for the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1590Planets Space, 52, this issue, 1137–1148Lowes, F. J., The work<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the IGRF 20Space, 52, this issue, 1171–1174, 2000.Lowes, F. J., T. B<strong>on</strong>dar, V. P. Golovkov, B. LM<str<strong>on</strong>g>and</str<strong>on</strong>g>ea, Evaluati<strong>on</strong> of the c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate Maderived from prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary Ørsted data, Ear1183–1186, 2000.Macmillan, S., An evaluati<strong>on</strong> of c<str<strong>on</strong>g>and</str<strong>on</strong>g>idateIGRF 2000, Earth Planets Space, 52, thisMacmillan, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. M. Qu<str<strong>on</strong>g>in</str<strong>on</strong>g>n, The 2000geomagnetic field models <str<strong>on</strong>g>and</str<strong>on</strong>g> an IGRFPlanets Space, 52, this issue, 1149–1162M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Langlais, Use of Ørstepre-Ørsted ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate models foSpace, 52, this issue, 1167–1170, 2000.Merrill, R., M. W. McElh<str<strong>on</strong>g>in</str<strong>on</strong>g>ny, <str<strong>on</strong>g>and</str<strong>on</strong>g> P. L. Mof the Earth, Paleomagnetism, the <str<strong>on</strong>g>core</str<strong>on</strong>g>,Academic Press, San Diego, 1996.Olsen, N., T. J. Sabaka, <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Tøffner-Clau2000 model, Earth Planets Space, 52, thiWessel, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> W. H. F. Smith, Free softwaEOS Trans. Am. Geophys. Uni<strong>on</strong>, 72, 441M. M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea (e-mail: mioara@ipgp.jussieS.Macmillan@bgs.ac.uk)


3 Chapter 1 — Introducti<strong>on</strong>A.D. to 1990 A.D. us<str<strong>on</strong>g>in</str<strong>on</strong>g>g all suitable observati<strong>on</strong>s from this <str<strong>on</strong>g>in</str<strong>on</strong>g>terval (see appendix A).The geomagnetic field is also recorded <str<strong>on</strong>g>in</str<strong>on</strong>g>directly <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetised rocks (both igneous <str<strong>on</strong>g>and</str<strong>on</strong>g>sedimentary) as they form, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> pottery <str<strong>on</strong>g>and</str<strong>on</strong>g> ceramics as these are fired (see, forexample, McElh<str<strong>on</strong>g>in</str<strong>on</strong>g>ny <str<strong>on</strong>g>and</str<strong>on</strong>g> McFadden (2000)). Such paleomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagneticobservati<strong>on</strong>s allow the behaviour of Earth’s magnetic field to be studied over time scalesof thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s to milli<strong>on</strong>s of years. Unfortunately, these sources can usually <strong>on</strong>ly provide<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the gross features of the geomagnetic field, because of the small numbersof records that exist at any particular time <str<strong>on</strong>g>and</str<strong>on</strong>g> the large uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties <str<strong>on</strong>g>in</str<strong>on</strong>g>herent <str<strong>on</strong>g>in</str<strong>on</strong>g> themeasurements. Such observati<strong>on</strong>s do however <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that Earth’s global magnetic fieldhas been present for at least the past 3.5 billi<strong>on</strong> years (Hale, 1987; Layer et al., 1996)<str<strong>on</strong>g>and</str<strong>on</strong>g> that it has been predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly dipolar for much of that time.1.2.2 Geomagnetic secular variati<strong>on</strong>The geomagnetic field varies <strong>on</strong> wide range of time scales. At the highest frequency endof the spectrum are changes over sec<strong>on</strong>ds to days caused by the dynamic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>between the geomagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the solar w<str<strong>on</strong>g>in</str<strong>on</strong>g>d far above Earth’s surface. These rapidexternal variati<strong>on</strong>s take place about a relatively slowly vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g ma<str<strong>on</strong>g>in</str<strong>on</strong>g> (<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal) field thatis the focus of attenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis.On time scales of about a year, abrupt changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the sec<strong>on</strong>d time derivative of the fieldare observed <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic observatory records. These geomagnetic secular variati<strong>on</strong>impulses or jerks (Courtillot et al., 1978; Courtillot <str<strong>on</strong>g>and</str<strong>on</strong>g> Le Mouël, 1984) are of globalextent (Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>rescu et al., 1996), <str<strong>on</strong>g>and</str<strong>on</strong>g> have been shown to have <str<strong>on</strong>g>their</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>side theEarth (Mal<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hodder, 1982). Geomagnetic jerks are correlated with changes <str<strong>on</strong>g>in</str<strong>on</strong>g> thelength of day (Holme <str<strong>on</strong>g>and</str<strong>on</strong>g> deVir<strong>on</strong>, 2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> can be expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as a superpositi<strong>on</strong> of rigid,axisymmetric moti<strong>on</strong>s of the fluid outer <str<strong>on</strong>g>core</str<strong>on</strong>g> known as torsi<strong>on</strong>al oscillati<strong>on</strong>s (Bloxhamet al., 2002).On time scales of centuries to millennia, undoubtedly the most obvious change <str<strong>on</strong>g>in</str<strong>on</strong>g> thegeomagnetic field is an east-west (azimuthal) moti<strong>on</strong> of c<strong>on</strong>tours of D. This aspect ofgeomagnetic secular variati<strong>on</strong> is comm<strong>on</strong>ly referred to as ‘the westward drift’ because theazimuthal moti<strong>on</strong> observed s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the advent of systematic observati<strong>on</strong>s has been <str<strong>on</strong>g>in</str<strong>on</strong>g> thewestward directi<strong>on</strong>. The westward drift was noted by Halley (1692) who felt it providedevidence for moti<strong>on</strong>s deep with<str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth. Later this drift was quantified by Bullardet al. (1950) <str<strong>on</strong>g>and</str<strong>on</strong>g> Vest<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> Kahle (1968) who estimated its speed to be ∼ 0.2 degreesl<strong>on</strong>gitude per year. Bloxham et al. (1989) showed that the westward drift is not globallyuniform, but is <str<strong>on</strong>g>in</str<strong>on</strong>g>stead associated with the moti<strong>on</strong> of particular field c<strong>on</strong>centrati<strong>on</strong>sfound primarily <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere. Ward<str<strong>on</strong>g>in</str<strong>on</strong>g>ski (2005) has recently shown thatfrom 1980 A.D. to 2000 A.D. the westward drift had an average value of 0.11 ◦ yr −1 ,be<str<strong>on</strong>g>in</str<strong>on</strong>g>g significantly faster at low latitudes (0.22 ◦ yr −1 ). The westward drift is most easily


4 Chapter 1 — Introducti<strong>on</strong>seen by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g maps of the decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D at Earth’s surface from different epochs.Such maps from 1600 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 350 years later <str<strong>on</strong>g>in</str<strong>on</strong>g> 1950 A.D., c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g themodel gufm1 of Jacks<strong>on</strong> et al. (2000), are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.2. The ag<strong>on</strong>ic 1 l<str<strong>on</strong>g>in</str<strong>on</strong>g>e at theboundary between positive D (blue) <str<strong>on</strong>g>and</str<strong>on</strong>g> negative D (orange) has moved from the tipof South Africa <str<strong>on</strong>g>in</str<strong>on</strong>g> 1600 A.D. westward to South America by 1950 A.D. This azimuthalmoti<strong>on</strong> is a first order property of Earth’s magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its orig<str<strong>on</strong>g>in</str<strong>on</strong>g> is the subject ofthis thesis.(a) Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D <str<strong>on</strong>g>in</str<strong>on</strong>g> 1600 A.D.(b) Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D <str<strong>on</strong>g>in</str<strong>on</strong>g> 1950 A.D.Figure 1.2: Westward drift of the geomagnetic field from 1600 to 1950 A.D.Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> D at Earth’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1600 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 A.D. at Earth’s surface fromthe model gufm1 of Jacks<strong>on</strong> et al. (2000) show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the westward azimuthal moti<strong>on</strong> ofthe geomagnetic field over a 350 year time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval. Plots are <str<strong>on</strong>g>in</str<strong>on</strong>g> Lambert equal areaprojecti<strong>on</strong>s of the Atlantic <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacific hemispheres.As well as changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the geomagnetic field, there have been strik<str<strong>on</strong>g>in</str<strong>on</strong>g>gchanges <str<strong>on</strong>g>in</str<strong>on</strong>g> its <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce <str<strong>on</strong>g>in</str<strong>on</strong>g>strumental records of the full vector field began 150 yearsago.Over this time the axial dipole field strength has decreased by about 10 % atan average rate of 16nTyr −1 (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1987; Bloxham et al., 1989). The orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of thischange is uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>, but it is c<strong>on</strong>sistent with fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> field <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (<str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>)observed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>direct archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic observati<strong>on</strong>s over the past 2milli<strong>on</strong> years (see, for example, Valet (2003), Valet et al. (2005)). These observati<strong>on</strong>ssuggest that the geomagnetic field is fundamentally rather unstable (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1999).The most dramatic fluctuati<strong>on</strong>s of Earth’s magnetic field are the irregular polarity reversalsthat have punctuated its history. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g such events the axial dipole comp<strong>on</strong>entof the geomagnetic field changes sign <str<strong>on</strong>g>and</str<strong>on</strong>g> the field <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity drops by up to 75 % (see,for example, Merrill <str<strong>on</strong>g>and</str<strong>on</strong>g> McFadden (1999)). Reversals are thought to take around 5000to 10000 years to occur 2 , which though slow <strong>on</strong> human time scales is very rapid <str<strong>on</strong>g>in</str<strong>on</strong>g> geologicalterms. The l<strong>on</strong>gest time scale variati<strong>on</strong>s associated with the geomagnetic fieldare modulati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the rate at which reversals occur (McFadden <str<strong>on</strong>g>and</str<strong>on</strong>g> Merrill, 1984; Jacobs,1994). The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>stance of this modulati<strong>on</strong> is the existence of very l<strong>on</strong>g1 where D = 0 ◦ .2 though the time can be as short as 2000 years at low latitudes (Clement, 2004).


5 Chapter 1 — Introducti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>tervals when no polarity reversals occurred, such as the Cretaceous superchr<strong>on</strong> from120 to 83 milli<strong>on</strong> years ago. The l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between the mechanisms produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g polarity reversals<str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward drift) rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unclear, but itseems likely that the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g causes are <str<strong>on</strong>g>in</str<strong>on</strong>g> some way coupled (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1987; 1994).Study<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field over the past 400 years should therefore lead toan improved underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of the mechanisms produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong> over l<strong>on</strong>ger timescales.1.3 Orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the geomagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>1.3.1 Internal source of the geomagnetic fieldUs<str<strong>on</strong>g>in</str<strong>on</strong>g>g Gauss’s mathematical theory of a magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> a source free regi<strong>on</strong> (i.e. withno mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g charged particles or electrical currents) it is possible to separate the magneticfield at Earth’s surface <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal <str<strong>on</strong>g>and</str<strong>on</strong>g> external parts (see, for example, Langel (1987)).When this separati<strong>on</strong> is carried out it is found that (except dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g times of geomagneticstorms <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by solar disturbances) over 97 % of the field has an <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal orig<str<strong>on</strong>g>in</str<strong>on</strong>g> (Sabakaet al., 2002; 2004). One comm<strong>on</strong>ly used method for f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g the depth of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal fieldsources is to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e where the spatial power spectrum of the magnetic field (|B| 2versus spherical harm<strong>on</strong>ic degree l) becomes flat 3 . For the large scale field this occurs atthe depth when Earth’s c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g, liquid outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is reached 4 . Figure 1.3 shows thegross structure of the <str<strong>on</strong>g>in</str<strong>on</strong>g>terior of the Earth as <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred by seismologists.Figure 1.3: Structure of Earth’s <str<strong>on</strong>g>in</str<strong>on</strong>g>terior <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from seismology.Schematic picture of the <str<strong>on</strong>g>in</str<strong>on</strong>g>terior of the Earth, show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the crust, mantle, fluid outer <str<strong>on</strong>g>core</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>. The radius of the Earth is 6123 km, the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s at a radius ofapproximately 3485 km. Adapted from Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (2005).3 The power spectrum for spherical harm<strong>on</strong>ic degrees l > 13 is flat at Earth’s surface because <strong>on</strong>length scales < 3000km magnetised rocks <str<strong>on</strong>g>in</str<strong>on</strong>g> the lithosphere dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the magnetic field observed there.4 Studies of seismic <str<strong>on</strong>g>waves</str<strong>on</strong>g> travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g through the solid Earth suggest the fluid outer <str<strong>on</strong>g>core</str<strong>on</strong>g> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s at aradius of ∼3485km from the centre of the planet (Dziew<strong>on</strong>ski <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong>, 1981).


6 Chapter 1 — Introducti<strong>on</strong>The orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the geomagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s liquid <str<strong>on</strong>g>core</str<strong>on</strong>g> has been c<strong>on</strong>firmed by theelegant study of Hide <str<strong>on</strong>g>and</str<strong>on</strong>g> Mal<str<strong>on</strong>g>in</str<strong>on</strong>g> (1981). They were able to estimate the radius of the<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal source regi<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secular variati<strong>on</strong> observati<strong>on</strong>s. Their resultagreed very well with the seismologically determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed outer <str<strong>on</strong>g>core</str<strong>on</strong>g> radius. This studyalso suggested that Earth’s mantle must be a rather good electrical <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator, provid<str<strong>on</strong>g>in</str<strong>on</strong>g>gjustificati<strong>on</strong> for c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g Earth’s magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the mantle as a potential field.Further evidence suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the mantle is a good electrical <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator comes highpressure m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral physics experiments which imply that the electrical c<strong>on</strong>ductivity islikely to be less than 10 Sm −1 (Shankl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 1993) above the m<str<strong>on</strong>g>in</str<strong>on</strong>g>eralogically dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctD ′′ layer present at the base of the mantle.Adopt<str<strong>on</strong>g>in</str<strong>on</strong>g>g this assumpti<strong>on</strong> that the mantle is to first order an electrical <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator, it ispossible (with suitable regularisati<strong>on</strong>; for a discussi<strong>on</strong> of this c<strong>on</strong>cept see Parker (1994))to downward c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue the geomagnetic field to the edge of its generati<strong>on</strong> regi<strong>on</strong> at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Figure 1.4 shows a c<strong>on</strong>tour map of the radial magnetic field B r at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D. obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by downward c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>u<str<strong>on</strong>g>in</str<strong>on</strong>g>g a model c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed byobservati<strong>on</strong>s made by the Ørsted satellite. Red colours represent regi<strong>on</strong>s where radialmagnetic field exits the <str<strong>on</strong>g>core</str<strong>on</strong>g>, blue colours represent regi<strong>on</strong>s where radial magnetic fieldenters the <str<strong>on</strong>g>core</str<strong>on</strong>g>; the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the colour <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates the c<strong>on</strong>centrati<strong>on</strong> of field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es.9008007006005004003002001000-100-200-300-400-500-600-700-800-900µΤ2000Figure 1.4: Radial magnetic field B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2000 A.D.Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g data from the Ørsted satellite, Jacks<strong>on</strong> (2003) c<strong>on</strong>structed this high resoluti<strong>on</strong>image of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a maximum entropy norm as regularisati<strong>on</strong> when<str<strong>on</strong>g>in</str<strong>on</strong>g>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d a geomagnetic field model at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The map projecti<strong>on</strong> isAitoff equal-area projecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the scale is <str<strong>on</strong>g>in</str<strong>on</strong>g> µT.The magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface is c<strong>on</strong>siderably more complicated than that atEarth’s surface, with more small scale structure visible <str<strong>on</strong>g>and</str<strong>on</strong>g> the field amplitude vary<str<strong>on</strong>g>in</str<strong>on</strong>g>gbetween ±1×10 6 nT compared to ± 55000nT at Earth’s surface. At high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> bothhemispheres (under Canada, Siberia <str<strong>on</strong>g>and</str<strong>on</strong>g> under the antipodal sites close to Antarctica)high amplitude field c<strong>on</strong>centrati<strong>on</strong>s are observed. Close to the geographical equator aseries of high amplitude positive B r features are observed stretch<str<strong>on</strong>g>in</str<strong>on</strong>g>g from under the


7 Chapter 1 — Introducti<strong>on</strong>Indian ocean through Africa <str<strong>on</strong>g>and</str<strong>on</strong>g> the Atlantic ocean towards South America. A similarseries of high amplitude negative B r features are found around 20 ◦ N. A pair of featureswhose field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es are <str<strong>on</strong>g>in</str<strong>on</strong>g> the opposite directi<strong>on</strong> to the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g field (reversed fluxfeatures) are also present <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere, with <strong>on</strong>e feature under the tip ofSouth America be<str<strong>on</strong>g>in</str<strong>on</strong>g>g particularly prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent.Similar maps of the magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface can be c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g historicalobservati<strong>on</strong>s from the past 400 years (the gufm1 model of Jacks<strong>on</strong> et al., 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> alsoat lower resoluti<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g archeomagnetic, lava <str<strong>on</strong>g>and</str<strong>on</strong>g> lake sediment data from the past 7000years (the CALS7K.1 model of Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, 2005). These models show thatmany <str<strong>on</strong>g>core</str<strong>on</strong>g> surface field features are not static. This field evoluti<strong>on</strong> is the signature atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface of the geomagnetic secular variati<strong>on</strong> observed at Earth’s surface. At lowlatitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere many field features are observed tomove azimuthally westwards caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the westward drift of the magnetic field observed atthe surface (Bloxham et al., 1989). Equator to pole moti<strong>on</strong> of reversed flux features <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>their</str<strong>on</strong>g> simultaneous <str<strong>on</strong>g>in</str<strong>on</strong>g>tensificati<strong>on</strong> is also observed, <str<strong>on</strong>g>and</str<strong>on</strong>g> appears to be correlated with thedecay of the axial dipole moment observed at Earth’s surface (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1987). Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>gmapped the magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its changes at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <strong>on</strong>e is led to w<strong>on</strong>der whatis happen<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> to generate the global magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> cause the observedpatterns of field evoluti<strong>on</strong>.1.3.2 Physical properties of the outer <str<strong>on</strong>g>core</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is the most <str<strong>on</strong>g>in</str<strong>on</strong>g>accessible part of the planet. It can <strong>on</strong>ly be probed remotelyus<str<strong>on</strong>g>in</str<strong>on</strong>g>g seismology, gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic fields, <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences from its rotati<strong>on</strong>alproperties. Geochemists attempt to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e its compositi<strong>on</strong> by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g ch<strong>on</strong>driticmeteorite compositi<strong>on</strong>s to the known compositi<strong>on</strong>s of the crust <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle (the <str<strong>on</strong>g>core</str<strong>on</strong>g>be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the miss<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>k), while m<str<strong>on</strong>g>in</str<strong>on</strong>g>eral physicists perform high pressure, high temperature,experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> quantum mechanical calculati<strong>on</strong>s to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the likely properties ofmaterials located there. From these various approaches a c<strong>on</strong>sistent picture of c<strong>on</strong>diti<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g to emerge.The outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is believed to c<strong>on</strong>sist primarily of liquid ir<strong>on</strong> (or perhaps an ir<strong>on</strong>-nickelalloy) with approximately 10 % of its compositi<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g due to light elements (Birch,1964; Masters <str<strong>on</strong>g>and</str<strong>on</strong>g> Shearer, 1990). The light elements are thought to be either silic<strong>on</strong>,sulphur, or oxygen (Allègre et al., 1995). Carb<strong>on</strong>, hydrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> potassium may also bepresent <str<strong>on</strong>g>in</str<strong>on</strong>g> smaller quantities (McD<strong>on</strong>ough <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun, 1995). The pressure at the boundarybetween the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is estimated to be approximately 330GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> thetemperature there is thought to be approximately 5600K (Alfé et al., 2002). Underthese c<strong>on</strong>diti<strong>on</strong>s the liquid ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is expected to have a low viscositycomparable to that of water at room pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature (Poirier, 1994; de Wijset al., 1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> to be an excellent electrical c<strong>on</strong>ductor (Secco <str<strong>on</strong>g>and</str<strong>on</strong>g> Schloess<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1989;


8 Chapter 1 — Introducti<strong>on</strong>Poirier, 1994).1.3.3 Energy sources <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>sThe liquid ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is thought to be undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g vigorous moti<strong>on</strong>. On shorttime scales of hours to days disturbances driven by <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tidal forc<str<strong>on</strong>g>in</str<strong>on</strong>g>gwill produce a broad spectrum of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> (Aldridge, 2003). Ithas been suggested that precessi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> tidal stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s could produce <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities lead<str<strong>on</strong>g>in</str<strong>on</strong>g>gto large amplitude flows <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> (Malkus, 1994). On l<strong>on</strong>ger time scales the presenceof a variety of energy sources suggests that c<strong>on</strong>vecti<strong>on</strong> is occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.These energy sources <str<strong>on</strong>g>in</str<strong>on</strong>g>clude secular cool<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the aftermath of planetaryformati<strong>on</strong>, release of latent heat <str<strong>on</strong>g>and</str<strong>on</strong>g> buoyant light material at the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner-<str<strong>on</strong>g>core</str<strong>on</strong>g> boundaryas the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> solidifies, <str<strong>on</strong>g>and</str<strong>on</strong>g> radioactive heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see, for example, Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al.(2003; 2004); Roberts et al. (2003)).Due to the very low viscosity of liquid ir<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>, vigorous c<strong>on</strong>vective moti<strong>on</strong>sare expected to be dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the Coriolis forces (a c<strong>on</strong>sequence ofplanetary rotati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> the str<strong>on</strong>g magnetic fields present there. N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>sbetween flow, magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> buoyancy fields will produce complex, time-dependent flowpatterns. The presence of magnetic fields <str<strong>on</strong>g>in</str<strong>on</strong>g> an electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid also permitsa class of fluid moti<strong>on</strong>s known as hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. These arise because the distorti<strong>on</strong>of magnetic fields by fluid moti<strong>on</strong> produces a magnetic (Lorentz) force oppos<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat distorti<strong>on</strong>. In comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with fluid <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia this magnetic restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force leads totransverse wave moti<strong>on</strong>s (Alfvén, 1942). The form of these hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> will bestr<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by rapid rotati<strong>on</strong> (Lehnert, 1954), unstable stratificati<strong>on</strong> (Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky,1964), <str<strong>on</strong>g>and</str<strong>on</strong>g> spherical geometry (Hide, 1966) all of which are thought to be important <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.1.3.4 The geodynamo mechanismThe generati<strong>on</strong> of the geomagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is now fairly well understoodthanks <str<strong>on</strong>g>in</str<strong>on</strong>g> particular to recent advances <str<strong>on</strong>g>in</str<strong>on</strong>g> computati<strong>on</strong>al modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see, for example,Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier (2000a)). The high temperatures <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the timedependenceof the observed field rule out an explanati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of permanent magnetism.Instead, a mechanism produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a rapidly evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g, self-susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g, magneticfield is required. A dynamo explanati<strong>on</strong> is the <strong>on</strong>ly reas<strong>on</strong>able c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate for such amechanism (see, for example, Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Masters (1979)). A dynamo is a system thatc<strong>on</strong>verts k<str<strong>on</strong>g>in</str<strong>on</strong>g>etic energy <str<strong>on</strong>g>in</str<strong>on</strong>g>to magnetic energy by moti<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> given some <str<strong>on</strong>g>in</str<strong>on</strong>g>itialseed magnetic field (Roberts, 1994). Moti<strong>on</strong>s of electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s<str<strong>on</strong>g>core</str<strong>on</strong>g> mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g through a weak pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field (e.g. the <str<strong>on</strong>g>in</str<strong>on</strong>g>ter-planetary magneticfield) will generate electrical currents. These electrical currents produce magnetic


9 Chapter 1 — Introducti<strong>on</strong>fields <str<strong>on</strong>g>and</str<strong>on</strong>g>, if the fluid flows are <str<strong>on</strong>g>in</str<strong>on</strong>g> a suitable c<strong>on</strong>figurati<strong>on</strong>, these will re<str<strong>on</strong>g>in</str<strong>on</strong>g>force the exist<str<strong>on</strong>g>in</str<strong>on</strong>g>gmagnetic field lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g eventually to a much str<strong>on</strong>ger field. Fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s<str<strong>on</strong>g>core</str<strong>on</strong>g> that will be str<strong>on</strong>gly affected by rotati<strong>on</strong> appear ideally suited to act as a dynamo,<str<strong>on</strong>g>in</str<strong>on</strong>g> what is referred to as the geodynamo mechanism. In the next few paragraphs thehistory of attempts to model the geodynamo will be outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.Larmor (1919) was the first to propose the idea that a self-excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g dynamo mechanismcould be resp<strong>on</strong>sible for Earth’s magnetic field. Cowl<str<strong>on</strong>g>in</str<strong>on</strong>g>g (1934) dealt the proposal a blowby prov<str<strong>on</strong>g>in</str<strong>on</strong>g>g that purely axisymmetric magnetic fields could not act as a dynamo, but Elsasser(1946) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bullard (1949) showed that Earth’s magnetic field could evade Cowl<str<strong>on</strong>g>in</str<strong>on</strong>g>g’stheorem by virtue of its observed n<strong>on</strong>-axisymmetry. Bullard <str<strong>on</strong>g>and</str<strong>on</strong>g> Gellman (1954)developed a formalism for solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the equati<strong>on</strong>s of magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> which proveduseful for numerical computati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> which permitted the dem<strong>on</strong>strati<strong>on</strong> of whetherspecified flows would produce dynamo acti<strong>on</strong> (k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic dynamo theory). The existenceof dynamo acti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere was f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally proven by Herzenberg (1958) <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus (1958),though both employed rather unrealistic flows. K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic dynamo theory has become auseful tool <str<strong>on</strong>g>in</str<strong>on</strong>g> efforts to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field generati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reversal mechanisms.Recent work has focused <strong>on</strong> flows likely to arise from c<strong>on</strong>vecti<strong>on</strong>. Systematic parameterregime <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s of 3D k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic dynamos have now been carried out (see, forexample, Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al. (2000)).The first numerical models of the geodynamo to self-c<strong>on</strong>sistently <str<strong>on</strong>g>in</str<strong>on</strong>g>corporate buoyancydriven flows <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field generati<strong>on</strong> tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account all coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> feedbacks<str<strong>on</strong>g>in</str<strong>on</strong>g> a 3D spherical geometry were <str<strong>on</strong>g>in</str<strong>on</strong>g>dependently produced by Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts(1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> Kageyama et al. (1995). Various groups have s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce developed similar models(Christensen et al., 2001). These models have been remarkably successful <str<strong>on</strong>g>in</str<strong>on</strong>g> reproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>gEarth-like magnetic field features such as dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, reas<strong>on</strong>able field <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> even reversals. Unfortunately, thesemodels are operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a dynamical regime remote from that expected <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> —<str<strong>on</strong>g>their</str<strong>on</strong>g> rotati<strong>on</strong> rates are too slow <str<strong>on</strong>g>and</str<strong>on</strong>g> turbulent effects are often <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> a ratherad-hoc manner (J<strong>on</strong>es, 2000). It is therefore difficult to judge if the success of suchmodels is merely a co<str<strong>on</strong>g>in</str<strong>on</strong>g>cidence, or whether Earth-like behaviour becomes <str<strong>on</strong>g>in</str<strong>on</strong>g>evitable<strong>on</strong>ce there is the correct representati<strong>on</strong> of spherical shell geometry, c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thesize order<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the forces (magnetic, buoyancy <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis similar magnitude, <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial<str<strong>on</strong>g>and</str<strong>on</strong>g> viscous weaker). To evaluate the success of these models <str<strong>on</strong>g>and</str<strong>on</strong>g> to decide which ofthe various methods is to be preferred, quantitative comparis<strong>on</strong>s to both geomagnetic<str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic observati<strong>on</strong>s are of paramount importance (see, for example, Dormyet al. (2000) or K<strong>on</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (2003)).One weakness of such computati<strong>on</strong>ally dem<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g numerical dynamo models is that theyare extremely complex. Whilst they produce Earth-like behaviour, so many processes are<str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g that it becomes hard to isolate the basic mechanisms of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. It is therefore


10 Chapter 1 — Introducti<strong>on</strong>important that <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s of simpler models of particular aspects of magnetic fieldgenerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong> are carried out as was advocated by Hide (2000).1.3.5 Causes of geomagnetic secular variati<strong>on</strong>, flow at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> changes<str<strong>on</strong>g>in</str<strong>on</strong>g> the length of dayWith<str<strong>on</strong>g>in</str<strong>on</strong>g> the framework of the geodynamo mechanism, <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong>are the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the slow changes observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s magnetic field. The patterns ofB robserved at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface can be altered by <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s both when new B ris produced by the distorti<strong>on</strong> of toroidal magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es (those c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed entirelywith<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>), or when moti<strong>on</strong>s close to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface rearrange pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r .Most recent quantitative attempts to <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret geomagnetic secular variati<strong>on</strong> have focused<strong>on</strong> the latter process. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Scott (1965) it can be assumed that,<strong>on</strong> time scales much shorter than the magnetic diffusi<strong>on</strong> time scale, field evoluti<strong>on</strong> isentirely a result of frozen flux advecti<strong>on</strong> (for an <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to this assumpti<strong>on</strong> see Moffatt,(1978) or Davids<strong>on</strong>, (2001) while Love, (1999) discusses its limitati<strong>on</strong>s). Adopt<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe frozen-flux approximati<strong>on</strong> al<strong>on</strong>g with an additi<strong>on</strong>al dynamical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong>e can<str<strong>on</strong>g>in</str<strong>on</strong>g>vert from geomagnetic secular variati<strong>on</strong> to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a regularised soluti<strong>on</strong> for the flowat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface that is capable of rearrang<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r to produce the observed changes<str<strong>on</strong>g>in</str<strong>on</strong>g> B r . Various dynamical c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts have been used for this purpose <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g steadyflow (Voorhies <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus, 1985), steady flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame (Holme <str<strong>on</strong>g>and</str<strong>on</strong>g>Whaler, 2001), tangentially geostrophic flow 5 (LeMouël, 1984) <str<strong>on</strong>g>and</str<strong>on</strong>g> toroidal flow 6 (Lloyd<str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1990).An example of the result of a time dependent <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>over the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1840 A.D. to 1990 A.D. (us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a tangential geostrophy dynamicalc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t) from Jacks<strong>on</strong> (1997) is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 1.5.Noteworthy features <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the circulati<strong>on</strong>s under the southern Atlantic ocean, theweak eastward flow under the Indian ocean, oscillatory moti<strong>on</strong>s at low latitudes especiallyunder Ind<strong>on</strong>esia, <str<strong>on</strong>g>and</str<strong>on</strong>g> the predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly westward flow near the equator underthe Atlantic ocean. Interpretati<strong>on</strong>s of geomagnetic secular variati<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> flow<str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s ascribe the westward moti<strong>on</strong> of magnetic field features <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphereto advecti<strong>on</strong> by these low latitude flows (see, for example, (Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>,1991)).Evidence for the reliability of the time-dependent, axisymmetric part of the flows obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edby <str<strong>on</strong>g>in</str<strong>on</strong>g>vert<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secular variati<strong>on</strong> comes from changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the rotati<strong>on</strong>rate of Earth (referred to as changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day). Jault et al. (1988) <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>et al. (1993) dem<strong>on</strong>strated that changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th centurycould be accounted for by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>servati<strong>on</strong> of angular momentum of the5 when magnetic forces are neglected to first order <str<strong>on</strong>g>and</str<strong>on</strong>g> the tangential comp<strong>on</strong>ent of the Coriolis forcebalances tangential pressure gradients at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.6 when fluid moti<strong>on</strong>s are purely tangential <str<strong>on</strong>g>and</str<strong>on</strong>g> there is no fluid upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g or downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.


11 Chapter 1 — Introducti<strong>on</strong>Figure 1.5: Flow at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from 1840 to 1990 A.D.Result from Jacks<strong>on</strong> (1997) of a time-dependent, tangentially geostrophic, weakly regularised<str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1840 A.D. to 1990 A.D.. The dots show<str<strong>on</strong>g>in</str<strong>on</strong>g>itial positi<strong>on</strong>s of fluid particles <str<strong>on</strong>g>in</str<strong>on</strong>g> 1840 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>es the subsequent moti<strong>on</strong> ofthese particles over the next 150 years.<str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle system. Core angular momentum was calculated from the time-dependent,axisymmetric comp<strong>on</strong>ent of tangentially geostrophic <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s, assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g thatthese flows were <str<strong>on</strong>g>in</str<strong>on</strong>g>variant <strong>on</strong> cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical surfaces with<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> 7 .The dynamical mechanism underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g the coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the mantle hasproven difficult to p<str<strong>on</strong>g>in</str<strong>on</strong>g> down. Topographic features (bumps) at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundarywould produce pressure gradients that could produce the required coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Hide, 1967;1989; Jault <str<strong>on</strong>g>and</str<strong>on</strong>g> LeMouël, 1989) though this rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>troversial (Kuang <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham,1993; Kuang <str<strong>on</strong>g>and</str<strong>on</strong>g> Chao, 2001). Electromagnetic <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g could produce therequired torque provided that a th<str<strong>on</strong>g>in</str<strong>on</strong>g>, highly electrical c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer exists at the baseof the mantle (Holme, 1998a;b; 2000). Alternatively, gravitati<strong>on</strong>al coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g between themantle <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> (Buffett, 1996a;b; Buffett <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, 2000) could be theimportant mechanism provided that the viscosity of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> is not too low (Buffett,1997). Recent studies (Mound <str<strong>on</strong>g>and</str<strong>on</strong>g> Buffett, 2003; 2005) suggest that a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> ofgravitati<strong>on</strong>al coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with electromagnetic coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g is the most plausible scenario,though there have also been <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s that viscous coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g could be important (Britoet al., 2004) due to the turbulent nature of flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>.Despite the success of correlati<strong>on</strong>s between the time-dependent axisymmetric comp<strong>on</strong>entof the <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred <str<strong>on</strong>g>core</str<strong>on</strong>g> flows <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of the day, doubts rema<str<strong>on</strong>g>in</str<strong>on</strong>g> aboutwhether such <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s also successfully model the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of other comp<strong>on</strong>ents of geomagneticsecular variati<strong>on</strong>. By study<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of known flows <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo models,7 Normal modes of such rigid, almost geostrophic, time-dependent, axisymmetric flows called torsi<strong>on</strong>aloscillati<strong>on</strong>s were first described by Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1970). Dynamical c<strong>on</strong>siderati<strong>on</strong>s suggest torsi<strong>on</strong>al oscillati<strong>on</strong>sshould exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (Taylor, 1963; Bloxham, 1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> they are capable of expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>ggeomagnetic jerks (Bloxham et al., 2002).


12 Chapter 1 — Introducti<strong>on</strong>Rau et al. (2000) have dem<strong>on</strong>strated that the retrieved flows can c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> spurious features,especially at low latitudes where wave propagati<strong>on</strong> can be <str<strong>on</strong>g>in</str<strong>on</strong>g>correctly <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretedas <str<strong>on</strong>g>in</str<strong>on</strong>g>tense azimuthal flow. The role <str<strong>on</strong>g>and</str<strong>on</strong>g> extent of field evoluti<strong>on</strong> mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>gexpulsi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong> (Allan <str<strong>on</strong>g>and</str<strong>on</strong>g> Bullard, 1966; Bloxham, 1986; Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s,1996) is difficult to quantify, but such processes seem likely to be important for expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gepisodes of growth <str<strong>on</strong>g>and</str<strong>on</strong>g> decay of field features at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g>Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1986; Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1987).Most importantly for this thesis, <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s of geomagnetic secular variati<strong>on</strong> based<strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s do not take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account the role that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>could play <str<strong>on</strong>g>in</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. In order to placeany c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g> the results of <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s (particularly at low latitudes) the<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <strong>on</strong> geomagnetic secular variati<strong>on</strong> mustbe understood.1.4 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong>1.4.1 An example of a hydromagnetic wave <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its possible effects<str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> are propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbances that exist <str<strong>on</strong>g>in</str<strong>on</strong>g> electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>gfluids permeated by magnetic fields as a result of the elasticity endowed to the fluidby the presence of a str<strong>on</strong>g magnetic field 8 .In a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid these <str<strong>on</strong>g>waves</str<strong>on</strong>g>can operate <strong>on</strong> very slow time scales if the Coriolis force acts to balance the magneticrestor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force.In Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> such <str<strong>on</strong>g>waves</str<strong>on</strong>g> could arise either as a free oscillati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>resp<strong>on</strong>se to perturbati<strong>on</strong> (for example by boundary topography) or as a manifestati<strong>on</strong>of <str<strong>on</strong>g>in</str<strong>on</strong>g>stability either <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow, <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field or <str<strong>on</strong>g>in</str<strong>on</strong>g> the density field.The magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is thought to have a str<strong>on</strong>g azimuthal comp<strong>on</strong>ent(Roberts, 1978).<str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> would result from the distorti<strong>on</strong> of this field.The flow pattern associated with these <str<strong>on</strong>g>waves</str<strong>on</strong>g> would probably be columnar <str<strong>on</strong>g>in</str<strong>on</strong>g> structurebecause of the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of str<strong>on</strong>g Coriolis forces <strong>on</strong> fluid moti<strong>on</strong>s. The wave <str<strong>on</strong>g>and</str<strong>on</strong>g> itssignature, a spatially coherent pattern of disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> theflow, would propagate azimuthally follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>e 9 .Figure 1.6 is aschematic depicti<strong>on</strong> of the form such a hydromagnetic wave might take <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.The distorti<strong>on</strong> of the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g>side the <str<strong>on</strong>g>core</str<strong>on</strong>g> will have a radial comp<strong>on</strong>ent thatwill be visible as a regular perturbati<strong>on</strong> of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The wave flow patternwill also rearrange pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. These spatially coherent patternsof B r will then move al<strong>on</strong>g with the wave <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secular8 In this thesis, the term ‘hydromagnetic wave’ is used to describe a wave mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g bothfluid moti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic fields. The mechanism underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> mayalso <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the effects of rotati<strong>on</strong>, buoyancy forces, <str<strong>on</strong>g>and</str<strong>on</strong>g> spherical geometry (see chapter 6).9 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> can arise due to the distorti<strong>on</strong> of a magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>e of any orientati<strong>on</strong>, soare not <str<strong>on</strong>g>in</str<strong>on</strong>g> general restricted to travel azimuthally.


13 Chapter 1 — Introducti<strong>on</strong>Figure 1.6: A possible hydromagnetic wave <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.Th<str<strong>on</strong>g>in</str<strong>on</strong>g> black l<str<strong>on</strong>g>in</str<strong>on</strong>g>es represent the observed magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es outside Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, thethick black l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represents a distorted azimuthal magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>, with theblue columns represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>comitant hydromagnetic wave flow. The red arrowshows a possible propagati<strong>on</strong> directi<strong>on</strong> for the hydromagnetic wave.variati<strong>on</strong> which would be observed at Earth’s surface.This hypothetical, qualitative, scenario suggests that the idea of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s magnetic field merits further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>.1.4.2 Previous studies l<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong>The hypothesis that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> might <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the geomagneticfield is not new. Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1964) was the first to suggest a l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong>, while Hide (1966) made a similarsuggesti<strong>on</strong> but also <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of spherical geometry <strong>on</strong> such <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Both Hide<str<strong>on</strong>g>and</str<strong>on</strong>g> later Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky attempted to compare the predicti<strong>on</strong>s of simple hydromagnetic wavetheories to available observati<strong>on</strong>s of geomagnetic secular variati<strong>on</strong>.Hide (1966) identified three major factors <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of the wave hypothesis: (i) hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> modified by rotati<strong>on</strong> could have periods comparable with the time scale


14 Chapter 1 — Introducti<strong>on</strong>of geomagnetic secular variati<strong>on</strong>; (ii) such <str<strong>on</strong>g>waves</str<strong>on</strong>g> could have dispersi<strong>on</strong> times comparablewith the time scale of geomagnetic secular variati<strong>on</strong>; (iii) such <str<strong>on</strong>g>waves</str<strong>on</strong>g> could havedispersi<strong>on</strong> characteristics (shorter wavelengths travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g faster) compatible with geomagneticsecular variati<strong>on</strong>. His observati<strong>on</strong>al analysis was based <strong>on</strong> the mean westwarddrift rates of spherical harm<strong>on</strong>ics up to degree 4 (from seven previous publicati<strong>on</strong>s spann<str<strong>on</strong>g>in</str<strong>on</strong>g>g135 years from 1830 to 1965). Despite the failure of detailed comparis<strong>on</strong>s betweenthe predicted <str<strong>on</strong>g>and</str<strong>on</strong>g> observed drift rates for <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual spherical harm<strong>on</strong>ics, Hide’s studywas <str<strong>on</strong>g>in</str<strong>on</strong>g>strumental <str<strong>on</strong>g>in</str<strong>on</strong>g> persuad<str<strong>on</strong>g>in</str<strong>on</strong>g>g many geophysicists that a hydromagnetic wave orig<str<strong>on</strong>g>in</str<strong>on</strong>g>for geomagnetic secular variati<strong>on</strong> was a viable propositi<strong>on</strong>.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1967;1972;1974) sought to c<strong>on</strong>firm the wave hypothesis by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g his owntheoretical predicti<strong>on</strong>s of the spectrum of diffusi<strong>on</strong>less, c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid (he called these MAC or Magnetic Archimedes Coriolis<str<strong>on</strong>g>waves</str<strong>on</strong>g>) to an observati<strong>on</strong>ally <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred spectrum of geomagnetic secular variati<strong>on</strong>. Theobservati<strong>on</strong>al spectrum was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g a superpositi<strong>on</strong> of stati<strong>on</strong>ary fields<str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthally travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g> to time series of geomagnetic field spherical harm<strong>on</strong>iccoefficients up to degree <str<strong>on</strong>g>and</str<strong>on</strong>g> order 2, <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from a selecti<strong>on</strong> of historical <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagneticdata cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the past 2000 years. A reas<strong>on</strong>able fit of the model to the datawas found to be possible us<str<strong>on</strong>g>in</str<strong>on</strong>g>g travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g> with periods of 1560, 1040, 780, <str<strong>on</strong>g>and</str<strong>on</strong>g> 520years. Unfortunately, the reliability <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal c<strong>on</strong>sistency of the observati<strong>on</strong>s used <str<strong>on</strong>g>in</str<strong>on</strong>g>these studies is questi<strong>on</strong>able, as was the strategy of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g model parameters bysimple least squares fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>complete data with large (<str<strong>on</strong>g>and</str<strong>on</strong>g> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>) errors. However,given the poor quality of data available <str<strong>on</strong>g>in</str<strong>on</strong>g> the early 1970’s, Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky’s efforts wereimportant <str<strong>on</strong>g>in</str<strong>on</strong>g> dem<strong>on</strong>strat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the hydromagnetic wave hypothesis was compatiblewith observati<strong>on</strong>s.S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the studies of Hide <str<strong>on</strong>g>and</str<strong>on</strong>g> Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky there has been no c<strong>on</strong>certed effort to re-evaluatethe worth of the wave hypothesis of geomagnetic secular variati<strong>on</strong>. The past 30 yearshas seen significant advances <str<strong>on</strong>g>in</str<strong>on</strong>g> observati<strong>on</strong>al knowledge of Earth’s magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g>its evoluti<strong>on</strong>, as well as <str<strong>on</strong>g>in</str<strong>on</strong>g> the ability to model the geodynamo <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>ghydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. This thesis attempts to utilise these advances to providea c<strong>on</strong>temporary perspective <strong>on</strong> the issue of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> as a source of geomagneticsecular variati<strong>on</strong>. This study therefore has implicati<strong>on</strong>s for both our underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gof azimuthal moti<strong>on</strong>s of the geomagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> for <str<strong>on</strong>g>core</str<strong>on</strong>g> dynamics <strong>on</strong> time scales ofcenturies to millennia.1.5 Thesis aims <str<strong>on</strong>g>and</str<strong>on</strong>g> structureThe aim of this thesis is to answer <str<strong>on</strong>g>in</str<strong>on</strong>g> as rigorous a manner as possible the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g questi<strong>on</strong>sregard<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> geomagneticsecular variati<strong>on</strong>.


15 Chapter 1 — Introducti<strong>on</strong>(i) Can hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>?(ii) What would be the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>?(iii) How would hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the evoluti<strong>on</strong> of B r at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> hence geomagnetic secular variati<strong>on</strong>?(iv) Is there any evidence support<str<strong>on</strong>g>in</str<strong>on</strong>g>g the existence of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’souter <str<strong>on</strong>g>core</str<strong>on</strong>g>?(v) Can study of such wave moti<strong>on</strong>s shed any light <strong>on</strong> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of apparent hemisphericaldifferences <str<strong>on</strong>g>in</str<strong>on</strong>g> secular variati<strong>on</strong>?The structure of this thesis does not follow the logical sequence suggested by these questi<strong>on</strong>s.The rati<strong>on</strong>ale beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d this decisi<strong>on</strong> is that <str<strong>on</strong>g>in</str<strong>on</strong>g> geophysics observati<strong>on</strong>s are the fundamentalknowledge which are subsequently <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted from a theoretical st<str<strong>on</strong>g>and</str<strong>on</strong>g>po<str<strong>on</strong>g>in</str<strong>on</strong>g>t.The first half of the thesis is therefore devoted to analysis of models of the evoluti<strong>on</strong>of the geomagnetic field derived from observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to the analysis of similar resultsfrom dynamo simulati<strong>on</strong>s. Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g established the observati<strong>on</strong>al facts <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> possiblelimitati<strong>on</strong>s, the sec<strong>on</strong>d half of the thesis c<strong>on</strong>centrates <strong>on</strong> theoretical models of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigates how these could <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the evoluti<strong>on</strong> of B r at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Each chapter focuses <strong>on</strong> a particular issue <str<strong>on</strong>g>and</str<strong>on</strong>g> is designed to address this<str<strong>on</strong>g>in</str<strong>on</strong>g> a rigorous manner.The thesis beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 by describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the development <str<strong>on</strong>g>and</str<strong>on</strong>g> test<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a suiteof techniques for analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of scalar fields <strong>on</strong> a spherical surface. Thesemethods are applied to the historical geomagnetic field model gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3, to thearcheomagnetic field model CALS7K.1 <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> to output from two c<strong>on</strong>vecti<strong>on</strong>drivengeodynamo models <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 5. In chapter 6 a review of previous theoreticalstudies of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid is presented. Chapter 7 documentsthe parameter dependence of simple, c<strong>on</strong>vecti<strong>on</strong>-driven, hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>a sphere <str<strong>on</strong>g>and</str<strong>on</strong>g> chapter 8 <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigates the possible effects of wave flows <strong>on</strong> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface. In chapter 9 a scenario is proposed which is c<strong>on</strong>sistent with both theory <str<strong>on</strong>g>and</str<strong>on</strong>g>observati<strong>on</strong>s. On this basis answers to the questi<strong>on</strong>s posed <str<strong>on</strong>g>in</str<strong>on</strong>g> this <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> are given.The work carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> major c<strong>on</strong>clusi<strong>on</strong>s of the thesis are summarised, <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>allyproposals for possible future tests of this scenario are suggested.


16Chapter 2A space-time process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> spectralanalysis methodology2.1 OverviewThe traditi<strong>on</strong>al approach to characteris<str<strong>on</strong>g>in</str<strong>on</strong>g>g the spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal evoluti<strong>on</strong> of Earth’smagnetic field has been to study the time dependence of the coefficients of the sphericalharm<strong>on</strong>ic representati<strong>on</strong> of the field (see, for example, Langel, 1987, Yokoyama <str<strong>on</strong>g>and</str<strong>on</strong>g>Yukutake, 1991 <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus et al., 1996). For c<strong>on</strong>structi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous models ofthe magnetic field at the planet’s surface a spherical harm<strong>on</strong>ic representati<strong>on</strong> is bothmathematically expedient <str<strong>on</strong>g>and</str<strong>on</strong>g> physically sensible, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g an efficient representati<strong>on</strong> ofa potential field satisfy<str<strong>on</strong>g>in</str<strong>on</strong>g>g Laplace’s equati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry (see appendix A).Unfortunately, the fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>comitant patterns of changeproduced <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface do not satisfy Laplace’s equati<strong>on</strong>. Itis therefore unlikely that an analysis of field evoluti<strong>on</strong> based <strong>on</strong> a spherical harm<strong>on</strong>icrepresentati<strong>on</strong> will be the best method to ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the mechanisms produc<str<strong>on</strong>g>in</str<strong>on</strong>g>ggeomagnetic secular variati<strong>on</strong>.This thesis is c<strong>on</strong>cerned with determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g whether changes <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s magnetic fieldcould be caused by hydromagnetic wave propagati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. Waves <str<strong>on</strong>g>in</str<strong>on</strong>g> otherplanetary scale rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids, especially the atmosphere <str<strong>on</strong>g>and</str<strong>on</strong>g> the ocean, have been <str<strong>on</strong>g>in</str<strong>on</strong>g>tensivelystudied for many years (see, for example, the recent studies by Chelt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>Schlax, (1996); Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiladis, (1999); Hill et al., (2000)). Successful identificati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> characterisati<strong>on</strong> of wave moti<strong>on</strong>s has been achieved by study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the space-timeproperties of tracer fields <strong>on</strong> geographically localised grids. This method is a useful alternativeto analysis based <strong>on</strong> global expansi<strong>on</strong> coefficients. It has the advantage of notrequir<str<strong>on</strong>g>in</str<strong>on</strong>g>g the summati<strong>on</strong> of many modes <str<strong>on</strong>g>in</str<strong>on</strong>g> order to represent geographically localisedwave moti<strong>on</strong>s.In this chapter space-time process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> spectral analysis techniques used extensively <str<strong>on</strong>g>in</str<strong>on</strong>g>later chapters are described <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>and</str<strong>on</strong>g> tested <strong>on</strong> synthetic models. The c<strong>on</strong>structi<strong>on</strong>


17 Chapter 2 — Space-time analysis<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of time-l<strong>on</strong>gitude plots, frequency-wavenumber power spectra, <str<strong>on</strong>g>and</str<strong>on</strong>g>of Rad<strong>on</strong> transform methods is described. The use of such methods <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorology<str<strong>on</strong>g>and</str<strong>on</strong>g> oceanography is discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to illustrate how they can aid identificati<strong>on</strong> ofwave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> tracer fields. Removal of the time averaged axisymmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> veryl<strong>on</strong>g period field comp<strong>on</strong>ents is described <str<strong>on</strong>g>and</str<strong>on</strong>g> justified. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally use of these tools to<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate geographic variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speed of field features <str<strong>on</strong>g>and</str<strong>on</strong>g> the use offrequency-wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g to isolate signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest is described <str<strong>on</strong>g>and</str<strong>on</strong>g> illustrated<strong>on</strong> the synthetic models.2.2 Visualisati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis techniques2.2.1 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g models <str<strong>on</strong>g>in</str<strong>on</strong>g> space <str<strong>on</strong>g>and</str<strong>on</strong>g> timeThe start<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t for all the analysis techniques is the generati<strong>on</strong> of a discrete, regulargrid of scalar field values (a generic scalar field called H is used as the basis for thediscussi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter). Grid po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts are located over the entire spherical surface(from 0 to 360 degrees l<strong>on</strong>gitude <str<strong>on</strong>g>and</str<strong>on</strong>g> from -90 to +90 degrees latitude). The data set isthen sampled at discrete times at each of these grid po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. The grid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g is chosen tobe 2 degrees <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude, while the spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> time depends <strong>on</strong> the temporalresoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> time scale of dynamics of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest (for example, it is chosen to be 2 yearswhen study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the historical geomagnetic field model gufm1). Although this form ofspatial grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g is not optimal at high latitudes, it is suitable for study<str<strong>on</strong>g>in</str<strong>on</strong>g>g field moti<strong>on</strong>s atlow to mid-latitudes. Models of the scalar field studied typically <str<strong>on</strong>g>in</str<strong>on</strong>g>itially c<strong>on</strong>sist of timedependentspherical harm<strong>on</strong>ic coefficients that are substituted <str<strong>on</strong>g>in</str<strong>on</strong>g>to spherical harm<strong>on</strong>icexpansi<strong>on</strong>s to generate the scalar field H(θ i , φ j , t k ) at the required grid po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.2.2.2 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of time-l<strong>on</strong>gitude (TL) plotsThe l<strong>on</strong>gitude, latitude, time dataset that results from the regular grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure canbe thought of as a data cuboid. This cuboid can be secti<strong>on</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> processed <str<strong>on</strong>g>in</str<strong>on</strong>g> whatevermanner leads to the clearest, most <str<strong>on</strong>g>in</str<strong>on</strong>g>sightful, visualisati<strong>on</strong> of H. Latitude-l<strong>on</strong>gitude mapsat a particular epoch are <strong>on</strong>e example of a secti<strong>on</strong> through the data cuboid. Anothersecti<strong>on</strong>, previously rather neglected by geomagnetists (though see K<strong>on</strong>o et al. (2000)), isa time-l<strong>on</strong>gitude (TL) secti<strong>on</strong> at a particular latitude. C<strong>on</strong>structi<strong>on</strong> of a TL plot frommaps of a scalar field H <strong>on</strong> a spherical surface is illustrated schematically <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.1.Exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the evoluti<strong>on</strong> of the radial magnetic field B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g>of the evoluti<strong>on</strong> of magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> flows <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo models close to the outerboundary <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that many n<strong>on</strong>-axisymmetric features often move approximately azimuthallyperpendicular to the rotati<strong>on</strong> axis. A c<strong>on</strong>sequence of the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of azimuthalmoti<strong>on</strong>s is that TL secti<strong>on</strong>s can be used to characterise accurately the evoluti<strong>on</strong>


18 Chapter 2 — Space-time analysisFigure 2.1: Relati<strong>on</strong> of latitude-l<strong>on</strong>gitude maps to time-l<strong>on</strong>gitude(TL) plots.Field values at all gridded l<strong>on</strong>gitudes at a chosen latitude (10 ◦ S here) are taken fromlatitude-l<strong>on</strong>gitude maps at each discrete time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval to c<strong>on</strong>struct time-l<strong>on</strong>gitude plotsat the chosen latitude (the equator <str<strong>on</strong>g>in</str<strong>on</strong>g> this example).of n<strong>on</strong>-axisymmetric field features.Hovmöller (1949) was the first to employ the technique of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g TL plots to studywave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a planetary scale rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. He c<strong>on</strong>sidered the height of the 500mb pressure level as a tracer field of atmospheric moti<strong>on</strong>s.The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g TL plot isreproduced <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.2a. He visually determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed the azimuthal phase speed of fieldmoti<strong>on</strong>s by follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the positi<strong>on</strong> of crests <str<strong>on</strong>g>and</str<strong>on</strong>g> troughs 1 (see, for example, the dashedl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.2a).He <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred an azimuthal group speed by follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the path oftransmissi<strong>on</strong> of energy (proporti<strong>on</strong>al to squared field amplitude) by identify<str<strong>on</strong>g>in</str<strong>on</strong>g>g pathsal<strong>on</strong>g which field maxima <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>ima are c<strong>on</strong>sistently observed (see the solid l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 2.2a).He used these observati<strong>on</strong>s to test whether the moti<strong>on</strong>s were c<strong>on</strong>sistentwith Rossby’s theory of planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g> 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> the atmosphere (Rossby, 1939), c<strong>on</strong>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>gthis was the case.1 A more sophisticated way to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e phase speeds, especially useful when energy is present over arange of frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumbers, is to filter so that <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle frequency comp<strong>on</strong>ent or wavenumbercomp<strong>on</strong>ent rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s. The azimuthal speed of these features is then the azimuthal phase speed associatedwith that frequency. By perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g this procedure over a range of frequencies or wavenumbers,the dispersi<strong>on</strong> (frequency versus wavenumber) characteristics of the field moti<strong>on</strong> can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.Azimuthal group speeds associated with the speed of transmissi<strong>on</strong> of energy are often determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed byfollow<str<strong>on</strong>g>in</str<strong>on</strong>g>g peaks of the square of the field amplitude.2 Planetary (or Rossby) <str<strong>on</strong>g>waves</str<strong>on</strong>g> are large scale, slowly propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>waves</str<strong>on</strong>g> found <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids.Their existence is a c<strong>on</strong>sequence of the restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force that arises due to the variati<strong>on</strong> of the Coriolisforce with latitude. Readers unfamiliar with these <str<strong>on</strong>g>waves</str<strong>on</strong>g> should c<strong>on</strong>sult Andrews (2000) for an accessible<str<strong>on</strong>g>in</str<strong>on</strong>g>troductory account.


19 Chapter 2 — Space-time analysis(a) TL plot from Hovmöller (1949) (b) TL plot from Chelt<strong>on</strong> et al. (2003)show<str<strong>on</strong>g>in</str<strong>on</strong>g>g field moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative show<str<strong>on</strong>g>in</str<strong>on</strong>g>g field moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicativeof <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the 500mbof <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> filteredpressure level of geopotential height sea surface height anomaliesL<strong>on</strong>gitude (degrees)proposed phasepropagati<strong>on</strong>proposed energypropagati<strong>on</strong>Time (days)Geopotential height ofof 5mb pressure levelFigure 2.2: Time-l<strong>on</strong>gitude (TL) plots from meteorology <str<strong>on</strong>g>and</str<strong>on</strong>g> oceanography.(a) Shows the first published time-l<strong>on</strong>gitude (TL) plot from Hovmöller (1949) wherec<strong>on</strong>tours of the geopotential height (the work required to raise a unit mass from sealevel to a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> height, divided by the global average of gravity at sea level) of the500mb pressure level averaged over latitudes 35 to 55 ◦ N were plotted for all l<strong>on</strong>gitudesdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g November 1945. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the moti<strong>on</strong> of crests <str<strong>on</strong>g>and</str<strong>on</strong>g> troughs (dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>es), theazimuthal phase speeds were estimated while follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the path of energy transmissi<strong>on</strong>(solid l<str<strong>on</strong>g>in</str<strong>on</strong>g>es) enabled the azimuthal group velocity to be estimated. (b) Shows a recentidentificati<strong>on</strong> by Chelt<strong>on</strong> et al. (2003) of oceanic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a time-l<strong>on</strong>gitude (TL)plot of sea surface height anomalies at latitude 5.5 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitudes 130 ◦ E to 80 ◦ W(Pacific bas<str<strong>on</strong>g>in</str<strong>on</strong>g>). The data were derived from 8.5 years (1992 to 2001) of observati<strong>on</strong>scollected by the TOPEX/POSEIDON satellite <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered to remove l<strong>on</strong>gterm trends.


20 Chapter 2 — Space-time analysisThe era of global satellite observati<strong>on</strong> has stimulated similar studies of planetary Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> oceanography. Examples of the use of TL plots to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer the presence of azimuthallytravell<str<strong>on</strong>g>in</str<strong>on</strong>g>g oceanic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of sea surface heightanomalies (Boulanger <str<strong>on</strong>g>and</str<strong>on</strong>g> Menkes, 1999; Chelt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlax, 1996; Chelt<strong>on</strong> et al., 2003;Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 1997); sea surface temperatures (Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 1997; Hill et al., 2000;Sutt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Allen, 1997); <str<strong>on</strong>g>and</str<strong>on</strong>g> even ocean colour (chlorophyll c<strong>on</strong>centrati<strong>on</strong>s can be enhancedor weakened by the Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g meridi<strong>on</strong>al displacements of wateracross chlorophyll gradients (Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 2001; Mete Uz et al., 2001; Quartly et al.,2003)). A TL plot of sea surface height (SSH) anomalies show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent azimuthal moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of oceanic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> from Chelt<strong>on</strong> etal.(2003) is reproduced <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.2b.It is important to emphasise that sequences of azimuthally travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g field anomalies<str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots are not a unique signature of wave propagati<strong>on</strong>. Any mechanism thatgenerates a series of spatially coherent highs <str<strong>on</strong>g>and</str<strong>on</strong>g> lows <str<strong>on</strong>g>in</str<strong>on</strong>g> a tracer field <str<strong>on</strong>g>and</str<strong>on</strong>g> is subsequentlyazimuthally advected <str<strong>on</strong>g>in</str<strong>on</strong>g> a temporally coherent way is an equally c<strong>on</strong>sistent explanati<strong>on</strong>of the observati<strong>on</strong>s. However, <str<strong>on</strong>g>in</str<strong>on</strong>g> circumstances where azimuthal flows are unlikely, awave explanati<strong>on</strong> is the simplest <str<strong>on</strong>g>and</str<strong>on</strong>g> most parsim<strong>on</strong>ious explanati<strong>on</strong>.2.2.3 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of frequency-wavenumber (FK) power spectraFrequency-wavenumber (FK) power spectra of TL plots are an <str<strong>on</strong>g>in</str<strong>on</strong>g>dispensable tool forquantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties of azimuthal field moti<strong>on</strong>s. In this secti<strong>on</strong>, the c<strong>on</strong>structi<strong>on</strong> ofFK power spectra, <str<strong>on</strong>g>their</str<strong>on</strong>g> previous use by meteorologists <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of suchspectra is discussed. An example of how FK power spectra can aid comparis<strong>on</strong> totheory is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.3. This example comes from the recent study by Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g>Kiladis (1999) of wave moti<strong>on</strong>s of the equatorial troposphere observed <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>g wavelengthradiati<strong>on</strong> measurements.Space-time spectral studies were pi<strong>on</strong>eered <str<strong>on</strong>g>in</str<strong>on</strong>g> the meteorological literature, motivated bya desire to test the predicti<strong>on</strong>s of analytical wave theory aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st high quality observati<strong>on</strong>s<str<strong>on</strong>g>and</str<strong>on</strong>g> results from numerical simulati<strong>on</strong>s. The techniques were developed <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of highresoluti<strong>on</strong> space-time data generated by early general circulati<strong>on</strong> models (Hayashi, 1974),<str<strong>on</strong>g>and</str<strong>on</strong>g> later <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of models <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g assimilated observati<strong>on</strong>al data (Hayashi, 1974;Hayashi <str<strong>on</strong>g>and</str<strong>on</strong>g> Golder, 1986; 1994). More recently, the availability of high quality satellitedata with global coverage has made it possible to perform such analyses directly <strong>on</strong>observati<strong>on</strong>al data (Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiladis, 1999). In all such studies the approach is toidentify prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK power spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> then to associate these peakswith particular mechanisms of azimuthal field evoluti<strong>on</strong>.Practically, c<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g FK power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g>volves comput<str<strong>on</strong>g>in</str<strong>on</strong>g>g the two dimensi<strong>on</strong>al,discrete Fourier transform of an array of time-l<strong>on</strong>gitude data taken from a scalar field


21 Chapter 2 — Space-time analysisFigure 2.3: Example of frequency-wavenumber (FK) power spectra.Observati<strong>on</strong>s from satellite l<strong>on</strong>g wavelength radiati<strong>on</strong> measurements are re-gridded <str<strong>on</strong>g>in</str<strong>on</strong>g>toTL plots, <str<strong>on</strong>g>and</str<strong>on</strong>g> separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to moti<strong>on</strong>s symmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-symmetric about the equator.A 2D FFT is used to transform to FK space <str<strong>on</strong>g>and</str<strong>on</strong>g> spectra are stacked from 15 ◦ N to 15 ◦ S,then divided by a smoothed background spectrum. C<strong>on</strong>tours of the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g power areplotted. Superimposed are the dispersi<strong>on</strong> curves for modes of equatorial <str<strong>on</strong>g>waves</str<strong>on</strong>g> with threethree layer depths of 12, 25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 metres. Equatorially axisymmetric power is plotted<str<strong>on</strong>g>in</str<strong>on</strong>g> (a), while symmetric power is plotted <str<strong>on</strong>g>in</str<strong>on</strong>g> (b). (from Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiladis, 1999)model evaluated at a particular latitude <strong>on</strong> a specified spherical surface. First, the <strong>on</strong>edimensi<strong>on</strong>al FFT (Fast Fourier Transform) is taken of columns of the data array whereeach column c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a time series of the field at a sampled l<strong>on</strong>gitude. The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g arrayis then subjected to a sec<strong>on</strong>d FFT, this time across the rows where each row c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s al<strong>on</strong>gitude secti<strong>on</strong> at a particular time. C<strong>on</strong>siderable care must be taken to keep track ofthe <str<strong>on</strong>g>in</str<strong>on</strong>g>dex transformati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the FFT (for more details see Press et al. (1992)).Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g computed from the field H(x, t) the two dimensi<strong>on</strong>al Fourier spectrum H(k, f),the magnitude of the Fourier coefficients def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the Fourier amplitude spectrum, whilethe magnitude squared (|H| 2 ) def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the Fourier power spectra.In order to prevent r<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects (where sharp edges at the start <str<strong>on</strong>g>and</str<strong>on</strong>g> end of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>altime series cannot be accurately represented by a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite number of Fourier coefficients sospectral power leaks <str<strong>on</strong>g>in</str<strong>on</strong>g>to coefficients that would otherwise be zero) both the start <str<strong>on</strong>g>and</str<strong>on</strong>g>end of the time series are tapered us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e functi<strong>on</strong>, typically over a length of 10sample po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. This degrades the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> at the start <str<strong>on</strong>g>and</str<strong>on</strong>g> end of the time series,but makes the spectral representati<strong>on</strong> more accurate 3 .3 In pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple this degradati<strong>on</strong> can be m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised by use of multi-taper methods (Percival <str<strong>on</strong>g>and</str<strong>on</strong>g> Walden,1993), though applicati<strong>on</strong> of such techniques to two dimensi<strong>on</strong>al data is n<strong>on</strong>-trivial (Sim<strong>on</strong>s et al., 2005).


22 Chapter 2 — Space-time analysisThe resoluti<strong>on</strong> limit of any discrete Fourier spectra arises because of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite length ofthe data series be<str<strong>on</strong>g>in</str<strong>on</strong>g>g analysed (see, for example, Priestley (1981)). In two dimensi<strong>on</strong>sthis means that frequency resoluti<strong>on</strong> is fundamentally limited to ∆f = 1/N t ∆t whereN t ∆t is the total timespan of the record while wavenumber resoluti<strong>on</strong> is limited to∆k = 1/N φ ∆φ where N φ ∆φ is the total l<strong>on</strong>gitude sampled. So for example, with a timeseries of length 400 years, frequency space is sampled every 0.0025 cycles per year <str<strong>on</strong>g>and</str<strong>on</strong>g>it is difficult to extract reliable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g signals that have power betweenfor 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.0025 cycles per year. Similarly for the full span of 360 degrees of l<strong>on</strong>gitude,sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wavenumber space will be 1/360 or 0.00277 degrees −1 . This corresp<strong>on</strong>ds toa resoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal wavenumber of ∆m = 360∆k=1) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (as expected) that<strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>teger angular wavenumbers is possible.Fortunately, the <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of spectra can be aided by artificially <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g thenumber of sample po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> the record by add<str<strong>on</strong>g>in</str<strong>on</strong>g>g zeros to the start <str<strong>on</strong>g>and</str<strong>on</strong>g> end of therecord. This method of zero-padd<str<strong>on</strong>g>in</str<strong>on</strong>g>g does not add any new <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>, but permits<str<strong>on</strong>g>in</str<strong>on</strong>g>terpolati<strong>on</strong> of an orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally coarsely discretized spectra greatly aid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>(Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 2004). In the present applicati<strong>on</strong>, the 2D gridded data are zero-padded <str<strong>on</strong>g>in</str<strong>on</strong>g>time but not <str<strong>on</strong>g>in</str<strong>on</strong>g> space. This is because the l<strong>on</strong>gitude representati<strong>on</strong> is periodic (start <str<strong>on</strong>g>and</str<strong>on</strong>g>end po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts represent the same po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> physical space)<str<strong>on</strong>g>and</str<strong>on</strong>g> add<str<strong>on</strong>g>in</str<strong>on</strong>g>g zeros simply destroysthis desirable periodicity.Interpretati<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g> practise carried out us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terpolatedc<strong>on</strong>tour plots of the zero-padded FK power spectra. These permit visual identificati<strong>on</strong>of prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent spectral peaks.The FK spectra presented <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis display both positive <str<strong>on</strong>g>and</str<strong>on</strong>g> negative wavenumberscorresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to signals travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g eastwards (+k) <str<strong>on</strong>g>and</str<strong>on</strong>g> westwards (-k) respectively. The2D FFT returns the spectral coefficients for both positive <str<strong>on</strong>g>and</str<strong>on</strong>g> negative wavenumbers (k)<str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies (f), but because the signal we are study<str<strong>on</strong>g>in</str<strong>on</strong>g>g is real there is a symmetrybetween signals at (k, f) <str<strong>on</strong>g>and</str<strong>on</strong>g> (−k,−f), so all the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> is present <str<strong>on</strong>g>in</str<strong>on</strong>g> the +fhalf-plane that is plotted.When <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g FK power spectra it is useful to recall the FK signatures produced byparticular patterns of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> real space. Isolated, azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features<str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots that move at an azimuthal speed c az will produce a series of peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> the FKpower spectra al<strong>on</strong>g the l<str<strong>on</strong>g>in</str<strong>on</strong>g>e f = c az k. This is because an isolated azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield feature <str<strong>on</strong>g>in</str<strong>on</strong>g> real space can <strong>on</strong>ly be c<strong>on</strong>structed from a sum over many wavenumbers<str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies. In c<strong>on</strong>trast, an idealised m<strong>on</strong>ochromatic wave c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a spatiallycoherent wave-like pattern of field anomalies travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthally at a c<strong>on</strong>stant speedhas a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle, well def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumber <str<strong>on</strong>g>and</str<strong>on</strong>g> will therefore appear as a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle,sharp peak at (f, k) <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK power spectra. Thus the presence of sharp peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> FKpower spectra is <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of wave patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> real space. These po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts are illustratedclearly <str<strong>on</strong>g>in</str<strong>on</strong>g> discussi<strong>on</strong>s of the analysis of the synthetic models WAVENB <str<strong>on</strong>g>and</str<strong>on</strong>g> SPOTNB(see §2.3).


23 Chapter 2 — Space-time analysisIn deal<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the FK power spectra of observed geomagnetic field evoluti<strong>on</strong> an unfortunatecomplicati<strong>on</strong> is n<strong>on</strong>-stati<strong>on</strong>arity. This arises both from the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the spatial<str<strong>on</strong>g>and</str<strong>on</strong>g> temporal resoluti<strong>on</strong> of geomagnetic field models (see, for example, Bloxham et al.(1989)) but also from the fundamentally unsteady nature of the geodynamo (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s,1999). This n<strong>on</strong>-stati<strong>on</strong>arity means that def<str<strong>on</strong>g>in</str<strong>on</strong>g>itive statements c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the space-timespectral c<strong>on</strong>tent of geomagnetic field evoluti<strong>on</strong> calculated from field models with f<str<strong>on</strong>g>in</str<strong>on</strong>g>itetime spans are rather limited. What can be reported is the average spectral c<strong>on</strong>tent overa specified <str<strong>on</strong>g>in</str<strong>on</strong>g>terval of time. If the period studied is short compared to the time scales offield evoluti<strong>on</strong>, then the spectral c<strong>on</strong>tent reported should not be c<strong>on</strong>sidered def<str<strong>on</strong>g>in</str<strong>on</strong>g>itive.N<strong>on</strong>etheless, the spectral signature of specific field evoluti<strong>on</strong> episodes provides <str<strong>on</strong>g>in</str<strong>on</strong>g>valuable<str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the generic mechanisms caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong>. This pragmaticphilosophy is adopted <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis when FK power spectra are <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted.2.2.4 C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of latitude-azimuthal speed (LAS) power plots,us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Rad<strong>on</strong> transform techniqueFK power spectra provide valuable quantitative <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> are useful <str<strong>on</strong>g>in</str<strong>on</strong>g> assist<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>the qualitative <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of field evoluti<strong>on</strong>, but <strong>on</strong>ly provide <str<strong>on</strong>g>in</str<strong>on</strong>g>direct estimates of theazimuthal speeds of field features. An alternative approach, based <strong>on</strong> the automati<strong>on</strong> ofthe visual procedure of estimat<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthal speeds by determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the gradient of a fieldfeature <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots, is described <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>. This method will be used extensively<str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the azimuthal speeds of field features as a functi<strong>on</strong> oflatitude.The visual estimati<strong>on</strong> of azimuthal speeds of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots is rather subjective<str<strong>on</strong>g>and</str<strong>on</strong>g> time c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g to apply to a large number of (not always clearly del<str<strong>on</strong>g>in</str<strong>on</strong>g>eated) fieldfeatures.A more objective technique, based <strong>on</strong> use of the Rad<strong>on</strong> transform (Deans,1988), has been developed to do this. Rad<strong>on</strong> transform methods are widely used <str<strong>on</strong>g>in</str<strong>on</strong>g>seismology (where it is referred to as a slant-stack or τ-p transform (Pawlowski, 1997)),<str<strong>on</strong>g>in</str<strong>on</strong>g> medical tomography (Shepp <str<strong>on</strong>g>and</str<strong>on</strong>g> Kruskal, 1978), <str<strong>on</strong>g>and</str<strong>on</strong>g> more relevantly <str<strong>on</strong>g>in</str<strong>on</strong>g> oceanography(Chelt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlax, 1996; Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al., 1997; Hill et al., 2000) where it has been usedto analyse the speeds of azimuthally travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g features <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots of sea surface height<str<strong>on</strong>g>and</str<strong>on</strong>g> temperature anomalies. These oceanographic applicati<strong>on</strong>s provided the stimulus todevelop of the present technique.The Rad<strong>on</strong> transform of a two dimensi<strong>on</strong>al image (def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by an angle q) is the projecti<strong>on</strong>of the image al<strong>on</strong>g the directi<strong>on</strong> normal to a l<str<strong>on</strong>g>in</str<strong>on</strong>g>e def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by q.Mathematically it isexpressed as (Deans, 1988)∫H R (q, z) = H(x, t)| x=z cos q−u s<str<strong>on</strong>g>in</str<strong>on</strong>g> qut=z s<str<strong>on</strong>g>in</str<strong>on</strong>g> q+u cos qdu (2.1)where H R (q, z) denotes the Rad<strong>on</strong> transform of a field H(x, t), (x, t) are the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al


24 Chapter 2 — Space-time analysisco-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate axes, <str<strong>on</strong>g>and</str<strong>on</strong>g> (z, u) are the new co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates axes after rotati<strong>on</strong> clockwise byan angle q. The acti<strong>on</strong> of the Rad<strong>on</strong> transform <strong>on</strong> a TL plot is shown schematically <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 2.4.−Figure 2.4: Rad<strong>on</strong> transform of a time-l<strong>on</strong>gitude plot.The Rad<strong>on</strong> transform H R (q, z) of an image H(x, t) takes the projecti<strong>on</strong> of the field <str<strong>on</strong>g>in</str<strong>on</strong>g>the directi<strong>on</strong> normal to the l<str<strong>on</strong>g>in</str<strong>on</strong>g>e def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by an angle q, with z measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g positi<strong>on</strong> al<strong>on</strong>gthe projected image (after Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i et al. (2004)).S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the TL plot c<strong>on</strong>sists of an array of discrete values, a discrete versi<strong>on</strong> of the Rad<strong>on</strong>transform which f<str<strong>on</strong>g>in</str<strong>on</strong>g>ds an array of transformed values H R (q n , z m ) is employed. Thisimplementati<strong>on</strong> of the Rad<strong>on</strong> transform has the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of its coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate axes <str<strong>on</strong>g>in</str<strong>on</strong>g> thecentre of the image be<str<strong>on</strong>g>in</str<strong>on</strong>g>g transformed <str<strong>on</strong>g>and</str<strong>on</strong>g> measures q clockwise from the x axis up to±90 ◦ . The discretisati<strong>on</strong> of q n is <str<strong>on</strong>g>in</str<strong>on</strong>g> steps of 2 degrees from -90 degrees to 90 degrees. Thediscretisati<strong>on</strong> of z m is more complex <str<strong>on</strong>g>and</str<strong>on</strong>g> is arranged such that when q n =0 it matchesthat <str<strong>on</strong>g>in</str<strong>on</strong>g> the x directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> when q n = ±90 ◦ it matches that <str<strong>on</strong>g>in</str<strong>on</strong>g> the t directi<strong>on</strong>. Figure2.5 shows an example of the applicati<strong>on</strong> of this discrete Rad<strong>on</strong> transform to a syntheticmodel of field evoluti<strong>on</strong> <strong>on</strong> a spherical surface c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a wave pattern travell<str<strong>on</strong>g>in</str<strong>on</strong>g>gwestward at 17 kmyr −1 at latitude 10 ◦ S. In Figure 2.5, (a) shows a snapshot of the signal<strong>on</strong> the spherical surface (100 years <str<strong>on</strong>g>in</str<strong>on</strong>g>to the model); (b) shows the example TL plot at10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) shows the result follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the applicati<strong>on</strong> of the discrete Rad<strong>on</strong> transform.Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g computed H R (q n , z m ) each value <str<strong>on</strong>g>in</str<strong>on</strong>g> the array H R (q n , z m ) is squared, <str<strong>on</strong>g>and</str<strong>on</strong>g> summedover all m (al<strong>on</strong>g the z directi<strong>on</strong>) to give a discrete measure of ∫ |H R | 2 dz. It is thennecessary to divide by a normalised correcti<strong>on</strong> factor C(q n ) that accounts for the factthat with a rectangular array, different numbers of grid po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts will be summed over fordifferent q m (for further details see the analytic soluti<strong>on</strong> for the Rad<strong>on</strong> transform for arectangle regi<strong>on</strong> of c<strong>on</strong>stant amplitude <strong>on</strong> p.63 of Deans (1988)). If all po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> a TLplot have the same c<strong>on</strong>stant value then tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the discrete Rad<strong>on</strong> transform, squar<str<strong>on</strong>g>in</str<strong>on</strong>g>g


25 Chapter 2 — Space-time analysis<str<strong>on</strong>g>and</str<strong>on</strong>g> summ<str<strong>on</strong>g>in</str<strong>on</strong>g>g over z m produces a distributi<strong>on</strong> C(q n ) with a peak at q n = 0 rather than aflat distributi<strong>on</strong> (see figure 2.5c). The directi<strong>on</strong>al bias can therefore be corrected if <strong>on</strong>edivides ∑ m |H R(q n , z m )| 2 by C(q n ) so thatS(q n ) = 1C(q n )∑|H R (q n , z m )| 2 . (2.2)mThe result<str<strong>on</strong>g>in</str<strong>on</strong>g>g distributi<strong>on</strong> S(q n ) is a directi<strong>on</strong>ally unbiased representati<strong>on</strong> of the powertravell<str<strong>on</strong>g>in</str<strong>on</strong>g>g per 2 degrees of angular gradient of the image (e.g. a TL plot of H) <str<strong>on</strong>g>and</str<strong>on</strong>g> willhave units of (nT) 2 if for example H is a field measured <str<strong>on</strong>g>in</str<strong>on</strong>g> nT. An example of S(q n ),for the simple synthetic signal shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.5a,b is displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.5e with thestr<strong>on</strong>g peak at q n ∼ −15 ◦ corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the angle the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant signal makes to the taxis (or that the l<str<strong>on</strong>g>in</str<strong>on</strong>g>e normal to the signal makes to the x axis, measured with a clockwisepositive c<strong>on</strong>venti<strong>on</strong> for q).S(q n ) from TL plots at each gridded colatitude θ i are comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>to a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle arraySL(q n , θ i ) (see figure 2.5f). The angles q n def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the directi<strong>on</strong>s associated with entries<str<strong>on</strong>g>in</str<strong>on</strong>g> SL are then c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>to azimuthal speeds (SL(q n , θ i ) → SL(v n , θ i )) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g therelati<strong>on</strong>v n = 2πc360 · s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ i · tan q n · ∆φ∆tkm yr −1 , (2.3)where c az is the azimuthal speed <str<strong>on</strong>g>in</str<strong>on</strong>g> kilometres per year, ∆φ, ∆t are the l<strong>on</strong>gitude <str<strong>on</strong>g>and</str<strong>on</strong>g>time grid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plot <str<strong>on</strong>g>in</str<strong>on</strong>g> degrees <str<strong>on</strong>g>and</str<strong>on</strong>g> years respectively, c is the radius ofthe spherical surface under study <str<strong>on</strong>g>in</str<strong>on</strong>g> kilometres (the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface here) <str<strong>on</strong>g>and</str<strong>on</strong>g> q n is theangle under c<strong>on</strong>siderati<strong>on</strong> that varies between -90 ◦ <str<strong>on</strong>g>and</str<strong>on</strong>g> +90 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> steps of 2 ◦ . Note theresoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> velocity space is primarily determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the values tan q n , so is best forsmall q n (slow mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g signals) <str<strong>on</strong>g>and</str<strong>on</strong>g> worst for q n close to ±90 ◦ (rapidly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g signals).The transformati<strong>on</strong> breaks down for very fast angular velocities because tan q n divergesclose to ±90 ◦ . To avoid this issue the array SL is cropped, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly angles up to ±70 ◦ arereta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. The effect of decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the temporal resoluti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g ∆t) is to decreasethe maximum velocity that can be reliably estimated.It is also found that the present method of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the azimuthal speed of field featuresbreaks down at high latitudes (at latitudes above ±70 ◦ ) where even small angularfield features spread over many l<strong>on</strong>gitude grid-po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>and</str<strong>on</strong>g> can be mistakenly <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretedas very fast mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features. This problem is avoided by restrict<str<strong>on</strong>g>in</str<strong>on</strong>g>g SL(v n , θ i ) tolatitudes −70 ◦ ≤ θ i ≤ 70 ◦ .F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the SL(v n , θ i ) array is re-gridded us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a cubic<str<strong>on</strong>g>in</str<strong>on</strong>g>terpolati<strong>on</strong> method to be equally spaced <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speed mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of speeds of field features possible by look<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the positi<strong>on</strong> of elements with largestamplitude <str<strong>on</strong>g>in</str<strong>on</strong>g> the array. Latitude-azimuthal speed (LAS) plots of SL(v n , θ i ) thus showthe distributi<strong>on</strong> of the power ( ∫ |H R | 2 dz) as a functi<strong>on</strong> of latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speed,measured <str<strong>on</strong>g>in</str<strong>on</strong>g> units of (nT) 2 if H is a field measured <str<strong>on</strong>g>in</str<strong>on</strong>g> nT (see figure 2.5g). It is importantfor <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> purposes to note that this method implicitly averages overall l<strong>on</strong>gitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> times with<str<strong>on</strong>g>in</str<strong>on</strong>g> a TL plot, but that the peaks could be due to features


26 Chapter 2 — Space-time analysis(a) Snapshot of synthetic signal(b) TL plot at 110 ◦ S1086420−2−4−6−8−10(c) Discrete Rad<strong>on</strong> transform of (b)3502Time / yrs30025020015010050−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east1.61.20.80.40−0.4−0.8−1.2−1.6−2(d) Bias distributi<strong>on</strong> with angle qz (positi<strong>on</strong> al<strong>on</strong>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>e at angle q)200150100500−80 −60 −40 −20 0 20 40 60 80Angle q <str<strong>on</strong>g>in</str<strong>on</strong>g> time−l<strong>on</strong>gitude plots (degrees)1.510.50−0.5−1−1.5(e) Bias corrected, summed power S31.141.122.5Normalised SLbias factor1.11.081.061.041.021Bias corrected S /10 16 (nT) 221.510.980.50.960.94−80 −60 −40 −20 0 20 40 60 80Angle q <str<strong>on</strong>g>in</str<strong>on</strong>g> time−l<strong>on</strong>gitude plot / degrees0−80 −60 −40 −20 0 20 40 60 80Angle q <str<strong>on</strong>g>in</str<strong>on</strong>g> time−l<strong>on</strong>gitude plots / degrees(f) Latitude-q power plot(g) LAS power plot−802.5−602.5−60−402−302Latitude−200−20−401.51Latitude (degrees)0−301.51−60−80−80 −60 −40 −20 0 20 40 60 80Angle q <str<strong>on</strong>g>in</str<strong>on</strong>g> time−l<strong>on</strong>gitude plots(degrees)0.5− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), speed positive (km/(yr) is eastwards−1 )0.5Figure 2.5: C<strong>on</strong>structi<strong>on</strong> of latitude-azimuthal speed (LAS) power plots.(a) is a snapshot (<str<strong>on</strong>g>in</str<strong>on</strong>g> Hammer-Aitoff equal area map projecti<strong>on</strong>) of a synthetic model Hof a wave at 10 ◦ S, (b) shows a TL plot at 10 ◦ S, (c) shows the result of tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the discreteRad<strong>on</strong> transform H R (q n , z m ) of (b). (d) is a plot of the bias of the power at differentq n due to the rectangular shape of the time-l<strong>on</strong>gitude plots (obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g theanalysis <strong>on</strong> a TL plot of c<strong>on</strong>stant value), (e) is the bias corrected power S(q n ) at eachq n from (b). (f) is a collecti<strong>on</strong> of plots similar to (e) for all latitudes, (g) is (f) cropped<str<strong>on</strong>g>and</str<strong>on</strong>g> re-gridded to display l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear velocity <strong>on</strong> a spherical surface.


27 Chapter 2 — Space-time analysisc<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to a particular subset of l<strong>on</strong>gitude or sub-<str<strong>on</strong>g>in</str<strong>on</strong>g>terval of time. It is <strong>on</strong>ly throughthe applicati<strong>on</strong> of this latitude-azimuthal speed power plot method to smaller mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gTL sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows (see §2.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> §2.7) that this issue can be properly addressed.2.3 Synthetic field models used for methodology test<str<strong>on</strong>g>in</str<strong>on</strong>g>gIn order to develop, test <str<strong>on</strong>g>and</str<strong>on</strong>g> illustrate the operati<strong>on</strong> of space-time spectral analysistechniques (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g TL plots, FK power spectra, LAS power plots, <str<strong>on</strong>g>and</str<strong>on</strong>g> various fieldprocess<str<strong>on</strong>g>in</str<strong>on</strong>g>g strategies) 4 synthetic datasets of scalar field evoluti<strong>on</strong> <strong>on</strong> a spherical surfacehave been c<strong>on</strong>structed. Two types of signal are studied: (i) a model of a wave moti<strong>on</strong>(WAVENB) with a spatially coherent pattern of field anomalies (of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g signs) thatevolves <str<strong>on</strong>g>in</str<strong>on</strong>g> a temporally coherent manner at c<strong>on</strong>stant azimuthal speed; (ii) a model of anisolated field anomaly (SPOTNB) that also moves <str<strong>on</strong>g>in</str<strong>on</strong>g> a temporally coherent manner at ac<strong>on</strong>stant azimuthal speed. The suffix NB <str<strong>on</strong>g>in</str<strong>on</strong>g> each case <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that no background field(noise) has been added to the signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. The properties of models SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g>WAVENB are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.6 where snapshots of the scalar field <strong>on</strong> the sphericalsurface, the TL plot at 10 ◦ S, the FK power spectra at 10 ◦ S, <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS power plotsare shown.SPOTNB was chosen to be an isolated field feature of size 24 degrees latitude, 32 degreesl<strong>on</strong>gitude, centred at latitude 10 degrees south <str<strong>on</strong>g>and</str<strong>on</strong>g> mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward at a speedof 15 km yr −1 . WAVENB was chosen to be a model of a azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave pattern,with wavenumber m=8, azimuthal speed of 15 km yr −1 westward, also of width 24degrees latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> centred at latitude 10 degrees south. The motivati<strong>on</strong> beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d thesechoices of synthetic field evoluti<strong>on</strong> models was to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether the perfectly knownspeeds, frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumbers could be correctly retrieved after space-time process<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<str<strong>on</strong>g>and</str<strong>on</strong>g> to see which <str<strong>on</strong>g>in</str<strong>on</strong>g>dicators might be used to dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between wave moti<strong>on</strong>s<str<strong>on</strong>g>and</str<strong>on</strong>g> drift of isolated field features. The properties of the field evoluti<strong>on</strong> models withoutany background field added (SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB) are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.6.Of course, the real signals that will be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters c<strong>on</strong>sist of backgroundnoise as well as the signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. To <str<strong>on</strong>g>in</str<strong>on</strong>g>clude this effect a model called BACK wasdeveloped of the background low frequency (l<strong>on</strong>g period) geomagnetic field variati<strong>on</strong>s 4 .These signals tend to obscure the decade to millennial time scale signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. Themethod adopted to derive this realistic background noise model was that proposed byWheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiladis (1999). It <str<strong>on</strong>g>in</str<strong>on</strong>g>volves tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field that will later be studied (B r atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from gufm1 over the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1590 A.D. to 1990 A.D.), <str<strong>on</strong>g>and</str<strong>on</strong>g> smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>git <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectral doma<str<strong>on</strong>g>in</str<strong>on</strong>g> to remove any periodic or quasi-periodic signals.Smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectral doma<str<strong>on</strong>g>in</str<strong>on</strong>g> as follows. B r from gufm1 was griddedat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> TL plots c<strong>on</strong>structed of the field evoluti<strong>on</strong> at each latitude. The4 referred to as a red noise <str<strong>on</strong>g>in</str<strong>on</strong>g> this c<strong>on</strong>text.


28 Chapter 2 — Space-time analysis(a) SPOTNB H after 320yrs(b) WAVENB H after 320yrs(c) TL plot of SPOTNB H at 10 ◦ S10.80.60.40.20−0.2−0.4−0.6−0.8−110.80.60.40.20−0.2−0.4−0.6−0.8−1(d) TL plot of WAVENB H at 10 ◦ S400140013500.83500.83000.63000.6Time (yrs)2502001501000.40.20−0.2−0.4−0.6Time (yrs)2502001501000.40.20−0.2−0.4−0.650−0.850−0.8−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e) FK plot of SPOTNB H at 10 ◦ S−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(f) FK plot of WAVENB H at 10 ◦ SFrequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot from SPOTNB H8.57.56.55.54.53.52.51.50.50Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E42.537.532.527.522.517.512.57.52.50(h) LAS plot from WAVENB H−603−6030−302.5−3025Latitude (degrees)021.5Latitude (degrees)02015−301−3010− 600.5− 605−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.6: Analysis of H from SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB field models.SPOTNB c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s an isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a m = 8azimuthally propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave. Plots (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show H at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after320years (these <str<strong>on</strong>g>and</str<strong>on</strong>g> all subsequent snapshots <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter are <str<strong>on</strong>g>in</str<strong>on</strong>g> Hammer-Aitoff mapprojecti<strong>on</strong>), (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots of the evoluti<strong>on</strong> of H at 10 ◦ S<str<strong>on</strong>g>and</str<strong>on</strong>g> (e), (f) the frequency-wavenumber (FK) power spectra |H| 2 at this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g>(h) show the latitude-azimuthal speed (LAS) power plots of ∫ |H R | 2 dz.


29 Chapter 2 — Space-time analysisTL plots were both tapered <str<strong>on</strong>g>and</str<strong>on</strong>g> zero-padded <str<strong>on</strong>g>in</str<strong>on</strong>g> time 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2D FFT’s were taken. Theresult<str<strong>on</strong>g>in</str<strong>on</strong>g>g FK amplitude spectra were then smoothed <str<strong>on</strong>g>in</str<strong>on</strong>g> both frequency (f) <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumber(k) directi<strong>on</strong>s by c<strong>on</strong>voluti<strong>on</strong> with a 1-2-1 filter 6 , before be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>verse transformedback <str<strong>on</strong>g>in</str<strong>on</strong>g> to the space-time doma<str<strong>on</strong>g>in</str<strong>on</strong>g>. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally the smoothed TL plots at each latitude werecollected to yield a complete synthetic space-time model of a background field evoluti<strong>on</strong>(BACK) from which all str<strong>on</strong>g periodic <str<strong>on</strong>g>and</str<strong>on</strong>g> quasi-periodic signals have been weakened.The properties of the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g background field (red noise) model is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.7as a plot of the field <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1910 (after 320 years), a TL plot <str<strong>on</strong>g>and</str<strong>on</strong>g> theassociated FK power spectra at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> a LAS power plot.(a) BACK after 320 yrs(b) TL plot of BACK at 10 ◦ S4005543210Time (yrs)35030025020015043210−1−1−2100−2−3−350−4−4−50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)−5(c) FK pot of BACK at 10 ◦ S(d) LAS power plot of BACK−6054.5Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Latitude (degrees)−30043.532.52−301.51− 60 0.5−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.7: Analysis of background field evoluti<strong>on</strong> model (BACK).The synthetic field model BACK is derived by smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g the spectrum of gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g>frequency-wavenumber space. (a) shows a snapshot of BACK at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after320years, (b) shows a TL plot of the field evoluti<strong>on</strong> at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) the associatedfrequency-wavenumber (FK) power spectra. (d) shows the latitude-azimuthal speed(LAS) power plot, of BACK.It is noteworthy that snapshots of B r from BACK at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface are dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the well known, stati<strong>on</strong>ary high latitude flux lobes described byBloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1985). Additi<strong>on</strong>ally the snapshots show low field amplitude withlittle variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere: the rapid changes found here <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 havebeen removed by smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the frequency-wavenumber amplitude spectrum. This5 See, for example, Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2004) for a discussi<strong>on</strong> of these pre-Fourier transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g signal process<str<strong>on</strong>g>in</str<strong>on</strong>g>gtechniques.6 This <str<strong>on</strong>g>in</str<strong>on</strong>g>volves each po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> the 2D Fourier amplitude spectra be<str<strong>on</strong>g>in</str<strong>on</strong>g>g replaced by (0.25 times its tw<strong>on</strong>earest neighbours (<str<strong>on</strong>g>in</str<strong>on</strong>g> either the F or K directi<strong>on</strong>) plus 0.5 times itself).


30 Chapter 2 — Space-time analysissuggests that geomagnetic secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere can be associatedwith quasi-periodic or periodic effects, that are removed by spectral smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Inc<strong>on</strong>trast, high amplitude field features are observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat almost stati<strong>on</strong>ary field features are more prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent there.BACK c<strong>on</strong>sists of the field <strong>on</strong>e wished to remove <str<strong>on</strong>g>in</str<strong>on</strong>g> order to study field evoluti<strong>on</strong> mechanismswith time scales of centuries <str<strong>on</strong>g>and</str<strong>on</strong>g> shorter <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1. This model is therefore addedto the idealised signals SPOTNB (generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a model called SPOT) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB (generat<str<strong>on</strong>g>in</str<strong>on</strong>g>ga model called WAVE) to produce synthetic models that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> both syntheticsignals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest as well as a realistic background field (simulated noise). SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g>WAVE will be used <str<strong>on</strong>g>in</str<strong>on</strong>g> order to test space-time field process<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodologies <str<strong>on</strong>g>in</str<strong>on</strong>g> therema<str<strong>on</strong>g>in</str<strong>on</strong>g>der of this chapter.The properties of the synthetic models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.8,show<str<strong>on</strong>g>in</str<strong>on</strong>g>g snapshots of H at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320 years, TL plots of field evoluti<strong>on</strong>at 10 ◦ S, FK power spectra, <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS power plots. Note that <str<strong>on</strong>g>in</str<strong>on</strong>g> these plots, neither ofthe field evoluti<strong>on</strong> signals from SPOTNB or WAVENB are very prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> snapshotsof H at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, though both (<str<strong>on</strong>g>and</str<strong>on</strong>g> especially WAVENB) can be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guishedby spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plots. The FK power spectrafor both plots are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by power at low frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumbers, though theWAVENB signal is also observed <str<strong>on</strong>g>in</str<strong>on</strong>g> WAVE. Neither signatures of WAVENB or SPOTNBare visible <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS plots that are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by moti<strong>on</strong>s almost stati<strong>on</strong>ary over the400 year timespan c<strong>on</strong>sidered.2.4 Removal of the time-averaged axisymmetric fieldIn the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der of this chapter the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques that are deployed <str<strong>on</strong>g>in</str<strong>on</strong>g> spacetimespectral analysis to isolate field evoluti<strong>on</strong> mechanisms of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest will be described,<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> effect dem<strong>on</strong>strated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the synthetic models SPOTNB, WAVENB, SPOT<str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE.The first process<str<strong>on</strong>g>in</str<strong>on</strong>g>g step towards isolat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> processes of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest is theremoval of the time-averaged axisymmetric field. This is equivalent to subtract<str<strong>on</strong>g>in</str<strong>on</strong>g>g thearithmetic mean of the field <str<strong>on</strong>g>in</str<strong>on</strong>g> each TL plot; this procedure is a necessary precursorto spectral analysis. The time-averaged axisymmetric field is unlikely to be directly<str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the evoluti<strong>on</strong> of the n<strong>on</strong>-axisymmetric field features that have dom<str<strong>on</strong>g>in</str<strong>on</strong>g>atedgeomagnetic secular variati<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface over the past four hundred years, socan be subtracted without sacrific<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> processesof <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.Formally, the calculati<strong>on</strong> of the time-averaged axisymmetric field at a particular latitude<str<strong>on</strong>g>in</str<strong>on</strong>g>volves tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the arithmetic mean of all the gridded values <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plot, so for ascalar field H(θ i , φ j , t k ) at a latitude θ i , where j refers to the l<strong>on</strong>gitude <str<strong>on</strong>g>in</str<strong>on</strong>g>dex runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g


31 Chapter 2 — Space-time analysis(a) SPOT H after 320yrs(b) WAVE H after 320yrs543210−1−2−3−4−5543210−1−2−3−4−5(c) TL plot of SPOT H at 10 ◦ S(d) TL plot of WAVE H at 10 ◦ S400540053504350430033003Time (yrs)250200150100210−1−2−3Time (yrs)250200150100210−1−2−350−450−4−50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e) FK plot of SPOT H at 10 ◦ S−50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(f) FK plot of WAVE H at 10 ◦ SFrequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot from SPOT H8.57.56.55.54.53.52.51.50.50Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50(h) LAS plot from WAVE H−6054.5−6054.5Latitude (degrees)−30043.532.52Latitude (degrees)−30043.532.52−301.5−301.511− 60 0.5− 60 0.5−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.8: Properties of field H from synthetic models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE.Both c<strong>on</strong>sist of a background field derived from gufm1, SPOT also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield feature <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a m = 8 z<strong>on</strong>ally propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave. (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show Hat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320years, (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots of the fieldevoluti<strong>on</strong> at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> (e), (f) the frequency-wavenumber(FK) amplitude power spectraat this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show the latitude-azimuthal speed (LAS) power plots.


32 Chapter 2 — Space-time analysisfrom 1 to N φ (l<strong>on</strong>gitude spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 360/N φ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> k refers to the time <str<strong>on</strong>g>in</str<strong>on</strong>g>dex runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g from1 to N t (time spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 360/N t ) then the time-averaged axisymmetric field ¯H is¯H(θ i ) = 1N∑ φN φ N t∑N tj=1 k=1H(θ i , φ j , t k ). (2.4)Examples of ¯H(θ i ) generated by apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g this procedure to the synthetic models SPOT<str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.9. ¯H can also be found if <strong>on</strong>ly the m = 0 terms <str<strong>on</strong>g>in</str<strong>on</strong>g> thespherical harm<strong>on</strong>ic representati<strong>on</strong> of the field are reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <str<strong>on</strong>g>and</str<strong>on</strong>g> time averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g carriedout. However, it is important to note that the m=0, time-averaged axisymmetric field<str<strong>on</strong>g>and</str<strong>on</strong>g> the time-averaged axial dipole field are not identical. An axial dipole model c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>ly the l=1, m=0 term from the spherical harm<strong>on</strong>ic representati<strong>on</strong> of the field, while anaxisymmetric field c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s all the m=0 spherical harm<strong>on</strong>ics. As seen <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.9 themajor difference between ¯H from SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (very similar because both c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>BACK) <str<strong>on</strong>g>and</str<strong>on</strong>g> an axial dipole field is the lower field strength near the north pole thatwould not be present for an axial dipole field.(a) Time-averaged axisymmetricaxisymmetric field ¯H from SPOT(b) Time-averaged axisymmetricaxisymmetric field ¯H from WAVE543210−1−2−3−4−5543210−1−2−3−4−5Figure 2.9: Time-averaged, axisymmetric fields ¯H from SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE.Averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field H azimuthally <str<strong>on</strong>g>and</str<strong>on</strong>g> over time to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> ¯H, <str<strong>on</strong>g>in</str<strong>on</strong>g> the synthetic modelsSPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE. These models are derived from the large scale, l<strong>on</strong>g period backgroundfield of gufm1 plus a isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature (SPOTNB) <str<strong>on</strong>g>and</str<strong>on</strong>g> a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave<str<strong>on</strong>g>in</str<strong>on</strong>g> the field (WAVENB) respectively.The properties of the field evoluti<strong>on</strong> after the removal of the time-averaged axisymmetricfield (H- ¯H) is displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.10. The field evoluti<strong>on</strong> patterns SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g>WAVENB are def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely more visible <str<strong>on</strong>g>in</str<strong>on</strong>g> snapshots <str<strong>on</strong>g>and</str<strong>on</strong>g> TL plots than H, <str<strong>on</strong>g>and</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>antm=0 peak has been elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from the FK power spectra. However, a sizablem=1 signal with a very l<strong>on</strong>g period (almost stati<strong>on</strong>ary for this 400 year record) is stillpresent as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.10e, f. Aga<str<strong>on</strong>g>in</str<strong>on</strong>g> the field evoluti<strong>on</strong> signal <str<strong>on</strong>g>in</str<strong>on</strong>g> WAVE is morereadily seen <str<strong>on</strong>g>in</str<strong>on</strong>g> all plots <str<strong>on</strong>g>and</str<strong>on</strong>g> is easily dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished from the moti<strong>on</strong> of an isolated fieldfeature <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plot. The LAS power plots are still dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by quasi-stati<strong>on</strong>aryfeatures at high latitudes. To make further progress <str<strong>on</strong>g>in</str<strong>on</strong>g> focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the field evoluti<strong>on</strong>signals SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with<str<strong>on</strong>g>in</str<strong>on</strong>g> SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE it is necessary tofilter <str<strong>on</strong>g>in</str<strong>on</strong>g> order to to remove more of the unwanted background field variati<strong>on</strong>.


33 Chapter 2 — Space-time analysis(a) SPOT (H- ¯H) after 320yrs(b) WAVE (H- ¯H) after 320yrs543210−1−2−3−4−5(c) TL plot of SPOT (H- ¯H) at 10 ◦ S(d) TL plot of WAVE (H- ¯H) at 10 ◦ S543210−1−2−3−4−5400540053504350430033003Time (yrs)250200150100210−1−2−3Time (yrs)250200150100210−1−2−350−450−40−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e) FK plot of SPOT (H- ¯H) at 10 ◦ SFrequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot from SPOT (H- ¯H)8.57.56.55.54.53.52.51.5−50.500−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(f) FK plot of WAVE (H- ¯H) at 10 ◦ SFrequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(h) LAS plot from WAVE (H- ¯H)−5−6021.8−6021.81.61.6−301.4−301.4Latitude (degrees)01.210.8Latitude (degrees)01.210.8−300.6−300.60.40.4− 60 0.2− 60 0.2−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.10: SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (H- ¯H) field models.Both c<strong>on</strong>sist of BACK, but SPOT also c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s an isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature <str<strong>on</strong>g>and</str<strong>on</strong>g>WAVE c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a m = 8 azimuthally propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave. The time-averaged axisymmetricfield has also been removed here. Plots (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceafter 320 years, plots (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> (e), (f)the frequency-wavenumber (FK) power spectra at this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show thelatitude-azimuthal speed (LAS) power plots.


34 Chapter 2 — Space-time analysis2.5 High-pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g2.5.1 Motivati<strong>on</strong> for high-pass temporal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g of field modelsIn geophysical signal process<str<strong>on</strong>g>in</str<strong>on</strong>g>g applicati<strong>on</strong>s, observati<strong>on</strong>s are rout<str<strong>on</strong>g>in</str<strong>on</strong>g>ely filtered to focus<strong>on</strong> particular comp<strong>on</strong>ent of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest (see, for example, Buttkus (2000)). This approach isoften feasible because the physical mechanism be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated operates with<str<strong>on</strong>g>in</str<strong>on</strong>g> a limitedfrequency b<str<strong>on</strong>g>and</str<strong>on</strong>g>. By decompos<str<strong>on</strong>g>in</str<strong>on</strong>g>g the signal <str<strong>on</strong>g>in</str<strong>on</strong>g>to its Fourier comp<strong>on</strong>ents, reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong>ly comp<strong>on</strong>ents with<str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency range of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>verse transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g backto the time doma<str<strong>on</strong>g>in</str<strong>on</strong>g>, the signal of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest can be isolated. In this spirit, geomagneticfield models can be filtered to isolate field evoluti<strong>on</strong> signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.The major problem <str<strong>on</strong>g>in</str<strong>on</strong>g> study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of geomagnetic field models at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <strong>on</strong> time scales of decades to millennia is not high frequency, high wavenumbernoise 7 but rather low frequency, l<strong>on</strong>g period signals that tend to overwhelm the morerapid field evoluti<strong>on</strong> patterns. In order to remove this red noise background signal ahigh pass filter <str<strong>on</strong>g>in</str<strong>on</strong>g> time can be applied. In the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der of this secti<strong>on</strong> the high passfilter<str<strong>on</strong>g>in</str<strong>on</strong>g>g used <str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters is described <str<strong>on</strong>g>and</str<strong>on</strong>g> tested <strong>on</strong> the synthetic models SPOT<str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE.2.5.2 Filter specificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> implementati<strong>on</strong>High-pass temporal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g was applied to the time series of field evoluti<strong>on</strong> (H −¯H)(t k ) associated with each gridded latitude-l<strong>on</strong>gitude (θ p , φ q ) locati<strong>on</strong> to yield the field˜H(θ p , φ q , t k ). Filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> the time doma<str<strong>on</strong>g>in</str<strong>on</strong>g> with a two pass procedureto guarantee that no time shifts were <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced (zero-phase filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g). The process<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>volved c<strong>on</strong>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the filter T H with the time series, time revers<str<strong>on</strong>g>in</str<strong>on</strong>g>g the result, c<strong>on</strong>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>gwith T H aga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> return<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time order<str<strong>on</strong>g>in</str<strong>on</strong>g>g to that of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al signal. In thefrequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g> this is equivalent to multiply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Fourier representati<strong>on</strong> of the timeseries by |F H | 2 , where F H is the Fourier representati<strong>on</strong> of the filter T H . The amplituderesp<strong>on</strong>se of |F H | 2 is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.11.The filter employed is a third order Butterworth filter. A discussi<strong>on</strong> of why this is areas<strong>on</strong>able choice can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.5.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> §2.5.4.frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g> for this filter is|F H (f)| = 1 −The amplitude resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the1[ ( ) 6] 1/2, (2.5)1 + ff cwhere f c = 1 t cwhere t c is the period of the filter cut-off. In a Butterworth filter of order( )n, ff cappears to the power 2n, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <str<strong>on</strong>g>in</str<strong>on</strong>g> a 3rd order filter appears to the power 6.7 The field models have been c<strong>on</strong>structed from observati<strong>on</strong>s us<str<strong>on</strong>g>in</str<strong>on</strong>g>g regularisati<strong>on</strong> c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts as described<str<strong>on</strong>g>in</str<strong>on</strong>g> appendix A, which smooths out high frequency, high wavenumber signals.


35 Chapter 2 — Space-time analysis10.9Filter frequency amplitude resp<strong>on</strong>se |F H| 20.80.70.60.50.40.30.20.100.0025 0.005 0.0075 0.01Frequency f (cycles per year)Figure 2.11: Amplitude resp<strong>on</strong>se of filter |F H | 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g>.Amplitude resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g> of a 3rd order, Butterworth, high pass filterwith f c =0.0025 (t c =400yrs). This an example of the form of the filter used to removeunwanted l<strong>on</strong>g period signals dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>structi<strong>on</strong> of ˜H.2.5.3 Filter warm-up effects <str<strong>on</strong>g>and</str<strong>on</strong>g> choice of filter order.In figure 2.12 the results of TL plots of ˜H from the synthetic models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE,obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different choices of filter order are presented. Only m<str<strong>on</strong>g>in</str<strong>on</strong>g>or differences areobserved <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of ˜H, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the precise choice of filter order is not crucial<str<strong>on</strong>g>in</str<strong>on</strong>g> order to correctly capture the field evoluti<strong>on</strong> signal of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.(a) 2nd order (b) 3rd order (c) 4th order3501350135013000.80.63000.80.63000.80.62500.42500.42500.4Time / yrs2000.20−0.2Time / yrs2000.20−0.2Time / yrs2000.20−0.2150−0.4150−0.4150−0.4100−0.6100−0.6100−0.6−0.8−0.8−0.850−150−150−1−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east3501350135013000.80.63000.80.63000.80.62500.42500.42500.4Time / yrs2000.20−0.2Time / yrs2000.20−0.2Time / yrs2000.20−0.2150−0.4150−0.4150−0.4100−0.6100−0.6100−0.6−0.8−0.8−0.850−150−150−1−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees eastFigure 2.12: Trials with 2nd, 3rd <str<strong>on</strong>g>and</str<strong>on</strong>g> 4th order Butterworth filters.To test if the order of the filter effects the form of ˜H SPOT (top row) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (bottomrow) were high pass filtered us<str<strong>on</strong>g>in</str<strong>on</strong>g>g 2nd order (column (a)), 3rd order (column (b)) <str<strong>on</strong>g>and</str<strong>on</strong>g>4th order (column (c)) Butterworth filters, all with t c = 1 f c= 400 yrs.The filter order determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es how sharp the cut-off of the filter is <str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g>(high order means a sharp cut-off). It also determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the length of the filter <str<strong>on</strong>g>in</str<strong>on</strong>g> the timedoma<str<strong>on</strong>g>in</str<strong>on</strong>g> (high order means l<strong>on</strong>g filter) which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es the time span of the


36 Chapter 2 — Space-time analysisfilter warm-up <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 8 . A 3rd order filter was chosen because this is short <str<strong>on</strong>g>in</str<strong>on</strong>g> the timedoma<str<strong>on</strong>g>in</str<strong>on</strong>g> (so warm-up problems <strong>on</strong>ly affect short regi<strong>on</strong>s at the start <str<strong>on</strong>g>and</str<strong>on</strong>g> end of the timeseries) whilst also hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g a fairly sharp threshold <str<strong>on</strong>g>in</str<strong>on</strong>g> the frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g>.Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 3rd order Butterworth filter with t c = 400 years to a record of length 400years sampled every 2 years, it was found to be necessary to discard the first <str<strong>on</strong>g>and</str<strong>on</strong>g> last40 years of the record. An important c<strong>on</strong>sequence of this is that the filtered time seriesobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the historical geomagnetic field model gufm1 studied <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3 are <strong>on</strong>lyof length 320 years.2.5.4 Influence of filter type <strong>on</strong> processed fieldAnother important issue is whether the choice of a Butterworth filter, rather than someother type of filter significantly affects the form of ˜H. To test this, high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>gwas carried out with 3rd order Elliptic, Chebyshev <str<strong>on</strong>g>and</str<strong>on</strong>g> Butterworth filters 9 all withcut-off periods of 400 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g TL plots compared <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.13. Theimportant characteristics (especially the positi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> moti<strong>on</strong>s of field features) of ˜Hwere found to be <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of the particular type of filter used. A Butterworth filterwas therefore implemented for all subsequent analysis because of its simplicity.(a) Butterworth filter (b) Chebyshev filter (c) Elliptic filter3501350135013000.80.63000.80.63000.80.62500.42500.42500.4Time / yrs2000.20−0.2Time / yrs2000.20−0.2Time / yrs2000.20−0.2150−0.4150−0.4150−0.4100−0.6100−0.6100−0.6−0.8−0.8−0.850−150−150−1−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east3501350135013000.80.63000.80.63000.80.62500.42500.42500.4Time / yrs2000.20−0.2Time / yrs2000.20−0.2Time / yrs2000.20−0.2150−0.4150−0.4150−0.4100−0.6100−0.6100−0.6−0.8−0.8−0.850−150−150−1−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees eastFigure 2.13: Trials with Butterworth, Chebyshev <str<strong>on</strong>g>and</str<strong>on</strong>g> Elliptic types of filtersHigh pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g SPOT (top row) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (bottom row) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3rd order Butterworth(1st column), Chebyshev (2nd column ) <str<strong>on</strong>g>and</str<strong>on</strong>g> Elliptic (3rd column) filters.8 Filter warm-up occurs due to c<strong>on</strong>voluti<strong>on</strong> of the filter with the time-series <str<strong>on</strong>g>and</str<strong>on</strong>g> results <str<strong>on</strong>g>in</str<strong>on</strong>g> regi<strong>on</strong>s atthe start <str<strong>on</strong>g>and</str<strong>on</strong>g> end of the filtered series be<str<strong>on</strong>g>in</str<strong>on</strong>g>g anomalously large <str<strong>on</strong>g>and</str<strong>on</strong>g> oscillatory <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude. By keep<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe filter length <str<strong>on</strong>g>in</str<strong>on</strong>g> the time doma<str<strong>on</strong>g>in</str<strong>on</strong>g> short the warm-up <str<strong>on</strong>g>in</str<strong>on</strong>g>terval is m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised.9 For a discussi<strong>on</strong> of the relative merits of these filters, see for example Smith (1997).


37 Chapter 2 — Space-time analysis2.5.5 Criteria for choice of filter cut-off period t cThe choice of filter cut-off frequency f c = 1 t cis a key step <str<strong>on</strong>g>in</str<strong>on</strong>g> the filter specificati<strong>on</strong>. Thechoice of filter cut-off can be justified <strong>on</strong> the basis of try<str<strong>on</strong>g>in</str<strong>on</strong>g>g, as best as possible, to satisfythe follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g three criteria:(i) Isolati<strong>on</strong> of the signature of a physical mechanism — historical geomagnetic fieldevoluti<strong>on</strong> occurs <strong>on</strong> decade to millennial time scales so changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> muchl<strong>on</strong>ger time scales should be removed by filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.(ii) Length of the time series — properties of processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> timescales muchl<strong>on</strong>ger than the length of the time series are unlikely to be robust. C<strong>on</strong>sequentlyattenti<strong>on</strong> should be focused <strong>on</strong> processes with timescales shorter than the lengthof the time series, <str<strong>on</strong>g>and</str<strong>on</strong>g> filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g used to remove signals with l<strong>on</strong>ger periods.(iii) Frequency c<strong>on</strong>tent of the model — the cut-off frequency must be such that thereis significant signal left to be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted.The specific choice of high pass cut-off frequency used to filter each field model <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated,<str<strong>on</strong>g>and</str<strong>on</strong>g> the amount of variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al signal accounted for <str<strong>on</strong>g>in</str<strong>on</strong>g> the processedsignal varies between models. This will be discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail prior to the presentati<strong>on</strong>of results <str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters.2.5.6 Measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g field variati<strong>on</strong>s captured as a functi<strong>on</strong> of t cIn this secti<strong>on</strong>, a measure of the severity of the high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the amountof variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al signal captured (P v , see def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6)) isdeveloped. Informati<strong>on</strong> <strong>on</strong> how this quantity varies with t c is needed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to choosean optimal t c . How P v varies with t c will be studied for each of the fields <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g>this thesis.The percentage of field variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al signal H captured by the processedsignal ˜H, averaged over a spherical surface, may be measured by the quantity P v def<str<strong>on</strong>g>in</str<strong>on</strong>g>edas∑i,jP v =R v(θ i , φ j )∑i,j G ∗ 100%, (2.6)v(θ i , φ j )where R v (θ i , φ j ) = ∑ ∣ ˜H(θ i , φ j , t k ) − ̂˜H(θi , φ j )∣ , (2.7)kG v (θ i , φ j ) = ∑ ∣∣H(θ i , φ j , t k ) − Ĥ(θ i, φ j ) ∣ , (2.8)k̂˜H = 1 ∑˜H(θ i , φ j , t k ), (2.9)N tk<str<strong>on</strong>g>and</str<strong>on</strong>g> Ĥ = 1 ∑H(θ i , φ j , t k ), (2.10)N tk


38 Chapter 2 — Space-time analysiswhere the <str<strong>on</strong>g>in</str<strong>on</strong>g>dex i runs over all sampled latitudes θ i , j runs over all sampled l<strong>on</strong>gitudesφ j <str<strong>on</strong>g>and</str<strong>on</strong>g> k over all sampled times t k , exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g times effected by filter warm-up periods(see discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.5.3). Ĥ(θ i , φ j ) <str<strong>on</strong>g>and</str<strong>on</strong>g> ̂˜H(θi , φ j ) are respectively the time-averaged fieldvalues of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field H <str<strong>on</strong>g>and</str<strong>on</strong>g> the processed field ˜H at each latitude-l<strong>on</strong>gitude locati<strong>on</strong><strong>on</strong> the spherical surface. R v (θ i , φ j ) at each locati<strong>on</strong> is the sum of the absolute deviati<strong>on</strong>sof ˜H from ̂˜H, <str<strong>on</strong>g>and</str<strong>on</strong>g> Gv (θ i , φ j ) at each locati<strong>on</strong> is the summed absolute deviati<strong>on</strong> of Hfrom Ĥ. P v represents the percentage ratio of the sum of R v over all locati<strong>on</strong>s to thesum of G v over all locati<strong>on</strong>s. In the limit when t c → ∞ P v be equal to 100 % because˜H captures all the variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> H. In the opposite limit when t c → 0 P v tends to zerobecause ˜H captures very little of the variati<strong>on</strong> present <str<strong>on</strong>g>in</str<strong>on</strong>g> H. It was found that look<str<strong>on</strong>g>in</str<strong>on</strong>g>gat P v as a functi<strong>on</strong> of filter-cut off t c was an effective way to study the amount of thevariati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al model captured by the processed model. The effect <strong>on</strong> P v ofvary<str<strong>on</strong>g>in</str<strong>on</strong>g>g t c for the synthetic models SPOTNB, SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB, WAVE is shown <str<strong>on</strong>g>in</str<strong>on</strong>g>detail <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.14.(a) Field variati<strong>on</strong> captured as afuncti<strong>on</strong> of cut-off period for WAVE(b) Field variati<strong>on</strong> captured as afuncti<strong>on</strong> of cut-off period for SPOT100100%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)80604020WAVENB, with no backgroundWAVE, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1 background%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)80604020SPOTNB, with no backgroundSPOT, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1 background010 100 1000 10000Cut off time for high pass filter (years)010 100 1000 10000Cut off time for high pass filter (years)Figure 2.14: Field variati<strong>on</strong>s captured as a functi<strong>on</strong> of filter cut-off period.The percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> captured by the processed field (P v ), asdef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6), is plotted as a functi<strong>on</strong> of the high pass filter cut-off period(t c ) for the synthetic field models WAVENB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> for SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g>SPOT <str<strong>on</strong>g>in</str<strong>on</strong>g> (b).In figure 2.14a c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the model WAVENB, when t c is less than 200 years, P v isclose to zero. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, when t c is more than 200 years P v is close to 100 %.The sharp transiti<strong>on</strong> at around 200 years is because this is the period of the WAVENBsignal. Therefore, <str<strong>on</strong>g>in</str<strong>on</strong>g> order to capture the field evoluti<strong>on</strong> pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> this example, a filtercut-off period must be chosen to be greater than 200 years.When BACK is added to WAVENB to give WAVE other l<strong>on</strong>ger period variati<strong>on</strong>s arealso present, but over 40% of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al variati<strong>on</strong> can n<strong>on</strong>etheless captured by filter<str<strong>on</strong>g>in</str<strong>on</strong>g>gwith t c =400 years. Study<str<strong>on</strong>g>in</str<strong>on</strong>g>g ˜H with t c =400 years therefore captures a large proporti<strong>on</strong>


39 Chapter 2 — Space-time analysisof the field change seen <str<strong>on</strong>g>in</str<strong>on</strong>g> H, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> mechanism of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> SPOT <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.14b the situati<strong>on</strong> is similar except that evenwith no noise added SPOTNB does not display a sharp transiti<strong>on</strong>, because it arises froma superpositi<strong>on</strong> of power over a range of frequencies. The additi<strong>on</strong> of BACK further<str<strong>on</strong>g>in</str<strong>on</strong>g>creases the amount of power at l<strong>on</strong>g periods. A filter cut-off of 400 years (suggestedby the record length criteria) turns out to be sufficient to retrieve the SPOTNB moti<strong>on</strong>field evoluti<strong>on</strong> (especially its moti<strong>on</strong>) adequately.2.5.7 Discussi<strong>on</strong> of properties of form of processed field for a range of filter cut-offperiodsIf results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> the basis of analysis of ˜H are to be trusted, then its form shouldbe robust to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the choice of the filter cut-off threshold t c . To illustrate thatthis is <str<strong>on</strong>g>in</str<strong>on</strong>g>deed the case, snapshots, TL plots, FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS power plots of˜H are displayed for the synthetic models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE with cut-off periods of 200years <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.15, 400 years <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 years <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.17. The successof the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis techniques may be judged by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the noise-freefield evoluti<strong>on</strong> patterns of SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.6 to the resultsshown figures 2.15, 2.16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.17.The field evoluti<strong>on</strong> patterns of both SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> the WAVENB can clearly be seen <str<strong>on</strong>g>in</str<strong>on</strong>g>the TL plots of ˜H from the SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE models at 10 ◦ S regardless of whether a200, 400 or 600 year cut-off period is chosen, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fidence that the field evoluti<strong>on</strong>patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜H are <str<strong>on</strong>g>in</str<strong>on</strong>g>deed robust to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the cut-off periods. The FK power spectra<str<strong>on</strong>g>in</str<strong>on</strong>g> all cases picked out the correct frequency (f=0.005cpy) <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumber (m=8) of theWAVENB signal. Furthermore the LAS power plot technique correctly identifies bothSPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB field evoluti<strong>on</strong> patterns as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g speed 15 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g>as be<str<strong>on</strong>g>in</str<strong>on</strong>g>glocated at 10 ◦ S.Unfortunately, the FK power spectra of ˜H from the pattern of field evoluti<strong>on</strong> SPOTNBare difficult to retrieve accurately because they c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> power al<strong>on</strong>g a l<str<strong>on</strong>g>in</str<strong>on</strong>g>e of c<strong>on</strong>stantf/k, <str<strong>on</strong>g>and</str<strong>on</strong>g> filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has removes power close to the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> that lies <strong>on</strong> this l<str<strong>on</strong>g>in</str<strong>on</strong>g>e. N<strong>on</strong>etheless,power is certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly spread over a wider range of frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumbers comparedwith models c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the WAVENB field evoluti<strong>on</strong> pattern.Choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g a cut-off period lower than suggested by criteria (i) of §2.5.5 (i.e. a 200 yearcut-off that is too close to the time scale of the field evoluti<strong>on</strong> mechanism WAVE <str<strong>on</strong>g>and</str<strong>on</strong>g>much shorter than the record length), it is observed that <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> snapshots ofSPOT, much of the power required to reproduce SPOTNB has been lost. C<strong>on</strong>sequentlythe isolated, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature is no l<strong>on</strong>ger seen as a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle, high amplitude, fieldfeature. Instead it is flanked by spurious anomalies. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, when the filtercut-off period is 600 years (l<strong>on</strong>ger than would be preferred <strong>on</strong> the basis of criteria (ii))


40 Chapter 2 — Space-time analysis(a) SPOT ˜H, t c =200yrs(b) WAVE ˜H, t c =200yrs543210−1−2−3−4−5543210−1−2−3−4−5(c) TL plot of SPOT ˜H, t c =200yrs (d) TL plot of WAVE ˜H, t c =200yrs35053505300433004325022502Time / yrs20015010−1−2Time / yrs20015010−1−2100−3−4100−3−450−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(e) FK plot of SPOT ˜H, t c =200yrs50−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f) FK plot of WAVE ˜H, t c =200yrsFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot of SPOT ˜H, t c =200 yrs17151311975310Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(h) LAS plot of WAVE ˜H, t c =200 yrs8.57.56.55.54.53.52.51.50.50−603.5−60736−302.5−305Latitude (degrees)021.5Latitude (degrees)043−301−302− 600.5− 601−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.15: SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c =200yrs.Synthetic field models SPOT (left column) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (right column) with the timeaveragedaxisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with t c = 200yrs. In (a) <str<strong>on</strong>g>and</str<strong>on</strong>g>(b) fields <strong>on</strong> the spherical surface after 320years are plotted. (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show timel<strong>on</strong>gitude(TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber (FK) powerspectra at this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show latitude-azimuthal speed (LAS) power plots.


41 Chapter 2 — Space-time analysis(a) SPOT ˜H, t c =400yrs(b) WAVE ˜H, t c =400yrs1086420−2−4−6−8−10(c) TL plot of SPOT ˜H, t c =400yrs(d) TL plot of WAVE ˜H, t c =400yrs1086420−2−4−6−8−103501035010300863008625042504Time / yrs20015020−2−4Time / yrs20015020−2−4100−6−8100−6−850−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(e) FK plot of SPOT ˜H, t c =400yrs50−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f) FK plot of WAVE ˜H, t c =400yrsFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot of SPOT ˜H, t c =400 yrs34302622181410620Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(h) LAS plot of WAVE ˜H, t c =400 yrs171513119753102−601.8−60181.616−301.4−3014Latitude (degrees)01.210.8Latitude (degrees)012108−300.6−3060.44− 60 0.2− 60 2−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.16: SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c =400yrs.Synthetic field models SPOT (left column) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (right column) with the timeaveragedaxisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with t c = 400yrs. In (a)<str<strong>on</strong>g>and</str<strong>on</strong>g> (b) fields <strong>on</strong> the spherical surface after 320years are plotted, (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show timel<strong>on</strong>gitude(TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>(e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber (FK) powerspectra at this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show latitude-azimuthal speed (LAS) power plots.


42 Chapter 2 — Space-time analysis(a) SPOT ˜H, t c =600yrs(b) WAVE ˜H, t c =600yrs1086420−2−4−6−8−10(c) TL plot of SPOT ˜H, t c =600yrs(d) TL plot of WAVE ˜H, t c =600yrs1086420−2−4−6−8−103501035010300863008625042504Time / yrs20015020−2−4Time / yrs20015020−2−4100−6−8100−6−850−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(e) FK plot of SPOT ˜H, t c =600yrs50−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f) FK plot of WAVE ˜H, t c =600yrsFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot of SPOT ˜H, t c =600 yrs34302622181410620Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(h) LAS plot of WAVE ˜H, t c =600 yrs17151311975310−602.5−601110Latitude (degrees)−300−3021.51Latitude (degrees)−300−309876543− 600.5−60 12−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Azimuthal speed −1Azimuthal speed (km yr ), positive (km(yr) −1 is ) eastwardsFigure 2.17: SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE ˜H, high pass filtered with t c =600yrs.Synthetic field models SPOT (left column) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE (right column) with the timeaveragedaxisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with t c = 600yrs. In (a)<str<strong>on</strong>g>and</str<strong>on</strong>g> (b) fields <strong>on</strong> the spherical surface after 320years are plotted, (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show timel<strong>on</strong>gitude(TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber (FK) powerspectra at this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show latitude-azimuthal speed (LAS) power plots.


43 Chapter 2 — Space-time analysisit is more difficult to pick out the signature of SPOTNB <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS power plots.Clearer results are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed when observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g whether WAVENB patterns are retrieved <str<strong>on</strong>g>in</str<strong>on</strong>g>˜H from WAVE for the 200, 400 <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 year cut-offs. A very clear signal of a spatially<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent series of propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g highs <str<strong>on</strong>g>and</str<strong>on</strong>g> lows are seen <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots whilelocalised peaks are found <str<strong>on</strong>g>in</str<strong>on</strong>g> both the FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS power plots. Itcan be c<strong>on</strong>cluded that the choice of t c =400 years seems, <str<strong>on</strong>g>in</str<strong>on</strong>g> these examples where thesignal of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest has a time scale of 200 years, to be a suitable choice for the filter cut-offthreshold.2.6 Geographical distributi<strong>on</strong> of azimuthal speeds of field featuresThe variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speeds of field features with geographical positi<strong>on</strong> is anobservable that allows theoretical ideas <strong>on</strong> field change mechanisms to be tested.the c<strong>on</strong>text of oceanography, plott<str<strong>on</strong>g>in</str<strong>on</strong>g>g the variati<strong>on</strong> of azimuthal speed of field featureswith latitude allowed a test of the predicti<strong>on</strong> that l<strong>on</strong>g Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> travel with a speedthat depends <strong>on</strong> the cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e of latitude (so field features travel fastest near the equator).This dependence has been observed (Chelt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlax, 1996), <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d-order trendsfound <str<strong>on</strong>g>in</str<strong>on</strong>g> the observati<strong>on</strong>s have stimulated improved theoretical models of Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>(Killworth et al., 1997).Azimuthal speeds at a particular latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g theRad<strong>on</strong> transform method of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthal speeds (see §2.2.4), but apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g itto l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows of TL plots centred <strong>on</strong> the particular l<strong>on</strong>gitude of<str<strong>on</strong>g>in</str<strong>on</strong>g>terest. Sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows were chosen to be of width 80 ◦ l<strong>on</strong>gitude 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> the centre of thel<strong>on</strong>gitude w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows was moved <str<strong>on</strong>g>in</str<strong>on</strong>g> steps of 20 ◦ . From each TL sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow, the azimuthalspeed corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the q that maximises S(q n ) (see equati<strong>on</strong> (2.2)) is assigned tobe the speed for that latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> the central l<strong>on</strong>gitude of the sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow. To ensurethat <strong>on</strong>ly clear signatures of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldfeatures are recorded, a speed is <strong>on</strong>ly assigned if the maximum of |S(q n )| > 4 P n S(qn)N q.The pre-factor 4 is a free parameter that is chosen as a compromise between the desireto <str<strong>on</strong>g>in</str<strong>on</strong>g>clude all possible signals <str<strong>on</strong>g>and</str<strong>on</strong>g> the desire to exclude unwanted, n<strong>on</strong>-coherent fieldvariati<strong>on</strong>s.The methodology was aga<str<strong>on</strong>g>in</str<strong>on</strong>g> tested us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the synthetic models SPOTNB, WAVENB,SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE. The results from these trials are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.18.InBoth themagnitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s of the azimuthal speeds <str<strong>on</strong>g>and</str<strong>on</strong>g> the latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude of thesynthetic field moti<strong>on</strong>s were correctly identified <str<strong>on</strong>g>in</str<strong>on</strong>g> all the models. These tests permitc<strong>on</strong>fidence that this method will be able to successfully retrieve any geographical trends<str<strong>on</strong>g>in</str<strong>on</strong>g> the speeds of of azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features.10 large enough so that propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g features with m > 4 can be analysed.


44 Chapter 2 — Space-time analysis(a) Geographical distributi<strong>on</strong> ofazimuthal speeds <str<strong>on</strong>g>in</str<strong>on</strong>g> SPOTNB ˜H(b) Geographical distributi<strong>on</strong> ofazimuthal speeds <str<strong>on</strong>g>in</str<strong>on</strong>g> WAVENB ˜H0030−1230−12−14−146060Co−latitude (deg)90−16−18Co−latitude (deg)90−16−18120120−20−20150−22150−22180−180 −135 −90 −45 0 45 90 135 180v / km(yr) v(km/yr)L<strong>on</strong>gitude (degrees east)(c) Geographical distributi<strong>on</strong> ofvelocity variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> SPOT ˜H180−180 −135 −90 −45 0 45 90 135 180v / km(yr) v(km/yr)L<strong>on</strong>gitude (degrees east)(d) Geographical distributi<strong>on</strong> ofvelocity variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> WAVE ˜H0030−1230−12−14−146060Co−latitude (deg)90−16−18Co−latitude (deg)90−16−18120120−20−20150−22150−22180−180 −135 −90 −45 0 45 90 135 180v / km(yr) v(km/yr)L<strong>on</strong>gitude (degrees east)180−180 −135 −90 −45 0 45 90 135 180v / km(yr) v(km/yr)L<strong>on</strong>gitude (degrees east)Figure 2.18: Geographical distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> speeds of field features.Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of field features with geographical positi<strong>on</strong>, calculatedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform technique <str<strong>on</strong>g>and</str<strong>on</strong>g> a slid<str<strong>on</strong>g>in</str<strong>on</strong>g>g w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude.2.7 Temporal variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude-azimuthal speed (LAS) power plotsThe <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> field evoluti<strong>on</strong> mechanisms provided by LAS power plots is a temporalaverage over the entire span of the TL plot analysed. It is of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to seewhether features identified <str<strong>on</strong>g>in</str<strong>on</strong>g> LAS plots are stati<strong>on</strong>ary or vary <str<strong>on</strong>g>in</str<strong>on</strong>g> strength <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>with time. To do this, sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows <str<strong>on</strong>g>in</str<strong>on</strong>g> time (rather than the sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows <str<strong>on</strong>g>in</str<strong>on</strong>g> space thatwere discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>) can analysed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform methodsdescribed <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.2.4.The temporal sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows were chosen to be 1/5 of the full timespan (i.e. 80 yearsfor a 400 year record) <str<strong>on</strong>g>and</str<strong>on</strong>g> were moved steps of size 1/20 of the timespan (i.e. 20years for a 400 year record). A series of LAS power plots (<strong>on</strong>e for each temporal subw<str<strong>on</strong>g>in</str<strong>on</strong>g>dow)were c<strong>on</strong>structed each of which describes an average over the span of the subw<str<strong>on</strong>g>in</str<strong>on</strong>g>dow.However, shorter w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows <str<strong>on</strong>g>in</str<strong>on</strong>g> time mean that each discrete angle q n <str<strong>on</strong>g>in</str<strong>on</strong>g> theTL-sub w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow corresp<strong>on</strong>ds to a larger range of azimuthal speeds, so the resoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>speed determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is decreased.


45 Chapter 2 — Space-time analysisThe technique was <strong>on</strong>ce aga<str<strong>on</strong>g>in</str<strong>on</strong>g> tested <strong>on</strong> the synthetic models SPOTNB, WAVENB,SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE. The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g LAS power plots are shown for the 80 year sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dowcentred <strong>on</strong> 200 years after the start of the models <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.19. The degradati<strong>on</strong> ofazimuthal speed resoluti<strong>on</strong> is apparent, but encourag<str<strong>on</strong>g>in</str<strong>on</strong>g>gly the maxima of the power isstill located at the correct speed (15 km yr −1 westward) <str<strong>on</strong>g>and</str<strong>on</strong>g> latitude (10 ◦ S) for all themodels. However, as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS plot if figure 2.19c, the signal of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest is notthe dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant signal observed when SPOT is analysed. This dem<strong>on</strong>strates that coherentsignals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest can be difficult to pick out when short time w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows are used.(a) Snapshot of LAS plot fromSPOTNB ˜H at 200yrs∫| ˜H R| 2 dz/10 13 (nT) 2(nT) 2 x 10 13(b) Snapshot of LAS plot fromWAVENB ˜H at 200yrs∫| ˜H R| 2 dz/10 14 (nT) 2(nT) 2 x 10 14−605−60144.5−304−3012Latitude (degrees)0− 303.532.521.5Latitude (degrees)0− 3010864− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km/yr)10.52− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km/yr)(c) Snapshot of LAS plot fromSPOT ˜H at 200yrs∫| ˜H R| 2 dz/10 14 (nT) 2(nT) 2 x 10 14(d) Snapshot of LAS plot fromWAVE ˜H at 200yrs∫| ˜H R| 2 dz/10 14 (nT) 2(nT) 2 x 10 14−602.2−60162141.8Latitude (degrees)−300− 301.61.41.210.8Latitude (degrees)−300− 301210860.64− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km/yr)0.40.2− 60 2−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km/yr)Figure 2.19: Temporal changes <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude-azimuthal speed power plots.LAS power plots from temporal sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 160yrs to 240 yrs, forthe synthetic models SPOTNB <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), WAVENB <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), SPOT <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE <str<strong>on</strong>g>in</str<strong>on</strong>g> (d).2.8 Analysis of hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed signalsPrevious studies of geomagnetic field evoluti<strong>on</strong> at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (see, for example,Bloxham et al. (1989), Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> et al. (2000)) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicatepersistent asymmetry between the Atlantic <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacific hemispheres. The Atlantic


46 Chapter 2 — Space-time analysishemisphere is c<strong>on</strong>sistently found to possess high amplitude, westward travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldfeatures. In c<strong>on</strong>trast, <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere, the field amplitude is generally lower<str<strong>on</strong>g>and</str<strong>on</strong>g> no coherent patterns of field evoluti<strong>on</strong> are easily observed. When the questi<strong>on</strong> ofthe hemispherical symmetry of field evoluti<strong>on</strong> patterns isolated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g space-time spectralprocess<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques is c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters, it will be of important to knowwhether observed signals <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere could be a by-product of the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques.In particular, it is of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>edsignal rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after the removal of its time-averaged axisymmetric part <str<strong>on</strong>g>and</str<strong>on</strong>g>after high-pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated slow field variati<strong>on</strong>s.This issue is addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> through the analysis of two synthetic models c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>gof hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed patterns of magnetic field evoluti<strong>on</strong> called HEMINB<str<strong>on</strong>g>and</str<strong>on</strong>g> HEMI. HEMINB is derived from the WAVENB model, with field amplitudes <str<strong>on</strong>g>in</str<strong>on</strong>g>l<strong>on</strong>gitudes 180 ◦ W to 90 ◦ W <str<strong>on</strong>g>and</str<strong>on</strong>g> 90 ◦ E to 180 ◦ E (the Pacific hemisphere) set to zero <str<strong>on</strong>g>and</str<strong>on</strong>g>a c<strong>on</strong>stant field of 0.5×10 5 nT added to all locati<strong>on</strong>s. It represents a clean, idealised,example of a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed signal that can clearly dem<strong>on</strong>strate whether spatialalias<str<strong>on</strong>g>in</str<strong>on</strong>g>g between hemispheres is a side-effect of the field process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Results from theanalysis of HEMINB are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.20. A sec<strong>on</strong>d synthetic model called HEMIc<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a realistic background signal (BACK) al<strong>on</strong>g with the hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>edwave signal HEMINB is also studied. This more realistic model is designed to showwhether a str<strong>on</strong>g signal <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> a weaker signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the other hemispherecan both be reliably analysed follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g field process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The results from the analysis ofHEMI are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.21.Figure 2.20 dem<strong>on</strong>strates that the space-time spectral analysis techniques employed <str<strong>on</strong>g>in</str<strong>on</strong>g>this thesis do not cause signals that are c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to the Atlantic hemisphere to be mapped<str<strong>on</strong>g>in</str<strong>on</strong>g>to the Pacific hemisphere. Both snapshots(figure 2.20 a,b) <str<strong>on</strong>g>and</str<strong>on</strong>g> time-l<strong>on</strong>gitude (TL)plots (figure 2.20 c,d) of the processed signal reta<str<strong>on</strong>g>in</str<strong>on</strong>g> the hemispherical asymmetry present<str<strong>on</strong>g>in</str<strong>on</strong>g> the unprocessed models. This result can readily be understood by not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that nodirect alterati<strong>on</strong> of the spatial spectrum is carried out dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g (except theremoval of the time-averaged m=0 part of the signal) so no spatial alias<str<strong>on</strong>g>in</str<strong>on</strong>g>g that mightproduce a spurious signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere arises. The FK spectra of boththe filtered <str<strong>on</strong>g>and</str<strong>on</strong>g> unfiltered signal (see figure 2.20 e,f) have str<strong>on</strong>g peaks at the expectedwavenumber for the signal (m=8) despite the fact that the signal has been removed <str<strong>on</strong>g>in</str<strong>on</strong>g><strong>on</strong>e hemisphere. Furthermore, the latitude-azimuthal speed (LAS) power plot of boththe filtered <str<strong>on</strong>g>and</str<strong>on</strong>g> unfiltered signal correctly captures the azimuthal speed of the WAVENBsignal. The c<strong>on</strong>clusi<strong>on</strong> from this synthetic test is therefore that if any signal is observed<str<strong>on</strong>g>in</str<strong>on</strong>g> a particular hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜H, then it must actually be present <str<strong>on</strong>g>in</str<strong>on</strong>g> that hemisphere<str<strong>on</strong>g>and</str<strong>on</strong>g> can not have been mapped there as a result of the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure.The more realistic scenario illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> the model HEMI <str<strong>on</strong>g>and</str<strong>on</strong>g> presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.21dem<strong>on</strong>strates that given a str<strong>on</strong>g signal <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> a weaker signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the


47 Chapter 2 — Space-time analysis(a) HEMINB H after 320yrs(b) HEMINB ˜H after 320yrs1411.28.45.62.80−2.8−5.6−8.4−11.2−1475.64.22.81.40−1.4−2.8−4.2−5.6−7(c)TL plot of HEMINB H at 10 ◦ S(d)TL plot of HEMINB ˜H at 10 ◦ S40014350735030011.28.43005.64.2Time (yrs)250200150100505.62.80−2.8−5.6−8.4−11.2Time / yrs2502001501002.81.40−1.4−2.8−4.2−5.6−140−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e)FK plot of HEMINB H at 10 ◦ S50−7−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f)FK plot of HEMINB ˜H at 10 ◦ SFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot of HEMINB H1.71.51.31.10.90.70.50.30.10Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(h) LAS plot of HEMINB ˜H−603−605Latitude (degrees)−3002.82.62.42.2Latitude (degrees)−3004.543.532.52306021.8301.5160 0.5−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal speed Azimuthal (km yr speed −1), positive (km(yr) −1 is ) eastwardsAzimuthal speed −1Azimuthal speed (km yr ), positive (km(yr) −1 is ) eastwardsFigure 2.20: Analysis of a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave.Synthetic model HEMINB of a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave with a c<strong>on</strong>stant backgroundfield added. The unprocessed field H is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), (c), (e), <str<strong>on</strong>g>and</str<strong>on</strong>g> (g) whilethe processed field with time-averaged axisymmetric part removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filteredwith t c =400 years ( ˜H) is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), (d), (f) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h). (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show snapshots atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320 years, (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g>(e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber (FK) spectra at this latitude, while (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h)show the latitude-azimuthal speed (LAS) plots.


48 Chapter 2 — Space-time analysis(a) HEMI H after 320yrs(b) HEMI ˜H after 320yrs543210−1−2−3−4−51086420−2−4−6−8−10(c)TL plot of HEMI H at 10 ◦ S(d)TL plot of HEMI ˜H at 10 ◦ S4002350103503001.61.230086Time (yrs)250200150100500.80.40−0.4−0.8−1.2−1.6Time / yrs250200150100420−2−4−6−80−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)−250−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−10(e)FK plot of HEMI H at 10 ◦ S(f)FK plot of HEMI ˜H at 10 ◦ SFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot of HEMI H1.71.51.31.10.90.70.50.30.10Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(h) LAS plot of HEMI ˜H4.253.753.252.752.251.751.250.750.250Latitude (degrees)−60−3003050454035302520151060 5Latitude (degrees)−605.554.5−3043.5032.52301.5160 0.5−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal speed Azimuthal (km yr speed −1), positive (km(yr) −1 is ) eastwardsAzimuthal speed −1Azimuthal speed (km yr ), positive (km(yr) −1 is ) eastwardsFigure 2.21: Analysis of hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave <str<strong>on</strong>g>and</str<strong>on</strong>g> background field.Synthetic model HEMI of a hemispherically c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed wave with an additi<strong>on</strong>al backgroundfield (BACK) added. The unprocessed field H is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), (c), (e), <str<strong>on</strong>g>and</str<strong>on</strong>g> (g) whilethe processed field with time-averaged axisymmetric part removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filteredwith t c =400 years ( ˜H) is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), (d), (f) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h). (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show snapshots atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320 years, (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g>(e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber (FK) spectra at this latitude, while (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h)show the latitude-azimuthal speed (LAS) plots.


49 Chapter 2 — Space-time analysisother hemisphere, then the processed field reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s that asymmetry. It also dem<strong>on</strong>stratesthat the presence of a str<strong>on</strong>g signal <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular hemisphere does not preclude <strong>on</strong>efrom observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g weak signals <str<strong>on</strong>g>in</str<strong>on</strong>g> the other hemisphere. In HEMI, some weak signals areobserved <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere. These were present <str<strong>on</strong>g>in</str<strong>on</strong>g> the model BACK (derivedfrom a spectrally smoothed versi<strong>on</strong> of gufm1 — see §2.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to be observed <str<strong>on</strong>g>in</str<strong>on</strong>g>the Pacific hemisphere even when a str<strong>on</strong>g signal is present <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere.The f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of these synthetic tests will prove useful later when gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> CALS7K.1are analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 respectively.2.9 Frequency-wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniquesIn studies of fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the oceans <str<strong>on</strong>g>and</str<strong>on</strong>g> atmosphere it is comm<strong>on</strong> to filter observedsignals <str<strong>on</strong>g>in</str<strong>on</strong>g> spectral space, so that <strong>on</strong>ly the power associated with a evoluti<strong>on</strong> pattern of<str<strong>on</strong>g>in</str<strong>on</strong>g>terest rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> then to <str<strong>on</strong>g>in</str<strong>on</strong>g>verse transform back to the space-time doma<str<strong>on</strong>g>in</str<strong>on</strong>g> wherecomparis<strong>on</strong>s to theory can be easily made. Such FK-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques can obviouslybe also applied <str<strong>on</strong>g>in</str<strong>on</strong>g> the present c<strong>on</strong>tact, <str<strong>on</strong>g>and</str<strong>on</strong>g> are of particular <str<strong>on</strong>g>in</str<strong>on</strong>g>terest when attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>gto determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the structure of possible wave-like features <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models.In this secti<strong>on</strong> the synthetic models SPOTNB, WAVENB, SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE are FKfilteredto isolate a spectral feature of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>and</str<strong>on</strong>g> this feature is then rec<strong>on</strong>structed <str<strong>on</strong>g>in</str<strong>on</strong>g>the space-time doma<str<strong>on</strong>g>in</str<strong>on</strong>g>. Perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g this procedure when the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g signal is knownprovides <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g> the possible errors which could result from this procedure.A simple FK-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g technique was developed to allow signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to be studied<str<strong>on</strong>g>in</str<strong>on</strong>g> this manner. The start<str<strong>on</strong>g>in</str<strong>on</strong>g>g field H is first processed as described <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> §2.5to give ˜H. The FK amplitude spectra of ˜H is then calculated from TL plots at eachlatitude. A peak of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest is identified <str<strong>on</strong>g>and</str<strong>on</strong>g> a 2D mask filter c<strong>on</strong>structed that is zeroeverywhere except with<str<strong>on</strong>g>in</str<strong>on</strong>g> the regi<strong>on</strong> occupied by the spectral peak, where it has value1. The sharp edges of the mask filter are then tapered to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise power leakage. Themask filter is then multiplied with the FK amplitude spectra to yield a modified FKamplitude spectra that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the desired regi<strong>on</strong> of spectralspace. A 2D <str<strong>on</strong>g>in</str<strong>on</strong>g>verse Fourier transform is then applied to the new FK amplitude spectra(the phase spectrum is assumed to be unchanged) to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a new TL plot. The sameprocedure is repeated at all latitudes. When TL plots have been rec<strong>on</strong>structed for alllatitudes they can be comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to give a complete space-time model (H rec ). This canbe analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> the same way as any other field model, so latitude-l<strong>on</strong>gitude snapshotscan be taken to view the field structure <strong>on</strong> a spherical surface, TL plots used to viewthe field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal directi<strong>on</strong>, the FK power spectra calculated to checkthe c<strong>on</strong>sistency of the filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS power plots signature of peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> FK spacedeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the now familiar procedure, the methodology was tested us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the models


50 Chapter 2 — Space-time analysisSPOTNB, WAVENB, SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE. A filter mask runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g from wavenumbers -7to -9 <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies 0.003 to 0.008 cycles per year (periods from 125 to 330 years)was chosen to illustrate the analysis. Such a mask is expected to capture exactly themoti<strong>on</strong> of the synthetic field evoluti<strong>on</strong> pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> the WAVENB model so, if the methodis functi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g correctly, the field evoluti<strong>on</strong> seen <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 2.6a,b should be retrieved fromanalysis of WAVENB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE. It is found that the FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g does <str<strong>on</strong>g>in</str<strong>on</strong>g>deed do a goodjob of retriev<str<strong>on</strong>g>in</str<strong>on</strong>g>g the WAVENB patterns of field evoluti<strong>on</strong>, whether or not a backgroundfield <str<strong>on</strong>g>in</str<strong>on</strong>g> present (see figures 2.22b,d,f,h <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.23b,d,f,h).This mask is, however, certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly not optimised for captur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear shape of theFK power spectra of the isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g flux feature <str<strong>on</strong>g>in</str<strong>on</strong>g> SPOTNB. It might even beexpected that such a mask-filter could map the field evoluti<strong>on</strong> of SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> SPOT<str<strong>on</strong>g>in</str<strong>on</strong>g>to a wave-like form. Results shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figures 2.22a,c,e,g <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.23a,c,e,g show thatalthough SPOTNB is not well captured, the field evoluti<strong>on</strong> is much more localised thanfor WAVENB <str<strong>on</strong>g>and</str<strong>on</strong>g> no spurious str<strong>on</strong>g global wave patterns have been produced.Clearly care is needed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g the results of FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> term of modes of fieldevoluti<strong>on</strong>. A simple circular mask should <strong>on</strong>ly applied when unambiguous, isolated peaks<str<strong>on</strong>g>in</str<strong>on</strong>g> spectral space are present. However, this approach does provide a way of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g outmore about the space-time signatures of possible modes of field evoluti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> particular<str<strong>on</strong>g>their</str<strong>on</strong>g> latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al extent) that might be present <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models.2.10 Discussi<strong>on</strong>The synthetic models used <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter were chosen to mimic two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct end memberforms of field evoluti<strong>on</strong>: a m<strong>on</strong>ochromatic, spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, wavepattern mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a c<strong>on</strong>stant azimuthal speed <str<strong>on</strong>g>and</str<strong>on</strong>g> an isolated spot of <str<strong>on</strong>g>in</str<strong>on</strong>g>tense field alsomov<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a c<strong>on</strong>stant azimuthal speed. It was found that both types of field evoluti<strong>on</strong>could be accurately characterised, though results were most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the wavepatterns. Several possible ways to dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between spatially coherent (wave-like)patterns of field evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features have become evident <str<strong>on</strong>g>in</str<strong>on</strong>g> the<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter.The most direct <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator is that <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots of ˜H where the time-averaged axisymmetric<str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g period variati<strong>on</strong>s have been removed, wave patterns can be easily seen as aspatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent pattern of field anomalies of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g signs. Inc<strong>on</strong>trast, analysis of an isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature yields no spatially extended wavelikepattern. Instead the processed field is characterised by a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle str<strong>on</strong>g feature oftenflanked by weak anomalies of the opposite sign (see for example figure 2.16c,d giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g theappearance of a series of three propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g anomalies, even though <strong>on</strong>ly <strong>on</strong>e field featureis present).Furthermore, <str<strong>on</strong>g>in</str<strong>on</strong>g> both FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS power plots, azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave


51 Chapter 2 — Space-time analysis(a) SPOTNB H rec after 320yrs(b) WAVENB H rec after 320yrs(c)TL plot of SPOTNB H rec at 10 ◦ S543210−1−2−3−4−5(d)TL plot of WAVENB H rec at 10 ◦ S543210−1−2−3−4−535020350530016123004325082502Time / yrs20015040−4−8Time / yrs20015010−1−2100−12−16100−3−450−20−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(e)FK plot of SPOTNB H rec at 10 ◦ S50−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f)FK plot of WAVENB H rec at 10 ◦ SFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot from SPOTNB H rec17151311975310Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(h) LAS plot from WAVENB H rec−603−6021.8Latitude (degrees)−3002.521.5Latitude (degrees)−3001.61.41.210.8−301−300.6− 600.5− 60 0.20.4−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.22: FK-filtered, rec<strong>on</strong>structed SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB models.FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g models SPOTNB <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVENB so that <strong>on</strong>ly frequencies 0.003 to 0.008cpy<str<strong>on</strong>g>and</str<strong>on</strong>g> wavenumbers 7 to 9 rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. Plots (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show the radial part of the magneticfield at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320 years, plots (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plotsof the field evoluti<strong>on</strong> at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber(FK) spectraat this latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show the latitude-azimuthal speed (LAS) power plots.


52 Chapter 2 — Space-time analysis(a) SPOT H rec after 320yrs(b) WAVE H rec after 320yrs2520151050−5−10−15−20−25543210−1−2−3−4−5(c) TL plot of SPOT H rec at 10 ◦ S(d) TL plot of WAVE H rec at 10 ◦ S350253505300201530043250102502Time / yrs20015050−5−10Time / yrs20015010−1−2100−15−20100−3−450−25−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(e) FK plot of SPOT H rec at 10 ◦ S50−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(f) FK plot of WAVE H rec at 10 ◦ SFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(g) LAS plot from SPOT H rec4.253.753.252.752.251.751.250.750.250Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(h) LAS plot from WAVE H rec−604.5−60241.8Latitude (degrees)−300−303.532.521.5Latitude (degrees)−300−301.61.41.210.80.610.4− 60 0.5− 60 0.2−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 2.23: FK-filtered, rec<strong>on</strong>structed SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE field models.FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g models SPOT <str<strong>on</strong>g>and</str<strong>on</strong>g> WAVE so that <strong>on</strong>ly frequencies 0.003 to 0.008cpy <str<strong>on</strong>g>and</str<strong>on</strong>g>wavenumbers 7 to 9 rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. Plots (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) show the radial part of the magnetic fieldat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface after 320 years, plots (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show time-l<strong>on</strong>gitude (TL) plots ofthe field evoluti<strong>on</strong> at 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) the frequency-wavenumber(FK) spectra atthis latitude. (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) show the latitude-azimuthal speed (LAS) power plots.


53 Chapter 2 — Space-time analysispatterns yields much larger amplitude peaks than isolated drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g features. This isessentially because the spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent energy <str<strong>on</strong>g>in</str<strong>on</strong>g> wave patterns ispresent over all l<strong>on</strong>gitudes, <str<strong>on</strong>g>and</str<strong>on</strong>g> maps <str<strong>on</strong>g>in</str<strong>on</strong>g>to a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle po<str<strong>on</strong>g>in</str<strong>on</strong>g>t FK space <str<strong>on</strong>g>and</str<strong>on</strong>g> to a well def<str<strong>on</strong>g>in</str<strong>on</strong>g>edazimuthal speed <str<strong>on</strong>g>in</str<strong>on</strong>g> LAS space. In c<strong>on</strong>trast, c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle field anomaly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gover <strong>on</strong>ly a subset of l<strong>on</strong>gitudes the power is mapped <str<strong>on</strong>g>in</str<strong>on</strong>g>to a range of frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g>wavenumbers. Therefore very str<strong>on</strong>g peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS powerplots are further evidence <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of wave-like patterns of field evoluti<strong>on</strong>.In real observati<strong>on</strong>s, wave patterns of field evoluti<strong>on</strong> are likely to be much less spatially<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent than <str<strong>on</strong>g>in</str<strong>on</strong>g> WAVENB s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the wave will resp<strong>on</strong>d to changes <str<strong>on</strong>g>in</str<strong>on</strong>g>its local envir<strong>on</strong>ment as it travels. Therefore signatures of wave type field evoluti<strong>on</strong> willcerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ly not be as clear as those seen for WAVENB.The major assumpti<strong>on</strong> implicit <str<strong>on</strong>g>in</str<strong>on</strong>g> the methodology of this chapter, that should be borne<str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>, is the focus of the analysis <strong>on</strong> purely azimuthal moti<strong>on</strong>s offield features. If persistent field features do not move azimuthally, they will appear <strong>on</strong>lyas short lived features <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> will not c<strong>on</strong>tribute significant power to FK powerspectra at particular latitudes or show up clearly <str<strong>on</strong>g>in</str<strong>on</strong>g> LAS power plots. Fortunately, themoti<strong>on</strong>s of the geomagnetic field features of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis are observed to moveapproximately azimuthally suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g the methods developed <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> will be ofuse. It will be possible to justify this assumpti<strong>on</strong> retrospectively, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce str<strong>on</strong>g signals <str<strong>on</strong>g>in</str<strong>on</strong>g>TL plots, FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots are <strong>on</strong>ly possible if a significant amount ofazimuthal moti<strong>on</strong> of n<strong>on</strong>-axisymmetric field features is present.2.11 SummaryIn this chapter a space-time process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> spectral analysis methodology has been <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced.The orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of the techniques <str<strong>on</strong>g>in</str<strong>on</strong>g> the study of wave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorology <str<strong>on</strong>g>and</str<strong>on</strong>g>oceanography have been described. The practical implementati<strong>on</strong> of the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>analysis techniques have been discussed <str<strong>on</strong>g>and</str<strong>on</strong>g> tested <strong>on</strong> synthetic field models. The testsdem<strong>on</strong>strate that the methodology is capable of captur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the characteristics (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>ghemispherical asymmetry) of plausible patterns of field evoluti<strong>on</strong>, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fidencethat mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s can be made when real data is analysed. The tools developedhere will be applied <str<strong>on</strong>g>in</str<strong>on</strong>g> later chapters to geomagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagneticmodels <str<strong>on</strong>g>and</str<strong>on</strong>g> field models obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from a geodynamo model <str<strong>on</strong>g>in</str<strong>on</strong>g> order to characterise themechanisms of field evoluti<strong>on</strong>.


54Chapter 3Applicati<strong>on</strong> of the space-time spectralanalysis technique to the historicalgeomagnetic field model gufm13.1 Introducti<strong>on</strong>In this chapter results of the applicati<strong>on</strong> of the space-time spectral analysis techniquedescribed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 to the historical field model gufm1 (Jacks<strong>on</strong> et al., 2000) are presented.Details of the observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods used <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong>of gufm1 can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix A. The analysis of this chapter follows previousstudies of the magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> focuses <strong>on</strong> the radial comp<strong>on</strong>ent B r .This comp<strong>on</strong>ent is studied because it is c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous across the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary (soprovides a direct l<str<strong>on</strong>g>in</str<strong>on</strong>g>k to fluid moti<strong>on</strong>s close to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface) <str<strong>on</strong>g>and</str<strong>on</strong>g> because the othercomp<strong>on</strong>ents c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> no additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> under the assumpti<strong>on</strong> that the magneticfield at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface is a potential field.The properties of the unprocessed radial magnetic field B r , the radial magnetic field withthe time-averaged axisymmetric part removed (B r − ¯B r ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the radial field with thetime-averaged axisymmetric part removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered ˜B r are first described <str<strong>on</strong>g>in</str<strong>on</strong>g>detail. Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant modes of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal directi<strong>on</strong> are then identified<str<strong>on</strong>g>and</str<strong>on</strong>g> rec<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g FK filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.An attempt to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e dispersi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> patterns of geomagnetic field evoluti<strong>on</strong> over thepast 400 years is described <str<strong>on</strong>g>and</str<strong>on</strong>g> problems <str<strong>on</strong>g>in</str<strong>on</strong>g> mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g such determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s are discussed.Geographical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of field features are mapped <str<strong>on</strong>g>and</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>gimplicati<strong>on</strong>s discussed. Hemispherical similarities <str<strong>on</strong>g>and</str<strong>on</strong>g> differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the patterns of fieldevoluti<strong>on</strong> are described <str<strong>on</strong>g>and</str<strong>on</strong>g> possible <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>ssuggested. The time dependence of field evoluti<strong>on</strong> processes are also documented. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally,implicati<strong>on</strong>s for mechanisms of geomagnetic secular variati<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g whetherthe results favour a wave or flow orig<str<strong>on</strong>g>in</str<strong>on</strong>g> for azimuthal field moti<strong>on</strong>) are discussed.


55 Chapter 3 — Historical field3.2 Descripti<strong>on</strong> of field evoluti<strong>on</strong> processes <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal directi<strong>on</strong>3.2.1 Unprocessed radial magnetic field (B r )The field features observed <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 are qualitatively the sameas those observed <str<strong>on</strong>g>in</str<strong>on</strong>g> earlier historical field models (see Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1985),Bloxham et al. (1989) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1992)). Maps of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfacefrom gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650, 1710, 1770, 1830, 1890 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.1.N<strong>on</strong>-axisymmetric field features can be classified as either static or drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g over thehistorical observati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval from 1590 to 1990. Almost stati<strong>on</strong>ary, high amplitude,field features are observed under Canada <str<strong>on</strong>g>and</str<strong>on</strong>g> Siberia <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> atantipodal sites below Antarctica. Rapidly drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features are observed especially<str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> most move westward. It is not easy to follow these spotsby compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g maps at different epochs, but they are readily followed <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong>s ofthe time-dependent field model (see animati<strong>on</strong> A2.1, c<strong>on</strong>sult appendix F for details).The most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature is a positive field anomaly first seen <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590 nearthe l<strong>on</strong>gitude of India, at latitude 15 ◦ S. It can be followed westward <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes underthe mid-Atlantic ocean <str<strong>on</strong>g>in</str<strong>on</strong>g> 1990 <str<strong>on</strong>g>and</str<strong>on</strong>g> undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g an <str<strong>on</strong>g>in</str<strong>on</strong>g>terval of reduced amplitude between1780 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1830.In figure 3.2 time-l<strong>on</strong>gitude (TL) plots <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> associated frequency-wavenumber (FK)power spectra are presented for latitudes 60 ◦ N, 20 ◦ N, the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>general rather difficult to visually identify azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field anomalies. Both theTL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> the FK power spectra are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by the almost stati<strong>on</strong>ary axisymmetricfield. The <strong>on</strong>ly excepti<strong>on</strong> is at the equator where the axial dipole comp<strong>on</strong>ent of the fieldis weak. Here there is some <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features, although thedom<str<strong>on</strong>g>in</str<strong>on</strong>g>ance of stati<strong>on</strong>ary, n<strong>on</strong>-axisymmetric, field features now makes the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of the characteristics of the field evoluti<strong>on</strong> mechanisms impossible.The latitude-azimuthal speed (LAS) power plot for unprocessed B r is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.3.Unfortunately it too yields little <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> because it too is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by stati<strong>on</strong>aryfield features, particularly at high latitudes. When <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g the LAS power plotsshown throughout this chapter it should be remembered that peaks of power representthe latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speed of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent fieldevoluti<strong>on</strong> patterns, averaged over time <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude. The spread of power around thedom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant peaks (for example the full width at half maximum) can be c<strong>on</strong>sidered as ameasure of the variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the field evoluti<strong>on</strong> mechanisms that can be used to giveapproximate bounds <strong>on</strong> the azimuthal speed <str<strong>on</strong>g>and</str<strong>on</strong>g> latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al positi<strong>on</strong>s. Unfortunately<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.3 no clear dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant peaks are found <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS plot <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that furtherprocess<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the field is required to isolate field evoluti<strong>on</strong> mechanisms of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest.


56 Chapter 3 — Historical field(a) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>(b) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 17101086420−2−4−6−8−101086420−2−4−6−8−10(c) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>(d) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1770 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 18301086420−2−4−6−8−101086420−2−4−6−8−10(e) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>(f) gufm1 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 19501086420−2−4−6−8−101086420−2−4−6−8−10Figure 3.1: Snapshots of B r from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.Unfiltered radial magnetic field (B r ) from the model gufm1 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a series ofsnapshots from the years (a) 1650, (b) 1710, (c) 1770, (d) 1830, (e) 1890, (f) 1950.These <str<strong>on</strong>g>and</str<strong>on</strong>g> all subsequent snapshots <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter are <str<strong>on</strong>g>in</str<strong>on</strong>g> Hammer-Aitoff equal areamap projecti<strong>on</strong>.


57 Chapter 3 — Historical field(a) gufm1 B r , TL plot at 60 ◦ N(b) gufm1 B r , TL plot at 20 ◦ N19901950108199019501081900619006Time (yrs)185018001750420−2Time (yrs)185018001750420−21700−4−61700−4−61650−81650−8−101590−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(c) gufm1 B r , FK plot at 60 ◦ N1590−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(d) gufm1 B r , FK plot at 20 ◦ N−10Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(e) gufm1 B r , TL plot at Equator8.57.56.55.54.53.52.51.50.50Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(f) gufm1 B r , TL plot at 40 ◦ S8.57.56.55.54.53.52.51.50.5019901950108199019501081900619006Time (yrs)185018001750420−2Time (yrs)185018001750420−21700−4−61700−4−61650−81650−8−101590−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(g) gufm1 B r , FK plot at Equator−101590−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(h) gufm1 B r , FK plot at 40 ◦ S0.018.50.018.5Frequency (cycles per year)0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E7.56.55.54.53.52.51.50.50Frequency (cycles per year)0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E7.56.55.54.53.52.51.50.50Figure 3.2: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from gufm1.Time-l<strong>on</strong>gitude (TL) plots of the unprocessed radial magnetic field B r from the fieldmodel gufm1 at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 20 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at the Equator <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> at the40 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber (FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c),(d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


58 Chapter 3 — Historical field−601110Latitude (degrees)−300−3098765432− 60 1−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.3: Latitude-azimuthal speed (LAS) power plot of B r from gufm1.Power distributi<strong>on</strong> as a functi<strong>on</strong> of latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speed <str<strong>on</strong>g>in</str<strong>on</strong>g> a latitude-azimuthalspeed (LAS) power plot of the unprocessed radial magnetic field B r from the field modelgufm1, c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform method described <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.2.4.3.2.2 Radial magnetic field without time-averaged axisymmetric part (B r − ¯B r )Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the strategies outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2, the radial field from gufm1 is next progressivelyprocessed <str<strong>on</strong>g>in</str<strong>on</strong>g> an attempt to isolate field evoluti<strong>on</strong> modes of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest. The firststep is to remove the time-averaged axisymmetric field ¯B r , leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g (B r − ¯B r ). Snapshotsof (B r − ¯B r ) <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650, 1710, 1770, 1830, 1890 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.4. Inthese snapshots, the largest amplitude deviati<strong>on</strong>s from the time averaged axisymmetricfield are often located at low latitudes. An animati<strong>on</strong> of the evoluti<strong>on</strong> of (B r − ¯B r ) (seeanimati<strong>on</strong> A2.2, c<strong>on</strong>sult appendix F for details) illustrates that this field is qualitativelysimilar to that of B r , but with the latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al bias of the dipolar field removed.TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> associated FK power spectra of (B r − ¯B r ) at 60 ◦ N, 20 ◦ N, the equator <str<strong>on</strong>g>and</str<strong>on</strong>g>40 ◦ S are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.5. The m=0 dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant peak has been removed from the FKpower spectra, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g an improved identificati<strong>on</strong> of n<strong>on</strong>-axisymmetric field anomalies.Clear azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features are obvious at the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> at 40 ◦ S. The FKpower spectra are unfortunately still dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by large scale (particularly m=1) almoststati<strong>on</strong>ary features.The associated LAS power plot is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.6. It rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by almoststati<strong>on</strong>ary field features (now n<strong>on</strong>-axisymmetric) at higher latitudes particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> thenorthern hemisphere, though there are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of a field feature mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g westwardsat approximately 8kmyr −1 near 40 ◦ S. A fa<str<strong>on</strong>g>in</str<strong>on</strong>g>t equatorial signal can just be dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished.


59 Chapter 3 — Historical field(a) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (b) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1710543210−1−2−3−4−5543210−1−2−3−4−5(c) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (d) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1770 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830543210−1−2−3−4−5543210−1−2−3−4−5(e) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (f) gufm1 (B r − ¯B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1950543210−1−2−3−4−5543210−1−2−3−4−5Figure 3.4: Snapshots of (B r − ¯B r ) from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.Radial magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from gufm1, with the time averaged, axisymmetricpart removed (B r − ¯B r ), is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a series of snapshots from (a) 1650, (b)1710, (c) 1770, (d) 1830, (e) 1890, (f) 1950.


60 Chapter 3 — Historical field(a) gufm1 (B r − ¯B r ), TL plot at 60 ◦ N(b) gufm1 (B r − ¯B r ), TL plot at 20 ◦ N199019505419901950541900319003Time (yrs)185018001750210−1Time (yrs)185018001750210−11700−2−31700−2−31650−41650−4−5−515901590−150 −120 −90 −60 −30 0 30 60 90 120 150−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)L<strong>on</strong>gitude (degrees east)(c) gufm1 (B r − ¯B r ), FK plot at 60 ◦ N (d) gufm1 (B r − ¯B r ), FK plot at 20 ◦ NFrequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Frequency (cycles per year)0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(e) gufm1 (B r − ¯B r ), TL plot at 0 ◦ (f) gufm1 (B r − ¯B r ) TL plot at 40 ◦ S8.57.56.55.54.53.52.51.50.50199019505419901950541900319003Time (yrs)185018001750210−1Time (yrs)185018001750210−11700−2−31700−2−31650−41650−4−5−515901590−150 −120 −90 −60 −30 0 30 60 90 120 150−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)L<strong>on</strong>gitude (degrees east)(g) gufm1 (B r − ¯B r ), FK plot at 0 ◦ (h) gufm1 (B r − ¯B r ), FK plot at 40 ◦ S0.018.50.018.5Frequency (cycles per year)0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E7.56.55.54.53.52.51.50.50Frequency (cycles per year)0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E7.56.55.54.53.52.51.50.50Figure 3.5: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of (B r − ¯B r ) from gufm1.Time-l<strong>on</strong>gitude (TL) plots of the radial magnetic field with time averaged axisymmetriccomp<strong>on</strong>ent subtracted (B r − ¯B r ) from the field model gufm1 at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at20 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at the equator (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> at 40 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber(FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


61 Chapter 3 — Historical field−602520−30Latitude (degrees)01510−305− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.6: Latitude-azimuthal speed power plot of (B r − ¯B r ) from gufm1.Power distributi<strong>on</strong> as a functi<strong>on</strong> of latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speed <str<strong>on</strong>g>in</str<strong>on</strong>g> a latitude-azimuthalspeed (LAS) power plot of the radial magnetic field with the time averaged axisymmetricfield subtracted (B r − ¯B r ) from the field model gufm1, c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong>transform method described <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.2.4.3.2.3 Radial magnetic field with time averaged axisymmetric comp<strong>on</strong>ent removed <str<strong>on</strong>g>and</str<strong>on</strong>g>high pass filtered (˜B r )The next process<str<strong>on</strong>g>in</str<strong>on</strong>g>g step is to high-pass filter to remove field features evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> l<strong>on</strong>gtime scales. As for the synthetic examples <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2, a range of cut-off periods were<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. A filter cut-off choice of 400 years was chosen for further analysis becauseit removed field changes <strong>on</strong> time scales much l<strong>on</strong>ger than the record length that aredifficult to rigorously <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate, yet succeeded <str<strong>on</strong>g>in</str<strong>on</strong>g> captur<str<strong>on</strong>g>in</str<strong>on</strong>g>g 43 % of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al fieldvariability as illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.7.The snapshots of ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650, 1710, 1770, 1830, 1890 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.8<str<strong>on</strong>g>and</str<strong>on</strong>g> the time-dependent animati<strong>on</strong> of ˜B r (see animati<strong>on</strong> A3.3, c<strong>on</strong>sult appendix F fordetails) illustrates that remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the slowly evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g part of the field has dramaticallyaltered the familiar picture of B r evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.The rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g field is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features, particularly at lowlatitudes (with<str<strong>on</strong>g>in</str<strong>on</strong>g> 30 ◦ of the equator). There is also evidence for field features mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gnorth-south <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>and</str<strong>on</strong>g> out of the equatorial regi<strong>on</strong>, especially migrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g towards the equatorunder Asia <str<strong>on</strong>g>and</str<strong>on</strong>g> away from the equator under the Atlantic <str<strong>on</strong>g>and</str<strong>on</strong>g> under North <str<strong>on</strong>g>and</str<strong>on</strong>g> SouthAmerica. Field features generally emanate from the regi<strong>on</strong> under the eastern Pacificocean <str<strong>on</strong>g>and</str<strong>on</strong>g> move westward, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensify<str<strong>on</strong>g>in</str<strong>on</strong>g>g as they move over Africa, then splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to movenorth <str<strong>on</strong>g>and</str<strong>on</strong>g> south under central America before they reach the Pacific regi<strong>on</strong>. Larger wavelengthfeatures are evident (particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th century) at latitude 40 ◦ S. There arealso weaker <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of a higher wavenumber disturbance <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere


62 Chapter 3 — Historical field100Percent variability of B r captured (from gufm1)%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)80604020P v =43% for tc=400 years010 100 1000 10000Cut off time for high pass filter (years)Figure 3.7: B r variati<strong>on</strong>s captured by ˜B r .Graph show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> P v , as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>(2.6), captured by ˜B r as the choice of filter cut-off is varied.around 20 to 30 ◦ N. To further characterise this prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary picture of the azimuthal fieldevoluti<strong>on</strong>, space-time spectral analysis was carried out.In figure 3.9 the TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra for latitudes 60 ◦ N, 20 ◦ N, the equator<str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S are presented. At 60 ◦ N there is evidence of a str<strong>on</strong>g m=3 signal, with periodof approximately 250 years, while at 20 ◦ N there is evidence for an m=7 signal with aperiod of approximately 220 years. At mid-latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere, forexample at 40 ◦ S, m=2, 3 westward signals as well as a m=5 signal are observed.The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong> is the presence of a series of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g positive <str<strong>on</strong>g>and</str<strong>on</strong>g>negative westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field anomalies at the equator, under the Atlantic hemisphere.Six spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, westward drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field anomalies are evident <str<strong>on</strong>g>in</str<strong>on</strong>g>the TL plot at the equator (figure 3.9e). The FK spectrum for this TL plot (figure 3.9g)has a dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant peak at m = 5 westward. This wave-like pattern of field anomalies couldbe a c<strong>on</strong>sequence of the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of a hydromagnetic wave <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <strong>on</strong> B r (F<str<strong>on</strong>g>in</str<strong>on</strong>g>lay<str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, 2003). This possibility is explored further us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a range of theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g>numerical models <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 6, 7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8.The LAS power plot for ˜B r is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.10. It provides further evidence for thepresence of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, field features dur<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe past 400 years. The str<strong>on</strong>g equatorial maxima emphasises that the clearest coherentazimuthal field moti<strong>on</strong> <strong>on</strong> time scales shorter than 400 years occurs at low latitudes.The peak of power suggests an azimuthal speed of 17±7 kmyr −1 westward 1 . The signalis centred at 2 ◦ N though there is a spread of power over latitudes from 15 ◦ N to 15 ◦ S.Weaker signals are also observed at high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere at 50 ◦ N1 Estimates of the variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimiuthal speeds come from the full width at half maximumamplitude of the peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS power plot.


63 Chapter 3 — Historical field(a) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (b) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 17101086420−2−4−6−8−101086420−2−4−6−8−10(c) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (d) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1770 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 18301086420−2−4−6−8−101086420−2−4−6−8−10(e) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> (f) gufm1 ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 19501086420−2−4−6−8−101086420−2−4−6−8−10Figure 3.8: Snapshots of ˜B r from gufm1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.Processed radial magnetic field ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, with the time averaged, axisymmetricpart removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with cut-off period 400 years, from the modelgufm1 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a series of snapshots from (a) 1650, (b) 1710, (c) 1770, (d) 1830,(e) 1890, (f) 1950.


64 Chapter 3 — Historical field(a) gufm1 ˜B r , TL plot at 60 ◦ N(b) gufm1 ˜B r , TL plot at 20 ◦ N1950101950101900819008661850418504Time / yrs1800175020−2−4Time / yrs1800175020−2−41700−61700−6−8−81650−101650−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) gufm1 ˜B r , FK plot at 60 ◦ N(d) gufm1 ˜B r , FK plot at 20 ◦ NFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E17151311975310Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(e) gufm1 ˜B r TL plot at 0 ◦ (f) gufm1 ˜B r TL plot at 40 ◦ S171513119753101950101950101900819008661850418504Time / yrs1800175020−2−4Time / yrs1800175020−2−41700−61700−61650−81650−10−150 −120 −90 −60 −30 0 30 60 90 120 150−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees eastL<strong>on</strong>gitude / degrees east(g) gufm1 ˜B r , FK plot at 0 ◦ (h) gufm1 ˜B r , FK plot at 40 ◦ S−8−100.01170.0117Frequency / cycles per year0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E151311975310Frequency / cycles per year0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E151311975310Figure 3.9: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r .Time-l<strong>on</strong>gitude (TL) plots of the processed radial magnetic field ˜B r with time averagedaxisymmetric comp<strong>on</strong>ent subtracted <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with cut-off period 400 years,from the field model gufm1 at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 20 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at the equator <str<strong>on</strong>g>in</str<strong>on</strong>g>(e) <str<strong>on</strong>g>and</str<strong>on</strong>g> at 40 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber (FK) power spectra arefound <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


65 Chapter 3 — Historical fieldto 60 ◦ N with maximum power at a speed of 16 kmyr −1 westward <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the southernhemisphere at 35 ◦ S to 50 ◦ S with maximum power at a speed of ∼30 kmyr −1 westward.−6076Latitude (degrees)−300543−302− 601−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.10: Latitude-azimuthal speed (LAS) power plot of ˜Br from gufm1.Power distributi<strong>on</strong> as a functi<strong>on</strong> of latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speed <str<strong>on</strong>g>in</str<strong>on</strong>g> a latitude-azimuthalspeed (LAS) power plot of the processed radial magnetic field ˜B r with the time averagedaxisymmetric field subtracted <str<strong>on</strong>g>and</str<strong>on</strong>g> filtered with a cut-off threshold of 400 years, from thefield model gufm1, c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform methodology of §2.2.4.3.2.4 Comparis<strong>on</strong> of ˜B r when filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g threshold is 400 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 yearsIn order to be c<strong>on</strong>fident when <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g ˜B r , <strong>on</strong>e must be satisfied that the featuresit shows are robust <str<strong>on</strong>g>and</str<strong>on</strong>g> not artifacts <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by the process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This questi<strong>on</strong> hasalready been partly addressed by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g synthetic models <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2. There itwas found that the form of ˜B r was <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive to the small changes <str<strong>on</strong>g>in</str<strong>on</strong>g> filter parameters<str<strong>on</strong>g>and</str<strong>on</strong>g> that a signal with a 200 year period could be accurately recovered when a high passfilter threshold of 400 years was used. Here these f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g are extended by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe form of ˜B r from gufm1 with two choices of high pass filter threshold (400 <str<strong>on</strong>g>and</str<strong>on</strong>g> 600years). Figure 3.11 shows the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g snapshots, TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra at theequator <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS power plots. The evoluti<strong>on</strong> of ˜B r with t c =600 years can also beseen <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A3.4 (see appendix F for further details): it is morphologically verysimilar to animati<strong>on</strong> A3.3 that documents the evoluti<strong>on</strong> of ˜B r when t c =400 years. TheTL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g> the two cases are also very similar <str<strong>on</strong>g>in</str<strong>on</strong>g> form, but them=7 signal appears to have more power when the cut-off is 600 years.The peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS power plot for t c =400 years are all also present when t c =600


66 Chapter 3 — Historical field(a) Snapshot ˜B r , t c = 400 (b) Snapshot ˜B r , t c = 6001086420−2−4−6−8−1015129630−3−6−9−12−15(c) TL 0 ◦ ˜Br , t c = 400yrs (d) TL 0 ◦ ˜Br , t c = 600yrs19501019501519008190012691850418506Time / yrs1800175020−2−4Time / yrs1800175030−3−61700−61700−91650−81650−10−150 −120 −90 −60 −30 0 30 60 90 120 150−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees eastL<strong>on</strong>gitude / degrees east(e) FK 0 ◦ ˜Br , t c = 400yrs (f) FK 0 ◦ ˜Br , t c = 600yrs−12−150.01170.0117Frequency / cycles per year0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E151311975310Frequency / cycles per year0.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E151311975310(g) LAS plot ˜B r , t c = 400yrs(h) LAS plot ˜B r , t c = 600yrs−6076−6012−305−3010Latitude (degrees)043Latitude (degrees)086−302−304− 601− 602−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.11: ˜Br from gufm1 for filter cut-offs of t c =400yrs <str<strong>on</strong>g>and</str<strong>on</strong>g> 600yrs.Processed radial magnetic field with time averaged axisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> highpass filtered with cut-off period t c of 400 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 600 years, from gufm1. (a), (b) showsnapshots of the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890; (c), (d) show time-l<strong>on</strong>gitude (TL) plotsof the field evoluti<strong>on</strong> at the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> (e),(f) the associated frequency-wavenumber(FK) power spectra; (g), (h) show the latitude-azimuthal speed (LAS) power plots.


67 Chapter 3 — Historical fieldyears. This means that the features <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong> are robust <str<strong>on</strong>g>and</str<strong>on</strong>g>not artifacts. With a 600 year cut-off the higher latitude peaks have larger amplitudesuggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> mechanisms associated with them operate <strong>on</strong> time scalesl<strong>on</strong>ger than the record length. The 400 year cut-off results have been presented <str<strong>on</strong>g>in</str<strong>on</strong>g> detail<str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter rather than the 600 year results because it is difficult to rigorously justifythe <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreti<strong>on</strong> of field changes <strong>on</strong> time scales l<strong>on</strong>ger than the 400 year length of gufm1.3.2.5 Spherical harm<strong>on</strong>ic power spectrum for ˜B rRather than process<str<strong>on</strong>g>in</str<strong>on</strong>g>g space-time grids of a geomagnetic field model, it is also possibleto c<strong>on</strong>struct ˜B r by process<str<strong>on</strong>g>in</str<strong>on</strong>g>g the spherical harm<strong>on</strong>ic model coefficients sampled atdiscrete time <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals. In this case the equivalent process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>volves first subtract<str<strong>on</strong>g>in</str<strong>on</strong>g>g thetime average of each m=0 spherical harm<strong>on</strong>ic (remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time-averaged axisymmetricfield). Sec<strong>on</strong>dly, discrete time series for each spherical harm<strong>on</strong>ic coefficient must be highpass filtered (the filter cut-off threshold is chosen as before to be 400 years).This alternative field process<str<strong>on</strong>g>in</str<strong>on</strong>g>g method is <str<strong>on</strong>g>in</str<strong>on</strong>g>structive for two reas<strong>on</strong>s. First it providesa check that ˜B r has been c<strong>on</strong>structed correctly <str<strong>on</strong>g>in</str<strong>on</strong>g> the space-time grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g method 2 <str<strong>on</strong>g>and</str<strong>on</strong>g>sec<strong>on</strong>dly it enables the effect of process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the time-averaged spherical harm<strong>on</strong>icpower spectra to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (see figure 3.12).10000010000gufm1gufm1 m<str<strong>on</strong>g>in</str<strong>on</strong>g>us time−averaged axisymmetric partgufm1 m<str<strong>on</strong>g>in</str<strong>on</strong>g>us time−averged axisymmetric part <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filteredLowes Power (nT) 210001001010 2 4 6 8 10 12 14Spherical Harm<strong>on</strong>ic DegreeFigure 3.12: Spherical harm<strong>on</strong>ic power spectra of B r ,B r - ¯B r ), ˜B r from gufm1.The time-averaged spherical harm<strong>on</strong>ic power spectra (Lowes, 1974) def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the expressi<strong>on</strong>R l = ( a c )2l+4 (l+1) ∑ Lm=0 [(gm l) 2 +(h m l) 2 ], where L is the degree of model truncati<strong>on</strong>,gl m , h m lare the spherical harm<strong>on</strong>ic coefficients, a is the radius of Earth’s surface <str<strong>on</strong>g>and</str<strong>on</strong>g> cis the <str<strong>on</strong>g>core</str<strong>on</strong>g> radius. The green squares <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e show the time-averaged power spectra ofthe unprocessed field model gufm1, the red triangles <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e show the power spectra ofthe time-averaged axisymmetric (m=0) comp<strong>on</strong>ent <str<strong>on</strong>g>and</str<strong>on</strong>g> the blue circles <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>es showthe time-averaged power spectra after the m = 0 comp<strong>on</strong>ent has been removed <str<strong>on</strong>g>and</str<strong>on</strong>g> thetimes series for each spherical harm<strong>on</strong>ic have been high pass filtered with t c =400 yrs.2 f Br from process<str<strong>on</strong>g>in</str<strong>on</strong>g>g model coefficients was identical to that found from the space-time grids.


68 Chapter 3 — Historical fieldThe model associated with ˜B r has c<strong>on</strong>siderably less power at all degrees, due to theremoval of the m=0 time-averaged comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> the high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It exhibitsa shallow peak over degrees 4 to 10 <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to the spectra for the unprocessed fieldmodel that is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by low degree spherical harm<strong>on</strong>ics. This illustrates that look<str<strong>on</strong>g>in</str<strong>on</strong>g>gat ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g>volves focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> smaller spatial scales than those that dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>alfield model, even though no explicit spatial filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been carried out.3.3 Isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> descripti<strong>on</strong> of field evoluti<strong>on</strong> modes <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B rIn this secti<strong>on</strong> frequency-wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see §2.9) is carried out to isolate thespace-time signatures of str<strong>on</strong>g spectral peaks found <str<strong>on</strong>g>in</str<strong>on</strong>g> the analysis of ˜B r shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure3.9. It was decided to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate the m=3 signal that dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.9c, the m=7signal that dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.9d <str<strong>on</strong>g>and</str<strong>on</strong>g> the m=5 signal that dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.9g. Foreach wavenumber <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated, <strong>on</strong>ly frequencies of 0.003 to 0.008 cycles per year (periodsbetween 125 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 333 years) are reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. In figure 3.13 snapshots of the field atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890 <str<strong>on</strong>g>and</str<strong>on</strong>g> the LAS power plots associated with the rec<strong>on</strong>structi<strong>on</strong> ofm=7, m=5, <str<strong>on</strong>g>and</str<strong>on</strong>g> m = 3 are presented. Animati<strong>on</strong>s of the field evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface from 1630 to 1950 associated with the modes can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong>s A3.5(m=7), A3.6 (m=5) <str<strong>on</strong>g>and</str<strong>on</strong>g> A3.7 (m=3) respectively (see appendix F for further details).The m=7 mode <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.13a,b is observed to have most power at mid-latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g>the northern hemisphere from 10 ◦ N to 50 ◦ N, centred around 30 ◦ N. It is <str<strong>on</strong>g>in</str<strong>on</strong>g>itially locatedat low latitudes, but moves slightly northwards as time progresses, until <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20thcentury it is centred at 30 ◦ N. It is noteworthy that the positi<strong>on</strong> of this m=7 mode <str<strong>on</strong>g>in</str<strong>on</strong>g>the 20th century is co<str<strong>on</strong>g>in</str<strong>on</strong>g>cident with previous identificati<strong>on</strong>s of wave features <str<strong>on</strong>g>in</str<strong>on</strong>g> B r atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that period. In particular, it is c<strong>on</strong>sistent with the mid-latitudepolar wave discussed by Bloxham et al. (1989) (see <str<strong>on</strong>g>their</str<strong>on</strong>g> figure 28) that was tentativelyidentified as be<str<strong>on</strong>g>in</str<strong>on</strong>g>g of wavenumber between m=5 <str<strong>on</strong>g>and</str<strong>on</strong>g> m=8; it is also c<strong>on</strong>sistent with thenorthern hemisphere part of the approximately m=8 patterns recently reported <str<strong>on</strong>g>in</str<strong>on</strong>g> highresoluti<strong>on</strong> images c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by satellite data <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to wave moti<strong>on</strong>s by Jacks<strong>on</strong>(2003). The lack of any southern hemisphere signal associated with this mode meansit cannot be def<str<strong>on</strong>g>in</str<strong>on</strong>g>itively classified as either equatorially symmetric (E S ) or equatoriallyantisymmetric (E A ).The rec<strong>on</strong>structi<strong>on</strong> of the m=5 mode <str<strong>on</strong>g>in</str<strong>on</strong>g> the space-time doma<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its LAS power plot<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.13c,d c<strong>on</strong>firms this mode as the source of the high amplitude equatorial signalseen <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.10 that was earlier reported by F<str<strong>on</strong>g>in</str<strong>on</strong>g>lay <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (2003). This lowlatitude m=5 mode is clearly observed to be symmetric about the equator (E S ). It ispresent throughout the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval from 1630 A.D. to 1950 A.D., but <str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong> A3.6it appears to weaken <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th century. There also seems to be a str<strong>on</strong>g m=5 signal atbetween latitudes 40 ◦ to 50 ◦ north <str<strong>on</strong>g>and</str<strong>on</strong>g> south. The phase of these higher latitude signals


69 Chapter 3 — Historical field(a) gufm1˜Brecr, m=7 1890 (b) gufm1˜Brecr, m=7 LAS plot201612840−4−8−12−16−20Latitude (degrees)−60201816−3014120108−3064− 60 2−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(c) gufm1˜Brecr, m=5 1890 (d) gufm1˜Brecr, m=5 LAS plot40201612840−4−8−12−16−20Latitude (degrees)−60−300−30− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )3530252015105(e) gufm1˜Brecr, m=3 1890 (f) gufm1˜Brecr, m=3 LAS plot201612840−4−8−12−16−20Latitude (degrees)−60−300−30− 60−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )3530252015105Figure 3.13: Snapshots <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots of ˜Brecrfrom gufm1; m= 7, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.By FK-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g, moti<strong>on</strong>s with wavenumbers m= 7, 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> periods between 125<str<strong>on</strong>g>and</str<strong>on</strong>g> 333 years were isolated. Snapshots of the recovered field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1890are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) for m=7, <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) for m=5, <str<strong>on</strong>g>in</str<strong>on</strong>g> (d) for m=3, while the latitude-azimuthalspeed (LAS) power plots are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) for m=7, <str<strong>on</strong>g>in</str<strong>on</strong>g> (d) for m=5, <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) for m=3.is not fixed compared with that of the equatorial signal.Results from the FK-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g rec<strong>on</strong>structi<strong>on</strong> of the m=3 westward mode are shown <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 3.13e,f <str<strong>on</strong>g>and</str<strong>on</strong>g> its evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface can be followed <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A3.7.Most power is found at higher latitudes, particular <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere at 60 ◦ N,travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward at an average speed of approximately 18 km yr −1 . The signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the


70 Chapter 3 — Historical fieldsouthern hemisphere is at 40 ◦ S, so no clear equatorial symmetry exists for this mode.Care should be taken when <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret<str<strong>on</strong>g>in</str<strong>on</strong>g>g the results of FK-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussed above. Experimentswith synthetic models illustrated that this process<str<strong>on</strong>g>in</str<strong>on</strong>g>g can map a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield feature <str<strong>on</strong>g>in</str<strong>on</strong>g>to a wave-like group, with maximum amplitude where the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g featurewas <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al. Especially at latitudes where a range of wavenumbers are present<str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r , <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties associated with a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber should betreated with cauti<strong>on</strong>. However, at latitudes where ˜B r is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber(such as at the equator) <str<strong>on</strong>g>and</str<strong>on</strong>g> where global wave patterns are seen before spatialfilter<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the mode properties should be c<strong>on</strong>sidered reliable.3.4 Geographical trends <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of field featuresThe use of spatial sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows as described <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.6 permits the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of variati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speeds of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherently field features (timeaveragedover the observati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>terval) as a functi<strong>on</strong> of positi<strong>on</strong> <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Thistechnique was applied to ˜B r c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a high pass filter with cut-off period of400 years from gufm1. The results are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.14.030−1260−14Co−latitude (deg)90−16−18120−20150−22180−180 −135 −90 −45 0 45 90 135 180L<strong>on</strong>gitude (degrees east)Figure 3.14: Geographical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of ˜Br from gufm1.Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<strong>on</strong>gitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows of width 80 degrees, mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> steps of 20 degrees the variati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speed as a functi<strong>on</strong> of both latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>edus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform methodology described <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.2.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> §2.6. Only the peakwith most power is utilised <str<strong>on</strong>g>in</str<strong>on</strong>g> each sub-LAS power plot, <str<strong>on</strong>g>and</str<strong>on</strong>g> that peak must be greaterthan 4 times the average power <str<strong>on</strong>g>in</str<strong>on</strong>g> the plot for it to be displayed, otherwise a speed of 0km yr −1 is assigned to the locati<strong>on</strong>.Low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere is the regi<strong>on</strong> with most high amplitude, spatially


71 Chapter 3 — Historical field<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features, c<strong>on</strong>sistent with animati<strong>on</strong>s of ˜B r .There does not seem to be any obvious trend <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speeds of field anomalies asa functi<strong>on</strong> of latitude. Features move fastest (around 22 km yr −1 ) under south-westernAfrica <str<strong>on</strong>g>and</str<strong>on</strong>g> slowest (around 12 km yr −1 ) at mid-latitudes under the Atlantic ocean. Thefast speeds under South-western Africa are c<strong>on</strong>sistent with the m=3 mode discussed <str<strong>on</strong>g>in</str<strong>on</strong>g>§3.3, the slower speeds at mid-latitudes under the northern Atlantic are c<strong>on</strong>sistent withthe m=7 mode. The features seen under Venezuela <str<strong>on</strong>g>and</str<strong>on</strong>g> the Caribbean are c<strong>on</strong>sistentwith the speeds <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> of the m=5 mode.Similar studies of geographical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speed of oceanic moti<strong>on</strong>s(e.g. Chelt<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlax (1996)) showed clear latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al trends. These helped todiagnose the presence of oceanic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> enabled theoretical predicti<strong>on</strong>s of<str<strong>on</strong>g>their</str<strong>on</strong>g> propagati<strong>on</strong> speeds to be tested. The lack of any clear latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al trends <str<strong>on</strong>g>in</str<strong>on</strong>g> thepresent study suggests that there is no evidence for the propagati<strong>on</strong> of <str<strong>on</strong>g>waves</str<strong>on</strong>g> whose phasespeed varies <str<strong>on</strong>g>in</str<strong>on</strong>g> a simple manner with latitude, for example as a result of the β-effect (thevariati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coriolis force with latitude).3.5 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processesWhether Earth’s magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its evoluti<strong>on</strong> are fundamentally different <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacifichemisphere has been discussed s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the time of the Carnegie Instituti<strong>on</strong>’s magneticsurveys of the oceans <str<strong>on</strong>g>in</str<strong>on</strong>g> the early 20th century (Fisk, 1931) when anomalously low secularvariati<strong>on</strong> was observed there. Whitham (1958) suggested that there was no c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>gevidence for westward drift of n<strong>on</strong>-dipole field features <str<strong>on</strong>g>in</str<strong>on</strong>g>to the Pacific hemisphere whileVest<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> Kahle (1966) proposed that the lack of secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific wasl<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to low ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients there (also c<strong>on</strong>sult Walker <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus(1996) for a dem<strong>on</strong>strati<strong>on</strong> of the statistical difference <str<strong>on</strong>g>in</str<strong>on</strong>g> the average value of Br 2 betweenthe Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres).Doell <str<strong>on</strong>g>and</str<strong>on</strong>g> Cox (1965; 1971) used evidence from paleomagnetic records <str<strong>on</strong>g>in</str<strong>on</strong>g> Hawaiian lavasto propose that secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific has been anomalously low there over thepast milli<strong>on</strong> years, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that this might be a signature of a heterogeneous lowermantle <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. Recently Bloxham (2002), Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g>Ols<strong>on</strong> (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibb<strong>on</strong>s (2004) have provided quantitative support forthis proposal by modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g how hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g> flow patterns (<str<strong>on</strong>g>and</str<strong>on</strong>g> hencesecular variati<strong>on</strong>) could be produced by variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> heat flux at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Inorder to further evaluate such proposals it is necessary to compare predicted patterns offield evoluti<strong>on</strong> to the patterns found <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models. The analysis of gufm1carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter is suitable for this purpose.In figure 3.15 time-l<strong>on</strong>gitude (TL) plots for the Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres fromgufm1 are presented separately <str<strong>on</strong>g>in</str<strong>on</strong>g> order that the properties of the field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the


72 Chapter 3 — Historical fieldeast-west directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the two hemispheres can be compared <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trasted. These plotsillustrate that the str<strong>on</strong>gest spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent field evoluti<strong>on</strong> is found <str<strong>on</strong>g>in</str<strong>on</strong>g>the Atlantic hemisphere. However, there also appear to be weaker westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield anomalies <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere, particularly at 40 ◦ S (see figure 3.15e). Thisdem<strong>on</strong>strates that westward drift of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> the historical era is not c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>edthe Atlantic hemisphere. The synthetic tests of §2.8 dem<strong>on</strong>strated that signals <str<strong>on</strong>g>in</str<strong>on</strong>g> thePacific hemisphere could not result from alias<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a str<strong>on</strong>g Atlantic hemisphere signalwhich gives c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g> the reality of the Pacific signal observed here. Furthermore,the wavenumber <str<strong>on</strong>g>and</str<strong>on</strong>g> speeds of the azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g>Atlantic hemispheres are similar. This appears to be an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> that the <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave-like patterns of secular variati<strong>on</strong> are global <str<strong>on</strong>g>in</str<strong>on</strong>g> extent <str<strong>on</strong>g>and</str<strong>on</strong>g> not c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed tothe Atlantic hemisphere. The signal may be weaker <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere becausethe field amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients acted <strong>on</strong> by <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s are smaller there (Vest<str<strong>on</strong>g>in</str<strong>on</strong>g>e<str<strong>on</strong>g>and</str<strong>on</strong>g> Kahle, 1966). This hypothesis is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated further <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8 where the forwardproblem of global wave flows act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a historical magnetic field c<strong>on</strong>figurati<strong>on</strong> is studied.The explanati<strong>on</strong>s of Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibb<strong>on</strong>s (2004)whereby <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous thermal boundary c<strong>on</strong>diti<strong>on</strong>s produce very different forms offlow <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres predicts different field evoluti<strong>on</strong> patterns <str<strong>on</strong>g>in</str<strong>on</strong>g>the two hemispheres; this seems <str<strong>on</strong>g>in</str<strong>on</strong>g>compatible with the results of the present study.The questi<strong>on</strong> of whether the Pacific hemisphere has always experienced weak secularvariati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> if so why low field amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients should be localised there cannotbe answered us<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1. These issues are discussed further when the archeomagneticmodel CALS7K.1 is analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 4.3.6 Temporal variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processesA shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>g of LAS power plots calculated from the whole timespan of data is <str<strong>on</strong>g>their</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>ability to dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guish between short <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals of high amplitude, spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycorrelated field moti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> weaker less coherent field moti<strong>on</strong> over a l<strong>on</strong>ger <str<strong>on</strong>g>in</str<strong>on</strong>g>terval.This is a c<strong>on</strong>sequence of the implicit averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g over the entire timespan that is <str<strong>on</strong>g>in</str<strong>on</strong>g>volved<str<strong>on</strong>g>in</str<strong>on</strong>g> tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Rad<strong>on</strong> transform of an entire TL plot.This issue can be addressed (at the expense of resoluti<strong>on</strong> of the azimuthal speed of fieldfeatures — see §2.7) by calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g LAS power plots for sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows of time. Aftersynthetic trials (see §2.7), w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow widths of 80 years were chosen <str<strong>on</strong>g>and</str<strong>on</strong>g> the w<str<strong>on</strong>g>in</str<strong>on</strong>g>dowsmoved through the record <str<strong>on</strong>g>in</str<strong>on</strong>g> steps of 10 years. The results for w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows centred <strong>on</strong> 1670,1700, 1750, 1800, 1850 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1910 are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.16.The str<strong>on</strong>g equatorial feature is present throughout the record, though is most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>entbefore 1800 <str<strong>on</strong>g>and</str<strong>on</strong>g> appears to weaken after 1900. Evidence for a higher latitude (around60 ◦ N) spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent field evoluti<strong>on</strong> process is seen <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern


73 Chapter 3 — Historical field(a) gufm1 ˜B r at 20 ◦ N (Pacific)(b) gufm1 ˜B r at 20 ◦ N (Atlantic)195081950819006.419006.44.84.818503.218503.2Time / yrs180017501.60−1.6−3.2Time / yrs180017501.60−1.6−3.21700−4.81700−4.8165090 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east(c) gufm1 ˜B r at 0 ◦ N (Pacific)−6.4−8−6.41650−8−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees east(d) gufm1 ˜B r at 0 ◦ N (Atlantic)195081950819006.419006.44.84.818503.218503.2Time / yrs180017501.60−1.6−3.2Time / yrs180017501.60−1.6−3.21700−4.81700−4.8165090 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east(e) gufm1 ˜B r at 40 ◦ S (Pacific)−6.4−8−6.41650−8−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees east(f) gufm1 ˜B r at 40 ◦ S (Atlantic)195081950819006.419006.44.84.818503.218503.2Time / yrs180017501.60−1.6−3.2Time / yrs180017501.60−1.6−3.21700−4.81700−4.8−6.4−6.41650−81650−890 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees eastFigure 3.15: Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1.Time-l<strong>on</strong>gitude (TL) plots of the evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the east-west directi<strong>on</strong> of processed radialmagnetic field, with time-averaged axisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filteredwith cut-off period of t c = 400 years (˜B r ), separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to the Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres.(a), (c), (e) show the evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere at 20 ◦ N, 0 ◦ N, <str<strong>on</strong>g>and</str<strong>on</strong>g>40 ◦ S respectively. (b), (d), (f) show the evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere at 20 ◦ N,0 ◦ N, <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S respectively.


74 Chapter 3 — Historical field(a) LAS plot of ˜B r , 1630 to 1710 (b) LAS plot of ˜B r , 1660 to 1740−6098−6098−307−307Latitude (degrees)0654Latitude (degrees)0654−303−30322− 60 1− 60 1−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(c) LAS plot of ˜B r , 1710 to 1790 (d) LAS plot of ˜B r , 1760 to 1840−601110−60796Latitude (degrees)−300−30876543Latitude (degrees)−300−305432− 60 12− 601−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(e) LAS plot of ˜B r , 1810 to 1890 (f) LAS plot of ˜B r , 1870 to 1950Latitude (degrees)−60−30043−302− 60 18765Latitude (degrees)−60−30054−3032− 60 111109876−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.16: Temporal evoluti<strong>on</strong> of LAS plots of ˜B r from gufm1.Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dows <str<strong>on</strong>g>in</str<strong>on</strong>g> time of length 80 years, the evoluti<strong>on</strong> of the latitude-azimuthalspeed (LAS) power plot is followed, <str<strong>on</strong>g>and</str<strong>on</strong>g> the permanence of features seen <str<strong>on</strong>g>in</str<strong>on</strong>g> the averageLAS plot c<strong>on</strong>structed from the full record (See figure (3.10)) can be assessed. (a) showsa time sub-w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow centred <strong>on</strong> 1670, (b) a w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow centred <strong>on</strong> 1700, (c) a w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow centred<strong>on</strong> 1750, (d) a w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow centred <strong>on</strong> 1800, (e) a w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow centred <strong>on</strong> 1850 <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) a w<str<strong>on</strong>g>in</str<strong>on</strong>g>dowcentred <strong>on</strong> 1910.


75 Chapter 3 — Historical fieldhemisphere especially from 1760 to 1890, c<strong>on</strong>sistent with the m=3 FK-rec<strong>on</strong>structedsignal discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.3. From 1860 until the end of the record, at latitude 40 ◦ S a str<strong>on</strong>gsignal is seen c<strong>on</strong>sistent with the southern hemisphere m=3 FK-rec<strong>on</strong>structed mode.There is also a weaker feature at 30 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th century,that seems likely to be l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked with the m=7 FK-rec<strong>on</strong>structed signal.All of the field evoluti<strong>on</strong> modes, identified <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.3 as be<str<strong>on</strong>g>in</str<strong>on</strong>g>g associated with peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> theLV plot for ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.10, therefore appear to be rather transitory phenomen<strong>on</strong>. Theyhave not been steady <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude, positi<strong>on</strong> or speed over the past 400 years. This shouldbe borne <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d when seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g to make <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time-<str<strong>on</strong>g>in</str<strong>on</strong>g>dependent spectralc<strong>on</strong>tent of field evoluti<strong>on</strong> mechanisms, <str<strong>on</strong>g>and</str<strong>on</strong>g> when mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g comparis<strong>on</strong>s to geodynamomodel output or when compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g to predicti<strong>on</strong>s from simple theoretical models.3.7 Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of dispersi<strong>on</strong> by wavenumber filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g ˜B r from gufm1Dispersi<strong>on</strong> is the phenomen<strong>on</strong> whereby the speed at which a signal is transmitted depends<strong>on</strong> its frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> hence its wavelength (see, for example, the discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Feynmanet al. (1963)). By measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g dispersi<strong>on</strong> from observati<strong>on</strong>s of a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbance<str<strong>on</strong>g>and</str<strong>on</strong>g> calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the best (least squares, regularised) fit obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to theoretical modelsof wave propagati<strong>on</strong>, it is possible to assess the viability of the different models as anexplanati<strong>on</strong> for the propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbance. Furthermore, if a model can be found thatproduces a good fit to the observati<strong>on</strong>s, it may be possible to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer bounds <strong>on</strong> previouslyundeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed physical properties associated with the propagati<strong>on</strong> mechanism. The useof observati<strong>on</strong>s of dispersi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> seismic surface <str<strong>on</strong>g>waves</str<strong>on</strong>g> to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer the structure of Earth’scrust <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle (see, for example Shearer (2001) <str<strong>on</strong>g>and</str<strong>on</strong>g> Romanowicz (2002); Shearer(2001)) is <strong>on</strong>e example of a geophysical applicati<strong>on</strong> of such ideas.Now c<strong>on</strong>sider drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic field features at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. If the dispersi<strong>on</strong>of such features could be accurately determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed it would be possible to test proposedmodels for the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the drift, such as hydromagnetic wave propagati<strong>on</strong> or advecti<strong>on</strong>.If a satisfactory model could be found, the range of acceptable model parameters couldbe used to place bounds <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> dynamics. The first step <str<strong>on</strong>g>in</str<strong>on</strong>g> this scheme is to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ewhether or not there is any evidence for dispersi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> current geomagnetic field models.Here an attempt to do just that was made us<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1.The field (B r − ¯B r ) was filtered so that <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber rema<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, but withoutrestricti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> frequency. An estimate of the equatorial azimuthal speed corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g tothis wavenumber was then obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by c<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g a LAS power plot <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g thespeed corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to maximum power at the equator. The LAS power plots used to<str<strong>on</strong>g>in</str<strong>on</strong>g>fer the azimuthal phase speeds for different wavenumbers are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.17.C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g all latitudes, str<strong>on</strong>g signals can be found over a wider range of wavenumbers,but it seems likely that different field evoluti<strong>on</strong> mechanisms might operate at different


76 Chapter 3 — Historical field(a) LAS plot of (B r − ¯B r ), m=3 (b) LAS plot of (B r − ¯B r ), m=4−6035−602530−3025−3020Latitude (degrees)0−30201510Latitude (degrees)0−301510− 605− 605−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(c) LAS plot of (B r − ¯B r ), m=5 (d) LAS plot of (B r − ¯B r ), m=6−6035−609Latitude (degrees)−300−30− 6030252015105Latitude (degrees)−3004−3032− 60 18765−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(e) LAS plot of (B r − ¯B r ), m=7 (f) LAS plot of (B r − ¯B r ), m=8−6018−607166Latitude (degrees)−3001412108Latitude (degrees)−300543−3064− 60 2−30− 6021−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 3.17: LAS plots from gufm1 of (B r − ¯B r ) filtered by wavenumber.Latitude-azimuthal speed (LAS) plots of (B r − ¯B r ) from gufm1 filtered <strong>on</strong>ly by wavenumber<str<strong>on</strong>g>and</str<strong>on</strong>g> reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g all frequencies. (a) shows wavenumber m=3, (b) m=4, (c) m=5, (d)m=6, (e) m=7 <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) m=8.


77 Chapter 3 — Historical fieldlatitudes. Therefore <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle latitude (the equator) where the clearest signal waslocated was <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. Unfortunately, the FK power at the equator c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s power at<strong>on</strong>ly a small range of wavenumbers (between m=3 <str<strong>on</strong>g>and</str<strong>on</strong>g> m=8), with most of the powerassociated with the m=5 signal. This makes it rather difficult to measure dispersi<strong>on</strong>.In figure 3.18 the equatorial azimuthal speeds of anomalies <str<strong>on</strong>g>in</str<strong>on</strong>g> (B r − ¯B r ) estimated fromthe LAS power plots <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.17 (with bounds <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the full width at half maximum(FWHM) of the peaks <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS plots) are presented as a functi<strong>on</strong> of wavenumber.Even over the small range of wavenumbers available, the m=3, 7 modes <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.17are rather weak at the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> must therefore be regarded with suspici<strong>on</strong>.Two possible <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s of the variati<strong>on</strong> of the azimuthal speed of field features withwavenumber are suggested <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.17. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly m=4, 5, 6, 8 as robust, thenthe least squares best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>e shows <strong>on</strong>ly a very weak gradient; <str<strong>on</strong>g>in</str<strong>on</strong>g>fact a best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>e withzero gradient would also lie well with<str<strong>on</strong>g>in</str<strong>on</strong>g> the FWHM limits. Therefore, the most robustdata can be said to be c<strong>on</strong>sistent with the hypothesis of no dispersi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthalgeomagnetic secular variati<strong>on</strong> at the equator.A sec<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> is possible if <strong>on</strong>e is will<str<strong>on</strong>g>in</str<strong>on</strong>g>g to accept the weak m=3,7 signals asreliable. In this case, the least squares best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> any best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>es compatible withthe error bounds require that smaller wavenumbers (l<strong>on</strong>ger wavelengths) travel fasterazimuthally than larger wavenumbers (shorter wavelengths). In this case azimuthalgeomagnetic secular variati<strong>on</strong> at the equator would be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g an <str<strong>on</strong>g>in</str<strong>on</strong>g>versedispersive character.The almost m<strong>on</strong>ochromatic nature of the str<strong>on</strong>g equatorial signal <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that themechanism generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> may not be a free oscillati<strong>on</strong> process suitablefor study via wave dispersi<strong>on</strong> techniques, but <str<strong>on</strong>g>in</str<strong>on</strong>g>stead the signature of a forced <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityas a result of which <strong>on</strong>ly a small range of wavenumbers are excited. The caveat that<strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber is observed because of the short record length should also benoted. Higher resoluti<strong>on</strong> observati<strong>on</strong>s over a l<strong>on</strong>ger period are (as usual) the <strong>on</strong>ly wayto def<str<strong>on</strong>g>in</str<strong>on</strong>g>itively resolve this issue.The most cautious <str<strong>on</strong>g>and</str<strong>on</strong>g> rigorous <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of the results of this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> is thatthere is no evidence of dispersive behaviour <str<strong>on</strong>g>in</str<strong>on</strong>g> the geomagnetic secular variati<strong>on</strong> capturedby gufm1. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce dispersive behaviour is expected for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids (see chapter 6) this result favours advecti<strong>on</strong> rather than wave propagati<strong>on</strong>as the source of the azimuthal moti<strong>on</strong> of wave-like patterns observed <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.10.3.8 SummaryIn this chapter the azimuthal evoluti<strong>on</strong> of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface over the past 400 years ascaptured by the model gufm1 has been studied <str<strong>on</strong>g>in</str<strong>on</strong>g> detail. Space-time spectral analysis has


78 Chapter 3 — Historical field40Westward z<strong>on</strong>al speed from the LV plots (kmyr −1 )3530252015105z<strong>on</strong>al speeds from str<strong>on</strong>g equatorial signals (errors from FWHM)z<strong>on</strong>al speeds from weak equatorial signals (errors from FWHM)least squares best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g all signalsleast squares best fit l<str<strong>on</strong>g>in</str<strong>on</strong>g>e, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly str<strong>on</strong>g signals02 3 4 5 6 7 8 9Azimuthal wavenumber (m) of radial field at <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceFigure 3.18: Wavenumber versus azimuthal speed of (B r − ¯B r ) at 0 ◦ N.Azimuthal (z<strong>on</strong>al) speeds of field features of (B r − ¯B r ) from gufm1 determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from LASplots after the field has been filtered so <strong>on</strong>ly s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumbers rema<str<strong>on</strong>g>in</str<strong>on</strong>g>. The black l<str<strong>on</strong>g>in</str<strong>on</strong>g>eshows the best least squares fit to m=4, 5, 6, 8 observed speeds. The observati<strong>on</strong>s form=3, 7 may not be robust because there is little power seen <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS plots at theequator for these wavenumbers.been carried out <strong>on</strong> ˜B r after the removal of the time-averaged axisymmetric comp<strong>on</strong>entas well as the part of the field chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales l<strong>on</strong>ger than 400 years. Spatially <str<strong>on</strong>g>and</str<strong>on</strong>g>temporally coherent, azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r have been identified.Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processes have been discussed. Geographical<str<strong>on</strong>g>and</str<strong>on</strong>g> temporal variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthal speeds of field evoluti<strong>on</strong> mechanisms have been<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. The dependence of azimuthal speed <strong>on</strong> wavenumber (dispersi<strong>on</strong>) has alsobeen studied.The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g result of this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> is the identificati<strong>on</strong> of a mode of magneticfield evoluti<strong>on</strong> at low latitudes dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber (m=5). This modehas a frequency f=0.004 cpyr (corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a period of around 250 years) <str<strong>on</strong>g>and</str<strong>on</strong>g> moveswestward at an average speed of 17 km yr −1 . It is equatorially symmetric (E S ) <str<strong>on</strong>g>and</str<strong>on</strong>g> ispresent throughout the historical record, though appears to have weakened <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20thcentury. It is observed most clearly under the Atlantic hemisphere from 100 ◦ E to 100 ◦ W.Its properties are <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive to the high pass filter threshold used <str<strong>on</strong>g>in</str<strong>on</strong>g> the analysis. Thereare no known systematic errors <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by the spectral analysis, field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g or


79 Chapter 3 — Historical fieldmeasurement methods that would produce such a spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherentsignal <strong>on</strong> these l<strong>on</strong>g time scales, imply<str<strong>on</strong>g>in</str<strong>on</strong>g>g that this must be a genu<str<strong>on</strong>g>in</str<strong>on</strong>g>e mode of magneticfield evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.Other signals identified <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g>clude a weaker m=7 signal found at low to mid latitudes<str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> a m=2, 3 signal that is str<strong>on</strong>gest at mid latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> thesouthern hemisphere. The m=7 signal is observed most clearly near to latitude 30 ◦ N<str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th century though it is <str<strong>on</strong>g>in</str<strong>on</strong>g>itially located at lower latitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> slowly driftsnorthward. It has frequency f=0.004 cpyr (a period of around 250 years) <str<strong>on</strong>g>and</str<strong>on</strong>g> moveswestward at an average speed of around 12 km yr −1 . The m=2, 3 signal is observedmost clearly between 20 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> has a frequency of 0.0042 cpyr (a period of 235years) <str<strong>on</strong>g>and</str<strong>on</strong>g> moves rapidly westward at an average speed of 30 km yr −1 . It is str<strong>on</strong>gesttowards the end of the historical record (especially after 1800), <str<strong>on</strong>g>and</str<strong>on</strong>g> at l<strong>on</strong>gitudes 150 ◦ E to90 ◦ W. It was further found that although the highest amplitude, spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent patterns of field evoluti<strong>on</strong> were located <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere, weakerpatterns with similar form were also present <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere.It was not possible to detect either dispersive behaviour or any systematic geographictrends <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds of field features. These are properties associated with hydromagneticwave propagati<strong>on</strong> mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids (see chapter 6). Thenegative results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed therefore suggest that the azimuthal moti<strong>on</strong> of the wave-likepatterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r may be more c<strong>on</strong>sistent with advecti<strong>on</strong> by azimuthal flow than withhydromagnetic wave propagati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. Wave propagati<strong>on</strong> as a mechanism forazimuthal magnetic field moti<strong>on</strong> cannot be ruled out <strong>on</strong> the basis of the results of thischapter, but there is no str<strong>on</strong>g evidence <str<strong>on</strong>g>in</str<strong>on</strong>g> its favour.


80Chapter 4Applicati<strong>on</strong> of the space-time spectralanalysis technique to the archeomagneticfield model CALS7K.14.1 Introducti<strong>on</strong>In this chapter results of the applicati<strong>on</strong> of the space-time spectral analysis methods toa c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> lake sediment geomagnetic field model spann<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<str<strong>on</strong>g>in</str<strong>on</strong>g>terval 5000 B.C. to 1950 A.D. (CALS7K.1 — see appendix B for a descripti<strong>on</strong> of themodel) are presented.The most serious shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>g of an analysis of geomagnetic secular variati<strong>on</strong> based <strong>on</strong>gufm1 is that this model spans <strong>on</strong>ly 400 years. This is unfortunately not l<strong>on</strong>g enoughfor rigorous <str<strong>on</strong>g>and</str<strong>on</strong>g> statistically significant c<strong>on</strong>clusi<strong>on</strong>s to be drawn c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong>mechanisms with time scales of centuries to millennia. A possible resoluti<strong>on</strong> of thisdifficulty <str<strong>on</strong>g>in</str<strong>on</strong>g>volves us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>direct measurements of Earth’s magnetic field. C<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>gglobal field models <str<strong>on</strong>g>and</str<strong>on</strong>g> test<str<strong>on</strong>g>in</str<strong>on</strong>g>g hypotheses c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secular variati<strong>on</strong> requiresa density of spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal coverage of observati<strong>on</strong>s that exist <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> thepast few millennia, so attenti<strong>on</strong> will focus <strong>on</strong> this time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval.Over the past decade a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous geomagnetic field model derived from <str<strong>on</strong>g>in</str<strong>on</strong>g>direct measurementsfrom the past seven millennia has been developed by Cathy C<strong>on</strong>stable <str<strong>on</strong>g>and</str<strong>on</strong>g>co-workers as described <str<strong>on</strong>g>in</str<strong>on</strong>g> Johns<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (1998), C<strong>on</strong>stable et al. (2000), Korte<str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2003), Korte et al. (2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2005). Their latestmodel is known as CALS7K.1 (C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous Archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> Lake Sediment model ofthe past 7000 years, Versi<strong>on</strong> 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> is the best current source of <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe evoluti<strong>on</strong> of the geomagnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <strong>on</strong> millennial time scales.In this chapter an attempt is made to assess the reliability of CALS7K.1 by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>ga subsecti<strong>on</strong> of the model from 1600 A.D. to 1950 A.D. (referred to as CALS7K.1h)


81 Chapter 4 — Archeomagnetic fieldto a versi<strong>on</strong> of the historical geomagnetic field model gufm1 (referred to as gufm1d)processed so that its spatial power spectra matches that of CALS7K.1h. Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the limitati<strong>on</strong>s of CALS7K.1, the full span of model CALS7K.1 is analysedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g time-l<strong>on</strong>gitude methods developed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 to search for episodes of spatially<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent azimuthal moti<strong>on</strong> of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally the resultsof the <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s are summarised <str<strong>on</strong>g>and</str<strong>on</strong>g> the implicati<strong>on</strong>s for underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanismsof geomagnetic secular variati<strong>on</strong> are discussed.4.2 Comparis<strong>on</strong> of CALS7K.1h to gufm1dIn this secti<strong>on</strong> a subset of the field model CALS7K.1, cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1600 A.D.to 1950 A.D., <str<strong>on</strong>g>and</str<strong>on</strong>g> referred to as CALS7K.1h is analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>and</str<strong>on</strong>g> compared toa versi<strong>on</strong> of the historical model gufm1 (referred to as gufm1d) processed to mimicthe power spectra of CALS7K.1h (but of course derived us<str<strong>on</strong>g>in</str<strong>on</strong>g>g higher quality data).Comparis<strong>on</strong> between these models permits the reliability of CALS7K.1h (<str<strong>on</strong>g>and</str<strong>on</strong>g> hencethat of CALS7K.1) to be assessed. It allows identificati<strong>on</strong> of where <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> what timescales spurious features should be expected. This should help to guard aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st err<strong>on</strong>eous<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s of CALS7K.1 later <str<strong>on</strong>g>in</str<strong>on</strong>g> the chapter.4.2.1 Creati<strong>on</strong> of gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g> spherical harm<strong>on</strong>ic power spectraThe model called gufm1d was created by multiply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the coefficients for each degree<str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 by a modulati<strong>on</strong> factor√R CALS7K.1hlR gufm1lto force the power spectra of the result(gufm1d) to be identical to that of CALS7K.1h. The time-averaged power spectra ofCALS7K.1h (also that of gufm1d) is compared to the time averaged power spectra ofgufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.1. The power <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h is always lower than that <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1, butthey are of comparable magnitude up to spherical harm<strong>on</strong>ic degree 5. At high sphericalharm<strong>on</strong>ic degree the power <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h drops off much faster than the power <str<strong>on</strong>g>in</str<strong>on</strong>g>gufm1. gufm1d was created to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether a model with the same spatial powercharacteristics as CALS7K.1 can capture the major field evoluti<strong>on</strong> processes noticed <str<strong>on</strong>g>in</str<strong>on</strong>g>the study of gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3, <str<strong>on</strong>g>and</str<strong>on</strong>g> to isolate the effects of data errors <str<strong>on</strong>g>and</str<strong>on</strong>g> problems dueto the sparse geographical spread of observati<strong>on</strong>s compared to the effect str<strong>on</strong>g damp<str<strong>on</strong>g>in</str<strong>on</strong>g>gof field coefficients <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h.4.2.2 Comparis<strong>on</strong> of unprocessed radial magnetic field (B r )Snapshots from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650 A.D., 1830 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 A.D. aredisplayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.2, while animati<strong>on</strong>s A4.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> A4.2 show the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous evoluti<strong>on</strong> ofCALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d respectively over the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1600 A.D. to 1950 A.D. Figure 3.1<str<strong>on</strong>g>and</str<strong>on</strong>g> animati<strong>on</strong> A4.1 should be c<strong>on</strong>sulted <str<strong>on</strong>g>in</str<strong>on</strong>g> order to compare CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d with


82 Chapter 4 — Archeomagnetic field100000gufm1 (up to degree 10)CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d10000Lowes spectral power (nT) 21000100100 2 4 6 8 10Spherical harm<strong>on</strong>ic degree (l)Figure 4.1: Spectra from gufm1 compared to CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d.The time-averaged spherical harm<strong>on</strong>ic power spectra (Lowes, 1974) def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the expressi<strong>on</strong>R l = ( a c )2l+4 (l+1) ∑ Lm=0 [(gm l) 2 +(h m l) 2 ], where L is the degree of model truncati<strong>on</strong>,gl m , h m lare the spherical harm<strong>on</strong>ic coefficients, a is the radius of Earth’s surface <str<strong>on</strong>g>and</str<strong>on</strong>g> cis the <str<strong>on</strong>g>core</str<strong>on</strong>g> radius. The black squares <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e show the power spectra of gufm1 up tospherical harm<strong>on</strong>ic degree 10, while the red diam<strong>on</strong>ds <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>e show the power spectraof CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d, <str<strong>on</strong>g>in</str<strong>on</strong>g> which each spherical harm<strong>on</strong>ic degree <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 has beenscaled <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the same power spectra as CALS7K.1h.gufm1. gufm1d does a surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly good job of captur<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong> patterns seen <str<strong>on</strong>g>in</str<strong>on</strong>g>B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1, except that high amplitude, small length scale featuresare smoothed out. In the subsequent discussi<strong>on</strong>s it shall therefore be assumed thatgufm1d accurately represents the large scale field evoluti<strong>on</strong> that CALS7K.1 should ideallyreproduce, given more accurate data <str<strong>on</strong>g>and</str<strong>on</strong>g> a better global distributi<strong>on</strong> of observati<strong>on</strong>s.Both CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d are dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated, with high latitude field c<strong>on</strong>centrati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere, have westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g undulati<strong>on</strong>s of the geomagneticequator <str<strong>on</strong>g>and</str<strong>on</strong>g> have lows <str<strong>on</strong>g>in</str<strong>on</strong>g> B r amplitude under the northern Atlantic. These similaritiesare remarkable given differences <str<strong>on</strong>g>in</str<strong>on</strong>g> both data type <str<strong>on</strong>g>and</str<strong>on</strong>g> the spatial distributi<strong>on</strong>s of observati<strong>on</strong>s.However, differences <str<strong>on</strong>g>in</str<strong>on</strong>g> positi<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> time evoluti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> these two models are certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly present. For example the B r c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>itiallyobserved below the Indian ocean <str<strong>on</strong>g>and</str<strong>on</strong>g> mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward is very prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1dbut not seen <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h; under Africa <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h there is a regi<strong>on</strong> where themagnetic equator is almost north-south, this is not observed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d; c<strong>on</strong>centrati<strong>on</strong>sof B r are observed at high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d but not <str<strong>on</strong>g>in</str<strong>on</strong>g>CALS7K.1h; there is a reversed flux patch observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the Northern Atlantic after 1850<str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h that is <strong>on</strong>ly a low amplitude field feature <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d.The absence of B r features known to be present <str<strong>on</strong>g>in</str<strong>on</strong>g> historical models c<strong>on</strong>structed withhigher accuracy data <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that CALS7K.1h accurately captures <strong>on</strong>ly certa<str<strong>on</strong>g>in</str<strong>on</strong>g> aspects


83 Chapter 4 — Archeomagnetic field(a) CALS7K.1h, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>(b) gufm1d, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1650 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 165075.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7(c) CALS7K.1h, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g> (d) gufm1d, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 183075.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7(e) CALS7K.1h, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g> (f) gufm1d, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1950 surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 195075.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7Figure 4.2: Comparis<strong>on</strong> of snapshots of B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d.Unfiltered radial magnetic field (B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from the models CALS7K.1h<str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d are presented for comparis<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> snapshots from 1650 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), (b), from1830 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d) <str<strong>on</strong>g>and</str<strong>on</strong>g> from 1950 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> (e), (f). These <str<strong>on</strong>g>and</str<strong>on</strong>g> all subsequent snapshots<str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter are <str<strong>on</strong>g>in</str<strong>on</strong>g> Hammer-Aitoff equal area map projecti<strong>on</strong>.


84 Chapter 4 — Archeomagnetic fieldof the geomagnetic field evoluti<strong>on</strong>. The presence of features <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h not seen<str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 raises the dilemma that <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of CALS7K.1 without thought couldlead to err<strong>on</strong>eous c<strong>on</strong>clusi<strong>on</strong>s regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong> mechanisms. These problems areillustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.3 where time-l<strong>on</strong>gitude (TL) plots of the unprocessedB r from CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d are presented. These should also be compared <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>trasted with the TL plots of gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 3.2.At 60 ◦ N, two nearly stati<strong>on</strong>ary, high amplitude features are found <str<strong>on</strong>g>in</str<strong>on</strong>g> both gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h though the space-time paths are slightly different. A reverse flux featureat 0 ◦ E is prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h, but it is <strong>on</strong>ly observed as a low amplitude feature<str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d. At 20 ◦ N, features from 0 ◦ E to 180 ◦ E exist after 1800 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1hthat are not as strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d. At the equator, CALS7K.1 fails to correctly capturepositi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> speeds of the most rapidly azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features seen <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d: thefeature mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 90 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 1600 A.D. to 60 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 1800 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d is not present<str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h . The problems with degraded <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h comparedto gufm1d are most serious <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere; for example at 40 ◦ S no fieldfeatures at all are observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the western hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h, while structuresare certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly present <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d. Despite these shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, some reliable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from CALS7K.1h: the directi<strong>on</strong> of moti<strong>on</strong> of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g>CALS7K.1h is found to agree well. For example the feature at 20 ◦ N mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 30 ◦ W <str<strong>on</strong>g>in</str<strong>on</strong>g>1600A.D. to 60 ◦ W <str<strong>on</strong>g>in</str<strong>on</strong>g> 1950A.D. is present <str<strong>on</strong>g>in</str<strong>on</strong>g> both models. It can certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly be c<strong>on</strong>cludedthat CALS7K.1h will not show spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g,field features <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots unless they are also present <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d.4.2.3 High pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the variability captured by gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g> CALS7K.1hWhen attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to characterise the evoluti<strong>on</strong> of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 it was found to be useful toremove the time-averaged axisymmetric field <str<strong>on</strong>g>and</str<strong>on</strong>g> to high pass filter to remove stati<strong>on</strong>ary<str<strong>on</strong>g>and</str<strong>on</strong>g> very slow mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features. Ideally, <strong>on</strong>e would like to carry out the sameprocedure to CALS7K.1. However, as has already become evident, it seems unlikelythat CALS7K.1 will have the spatial or temporal resoluti<strong>on</strong> to capture all the processesof <str<strong>on</strong>g>in</str<strong>on</strong>g>terest observed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1. Nevertheless it is important to attempt such procedures, <str<strong>on</strong>g>in</str<strong>on</strong>g>order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the precise shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> to aid future developmentof similar millennial time scale field models, that will undoubtedly eventually becomevaluable research tools.The percentage variability captured compared to the unfiltered case (P v , see equati<strong>on</strong>(2.6)) <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d between 1600A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950A.D. compared to that ofgufm1 is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.4 for a range of high pass filter thresholds. Models gufm1<str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d show almost identical variati<strong>on</strong>s with 42 % of field change rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g whenchanges l<strong>on</strong>ger than 400 years are removed. In c<strong>on</strong>trast, CALS7K.1h is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated byslower field change mechanisms, with <strong>on</strong>ly 18 % of field changes rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g when the


85 Chapter 4 — Archeomagnetic field(a) CALS7K.1h B r , TL plot at 60 ◦ N(b) gufm1d B r , TL plot at 60 ◦ N19505195051900419004185032185032Time (yrs)1800175010−1Time (yrs)1800175010−11700−21700−2−3−31650−41650−4−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(c) CALS7K.1h B r , TL plot at 20 ◦ N−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(d) gufm1d B r , TL plot at 20 ◦ N19505195051900419004185032185032Time (yrs)1800175010−1Time (yrs)1800175010−11700−21700−2−3−31650−41650−4−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e) CALS7K.1h B r , TL plot at 0 ◦ N−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(f) gufm1d B r , TL plot at 0 ◦ N19505195051900419004185032185032Time (yrs)1800175010−1Time (yrs)1800175010−11700−21700−2−3−31650−41650−4−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(g) CALS7K.1h B r , TL plot at 40 ◦ S−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(h) gufm1d B r , TL plot at 40 ◦ S19505195051900419004185032185032Time (yrs)1800175010−1Time (yrs)1800175010−11700−21700−2−3−31650−41650−4−5−5−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)Figure 4.3: TL plots of B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d.Time-l<strong>on</strong>gitude (TL) plots of the unprocessed radial magnetic field (B r ) from the fieldmodels CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d from 1600A.D. to 1950A.D. at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a),(b); at 20 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d); at the Equator <str<strong>on</strong>g>in</str<strong>on</strong>g> (e), (f) <str<strong>on</strong>g>and</str<strong>on</strong>g> at the 40 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (g), (h).


86 Chapter 4 — Archeomagnetic fieldfilter<str<strong>on</strong>g>in</str<strong>on</strong>g>g threshold is 400 years. Unfortunately, this 18 % is the most poorly c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>edcomp<strong>on</strong>ent of CALS7K.1h, given the large errors associated with dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>direct recordsof the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the past. It is clearly not sensible to filter CALS7K.1h with athreshold of 400 years, but it may be reas<strong>on</strong>able to filter it with a l<strong>on</strong>ger threshold ofa few thous<str<strong>on</strong>g>and</str<strong>on</strong>g> years <str<strong>on</strong>g>in</str<strong>on</strong>g> which a significant percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al variability <str<strong>on</strong>g>in</str<strong>on</strong>g> theunprocessed model is captured.100%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)80604020CALS7K.1hgufm1dgufm1010 100 1000 10000High pass filter cut−off threshold (yrs)Figure 4.4: Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h compared to gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1.Graphs show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> P v , as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>(2.6), captured by ˜B r as the choice of filter cut-off is varied <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h, gufm1d <str<strong>on</strong>g>and</str<strong>on</strong>g>gufm1, over the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1600A.D. to 1950A.D.Figure 4.5 gives further <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the fidelity with which field evoluti<strong>on</strong> processesare captured. It documents changes <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude-azimuthal speed (LAS) power plots forCALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d as the filter-cut off threshold is varied. When <strong>on</strong>ly the timeaveragedaxisymmetric field is removed, but no filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g is carried out the LAS powerplots for the two model show some similarities. A slow eastward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field feature isdom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant at mid to high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere (at approximately 60 ◦ N)<str<strong>on</strong>g>and</str<strong>on</strong>g> a westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature is observed at mid to low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northernhemisphere. However, the str<strong>on</strong>g southern hemisphere feature seen at 50 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d isabsent from CALS7K.1h, emphasis<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>complete coverage <str<strong>on</strong>g>in</str<strong>on</strong>g> data coverage <str<strong>on</strong>g>in</str<strong>on</strong>g> thesouthern hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this time <str<strong>on</strong>g>in</str<strong>on</strong>g>terval.For a filter threshold of 2500 years, the str<strong>on</strong>g southern hemisphere signal <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1dis still not captured, but a str<strong>on</strong>g westward signal is found for both models at low tomid latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere, with an azimuthal speed of approximately20 km yr −1 , but with a much larger spread of power <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1h. When the filterthreshold is decreased further to 800 years an eastward signal at 45 ◦ N is seen <str<strong>on</strong>g>in</str<strong>on</strong>g> bothmodels, <str<strong>on</strong>g>and</str<strong>on</strong>g> both still show a low latitude signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere. F<str<strong>on</strong>g>in</str<strong>on</strong>g>allywhen the filter threshold is 400 years,the two models both have signals <str<strong>on</strong>g>in</str<strong>on</strong>g> the northernhemisphere (at round 50 ◦ N) that were <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous chapter as be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the


87 Chapter 4 — Archeomagnetic field(a) CALS7K.1h (B r − ¯B r ) LAS plot(b) gufm1d (B r − ¯B r ) LAS plot−60550500−60400Latitude (degrees)−300450400350300250200−30150100− 60 50Latitude (degrees)−300350300250200150−30100− 60 50−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(c) CALS7K.1h ˜B r , LAS, t c =2500yr (d) gufm1d ˜B r , LAS, t c =2500yr−6040−60803570−3030−3060Latitude (degrees)0−30252015Latitude (degrees)0−305040301020− 605− 6010−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(e) CALS7K.1h ˜B r , LAS, t c =800yr (f) gufm1d ˜B r , LAS t c =800yr−608−60725Latitude (degrees)−300−306543Latitude (degrees)−300−302015102− 601− 605−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )(g) CALS7K.1h ˜B r , LAS, t c =400yr (h) gufm1d ˜B r , LAS, t c =400yr−6014−6098−3012−307Latitude (degrees)01086Latitude (degrees)0654304303260−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km(yr) −1 )260 1−60 −40 −20 0 20 40 60Eastward z<strong>on</strong>al phase speed (km(yr) −1 )Figure 4.5: LAS power plots of ˜B r from CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d.Latitude-azimuthal speed (LAS) power plots of radial magnetic field with time-averagedaxisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered ( ˜B r ) from CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d from1630A.D. to 1910A.D. with no filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> a high pass filter threshold of2500 yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d); 800 years <str<strong>on</strong>g>in</str<strong>on</strong>g> (e), (f) <str<strong>on</strong>g>and</str<strong>on</strong>g> 400 years <str<strong>on</strong>g>in</str<strong>on</strong>g> (g), (h).


88 Chapter 4 — Archeomagnetic fieldresult of an m= 2 or 3 features travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward directi<strong>on</strong>s.However, it must be emphasised that CALS7K.1h fails to capture the str<strong>on</strong>g equatorialor southern hemisphere signals <strong>on</strong> these time scales.The c<strong>on</strong>clusi<strong>on</strong> from the comparis<strong>on</strong> of CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1d is that gufm1d with itstruncated power spectra captures the field changes <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>gly well but thatCALS7K.1h has more difficulty. CALS7K.1h does, however, yield useful <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong>l<strong>on</strong>g wavelength field changes at mid to high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere <strong>on</strong>time scales l<strong>on</strong>ger than around 800 years. In particular, it can determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether thepredom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant azimuthal moti<strong>on</strong> of field features at a particular latitude is either eastwardor westward. If <strong>on</strong>ly short time scales shorter than 800 years are reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, spuriousfeatures dependent <strong>on</strong> the heterogeneous data distributi<strong>on</strong> arise. In appears that thedata coverage <str<strong>on</strong>g>in</str<strong>on</strong>g> much of the southern <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacific hemispheres is then <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient tocapture even large scale, slow field evoluti<strong>on</strong> processes.4.3 Space-time analysis of CALS7K.1In this secti<strong>on</strong> the space-time spectral analysis method is applied to B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfacefor the full span of CALS7K.1. The <str<strong>on</strong>g>in</str<strong>on</strong>g>terval from 2000B.C. to 1700A.D. is then focused<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> results presented after its time-averaged axisymmetric part <str<strong>on</strong>g>and</str<strong>on</strong>g> the comp<strong>on</strong>entevolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales l<strong>on</strong>ger than 2500 years have been removed. Choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g a muchl<strong>on</strong>ger high pass filter threshold compared to that used when study<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1 is reas<strong>on</strong>able<str<strong>on</strong>g>in</str<strong>on</strong>g> this case because the timespan of the model is much l<strong>on</strong>ger. This choice also lessensthe problems associated with focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> field changes happen<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales fasterthan 800 years, for which the model was found to be unreliable <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>.4.3.1 Analysis of unprocessed radial magnetic field (B r ) for full span of CALS7K.1Snapshots of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from CALS7K.1 <str<strong>on</strong>g>in</str<strong>on</strong>g> 5000 B.C., 3650 B.C., 2300 B.C.,950 B.C, 400 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 1750 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.6 show how the field morphology has variedover the past 7000 years. An animati<strong>on</strong> show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous evoluti<strong>on</strong> of B r over this<str<strong>on</strong>g>in</str<strong>on</strong>g>terval can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A4.3.Moti<strong>on</strong>s of B r field c<strong>on</strong>centrati<strong>on</strong>s are observed both <str<strong>on</strong>g>in</str<strong>on</strong>g> east-west <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> north-southdirecti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1. There is no c<strong>on</strong>certed westward moti<strong>on</strong> of the field, thoughepisodes of both eastward (for example from 2750B.C. to 2200 B.C. near 45 ◦ N) <str<strong>on</strong>g>and</str<strong>on</strong>g>westward moti<strong>on</strong> (for example at near 20 ◦ S from 200 B.C. to 500 B.C.) are observed.The TL plots <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.7 give more precise <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthal fieldmoti<strong>on</strong>.Slow eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong>s are discernible at 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.7a, especiallyafter 1500B.C. At 40 ◦ N the westward moti<strong>on</strong> of a successi<strong>on</strong> of perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r is


89 Chapter 4 — Archeomagnetic field(a) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 5000B.C.(b) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 3650B.C.75.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7(c) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 2300 B.C.(d) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 950 B.C.75.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7(e) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 400 A.D.(f) CALS7K.1, B r at <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1750 A.D.75.64.22.81.40−1.4−2.8−4.2−5.6−775.64.22.81.40−1.4−2.8−4.2−5.6−7Figure 4.6: Snapshots of B r from CALS7K.1 from 5000B.C. to 1750A.D.Unfiltered radial magnetic field (B r ) at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from the model CALS7K.1presented <str<strong>on</strong>g>in</str<strong>on</strong>g> snapshots from 5000 B.C. <str<strong>on</strong>g>in</str<strong>on</strong>g> (a); 3650 B.C. <str<strong>on</strong>g>in</str<strong>on</strong>g> (b); 2300 B.C. <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), 950B.C.; <str<strong>on</strong>g>in</str<strong>on</strong>g> (d) 400 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1750 A.D. <str<strong>on</strong>g>in</str<strong>on</strong>g> (f).


90 Chapter 4 — Archeomagnetic field(a) CALS7K.1, TL plot of B r , 60 ◦ N(b) CALS7K.1, TL plot of B r , 40 ◦ NTime (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(c) CALS7K.1, TL plot of B r , 20 ◦ N543210−1−2−3−4−5Time (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(d) CALS7K.1, TL plot of B r , 0 ◦ N543210−1−2−3−4−5Time (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(e) CALS7K.1, TL plot of B r , 10 ◦ S543210−1−2−3−4−5Time (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(f) CALS7K.1, TL plot of B r , 20 ◦ S543210−1−2−3−4−5Time (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(g) CALS7K.1, TL plot of B r , 40 ◦ S543210−1−2−3−4−5Time (yrs)150010005000−500−1000−1500−2000−2500−3000−3500−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)(h) CALS7K.1, TL plot of B r , 60 ◦ S543210−1−2−3−4−515005150051000410004Time (yrs)5000−500−1000−1500−2000−2500−30003210−1−2Time (yrs)5000−500−1000−1500−2000−2500−30003210−1−2−3500−3−3500−3−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)−4−5−4000−4500−5000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude (degrees east)−4−5Figure 4.7: TL plots of B r from CALS7K.1.Unfiltered B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from the model CALS7K.1 <str<strong>on</strong>g>in</str<strong>on</strong>g> time-l<strong>on</strong>gitude plots atlatitudes (a) 60 ◦ N, (b) 40 ◦ N, (c) 20 ◦ N, (d) 0 ◦ N, (e) 10 ◦ S, (f) 20 ◦ S, (g) 40 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> (h) 50 ◦ S.


91 Chapter 4 — Archeomagnetic fieldparticularly prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent between 1500 B.C to 500 A.D from 150 ◦ E around 500 B.C. to60 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 250 B.C., with slow eastward moti<strong>on</strong> of field features observed close to 120 ◦ Efrom 500 A.D. to 1500 A.D.. At low latitudes, there are some weak signals of fieldfeatures drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (usually westwards) between 1500 A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> 1950 A.D. (see previoussecti<strong>on</strong> for a discussi<strong>on</strong> <strong>on</strong> how these are similar too but d<strong>on</strong>’t quite correctly capturethe moti<strong>on</strong>s seen <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1600 A.D. to 1950A.D.).At 40 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> at higher latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere there is no evidence foreither eastward or westward moti<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s: it seems likely that thisis primarily because of data limitati<strong>on</strong>s (the sparsity of measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> the southernhemisphere) rather than the operati<strong>on</strong> of any different physical mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g> this regi<strong>on</strong>.Prior to 2000 B.C. no evidence is found at any latitude <str<strong>on</strong>g>in</str<strong>on</strong>g> unprocessed TL plots ofazimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features <str<strong>on</strong>g>in</str<strong>on</strong>g> B r . Instead, the field <str<strong>on</strong>g>in</str<strong>on</strong>g> this early part of CALS7K.1,is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by stati<strong>on</strong>ary field features some of which slowly change amplitude <strong>on</strong>millennial time scales.4.3.2 Analysis of ˜B r from 2000 B.C. to 1700 A.D.The TL plots of unprocessed B r from CALS7K.1 suggest that a number of azimuthallymov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features may be present dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 2000 B.C. to 1700 A.D., suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat this <str<strong>on</strong>g>in</str<strong>on</strong>g>terval should be studied more closely, focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the millennial timescale for which CALS7K.1 c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s reas<strong>on</strong>able power. As a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary step <str<strong>on</strong>g>in</str<strong>on</strong>g> this process,the amount of field change captured when different high pass filter thresholds wereapplied to the CALS7K.1 model was studied to facilitate the choice of a sensible filterthreshold. The results of this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.8.L<strong>on</strong>g term variati<strong>on</strong>s dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1, with around 20 % offield changes not accounted for when changes <strong>on</strong> time scales l<strong>on</strong>ger than 10000 years areremoved. Only 25 % of field changes are captured when the threshold is 1000 years, whilejust over 50 % are captured when the threshold is 2500 years. The field changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong> this 1000 to 2500 year time scale are likely to be of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, so 2500 years was chosenas the high pass filter threshold. In this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>, CALS7K.1 was gridded at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface at <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals of 2 years, to allow the f<str<strong>on</strong>g>in</str<strong>on</strong>g>er details of the field evoluti<strong>on</strong> to beobserved <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> order to achieve the best possible resoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the latitude-azimuthalspeed (LAS) power plots.The evoluti<strong>on</strong> of ˜B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from CALS7K.1 from 2000 B.C. to 1700 A.D.(after the time-averaged axisymmetric field <str<strong>on</strong>g>and</str<strong>on</strong>g> field changes with periods l<strong>on</strong>ger than2500 years have been removed) can be followed <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A4.4. The str<strong>on</strong>gest fieldfeatures are located at mid to high latitudes under Eurasia where episodes of botheastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong> are observed. These episodes do not appear to c<strong>on</strong>sistof simple periodic oscillati<strong>on</strong>s but are highly time-dependent. The presence of rapid


92 Chapter 4 — Archeomagnetic field100CALS7K.1%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)806040200100 1000 10000 100000High pass filter cut−off threshold (yrs)Figure 4.8: Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 as a functi<strong>on</strong> of filter threshold period.Graph show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> P v , as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6),captured by ˜B r as the choice of high pass filter threshold is varied for CALS7K.1 overits full span from 5000B.C. to 1950A.D..moti<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s at low latitudes is <str<strong>on</strong>g>in</str<strong>on</strong>g>trigu<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>vites speculati<strong>on</strong> thatthey could be the ill-resolved signature of the equatorial field evoluti<strong>on</strong> processes similarto those observed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the historical <str<strong>on</strong>g>in</str<strong>on</strong>g>terval. TL plots of the processed magnetic fieldfrom 2000B.C. to 1700A.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> associated FK power spectra are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.9.At 60 ◦ N, high amplitude, m=1 <str<strong>on</strong>g>and</str<strong>on</strong>g> m=2 westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features with periodaround 1400 years (<str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal speeds ∼ 5 km yr −1 ) are seen at eastern l<strong>on</strong>gitudesfrom 2000 B.C. to 1000 A.D. At westward l<strong>on</strong>gitudes after 500A.D. weaker m=2 eastwardmov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features are found (for example that mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 90 ◦ W <str<strong>on</strong>g>in</str<strong>on</strong>g> 700 A.D. to 30 ◦ E<str<strong>on</strong>g>in</str<strong>on</strong>g> 1400 A.D at an average speed of also around 5 km yr −1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface). At 40 ◦ Nco-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features are observed. These seem toc<strong>on</strong>verg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Λ shaped features, (for example the features mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g from eastwards from105 ◦ W <str<strong>on</strong>g>in</str<strong>on</strong>g> 200 B.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> westwards from 180 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 0 A.D. to meet at 15 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 700 A.D.).The eastward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s are observed to be weaker <str<strong>on</strong>g>and</str<strong>on</strong>g> of smaller lengthscale (m=4 rather than m = 3) while both eastwards <str<strong>on</strong>g>and</str<strong>on</strong>g> westwards mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g featureshave similar azimuthal speeds of ∼7 km yr −1 .The clearest evidence of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent moti<strong>on</strong> of radial magneticfield anomalies is found at low latitudes (at the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> especially at 20 ◦ S) wherem=2, 3 features with characteristic periods of approximately 1250 years are observed.The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g example is a feature at 20 ◦ S that moves from 90 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 1200B.C. to-60 ◦ E <str<strong>on</strong>g>in</str<strong>on</strong>g> 200A.D. (average speed of approximately 0.11 ◦ yr −1 , or 7 km yr −1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface).


94 Chapter 4 — Archeomagnetic fieldIn figure 4.10 the latitude-azimuthal speed (LAS) power plots of ˜B r from CALS7K.1(2000B.C to 1700A.D.), with no high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g applied <str<strong>on</strong>g>and</str<strong>on</strong>g> a high pass filter thresholdof 2500 years are presented. The unfiltered LAS plot shows the str<strong>on</strong>gest signals <str<strong>on</strong>g>in</str<strong>on</strong>g> therecord dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this <str<strong>on</strong>g>in</str<strong>on</strong>g>terval appear at high latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere.(a) CALS7K.1 (B r − ¯B r ), LAS plot(b) CALS7K.1 ˜B r , LAS, t c =2500 yrs−60250−6060Latitude (degrees)−300−30200150100Latitude (degrees)−300−3050403020− 6050− 6010−20 −15 −10 −5 0 5 10 15 20Eastward z<strong>on</strong>al phase speed (km(yr) −1 )−20 −15 −10 −5 0 5 10 15 20Eastward z<strong>on</strong>al phase speed (km(yr) −1 )Figure 4.10: LAS plots of ˜B r of CALS7K.1 from 2000B.C to 1700A.D.Latitude-azimuthal speed (LAS) power plots of the processed radial magnetic field ˜B rwith time averaged axisymmetric comp<strong>on</strong>ent subtracted <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with cutoffperiod 2500 years, of the field models CALS7K.1 from 2000B.C to 1700A.D..When high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g is used to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate signals with time scales l<strong>on</strong>ger than 2500years (the case dealt with <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of figure 4.9), the LASpower plot of 4.10b shows that the str<strong>on</strong>gest rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g signals are slow (∼ 5 km yr −1 )<str<strong>on</strong>g>and</str<strong>on</strong>g> westwards at high latitudes (∼ 60 ◦ N), though similar but weaker eastward signalsare also present. Signals <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g both some eastward but predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly westwardfield moti<strong>on</strong>s at latitudes ∼60 ◦ N were also found when gufm1 was studied <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3(see, for example, figure 3.10).There are also weak <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.10 of a lower amplitude, faster mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, signalbetween 20 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> the equator, though this is an order of magnitude weaker than thehigh latitude signal (note also the difference between the amplitudes of the high latitude<str<strong>on</strong>g>and</str<strong>on</strong>g> low latitude signals <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plots <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.9). This suggests that CALS7K.1does show <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent signals at low latitudes, butthat us<str<strong>on</strong>g>in</str<strong>on</strong>g>g filter cut-off of 2500 years they are much weaker than the higher latitudesignals. This was also the case for gufm1 when this was studied with a 2500 year filterthreshold. A caveat to these observati<strong>on</strong>s is that the low latitude signal might be <strong>on</strong>lypoorly resolved because of the lack of coverage of CALS7K.1 <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere(see appendix B).


4.3.3 Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> processes95 Chapter 4 — Archeomagnetic fieldAs was discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.5 the issue of whether there are systematic differences <str<strong>on</strong>g>in</str<strong>on</strong>g> theevoluti<strong>on</strong> of the geomagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic <str<strong>on</strong>g>and</str<strong>on</strong>g> Pacific hemispheres has beendebated for many years. CALS7K.1 is a suitable tool for <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g whether any suchdifference has persisted for several millennia, or whether it is simply a peculiarity of thestructure of the geomagnetic field over the historical era.Time-l<strong>on</strong>gitude (TL) plots of CALS7K.1, with the time-averaged axisymmetric field<str<strong>on</strong>g>and</str<strong>on</strong>g> fields evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales l<strong>on</strong>ger than 2500 years removed, are presented forthe Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.11. These illustrate that the str<strong>on</strong>gest,spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, patterns of field evoluti<strong>on</strong> are predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly found <str<strong>on</strong>g>in</str<strong>on</strong>g>the Atlantic hemisphere, particularly at low latitudes. However, there are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s ofsimilar patterns of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere, especially at mid-latitudes<str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere where data coverage at Earth’s surface is best. At lowerlatitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere the field evoluti<strong>on</strong> under the Pacific is lower<str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> less c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>gly wave-like, though the limitati<strong>on</strong>s of the data used toc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g> the field <str<strong>on</strong>g>in</str<strong>on</strong>g> these regi<strong>on</strong>s should be borne <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d.On the basis of CALS7K.1, the tentative c<strong>on</strong>clusi<strong>on</strong> therefore appears to be that azimuthallydrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field c<strong>on</strong>centrati<strong>on</strong>s at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface have <str<strong>on</strong>g>in</str<strong>on</strong>g> the past beenpresent the Pacific hemisphere, especially at northern mid-latitudes. At lower latitudes<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the southern hemisphere, the resoluti<strong>on</strong> of the model does not appear to be goodenough for any def<str<strong>on</strong>g>in</str<strong>on</strong>g>itive statements to be made, but it does seem that field featuresevolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales shorter than 2500 years are of lower amplitude <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacifichemisphere.These results suggest that the field structure has been c<strong>on</strong>sistently different (lower <str<strong>on</strong>g>in</str<strong>on</strong>g>amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> with weaker gradients) at low <str<strong>on</strong>g>and</str<strong>on</strong>g> southern latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphereover the past 3000 years. This does not seem to have been the case at mid-latitudes<str<strong>on</strong>g>in</str<strong>on</strong>g> the northern hemisphere. Possible explanati<strong>on</strong>s for this behaviour are discussed further<str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8.4.3.4 Discussi<strong>on</strong>The analysis of CALS7K.1 certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly provides evidence that azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g (botheastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward) c<strong>on</strong>centrati<strong>on</strong>s of B r are present at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1<strong>on</strong> millennial time scales. However, whether the models are accurately characteris<str<strong>on</strong>g>in</str<strong>on</strong>g>g thepatterns of field evoluti<strong>on</strong> (recall the results of the comparis<strong>on</strong> between CALS7K.1h <str<strong>on</strong>g>and</str<strong>on</strong>g>gufm1) rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s questi<strong>on</strong>able. To reiterate these problems, <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 4.12 TL plots, FKplots <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots of ˜B r from CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1 (not gufm1d) from 1630 A.D.to 1910 A.D are presented. In both cases the time-averaged field <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <strong>on</strong> timescales l<strong>on</strong>ger than 2500 years have been removed.


96 Chapter 4 — Archeomagnetic field(a) CALS7K.1 ˜B r at 40 ◦ N (Pacific)(b) CALS7K.1 ˜B r at 40 ◦ N (Atlantic)15001215001210009.67.210009.67.25004.85004.8Time / yrs0−5002.40−2.4Time / yrs0−5002.40−2.4−1000−4.8−7.2−1000−4.8−7.2−1500−9.6−1500−9.6−200090 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east(c) CALS7K.1 ˜B r at 0 ◦ N (Pacific)−12−2000−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees east(d) CALS7K.1 ˜B r at 0 ◦ N (Atlantic)−12150081500810006.44.810006.44.85003.25003.2Time / yrs0−5001.60−1.6Time / yrs0−5001.60−1.6−1000−3.2−4.8−1000−3.2−4.8−1500−6.4−1500−6.4−200090 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east(e) CALS7K.1 ˜B r at 20 ◦ S (Pacific)−8−2000−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees east(f) CALS7K.1 ˜B r at 20 ◦ S (Atlantic)−8150081500810006.44.810006.44.85003.25003.2Time / yrs0−5001.60−1.6Time / yrs0−5001.60−1.6−1000−3.2−4.8−1000−3.2−4.8−1500−6.4−1500−6.4−200090 120 150 180 210 240 270L<strong>on</strong>gitude / degrees east−8−2000−90 −60 −30 0 30 60 90L<strong>on</strong>gitude / degrees east−8Figure 4.11: Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1.Time-l<strong>on</strong>gitude (TL) plots of the evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the east-west directi<strong>on</strong> of processed radialmagnetic field from CALS7K.1 between 2000B.C <str<strong>on</strong>g>and</str<strong>on</strong>g> 1700A.D., with time averagedaxisymmetric field removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with cut-off period t c of 2500 years(˜B r ), separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to the Pacific <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic hemispheres. (a), (c), (e) show the evoluti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere at 20 ◦ N, 0 ◦ N, <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S respectively. (b), (d), (f) show theevoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere at 20 ◦ N, 0 ◦ N, <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 ◦ S respectively.


97 Chapter 4 — Archeomagnetic field(a) CALS7K.1h ˜B r , TL plot at 0 ◦ N(b) gufm1 ˜B r , TL plot at 0 ◦ N1900101900208161850618501248Time / yrs1800175020−2Time / yrs1800175040−41700−4−61700−8−12−81650−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) CALS7K.1h ˜B r , FK plot at 0 ◦ N1650−16−20−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) gufm1 ˜B r , FK plot at 0 ◦ NFrequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(e) CALS7K.1h ˜B r , LAS plot at 0 ◦ N17151311975310Frequency / cycles per year0.010.0080.0060.0040.0020−10−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10W Z<strong>on</strong>al spatial wavenumber E(f) gufm1 ˜B r , LAS plot at 0 ◦ N8.57.56.55.54.53.52.51.50.50−6040−60803570−3030−3060Latitude (degrees)0−30252015Latitude (degrees)0−305040301020− 605− 6010−60 −40 −20 0 20 40 60−60 −40 −20 0 20 40 60Azimuthal Eastward speed z<strong>on</strong>al (km phase −1yr ), positive speed (km(yr) is eastwards−1 )Eastward z<strong>on</strong>al phase −1Azimuthal speed (km yr ), positive speed (km(yr) is eastwards−1 )Figure 4.12: TL, FK <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plots plots from CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1.Time-l<strong>on</strong>gitude (TL) plots <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency-wavenumber (FK) power spectra from theequator <str<strong>on</strong>g>and</str<strong>on</strong>g> latitude-azimuthal speed (LAS) plots of the processed radial magnetic field˜B r with time averaged axisymmetric comp<strong>on</strong>ent subtracted <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered withcut-off period 2500 years, from the field models CALS7K.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1 from 1630B.C to1910A.D.


98 Chapter 4 — Archeomagnetic fieldFigure 4.12a,b illustrates that CALS7K.1 correctly registers the presence of westwardmov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the historical <str<strong>on</strong>g>in</str<strong>on</strong>g>terval, but because it cannot image theshorter length scale features reliably (see figure 4.12c,d) the space-time paths of thefield c<strong>on</strong>centrati<strong>on</strong>s are not accurately captured. N<strong>on</strong>etheless, the azimuthal directi<strong>on</strong>of moti<strong>on</strong>, approximate latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> the azimuthal speed of the str<strong>on</strong>gest LAS plotsignals <str<strong>on</strong>g>in</str<strong>on</strong>g> northern hemisphere (an eastward signal at 45 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> a faster westward signalat around 5 ◦ N) are also found <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1. It should <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong> be noted that thiscomparis<strong>on</strong> is not without limitati<strong>on</strong>s because field variati<strong>on</strong>s <strong>on</strong> millennial time scales<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> these plots are not reliably captured by gufm1 because of its comparativelyshort timespan.4.4 Summary of applicati<strong>on</strong> of space-time spectral analysis to CALS7K.1In this chapter the space-time evoluti<strong>on</strong> of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface over the past 7000 yearsas captured <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 has been discussed. Comparis<strong>on</strong> of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1d<str<strong>on</strong>g>and</str<strong>on</strong>g> CALS7K.1 dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval 1600 A.D. to 1950 A.D. has shown that CALS7K.1 isnot sufficiently accurate to precisely characterise field evoluti<strong>on</strong> processes with azimuthalwavenumbers greater than 5 or with periods shorter than 1000 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> that this results<str<strong>on</strong>g>in</str<strong>on</strong>g> the mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of power <str<strong>on</strong>g>in</str<strong>on</strong>g>to larger length scales (smaller wavenumbers). Comparis<strong>on</strong>of gufm1 with gufm1d dem<strong>on</strong>strated that this loss of resoluti<strong>on</strong> was primarily a result ofthe data errors <str<strong>on</strong>g>and</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the data distributi<strong>on</strong>, rather than be<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>sequenceof the limited spherical harm<strong>on</strong>ic resoluti<strong>on</strong> (heavy damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g) of the model.On millennial time scales, both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong>s of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent field anomalies are observed <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1. This suggests that thewestward drift of the geomagnetic field may not be a def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g feature of geomagneticsecular variati<strong>on</strong> as has previously been believed <strong>on</strong> the basis of observati<strong>on</strong>s from thepast 400 years. Instead episodes of azimuthal moti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westwarddirecti<strong>on</strong>s seem to occur, particularly at mid-latitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> millennial time scales.


99Chapter 5Applicati<strong>on</strong> of the space-time spectralanalysis technique to output from ac<strong>on</strong>vecti<strong>on</strong>-driven geodynamo model5.1 Introducti<strong>on</strong>In the past decade, self c<strong>on</strong>sistent numerical models of the generati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong> ofa magnetic field result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from c<strong>on</strong>vecti<strong>on</strong>-driven fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a 3D spherical shellgeometry (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g all coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> feedback mechanisms) has dem<strong>on</strong>strated the feasibilityof the geodynamo mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> as the source of Earth’s magneticfield (Dormy et al., 2000; Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, 2000a; K<strong>on</strong>o <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, 2003). Insuch numerical models, the mechanisms produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field at theouter boundary can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed directly because the magnetic, velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> temperaturefields are known at all po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g> space <str<strong>on</strong>g>in</str<strong>on</strong>g>side the model doma<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> theapplied boundary c<strong>on</strong>diti<strong>on</strong>s are known. This scenario is <str<strong>on</strong>g>in</str<strong>on</strong>g> strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>trast to the casefor Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> where <strong>on</strong>ly the magnetic field at the outer boundary is known, <str<strong>on</strong>g>and</str<strong>on</strong>g> then<strong>on</strong>ly to limited resoluti<strong>on</strong>.Although present models operate <str<strong>on</strong>g>in</str<strong>on</strong>g> a parameter regime far from that estimated for theEarth (See appendix C) they do succeed <str<strong>on</strong>g>in</str<strong>on</strong>g> gett<str<strong>on</strong>g>in</str<strong>on</strong>g>g the order<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the magnitude of terms<str<strong>on</strong>g>in</str<strong>on</strong>g> the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s correct <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly dipolar magneticfield (see, for example, Christensen et al. (1999)). Some workers have even suggestedthat present models can accurately simulate aspects of the morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong> ofthe historical geomagnetic field (Christensen et al., 1998; Kuang <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, 1998),though this asserti<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s c<strong>on</strong>tentious because of differences <str<strong>on</strong>g>in</str<strong>on</strong>g> time scales betweenthe models <str<strong>on</strong>g>and</str<strong>on</strong>g> the Earth (see J<strong>on</strong>es (2000), Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> thediscussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix C).In this chapter, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks between patterns of magnetic field evoluti<strong>on</strong> at the outer surface <str<strong>on</strong>g>and</str<strong>on</strong>g>patterns of flow evoluti<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong> of two examples of geodynamo


100 Chapter 5 — Dynamo model outputmodels are <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the space-time spectral analysis techniques developed <str<strong>on</strong>g>in</str<strong>on</strong>g>chapter 2 with three primary objectives <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d:(i) To determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether patterns of field evoluti<strong>on</strong> at the outer surface bear anysystematic resemblance to historical (Jacks<strong>on</strong> et al., 2000) or millennial (Korte <str<strong>on</strong>g>and</str<strong>on</strong>g>C<strong>on</strong>stable, 2005) time scale changes observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the geomagnetic field. Attenti<strong>on</strong>will focus <strong>on</strong> whether azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g radial field c<strong>on</strong>centrati<strong>on</strong>s are found atlow latitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> whether field c<strong>on</strong>centrati<strong>on</strong>s move c<strong>on</strong>sistently westwards (as <str<strong>on</strong>g>in</str<strong>on</strong>g>gufm1), or <str<strong>on</strong>g>in</str<strong>on</strong>g> both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward directi<strong>on</strong>s (as observed <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1—see chapter 4).(ii) To determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether the mechanism produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>sof radial magnetic field found at low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> many geodynamo models(Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, 1997; Ols<strong>on</strong> et al., 1999; K<strong>on</strong>o et al., 2000) can bec<strong>on</strong>sistently classified as either bulk advecti<strong>on</strong> or wave propagati<strong>on</strong>.(iii) To determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the limitati<strong>on</strong>s of view<str<strong>on</strong>g>in</str<strong>on</strong>g>g a truncated representati<strong>on</strong> of the radialmagnetic field at the outer boundary (see, for example, Rau et al. (2000)) <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g how this might affect attempts to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>core</str<strong>on</strong>g>flow moti<strong>on</strong>s caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the observed field evoluti<strong>on</strong>.Geodynamo model output <str<strong>on</strong>g>in</str<strong>on</strong>g> two different parameter regimes generated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the MAGICcode of Wicht (2002) are used as the data sets <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter. The two runs <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatedare (i) a very simple dynamo illustrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> an easilycomprehensible manner but with parameters far from Earth’s regime (DYN1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) amuch more complex dynamo with parameters as close as is currently numerically possibleto Earth’s parameter regime (DYN2). Appendix C summarises the modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g strategiesadopted <str<strong>on</strong>g>in</str<strong>on</strong>g> MAGIC, lists the n<strong>on</strong>-dimensi<strong>on</strong>al parameters def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g DYN1 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2 <str<strong>on</strong>g>and</str<strong>on</strong>g>discusses how best to scale geodynamo model output to the Earth.5.2 DYN1: (E=2×10 −2 , P r=1, P r m =10, Ra/Ra c ∼ 3, R m ∼ 100)The rati<strong>on</strong>ale beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d study<str<strong>on</strong>g>in</str<strong>on</strong>g>g DYN1 is twofold. The primary reas<strong>on</strong> is its c<strong>on</strong>vecti<strong>on</strong>drivenflow is large scale, so its dynamics are not too complicated <str<strong>on</strong>g>and</str<strong>on</strong>g> the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>gmechanisms can be easily grasped. It is however also possible that at very low Ekmannumber <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, the length scale of flows will be large due to a lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g orderbalance between Coriolis <str<strong>on</strong>g>and</str<strong>on</strong>g> Lorentz forces (see, for example, Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert(2000)). In this case DYN1 might yield some useful <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences <strong>on</strong> the relati<strong>on</strong>ship betweenlarge scale c<strong>on</strong>vecti<strong>on</strong>-driven flows <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field evoluti<strong>on</strong> processes.


5.2.1 Radial magnetic field (B r ) from DYN1101 Chapter 5 — Dynamo model outputIn figure 5.1 snapshots of the radial magnetic field B rat the outer boundary fromDYN1 are presented. An animati<strong>on</strong> of snapshots can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A5.1. Thefield morphology is less dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated than for B ror CALS7K.1.at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1Field features are predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly large scale <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>e are stati<strong>on</strong>arythroughout the run (1 magnetic diffusi<strong>on</strong> time τ η∼ 1.22 × 10 5 years, this run lasts0.106τ η ∼ 13 × 10 3 years, much l<strong>on</strong>ger than the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval covered by gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> abouttwice as l<strong>on</strong>g as the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval covered by CALS7K.1).The most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent B r c<strong>on</strong>centrati<strong>on</strong>s fall <str<strong>on</strong>g>in</str<strong>on</strong>g>to two classes. Firstly there are highlatitude (40 — 60 ◦ N or S) normal polarity flux c<strong>on</strong>centrati<strong>on</strong>s that are essentially equatoriallyantisymmetric (E A ) <str<strong>on</strong>g>in</str<strong>on</strong>g> B r (as would be produced by an equatorially symmetric(E S ) feature <str<strong>on</strong>g>in</str<strong>on</strong>g> the velocity field — see appendix E for a descripti<strong>on</strong> of equatorial symmetries).An example of this type of feature can be seen <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.1f near 120 ◦ W <str<strong>on</strong>g>and</str<strong>on</strong>g>45 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> S (the map projecti<strong>on</strong>s are centred at 0 ◦ E).The sec<strong>on</strong>d obvious mechanism of field evoluti<strong>on</strong> c<strong>on</strong>sists of a westward drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g pair oflow latitude flux c<strong>on</strong>centrati<strong>on</strong>s as is seen clearly <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.1c,d,e. An example of sucha feature is seen form<str<strong>on</strong>g>in</str<strong>on</strong>g>g after t = 0.04τ η near 15 ◦ W. The field c<strong>on</strong>centrati<strong>on</strong>s move,then move coherently for about 50 ◦ l<strong>on</strong>gitude (0.87r 0 where r 0 is the radius of the outerboundary or 3040 km scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the Earth) by t = 0.1τ η (scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magneticdiffusi<strong>on</strong> time this equates to an <str<strong>on</strong>g>in</str<strong>on</strong>g>terval of 5000yrs). Their average drift speed is thus ∼17 r 0 τη−1 or 0.6 km yr −1 . This is c<strong>on</strong>siderably slower than the low latitude flux featuresdiscussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4, though there are problems with relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g time scales <str<strong>on</strong>g>in</str<strong>on</strong>g>dynamo models to time scales <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see appendix C for a discussi<strong>on</strong>).The azimuthal evoluti<strong>on</strong> of B r is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.2. The time-l<strong>on</strong>gitude (TL) plots athigh latitude show <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals of slow eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong>s; unfortunately, theassociated frequency-wavenumber (FK) plots are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by m=0 axisymmetric fieldfluctuati<strong>on</strong>s. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, at low latitudes, azimuthal moti<strong>on</strong>s of reversed fieldfeatures are clearly observed even without any field process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.2b,e. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce theTL plots show moti<strong>on</strong> of isolated flux features, the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g FK power spectra c<strong>on</strong>sistof l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear shaped maxima pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g through the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> with gradient corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to theazimuthal speed of the field feature, rem<str<strong>on</strong>g>in</str<strong>on</strong>g>iscent of the results from the analysis of thesynthetic model SPOT <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2.Processed radial magnetic field from DYN1 (˜B r )To obta<str<strong>on</strong>g>in</str<strong>on</strong>g> further <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the azimuthal evoluti<strong>on</strong> of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1, follow<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe procedures outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2. The time-averaged axisymmetric field wasremoved <str<strong>on</strong>g>and</str<strong>on</strong>g> the time series of the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (B r - ¯B r ) were high-pass filtered us<str<strong>on</strong>g>in</str<strong>on</strong>g>g arange of filter thresholds. In figure 5.3 the percentage of the variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> B r captured


102 Chapter 5 — Dynamo model output(a) DYN1 B r at r 0 (b) DYN1 B r at r 0after 0.019088 τ ηafter 0.0385 τ η1.41.120.840.560.280−0.28−0.56−0.84−1.12−1.41.41.120.840.560.280−0.28−0.56−0.84−1.12−1.4(c) DYN1 B r at r 0 (d) DYN1 B r at r 0after 0.057912 τ ηafter 0.077324τ η1.41.120.840.560.280−0.28−0.56−0.84−1.12−1.41.41.120.840.560.280−0.28−0.56−0.84−1.12−1.4(e) DYN1 B r at r 0 (f) DYN1 B r at r 0after 0.096736 τ ηafter 0.11615τ η1.41.120.840.560.280−0.28−0.56−0.84−1.12−1.41.41.120.840.560.280−0.28−0.56−0.84−1.12−1.4Figure 5.1: Snapshots of B r from DYN1 at r 0 .Unfiltered radial magnetic field (B r ) from the model DYN1 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a series ofsnapshots after (a) 0.019088 τ η , (b) 0.0385 τ η , (c) 0.057912 τ η , (d) 0.077324 τ η , (e)0.096736 τ η , (f) 0.077324 τ η . These <str<strong>on</strong>g>and</str<strong>on</strong>g> all subsequent snapshots <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter are <str<strong>on</strong>g>in</str<strong>on</strong>g>Hammer-Aitoff equal area map projecti<strong>on</strong>.


103 Chapter 5 — Dynamo model output(a) B r from DYN1, TL plot at 44 ◦ N(b) B r from DYN1, TL plot at 14 ◦ N0.1210.120.50.80.40.10.60.10.30.40.20.080.20.080.1Time / τ η0.060−0.2Time / τ η0.060−0.10.04−0.40.04−0.2−0.6−0.30.02−0.80.02−0.4−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) B r from DYN1, FK plot at 44 ◦ N−0.50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) B r from DYN1, FK plot at 14 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(e) B r from DYN1, TL plot at 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E2.1251.8751.6251.3751.1250.8750.6250.3750.1250(f) B r from DYN1, TL plot at 60 ◦ S0.120.50.1210.40.80.10.30.10.60.20.40.080.10.080.2Time / τ η0.060−0.1Time / τ η0.060−0.20.04−0.20.04−0.4−0.3−0.60.02−0.40.02−0.8−0.50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) B r from DYN1, FK plot at 20 ◦ S−10−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) B r from DYN1, FK plot, at 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E2.1251.8751.6251.3751.1250.8750.6250.3750.1250Frequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Figure 5.2: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN1.Time-l<strong>on</strong>gitude (TL) plots of the radial magnetic field B r from DYN1 at latitudes 44 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g>(a), at 14 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber(FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


104 Chapter 5 — Dynamo model outputby ˜B r (P v as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6)) is plotted aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the high-pass filter thresholdperiod <str<strong>on</strong>g>in</str<strong>on</strong>g> units of the magnetic diffusi<strong>on</strong> time τ η . In DYN1, 99 % of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al variati<strong>on</strong>is captured when <strong>on</strong>ly field changes l<strong>on</strong>ger than 1 magnetic diffusi<strong>on</strong> time are excluded,while 50 % of the field change can be captured when the threshold is 0.065τ η .100Percent variability of B r captured (from DYN1)%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)8060402001e−03 1e−02 1e−01 1e+00 1e+01Cut off time for high pass filter (τ η)Figure 5.3: B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 as functi<strong>on</strong> of filter cut-off.Graph show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> captured by ˜B r (P v , asdef<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6)), as the choice of high pass filter cut-off is varied.In figure 5.4 latitude-azimuthal speed (LAS) power plots are displayed for a range of highpassfilter thresholds. Without any high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (figure 5.4a) the highest amplitudesignal <str<strong>on</strong>g>in</str<strong>on</strong>g>volves slow, high latitude field moti<strong>on</strong>s, though there is also an <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong> of asignal at low latitudes 1 . Low latitude field moti<strong>on</strong>s are seen most clearly when the highpass filter threshold is around 0.0649τ η , at latitudes of 20 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> S, with azimuthal speedof 15±3 r 0 τη−1 <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with earlier visual estimates 2 . The low latitude features arestill present when the threshold is below 0.02τ η , but are then much weaker.Snapshots of ˜B r from DYN1 c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a filter cut-off threshold of 0.06485 τ ηare presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.5. The high latitude, slowly drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s arenow seen <strong>on</strong>ly via the transient wobbles <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> positi<strong>on</strong>, while low latitude azimuthallymov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features are well recovered, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.5b,c,d.In figure 5.6, the TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra for ˜B r from DYN1 c<strong>on</strong>structed us<str<strong>on</strong>g>in</str<strong>on</strong>g>ga filter cut-off threshold of 0.06485τ η are shown. The low latitude features are nowvery prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent, <str<strong>on</strong>g>and</str<strong>on</strong>g> are flanked by weaker anomalies of the opposite sign, that are ac<strong>on</strong>sequence of the filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. The s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g spot nature of this mechanismis evident <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear features found <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g> figures 5.6d,g.1 s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce at low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle, high amplitude, mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong> is present,the signal <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS power plots is not as dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant as the coherent the wave-tra<str<strong>on</strong>g>in</str<strong>on</strong>g>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1.2 The estimated bounds <strong>on</strong> the azimuthal speeds come from the full width at half maximum of thepeak <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS power plots be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted.


105 Chapter 5 — Dynamo model output(a) LAS plot of DYN1, no filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g(b) LAS plot of DYN1, t c = 0.6485τ η−6025−6014−3020−3012Latitude (degrees)01510Latitude (degrees)01086− 30− 3045− 60− 602−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R (τ ) −1 40 50−1)Azimuthal speed (R τ ), positive is cmbeastwards ηcmb η−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R (τ ) −1 40 50−1)Azimuthal speed (R τ ), positive is cmbeastwards ηcmb η(c) LAS plot of DYN1,t c = 0.1297τ η(d) LAS plot of DYN1, t c = 0.06485τ η−60120−6022Latitude (degrees)−300− 30100806040Latitude (degrees)−300− 3020181614121086− 60−50 −40 −30 −20 −10 0 10 20 30 40 50Eastward z<strong>on</strong>al phase speed −1 (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R cmb(τ η) −1 )Azimuthal speed (R τcmb η ), positive is eastwards204− 60 2−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R cmb(τ η) −1 40 50−1)Azimuthal speed (R τcmb η ), positive is eastwards(e) LAS plot of DYN1, t c = 0.03891τ η(f) LAS plot of DYN1, t c = 0.01297τ η9−608−600.14Latitude (degrees)−300− 30765432Latitude (degrees)−300− 300.120.10.080.060.04− 601− 600.02−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R cmb(τ η) −1 40 50−1)Azimuthal speed (R τcmb η ), positive is eastwards−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R cmb(τ η) −1 40 50−1)Azimuthal speed (R τcmb η ), positive is eastwardsFigure 5.4: LAS plots of ˜B r from DYN1 of for a range of filter thresholds.Latitude-azimuthal speed (LAS) power plots of ˜B r from DYN1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with a threshold of (a) <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ity (nofilter<str<strong>on</strong>g>in</str<strong>on</strong>g>g), (b) 0.6485 τ η , (c) 0.1297 τ η , (d) 0.06485 τ η , (e) 0.03891 τ η <str<strong>on</strong>g>and</str<strong>on</strong>g> (f) 0.01297 τ η .Note the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the scale of the power as the filter cut-off threshold period is varied.


106 Chapter 5 — Dynamo model output(a) DYN1 ˜B r at r 0 (b) DYN1 ˜B r at r 0after 0.019088 τ ηafter 0.0385 τ η0.70.560.420.280.140−0.14−0.28−0.42−0.56−0.70.70.560.420.280.140−0.14−0.28−0.42−0.56−0.7(c) DYN1 B r at r 0 (d) DYN1 B r at r 0after 0.057912 τ ηafter 0.077324 τ η0.70.560.420.280.140−0.14−0.28−0.42−0.56−0.70.70.560.420.280.140−0.14−0.28−0.42−0.56−0.7(e) DYN1 B r at r 0 (f) DYN1 B r at r 0after 0.096736 τ ηafter 0.11615 τ η0.70.560.420.280.140−0.14−0.28−0.42−0.56−0.70.70.560.420.280.140−0.14−0.28−0.42−0.56−0.7Figure 5.5: Snapshots of ˜B r from DYN1 at r 0 .Radial magnetic field with time-averaged axisymmetric part removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high passfiltered with a threshold period of 0.0649 τ η (˜B r ) from the model DYN1 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g>a series of snapshots after (a) 0.019088 τ η , (b) 0.0385 τ η , (c) 0.057912 τ η , (d) 0.077324τ η , (e) 0.096736 τ η , (f) 0.11615 τ η .


107 Chapter 5 — Dynamo model output(a) ˜B r from DYN1, TL plot at 44 ◦ N(b) ˜B r from DYN1, TL plot at 14 ◦ N0.120.30.120.30.240.240.10.180.10.180.120.120.080.060.080.06Time / τ η0.060Time / τ η0.060−0.06−0.060.04−0.120.04−0.12−0.18−0.180.02−0.240.02−0.24−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) ˜B r from DYN1, FK plot at 44 ◦ N−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) ˜B r from DYN1, FK plot at 14 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )6050403020100−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E1.71.51.31.10.90.70.50.30.10(e) ˜B r from DYN1, TL plot at 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )6050403020100−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E1.71.51.31.10.90.70.50.30.10(f) ˜B r from DYN1, TL plot at 60 ◦ S0.120.30.120.30.240.240.10.180.10.180.120.120.080.060.080.06Time / τ η0.060Time / τ η0.060−0.06−0.060.04−0.120.04−0.12−0.18−0.180.02−0.240.02−0.24−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) ˜B r from DYN1, FK plot at 20 ◦ S−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) ˜B r from DYN1, FK plot, at 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )6050403020100−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E1.71.51.31.10.90.70.50.30.10Frequency / cycles per mag. dif. time (τ η−1 )6050403020100−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250Figure 5.6: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN1.Time-l<strong>on</strong>gitude (TL) plots of the radial magnetic field with time averaged axisymmetricpart removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filtered with threshold 0.0649 τ η ( ˜B r ) from DYN1 at latitudes(a) 44 ◦ N (b) 14 ◦ N, (e) 20 ◦ S (f) 60 ◦ S with the associated frequency-wavenumber (FK)power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


108 Chapter 5 — Dynamo model outputHav<str<strong>on</strong>g>in</str<strong>on</strong>g>g analysed the evoluti<strong>on</strong> of B r , the radial velocity field u r from DYN1 can also bestudied to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether low latitude B r c<strong>on</strong>centrati<strong>on</strong>s have any relati<strong>on</strong> to flowupwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g or downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, while the eastward comp<strong>on</strong>ent of the velocity field u φ can beused to <str<strong>on</strong>g>in</str<strong>on</strong>g>fer whether flow c<strong>on</strong>vergence is important <str<strong>on</strong>g>in</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g whether <str<strong>on</strong>g>their</str<strong>on</strong>g> moti<strong>on</strong> is due to a azimuthal flow or caused by wavepropagati<strong>on</strong> of the velocity field.5.2.2 Velocity field from DYN1In the model DYN1, prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary visual analysis by Johannes Wicht (pers<strong>on</strong>al communicati<strong>on</strong>August 2004) suggested that the primary flow pattern was travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward<str<strong>on</strong>g>in</str<strong>on</strong>g> a wave-like manner <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of any str<strong>on</strong>g mean azimuthal flow <str<strong>on</strong>g>and</str<strong>on</strong>g> that thewestward moti<strong>on</strong> of the low latitude c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at outer boundary appeared tobe a c<strong>on</strong>sequence of this phenomen<strong>on</strong>. The present analysis was designed to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatethis suggesti<strong>on</strong> that magnetic field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo models can be caused <str<strong>on</strong>g>in</str<strong>on</strong>g> partby hydromagnetic wave propagati<strong>on</strong>.The space-time spectral analysis methodology described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 can be appliedto any scalar field. In this secti<strong>on</strong> it is applied to u r <str<strong>on</strong>g>and</str<strong>on</strong>g> u φ from DYN1. The scalarcomp<strong>on</strong>ents of the velocity field are exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> a spherical surface of radius r = 0.96r 0 ,close to the outer boundary but below the viscous Ekman boundary layer.The wave flow pattern observed <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 was found to be sufficiently strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g thatadditi<strong>on</strong>al process<str<strong>on</strong>g>in</str<strong>on</strong>g>g (such as removal of the time-averaged axisymmetric field or highpass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g) was unnecessary before carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out the space-time spectral analysis.Radial velocity field (u r )The evoluti<strong>on</strong> of the u r at r = 0.96r 0 is documented as a series of snapshots <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.7<str<strong>on</strong>g>and</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong> A5.2 (see appendix F for details). The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspectof the evoluti<strong>on</strong> is the westward moti<strong>on</strong> of a m=3 pattern of equatorially symmetric(E S ) high amplitude upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> weaker, extended downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. There are severalother processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, for example <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g meridi<strong>on</strong>al moti<strong>on</strong> of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g>downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> modulati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> amplitude. The similarity of the morphology ofu r to that found <str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sphericalgeometry (see chapter 7) is strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g especially given that model is fully n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g>has a dynamo generated rather than imposed magnetic field 3 .The azimuthal evoluti<strong>on</strong> of flow upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs were c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> moredetail at latitudes where azimuthal moti<strong>on</strong> of B r c<strong>on</strong>centrati<strong>on</strong>s was observed at the outer3 In the future it is planned to exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e these similarities <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail, with the aim of def<str<strong>on</strong>g>in</str<strong>on</strong>g>itivelyidentify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the particular hydromagnetic wave mechanism operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the dynamo model (see chapter6 for a discussi<strong>on</strong> of different possible hydromagnetic wave mechanisms).


109 Chapter 5 — Dynamo model output(a) DYN1 u r at 0.975r 0 (b) DYN1 u r at 0.975r 0after 0.019088 τ ηafter 0.0385 τ η543210−1−2−3−4−5543210−1−2−3−4−5(c) DYN1 u r at 0.975r 0 (d) DYN1 u r at 0.975r 0after 0.057912 τ ηafter 0.077324 τ η543210−1−2−3−4−5543210−1−2−3−4−5(e) DYN1 u r at 0.975r 0 (f) DYN1 u r at 0.975r 0after 0.096736 τ ηafter 0.11615 τ η543210−1−2−3−4−5543210−1−2−3−4−5Figure 5.7: Snapshots of u r from DYN1 at 0.975r 0 .Unfiltered radial velocity field (u r ) from the model DYN1 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a series ofsnapshots after (a) 0.019088 τ η , (b) 0.0385 τ η , (c) 0.057912 τ η , (d) 0.077324 τ η , (e)0.096736 τ η , (f) 0.11615 τ η .


110 Chapter 5 — Dynamo model outputboundary, to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether there was any l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between these two phenomen<strong>on</strong>. TLplots of u r at radius 0.96r 0 , al<strong>on</strong>g with associated FK power spectra for latitudes 14 ◦ N<str<strong>on</strong>g>and</str<strong>on</strong>g> 20 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS power plots (all without any process<str<strong>on</strong>g>in</str<strong>on</strong>g>g) are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.8.(a) u r from DYN1, TL plot at 14 ◦ N(b) u r from DYN1, TL plot at 20 ◦ S0.1250.125440.130.13220.0810.081Time / τ η0.060−1Time / τ η0.060−10.04−20.04−2−3−30.02−40.02−4−50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) u r from DYN1, FK plot at 14 ◦ N−50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) u r from DYN1, FK plot at 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E42.537.532.527.522.517.512.57.52.50(e) u r from DYN1, LAS power plotFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50−6087−306Latitude (degrees)0− 305432− 601−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R cmb(τ η) −1 40 50−1)Azimuthal speed (R τcmb η ), positive is eastwardsFigure 5.8: TL plots, FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plot of u r from DYN1.Time-l<strong>on</strong>gitude (TL) plots of the unprocessed radial velocity field u r from DYN1 at 0.96r 0at latitudes 14 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 20 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) with the associated frequency-wavenumber (FK)power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d). The latitude-azimuthal speed (LAS) power plot for u r is shown<str<strong>on</strong>g>in</str<strong>on</strong>g> (e), with azimuthal speeds mapped out to r 0 to facilitate comparis<strong>on</strong> to the speed ofmagnetic field changes.The spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent moti<strong>on</strong> of a successi<strong>on</strong> of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gsis unmistakable <str<strong>on</strong>g>in</str<strong>on</strong>g> the TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> leads to str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual peaks (at m=3,


111 Chapter 5 — Dynamo model outputT = 1 f = 0.08τ η) <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> causes a str<strong>on</strong>g peak <str<strong>on</strong>g>in</str<strong>on</strong>g> the LAS powerplot. This evidence po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts towards an almost m<strong>on</strong>ochromatic wave as the major causeof the evoluti<strong>on</strong> of u r observed at low latitudes. From the LAS power plot it can be<str<strong>on</strong>g>in</str<strong>on</strong>g>ferred that upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs travel westward with an average azimuthalspeed 4 of 16±5 r 0 τ −1η .Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the TL plots of u r <str<strong>on</strong>g>and</str<strong>on</strong>g> ˜B r at 14 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 ◦ S it is found that the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gc<strong>on</strong>centrati<strong>on</strong>s of B r are often correlated with azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. Forexample, compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g figure 5.6b <str<strong>on</strong>g>and</str<strong>on</strong>g> figure 5.8a of the TL plots at 14 ◦ N, the str<strong>on</strong>gnegative field feature runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 0 ◦ l<strong>on</strong>gitude at 0.0475τ η to 75 ◦ W at 0.12τ η followsthe same time-l<strong>on</strong>gitude path as the str<strong>on</strong>gest downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature also mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 0 ◦l<strong>on</strong>gitude at 0.0475τ η to 75 ◦ W at 0.12τ η . Other weaker downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g features <str<strong>on</strong>g>in</str<strong>on</strong>g> u r alsoappear to be correlated with h<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of weaker azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features present <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r ,for example from -60 ◦ E at 0.035τ η to -90 ◦ E at 0.06τ η . At 20 ◦ S, the highest amplitudedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g features <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r aga<str<strong>on</strong>g>in</str<strong>on</strong>g> appear to follow the same space-time path as the highestamplitude drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> u r at r = 0.96r 0 . It is noticeable <str<strong>on</strong>g>in</str<strong>on</strong>g> both cases thatdownwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns are larger scale (more extended <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude) than the magneticfield c<strong>on</strong>centrati<strong>on</strong>s.The presence of an azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g is apparently not a sufficient c<strong>on</strong>diti<strong>on</strong>for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong> of B r . Whether or not a c<strong>on</strong>centrati<strong>on</strong> of B ris formed <str<strong>on</strong>g>and</str<strong>on</strong>g> then moves with a downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g appears to depend <strong>on</strong> the c<strong>on</strong>figurati<strong>on</strong>of B r <strong>on</strong> which the flow pattern acts 5 . Even if the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic field c<strong>on</strong>figurati<strong>on</strong>is favourable, <str<strong>on</strong>g>and</str<strong>on</strong>g> if B r becomes c<strong>on</strong>centrated at a downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the field c<strong>on</strong>centrati<strong>on</strong>does not c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to move azimuthally <str<strong>on</strong>g>in</str<strong>on</strong>g>def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely but so<strong>on</strong> disperses, either because thedownwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow becomes disrupted or because of the effects of the magnetic diffusi<strong>on</strong>that are rather str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 (see appendix C). Such issues c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g how a waveflow can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence a radial magnetic field are explored further with simple k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematicmodels <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8.Comparis<strong>on</strong> of FK power spectra of u r , B r <str<strong>on</strong>g>and</str<strong>on</strong>g> ˜B r , at 14 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 ◦ S show that thesehave rather different character. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g u r , the FK power spectra clearly <str<strong>on</strong>g>in</str<strong>on</strong>g>dicatesa m=3, westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbance. Some <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of power at m=3 is also found<str<strong>on</strong>g>in</str<strong>on</strong>g> the FK power spectra of B r , particularly at 14 ◦ N. However, there is also significantpower at higher f <str<strong>on</strong>g>and</str<strong>on</strong>g> k (but same ratio of f kso mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g at same phase speed). Thesehigher ’harm<strong>on</strong>ics’ of the field occur because the m=3 flow can produce sharp fieldc<strong>on</strong>centrati<strong>on</strong>s that require higher harm<strong>on</strong>ics to be presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a Fourier expansi<strong>on</strong>.The FK power spectra of ˜B r predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly picks up these higher ’harm<strong>on</strong>ics’ becausethe str<strong>on</strong>g m=3 signal is partially removed by the high-pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.4 mapped from r = 0.96r 0 to r 0 to permit easy comparis<strong>on</strong> with the speeds of magnetic field featuresat the outer boundary.5 The toroidal magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> its distorti<strong>on</strong> by the wave flow has not been exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed here: this isplanned as future work. The c<strong>on</strong>figurati<strong>on</strong> of this toroidal field could also be important <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gwhether c<strong>on</strong>centrati<strong>on</strong>s of B r are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at the outer boundary.


112 Chapter 5 — Dynamo model outputThe observed c<strong>on</strong>centrati<strong>on</strong>s of B r are equatorially anti-symmetric (E A ) as is expectedfrom an equatorially symmetric (E S ) flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially E A magnetic field closeto the outer boundary (see appendix E for details of those symmetries of field <str<strong>on</strong>g>and</str<strong>on</strong>g> flowthat are c<strong>on</strong>sistent with each other). The source of the <str<strong>on</strong>g>in</str<strong>on</strong>g>verse polarity of the propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield features is rather unclear, but follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>their</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A5.1 it seemsthat low c<strong>on</strong>centrati<strong>on</strong>s of <str<strong>on</strong>g>in</str<strong>on</strong>g>verse field were present as the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>figurati<strong>on</strong> of theB r that was subsequently c<strong>on</strong>centrated at the positi<strong>on</strong>s of downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow.Eastward velocity field (u φ )The eastward velocity field u φ at r = 0.96r 0 was studied to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether wavepropagati<strong>on</strong> or advecti<strong>on</strong> by a mean azimuthal flow was resp<strong>on</strong>sible for the moti<strong>on</strong> oflow latitude c<strong>on</strong>centrati<strong>on</strong>s of B r .The presence of a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g pattern of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregi<strong>on</strong>s c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence <str<strong>on</strong>g>in</str<strong>on</strong>g> u φ is often <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of a wave mechanism (see,for example, chapter 7). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the presence of a mean z<strong>on</strong>al flow at thelatitude of mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r with the same magnitude as the speed of movement of field featureswould suggests this as the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of azimuthal field moti<strong>on</strong>.In figure 5.9 snapshots of u φ at r = 0.96r 0 are displayed; animati<strong>on</strong> A5.3 shows thec<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous pattern of evoluti<strong>on</strong>. The dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant feature is an m=3, westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g,wave pattern that c<strong>on</strong>sists of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g foci of eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward flow.notable that the westward flow anomalies are slightly more <str<strong>on</strong>g>in</str<strong>on</strong>g>tense than the eastwardflow anomalies at low latitudes, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g a weak mean z<strong>on</strong>al flow is present there.In figure 5.10, the TL plots, FK power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS power plots for u φ are presented.In close agreement with figure 5.8 for u r these show def<str<strong>on</strong>g>in</str<strong>on</strong>g>itive evidence for m=3wave moti<strong>on</strong>, with highest amplitudes at low latitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> a characteristic period ofapproximately 0.08 τ η . Comparis<strong>on</strong> of TL plots for u r <str<strong>on</strong>g>and</str<strong>on</strong>g> u φ shows that the maximaof westward flow lags beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs that are correlated with magnetic fieldc<strong>on</strong>centrati<strong>on</strong>s. The phase difference between the fields is about π 2or 1 4of a cycle, sothat the magnetic field c<strong>on</strong>centrati<strong>on</strong>s are correlated with c<strong>on</strong>vergent neutral po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts (associatedwith downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs) of approximately zero azimuthal flow (see for example at-60 ◦ E <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 τ η ). The lack of any str<strong>on</strong>g m=0 signal <str<strong>on</strong>g>in</str<strong>on</strong>g> u φ at the latitude of mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g B rfeatures (see figure 5.10c,d) suggests that simple advecti<strong>on</strong> by azimuthal flows is unlikelyto be the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant field evoluti<strong>on</strong> mechanism.Figure 5.10f shows that time <str<strong>on</strong>g>and</str<strong>on</strong>g> z<strong>on</strong>al averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates a weak, westward, meanz<strong>on</strong>al flow at low latitudes.It isHowever, c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g this mean flow at latitudes whereazimuthal moti<strong>on</strong> of B r was observed (-2 r 0 τη−1 at 14 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> -4 r 0 τη−1 at 20 ◦ S) reveals itto be too slow to expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the observed field moti<strong>on</strong>s (which have azimuthal speeds of ∼−15r 0 τ −1η ). It is therefore c<strong>on</strong>cluded that the wave flow pattern <str<strong>on</strong>g>and</str<strong>on</strong>g> associated magneticfield c<strong>on</strong>centrati<strong>on</strong>s move azimuthally primarily by a wave propagati<strong>on</strong> mechanism. It


113 Chapter 5 — Dynamo model output(a) DYN1 u φ at 0.975r 0 (b) DYN1 u φ at 0.975r 0after 0.019088 τ ηafter 0.0385 τ η50403020100−10−20−30−40−5050403020100−10−20−30−40−50(c) DYN1 u φ at 0.975r 0 (d) DYN1 u φ at 0.975r 0after 0.057912 τ ηafter 0.077324 τ η50403020100−10−20−30−40−5050403020100−10−20−30−40−50(e) DYN1 u φ at 0.975r 0 (f) DYN1 u φ at 0.975r 0after 0.096736 τ ηafter 0.11615 τ η50403020100−10−20−30−40−5050403020100−10−20−30−40−50Figure 5.9: Snapshots of u φ from DYN1 at 0.975r 0 .Unfiltered radial velocity field (u r ) from the model DYN1 at 0.96r 0 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> aseries of snapshots after (a) 0.019088 τ η , (b) 0.0385 τ η , (c) 0.057912 τ η , (d) 0.077324 τ η ,(e) 0.096736 τ η , (f) 0.11615 τ η .


114 Chapter 5 — Dynamo model output(a) u φ from DYN1, TL plot at 14 ◦ N(b) u φ from DYN1, TL plot at 20 ◦ S0.12500.125040400.1300.13020200.08100.0810Time / τ η0.060−10Time / τ η0.060−100.04−200.04−20−30−300.02−400.02−40−500−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) u φ from DYN1, FK plot at 14 ◦ N−500−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) u φ from DYN1, FK plot at 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(e) u φ from DYN1, LAS plot4.253.753.252.752.251.751.250.750.250Frequency / cycles per mag. dif. time (τ η−1 )302520151050−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(f) Z<strong>on</strong>ally <str<strong>on</strong>g>and</str<strong>on</strong>g> time-averaged u φ4.253.753.252.752.251.751.250.750.25070Latitude (degrees)−60−300− 302− 60 1−50 −40 −30 −20 −10 0 10 20 30Eastward z<strong>on</strong>al phase speed (<str<strong>on</strong>g>in</str<strong>on</strong>g> units of R (τ ) −1 40 50−1)Azimuthal speed (R τ ), positive is cmbeastwards ηcmb η876543Latitude6050403020100−10−20−30−40−50−6014 o N, u φ =4r 0 τ η−120 o S, u φ =2r 0 τ η−1−70−30 −20 −10 0 10 20 30Time−averaged, z<strong>on</strong>ally averaged u φ (units of r 0 τ −1 η )Figure 5.10: TL plots, FK plot <str<strong>on</strong>g>and</str<strong>on</strong>g> LAS plot of u φ from DYN1.Time-l<strong>on</strong>gitude (TL) plots of the unprocessed eastward velocity field u φ from DYN1 at0.96r 0 at latitude 14 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 20 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) with the associated frequency-wavenumber(FK) power spectra <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d). The LAS power plot for u φ with azimuthal speedsextrapolated out to r 0 is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (e). Time-averaged, z<strong>on</strong>ally averaged u φ as a functi<strong>on</strong>of latitude is plotted for comparis<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> (f) with blue dash l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g latitudes ofmov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s.


115 Chapter 5 — Dynamo model outputshould however be noted that this example may not be Earth-like because its mean z<strong>on</strong>alflows are rather weak s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce c<strong>on</strong>vecti<strong>on</strong> is <strong>on</strong>ly marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ally supercritical <str<strong>on</strong>g>and</str<strong>on</strong>g> because it hasno-slip boundary c<strong>on</strong>diti<strong>on</strong>s at a relatively large Ekman number so viscous suppressi<strong>on</strong>of z<strong>on</strong>al flows will be significant. It should f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally be noted that (i) the magnitude ofu φ with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave flow is c<strong>on</strong>siderable larger than the azimuthal speed at which thepattern is mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) the magnetic field c<strong>on</strong>centrati<strong>on</strong>s mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave do notpulsate <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude. This is c<strong>on</strong>sistent with the predicti<strong>on</strong>s of the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic analysisof the effects of wave flows <strong>on</strong> a magnetic field presented <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8.5.2.3 Discussi<strong>on</strong> of results from DYN1Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of B r at the outer boundary <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 to that observed at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1, the most obvious similarity is the presence of c<strong>on</strong>centrati<strong>on</strong>s ofB r at low latitudes that drift westward. There are however several rather importantdifferences. First, there is <strong>on</strong>ly a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle pair of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1,while a coherent pattern of c<strong>on</strong>centrati<strong>on</strong>s is observed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1. Sec<strong>on</strong>dly, <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1the perturbati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> B r is E A while that observed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 is E S . Thirdly, the B rc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 are reversed flux patches, while those seen <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 are thesame polarity as the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant (dipolar) field <str<strong>on</strong>g>in</str<strong>on</strong>g> that hemisphere.N<strong>on</strong>e of these differences appears to be <str<strong>on</strong>g>in</str<strong>on</strong>g>surmountable. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the first problem,there are (at least weak) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ˜B r associated with the pathsof all downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs observed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.6b. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the sec<strong>on</strong>d problem, if an E Sflow of the type suggested by DYN1 is the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> B r <str<strong>on</strong>g>and</str<strong>on</strong>g> it acts <strong>on</strong> an E S background magnetic field at low latitudes (rather thanthe E A fields present <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1) then E S perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r could be produced asseen <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models. Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the third problem, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the mechanism offormati<strong>on</strong> of magnetic field c<strong>on</strong>centrati<strong>on</strong>s seems to <str<strong>on</strong>g>in</str<strong>on</strong>g>volve focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g of magnetic fieldl<str<strong>on</strong>g>in</str<strong>on</strong>g>es by c<strong>on</strong>vergence at downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, the reversed polarity is likely a c<strong>on</strong>sequence of thepolarity of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r (see animati<strong>on</strong> A5.1). If the wave flow acted <strong>on</strong> normal <str<strong>on</strong>g>in</str<strong>on</strong>g>itialB r then the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s would be of normal polarity (as is observed <str<strong>on</strong>g>in</str<strong>on</strong>g>DYN2) rather than the observed reversed polarity, so this difference does not appear tobe crucial.Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hemispherical c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ement of field evoluti<strong>on</strong> patterns, it is <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g t<strong>on</strong>ote that the azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features found <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 were most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere than the other, even though the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow was global.This appears to have been because the background field was more suitable for creat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere. The breakdown of the azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldc<strong>on</strong>centrati<strong>on</strong>s appears to have been the result of n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between thewave flow <str<strong>on</strong>g>and</str<strong>on</strong>g> other flow structures, as well as due to the effects of magnetic diffusi<strong>on</strong>.


116 Chapter 5 — Dynamo model outputThe simple mechanism caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthal moti<strong>on</strong> of B r c<strong>on</strong>centrati<strong>on</strong>s identified <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1c<strong>on</strong>sists of c<strong>on</strong>centrati<strong>on</strong>s form<str<strong>on</strong>g>in</str<strong>on</strong>g>g at <str<strong>on</strong>g>and</str<strong>on</strong>g> mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with positi<strong>on</strong>s of flow c<strong>on</strong>vergenceat downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs that are part of a global wave flow. Such a mechanism could perhapsaccount for the patterns of azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s of B r observed <str<strong>on</strong>g>in</str<strong>on</strong>g>gufm1, this possibility is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8. It should however benoted that the flow <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> may not be as simple as that <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1. To addressthis issue a more complicated dynamo model (DYN2) was next c<strong>on</strong>sidered.5.3 DYN2: (E=3×10 −4 , P r=1, P r m =3, Ra/Ra c ∼ 32, R m ∼ 500)The rati<strong>on</strong>ale beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d study<str<strong>on</strong>g>in</str<strong>on</strong>g>g DYN2 is primarily that its c<strong>on</strong>trol parameters were asclose as is numerically feasible to Earth’s (see appendix C). However, the legitimatequesti<strong>on</strong> ‘is the parameter regime of DYN2 close enough to that <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> for themodel to be <str<strong>on</strong>g>in</str<strong>on</strong>g> the correct dynamic regime?’ is rather difficult to answer. On the <strong>on</strong>eh<str<strong>on</strong>g>and</str<strong>on</strong>g> hydromagnetic wave theory <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g steadyimposed magnetic fields (see Chapters 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7) <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that at the very low Ekmannumber the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order force balance will be between magnetic (Lorentz) <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolisforces, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g flows with large length scales (see, for example, Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert(2000)). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, no c<strong>on</strong>vecti<strong>on</strong>-driven spherical dynamo model has yetyielded the anticipated large length scales at low Ekman number; <str<strong>on</strong>g>in</str<strong>on</strong>g>stead length scaleshave been observed to c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g as the Ekman number is reduced, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat the change-over to large scale c<strong>on</strong>vecti<strong>on</strong> is delayed when the magnetic field is notstati<strong>on</strong>ary (Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 2002) 6 . If the length scale of c<strong>on</strong>vecti<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s smallas the Ekman number is decreased further to Earth-like values then model DYN2 willlikely be a good approximati<strong>on</strong> of the dynamical regime <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, ifat smaller Ekman number the length scale of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, the dynamical regimeof DYN2 will be a poor approximati<strong>on</strong> to the dynamical regime <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.In the absence of any firm knowledge of the likely length scales of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>,it is important to c<strong>on</strong>sider not <strong>on</strong>ly a dynamo model with large length scale flows (DYN1)but also a dynamo model with smaller length scale flows (DYN2). In the later case itis also important to address whether any accurate <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the nature ofthe underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow can be made by study<str<strong>on</strong>g>in</str<strong>on</strong>g>g a truncated magnetic field at the outerboundary (DYN2d) that mimics the geophysical process of crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.6 Note, however, that an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant length scale has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>-drivenrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g plane layer dynamos at Ekman number smaller than is currently achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical dynamos(Rotvig <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, 2002; Stellmach <str<strong>on</strong>g>and</str<strong>on</strong>g> Hansen, 2004).


117 Chapter 5 — Dynamo model output5.3.1 Undamped radial magnetic field (B r ) from DYN2In figure 5.11 snapshots of B r at the outer boundary (r = r 0 ) from the model runDYN2 with the full resoluti<strong>on</strong> of the model reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (up to spherical harm<strong>on</strong>ic degree85) are presented; animati<strong>on</strong> A5.4 shows the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous evoluti<strong>on</strong> of B r at r = r 0 . Thec<strong>on</strong>centrati<strong>on</strong>s of B r observed <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 have much smaller length scale than those <str<strong>on</strong>g>in</str<strong>on</strong>g>DYN1 because the c<strong>on</strong>vecti<strong>on</strong> patterns generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field are much smaller scale; thisis a c<strong>on</strong>sequence of the lower Ekman number. Even worse (given the desire to make<str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of simple mechanisms caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g field change) is that the soluti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 is much more chaotic because the Rayleigh number is more super critical thanwas the case for DYN1.N<strong>on</strong>etheless, a few general statements c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of B r at r = r 0 can bemade. The highest amplitude c<strong>on</strong>centrati<strong>on</strong>s of B r are typically observed at high latitudes(near 60 ◦ N or S) <str<strong>on</strong>g>and</str<strong>on</strong>g> are not stati<strong>on</strong>ary but tend to move azimuthally, splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tosmaller features <str<strong>on</strong>g>and</str<strong>on</strong>g> merg<str<strong>on</strong>g>in</str<strong>on</strong>g>g with other field c<strong>on</strong>centrati<strong>on</strong>s. Field evoluti<strong>on</strong> is punctuatedby events <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rapid meridi<strong>on</strong>al movements of c<strong>on</strong>centrati<strong>on</strong>s of B r , whilethe polar regi<strong>on</strong>s are especially active sites of birth <str<strong>on</strong>g>and</str<strong>on</strong>g> decay of field c<strong>on</strong>centrati<strong>on</strong>s.At lower latitudes, both E S (for example <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.11e at 45 ◦ W) <str<strong>on</strong>g>and</str<strong>on</strong>g> E A (for example<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.11d at 120 ◦ E) field c<strong>on</strong>centrati<strong>on</strong>s that drift either westward or eastward areobserved. These features often merge with other low latitude field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>drift coherently for <strong>on</strong>ly short <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals ∼ 0.1τ η .Further <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the azimuthal space-time evoluti<strong>on</strong> of B r is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> FK power spectra found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.12. At high latitudes (60 ◦ N<str<strong>on</strong>g>and</str<strong>on</strong>g> S) <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.12a,f, a general trend of slow westward moti<strong>on</strong> of field c<strong>on</strong>centrati<strong>on</strong>sis seen superimposed up<strong>on</strong> smaller scale fluctuati<strong>on</strong>s. The FK power spectra suggest thisis due to an m=2 disturbance with period of approximately 0.025 τ η . The high latitudefield disturbances have E A symmetry, c<strong>on</strong>sistent with E S <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> E Abackground fields.The situati<strong>on</strong> at lower latitudes is more complicated. The majority of azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r are rather short lived (∼ 0.01−0.02τ η ). For example, at the equator<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.12b a blue (negative anomaly) feature moves from from 60 ◦ W at 0.09τ η to45 ◦ W at 0.1τ η <str<strong>on</strong>g>and</str<strong>on</strong>g> at 20 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.12e where another blue feature moves from 165 ◦ Wat 0.016τ η to 90 ◦ W at 0.038τ η . There are also <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of a smaller number of moreslowly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, l<strong>on</strong>ger-lived magnetic field c<strong>on</strong>centrati<strong>on</strong>s. These are dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct from thec<strong>on</strong>centrati<strong>on</strong>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1 because as time goes <strong>on</strong> other field c<strong>on</strong>centrati<strong>on</strong>smerge <str<strong>on</strong>g>in</str<strong>on</strong>g>to them, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g changes <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> amplitude speed <str<strong>on</strong>g>and</str<strong>on</strong>g> even <str<strong>on</strong>g>in</str<strong>on</strong>g> the sign of theanomaly. An example of such a feature is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.12e where an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially orangefeature (positive anomaly) moves from 75 ◦ W at 0.032τ η to 165 ◦ W at 0.11τ η . The resultof many rapidly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features merg<str<strong>on</strong>g>in</str<strong>on</strong>g>g with slower mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g features (not necessarilymov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the same directi<strong>on</strong>) is the dendritic character evident <str<strong>on</strong>g>in</str<strong>on</strong>g> TL plots such as


118 Chapter 5 — Dynamo model output(a) DYN2 B r at r 0 (b) DYN2 B r at r 0after 0.01987 τ ηafter 0.03996 τ η2.521.510.50−0.5−1−1.5−2−2.52.521.510.50−0.5−1−1.5−2−2.5(c) DYN2 B r at r 0 (d) DYN2 B r at r 0after 0.06006 τ ηafter 0.08015 τ η2.521.510.50−0.5−1−1.5−2−2.52.521.510.50−0.5−1−1.5−2−2.5(e) DYN2 B r at r 0 (f) DYN2 B r at r 0after 0.10024 τ ηafter 0.12034 τ η2.521.510.50−0.5−1−1.5−2−2.52.521.510.50−0.5−1−1.5−2−2.5Figure 5.11: Snapshots of B r from DYN2 at r 0 .Unfiltered radial magnetic field (B r ) from the model DYN2 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a seriesof snapshots after (a) 0.01987 τ η , (b) 0.03996 τ η , (c) 0.060056 τ η , (d) 0.08015 τ η , (e)0.10024τ η , (f) 0.12034 τ η .


119 Chapter 5 — Dynamo model output(a) B r from DYN2, TL plot, 60 ◦ N(b) B r from DYN2, TL plot, 0 ◦ N20.50.121.60.120.40.11.20.10.30.80.20.080.40.080.1Time / τ η0.060−0.4Time / τ η0.060−0.10.04−0.80.04−0.2−1.2−0.30.02−1.60.02−0.4−20−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) B r from DYN2, FK plot, 60 ◦ N−0.50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) B r from DYN2, FK plot, 0 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50(e) B r from DYN2, TL plot, 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(f) B r from DYN2, TL plot, 60 ◦ S8575655545352515500.420.120.320.121.60.10.240.11.20.160.80.080.080.080.4Time / τ η0.060−0.08Time / τ η0.060−0.40.04−0.160.04−0.8−0.24−1.20.02−0.320.02−1.6−0.40−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) B r from DYN2, FK plot, 20 ◦ S−20−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) B r from DYN2, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E857565554535251550Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Figure 5.12: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN2.Time-l<strong>on</strong>gitude (TL) plots of radial magnetic field B r from the model DYN2 at latitudes60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 0 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ S (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequencywavenumber(FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


120 Chapter 5 — Dynamo model outputfigure 5.12e. The FK power spectra at low latitudes of DYN2 are very complicated, <str<strong>on</strong>g>and</str<strong>on</strong>g>it is hard to identify any dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant wavenumbers <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies.C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount of variability <str<strong>on</strong>g>in</str<strong>on</strong>g> B r from DYN2 captured as the high pass filterthreshold is varied leads to figure 5.13. Compared to DYN1 (figure 5.3) there is morevariability at periods shorter than 0.05τ η <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2. For example with a filter cut-off of0.01τ η 52 % of the variability is captured <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2, while <strong>on</strong>ly 3 percent is captured <str<strong>on</strong>g>in</str<strong>on</strong>g>DYN1.100%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)80604020Percent variability of B r captured (from DYN2)01e−03 1e−02 1e−01 1e+00 1e+01Cut off time for high pass filter (τ η)Figure 5.13: B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2.Graph show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> B r captured by ˜B r (P v , as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>equati<strong>on</strong> (2.6)) <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2, as the choice of filter cut-off is varied.In an effort to focus <strong>on</strong> the faster azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s present atlow latitudes, a filter threshold of 0.01τ η was chosen for further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s. The TLplots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after the time-averaged axisymmetric field hasbeen removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high-pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been carried out are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.14.The trend of slow eastward or westward moti<strong>on</strong> has been removed from the TL plotsat high latitudes, leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly transient behaviour. At low latitudes the slowly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield c<strong>on</strong>centrati<strong>on</strong>s have been removed, reveal<str<strong>on</strong>g>in</str<strong>on</strong>g>g episodes of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent rapid azimuthal moti<strong>on</strong> of field c<strong>on</strong>centrati<strong>on</strong>s, FK power spectra reveal theseto be dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by disturbances with wavenumbers m ∼ 14 <str<strong>on</strong>g>and</str<strong>on</strong>g> periods of T ∼ 0.0083τ η .The FK power spectra for ˜B r are found to correctly capture the higher wavenumber <str<strong>on</strong>g>and</str<strong>on</strong>g>frequency peaks that are barely visible <str<strong>on</strong>g>in</str<strong>on</strong>g> the FK spectra of B r . It should however beremembered that FK spectra of ˜B r give no <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the lower wavenumber <str<strong>on</strong>g>and</str<strong>on</strong>g>frequency signals (which could give <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> large length scale <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s) thathave been filtered out.


121 Chapter 5 — Dynamo model output(a) ˜B r from DYN2, TL plot, 60 ◦ N(b) ˜B r from DYN2, TL plot, 0 ◦ N0.120.80.640.120.20.160.10.480.10.120.320.080.080.160.080.04Time / τ η0.060−0.16Time / τ η0.060−0.040.04−0.320.04−0.08−0.48−0.120.02−0.640.02−0.16−0.8−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) ˜B r from DYN2, FK plot, 60 ◦ N−0.2−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) ˜B r from DYN2, FK plot, 0 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(e) ˜B r from DYN2, TL plot, 20 ◦ S34302622181410620Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(f) ˜B r from DYN2, TL plot, 60 ◦ S0.120.30.240.120.80.640.10.180.10.480.120.320.080.060.080.16Time / τ η0.060−0.06Time / τ η0.060−0.160.04−0.120.04−0.32−0.18−0.480.02−0.240.02−0.64−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) ˜B r from DYN2, FK plot, 20 ◦ S−0.8−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) ˜B r from DYN2, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E34302622181410620Figure 5.14: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN2.Time-l<strong>on</strong>gitude (TL) plots of ˜Br from the model DYN2 with filter threshold 0.01τ ηat latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 0 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ S (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associatedfrequency-wavenumber (FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


122 Chapter 5 — Dynamo model output5.3.2 Radial magnetic field from DYN2 (B r ) with l > 10 dampedEven if B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface were as complicated as B r at r = r 0 from DYN2, featureswith small length scales represented by spherical harm<strong>on</strong>ic degrees greater than l = 14would not be observed. This unfortunate circumstance arises because for l > 14 thec<strong>on</strong>tributi<strong>on</strong> of the unknown crustal field (a source of error when seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ethe field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (see, for example, Langel (1987)) dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates <str<strong>on</strong>g>in</str<strong>on</strong>g> measurementsmade at Earth’s surface. In the absence of an effective method of remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the crustalfield, the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of this truncati<strong>on</strong> <strong>on</strong> our observati<strong>on</strong>s of <str<strong>on</strong>g>core</str<strong>on</strong>g> dynamics must beaccounted for. In the present c<strong>on</strong>text this can be d<strong>on</strong>e by repeat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the forego<str<strong>on</strong>g>in</str<strong>on</strong>g>g analysiswith the same model but modify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amplitude of the spherical harm<strong>on</strong>ics with l=10to 14 so they are damped 7 <str<strong>on</strong>g>and</str<strong>on</strong>g> also sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g those with l >14 to zero. The model result<str<strong>on</strong>g>in</str<strong>on</strong>g>gwhen this procedure is applied to DYN2 (referred to as DYN2d) will be analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> thissecti<strong>on</strong>.In figure 5.15 a series of snapshots of B r from DYN2d at r = r 0 are displayed whileanimati<strong>on</strong> A5.5 shows the associated time-dependent field evoluti<strong>on</strong>. Compared to theDYN2, DYN2d does a reas<strong>on</strong>able job of gett<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r c<strong>on</strong>centrati<strong>on</strong>s of the correct polarity<str<strong>on</strong>g>and</str<strong>on</strong>g> relative amplitude <str<strong>on</strong>g>in</str<strong>on</strong>g> approximately the correct geographical positi<strong>on</strong>s. However, theamplitude of the str<strong>on</strong>gest field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d is much lower than those found<str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 (by a factor of 5) <str<strong>on</strong>g>and</str<strong>on</strong>g> the smallest length scale <str<strong>on</strong>g>in</str<strong>on</strong>g>tense features <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 aresmeared <str<strong>on</strong>g>in</str<strong>on</strong>g>to lower amplitude, larger length scale features <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d. Good illustrati<strong>on</strong>sof such effects can be seen by compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g the low latitude field c<strong>on</strong>centrati<strong>on</strong>s focused <strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong> (the E S ) feature <str<strong>on</strong>g>in</str<strong>on</strong>g> figures 5.15e <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.11e at 45 ◦ W <str<strong>on</strong>g>and</str<strong>on</strong>g> the E Afeature <str<strong>on</strong>g>in</str<strong>on</strong>g> figures 5.11d <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.15d at 120 ◦ E).In figure 5.16, TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of unprocessed B r from DYN2d at latitudes60 ◦ N, 0 ◦ N, 10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S are presented for comparis<strong>on</strong> with figure 5.12. The large scale,slow trends <str<strong>on</strong>g>in</str<strong>on</strong>g> the positi<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s at high latitudes are well capturedby DYN2d. At lower latitudes the larger scale, fast azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field featuresare also well captured (for example <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.16b <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.12b from 165 ◦ W at 0.016τ η to90 ◦ W at 0.038τ η ), but the slower, smaller length scale features (for example that found<str<strong>on</strong>g>in</str<strong>on</strong>g> figure (5.12b) runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 75 ◦ W at 0.032τ η to 165 ◦ W at 0.11τ η ) are no l<strong>on</strong>ger seenclearly <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d.In figure 5.17 the percentage variability <str<strong>on</strong>g>in</str<strong>on</strong>g> B r captured by the high pass filtered field ( ˜B r )(i.e. P v as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (2.6)) is plotted aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the choice of the filter thresholdfor DYN2d. Compared with DYN2 (figure 5.13), there is less variability at very shortperiods because rapid field changes are associated with the shortest length scales that7 The taper<str<strong>on</strong>g>in</str<strong>on</strong>g>g/synthetich “damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g”iprescripti<strong>on</strong> used is that from l=10 to l=14 the field is multipliedby a factor 1 1 − s<str<strong>on</strong>g>in</str<strong>on</strong>g> π(l−12)(Wicht, pers<strong>on</strong>al communicati<strong>on</strong>, April 2005). It should be noted that24this taper is rather ad-hoc; a more realistic taper for simulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regularised field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g is described<str<strong>on</strong>g>in</str<strong>on</strong>g> §8.3.6.


123 Chapter 5 — Dynamo model output(a) DYN2d B r at r 0 (b) DYN2d B r at r 0after 0.01987 τ ηafter 0.03996 τ η0.60.480.360.240.120−0.12−0.24−0.36−0.48−0.60.60.480.360.240.120−0.12−0.24−0.36−0.48−0.6(c) DYN2d B r at r 0 (d) DYN2d B r at r 0after 0.06006 τ ηafter 0.08015 τ η0.60.480.360.240.120−0.12−0.24−0.36−0.48−0.60.60.480.360.240.120−0.12−0.24−0.36−0.48−0.6(e) DYN2d B r at r 0 (f) DYN2d B r at r 0after 0.10024 τ ηafter 0.12034 τ η0.60.480.360.240.120−0.12−0.24−0.36−0.48−0.60.60.480.360.240.120−0.12−0.24−0.36−0.48−0.6Figure 5.15: Snapshots of B r from DYN2d at r 0 .Unfiltered radial magnetic field (B r ) from the truncated model DYN2d is presented <str<strong>on</strong>g>in</str<strong>on</strong>g>a series of snapshots after (a) 0.01987 τ η , (b) 0.03996 τ η , (c) 0.060056 τ η , (d) 0.08015τ η , (e) 0.10024τ η , (f) 0.12034 τ η .


124 Chapter 5 — Dynamo model output(a) B r from DYN2d, TL plot, 60 ◦ N(b) B r from DYN2d, TL plot, 0 ◦ N1.60.50.121.280.120.40.10.960.10.30.640.20.080.320.080.1Time / τ η0.060−0.32Time / τ η0.060−0.10.04−0.640.04−0.2−0.96−0.30.02−1.280.02−0.4−1.60−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) B r from DYN2d, FK plot, 60 ◦ N−0.50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) B r from DYN2d, FK plot, 0 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50(e) B r from DYN2d, TL plot, 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E0.850.750.650.550.450.350.250.150.050(f) B r from DYN2d, TL plot, 60 ◦ S0.41.20.120.320.120.960.10.240.10.720.160.480.080.080.080.24Time / τ η0.060−0.08Time / τ η0.060−0.240.04−0.160.04−0.48−0.24−0.720.02−0.320.02−0.96−0.40−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) B r from DYN2d, FK plot, 20 ◦ S−1.20−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) B r from DYN2d, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E0.850.750.650.550.450.350.250.150.050Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Figure 5.16: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of B r from DYN2d.Time-l<strong>on</strong>gitude (TL) plots of the radial magnetic field B r from DYN2d at latitudes 60 ◦ N<str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 0 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber(FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


125 Chapter 5 — Dynamo model outputare not captured by DYN2.100Percent variability of B r captured (from DYN2d)%age variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> unfiltered signal captured (P v)8060402001e−03 1e−02 1e−01 1e+00 1e+01Cut off time for high pass filter (τ η))Figure 5.17: B r variati<strong>on</strong> captured by ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d, chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g filter cut-off.Graph show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the percentage of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field variati<strong>on</strong> (P v , as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>(2.6)) captured by ˜B r as the choice of high pass filter cut-off is varied for the modelDYN2d.TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra for DYN2d after the time-averaged axisymmetric field hasbeen removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high pass filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (threshold 0.01τ η ) applied are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.18.Compared to the results from DYN2 <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.14, there are some obvious discrepancies.In particular, the azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s are generally of larger spatialscale <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d compared to DYN2.This lack of resoluti<strong>on</strong> can also mean that theazimuthal speed of the field features can be <str<strong>on</strong>g>in</str<strong>on</strong>g>correctly <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d, if smalllength scale field features become merged. For example, a negative (blue) B r anomalyat the equator <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 moves from 60 ◦ W at 0.09τ η to 45 ◦ W at 0.1τ η (see figure 5.12).However, <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d it moves from 60 ◦ W at 0.095τ η to 45 ◦ W at 0.1τ η (see figure 5.16).It should also be noted that the wavenumbers of high amplitude, large length scale (lowwavenumber) features <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 are correctly captured by DYN2d. An example of thiscan be found by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the FK power spectra of ˜B r <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2d <str<strong>on</strong>g>in</str<strong>on</strong>g> figure5.12c <str<strong>on</strong>g>and</str<strong>on</strong>g> figure 5.18c: both display a clear spectral peaks at m = 4W <str<strong>on</strong>g>and</str<strong>on</strong>g> f = 120τ −1η .5.3.3 Velocity field from DYN2Radial velocity field (u r ) from DYN2In an effort to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the mechanisms caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the existence <str<strong>on</strong>g>and</str<strong>on</strong>g> moti<strong>on</strong> of B rc<strong>on</strong>centrati<strong>on</strong>s observed at r = r 0 , the untruncated velocity field from DYN2 was studiedat a radius of 0.975r 0 . In figure 5.19 a sequence of snapshots of u r at 0.975r 0 areshown; an animati<strong>on</strong> of the field at this radius can be seen <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A5.6. Theevoluti<strong>on</strong> of the velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 is also very complex. Noteworthy features <str<strong>on</strong>g>in</str<strong>on</strong>g>clude


126 Chapter 5 — Dynamo model output(a) ˜B r from DYN2d, TL plot, 60 ◦ N(b) ˜B r from DYN2d, TL plot, 0 ◦ N0.120.30.240.120.050.040.10.180.10.030.120.020.080.060.080.01Time / τ η0.060−0.06Time / τ η0.060−0.010.04−0.120.04−0.02−0.18−0.030.02−0.240.02−0.04−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) ˜B r from DYN2d, FK plot, 60 ◦ N−0.05−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) ˜B r from DYN2d, FK plot, 0 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(e) ˜B r from DYN2d, TL plot, 20 ◦ S857565554535251550Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250(f) ˜B r from DYN2d, TL plot, 60 ◦ S0.120.10.080.120.30.240.10.060.10.180.040.120.080.020.080.06Time / τ η0.060−0.02Time / τ η0.060−0.060.04−0.040.04−0.12−0.06−0.180.02−0.080.02−0.24−0.1−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) ˜B r from DYN2d, FK plot, 22 ◦ S−0.3−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) ˜B r from DYN2d, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E8.57.56.55.54.53.52.51.50.50Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E857565554535251550Figure 5.18: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of ˜B r from DYN2d.Time-l<strong>on</strong>gitude (TL) plots of radial magnetic field ˜B r with filter threshold 0.01τ η fromDYN2d at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 0 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ S (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associatedfrequency-wavenumber (FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


127 Chapter 5 — Dynamo model output<str<strong>on</strong>g>in</str<strong>on</strong>g>tense activity <str<strong>on</strong>g>in</str<strong>on</strong>g>side the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>in</str<strong>on</strong>g>scrib<str<strong>on</strong>g>in</str<strong>on</strong>g>g around the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>, bursts ofmeridi<strong>on</strong>al migrati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>tense upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <str<strong>on</strong>g>and</str<strong>on</strong>g> episodes of azimuthallydrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs at low latitudes. Often the regi<strong>on</strong>s of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g are not latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally localised, but have large north-south extent. These arealways E Sbut have relatively small azimuthal length scale as expected for thermalc<strong>on</strong>vecti<strong>on</strong> at low Ekman number (Busse, 1970; Roberts, 1968). Isolated, azimuthallydrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs often seem to occur very close together (with<str<strong>on</strong>g>in</str<strong>on</strong>g> 5 ◦of l<strong>on</strong>gitude of each other).(a) DYN2 u r at 0.975r 0 (b) DYN2 u r at 0.975r 0after 0.01987 τ ηafter 0.03996 τ η62.55037.52512.50−12.5−25−37.5−50−62.562.55037.52512.50−12.5−25−37.5−50−62.5(c) DYN2 u r at 0.975r 0 (d) DYN2 u r at 0.975r 0after 0.06006 τ ηafter 0.08015 τ η62.55037.52512.50−12.5−25−37.5−50−62.562.55037.52512.50−12.5−25−37.5−50−62.5(e) DYN2 u r at 0.975r 0 (f) DYN2 u r at 0.975r 0after 0.10024 τ ηafter 0.12034 τ η62.55037.52512.50−12.5−25−37.5−50−62.562.55037.52512.50−12.5−25−37.5−50−62.5Figure 5.19: Snapshots of u r from DYN2 at 0.975r 0 .Unprocessed radial velocity field (u r ) at r = 0.975r 0 from the model DYN2 is presented<str<strong>on</strong>g>in</str<strong>on</strong>g> a series of snapshots after (a) 0.01987τ η , (b) 0.03996τ η , (c) 0.060056τ η , (d) 0.08015τ η ,(e) 0.10024τ η , (f) 0.12034 τ η .TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> associated FK power spectra of u r (without any process<str<strong>on</strong>g>in</str<strong>on</strong>g>g) are presented<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.20. At high latitudes, a slow background westward drift was observed, as was


128 Chapter 5 — Dynamo model outputalso the case for B r . At lower latitudes, the dendritic evoluti<strong>on</strong> patterns menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>the discussi<strong>on</strong> of the B r are very strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g with rapidly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent patterns of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs merg<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to slower, higher amplitudefeatures that appear to be <str<strong>on</strong>g>in</str<strong>on</strong>g>strumental <str<strong>on</strong>g>in</str<strong>on</strong>g> organis<str<strong>on</strong>g>in</str<strong>on</strong>g>g the flow evoluti<strong>on</strong> <strong>on</strong> l<strong>on</strong>ger timescales. The FK power spectra illustrate that moti<strong>on</strong>s are larger scale (m=2 to 6) <str<strong>on</strong>g>and</str<strong>on</strong>g>primarily westward at high latitudes, while at lower latitudes, the highest amplitudepeaks are found at m=12 to 16 <str<strong>on</strong>g>and</str<strong>on</strong>g> are likely to be the result of the slow mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, highamplitude pairs of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g be<str<strong>on</strong>g>in</str<strong>on</strong>g>g fed by the weaker, faster mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gfeatures.Eastward velocity field (u φ ) from DYN2F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the eastward velocity field u φ from DYN2 was <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated to ascerta<str<strong>on</strong>g>in</str<strong>on</strong>g> whetherany persistent azimuthal flows were present that might enable an advecti<strong>on</strong> mechanismto expla<str<strong>on</strong>g>in</str<strong>on</strong>g> observed moti<strong>on</strong>s of c<strong>on</strong>centrati<strong>on</strong>s of B r observed at the outer boundary.Snapshots of u φ <strong>on</strong> a spherical shell of radius 0.975r 0 are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.21, <str<strong>on</strong>g>and</str<strong>on</strong>g>the evoluti<strong>on</strong> can be seen <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong> A5.7. The evoluti<strong>on</strong> of u φ has very similarcharacteristics to u r , but generally has larger spatial scales <str<strong>on</strong>g>and</str<strong>on</strong>g> fewer very <str<strong>on</strong>g>in</str<strong>on</strong>g>tense, sharpfeatures. Most moti<strong>on</strong> of foci of u φ occurs at mid to high latitudes, with occasi<strong>on</strong>alepisodes of activity at lower latitudes. The E S feature identified <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the equatorat 45 ◦ W at 0.10024τ η is found to be correlated with a c<strong>on</strong>vergence of eastward <str<strong>on</strong>g>and</str<strong>on</strong>g>westward flow, while the E A low latitude feature at 120 ◦ E at 0.08015τ η occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> anextended regi<strong>on</strong> of weak eastward azimuthal flow.C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of u φ at 60 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> S, at the equator<str<strong>on</strong>g>and</str<strong>on</strong>g> at 20 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 5.22 it is observed that at high latitudes a background m=2pattern of u φ moves slowly to the west. Superimposed <strong>on</strong> this large scale pattern aremore rapid, transient moti<strong>on</strong>s of smaller length scales that complicate the picture. Atlower latitudes (0 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 ◦ S), the most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature is the dichotomy betweeneastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward flow, with the zero of eastward flow (actually a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of z<strong>on</strong>alflow c<strong>on</strong>vergence) occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the locati<strong>on</strong>s of the downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g features observed <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 5.20.5.3.4 Discussi<strong>on</strong> of results from DYN2 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2dCompar<str<strong>on</strong>g>in</str<strong>on</strong>g>g truncated B r at the outer boundary (DYN2d) to the geomagnetic field atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface over the past 400 years (gufm1), the morphology of the fields are <strong>on</strong> firstimpressi<strong>on</strong>s rather similar, though DYN2d is less dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated. Both have <str<strong>on</strong>g>in</str<strong>on</strong>g>tense,large scale, slowly mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g, high latitude field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> transient episodes ofazimuthal moti<strong>on</strong>s of field features at low latitudes. Both E S <str<strong>on</strong>g>and</str<strong>on</strong>g> E A symmetry featuresare observed at low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d; which symmetry is present appears to depend


129 Chapter 5 — Dynamo model output(a) u r from DYN2, TL plot, 60 ◦ N(b) u r from DYN2, TL plot, 0 ◦ N62.5150.12500.12120.137.50.192560.0812.50.083Time / τ η0.060−12.5Time / τ η0.060−30.04−250.04−6−37.5−90.02−500.02−12−62.50−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) u r from DYN2, FK plot, 60 ◦ N−150−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) u r from DYN2, FK plot, 0 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E0.850.750.650.550.450.350.250.150.050(e) u r from DYN2, TL plot, 20 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E1.71.51.31.10.90.70.50.30.10(f) u r from DYN2, TL plot, 60 ◦ S25500.12200.12400.1150.13010200.0850.0810Time / τ η0.060−5Time / τ η0.060−100.04−100.04−20−15−300.02−200.02−40−250−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) u r from DYN2, FK plot, 22 ◦ S−500−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) u r from DYN2, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E4.253.753.252.752.251.751.250.750.250Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E0.850.750.650.550.450.350.250.150.050Figure 5.20: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of u r from DYN2.Time-l<strong>on</strong>gitude (TL) plots of unprocessed radial velocity field u r from the model DYN2at r = 0.975r 0 , at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 10 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). Theassociated frequency-wavenumber (FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), (d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


130 Chapter 5 — Dynamo model output(a) DYN2 u φ at 0.975r 0 (b) DYN2 u φ at 0.975r 0after 0.01987 τ ηafter 0.03996 τ η5004003002001000−100−200−300−400−5005004003002001000−100−200−300−400−500(c) DYN2 u φ at 0.975r 0 (d) DYN2 u φ at 0.975r 0after 0.06006 τ ηafter 0.08015 τ η5004003002001000−100−200−300−400−5005004003002001000−100−200−300−400−500(e) DYN2 u φ at 0.975r 0 (f) DYN2 u φ at 0.975r 0after 0.10024 τ ηafter 0.12034 τ η5004003002001000−100−200−300−400−5005004003002001000−100−200−300−400−500Figure 5.21: Snapshots of u φ from DYN2 at 0.975r 0 .Eastward velocity field (u φ ) at r = 0.975r 0 from the model DYN2 is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> a seriesof snapshots after (a) 0.01987 τ η , (b) 0.03996 τ η , (c) 0.060056 τ η , (d) 0.08015 τ η , (e)0.10024τ η , (f) 0.12034 τ η .


131 Chapter 5 — Dynamo model output(a) u φ from DYN2, TL plot, 60 ◦ N(b) u φ from DYN2, TL plot, 10 ◦ N4001500.123200.121200.12400.190160600.08800.0830Time / τ η0.060−80Time / τ η0.060−300.04−1600.04−60−240−900.02−3200.02−120−4000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(c) u φ from DYN2, FK plot, 60 ◦ N−1500−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(d) u φ from DYN2, FK plot, 10 ◦ NFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E(e) u φ from DYN2, TL plot, 20 ◦ S17151311975310Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E5.14.53.93.32.72.11.50.90.30(f) u φ from DYN2, TL plot, 60 ◦ S2004000.121600.123200.11200.1240801600.08400.0880Time / τ η0.060−40Time / τ η0.060−800.04−800.04−160−120−2400.02−1600.02−320−2000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(g) u φ from DYN2, FK plot, 22 ◦ S−4000−150 −120 −90 −60 −30 0 30 60 90 120 150L<strong>on</strong>gitude / degrees east(h) u φ from DYN2, FK plot, 60 ◦ SFrequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E5.14.53.93.32.72.11.50.90.30Frequency / cycles per mag. dif. time (τ η−1 )28024020016012080400−20−18−16−14−12−10−8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20W Z<strong>on</strong>al spatial wavenumber E17151311975310Figure 5.22: TL plots <str<strong>on</strong>g>and</str<strong>on</strong>g> FK power spectra of u φ from DYN2.Time-l<strong>on</strong>gitude (TL) plots of radial magnetic field u φ from the model DYN2 (undamped)at r = 0.975r 0 without filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g at latitudes 60 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), at 10 ◦ N <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), at 20 ◦ (e) <str<strong>on</strong>g>and</str<strong>on</strong>g>60 ◦ S <str<strong>on</strong>g>in</str<strong>on</strong>g> (f). The associated frequency-wavenumber (FK) power spectra are found <str<strong>on</strong>g>in</str<strong>on</strong>g> (c),(d), (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> (h).


132 Chapter 5 — Dynamo model outputto a large extent <strong>on</strong> the symmetry of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial (<str<strong>on</strong>g>and</str<strong>on</strong>g> local) B r acted up<strong>on</strong> by the waveflow. In DYN2d there are also many more reversed polarity features than are observed<str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1; this may be because DYN2 is not sufficiently dipole dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated.Intervals of both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong> of c<strong>on</strong>centrati<strong>on</strong>s of B r are observed <str<strong>on</strong>g>in</str<strong>on</strong>g>both DYN2 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2d, as was the case when the archeomagnetic field model CALSK7.1analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 4. This result suggests that there is unlikely to be any fundamentalreas<strong>on</strong> for azimuthal moti<strong>on</strong>s of field features to be <strong>on</strong>ly westward at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface,as is the case <str<strong>on</strong>g>in</str<strong>on</strong>g> historical geomagnetic field model gufm1. By this reas<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g, it seemsmore plausible that the westward drift of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 is a transient episodeof westward moti<strong>on</strong>. Several episodes of such azimuthal moti<strong>on</strong> (both eastward or westward)are observed <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1 where they last between 500 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> also<str<strong>on</strong>g>in</str<strong>on</strong>g> both the magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity fields of DYN2, where episodes typically last around0.01 τ η .The analysis of DYN2 supports earlier f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from the study of DYN1 that azimuthallymov<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s of B r at low latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> some circumstances move al<strong>on</strong>g withthe locati<strong>on</strong>s of flow c<strong>on</strong>vergence (where there is no net azimuthal flow) at positi<strong>on</strong>sof flow downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The moti<strong>on</strong> of such c<strong>on</strong>centrati<strong>on</strong>s of B r can sometimes not beexpla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by advecti<strong>on</strong> al<strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> must <str<strong>on</strong>g>in</str<strong>on</strong>g>volve wave propagati<strong>on</strong>. The diagnosis is,however, much more difficult <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 than DYN1 because of the smaller length scales<str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>and</str<strong>on</strong>g> the more complicated (super-critical) nature of the evoluti<strong>on</strong> of the velocityfield. Furthermore, <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2 there are additi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>stances of azimuthal moti<strong>on</strong> (botheastwards <str<strong>on</strong>g>and</str<strong>on</strong>g> westwards) of c<strong>on</strong>centrati<strong>on</strong>s of B r at low latitudes that are not associatedwith any downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow field. Their azimuthal moti<strong>on</strong> appears to be causedby material advecti<strong>on</strong> al<strong>on</strong>g with the fluid rather than by wave propagati<strong>on</strong>. In highlysupercritical c<strong>on</strong>vecti<strong>on</strong>, it seems that both wave propagati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> advecti<strong>on</strong> by z<strong>on</strong>alflows will c<strong>on</strong>tribute to azimuthal moti<strong>on</strong> of magnetic field features.The spectrally limited (damped) B r studied <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d was found to accurately capturethe moti<strong>on</strong>s of the large length scale field features seen <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2, but unfortunately smalllength scale features are lost, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>accuracies <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred azimuthal speeds.N<strong>on</strong>etheless, the equatorial symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> of moti<strong>on</strong> of features <str<strong>on</strong>g>in</str<strong>on</strong>g> (damped)B r were found to be accurate diagnosis tools. It should be noted that limitati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> theutility of B r <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g are <strong>on</strong>ly of relevance if the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid flow isdom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by small length scales.5.4 SummaryIn this chapter the utility of space-time spectral analysis techniques <str<strong>on</strong>g>in</str<strong>on</strong>g> analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g outputfrom geodynamo models has been dem<strong>on</strong>strated. The methodology facilitates the comparis<strong>on</strong>of the evoluti<strong>on</strong> of dynamo magnetic field at the outer boundary to the observed


133 Chapter 5 — Dynamo model outputcharacteristics of geomagnetic field evoluti<strong>on</strong>. It also enables the c<strong>on</strong>comitant changes<str<strong>on</strong>g>in</str<strong>on</strong>g> velocity fields (<str<strong>on</strong>g>and</str<strong>on</strong>g> if necessary temperature fields) with<str<strong>on</strong>g>in</str<strong>on</strong>g> the generati<strong>on</strong> regi<strong>on</strong> to bestudied giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>sights <str<strong>on</strong>g>in</str<strong>on</strong>g>to possible mechanisms of geomagnetic secular variati<strong>on</strong>.In both DYN1 <str<strong>on</strong>g>and</str<strong>on</strong>g> DYN2 evidence for radial magnetic field evoluti<strong>on</strong> associated withwave propagati<strong>on</strong> was found. Under favourable c<strong>on</strong>diti<strong>on</strong>s it was found that magneticfield c<strong>on</strong>centrati<strong>on</strong>s could form at regi<strong>on</strong>s where flow c<strong>on</strong>verged at downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g>moved al<strong>on</strong>g with these downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, <str<strong>on</strong>g>in</str<strong>on</strong>g>teract<str<strong>on</strong>g>in</str<strong>on</strong>g>g with other field c<strong>on</strong>centrati<strong>on</strong>s tochange amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> speed before eventually dispers<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Simple, large scale wave moti<strong>on</strong>swere observed <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1, <str<strong>on</strong>g>and</str<strong>on</strong>g> propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow features with much smaller lengthscales <str<strong>on</strong>g>and</str<strong>on</strong>g> more complicated n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s were also observed <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2. Thetruncati<strong>on</strong> of the magnetic field at the outer boundary <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN2d was found to make itdifficult to accurately <str<strong>on</strong>g>in</str<strong>on</strong>g>fer the properties of the smallest scale fluid moti<strong>on</strong>s produc<str<strong>on</strong>g>in</str<strong>on</strong>g>gmagnetic field change. Despite this, the azimuthal directi<strong>on</strong> of field moti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> equatorialsymmetry of the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow features could be accurately determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, regardlessof spectral damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g.The models analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter have succeeded <str<strong>on</strong>g>in</str<strong>on</strong>g> dem<strong>on</strong>strat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> can arise even if the background toroidal magnetic field is not steady, but isdynamo generated <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>stantly evolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The evoluti<strong>on</strong> of the background field doeshowever seem to ensure that the spatially coherent <str<strong>on</strong>g>waves</str<strong>on</strong>g> have f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite lifetimes <str<strong>on</strong>g>and</str<strong>on</strong>g> so<strong>on</strong>break down. The existence of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>-driven dynamos <str<strong>on</strong>g>in</str<strong>on</strong>g> thischapter provides support for the hypothesis that they could exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.


134Chapter 6Theory of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids6.1 Introducti<strong>on</strong><str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> are propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g disturbances found <str<strong>on</strong>g>in</str<strong>on</strong>g> electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluidspermeated by magnetic fields. They exist as a result of the restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force provided bymagnetic tensi<strong>on</strong> that arises when fluid parcels move across field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g><str<strong>on</strong>g>waves</str<strong>on</strong>g> are the natural resp<strong>on</strong>se of a hydromagnetic system to perturbati<strong>on</strong>, but can alsooccur as a manifestati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>stability <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field or flow. It would thereforebe very surpris<str<strong>on</strong>g>in</str<strong>on</strong>g>g if such <str<strong>on</strong>g>waves</str<strong>on</strong>g> were not present <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. In this chaptera review of the theory of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids is presented;the emphasis of this expositi<strong>on</strong> will be <strong>on</strong> the different types of <str<strong>on</strong>g>waves</str<strong>on</strong>g> that could exist <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the factors determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>their</str<strong>on</strong>g> properties. In the absence of diffusive processes,the dimensi<strong>on</strong>al equati<strong>on</strong>s of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> (seeappendix D, equati<strong>on</strong>s (D.13) to (D.15)) will be the basis for the mathematical development,while when diffusi<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded, a viscous n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> (see appendixD, equati<strong>on</strong>s (D.19) to (D.21)) will be employed to facilitate comparis<strong>on</strong> to n<strong>on</strong>-magneticstudies.Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a brief survey of the extensive literature <str<strong>on</strong>g>in</str<strong>on</strong>g> this area, the force balance resp<strong>on</strong>siblefor the existence of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids will bediscussed <str<strong>on</strong>g>and</str<strong>on</strong>g> fundamental time scales associated with <str<strong>on</strong>g>their</str<strong>on</strong>g> propagati<strong>on</strong> identified. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq, equati<strong>on</strong>s for rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> described <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D,dispersi<strong>on</strong> relati<strong>on</strong>s for diffusi<strong>on</strong>less hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong> are derived. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of diffusi<strong>on</strong>, spherical geometry, imposed magneticfield morphology, presence of an <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>, n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear feedbacks <str<strong>on</strong>g>and</str<strong>on</strong>g> fluid stratificati<strong>on</strong> <strong>on</strong>the <str<strong>on</strong>g>waves</str<strong>on</strong>g> are described, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g previously published studies as a guide. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, possibletypes of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> that could exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> are discussed.


6.2 Survey of hydromagnetic wave literature135 Chapter 6 — TheoryStudy of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, with a focus <strong>on</strong> geophysical applicati<strong>on</strong>s has a rich history<str<strong>on</strong>g>and</str<strong>on</strong>g> has captured the attenti<strong>on</strong> of some of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>est applied mathematicians <str<strong>on</strong>g>and</str<strong>on</strong>g>theoretical geophysicists over the past 50 years. Alfvén (1942) <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated the study ofhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the simplest possible scenario where a balance ofmagnetic tensi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia gives rise to <str<strong>on</strong>g>waves</str<strong>on</strong>g>, which became known as Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> his h<strong>on</strong>our. Lehnert (1954) deduced that rapid rotati<strong>on</strong> of a hydromagnetic systemwould lead to the splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g of plane Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to two possible circularly polarised,transverse <str<strong>on</strong>g>waves</str<strong>on</strong>g>. One type of wave was found to have a period similar to <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>(found <str<strong>on</strong>g>in</str<strong>on</strong>g> all rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid systems due to <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic stability– see Stewarts<strong>on</strong> (1978)for a descripti<strong>on</strong>) while the other type of wave had a much l<strong>on</strong>ger period. The later representsa new, fundamental time scale <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic systems, which shallbe referred to as the magnetic-Coriolis (MC) time scale. Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar (1961) studiedthe effects of buoyancy <strong>on</strong> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic systems <str<strong>on</strong>g>in</str<strong>on</strong>g> detail, though he focusedprimarily <strong>on</strong> axisymmetric moti<strong>on</strong>s. Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1964; 1967) realised the importanceof n<strong>on</strong>-axisymmetric disturbances <str<strong>on</strong>g>and</str<strong>on</strong>g> showed that if magnetic, buoyancy <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolisforces were equally important, fast <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> as well as slower hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>are aga<str<strong>on</strong>g>in</str<strong>on</strong>g> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, but with periods dependent <strong>on</strong> the strength of stratificati<strong>on</strong>. Hechristened these slow <str<strong>on</strong>g>waves</str<strong>on</strong>g>, that were dependent <strong>on</strong> magnetic, buoyancy (Archimedes)<str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces, as MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Hide (1966) was the first to c<strong>on</strong>sider the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of spherical geometry <strong>on</strong> two dimensi<strong>on</strong>alhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. He studied the effects of a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear variati<strong>on</strong> of the Coriolisforce with positi<strong>on</strong>, mimick<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of the variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coriolis force with latitude<str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell (known as the β effect <str<strong>on</strong>g>in</str<strong>on</strong>g> meteorology <str<strong>on</strong>g>and</str<strong>on</strong>g> oceanography). Heshowed that the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g slow hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> (known as MC Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, becauselike Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the atmosphere <str<strong>on</strong>g>and</str<strong>on</strong>g> ocean <str<strong>on</strong>g>their</str<strong>on</strong>g> restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force relies <strong>on</strong> thevariati<strong>on</strong> of the Coriolis force with positi<strong>on</strong> (Gill, 1982; Pedlosky, 1987)) had the correcttime scale to account for some parts of the geomagnetic secular variati<strong>on</strong>, particularlythe westward drift described by Bullard et al. (1950). Malkus (1967) studied MC <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> a full sphere for the special case of a background field <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> strength withdistance from the rotati<strong>on</strong> axis. Stewarts<strong>on</strong> (1967) developed an analytic theory of suchMC <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shell.Eltayeb (1972), Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Stewarts<strong>on</strong> (1974), Soward (1979b) Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper(1979) <str<strong>on</strong>g>and</str<strong>on</strong>g> more recently Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es (2000) have illustrated the importance of<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal diffusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> models of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, show<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat the most unstable <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> plane layer systems often occur <strong>on</strong> diffusive time scales.Eltayeb <str<strong>on</strong>g>and</str<strong>on</strong>g> Kumar (1977) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn (1979b) carried out the first numerical studiesof hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the effects of both buoyancy <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g,spherical geometry. Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983) went <strong>on</strong> to c<strong>on</strong>sider the effect of


136 Chapter 6 — Theorymore geophysically plausible background magnetic fields satisfy<str<strong>on</strong>g>in</str<strong>on</strong>g>g electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>gboundary c<strong>on</strong>diti<strong>on</strong>s at the outer boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> with n<strong>on</strong>-zero mean background flows.They found that the imposed background field had little <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> the properties ofhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, but that the background azimuthal flow could determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e both thedrift speed <str<strong>on</strong>g>and</str<strong>on</strong>g> latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al positi<strong>on</strong> of the <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Most recently, Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn (1994),Zhang (1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2002) have discussed the properties of MC <str<strong>on</strong>g>and</str<strong>on</strong>g>MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell geometry, c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g a variety of imposed magnetic fieldc<strong>on</strong>figurati<strong>on</strong>s.The overviews by Hide <str<strong>on</strong>g>and</str<strong>on</strong>g> Stewarts<strong>on</strong> (1973) <str<strong>on</strong>g>and</str<strong>on</strong>g> Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1989) provide c<strong>on</strong>cise<str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong>s to the theory of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems. Thetextbooks by Moffatt (1978), Melchoir (1986), Davids<strong>on</strong> (2001) <str<strong>on</strong>g>and</str<strong>on</strong>g> Rüdiger <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollerbach(2004) c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> summaries of hydromagnetic wave theory <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>text of moregeneral surveys of magnetohydrodynamics. More focused, technical reviews of the subjectcan found <str<strong>on</strong>g>in</str<strong>on</strong>g> Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward (1972), Aches<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide (1973), Eltayeb (1981),Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1987), Fearn et al. (1988), Proctor (1994) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert(2000).6.3 Lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order force balance associated with hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluidsA physical underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> can be achieved through c<strong>on</strong>siderati<strong>on</strong> of theforce balance <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>in</str<strong>on</strong>g>viscid fluid which <str<strong>on</strong>g>in</str<strong>on</strong>g>volves <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia,magnetic forces, <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces. Inertia is the resistance to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the state ofmoti<strong>on</strong> that all matter (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids) exhibit. Magnetic forces always act so as to opposemoti<strong>on</strong>s that cause distorti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es (Lenz’s law). Underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gof the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of Coriolis forces <strong>on</strong> fluid moti<strong>on</strong>s requires a little more thought. Coriolisforces are well known for caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g circulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g eddies <str<strong>on</strong>g>in</str<strong>on</strong>g> fluids (for example, hurricanes <str<strong>on</strong>g>in</str<strong>on</strong>g>the atmosphere) <str<strong>on</strong>g>and</str<strong>on</strong>g> exist <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frames because <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial moti<strong>on</strong>s followcurved trajectories rather than straight l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> such reference frames. Act<str<strong>on</strong>g>in</str<strong>on</strong>g>g at right anglesto directi<strong>on</strong> of moti<strong>on</strong>, the Coriolis force results <str<strong>on</strong>g>in</str<strong>on</strong>g> circular moti<strong>on</strong>s of fluid elements,which periodically return to <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial positi<strong>on</strong>. Such a fluid is said to possess <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sicstability (Batchelor, 1967; Tritt<strong>on</strong>, 1987). An <str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of this stabilitymay be ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by th<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es which, by analogy to magnetic fieldl<str<strong>on</strong>g>in</str<strong>on</strong>g>es, po<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the local vorticity (Lighthill, 1966). Vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es result<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom the Coriolis force are <str<strong>on</strong>g>in</str<strong>on</strong>g>itially parallel to the rotati<strong>on</strong> vector for a homogeneous fluid<str<strong>on</strong>g>in</str<strong>on</strong>g> solid body rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> like magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es impart an effective elasticity to thefluid by resist<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid moti<strong>on</strong>s that distort them (Lighthill, 1978). Propagati<strong>on</strong> of <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic fluids therefore depends <strong>on</strong> fluid moti<strong>on</strong>s distort<str<strong>on</strong>g>in</str<strong>on</strong>g>geither the undisturbed parallel vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, or the undisturbed magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es, or acomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of both.


137 Chapter 6 — TheoryIn rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic fluid systems, four possible force balances are c<strong>on</strong>ceivable;the first three require rapid fluid moti<strong>on</strong>s while the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al is <strong>on</strong>ly possible forslow fluid moti<strong>on</strong>s 1 :(i) When magnetic forces are much str<strong>on</strong>ger than Coriolis forces, magnetic tensi<strong>on</strong>al<strong>on</strong>e is capable of balanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> disturbances are communicated by Alfvén<str<strong>on</strong>g>waves</str<strong>on</strong>g> where the magnetic restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g force acts to return magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es to <str<strong>on</strong>g>their</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>figurati<strong>on</strong> (see figure 6.1b).(ii) When Coriolis forces are much str<strong>on</strong>ger than magnetic forces, vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>e tensi<strong>on</strong>is capable of balanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> disturbances are communicated by <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial<str<strong>on</strong>g>waves</str<strong>on</strong>g> (see figure 6.1c).(iii) When magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces are of similar strength, the sum of of magneticfield tensi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> vortex tensi<strong>on</strong> can balance <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> disturbances are communicatedby <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial magnetic-Coriolis (<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial-MC) <str<strong>on</strong>g>waves</str<strong>on</strong>g> (see figure 6.1d).(iv) When fluid moti<strong>on</strong>s are slow so that <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia is unimportant <str<strong>on</strong>g>in</str<strong>on</strong>g> the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order forcebalance but magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces are of similar strength, then magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g>vortex tensi<strong>on</strong> are capable of balanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g each other <str<strong>on</strong>g>and</str<strong>on</strong>g> disturbances are communicatedby magnetic-Coriolis (MC) <str<strong>on</strong>g>waves</str<strong>on</strong>g>. In this case time-dependency arisesthrough changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field, so that changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field c<strong>on</strong>figurati<strong>on</strong>produce fluid moti<strong>on</strong>s through the acti<strong>on</strong> of the Lorentz force; thesemoti<strong>on</strong>s are then opposed by vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>e tensi<strong>on</strong>, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> oscillati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> wavemoti<strong>on</strong> (see figure 6.1e).Balance (iv) permits the existence of a new class of slow wave <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagneticsystems, which cannot exist without the presence of both magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> rotati<strong>on</strong>.An estimate of the MC time scale can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g a scale analysis ofthe important terms <str<strong>on</strong>g>in</str<strong>on</strong>g> the equati<strong>on</strong>s for c<strong>on</strong>servati<strong>on</strong> of momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>.In the momentum equati<strong>on</strong> (D.1), assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g a balance between Coriolis <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic(Lorentz) forces, 2ΩU =B 2ρ 0 µL MC, where Ω is the angular rotati<strong>on</strong> rate, U is a typicalvelocity scale, B is a typical magnetic field strength, L MC is a typical length scale overwhich changes associated with MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> occur, ρ 0 is the density of the fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> µis the fluid’s magnetic permeability. For a highly electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid, changes<str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field come primarily from advecti<strong>on</strong> so scale analysis of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>BT MC= UBequati<strong>on</strong> ignor<str<strong>on</strong>g>in</str<strong>on</strong>g>g diffusi<strong>on</strong> yieldsL MC, where T MC is a typical time scale overwhich changes associated with MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> occur. Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g this expressi<strong>on</strong> for U<str<strong>on</strong>g>in</str<strong>on</strong>g>to the expressi<strong>on</strong> for the force balance leads to the relati<strong>on</strong> T MC = 2ΩL2 MC ρ 0µ. TheB 2Bquantity v A = has units of velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> is the propagati<strong>on</strong> speed of Alfvén(ρ 0 µ) 1/21 The presence of the pressure gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> the force balance is not explicitly discussed because it playsa passive role <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible fluids.


Undisturbed138 Chapter 6 — Theory(a)ΩB 0(b)Ω(c)F IB 0F CF IF LAlfven waveInertialwave(d)ΩΩ(e)F CInertial−MCF IF CF LB 0FLB 0waveMCwaveFigure 6.1: <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> wave mechanisms <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid.Possible hydromagnetic wave mechanisms. Black l<str<strong>on</strong>g>in</str<strong>on</strong>g>es are vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es due to rotati<strong>on</strong>,red l<str<strong>on</strong>g>in</str<strong>on</strong>g>es are the imposed magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the light blue regi<strong>on</strong> is a fluid parcel. Thegreen arrow represents the acti<strong>on</strong> of the Lorentz force <strong>on</strong> the fluid parcel, the brownarrow the acti<strong>on</strong> of the Coriolis force <str<strong>on</strong>g>and</str<strong>on</strong>g> the magenta arrow <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial accelerati<strong>on</strong>. In(a) the undisplaced fluid parcel is shown, <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> Lorentz force give rise toAlfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis force produce <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> (d) <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia iscounteracted by the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of Lorentz <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces to give rise to <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial-MC<str<strong>on</strong>g>waves</str<strong>on</strong>g> while <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia is negligible <str<strong>on</strong>g>and</str<strong>on</strong>g> the Lorentz force caused by changes <str<strong>on</strong>g>in</str<strong>on</strong>g> theform of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es is counteracted by the Coriolis force, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g MC <str<strong>on</strong>g>waves</str<strong>on</strong>g>.


139 Chapter 6 — Theory<str<strong>on</strong>g>waves</str<strong>on</strong>g> (see, for example, Davids<strong>on</strong> (2001)).Estimates for these quantities <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s<str<strong>on</strong>g>core</str<strong>on</strong>g> are Ω = 7.3 × 10 −5 s −1 , ρ 0 = 1 × 10 4 kgm −3 , µ = 4π × 10 −7 T 2 mkg −1 s 2 , so thatT MC ∼ 10−6 L 2 MCB. Neither the magnetic field strength or the length scale associated with2its variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> are well known. Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g B = 5 × 10 −4 T, as suggested bymodels of the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by models at Earth’s surface, <str<strong>on</strong>g>and</str<strong>on</strong>g>L MC = 3.5 × 10 6 m, the <str<strong>on</strong>g>core</str<strong>on</strong>g> radius, yields T MC ∼ 1.5 × 10 6 years. Equally plausibly,c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wave with azimuthal wavenumber m=8, <str<strong>on</strong>g>and</str<strong>on</strong>g> assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the field <str<strong>on</strong>g>in</str<strong>on</strong>g>sidethe outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is 10 times the <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred <str<strong>on</strong>g>core</str<strong>on</strong>g> surface field strength leads to an estimateof T MC ∼ 250 years. The co<str<strong>on</strong>g>in</str<strong>on</strong>g>cidence between this time scale <str<strong>on</strong>g>and</str<strong>on</strong>g> that of geomagneticsecular variati<strong>on</strong> motivates attempts to l<str<strong>on</strong>g>in</str<strong>on</strong>g>k the two phenomena.6.4 <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by c<strong>on</strong>vecti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g planelayerIn this secti<strong>on</strong>, the mathematical analysis of the generalisati<strong>on</strong> of MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> to the casewhen buoyancy forces are present (MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>) is presented. The start<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t isthe set of dimensi<strong>on</strong>al equati<strong>on</strong>s of l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised, Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong>(equati<strong>on</strong>s (D.13) — (D.17)). These equati<strong>on</strong>s express the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples of c<strong>on</strong>servati<strong>on</strong>of mass, momentum, energy <str<strong>on</strong>g>and</str<strong>on</strong>g> electromagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>. In this particular modelthe equati<strong>on</strong>s are simplified by assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the imposed magnetic field B 0 is uniform(so (b · ∇)B 0 = 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> that viscous, magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal diffusi<strong>on</strong> are negligible(ν = η = κ = 0).xzyΩT 0B 0gFigure 6.2: Geometry of plane layer model of diffusi<strong>on</strong>less MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> .Geometry of background state <str<strong>on</strong>g>in</str<strong>on</strong>g> model of MC/MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer.The fluid rotates uniformly about the ẑ axis, the imposed magnetic field is uniform, but<str<strong>on</strong>g>in</str<strong>on</strong>g> an arbitrary directi<strong>on</strong>. The imposed temperature gradient <str<strong>on</strong>g>and</str<strong>on</strong>g> gravity act <str<strong>on</strong>g>in</str<strong>on</strong>g> the -ẑdirecti<strong>on</strong>.


140 Chapter 6 — TheoryWork<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Cartesian co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates (̂x, ŷ, ẑ) the axis of rotati<strong>on</strong> is chosen to be al<strong>on</strong>gẑ, the imposed magnetic field is chosen to be uniform but <str<strong>on</strong>g>in</str<strong>on</strong>g> an arbitrary directi<strong>on</strong>,so B 0 = (B 0x ̂x + B 0y ŷ + B 0z ẑ), <str<strong>on</strong>g>and</str<strong>on</strong>g> the uniform background temperature gradient is∇T 0 = −β ′ ẑ. In a gravity field g = −γẑ, the buoyancy force is therefore ρ 0 gαΘ <str<strong>on</strong>g>in</str<strong>on</strong>g> theẑ directi<strong>on</strong>, where T = T 0 + Θ. Attenti<strong>on</strong> is focused <strong>on</strong> the slow moti<strong>on</strong>s, so the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertialterm ρ 0∂u∂tis neglected. The l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s are then2Ω × u = − 1 ρ 0∇P + 1µρ 0(B 0 · ∇) b + γαΘẑ, (6.1)∂b∂t = (B 0 · ∇) u, (6.2)∂Θ∂t = β′ (ẑ · u). (6.3)Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g ∂ ∂t∇× the momentum equati<strong>on</strong> (6.1) to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate pressure gives2(Ω · ∇) ∂u∂t = (B 0 · ∇) ∂µρ 0 ∂t (∇ × b) + γα ∂ (∇ × Θẑ), (6.4)∂twhile tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the curl (∇×) of the magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> (6.2) yields∂∂t (∇ × b) = (B 0 · ∇) (∇ × u). (6.5)Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from equati<strong>on</strong> (6.5) <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (6.4) for ∂ ∂t(∇ × b) gives a vorticity equati<strong>on</strong>quantify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the MAC balance with terms aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g from Coriolis forces <strong>on</strong> the lefth<str<strong>on</strong>g>and</str<strong>on</strong>g> side <str<strong>on</strong>g>and</str<strong>on</strong>g> terms aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> buoyancy forces <strong>on</strong> the right h<str<strong>on</strong>g>and</str<strong>on</strong>g>side2(Ω · ∇) ∂u∂t = (B 0 · ∇) 2(∇ × u) + γα ∂ (∇ × Θẑ). (6.6)µρ 0 ∂tOperat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> equati<strong>on</strong> (6.6) with (B 0·∇) 2µρ 0∇× gives[ ]2(Ω·∇) ∂ (B 0 · ∇) 2(B 0 · ∇) 2 2(∇×u) =(∇×(∇×u))+γα (B 0 · ∇) 2 ∂(∇×(∇ × Θẑ)).∂t µρ 0 µρ 0 µρ 0 ∂t(6.7)This can be simplified by not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that (B 0·∇) 2µρ 0(∇×u) can be elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>(6.6) aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> remember<str<strong>on</strong>g>in</str<strong>on</strong>g>g that for an <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible fluid ∇×(∇×u) = −∇ 2 u. Thentak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dot product of equati<strong>on</strong> (6.7) with ẑ <str<strong>on</strong>g>and</str<strong>on</strong>g> recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g that ẑ · (∇ × Θẑ) = 0<str<strong>on</strong>g>and</str<strong>on</strong>g> ẑ · (∇ × (∇ × Θẑ)) = −( ∂2∂x 2 + ∂2∂y 2 )Θ = −∇ 2 H Θ leaves[ ]4(Ω · ∇) 2 ∂2∂t 2 u (B 0 · ∇) 2 2z = −∇u z − γα (B 0 · ∇) 2∇ 2 ∂ΘHµρ 0 µρ 0 ∂t .F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised heat equati<strong>on</strong> (6.3) to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate ∂Θ∂t, a sixth orderequati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> u z is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. This is the diffusi<strong>on</strong>less MAC wave equati<strong>on</strong>⎛[ ] ⎞⎝ 4(Ω · ∇) 2 ∂2∂t 2 + (B 0 · ∇) 2 2∇ 2 − γαβ ′ (B 0 · ∇) 2∇ 2 ⎠H u z = 0.µρ 0 µρ 0


141 Chapter 6 — TheoryProperties of diffusi<strong>on</strong>less MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> can now be deduced by substituti<strong>on</strong> of planetravell<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave soluti<strong>on</strong>s of the form u z = Re{û z e i(k·r−ωt) }, where k is the wavevector<str<strong>on</strong>g>and</str<strong>on</strong>g> ω is the angular frequency, yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g[ ]4(Ω · k) 2 ω 2 (B 0 · k) 2 2−k 2 − (B 0 · k) 2γαβ ′ (kx 2 + kµρ 0 µρy) 2 = 0. (6.8)0This expressi<strong>on</strong> can be written more c<strong>on</strong>cisely by observ<str<strong>on</strong>g>in</str<strong>on</strong>g>g that terms <str<strong>on</strong>g>in</str<strong>on</strong>g> it corresp<strong>on</strong>dto characteristic natural angular frequencies for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence ofrotati<strong>on</strong> (Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g> — see Davids<strong>on</strong> (2001)), <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal gravity <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a thermallystratified fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> simple <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid (see Stewarts<strong>on</strong> (1978) orTritt<strong>on</strong> (1987)), respectively def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed asωM 2 = (B 0 · k) 2, ωA 2 = γαβ′ (kx 2 + k2 y )µρ 0 k 2 , ωC 2 4(Ω · k)2=k 2 , (6.9)so equati<strong>on</strong> (6.8) simplifies toωC 2 ω2 − ωM 4 − ω2 M ω2 A = 0. (6.10)Solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g for ω gives the necessary c<strong>on</strong>diti<strong>on</strong> (or dispersi<strong>on</strong> relati<strong>on</strong>) which must be satisfiedby the angular frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> wavevectors of plane MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> (Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, 1964; 1967;Moffatt, 1978; Soward, 1979a; Soward <str<strong>on</strong>g>and</str<strong>on</strong>g> Dormy, 2005)( ) 1/2()ω = ± ω2 M1 + ω2 Aω C ωM2 = ± k (B 0 · k) 21 + γαβ′ ρ 0 µ(kx 2 + k 2 1/2y)2ρ 0 µ(Ω · k) k 2 (B 0 · k) 2 . (6.11)Note that this is s<str<strong>on</strong>g>in</str<strong>on</strong>g>gular if B 0 · k = 0 or if Ω · k = 0, so diffusi<strong>on</strong>less MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>cannot propagate normal to magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es or the rotati<strong>on</strong> axis (though they canpropagate across field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es unlike simple Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial<str<strong>on</strong>g>waves</str<strong>on</strong>g>).Their frequency depends str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>their</str<strong>on</strong>g> wavelength (i.e., they are highlydispersive) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>their</str<strong>on</strong>g> directi<strong>on</strong> (i.e., they are anisotropic). In the special case whenthe background magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the directi<strong>on</strong> of the rotati<strong>on</strong> axis are parallel tothe directi<strong>on</strong> of wave propagati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> when buoyancy forces are absent (α = 0), thedispersi<strong>on</strong> relati<strong>on</strong> simplifies to ω = B2 0 k22Ωρ 0 µ or T MC = 2Ωρ 0µL MCas was deduced fromB02scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g arguments for MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>. The phase speed of the <str<strong>on</strong>g>waves</str<strong>on</strong>g>is then c ph = ω/k =B2 0 k2Ωρ 0 µso that <str<strong>on</strong>g>waves</str<strong>on</strong>g> with shorter wavelengths travel faster.The presence of a magnetic field str<strong>on</strong>g enough to balance the effects of the Coriolis forceis a necessary c<strong>on</strong>diti<strong>on</strong> for the existence of the MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> which are much slower thaneither <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> or Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g>. It is worth not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that ω MC is proporti<strong>on</strong>al to thesquare of the magnetic field strength, so that the magnetic field strength <str<strong>on</strong>g>in</str<strong>on</strong>g>creases thephase speed of the MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g>creases.6.4.1 Effect of diffusi<strong>on</strong> <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>Thus far the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of any source of dissipati<strong>on</strong> (viscous, magnetic or thermal diffusi<strong>on</strong>)has been neglected <str<strong>on</strong>g>in</str<strong>on</strong>g> order to simplify both the mathematical analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> the


142 Chapter 6 — Theoryphysical picture. In this secti<strong>on</strong> these effects are re-<str<strong>on</strong>g>in</str<strong>on</strong>g>troduced. Naively, the presence ofdissipati<strong>on</strong> might be expected to merely damp disturbances <str<strong>on</strong>g>and</str<strong>on</strong>g> irreversibly transformenergy to an unusable form. Although such processes undoubtedly occur, the presenceof diffusi<strong>on</strong> has other more unexpected <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences. Perhaps most importantly diffusi<strong>on</strong>adds extra degrees of freedom to the system <str<strong>on</strong>g>and</str<strong>on</strong>g> facilitates the destabilisati<strong>on</strong> of <str<strong>on</strong>g>waves</str<strong>on</strong>g>that were stable <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of diffusi<strong>on</strong> (see Roberts (1977), Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper(1979) <str<strong>on</strong>g>and</str<strong>on</strong>g> Aches<strong>on</strong> (1980)). This rather counter-<str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive effect means that <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityof MAC/MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> can occur for smaller unstable density gradients compared withwhen no diffusi<strong>on</strong> is present <str<strong>on</strong>g>and</str<strong>on</strong>g> it has been found that <str<strong>on</strong>g>in</str<strong>on</strong>g>stability can even occur <str<strong>on</strong>g>in</str<strong>on</strong>g> thepresence of a stable density gradient.The diffusive <str<strong>on</strong>g>in</str<strong>on</strong>g>stability mechanism works most effectively when the oscillati<strong>on</strong> frequencymatches the rate of diffusi<strong>on</strong>, so the time scale of the most unstable <str<strong>on</strong>g>waves</str<strong>on</strong>g> will be that ofthe diffusi<strong>on</strong> process which is facilitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (Aches<strong>on</strong>, 1980). Diffusi<strong>on</strong> thus<str<strong>on</strong>g>in</str<strong>on</strong>g>troduces new preferred time scales <str<strong>on</strong>g>in</str<strong>on</strong>g> the MAC wave problem: that of thermal diffusi<strong>on</strong>for thermally driven <str<strong>on</strong>g>waves</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> that of magnetic diffusi<strong>on</strong> for magnetically driven <str<strong>on</strong>g>waves</str<strong>on</strong>g>.To <str<strong>on</strong>g>in</str<strong>on</strong>g>clude diffusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the mathematical descripti<strong>on</strong> of MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>, it is necessary toreplace the operator ∂ ∂t by ( ∂∂t − ν∇2) <str<strong>on</strong>g>in</str<strong>on</strong>g> the momentum equati<strong>on</strong>, ( ∂∂t − η∇2) <str<strong>on</strong>g>in</str<strong>on</strong>g> the<str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> ( ∂∂t − κ∇2) <str<strong>on</strong>g>in</str<strong>on</strong>g> the heat equati<strong>on</strong>. Reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the accelerati<strong>on</strong>term <str<strong>on</strong>g>in</str<strong>on</strong>g> the momentum equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Laplacian (diffusi<strong>on</strong>) terms beforethe substituti<strong>on</strong> of plane wave soluti<strong>on</strong>s results <str<strong>on</strong>g>in</str<strong>on</strong>g> a rather more complicated dispersi<strong>on</strong>relati<strong>on</strong> for diffusive MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> (Moffatt, 1978; Soward, 1979a; Soward <str<strong>on</strong>g>and</str<strong>on</strong>g> Dormy,2005),(ωC 2 (ω + iηk2 ) 2 − [ (ω + iνk 2 )(ω + iηk 2 ) − ωM2 ] ) 2(ω + iκk 2 )+ ω 2 A(ω + iηk 2 ) [ (ω + iνk 2 )(ω + iηk 2 ) − ω 2 M]= 0. (6.12)Restrict<str<strong>on</strong>g>in</str<strong>on</strong>g>g attenti<strong>on</strong> to the c<strong>on</strong>diti<strong>on</strong>s thought to exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>, whereohmic diffusi<strong>on</strong> is expected to dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate viscous <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal diffusi<strong>on</strong> (η ≫ ν, κ) <str<strong>on</strong>g>and</str<strong>on</strong>g>where <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial accelerati<strong>on</strong> can be neglected when c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g slow oscillati<strong>on</strong>s, this expressi<strong>on</strong>simplifies to,(ω2C (ω + iηk 2 ) 2 − ωM4 )ω − ω2M ωA 2 (ω + iηk2 ) = 0. (6.13)The l<str<strong>on</strong>g>in</str<strong>on</strong>g>k to diffusi<strong>on</strong>less MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> becomes apparent if buoyancy forces are negligible(ω A = 0) when equati<strong>on</strong> (6.13) reduces to,ω = ω2 Mω c− iηk 2 . (6.14)Here the classical damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g role of magnetic diffusi<strong>on</strong> is obvious, caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> withshorter wavelengths to decay <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude more quickly than MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> with l<strong>on</strong>gerwavelengths.More detail <strong>on</strong> diffusive MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> with <str<strong>on</strong>g>and</str<strong>on</strong>g> without the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of<str<strong>on</strong>g>in</str<strong>on</strong>g>ertia, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> unwanted impact <strong>on</strong> geodynamo simulati<strong>on</strong>s can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Walkeret al. (1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollerbach (2003).


143 Chapter 6 — Theory6.5 Influence of spherical geometry <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is not an <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite plane layer, but a thick spherical shell with <str<strong>on</strong>g>in</str<strong>on</strong>g>ner<str<strong>on</strong>g>core</str<strong>on</strong>g> radius approximately <strong>on</strong>e third of its outer <str<strong>on</strong>g>core</str<strong>on</strong>g> radius. How does a spherical shellgeometry <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the propagati<strong>on</strong> properties, the stability <str<strong>on</strong>g>and</str<strong>on</strong>g> the planform of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g>? It appears that when the magnetic field is str<strong>on</strong>g, so that the Lorentzforce plays a dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant role <str<strong>on</strong>g>in</str<strong>on</strong>g> the momentum equati<strong>on</strong>, the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of spherical boundariesis a sec<strong>on</strong>dary effect (Fearn, 1979b; Soward, 1979b). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, when themagnetic field is weaker, the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the Coriolis force <str<strong>on</strong>g>and</str<strong>on</strong>g> its latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al variati<strong>on</strong>sdue to spherical geometry 2 are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant. In this secti<strong>on</strong> some simplified models thathave been used to study the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of spherical geometry <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> arediscussed.6.5.1 Variati<strong>on</strong> of Coriolis force with latitude: Hide’s β-plane modelHide (1966) developed a simple analytical model of MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell. Heassumed that the <str<strong>on</strong>g>waves</str<strong>on</strong>g> would have a two dimensi<strong>on</strong>al form, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a first approximati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>variant parallel to the rotati<strong>on</strong> axis. He was therefore able to focus <strong>on</strong> localmoti<strong>on</strong>s of fluid columns <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> northward directi<strong>on</strong>s <strong>on</strong> a spherical surface.Rather than a c<strong>on</strong>stant Coriolis force (as for a plane layer) or a Coriolis force depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong> the s<str<strong>on</strong>g>in</str<strong>on</strong>g>e of latitude (s<str<strong>on</strong>g>in</str<strong>on</strong>g> λ lat ) as <str<strong>on</strong>g>in</str<strong>on</strong>g> a full spherical geometry, he followed Rossby(1939) <str<strong>on</strong>g>and</str<strong>on</strong>g> let the Coriolis force vary l<str<strong>on</strong>g>in</str<strong>on</strong>g>early <str<strong>on</strong>g>in</str<strong>on</strong>g> the north-south directi<strong>on</strong> about a fixedlatitude λ ∗ lat . The l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised Coriolis force is then −f cu y <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>f c u x <str<strong>on</strong>g>in</str<strong>on</strong>g> the northward directi<strong>on</strong>, where f c = 2Ω s<str<strong>on</strong>g>in</str<strong>on</strong>g> λ ∗ lat + 2Ω cos λ∗ latcy = f c0 + βy <str<strong>on</strong>g>and</str<strong>on</strong>g> cis the outer radius of the spherical shell. Though β = 2Ω cos λ∗ latc<str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shell,Hide argued that it should take the opposite sign (β = − 2Ω cos λ∗ latc) <str<strong>on</strong>g>in</str<strong>on</strong>g> thick sphericalshells (see discussi<strong>on</strong> below). The ’β’ <str<strong>on</strong>g>in</str<strong>on</strong>g> β-plane thus refers to the c<strong>on</strong>stant def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g thel<str<strong>on</strong>g>in</str<strong>on</strong>g>ear rate of change of the Coriolis force <str<strong>on</strong>g>in</str<strong>on</strong>g> the north-south directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this simplifiedmodel. The geometry of the local coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate system used <str<strong>on</strong>g>in</str<strong>on</strong>g> this β-plane model (Gill,1982; Pedlosky, 1987; Andrews, 2000) is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6.3.The imposed magnetic field B 0 was chosen to be uniform but <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at an angle to theeastward directi<strong>on</strong>; for simplicity the results of the model are reported here for the casewhen B 0 is entirely eastwards. The background velocity field is assumed to be zero for2 The Coriolis force <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry imparts stability to a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid <str<strong>on</strong>g>in</str<strong>on</strong>g> two ways.Firstly, the rotati<strong>on</strong> of the fluid gives it an <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic stability whereby perturbati<strong>on</strong>s lead to circularparticle moti<strong>on</strong>s (this is the elasticity imparted by vortex l<str<strong>on</strong>g>in</str<strong>on</strong>g>es) <str<strong>on</strong>g>and</str<strong>on</strong>g> is the mechanism underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g fast <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial<str<strong>on</strong>g>waves</str<strong>on</strong>g> which can propagate <str<strong>on</strong>g>in</str<strong>on</strong>g> both eastwards <str<strong>on</strong>g>and</str<strong>on</strong>g> westwards directi<strong>on</strong>s (Malkus, 1967; Stewarts<strong>on</strong>,1978; Zhang, 1993). Additi<strong>on</strong>ally however, slow moti<strong>on</strong>s tend to be <str<strong>on</strong>g>in</str<strong>on</strong>g>variant parallel to the rotati<strong>on</strong> axis<str<strong>on</strong>g>and</str<strong>on</strong>g> have a columnar structure; <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry, if these columns move latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally they change<str<strong>on</strong>g>their</str<strong>on</strong>g> height <str<strong>on</strong>g>and</str<strong>on</strong>g> by c<strong>on</strong>servati<strong>on</strong> of mass <str<strong>on</strong>g>their</str<strong>on</strong>g> vorticity alters to oppose the change <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude. Thisprovides a stability to latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al moti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> is the basis for uni-directi<strong>on</strong>al Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gwestwards <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> shells <str<strong>on</strong>g>and</str<strong>on</strong>g> eastwards <str<strong>on</strong>g>in</str<strong>on</strong>g> thick shells. Greenspan (1968) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang et al. (2000) discusshow, because rotati<strong>on</strong> is the basis for this sec<strong>on</strong>d mechanism, Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> can be c<strong>on</strong>sidered as special,very low frequency <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>.


144 Chapter 6 — Theory*λlatFigure 6.3: The β-plane geometry employed by Hide (1966).The local coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate system at latitude λ ∗ lat, employed <str<strong>on</strong>g>in</str<strong>on</strong>g> the β-plane model of Rossby(1939) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide (1966) (diagram adapted from Aches<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide (1973)).simplicity. Magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> viscous diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> all thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> stratificati<strong>on</strong> effects wereneglected <str<strong>on</strong>g>in</str<strong>on</strong>g> the model. The l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised equati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of the velocityfield <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field disturbances (u, b) <strong>on</strong> the β-plane, after the subtracti<strong>on</strong> of thelead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order geostrophic balance between pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>stant part of the Coriolisforce (f c0 = 2Ω s<str<strong>on</strong>g>in</str<strong>on</strong>g> λ ∗ lat), are then∂u x∂t − βyu y = − 1 ∂Pρ 0 ∂x , (6.15)∂u y∂t + βy u x = − 1 ∂Pρ 0 ∂y + B (0 ∂byρ 0 µ 0 ∂x − ∂b )x, (6.16)∂y∂b x∂t∂b y∂t= B 0∂u x∂x , (6.17)= B 0∂u y∂x . (6.18)where B 0 is the strength of the background magnetic field. The comp<strong>on</strong>ent equati<strong>on</strong>s <strong>on</strong>the β-plane rather than the usual vector equati<strong>on</strong>s are presented because it is awkwardto write the β-plane Coriolis term <str<strong>on</strong>g>in</str<strong>on</strong>g> vector notati<strong>on</strong>. There is no Lorentz force term <str<strong>on</strong>g>in</str<strong>on</strong>g>equati<strong>on</strong> (6.15) because B 0 is uniform <str<strong>on</strong>g>and</str<strong>on</strong>g> purely <str<strong>on</strong>g>in</str<strong>on</strong>g> the x directi<strong>on</strong>.Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the curl of the momentum equati<strong>on</strong>s ( ∂∂y(6.16)) yields the z comp<strong>on</strong>ent of the vorticity equati<strong>on</strong>where ζ =(∂ux∂y∂ζ∂t + βu y = B 0ρ 0 µ 0∂∂x∂of equati<strong>on</strong> (6.15) m<str<strong>on</strong>g>in</str<strong>on</strong>g>us∂xof equati<strong>on</strong>( ∂by∂x − ∂b x∂y), (6.19))− ∂uy∂xis the z comp<strong>on</strong>ent of vorticity. Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time derivative ofthis, substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from ∂ ∂∂y(equati<strong>on</strong> (6.17)) <str<strong>on</strong>g>and</str<strong>on</strong>g>∂x(equati<strong>on</strong> (6.18)) <str<strong>on</strong>g>and</str<strong>on</strong>g> operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g with( )∇ 2 H = ∂+ ∂ to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate u∂x 2 ∂y 2 y , an equati<strong>on</strong> for the evoluti<strong>on</strong> of ζ <strong>on</strong> a β plane isobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed ( ∂2∂t 2 − B2 0 ∂ 2 )ρ 0 µ 0 ∂x 2 ∇ 2 H ζ + β ∂ ( ) ∂ζ= 0. (6.20)∂t ∂x


145 Chapter 6 — TheoryPlane wave soluti<strong>on</strong>s of the form ζ = ˆζe i(kx+ky−ωt) , where k is 2πL λ, L λ is the wavelengthof the disturbance (for simplicity assumed to be the same <str<strong>on</strong>g>in</str<strong>on</strong>g> the northward <str<strong>on</strong>g>and</str<strong>on</strong>g> eastwarddirecti<strong>on</strong>s), <str<strong>on</strong>g>and</str<strong>on</strong>g> ω is the angular frequency of the <str<strong>on</strong>g>waves</str<strong>on</strong>g>, can now be c<strong>on</strong>sidered.Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g the plane wave soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to (6.20) yields the dispersi<strong>on</strong> relati<strong>on</strong>ω 2 + βω k − B2 0 k2ρ 0 µ 0= 0. (6.21)This quadratic equati<strong>on</strong> can be solved to give an expressi<strong>on</strong> for ω <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of k,ω = − β 2k ± β 2k(1 + 4B2 0 k4ρ 0 µ 0 β 2 ) 1/2(6.22)( )For l<strong>on</strong>g wavelength disturbances <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid 4B0 k 4ρ 0 µ 0will be small <str<strong>on</strong>g>and</str<strong>on</strong>g>β 2a Taylor expansi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this small parameter shows that two values for ω are possible,ω r = − β k<str<strong>on</strong>g>and</str<strong>on</strong>g>ω m = B2 0 k3µ 0 ρ 0 β . (6.23)The mode ω r is recognisable as a Rossby wave <strong>on</strong> a β-plane (Rossby, 1939; Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>,1978; Gill, 1982; Pedlosky, 1987). Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> are the special low-frequency, unidirecti<strong>on</strong>al<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> that arise because of the latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al variati<strong>on</strong> of the Coriolisforce <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shell geometry (L<strong>on</strong>guet-Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1964; Greenspan, 1968; Zhang et al.,2000). ω m <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ds to a wave very similar <str<strong>on</strong>g>in</str<strong>on</strong>g> form to the MC wavefound <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g plane layer, but <str<strong>on</strong>g>in</str<strong>on</strong>g>versely proporti<strong>on</strong>al to β = 2Ω cos λ∗ latcrather than2Ω. It is c<strong>on</strong>venti<strong>on</strong>ally referred to as either Hide’s wave or as a MC Rossby wave <str<strong>on</strong>g>and</str<strong>on</strong>g> isa result of a lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order balance between magnetic forces <str<strong>on</strong>g>and</str<strong>on</strong>g> the latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>ally vary<str<strong>on</strong>g>in</str<strong>on</strong>g>gCoriolis force resp<strong>on</strong>sible for Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.The key to underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the mechanism underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g both Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide’sMC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> is the mean<str<strong>on</strong>g>in</str<strong>on</strong>g>g ascribed to the β parameter — this is best seen byc<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thick spherical shell geometries displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6.4. Hide(1966) argued that when c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g slow moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shell ofhomogeneous fluid, the most relevant fluid elements are columns of fluid aligned with therotati<strong>on</strong> axis. This is a natural c<strong>on</strong>sequence of the Proudman-Taylor theorem that slow,steady moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid will be <str<strong>on</strong>g>in</str<strong>on</strong>g>variant <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> parallel tothe rotati<strong>on</strong> axis. Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rossby (1939), Hide argued that the fundamental quantitywhich must be c<strong>on</strong>served <str<strong>on</strong>g>in</str<strong>on</strong>g> the moti<strong>on</strong> of such columns is <str<strong>on</strong>g>their</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised potentialvorticity ( ζ+2ΩL col), where L col is the length of the fluid column (see James (1994) orMcIntyre (2000) for an <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to the c<strong>on</strong>cept of potential vorticity <str<strong>on</strong>g>and</str<strong>on</strong>g> its utility).Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the latitude of a fluid column are accompanied by changes <str<strong>on</strong>g>in</str<strong>on</strong>g> L col : <str<strong>on</strong>g>in</str<strong>on</strong>g> orderto c<strong>on</strong>serve potential vorticity this will <str<strong>on</strong>g>in</str<strong>on</strong>g>duce a change <str<strong>on</strong>g>in</str<strong>on</strong>g> ζ that acts to return the fluidcolumn to its orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al positi<strong>on</strong>. This mechanism has l<strong>on</strong>g been recognised as the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> ofRossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (Rossby, 1939; Andrews, 2000). Rossby took this effect <str<strong>on</strong>g>in</str<strong>on</strong>g>to account <str<strong>on</strong>g>in</str<strong>on</strong>g> hissimplified β-plane theory by replac<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Coriolis force with the β-effect (see discussi<strong>on</strong>of govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s above).


146 Chapter 6 — TheoryFigure 6.4: Movement of fluid columns <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thick spherical shells.Examples of (a) a th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shell <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) a thick spherical shell, show<str<strong>on</strong>g>in</str<strong>on</strong>g>g a fluidcolumn <str<strong>on</strong>g>in</str<strong>on</strong>g> each case. Notice that outside the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der denoted by the dottedl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) columns get shorter as they approach the equator, while <str<strong>on</strong>g>in</str<strong>on</strong>g> the th<str<strong>on</strong>g>in</str<strong>on</strong>g> shell caseshown <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) they get l<strong>on</strong>ger. Hide (1966) argued that the variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Coriolis force withlatitude (as measured by the β parameter) would therefore be positive for th<str<strong>on</strong>g>in</str<strong>on</strong>g> shells,but negative for thick shells (adapted from Aches<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide (1973)).Hide (1966) <str<strong>on</strong>g>and</str<strong>on</strong>g> later Aches<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide (1973) used geometrical arguments to show thata general expressi<strong>on</strong> for the β parameter,(c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g)changes <str<strong>on</strong>g>in</str<strong>on</strong>g> L col with distance fromthe rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g axis, is β = s<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 λ ′ 2Ω dL colL col dswhere s is the distance from the rotati<strong>on</strong>axis. In a th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shell, the length of fluid columns <str<strong>on</strong>g>in</str<strong>on</strong>g>creases towards the equator<str<strong>on</strong>g>and</str<strong>on</strong>g> this expressi<strong>on</strong> simplifies to β = 2Ω cos λ∗ latcas earlier <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred by Rossby. In c<strong>on</strong>trast,for thick spherical shells outside the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der, the length of columns decreasestowards the equator <str<strong>on</strong>g>and</str<strong>on</strong>g> β = − 2Ω cos λ∗ latchas the opposite sign. This argument <str<strong>on</strong>g>in</str<strong>on</strong>g>dicatedthat Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> should propagate <str<strong>on</strong>g>in</str<strong>on</strong>g> opposite directi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> thick <str<strong>on</strong>g>and</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> sphericalshells as has s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce been c<strong>on</strong>firmed <str<strong>on</strong>g>in</str<strong>on</strong>g> numerical models (Yano et al., 2003). The argumentalso predicts that MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> should propagate westwards, though it is <strong>on</strong>ly validso l<strong>on</strong>g as fluid moti<strong>on</strong>s rema<str<strong>on</strong>g>in</str<strong>on</strong>g> columnar, which may not be true if magnetic forcesdom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the effects of rotati<strong>on</strong>. The idea of modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g columnar moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> thick shellsus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a β-plane has proved very <str<strong>on</strong>g>in</str<strong>on</strong>g>fluential, <str<strong>on</strong>g>in</str<strong>on</strong>g>spir<str<strong>on</strong>g>in</str<strong>on</strong>g>g a series of related quasi-geostrophic(QG) models (Busse, 1970; Busse <str<strong>on</strong>g>and</str<strong>on</strong>g> Or, 1986; Card<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, 1994; Aubert, Gillet<str<strong>on</strong>g>and</str<strong>on</strong>g> Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, 2003).The problem of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g mathematically precise analytical soluti<strong>on</strong>s for MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell problem was addressed by Stewarts<strong>on</strong> (1967). He was able to obta<str<strong>on</strong>g>in</str<strong>on</strong>g>rigorous soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shells that were compatible with Hide’s β-plane analysis,but was unable to make progress analytically <str<strong>on</strong>g>in</str<strong>on</strong>g> the thick shell case, even <str<strong>on</strong>g>in</str<strong>on</strong>g> theabsence of a magnetic field (Stewarts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Rickard, 1969).


147 Chapter 6 — Theory6.5.2 Full spherical geometry: the special case of the Malkus fieldThe role of spherical geometry <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the properties of MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> was furtherillum<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>in</str<strong>on</strong>g> the sem<str<strong>on</strong>g>in</str<strong>on</strong>g>al study of Malkus (1967). In an <str<strong>on</strong>g>in</str<strong>on</strong>g>genious piece of analysis,Malkus dem<strong>on</strong>strated that, if the background magnetic field is that due to a uniformelectrical current density (with magnetic field strength <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>early with distancefrom the rotati<strong>on</strong> axis), then the hydromagnetic wave problem <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere reduces tothe <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave problem <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere. The soluti<strong>on</strong>s have identical eigenfuncti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>systematically modified eigenvalues (wave frequencies).because the Malkus field has been the basis of many subsequent models.His analysis is outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed hereMalkus’s background magnetic field is purely toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal with the mathematicalform B 0 = B 0r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θĉφ where θ is the co-latitude, c is the radius of the outerspherical boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> B 0 is the maximum magnitude of the imposed field at the outerboundary <str<strong>on</strong>g>in</str<strong>on</strong>g> the equatorial plane. This field is <str<strong>on</strong>g>in</str<strong>on</strong>g>variant <strong>on</strong> cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical surfaces alignedwith the rotati<strong>on</strong> axis, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> strength l<str<strong>on</strong>g>in</str<strong>on</strong>g>early with distance from the rotati<strong>on</strong>axis. This field is force free (∇ × (∇ × B 0 ) = 0), so U 0 = 0 is a c<strong>on</strong>sistent choice forthe background flow. The dimensi<strong>on</strong>al, l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised, govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s D.13 to D.15, if<strong>on</strong>e ignores all thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusive processes <str<strong>on</strong>g>and</str<strong>on</strong>g> def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g axis to be al<strong>on</strong>gẑ, reduce toρ 0∂u∂t + 2ρ 0Ω(ẑ × u) = −∇P + 1 µ 0[(B 0 · ∇)b + (b · ∇)B 0 ] , (6.24)∂b∂t = ∇ × (u × B 0). (6.25)The major difference here compared to studies of uniform imposed magnetic fields is <str<strong>on</strong>g>in</str<strong>on</strong>g>the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al term <str<strong>on</strong>g>in</str<strong>on</strong>g> the momentum equati<strong>on</strong> (b · ∇)B 0 result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from then<strong>on</strong>-zero spatial gradient <str<strong>on</strong>g>in</str<strong>on</strong>g> B 0 . Soward (1979b) refers to this as the magnetic hoop stressterm. For Malkus’s special choice of B 0 it turns out that both terms <str<strong>on</strong>g>in</str<strong>on</strong>g> the Lorentz force<str<strong>on</strong>g>and</str<strong>on</strong>g> the advecti<strong>on</strong> term <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> have very simple forms. Recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat the advecti<strong>on</strong> term can be rewritten ∇ × (u × B 0 ) = (B 0 · ∇)u − (u · ∇)B 0 <str<strong>on</strong>g>and</str<strong>on</strong>g>mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g relati<strong>on</strong>s that hold for the Malkus fieldthe govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s become(b · ∇)B 0 = B 0c(B 0 · ∇)b = B 0c(B 0 · ∇)u = B 0c(ẑ × b) (6.26)( )∂b∂φ + ẑ × b (6.27)( )∂u∂φ + ẑ × u (6.28)(u · ∇)B 0 = B 0(ẑ × u) (6.29)cρ 0∂u∂t + 2ρ 0Ω(ẑ × u) = −∇P + B 0cµ 0[ ∂b∂φ + 2ẑ × b ], (6.30)


∂b∂t = B 0cSubstitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthally travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave soluti<strong>on</strong>s of the form148 Chapter 6 — Theory( ) ∂u. (6.31)∂φ(u, b) = (û(s, z)e i(mφ−ωt) , ˆb(s, z)e i(mφ−ωt) ), (6.32)where m is the azimuthal wavenumber of the wave, <str<strong>on</strong>g>and</str<strong>on</strong>g> ω is its angular frequency leadsto the relati<strong>on</strong>s−iωρ 0 u + 2ωρ 0 (ẑ × u) = −∇P + B 0(imb + 2(ẑ × b)) , (6.33)µc−iωb = imB 0u. (6.34)cSubstitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from equati<strong>on</strong> (6.34) <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (6.33) for b <str<strong>on</strong>g>and</str<strong>on</strong>g> collect<str<strong>on</strong>g>in</str<strong>on</strong>g>g like termsyields a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle equati<strong>on</strong>L 1 (ẑ × u) + L 2 u + ∇P = 0, (6.35)(where L 1 = 2 Ωρ 0 + B2 0 m ))L 2 =(−iωρ 0 + i B2 0 m2µ 0 ωcµ 0 ωc 2 . (6.36)This has the same form as the momentum equati<strong>on</strong> govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial<str<strong>on</strong>g>waves</str<strong>on</strong>g> (Melchoir, 1986; Zhang et al., 2000), but with L 2 rather than simply −iωρ 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> L 1rather than 2ρ 0 Ω. The c<strong>on</strong>sequence of the presence of the Malkus background magneticfield is therefore that <strong>on</strong>ly that the strength of the latitude-dependent Coriolis force <str<strong>on</strong>g>and</str<strong>on</strong>g>the time scale of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial resp<strong>on</strong>se of the fluid have been changed.Equati<strong>on</strong> (6.35) can be re-written <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of pressure <strong>on</strong>ly (for details of this manipulati<strong>on</strong>c<strong>on</strong>sult Malkus (1967)) as()L 2 2∇ 2 + L 2 ∂1 P = 0. (6.37)∂zThe appropriate rigid spherical boundary c<strong>on</strong>diti<strong>on</strong> (u · ˆn = 0| r=c where ˆn is a normalto the spherical surface), <str<strong>on</strong>g>in</str<strong>on</strong>g> a form applicable to pressure can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the l<str<strong>on</strong>g>in</str<strong>on</strong>g>kbetween u <str<strong>on</strong>g>and</str<strong>on</strong>g> P <str<strong>on</strong>g>in</str<strong>on</strong>g> (6.35) <str<strong>on</strong>g>and</str<strong>on</strong>g> is(L 2 2s ∂ ∂s + (L2 1 + L 2 2)z ∂∂z + iL 1L 2)P = 0, (6.38)where s = r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ is the cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical radius. By choos<str<strong>on</strong>g>in</str<strong>on</strong>g>gλ <str<strong>on</strong>g>in</str<strong>on</strong>g> = 2L 2iL 1so that − λ 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> = 4L2 2L 2 1(6.39)the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> P are transformed <str<strong>on</strong>g>in</str<strong>on</strong>g>to the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard form of the Po<str<strong>on</strong>g>in</str<strong>on</strong>g>caréequati<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere (see, for example, Zhang (1993))(∇ 2 − 4 )∂λ 2 P = 0, (6.40)<str<strong>on</strong>g>in</str<strong>on</strong>g>∂z<str<strong>on</strong>g>and</str<strong>on</strong>g> the associated boundary c<strong>on</strong>diti<strong>on</strong>(s ∂ ∂s + 2mλ <str<strong>on</strong>g>in</str<strong>on</strong>g>− 4λ 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>z ∂ ∂z)P = 0 <strong>on</strong> s 2 + z 2 = c 2 . (6.41)


149 Chapter 6 — TheoryThe soluti<strong>on</strong> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave problem <str<strong>on</strong>g>in</str<strong>on</strong>g> the sphere <str<strong>on</strong>g>in</str<strong>on</strong>g>volves f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g eigenvalues 3λ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> associated eigenvectors which satisfy equati<strong>on</strong> (6.40) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> (6.41). Thesoluti<strong>on</strong>s are very complicated <str<strong>on</strong>g>in</str<strong>on</strong>g> general <str<strong>on</strong>g>and</str<strong>on</strong>g> have <strong>on</strong>ly recently been written downexplicitly by Zhang et al. (2000), though Malkus (1967) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang (1993) had earlierstudied some simple cases.Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g λ <str<strong>on</strong>g>in</str<strong>on</strong>g> as known, the angular frequencies ω of the soluti<strong>on</strong>s to the hydromagneticwave problem <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of the Malkus magnetic field are def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. Bysubstitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g expressi<strong>on</strong>s for L 1 , L 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (6.39) the relati<strong>on</strong> between λ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ωiswhich gives the quadratic equati<strong>on</strong>,)2(−ωρ 0 + B2 0 m2cλ <str<strong>on</strong>g>in</str<strong>on</strong>g> =2 µ 0 ω() , (6.42)2 Ωρ 0 + B2 0 mc 2 µ 0 ωω 2 + Ωλ <str<strong>on</strong>g>in</str<strong>on</strong>g> ω + B2 0 mc 2 ρ 0 µ 0(λ <str<strong>on</strong>g>in</str<strong>on</strong>g> − m) = 0, (6.43)that has soluti<strong>on</strong>sω = Ωλ <str<strong>on</strong>g>in</str<strong>on</strong>g>2[−1 ±(1 − 4B2 0 m(λ ) 1/2]<str<strong>on</strong>g>in</str<strong>on</strong>g> − m)c 2 Ω 2 λ 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> ρ . (6.44)0µ 0In the case of large wavelength disturbances (small m) <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid when4B 2 0 mΩ 2 λ 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> ρ 0µ 0(Malkus, 1967)is small, a Taylor series expansi<strong>on</strong> shows that the two possible soluti<strong>on</strong>s areω i ∼ −Ωλ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ω m ∼ B2 0c 2 Ωρ 0 µ 0m(m − λ <str<strong>on</strong>g>in</str<strong>on</strong>g> )λ <str<strong>on</strong>g>in</str<strong>on</strong>g>. (6.45)ω i is essentially an <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave, that can travel both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong> the sign of λ <str<strong>on</strong>g>in</str<strong>on</strong>g> , while ω m is an MC wave where the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial term is unimportant<str<strong>on</strong>g>and</str<strong>on</strong>g> the Lorentz <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis forces balance each other to lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order. As noted byJacks<strong>on</strong> (2003), regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the case when m=8, for the choice of eigenvalue λ <str<strong>on</strong>g>in</str<strong>on</strong>g> =-0.57,B 0 = 4.3 · 10 −3 T, ρ 0 =10 4 kg, Ω =7.29×10 −5 s −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> c = 3485 × 10 3 m, then 2πω m∼ 1000years, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g such a wave might be capable of expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g some drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field featuresthat are part of geomagnetic secular variati<strong>on</strong>. The relati<strong>on</strong> between Malkus’ MC wave<str<strong>on</strong>g>and</str<strong>on</strong>g> Hide’s MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> becomes clear if <strong>on</strong>e c<strong>on</strong>siders a λ <str<strong>on</strong>g>in</str<strong>on</strong>g> corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to aquasi-geostrophic <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave (QGIW) of very low frequency as discussed by Zhanget al. (2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Liao (2004). Such QGIWs are unidirecti<strong>on</strong>al (always traveleastward because λ <str<strong>on</strong>g>in</str<strong>on</strong>g> is < 0 always), <str<strong>on</strong>g>and</str<strong>on</strong>g> show little variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> structure parallel to therotati<strong>on</strong> axis: they are simply Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a thick spherical shell. For such Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> with λ <str<strong>on</strong>g>in</str<strong>on</strong>g> < 0, an MC <str<strong>on</strong>g>waves</str<strong>on</strong>g> (MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>) will travel westward as predictedby Hide’s analysis.3 The notati<strong>on</strong> λ <str<strong>on</strong>g>in</str<strong>on</strong>g> used for eigenvalues bears no relati<strong>on</strong> to the latitude λ lat that was discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> theβ-plane model <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.5.1, but rather denote soluti<strong>on</strong>s to the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave eigenvalue problem.


150 Chapter 6 — TheoryMalkus’s imposed magnetic field is rather special <str<strong>on</strong>g>in</str<strong>on</strong>g> a number of ways. The comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of its cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical symmetry, its purely azimuthal form <str<strong>on</strong>g>and</str<strong>on</strong>g> its l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with distancefrom the rotati<strong>on</strong> axis means the associated Lorentz force affects fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> amanner very similar to the Coriolis force <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere. This physical similarity results<str<strong>on</strong>g>in</str<strong>on</strong>g> a formal mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave problem that permits analytically tractablesoluti<strong>on</strong>s to this special case of the spherical MC wave problem. The Malkus fieldtherefore provides a very clear dem<strong>on</strong>strati<strong>on</strong> of the wave mechanism associated withMC balance. It is also somewhat atypical from an energetic po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view. It is stableto magnetic field gradient <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities (see next secti<strong>on</strong>) so is useful for filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g outmost <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by this mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> for focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by thermal<str<strong>on</strong>g>in</str<strong>on</strong>g>stability. Unfortunately, it also fails to naturally satisfy electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundaryc<strong>on</strong>diti<strong>on</strong>s. When electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s are imposed <str<strong>on</strong>g>in</str<strong>on</strong>g> its presencea dynamically active magnetic boundary layer arises that can <str<strong>on</strong>g>in</str<strong>on</strong>g>duce magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityfor m=1 wave (Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper, 1979; Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Busse, 1995). Such m=1 <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilitiesare often filtered out when focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly modeswith m > 1 (see, for example chapter 7).6.6 Instability mechanisms for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>The energy source excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic wave moti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> is notknown. If the source were impulsive (for example, due to perturbati<strong>on</strong>s caused by alarge earthquake or sharp change <str<strong>on</strong>g>in</str<strong>on</strong>g> the rotati<strong>on</strong> rate of the mantle) the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g>would be free oscillati<strong>on</strong>s. It has been dem<strong>on</strong>strated <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> §6.5 that free MC/MAC<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell are highly dispersive, <str<strong>on</strong>g>and</str<strong>on</strong>g> no evidence for dispersive behaviourhas been found <str<strong>on</strong>g>in</str<strong>on</strong>g> observati<strong>on</strong>s of magnetic field evoluti<strong>on</strong> (see §3.7) which are dom<str<strong>on</strong>g>in</str<strong>on</strong>g>atedby a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle wavenumber disturbances (see §3.3). Rather than be<str<strong>on</strong>g>in</str<strong>on</strong>g>g free oscillati<strong>on</strong>s ittherefore appears more likely that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> of a small group of wavenumbersare be<str<strong>on</strong>g>in</str<strong>on</strong>g>g excited by some <str<strong>on</strong>g>in</str<strong>on</strong>g>stability mechanism.Waves result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <str<strong>on</strong>g>in</str<strong>on</strong>g>stability are <strong>on</strong>ly energetically possible if a basic state stores sufficientenergy to enable a suitable perturbati<strong>on</strong> to grow, overcom<str<strong>on</strong>g>in</str<strong>on</strong>g>g dissipati<strong>on</strong> effects(see, for example, Draz<str<strong>on</strong>g>in</str<strong>on</strong>g> (2002)). The classical example of this process is thermal c<strong>on</strong>vective<str<strong>on</strong>g>in</str<strong>on</strong>g>stability (see, for example, Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar (1961)) when the exchange of heavierfluid with <str<strong>on</strong>g>in</str<strong>on</strong>g>itially underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g lighter fluid releases gravitati<strong>on</strong>al potential energy. If thethermally <str<strong>on</strong>g>in</str<strong>on</strong>g>duced density gradient is large enough that sufficient gravitati<strong>on</strong>al potentialenergy is available to overcome viscous <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal diffusi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> if perturbati<strong>on</strong>s ofthe form required to release the required energy are dynamically possible then c<strong>on</strong>vectiveperturbati<strong>on</strong>s will grow. Different length scales of perturbati<strong>on</strong> will release differentamounts of energy; the dynamically c<strong>on</strong>ceivable perturbati<strong>on</strong> releas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the most energywill def<str<strong>on</strong>g>in</str<strong>on</strong>g>e the length scale (wavenumber) of the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>. Many other examplesof suitable <str<strong>on</strong>g>in</str<strong>on</strong>g>stability mechanisms can be imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ed:


151 Chapter 6 — Theory(i) Topographic forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see, for example, Hide (1967) or Bell <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward (1996))caused by topography at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary.(ii) Inhomogeneous boundary heat flux forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g (see, for example, Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s(1987), Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1994), Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1994), or Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>(2003)).(iii) Tidally or precessi<strong>on</strong>ally forced <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (see, for example, Kerswell (1994)).(iv) Shear <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of the background flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> (see, for example, Fearn (1989)).(v) Instability of the background magnetic field (see, for example, Aches<strong>on</strong> (1972) orFearn (1993)).(vi) C<strong>on</strong>vecti<strong>on</strong>-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stability, usually modelled as thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (see, for example,Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1964), Fearn (1979b) or the review of Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert(2000)).Although other mechanisms cannot be ruled out, <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> a review of <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven<strong>on</strong>ly by the last two <str<strong>on</strong>g>in</str<strong>on</strong>g>stability mechanisms is given. The focus <strong>on</strong> these mechanisms isbecause these seem the most likely to arise <str<strong>on</strong>g>and</str<strong>on</strong>g> have proved to be the easiest to model<str<strong>on</strong>g>in</str<strong>on</strong>g> detail.6.6.1 Magnetically-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluidMagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities result from the rearrangement of a background magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g>toa lower energy c<strong>on</strong>figurati<strong>on</strong> yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g a release of energy. If the energy supplied tothe perturbati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity fields is sufficient to overcome diffusiveprocesses, it will grow until saturated by n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear mechanisms. This rearrangement ofthe field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es can occur by two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct mechanisms. In an ideal (η → 0) magnetic field<str<strong>on</strong>g>in</str<strong>on</strong>g>stability (Aches<strong>on</strong>, 1972; 1973; 1983; Fearn, 1983; 1988) the rearrangement of magneticfield l<str<strong>on</strong>g>in</str<strong>on</strong>g>es occurs without rec<strong>on</strong>necti<strong>on</strong> of field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es; <str<strong>on</strong>g>in</str<strong>on</strong>g> a resistive <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (Fearn, 1984;1988) the rearrangement of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>volves rec<strong>on</strong>necti<strong>on</strong> of the field l<str<strong>on</strong>g>in</str<strong>on</strong>g>eswhich requires f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite magnetic diffusivity. There are therefore two necessary c<strong>on</strong>diti<strong>on</strong>swhich must be fulfilled if magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability is to occur; (1) sufficient energy mustbe available from the unstable background magnetic field to overcome diffusive effects<str<strong>on</strong>g>and</str<strong>on</strong>g> (2) the magnetic field morphology must be such that either an ideal or resistivereorganisati<strong>on</strong> of field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es is possible.The first c<strong>on</strong>diti<strong>on</strong> can be stated <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the time scales of the energy transferprocess. It requires that dissipati<strong>on</strong> processes occur more slowly than the time scale ofthe perturbati<strong>on</strong>s (more precisely that the magnetic diffusi<strong>on</strong> time scale be sufficientlyl<strong>on</strong>ger than the MC time scale of the perturbati<strong>on</strong>s) <str<strong>on</strong>g>in</str<strong>on</strong>g> order for growth to occur. The


152 Chapter 6 — Theoryn<strong>on</strong>-dimensi<strong>on</strong>al parameter called the Elsasser number (see appendix D, equati<strong>on</strong> (D.22))is a measure of this ratioB02 Λ =2Ωµ 0 ρ 0 ηC<strong>on</strong>diti<strong>on</strong> (1) can therefore be restated asMagnetic diffusi<strong>on</strong> time scale= . (6.46)MC time scaleΛ > Λ c , (6.47)where Λ c is the critical value of the ratio of the magnetic diffusi<strong>on</strong> time scale to the MCtime scale needed for growth of magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities 4 . Λ c depends <str<strong>on</strong>g>in</str<strong>on</strong>g> general <strong>on</strong> boththe geometry of the c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>er <str<strong>on</strong>g>and</str<strong>on</strong>g> the morphology of the background magnetic state.Numerous studies have been carried out for different choices of c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>er geometry <str<strong>on</strong>g>and</str<strong>on</strong>g>field morphology. A series of studies have been carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry withthe equatorially-antisymmetric imposed toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> poloidal magnetic fields expectedto be appropriate to the situati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (Zhang, 1995; Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn, 1993;1994; 1995; Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 2000a;b; 2002). They found that Λ c ∼ 10 for a purelytoroidal field while for purely poloidal magnetic fields Λ c ∼ 20. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce Λ is also the ratioof the strength of the Lorentz force to the strength of the Coriolis force, this means thatvery str<strong>on</strong>g magnetic fields that will dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate the fluid dynamics are required to obta<str<strong>on</strong>g>in</str<strong>on</strong>g>such magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities.C<strong>on</strong>diti<strong>on</strong> (2) depends <strong>on</strong> the precise mechanism of magnetic field rearrangement. Atleast four mechanisms have been discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature (Fearn, 1993).The first,most extensively studied mechanism, is that of the ideal magnetic field gradient <str<strong>on</strong>g>in</str<strong>on</strong>g>stability.This was discovered <str<strong>on</strong>g>and</str<strong>on</strong>g> analytically <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated by Aches<strong>on</strong> (1972; 1973; 1978) <str<strong>on</strong>g>in</str<strong>on</strong>g>a simplified cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical annulus geometry where the fluid was <str<strong>on</strong>g>in</str<strong>on</strong>g> uniform solid body rotati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a purely azimuthal background magnetic field (B 0 = B 0 (s) ̂φ,where s is the cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical radius). He showed that <str<strong>on</strong>g>in</str<strong>on</strong>g> order for the magnetic field c<strong>on</strong>figurati<strong>on</strong>to be unstable to an ideal rearrangement of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es thens 3B 2 0dds( ) B20 (s)s 2 > m 2 , (6.48)where m is the azimuthal wavenumber of the disturbance. Physically this means thatthe magnetic field strength must <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with s somewhere faster than s 3/2 for themost unstable m = 1 mode to be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. This result has s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce been extended <str<strong>on</strong>g>and</str<strong>on</strong>g>numerically tested for cases where B 0 (s, z) <str<strong>on</strong>g>and</str<strong>on</strong>g> where the fluid is differentially rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g(Fearn, 1983; 1988). Aches<strong>on</strong> (1972) also dem<strong>on</strong>strated that <str<strong>on</strong>g>waves</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from idealmagnetic field gradient <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities can <strong>on</strong>ly propagate <str<strong>on</strong>g>in</str<strong>on</strong>g> the retrograde (westward)directi<strong>on</strong>.The sec<strong>on</strong>d widely studied mechanism of rearrangement of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g>volvesrec<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hence requires the presence of magnetic diffusi<strong>on</strong> (the resistive <str<strong>on</strong>g>in</str<strong>on</strong>g>stability).This mechanism requires the existence of critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <str<strong>on</strong>g>in</str<strong>on</strong>g> the background magnetic4 This <str<strong>on</strong>g>in</str<strong>on</strong>g> analogous to the existence of a critical Rayleigh number for thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability which measuresthe ratio of the stokes rise time for a buoyant flow parcel to the thermal diffusi<strong>on</strong> time.


153 Chapter 6 — Theoryfield where k · B 0 = 0 5 ; for purely azimuthal fields this reduces to the c<strong>on</strong>diti<strong>on</strong> thatB 0 = 0. Magnetic field perturbati<strong>on</strong>s result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from this <str<strong>on</strong>g>in</str<strong>on</strong>g>stability tend to be localisedat the latitudes of such critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts, but do not appear to have any preferred directi<strong>on</strong>of propagati<strong>on</strong> (both westward <str<strong>on</strong>g>and</str<strong>on</strong>g> eastward are possible). The recent study ofZhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2002) showed that <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry poloidal magnetic canfields become unstable to eastward propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g>, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g an orig<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> resistive<str<strong>on</strong>g>in</str<strong>on</strong>g>stability, rather than ideal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability for which westward propagati<strong>on</strong> is expected.Two other possible magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g>stability mechanisms have been discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> theliterature. The ‘excepti<strong>on</strong>al’ case described by Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper (1979), Fearn (1988)<str<strong>on</strong>g>and</str<strong>on</strong>g> Aches<strong>on</strong> (1980) <str<strong>on</strong>g>in</str<strong>on</strong>g>volves stable density stratificati<strong>on</strong> catalyses magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilityby weaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g the rotati<strong>on</strong>al c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <strong>on</strong> moti<strong>on</strong>. The rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g possibility is dynamic<str<strong>on</strong>g>in</str<strong>on</strong>g>stability (Malkus, 1967; Zhang et al., 2003), for which the stabilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of therotati<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient to prevent the azimuthal magnetic field from becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g unstable toaxisymmetric disturbances. However, neither of these mechanisms appear to be relevantto Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> because they require very large Λ c > 10 3 .It seems likely that c<strong>on</strong>diti<strong>on</strong> (2) is satisfied somewhere <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, either through thefield gradient c<strong>on</strong>diti<strong>on</strong> or the resistive <str<strong>on</strong>g>in</str<strong>on</strong>g>stability c<strong>on</strong>diti<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g satisfied. It is, however,unclear whether the c<strong>on</strong>diti<strong>on</strong> Λ > Λ c is ever satisfied even locally. Furthermore, itseems unlikely that an unstable background magnetic field c<strong>on</strong>figurati<strong>on</strong> would persist<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue to supply energy <str<strong>on</strong>g>in</str<strong>on</strong>g>def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely. Magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability therefore seems unlikelyto be the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of coherent wave-like patterns seen <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic secular variati<strong>on</strong>over the historical <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals. In chapter 7, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong>,attenti<strong>on</strong> therefore focuses <strong>on</strong> the m >1 perturbati<strong>on</strong>s of the Malkus background fieldwhich filters out <str<strong>on</strong>g>waves</str<strong>on</strong>g> produced by magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper, 1979),allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g attenti<strong>on</strong> to focus <strong>on</strong> <str<strong>on</strong>g>waves</str<strong>on</strong>g> generated by thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability.6.6.2 C<strong>on</strong>vecti<strong>on</strong>-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> rapidrotati<strong>on</strong>C<strong>on</strong>vecti<strong>on</strong>-driven by buoyancy, either thermal or compositi<strong>on</strong>al, is likely to be the majordriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanism produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the geodynamo <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> (Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, 1964;Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Masters, 1979; Roberts et al., 2003). Only thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g is c<strong>on</strong>sideredfor simplicity <str<strong>on</strong>g>in</str<strong>on</strong>g> the discussi<strong>on</strong> here. The form of c<strong>on</strong>vecti<strong>on</strong> will be str<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluencedby both the rapid rotati<strong>on</strong> of the fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence of a magnetic field. Both theseforces impart stability to the fluid, so c<strong>on</strong>vecti<strong>on</strong> often takes the form of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g>. By study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>on</strong>set of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong>, <strong>on</strong>e can therefore <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatethe properties <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g the most unstable c<strong>on</strong>vecti<strong>on</strong>-drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, for a given set of physical parameters. The f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of such studiesare reviewed <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>.5 where k is the wavevector of the disturbance.


154 Chapter 6 — TheoryQuasi-geostrophic (QG) annulus model, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g β-effectMany of the important mechanisms associated with c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell are captured <str<strong>on</strong>g>in</str<strong>on</strong>g> a QG 6 cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical annulus model with c<strong>on</strong>stantlyslop<str<strong>on</strong>g>in</str<strong>on</strong>g>g lid (produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a β-effect). A uniform azimuthal magnetic field is imposed<str<strong>on</strong>g>and</str<strong>on</strong>g> viscous, thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong> are <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded. A radial thermal gradient dueto <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> radial gravity gives rise to radial buoyancy forces. Such an arrangement,assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g the gap D between the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>ders is small comparedto the height of the annulus L, makes it possible to work <str<strong>on</strong>g>in</str<strong>on</strong>g> a local Cartesian co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>atesystem (Busse, 1986) as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6.5. This model was first developed by Busse(1976) <str<strong>on</strong>g>and</str<strong>on</strong>g> later analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail by Soward (1979a). It will be analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail herebecause it illustrates the possible types of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> thatwill arise <str<strong>on</strong>g>in</str<strong>on</strong>g> more complicated, realistic models.Figure 6.5: Quasi-geostrophic (QG) annulus model geometry.Geometry of the quasi-geostrophic (QG) annulus model for study<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong>-drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> as developed by Busse (1976) <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward (1979a). The fluid rotatesuniformly about the ẑ directi<strong>on</strong>, a uniform azimuthal magnetic field B 0 is imposed<str<strong>on</strong>g>in</str<strong>on</strong>g> the ŷ directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> both gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> the imposed temperature gradient are <str<strong>on</strong>g>in</str<strong>on</strong>g> the − ̂xdirecti<strong>on</strong>. The top boundary has a angle of slope tan −1 β ∗ . This figure has been adaptedfrom Busse (2002).The appropriate govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s are the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> equati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> the viscous n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> (see appendix D, equati<strong>on</strong>s (D.19) to (D.21)), with6 The term ’Quasi-Geostrophic’ (or QG) refers to the physical state where the horiz<strong>on</strong>tal comp<strong>on</strong>entsof l<strong>on</strong>g period moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid are to lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order <str<strong>on</strong>g>in</str<strong>on</strong>g> a state of geostrophic balance i.e.pressure forces are balanced by the Coriolis forces (Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, 1978). It does however permit departuresfrom geostrophy, particularly those associated with boundary c<strong>on</strong>diti<strong>on</strong>s. This state is often associatedwith columnar fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> thick shells where latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coriolis force produc<str<strong>on</strong>g>in</str<strong>on</strong>g>gRossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> are important. More formal c<strong>on</strong>diti<strong>on</strong>s for its validity can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Gill (1982).


155 Chapter 6 — Theorythe length scale be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the maximum height of the annulus L. The analysis here closelyfollows that of Soward (1979a). For the geometry of background states <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6.5,̂Ω = ẑ, ĝ = −̂x <str<strong>on</strong>g>and</str<strong>on</strong>g> ̂∇T 0 = −̂x so that (u · ∇)T 0 = −β ′ u x while B 0 = B 0 ŷ means(b · ∇) ̂B 0 = 0, ( ̂B 0 · ∇)b = ∂b∂ysimplify to<str<strong>on</strong>g>and</str<strong>on</strong>g> ∇ × (u × ̂B 0 ) = ∂u∂y( ) ∂E∂t − ∇2 u + (ẑ × u) = −∇P + ERaΘ̂x + Λ ∂bso equati<strong>on</strong>s (D.19) to (D.21)∂y , (6.49)(∇ 2 − P r ∂ )Θ = u x , (6.50)∂t()∇ 2 ∂− P r m b = ∂u∂t ∂y , (6.51)where the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> physical mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of Λ, E, Ra, P r <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m can be found<str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D, equati<strong>on</strong>s (D.22) to (D.26).Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the ẑ comp<strong>on</strong>ent of the curl ofequati<strong>on</strong>s (6.49) <str<strong>on</strong>g>and</str<strong>on</strong>g> (6.51) while def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the axial comp<strong>on</strong>ent of perturbati<strong>on</strong> vorticityas ζ = ẑ · (∇ × u) <str<strong>on</strong>g>and</str<strong>on</strong>g> the axial comp<strong>on</strong>ent of the perturbati<strong>on</strong> electric current densityas j = ẑ · (∇ × b) givesE( ) ∂∂t − ∇2 ζ + ∂u z∂z = −ERa∂Θ ∂y + Λ ∂j∂y , (6.52)()∇ 2 ∂− P r m j = ∂ζ∂t ∂y . (6.53)Now the assumpti<strong>on</strong> of quasi-geostrophy (QG) is implemented: Integrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s(6.52), (6.50) <str<strong>on</strong>g>and</str<strong>on</strong>g> (6.53) with respect to z <str<strong>on</strong>g>and</str<strong>on</strong>g> divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g by the depth of the fluid, ζ, j,<str<strong>on</strong>g>and</str<strong>on</strong>g> Θ can be re-<str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as the vertically averaged perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> axial vorticity,axial electrical current <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature respectively. This is possible because geostrophy(z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependence) holds to lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order when the slope of the top boundary is small(see, for example, Busse <str<strong>on</strong>g>and</str<strong>on</strong>g> Or (1986) for the formal development of the QG model).However, because of the presence of the slop<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary, the term ∂uz∂zassociatedwith the Coriolis force cannot be z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent. It can however be evaluated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g thec<strong>on</strong>servati<strong>on</strong> of mass of an <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible fluid (∇·u = 0) which at the boundary impliesthat u z = −β ∗ u x 7 ,∫ 10∂u z∂z dz = [u z] 1 0 = −β ∗ u x , (6.54)where the n<strong>on</strong>-dimensi<strong>on</strong>al parameter β ∗ measures the slope of the upper boundary<str<strong>on</strong>g>and</str<strong>on</strong>g> is related to the dimensi<strong>on</strong>al thick shell β-plane parameter discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.5.1 byβ = 2Ωβ∗L. To lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order, the velocity fields <str<strong>on</strong>g>in</str<strong>on</strong>g> the QG approximati<strong>on</strong> are 2D so canbe represented by a stream functi<strong>on</strong> χ where u x = ∂χ∂y <str<strong>on</strong>g>and</str<strong>on</strong>g> u y = − ∂χ∂xso ζ = −∇χ. Theequati<strong>on</strong>s for the QG system <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of χ, j <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ are then,−E( ∂∂t − ∇2 )∇ 2 χ + β ∗ ∂χ∂y = −ERa∂Θ ∂y + Λ ∂j∂y , (6.55)7 This expressi<strong>on</strong> ignores the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of viscous boundary layers <str<strong>on</strong>g>and</str<strong>on</strong>g> associated Ekman pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g. It<strong>on</strong>ly rigorously applies when free slip boundary c<strong>on</strong>diti<strong>on</strong>s are implemented, but provides a reas<strong>on</strong>ablelead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order approximati<strong>on</strong> for the present l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear problem.


156 Chapter 6 — Theory(∇ 2 − P r ∂ )Θ = − ∂χ∂t ∂y , (6.56)()∇ 2 ∂− P r m j = − ∂∂t ∂y ∇2 χ. (6.57)Plane wave soluti<strong>on</strong>s for χ, j <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ proporti<strong>on</strong>al to e i(kx+ky−ωt) (<str<strong>on</strong>g>in</str<strong>on</strong>g>variant <str<strong>on</strong>g>in</str<strong>on</strong>g> the ẑdirecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g k to be an estimate of the wavenumber <str<strong>on</strong>g>in</str<strong>on</strong>g> both the x <str<strong>on</strong>g>and</str<strong>on</strong>g> y directi<strong>on</strong>sfor simplicity) can then be substituted <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong>s (6.55) to (6.57). This yield relati<strong>on</strong>sbetween j <str<strong>on</strong>g>and</str<strong>on</strong>g> χ, <str<strong>on</strong>g>and</str<strong>on</strong>g> between Θ <str<strong>on</strong>g>and</str<strong>on</strong>g> χΘ =−ikχ−k 2 + iP rω<str<strong>on</strong>g>and</str<strong>on</strong>g> j =ik 3 χ−k 2 + iP r m ω , (6.58)which when substituted <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (6.55) give a dispersi<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the complexfrequency ω,E(−iω + k 2 ) + iβ∗k = ERa−iP r ω + k 2 − Λk 2−iP r m ω + k 2 . (6.59)The first term comes from the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>and</str<strong>on</strong>g> viscous forces, the sec<strong>on</strong>d term comes from thevariable Coriolis force, the third term represents thermal (c<strong>on</strong>vective) forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> thefourth term the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the uniform magnetic field. This dispersi<strong>on</strong> relati<strong>on</strong> is key tounderst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> predict<str<strong>on</strong>g>in</str<strong>on</strong>g>g the properties of hydromagnetic wave driven by c<strong>on</strong>vecti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> is also capable of recover<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dispersi<strong>on</strong> relati<strong>on</strong>s for free <str<strong>on</strong>g>waves</str<strong>on</strong>g> deduced by Hide(1966) if c<strong>on</strong>vective forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> are ignored. By neglect<str<strong>on</strong>g>in</str<strong>on</strong>g>g terms <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>(6.59), simple explicit soluti<strong>on</strong>s can be found for ω which give <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the types ofwave moti<strong>on</strong> possible <str<strong>on</strong>g>in</str<strong>on</strong>g> this system:(i) Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Ignor<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of magnetic fields leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia, viscosity<str<strong>on</strong>g>and</str<strong>on</strong>g> the β-effect <str<strong>on</strong>g>in</str<strong>on</strong>g> balance,E(−iω + k 2 ) = − iβ∗k=> ω = β∗Ek − ik2 E . (6.60)This is the viscous n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> dispersi<strong>on</strong> relati<strong>on</strong> expected for freeRossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, damped by viscous diffusi<strong>on</strong> effects <str<strong>on</strong>g>and</str<strong>on</strong>g> travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the prograde(eastward) directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the annulus geometry which mimics the scenario outsidethe tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>in</str<strong>on</strong>g> a thick spherical shell.(ii) Hide’s MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Ignor<str<strong>on</strong>g>in</str<strong>on</strong>g>g viscosity, <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia, thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong>, the β-effect isbalanced by the effect of changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field,iβ ∗k = Λk2−iP r m ω=> ω = − Λk3β ∗ P r m. (6.61)This is the dispersi<strong>on</strong> relati<strong>on</strong> expected for Hide’s unforced MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g> the retrograde (westward) directi<strong>on</strong> with frequency <str<strong>on</strong>g>in</str<strong>on</strong>g>versely proporti<strong>on</strong>alto the β-effect <str<strong>on</strong>g>and</str<strong>on</strong>g> proporti<strong>on</strong>al to the square of the magnetic field strength.


157 Chapter 6 — Theory(iii) Thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Includ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magnetic field but ignor<str<strong>on</strong>g>in</str<strong>on</strong>g>g its time changes, (as is reas<strong>on</strong>able whenP r m→ 0 as is the case for liquid metals), but reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g, theappropriate dispersi<strong>on</strong> relati<strong>on</strong> isE(−iω + k 2 ) + iβ∗k = ERa− Λ. (6.62)−iP r ω + k2 Elim<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ra from the imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary part of this equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the expressi<strong>on</strong>for Ra obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the real part leads to the dispersi<strong>on</strong> relati<strong>on</strong>,ω =β ∗ kEP r(1 + P r −1 )k 2 + Λ , (6.63)E<str<strong>on</strong>g>and</str<strong>on</strong>g> an expressi<strong>on</strong> for the critical Ra above which thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability will occur,) β ∗(Ra = k 4 + Λk2 k 2E + + Λ E E[ 2(1 + P r −1 )k 2 + Λ ] 2. (6.64)EC<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong> (6.63), when Λ is very small the dispersi<strong>on</strong> relati<strong>on</strong> reducesto that for thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (ω = β∗ 1Ek 1+P r). For a weak magnetic field whenΛ is small, the character of disturbances rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s essentially that of the thermalRossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, but slowed as <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g Λ decreases the magnitude of ω.For larger Λ, the frequency of disturbances takes the form ω = β∗ kΛP r. This modeis fundamentally different from thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> relies crucially <strong>on</strong> themagnetic field for its existence: it is not just a small correcti<strong>on</strong> (Busse, 1976;Fearn, 1979a; Soward, 1979b). This mode is therefore called the thermal magneto-Rossby wave <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>volves a lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order force balance between thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g,the β-effect <str<strong>on</strong>g>and</str<strong>on</strong>g> the Lorentz force due to a steady magnetic field, with <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g>viscous effects be<str<strong>on</strong>g>in</str<strong>on</strong>g>g negligible. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> also become slower as the magneticfield strength is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased.(iv) Thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.If <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia <str<strong>on</strong>g>and</str<strong>on</strong>g> viscosity are neglected, <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field taken <str<strong>on</strong>g>in</str<strong>on</strong>g>toc<strong>on</strong>siderati<strong>on</strong>, the appropriate dispersi<strong>on</strong> relati<strong>on</strong> isiβ ∗k = ERa−iP r ω + k 2 − Λk 2−iP r m ω + k 2 . (6.65)Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the expressi<strong>on</strong>s for the real <str<strong>on</strong>g>and</str<strong>on</strong>g> imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary parts leads to aquadratic dispersi<strong>on</strong> relati<strong>on</strong>,ω 2 − Λk3 (P r − P r m )β ∗ P rm2 ω +k4P r 2 m= 0. (6.66)For very slow <str<strong>on</strong>g>waves</str<strong>on</strong>g> when ω 2 can be neglected, <str<strong>on</strong>g>and</str<strong>on</strong>g> when P r is not equal to P r m ,this reduces toω =kβ ∗Λ(P r − P r m ) . (6.67)


When magnetic field changes are ignored (i.e.158 Chapter 6 — Theorywhen Pr m is negligible) this isidentical to the large Λ limit of equati<strong>on</strong> (6.63) illustrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that this is aga<str<strong>on</strong>g>in</str<strong>on</strong>g> thethermal magneto-Rossby wave. Note that this wave is very slow, propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>the thermal diffusi<strong>on</strong> time scale; it is dispersive with higher wavenumbers expectedto travel faster <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>waves</str<strong>on</strong>g> associated with it will be largest where β ∗ is largest(anticipated to be at the equator <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry).These properties willprove to be very important when look<str<strong>on</strong>g>in</str<strong>on</strong>g>g for evidence for the existence of thiswave <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> by analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic observati<strong>on</strong>s. The expressi<strong>on</strong> forthe critical Rayleigh number of these <str<strong>on</strong>g>waves</str<strong>on</strong>g> isIgnor<str<strong>on</strong>g>in</str<strong>on</strong>g>g the termk4P r 2 mRa =P r 2 β ∗2EΛ(P r − P r m ) + Λk2E . (6.68)(that arises due to the presence of magnetic diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>is negligible when η → 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m → ∞) <str<strong>on</strong>g>and</str<strong>on</strong>g> reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g ω 2 with its associatedmagnetic field changes <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (6.66), a new wave type that was filtered out <str<strong>on</strong>g>in</str<strong>on</strong>g>equati<strong>on</strong> (6.62) is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with the dispersi<strong>on</strong> relati<strong>on</strong>,ω = Λk3 (P r − P r m )β ∗ P r 2 m(6.69)This wave arises from a balance between the β-effect <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen-flux magneticeffects <str<strong>on</strong>g>and</str<strong>on</strong>g> is thermally driven, so is referred to as the thermal MC Rossby wave.This balance is <strong>on</strong>ly likely to come about when P r m is much greater than 1, whichis unlikely to the case <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s liquid metal <str<strong>on</strong>g>core</str<strong>on</strong>g>. The expressi<strong>on</strong> for the criticalRayleigh number of these modes takes the form,⎛Ra = Λ E⎜⎝ k2 P r 2P rm2 +β ∗2k 2 (P rP r m− 1) 2⎞⎟⎠ (6.70)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce both terms are proporti<strong>on</strong>al to Λ, thermal MC Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> are much harderto thermally excite than thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, unless P r m is very large.In summary, the QG model dem<strong>on</strong>strates the existence of three dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct types of thermalexcited hydromagnetic wave: magnetically modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, thermalmagneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. It is also capable of support<str<strong>on</strong>g>in</str<strong>on</strong>g>gthermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of a magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> Rossby <str<strong>on</strong>g>and</str<strong>on</strong>g> MC-Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g. For Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> which has str<strong>on</strong>g magnetic fields<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vective driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g present, this model suggests that c<strong>on</strong>vecti<strong>on</strong>-driven magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> will be the most relevant type of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic wave.The limitati<strong>on</strong>s of this model should be remembered: (i) when moti<strong>on</strong>s are no l<strong>on</strong>gerquasi-geostrophic, for example when very str<strong>on</strong>g magnetic fields (Λ >> 1) are present,this model is <str<strong>on</strong>g>in</str<strong>on</strong>g>valid; (ii) formally the β effect approach is <strong>on</strong>ly valid for small slopes(small β ∗ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> will break down <str<strong>on</strong>g>in</str<strong>on</strong>g> the equatorial regi<strong>on</strong> for a thick spherical shell; (iii) a


159 Chapter 6 — Theoryuniform background magnetic field profile was assumed: when this is not the case, extraterms will be present <str<strong>on</strong>g>and</str<strong>on</strong>g> other force balances possible.Analytic studies <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of str<strong>on</strong>g, n<strong>on</strong>-uniform magnetic fieldsSoward (1979b) has analytically studied the rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> problem <str<strong>on</strong>g>in</str<strong>on</strong>g> aplane layer geometry, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence of animposed n<strong>on</strong>-uniform Malkus magnetic field. This model is not limited to weak magneticfield strengths which was a drawback of the QG model. He found that the n<strong>on</strong>-uniformmagnetic field gives rise to an additi<strong>on</strong>al term <str<strong>on</strong>g>in</str<strong>on</strong>g> the dispersi<strong>on</strong> relati<strong>on</strong> (he calls this themagnetic hoop stress term) that c<strong>on</strong>trols the directi<strong>on</strong> of propagati<strong>on</strong> of thermal MAC<str<strong>on</strong>g>waves</str<strong>on</strong>g> when the field strength is str<strong>on</strong>g enough, <str<strong>on</strong>g>and</str<strong>on</strong>g> can cause wave propagati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> aretrograde (westward) directi<strong>on</strong>. He suggests that thermal MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> will be presentregardless of the c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g geometry when the magnetic field is sufficiently str<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g>that the magnetic hoop stress effect could help to expla<str<strong>on</strong>g>in</str<strong>on</strong>g> westward moti<strong>on</strong>s of <str<strong>on</strong>g>waves</str<strong>on</strong>g>found for str<strong>on</strong>g magnetic fields <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry.Asymptotic studies <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometryBuild<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark asymptotic studies of the <strong>on</strong>set of thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> arapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere <str<strong>on</strong>g>in</str<strong>on</strong>g> the double limit E > 1 of Roberts (1968) <str<strong>on</strong>g>and</str<strong>on</strong>g>Busse (1970), Fearn (1979a) carried out a similar study of local stability with a weakimposed Malkus (B 0 = B 0 r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ̂φ) magnetic field. This study essentially c<strong>on</strong>firmed thepicture found <str<strong>on</strong>g>in</str<strong>on</strong>g> the QG annulus model described <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>: when the fieldis very weak the critical modes are essentially thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> perturbed slightlyby the magnetic field. As the field strength <str<strong>on</strong>g>in</str<strong>on</strong>g>creases (so that magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolisforces come to balance each other to lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order) the preferred modes become thethermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, whose directi<strong>on</strong> of travel depends <strong>on</strong> the ratio P rmP r .Both <str<strong>on</strong>g>waves</str<strong>on</strong>g> were found to be n<strong>on</strong>-axisymmetric, equatorially symmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> columnar<str<strong>on</strong>g>in</str<strong>on</strong>g> structure. All these analyses rely <strong>on</strong> the scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g assumpti<strong>on</strong>s that 1 ∂s ∂φ ∼ O(E−1/3 ),∂∂z ∼ 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> ∂ ∂t ∼ O(E−2/3 ) <str<strong>on</strong>g>in</str<strong>on</strong>g> the limit E


160 Chapter 6 — Theorytries to rigorous global stability analyses. They deduced that the appropriate cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical∂radial asymptotic scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the columnar modes was∂s = O(E−1/3 ). J<strong>on</strong>es et al.(2003) have carried out the related global stability analysis with a weak Malkus field<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary layer <str<strong>on</strong>g>and</str<strong>on</strong>g> other first order correcti<strong>on</strong>s. This theory was successfullycompared with results from a numerical soluti<strong>on</strong> of the full eigenvalue problem (whereno scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g assumpti<strong>on</strong>s were made) at small E <str<strong>on</strong>g>and</str<strong>on</strong>g> large P rE. The scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g assumpti<strong>on</strong>sof small radial extent made <str<strong>on</strong>g>in</str<strong>on</strong>g> all these asymptotic theories break down for low P r <str<strong>on</strong>g>and</str<strong>on</strong>g>large Λ.Zhang (1994a,b) has developed an asymptotic theory of the <strong>on</strong>set of thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>a sphere <str<strong>on</strong>g>in</str<strong>on</strong>g> the dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct limit of E


161 Chapter 6 — Theorythermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the strength of the magnetic field further, Ra c wasobserved to fall (magnetic field facilitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>stability) <str<strong>on</strong>g>and</str<strong>on</strong>g> the length scales of the disturbance<str<strong>on</strong>g>in</str<strong>on</strong>g>creased. The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g> were aga<str<strong>on</strong>g>in</str<strong>on</strong>g> z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g slowly to theeast if P rmP r> 1 as expected for thermal magneto-Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g>. For str<strong>on</strong>ger field strengths they noted that c<strong>on</strong>vecti<strong>on</strong> filled the whole sphere<str<strong>on</strong>g>and</str<strong>on</strong>g> that all <str<strong>on</strong>g>waves</str<strong>on</strong>g> drifted westwards. Unfortunately, given the nature of computati<strong>on</strong>alresources <str<strong>on</strong>g>in</str<strong>on</strong>g> the mid 1970’s when this study was carried out, there was doubt over thec<strong>on</strong>vergence of some of the results reported.Fearn (1979b) carried out a similar, but more accurate numerical study aga<str<strong>on</strong>g>in</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe Malkus field but c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the case when the Roberts number q = P rmP rapproached zero. He c<strong>on</strong>sidered the regime (0.1 ≤ Λ ≤ 100) <str<strong>on</strong>g>and</str<strong>on</strong>g> documented marg<str<strong>on</strong>g>in</str<strong>on</strong>g>allystable modes at the <strong>on</strong>set of thermal c<strong>on</strong>vecti<strong>on</strong>. He def<str<strong>on</strong>g>in</str<strong>on</strong>g>itively identified magneticallymodified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> at low Λ, <str<strong>on</strong>g>and</str<strong>on</strong>g> observed a transiti<strong>on</strong> to thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> at Λ ∼ O(E 1/3 ) as predicted by his analytical work (Fearn, 1979a). AtΛ ∼ O(1), the propagati<strong>on</strong> directi<strong>on</strong> of the most unstable modes changed from eastwardsto westwards.It was suggested this <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated a transiti<strong>on</strong> to thermal MAC modesfor which magnetic hoop stress was more important than the β-effect <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gthe wave propagati<strong>on</strong> directi<strong>on</strong> (see Soward (1979b) for further details).As Λ was<str<strong>on</strong>g>in</str<strong>on</strong>g>creased further, Fearn observed that Ra c began to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease aga<str<strong>on</strong>g>in</str<strong>on</strong>g>, as the magneticfield (rather than rotati<strong>on</strong>) began to <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit c<strong>on</strong>vecti<strong>on</strong>. For Λ > 20 magnetically drivenMAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> were found when stable thermal stratificati<strong>on</strong> (Ra ≤ 0) was present (this isthe excepti<strong>on</strong>al mode of magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability described <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.6.1). The stability diagramfrom Fearn (1979b) is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 6.6. For Ra > 0, the diagram summarises ourcurrent underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of the different types of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>possible <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid sphere, as a functi<strong>on</strong> of magnetic field strength.J<strong>on</strong>es et al. (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004) recently completed a comprehensive <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>(both analytical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical) of the properties of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere, when the imposed magnetic field is weak Λ


162 Chapter 6 — TheoryFigure 6.6: Stability diagram from Fearn (1979b).Stability diagram for c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere with a Malkusbackground magnetic field. Elsasser number Λ (a measure of magnetic field strength) isplotted aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st critical Rayleigh number Ra c (a measure of the strength of thermal driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g).The solid l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is the boundary between stable <str<strong>on</strong>g>waves</str<strong>on</strong>g> (S regi<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable <str<strong>on</strong>g>waves</str<strong>on</strong>g>(U regi<strong>on</strong>) <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from numerical calculati<strong>on</strong>s. For weak magnetic fields (low Λ) Ra c<str<strong>on</strong>g>in</str<strong>on</strong>g>creases with Λ as expected for the magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. ForΛ > O(E 1/3 ), Ra c falls <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a transiti<strong>on</strong> to thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. ForΛ > 1 c<strong>on</strong>vecti<strong>on</strong> fills the whole sphere <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> travel westward, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>anceof thermal MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>. For negative Ra c (stable stratificati<strong>on</strong>) magnetic MAC<str<strong>on</strong>g>waves</str<strong>on</strong>g>, driven by magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability catalysed by thermal stratificati<strong>on</strong> are observed.This diagram adapted from Fearn (1979b).


163 Chapter 6 — Theorybetween these modes was found to be c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous at large P r m but disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous atsmall P r m . This study did not document changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of the thermally drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> for Λ ∼ 1: this regime is studied <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7.Effect of more realistic background magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> flowsFearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983) took an important step towards geophysical realism by study<str<strong>on</strong>g>in</str<strong>on</strong>g>gboth more realistic background fields <str<strong>on</strong>g>and</str<strong>on</strong>g> flows. They chose an axisymmetric, toroidalmagnetic field B 0 = 8r 2 (1 − r 2 ) s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ cos θ ̂φ. This vanishes <strong>on</strong> the outer boundary withoutthe need for any magnetic boundary layer <str<strong>on</strong>g>and</str<strong>on</strong>g> is equatorially anti-symmetric (E A )as required to generate the observed E A dipole symmetry poloidal field by differentialrotati<strong>on</strong> (the ω-effect, see for example, Roberts (1994)). Initially they neglected thebackground flow to isolate the effect of an E A imposed field <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g>. Little qualitative difference <str<strong>on</strong>g>in</str<strong>on</strong>g> Ra c <str<strong>on</strong>g>and</str<strong>on</strong>g> ω was then observed comparedto studies <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Malkus field, though magnetically driven MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> were observedfor lower Λ <str<strong>on</strong>g>and</str<strong>on</strong>g> without stable stratificati<strong>on</strong>. Eltayeb (1992) came to similarc<strong>on</strong>clusi<strong>on</strong>s when c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of a range of weak imposed magnetic fields <str<strong>on</strong>g>in</str<strong>on</strong>g>a spherical shell geometry, f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the form of the field was <strong>on</strong>ly important <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>glatitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al locati<strong>on</strong> of the wave, but not the type of wave excited or its driftspeed.Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983) also c<strong>on</strong>sidered the effect of axisymmetric background flows<str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g differential rotati<strong>on</strong> <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, when an E Atoroidal magnetic field was imposed. Toroidal magnetic fields with E A symmetry thatsatisfy <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s cannot be z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore have anassociated Lorentz force that drives azimuthal flow (see Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1980) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn et al.(1988) for a discussi<strong>on</strong> of this magnetic w<str<strong>on</strong>g>in</str<strong>on</strong>g>d phenomen<strong>on</strong>). It is therefore importantto <str<strong>on</strong>g>in</str<strong>on</strong>g>clude background azimuthal flows <str<strong>on</strong>g>in</str<strong>on</strong>g> order to study the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of E A imposedfields <str<strong>on</strong>g>in</str<strong>on</strong>g> a self c<strong>on</strong>sistent manner. Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983) found that <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g sucha background azimuthal flows leads to major changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the properties of c<strong>on</strong>vecti<strong>on</strong>drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. The critical Ra is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased as the amplitude of the flow<str<strong>on</strong>g>in</str<strong>on</strong>g>creases, <str<strong>on</strong>g>waves</str<strong>on</strong>g> become localised at the latitude of extrema <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow with the speedof the <str<strong>on</strong>g>waves</str<strong>on</strong>g> approach<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fluid speed at that po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce azimuthal flows associatedwith both magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds are probable <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see, for example,Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (2005)), the fact that they crucially <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the properties ofhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> (Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, 1980; Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor, 1983) implies they must betaken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account if <strong>on</strong>e is to accurately predict the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.Zhang (1995) studied the parameter dependence of the structure of c<strong>on</strong>vecti<strong>on</strong>-drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell, with an E A imposed toroidal magnetic fieldbut no self-c<strong>on</strong>sistent background flow at E = 10 −4 <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m =1. The imposed magneticfield was chosen to be the axisymmetric toroidal decay mode of the lowest order hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g


164 Chapter 6 — TheoryE A symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g> satisfy<str<strong>on</strong>g>in</str<strong>on</strong>g>g electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sult<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s. A mathematicaldescripti<strong>on</strong> of all such decay modes result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the soluti<strong>on</strong> to the magnetic diffusi<strong>on</strong>problem <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn (1994). Zhang (1995)dem<strong>on</strong>strated c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>gly that with E A imposed fields there is no m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum <str<strong>on</strong>g>in</str<strong>on</strong>g> Ra cas a functi<strong>on</strong> of Λ because above Λ ∼ O(1) the imposed magnetic field supplies theenergy required for c<strong>on</strong>vecti<strong>on</strong> through magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability. This is <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to thescenario for the Malkus field where the magnetic field <strong>on</strong>ly facilitates thermal c<strong>on</strong>vecti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> stable stratificati<strong>on</strong> is required <str<strong>on</strong>g>in</str<strong>on</strong>g> order for magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability to occur. Zhang als<strong>on</strong>oted that as P rmP rbecomes small, the limit between c<strong>on</strong>vecti<strong>on</strong>-driven <str<strong>on</strong>g>and</str<strong>on</strong>g> magneticallydriven<str<strong>on</strong>g>waves</str<strong>on</strong>g> is disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous for any particular wavenumber. Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es (1996)have <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated this troublesome transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> detail <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>clude that there is nophysical difficulty because as P rmP rtends to zero, the critical thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic modeswith the same Ra c always have different wavenumbers.Decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g P r from 1 towards 0, Zhang observed that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> displaythe spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g structure familiar from n<strong>on</strong>-magnetic c<strong>on</strong>vecti<strong>on</strong> (Zhang, 1992), but theLorentz force can cause spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the westward rather than eastward directi<strong>on</strong>. Atvery low P r a transiti<strong>on</strong> is observed to <str<strong>on</strong>g>waves</str<strong>on</strong>g> with similar form to thermal-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>(Zhang, 1994a;b; Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Busse, 1987), with structure localised close to the outerboundary. At very low P r, fluid <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia is capable of balanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Coriolis force, sothermal forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g drives <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> rather than Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> with a weak magneticfield strength present, magnetically-modified thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. Littlechange is observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of these <str<strong>on</strong>g>waves</str<strong>on</strong>g> as Λ is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased, perhaps because theLorentz force rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s as a weak perturbati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the thermal-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave structureis localised near the outer boundary where the imposed field strength is c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed tobe small <str<strong>on</strong>g>in</str<strong>on</strong>g> order to satisfy the electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s. No thermalMC-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> were found, presumably because they are more difficult to excite.L<strong>on</strong>gbottom et al. (1995) also studied E A imposed fields but time-stepped the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>gequati<strong>on</strong>s (see Hollerbach (2000) for a discussi<strong>on</strong> of this numerical method) at E = 10 −4<str<strong>on</strong>g>and</str<strong>on</strong>g> P rmP r= 10 −6 . This method has the advantage of not requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial start<str<strong>on</strong>g>in</str<strong>on</strong>g>g guessfor the soluti<strong>on</strong>. They ignored the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial effects so were unable to studymagnetically-modified thermal Rossby or magnetically-modified thermal-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g the same E A field as Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983) they also found magnetically<str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities for Λ > 10, <str<strong>on</strong>g>and</str<strong>on</strong>g> that <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g a poloidal imposed field made it easier toobta<str<strong>on</strong>g>in</str<strong>on</strong>g> such <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of a background flow was also <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>and</str<strong>on</strong>g>aga<str<strong>on</strong>g>in</str<strong>on</strong>g> found to have an important <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence if sufficiently str<strong>on</strong>g.Most recently, attenti<strong>on</strong> has focused <strong>on</strong> the effect of impos<str<strong>on</strong>g>in</str<strong>on</strong>g>g both toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> poloidalmagnetic fields together. Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2002) studied c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> when E = 10 −6 <str<strong>on</strong>g>and</str<strong>on</strong>g> P r=P r m =1 with a variety of imposed fields. Theyfound that the poloidal field has less effect <strong>on</strong> the dynamics than the toroidal magnetic


165 Chapter 6 — Theoryfield because it satisfies electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s with less curvature<str<strong>on</strong>g>and</str<strong>on</strong>g> therefore less magnetic hoop stress. They observed <str<strong>on</strong>g>waves</str<strong>on</strong>g> propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g eastwardwhen a poloidal field is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>and</str<strong>on</strong>g> westward when a toroidal field is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant.Effect of the presence of an <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>Zhang (1995) observed that the presence of an <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> did little to changethe structure of either c<strong>on</strong>vecti<strong>on</strong>-driven or magnetically-driven <str<strong>on</strong>g>waves</str<strong>on</strong>g>, because the preferred<str<strong>on</strong>g>waves</str<strong>on</strong>g> all had columnar structure <str<strong>on</strong>g>and</str<strong>on</strong>g> were localised outside the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>derto the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>. L<strong>on</strong>gbottom et al. (1995) studied the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of a f<str<strong>on</strong>g>in</str<strong>on</strong>g>itely c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>, with an imposed field that was n<strong>on</strong>-zero <str<strong>on</strong>g>in</str<strong>on</strong>g>side the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>, but aga<str<strong>on</strong>g>in</str<strong>on</strong>g> foundthat the presence of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> made little difference to the form of the magnetoc<strong>on</strong>vecti<strong>on</strong>.Walker <str<strong>on</strong>g>and</str<strong>on</strong>g> Barenghi (1997) compared <str<strong>on</strong>g>their</str<strong>on</strong>g> full sphere results to the sphericalshell results of L<strong>on</strong>gbottom et al. (1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> found <strong>on</strong>ly very m<str<strong>on</strong>g>in</str<strong>on</strong>g>or differences, thatoccurred primarily for magnetically-driven <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities. It can therefore be c<strong>on</strong>cludedthat the results of models of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a fluid sphere will be relevantto the case of a spherical shell with <strong>on</strong>ly small correcti<strong>on</strong>s (see for example J<strong>on</strong>es et al.(2000)), so results from full sphere models can sensibly be applied when seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g to modelhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.6.7 N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>The discussi<strong>on</strong> up to now has c<strong>on</strong>sidered <strong>on</strong>ly l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. This approachimplicitly assumes (i) <str<strong>on</strong>g>waves</str<strong>on</strong>g> can be superposed without c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g any mutual <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) that no feedback occurs between the <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the rest of the system.This scenario is obviously unphysical because unstable <str<strong>on</strong>g>waves</str<strong>on</strong>g> can grow without limit,but is n<strong>on</strong>etheless useful for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g which type of wave will be most easily excited<str<strong>on</strong>g>in</str<strong>on</strong>g> a particular regime. Early studies by Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1967), Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward (1972)<str<strong>on</strong>g>and</str<strong>on</strong>g> Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1975), though deriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear equati<strong>on</strong>s for hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> rid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> general background states, emphasised the importance of underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gn<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear feedback processes. They noted that wave properties are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by thebackground state, but the background state is itself altered by the <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Furthermore,the possibility of transient growth of eigenmodes due to n<strong>on</strong>-normal structure of thegovern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s (see, for example, Farrell <str<strong>on</strong>g>and</str<strong>on</strong>g> Ioannou (1996) or Livermore (2003))means plac<str<strong>on</strong>g>in</str<strong>on</strong>g>g too much faith <str<strong>on</strong>g>in</str<strong>on</strong>g> results l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear eignvalue calculati<strong>on</strong>s al<strong>on</strong>e is dangerous.Therefore, when seek<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret geophysical observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>dicative of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, it should be remembered that l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear analysis is <strong>on</strong>ly formallyvalid for small perturbati<strong>on</strong>s to an artificial, steady background state <str<strong>on</strong>g>and</str<strong>on</strong>g> cannot tell ushow <str<strong>on</strong>g>waves</str<strong>on</strong>g> will evolve, saturate, <str<strong>on</strong>g>in</str<strong>on</strong>g>teract with each other or what flow structures mightresult from n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear bifurcati<strong>on</strong>s of the <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Attempts to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> such processesdeserves a c<strong>on</strong>certed theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g effort <str<strong>on</strong>g>in</str<strong>on</strong>g> the future.


166 Chapter 6 — TheorySome progress <str<strong>on</strong>g>in</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> has already been made.El Sawi <str<strong>on</strong>g>and</str<strong>on</strong>g> Eltayeb (1981) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eltayeb (1981) have derived higher order equati<strong>on</strong>sfor hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a plane layer with a slowly vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g background mean flow.Their equati<strong>on</strong>s describe the evoluti<strong>on</strong> of diffusi<strong>on</strong>less MAC wave amplitude via thec<strong>on</strong>servati<strong>on</strong> of wave acti<strong>on</strong> (wave energy divided by wave frequency per unit volume).This c<strong>on</strong>servati<strong>on</strong> law describes how when a wave moves <str<strong>on</strong>g>in</str<strong>on</strong>g>to a regi<strong>on</strong> where its frequencyis higher (due to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the background state), then the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> wave energyoccurs at the expense of a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the energy of the background state.Ewen <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward (1994a;b;c) performed a weakly n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear analysis of a QG cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>dricalannulus model of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> an imposed Malkus-type field. They derived<str<strong>on</strong>g>and</str<strong>on</strong>g> analysed equati<strong>on</strong>s describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amplitude modulati<strong>on</strong> of thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>, f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g that a geostrophic flow is driven n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>early by the Lorentz forceresult<str<strong>on</strong>g>in</str<strong>on</strong>g>g from magnetic field perturbati<strong>on</strong>s associated with hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> isl<str<strong>on</strong>g>in</str<strong>on</strong>g>early damped by Ekman sucti<strong>on</strong> at the boundary. They c<strong>on</strong>sider stati<strong>on</strong>ary pulse,travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g pulse <str<strong>on</strong>g>and</str<strong>on</strong>g> wavetra<str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong>s as well as s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle mode soluti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>d thatthe n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the geostrophic flow can redistribute energyam<strong>on</strong>gst the modes.The 1990’s saw the first attempts to study rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> 3D sphericalgeometry <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear regime. Fearn et al. (1994) <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <strong>on</strong>ly the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g ordern<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>earity (the geostrophic flow) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> time. Theyused the same toroidal field as Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983), chose P rmP r= 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Λ=5, setE=0 <str<strong>on</strong>g>and</str<strong>on</strong>g> neglected <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial terms. At low Ra they obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed an equilibrated soluti<strong>on</strong>for the geostrophic velocity, but it appeared to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Ekman sucti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>was clearly not a Taylor state (<str<strong>on</strong>g>in</str<strong>on</strong>g> which the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral of the azimuthal part of Lorentzforce over cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical annuli vanishes (Taylor, 1963)) as they had hoped. At higher Rathey found complicated time dependence <str<strong>on</strong>g>and</str<strong>on</strong>g> no c<strong>on</strong>verged steady soluti<strong>on</strong>s.Walker<str<strong>on</strong>g>and</str<strong>on</strong>g> Barenghi (1999) tackled the same problem with rather more success <str<strong>on</strong>g>and</str<strong>on</strong>g> observed atransiti<strong>on</strong> to a Taylor state at higher Ra. They found that the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g geostrophic flowstr<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced the frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> directi<strong>on</strong> of the <str<strong>on</strong>g>waves</str<strong>on</strong>g> (<str<strong>on</strong>g>in</str<strong>on</strong>g> agreementwith the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983)), caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g them to change directi<strong>on</strong>from westward to eastward as Ra is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased.Ols<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier (1995) numerically time-stepped the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s start<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom a c<strong>on</strong>ductive state with r<str<strong>on</strong>g>and</str<strong>on</strong>g>om perturbati<strong>on</strong>s for a limited regi<strong>on</strong> of parameterspace (P r = 1 , Λ =0.1 or 10, P m = 10 −2 , E = 5 × 10 −5 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> Ra highly supercritical.They imposed a magnetic field (with a s<str<strong>on</strong>g>in</str<strong>on</strong>g> 2θ dependence <strong>on</strong> co-latitude) at the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner<str<strong>on</strong>g>core</str<strong>on</strong>g> boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> specified that the outer boundary be an electrical <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator. Whenthe field was weak, they found fluid moti<strong>on</strong> vigorous <str<strong>on</strong>g>and</str<strong>on</strong>g> geostrophic outside the tangentcyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der <str<strong>on</strong>g>in</str<strong>on</strong>g> narrow (m = 4) columns parallel to the rotati<strong>on</strong> axis <str<strong>on</strong>g>and</str<strong>on</strong>g> driven by small,ribb<strong>on</strong> shaped thermal plumes. There was azimuthal flow driven by Reynolds stresses


167 Chapter 6 — Theorydue to the tilt of the c<strong>on</strong>vective columns, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g westward near the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der,but eastward further from the axis. With a str<strong>on</strong>g magnetic field they found that mostc<strong>on</strong>vecti<strong>on</strong> occurs <str<strong>on</strong>g>in</str<strong>on</strong>g>side the tangent cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>der, while outside there was a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle, large-scaleplume.Card<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (1995) used the QG approximati<strong>on</strong> to study fully n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong>for P r = 7, P m = 0.1, E = 10 −4 with Ra = 3Ra c <str<strong>on</strong>g>and</str<strong>on</strong>g> 50Ra c , <str<strong>on</strong>g>and</str<strong>on</strong>g> Λ between10 −4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2. For weak forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g, they found Reynolds stresses due to the prograde tiltof c<strong>on</strong>vective columns drove azimuthal flows, but that a str<strong>on</strong>g magnetic field reducedthe wavenumber of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> suppressed azimuthal flows. For str<strong>on</strong>g forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g, theReynolds stresses (rather than viscous stresses) appeared to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the vortex scalewith large eddies be<str<strong>on</strong>g>in</str<strong>on</strong>g>g formed. Unfortunately, the imposed toroidal field chosen <str<strong>on</strong>g>in</str<strong>on</strong>g> thisstudy is s<str<strong>on</strong>g>in</str<strong>on</strong>g>gular at the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> cast<str<strong>on</strong>g>in</str<strong>on</strong>g>g some doubt <strong>on</strong> the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (Fearn, 1998).Zhang (1999) studied n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell, us<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe same toroidal field as Zhang (1995), but neglect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial terms <str<strong>on</strong>g>and</str<strong>on</strong>g> study<str<strong>on</strong>g>in</str<strong>on</strong>g>gthermally driven <str<strong>on</strong>g>waves</str<strong>on</strong>g> at Ra up to 3 times critical, E = 1 × 10 −3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Λ = 10.Soluti<strong>on</strong>s were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the equati<strong>on</strong>s numerically over many magneticdiffusi<strong>on</strong> times. He found two bifurcati<strong>on</strong>s, the first be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <strong>on</strong>set of steadily travell<str<strong>on</strong>g>in</str<strong>on</strong>g>gmagneto-c<strong>on</strong>vective <str<strong>on</strong>g>waves</str<strong>on</strong>g> with equatorial <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal symmetry, the sec<strong>on</strong>d be<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe simultaneously break<str<strong>on</strong>g>in</str<strong>on</strong>g>g temporal <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal symmetry lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to vacillat<str<strong>on</strong>g>in</str<strong>on</strong>g>gmagnetoc<strong>on</strong>vecti<strong>on</strong> (for further discussi<strong>on</strong>, c<strong>on</strong>sult Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert (2000)).Sakuraba <str<strong>on</strong>g>and</str<strong>on</strong>g> K<strong>on</strong>o (2000) studied 3D, fully n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shell, with an imposed uniform magnetic field parallel to the rotati<strong>on</strong>axis <str<strong>on</strong>g>and</str<strong>on</strong>g> E = 2 × 10 −5 . They found a transiti<strong>on</strong> from a magnetically-modified thermalRossby wave to a thermal magneto-Rossby wave at Λ ∼ 1. This transiti<strong>on</strong> was associatedwith an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the toroidal magnetic field energy, a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthalwavenumber of the mode <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ement of magnetic flux <str<strong>on</strong>g>in</str<strong>on</strong>g>to anti-cycl<strong>on</strong>ic rolls,especially <str<strong>on</strong>g>in</str<strong>on</strong>g> high amplitude spots <str<strong>on</strong>g>in</str<strong>on</strong>g> the equatorial regi<strong>on</strong> at the outer boundary.Gillet et al. (2005) have carried out a comprehensive experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>to the properties of a turbulent flow produced by the n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear developmentof magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. This study is limited to weak magneticfields (Λ


168 Chapter 6 — Theoryhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> with the azimuthal flows <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>.6.8 Influence of stratificati<strong>on</strong> <strong>on</strong> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>There has been some discussi<strong>on</strong> of the possibility of a stratified layer or <str<strong>on</strong>g>in</str<strong>on</strong>g>ner ocean at thetop of Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> (see, for example, Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper (1981); Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s et al. (1982);Lister <str<strong>on</strong>g>and</str<strong>on</strong>g> Buffett (1998)) <str<strong>on</strong>g>and</str<strong>on</strong>g> the hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> that would be supported there(see, for example, Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1987; 1993; 1999), Drew (1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bergman (1993)).This stratified layer has not yet been observed seismically (Helffrich <str<strong>on</strong>g>and</str<strong>on</strong>g> Kaneshima,2004) though its existence seems plausible <strong>on</strong> thermodynamic grounds with light fluidreleased dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the solidificati<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> expected to p<strong>on</strong>d below the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantleboundary.The dynamics of a stably stratified layer would be dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by its th<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical shellgeometry (<str<strong>on</strong>g>and</str<strong>on</strong>g> the associated β-effect) al<strong>on</strong>g with the Brunt-Väisällä frequency (for adiscussi<strong>on</strong> of this c<strong>on</strong>cept, see Melchoir (1986)) associated with its stable stratificati<strong>on</strong>.There would undoubtedly be many similarities with the water ocean <strong>on</strong> Earth’s surface,but with additi<strong>on</strong>al complicati<strong>on</strong>s caused by the presence of magnetic forces. In particular,MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (rely<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the Coriolis force with latitude) wouldbe present with<str<strong>on</strong>g>in</str<strong>on</strong>g> such an ocean though <str<strong>on</strong>g>their</str<strong>on</strong>g> excitati<strong>on</strong> mechanism rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unclear.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky (1999) has developed models of both axisymmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-axisymmetricdisturbances of such a stably stratified layer (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effects of magnetic diffusi<strong>on</strong>)<str<strong>on</strong>g>and</str<strong>on</strong>g> claims they can account for oscillati<strong>on</strong>s with periods of 65 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 years thathe suggests are found <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of short period geomagnetic secular variati<strong>on</strong>. Unfortunately,hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a hidden ocean at the top of the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> are notthe <strong>on</strong>ly possible source of periodic geomagnetic secular variati<strong>on</strong> <strong>on</strong> these decadal timescales — torsi<strong>on</strong>al oscillati<strong>on</strong>s 8 (Bloxham et al., 2002) are an equally plausible explanati<strong>on</strong>.Until the existence of the hidden ocean of the <str<strong>on</strong>g>core</str<strong>on</strong>g> can be c<strong>on</strong>firmed, the studyof hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> which may exist there will rema<str<strong>on</strong>g>in</str<strong>on</strong>g> of primarily mathematical<str<strong>on</strong>g>in</str<strong>on</strong>g>terest.6.9 SummaryIn this chapter the subject of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluidshas been reviewed. The fundamental restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms provided by rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>magnetic fields have been described <str<strong>on</strong>g>and</str<strong>on</strong>g> dispersi<strong>on</strong> relati<strong>on</strong>s have been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> a varietyof simple cases. Possible excitati<strong>on</strong> mechanisms have been proposed with attenti<strong>on</strong>8 Torsi<strong>on</strong>al oscillati<strong>on</strong>s (Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, 1970) are axisymmetric hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> for which pressuregradients completely balance the Coriolis force, so the Lorentz force <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ertia c<strong>on</strong>stitute the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>gorder force balance. Oscillati<strong>on</strong>s about this state are essentially Alfvén <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magneticfield <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> perpendicular to the rotati<strong>on</strong> axis.


169 Chapter 6 — Theoryfocus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability. N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear feedback betweenthe <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthal flows <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects of stable stratificati<strong>on</strong> have also beendiscussed. Possible types of hydromagnetic wave found <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of c<strong>on</strong>vecti<strong>on</strong>,rapid rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> imposed magnetic fields are listed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 6.1:Wave type Time scale Field strength Comment|Mag. force|MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>MC Rossby|Coriolis ≥ O(1) no diffusi<strong>on</strong>force||Mag. force|MC-Inertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>rotati<strong>on</strong>al|Coriolis ≥ O(1) no diffusi<strong>on</strong>force||Mag. force|MC/MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>MC/MAC|Coriolis ≥ O(1) no diffusi<strong>on</strong>force|Magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> thermal diff. 0 < Λ < O(E 1/3 ) v. weak B 0Magnetically-modified thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> rotati<strong>on</strong>al Λ > 0 v. small P rThermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> thermal diff. Λ ≥ O(E 1/3 ) Earth-like?Thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> thermal diff. Λ ≥ O(E 1/3 ) v. large P r mThermal MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> thermal diff. Λ >> O(1) str<strong>on</strong>g B 0Magnetic MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> magnetic diff. Λ >> O(10) v. str<strong>on</strong>g B 0Table 6.1: <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, thermally c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid.Summary of types of hydromagnetic wave possible <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, thermally c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>gfluid. Thermal or magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g> the wave name refers to the type of <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilitydriv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wave, if these are not present the wave is a free wave (natural resp<strong>on</strong>se ofthe system to perturbati<strong>on</strong>). The required ratios of the magnetic force to the Coriolisforce (or else the range of Λ if diffusi<strong>on</strong> is present) are listed, al<strong>on</strong>g with comments <strong>on</strong>the relevance of each wave to the regime thought to be present <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.In Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> with str<strong>on</strong>g magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid rotati<strong>on</strong> present (Λ ∼ O(1))<str<strong>on</strong>g>and</str<strong>on</strong>g> with P r ∼ O(1) , P r m


170Chapter 7C<strong>on</strong>vecti<strong>on</strong>-driven, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere7.1 Introducti<strong>on</strong>In this chapter a numerical study of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spheredriven by thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of an imposed azimuthal magnetic field isdescribed. The properties of marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ally stable <str<strong>on</strong>g>waves</str<strong>on</strong>g> are studied as a functi<strong>on</strong> of thec<strong>on</strong>trol parameters. The focus of attenti<strong>on</strong> will be the str<strong>on</strong>g magnetic field (Λ ∼ 1)regime that has not previously been documented <str<strong>on</strong>g>in</str<strong>on</strong>g> detail. The motivati<strong>on</strong> for thischapter is to catalogue the behaviour of <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> this regime that is thought to berelevant to Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>.As noted <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 6, accurate modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> requires tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account the presence of background flows <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> these flows. This is a major undertak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> is notattempted <str<strong>on</strong>g>in</str<strong>on</strong>g> the present chapter. Instead, attenti<strong>on</strong> is focused <strong>on</strong> underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g themechanisms resp<strong>on</strong>sible for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a simple case that <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes theessential <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients of a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid, a magnetic field that str<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluencesthe dynamics, a spherical geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vective driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The knowledge ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>this study will be of value when attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret results from more complex <str<strong>on</strong>g>and</str<strong>on</strong>g>realistic models with either imposed or dynamo generated radial magnetic fields alsopresent (see chapter 5 for an analysis of examples of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> dynamomodels).The code form<str<strong>on</strong>g>in</str<strong>on</strong>g>g the basis for numerical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter was k<str<strong>on</strong>g>in</str<strong>on</strong>g>dly providedby Christopher J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> Steven Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> from the University of Exeter, UK(J<strong>on</strong>es et al., 2003; Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 2004). Their manipulati<strong>on</strong> of the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g>to a form suitable for numerical soluti<strong>on</strong> as an eigenvalue problem <str<strong>on</strong>g>and</str<strong>on</strong>g> treatment ofthe boundary c<strong>on</strong>diti<strong>on</strong>s are briefly outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the first part of this chapter. The numericalsoluti<strong>on</strong> of the eigenvalue problem is then described, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g new extensi<strong>on</strong>s


171 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>to the numerical method of J<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (particularly the implementati<strong>on</strong> of animplicitly-started Arnoldi solver (ARPACK) method) allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s to be found evenwhen no reliable start<str<strong>on</strong>g>in</str<strong>on</strong>g>g guesses for the Rayleigh number <str<strong>on</strong>g>and</str<strong>on</strong>g> wave frequency at the<strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> are available. Results are reported regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the parameter dependencesof wave properties <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> structure. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally implicati<strong>on</strong>s of these theoretical<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> are discussed.7.2 Manipulati<strong>on</strong> of govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to eigenvalue form7.2.1 Govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>sThe treatment <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> closely follows that of Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004), which c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>sfull details of the extensive algebraic manipulati<strong>on</strong>s required; the reader should c<strong>on</strong>sultthis account if further details are required. As described <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D, the l<str<strong>on</strong>g>in</str<strong>on</strong>g>earisedequati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow, magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> temperaturefield (u, b, Θ) associated with hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>gsphere (which is self-gravitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (ĝ = γr), where c<strong>on</strong>vecti<strong>on</strong> is driven by uniform <str<strong>on</strong>g>in</str<strong>on</strong>g>ternalheat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (∇T 0 = −β ′ r) <str<strong>on</strong>g>and</str<strong>on</strong>g> where the rotati<strong>on</strong> axis is <str<strong>on</strong>g>in</str<strong>on</strong>g> the ẑ directi<strong>on</strong>) <str<strong>on</strong>g>in</str<strong>on</strong>g> then<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> based <strong>on</strong> the viscous diffusi<strong>on</strong> time scale are,( ) ∂E∂t − ∇2 u + (ẑ × u) = −∇P + ERaΘr + Λ[( ̂B 0 · ∇)b + (b · ∇) ̂B]0 , (7.1)(∇ 2 ∂− P r m∂t(∇ 2 − P r ∂ ∂t)b = ∇ × (u × ̂B 0 ), (7.2))Θ = −r · u, (7.3)∇ · u = 0, (7.4)∇ · b = 0, (7.5)<str<strong>on</strong>g>and</str<strong>on</strong>g> the the n<strong>on</strong>-dimensi<strong>on</strong>al c<strong>on</strong>trol parameters called the Ekman number E, Rayleighnumber Ra, Elsasser number Λ, Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r mare respectively,E =ν2Ωr2 , Ra = γαβ′ r6 0, Λ = B2 00 κν2Ωµρ 0 η , P r = ν κ , P r m = ν η . (7.6)The n<strong>on</strong>-dimensi<strong>on</strong>alised background magnetic field used <str<strong>on</strong>g>in</str<strong>on</strong>g> this model iŝB 0 = r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ̂φ. (7.7)This is the Malkus field that was discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.5.2 that is useful when <strong>on</strong>e wishes tostudy simple examples of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry. It allows <str<strong>on</strong>g>waves</str<strong>on</strong>g>driven by magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability (see §6.6.1) to be filtered out, permitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g attenti<strong>on</strong> tofocus <strong>on</strong> <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability. It is also force-free ((∇ × ̂B 0 ) × ̂B 0 = 0)


172 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>so the effect of background azimuthal flows can be neglected <str<strong>on</strong>g>in</str<strong>on</strong>g> a self-c<strong>on</strong>sistent mannerbecause the imposed field does not give rise to a Lorentz force <str<strong>on</strong>g>and</str<strong>on</strong>g> an associated magneticw<str<strong>on</strong>g>in</str<strong>on</strong>g>d. It is, however, n<strong>on</strong>-uniform so does <str<strong>on</strong>g>in</str<strong>on</strong>g>corporate the magnetic hoop stress effect((b · ∇) ̂B 0 ≠ 0) that Soward (1979b) suggested plays a role <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the directi<strong>on</strong>of wave propagati<strong>on</strong> when imposed magnetic fields are str<strong>on</strong>g.7.2.2 Toroidal-poloidal expansi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of the scalarfieldsS<str<strong>on</strong>g>in</str<strong>on</strong>g>ce u <str<strong>on</strong>g>and</str<strong>on</strong>g> b are both solenoidal they may be decomposed <str<strong>on</strong>g>in</str<strong>on</strong>g>to toroidal parts (u T , b T )<str<strong>on</strong>g>and</str<strong>on</strong>g> poloidal parts (u P , b P ) asu = u T + u P = ∇ × êr + ∇ × (∇ × f ̂r), (7.8)b = b T + b P = ∇ × ĝr + ∇ × (∇ × ĥr), (7.9)where e is the toroidal scalar associated with the velocity field, f is the poloidal scalarassociated with the velocity field, g is the toroidal scalar associated with the magneticfield, h is the poloidal scalar associated with the magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> ̂r is a unit vector<str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong>. The toroidal comp<strong>on</strong>ent of a vector lies <strong>on</strong> spherical surfaces,with the rema<str<strong>on</strong>g>in</str<strong>on</strong>g>der that crosses spherical surfaces be<str<strong>on</strong>g>in</str<strong>on</strong>g>g the poloidal comp<strong>on</strong>ent (see,for example, Bullard <str<strong>on</strong>g>and</str<strong>on</strong>g> Gellman (1954)). Exp<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the curl operator <str<strong>on</strong>g>in</str<strong>on</strong>g> sphericalgeometry leads to the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g expressi<strong>on</strong>s for the spherical polar comp<strong>on</strong>ents ( ̂r, ̂θ, ̂φ)of the vector fields <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of <str<strong>on</strong>g>their</str<strong>on</strong>g> toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> poloidal scalars[ L 2 ]fu =r 2 ̂r + 1 [ ]1 ∂er s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂φ + ∂2 f̂θ + 1 [ 1 ∂ 2 f∂r∂θ r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂r∂φ − ∂e ]̂φ,∂θ(7.10)[ L 2 ]hb =r 2 ̂r + 1 [ ]1 ∂gr s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂φ + ∂2 ĥθ + 1 [ 1 ∂ 2 h∂r∂θ r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂r∂φ − ∂g ]̂φ,∂θ(7.11)where the operatorL 2 = − 1s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ(∂s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂ )− 1∂θ ∂θ s<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 θ∂ 2∂φ 2 . (7.12)Express<str<strong>on</strong>g>in</str<strong>on</strong>g>g the vector fields <str<strong>on</strong>g>in</str<strong>on</strong>g> poloidal-toroidal form means the solenoidal c<strong>on</strong>diti<strong>on</strong>s areautomatically satisfied <str<strong>on</strong>g>and</str<strong>on</strong>g> do not have to be explicitly implemented, which would benumerically cumbersome. In poloidal-toroidal form there are now 5 unknowns, so fivegovern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s are required if soluti<strong>on</strong>s are to be found. The required equati<strong>on</strong>s areobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from equati<strong>on</strong>s (7.11), (7.10) <str<strong>on</strong>g>and</str<strong>on</strong>g> (7.7) <str<strong>on</strong>g>in</str<strong>on</strong>g>to r 2̂r · ∇× equati<strong>on</strong>(7.1), r 2̂r·(∇×) 2 equati<strong>on</strong> (7.1), r 2̂r· equati<strong>on</strong> (7.2), r 2̂r·∇× equati<strong>on</strong> (7.2) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong>(7.3) rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unaltered lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the system (Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 2004)(E L 2 ∂e )∂t − L2 D 2 e + Qf − ∂e (∂φ = Λ (L 2 − 2) ∂g )∂φ + 2Qh , (7.13)(E −L 2 D 2 ∂f )∂t + L2 D 4 f + Qe + D 2 ∂f(∂φ = RaErL2 Θ + Λ 2Qg − (L 2 − 2)D 2 ∂h ),∂φ(7.14)


173 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>where<str<strong>on</strong>g>and</str<strong>on</strong>g>L 2 D 2 h − P r m L 2 ∂h∂t = −L2 ∂f φ , (7.15)L 2 D 2 g − P r m L 2 ∂g∂t= −L2∂e∂φ , (7.16)∇ 2 Θ − P r ∂Θ∂t = −L2 fr , (7.17)D 2 = ∇ 2 − 2 r 2 − 2 ∂ ∂rQ = − cos θL 2 ∂ ∂r − s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂ ∂θ1r = ∂2∂r 2 − L2r 2 , (7.18)(∂∂r + L2s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ∂ ). (7.19)r ∂θ7.2.3 Assumpti<strong>on</strong>s regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g equatorial symmetry of <str<strong>on</strong>g>waves</str<strong>on</strong>g>Equatorially symmetric (E S ) rather than equatorially anti-symmetric (E A ) wave flows(see appendix E for a discussi<strong>on</strong> of equatorial symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry) arepreferentially excited by a uniform distributi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat sources <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere dur<str<strong>on</strong>g>in</str<strong>on</strong>g>gn<strong>on</strong>-magnetic c<strong>on</strong>vecti<strong>on</strong> (Busse, 1970). This c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ues to be the case for thermallydrivenc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of an imposed Malkus magnetic field of arbitrarystrength (Eltayeb <str<strong>on</strong>g>and</str<strong>on</strong>g> Kumar, 1977; Fearn, 1979b) <str<strong>on</strong>g>and</str<strong>on</strong>g> also for <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by magnetic<str<strong>on</strong>g>in</str<strong>on</strong>g>stability of an E A imposed magnetic field (Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn, 1994; 1995). It is thereforeboth physically reas<strong>on</strong>able <str<strong>on</strong>g>and</str<strong>on</strong>g> numerically expedient to restrict calculati<strong>on</strong>s of <str<strong>on</strong>g>waves</str<strong>on</strong>g> tomodes with E S symmetry. Comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g such flows with the E S symmetry of the imposedMalkus magnetic field, the <strong>on</strong>ly permitted symmetry of the flow, magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g>temperature perturbati<strong>on</strong>s are E S (see appendix E):[u r , u θ , u φ ](r, θ, φ) = [u r , −u θ , u φ ](r, π − θ, φ) (7.20)[b r , b θ , b φ ](r, θ, φ) = [b r , −b θ , b φ ](r, π − θ, φ) (7.21)Θ(r, θ, φ) = Θ(r, π − θ, φ) (7.22)This restricti<strong>on</strong> is important to c<strong>on</strong>sider when develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g numerical expansi<strong>on</strong>s for thescalar fields, as is described <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong>.7.2.4 Expansi<strong>on</strong> of scalars <str<strong>on</strong>g>in</str<strong>on</strong>g>to spherical harm<strong>on</strong>ics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chebyshev polynomialsTo transform the system from a set of c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous partial differential equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to aset of simultaneous l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear equati<strong>on</strong>s that may be solved numerically, the scalar variablesare each expressed as the product of a complex spherical harm<strong>on</strong>ic expansi<strong>on</strong> <strong>on</strong>a spherical surface multiplied by a Chebyshev polynomial series <str<strong>on</strong>g>in</str<strong>on</strong>g> the radial directi<strong>on</strong>(see, for example, Boyd (2001) for a review of the use of Chebyshev <str<strong>on</strong>g>and</str<strong>on</strong>g> pseudo-spectralexpansi<strong>on</strong>s). Regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the azimuthal wavenumber (spherical harm<strong>on</strong>ic order m) as


174 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>fixed, c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly terms c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g to E S scalar fields <str<strong>on</strong>g>and</str<strong>on</strong>g> requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the radialexpansi<strong>on</strong> satisfies the c<strong>on</strong>diti<strong>on</strong> of regularity at the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of the sphere (Kerswell<str<strong>on</strong>g>and</str<strong>on</strong>g> Davey, 1996; Livermore <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, 2004; Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 2004) the expressi<strong>on</strong>s for theappropriate expansi<strong>on</strong>s of the scalar variables are,e =f =g =h =Θ =N+1∑n=1 l=0N+2∑ L∑n=1 l=0N+1∑ L∑n=1 l=0N+1∑n=1 l=0N+1∑ L∑n=1 l=0L∑e ln r k+1 T 2n−1 (r)P2l+m+1 m (cos θ)ei(mφ−ωt) , (7.23)f ln r k T 2n−1 (r)P m 2l+m (cos θ)ei(mφ−ωt) , (7.24)g ln r k+1 T 2n−1 (r)P m 2l+m+1 (cos θ)ei(mφ−ωt) , (7.25)L∑h ln r k T 2n−1 (r)P2l+m m (cos θ)ei(mφ−ωt) , (7.26)Θ ln r k−1 T 2n−1 (r)P m 2l+m (cos θ)ei(mφ−ωt) , (7.27)where e ln , f ln , g ln , f ln , h ln <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ ln are expansi<strong>on</strong> coefficients corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the lthspherical harm<strong>on</strong>ic mode (which will be of degree (2l + m + 1) for e <str<strong>on</strong>g>and</str<strong>on</strong>g> g but (2l + m)for f, h <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ to ensure E S symmetry) <str<strong>on</strong>g>and</str<strong>on</strong>g> the nth Chebyshev polynomial (whichwill be of order 2n − 1 to ensure regularity at the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> when multiplied by r k withk=1 for even m <str<strong>on</strong>g>and</str<strong>on</strong>g> k = 2 for odd m). T i (r) are Chebyshev polynomials of order i <str<strong>on</strong>g>and</str<strong>on</strong>g>Pv u (cos θ) are associated Legendre polynomials of degree v <str<strong>on</strong>g>and</str<strong>on</strong>g> order u. Time dependencehas been <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded through analysis <str<strong>on</strong>g>in</str<strong>on</strong>g>to normal modes that are proporti<strong>on</strong>al to e i(mφ−ωt)(Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar, 1961), where ω is a complex number whose real part corresp<strong>on</strong>ds to theangular frequency of the mode <str<strong>on</strong>g>and</str<strong>on</strong>g> whose imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary part corresp<strong>on</strong>ds to the growth rateof the mode. The spherical harm<strong>on</strong>ic expansi<strong>on</strong> is truncated at degree L (so there areL+1 spherical harm<strong>on</strong>ic modes <str<strong>on</strong>g>in</str<strong>on</strong>g> each expansi<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g> the Chebyshev polynomial seriesis truncated at degree N + 1 (<str<strong>on</strong>g>and</str<strong>on</strong>g> N + 2 for f), so altogether there are (5N + 6)(L + 1)unknowns.7.2.5 Boundary c<strong>on</strong>diti<strong>on</strong>sIn additi<strong>on</strong> to the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> order to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d particular soluti<strong>on</strong>s, boundaryc<strong>on</strong>diti<strong>on</strong>s must be implemented <strong>on</strong> each of the scalar fields. The boundary c<strong>on</strong>diti<strong>on</strong>simplemented are documented <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>.Boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the velocity fieldThe outer boundary is impenetrable (u r = 0 at r = 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> u r must be regular at theorig<str<strong>on</strong>g>in</str<strong>on</strong>g> (u r =0 at r = 0). Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong> (7.10) u r = L2 f, <str<strong>on</strong>g>and</str<strong>on</strong>g> these c<strong>on</strong>diti<strong>on</strong>s reduce tor 2


175 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>the c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t thatf = 0 at r=0 <str<strong>on</strong>g>and</str<strong>on</strong>g> r=1 (orig<str<strong>on</strong>g>in</str<strong>on</strong>g> regularity <str<strong>on</strong>g>and</str<strong>on</strong>g> impenetrability) (7.28)At the outer boundary, stress free boundary c<strong>on</strong>diti<strong>on</strong>s are imposed. This means that thefluid exerts no tangential force <strong>on</strong> the impenetrable boundary. Although this scenario isstrictly unphysical (the appropriate boundary c<strong>on</strong>diti<strong>on</strong>s are really no-slip c<strong>on</strong>diti<strong>on</strong>s),Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es (1993) have shown that the difference between l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear soluti<strong>on</strong>s to therapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal c<strong>on</strong>vecti<strong>on</strong> problem <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere with no-slip <str<strong>on</strong>g>and</str<strong>on</strong>g> stress freeboundary c<strong>on</strong>diti<strong>on</strong>s is a sec<strong>on</strong>d order effect. Their c<strong>on</strong>clusi<strong>on</strong>s suggest that the numericalexpense of resolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Ekman boundary layer can be avoided by adopt<str<strong>on</strong>g>in</str<strong>on</strong>g>g stressfree boundary c<strong>on</strong>diti<strong>on</strong>s if <strong>on</strong>e is <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>terested <str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear soluti<strong>on</strong>s: this strategy isadopted <str<strong>on</strong>g>in</str<strong>on</strong>g> the present model. Mathematically, stress free boundary c<strong>on</strong>diti<strong>on</strong>s meanthat ∂ ( uθ) (∂r r =∂ uφ)∂r r = 0 at r = 1. Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from equati<strong>on</strong> (7.10) for uθ <str<strong>on</strong>g>and</str<strong>on</strong>g> u φ <str<strong>on</strong>g>in</str<strong>on</strong>g>terms of e <str<strong>on</strong>g>and</str<strong>on</strong>g> f, <str<strong>on</strong>g>and</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> u θ <str<strong>on</strong>g>and</str<strong>on</strong>g> u φ yields a c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> eachof e <str<strong>on</strong>g>and</str<strong>on</strong>g> f,r ∂2 f∂r 2 − 2∂f ∂r∂e= 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> r − 2e = 0 at r = 1 (stress free) (7.29)∂rBoundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the magnetic fieldIt is assumed that the outer boundary is an electrical <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator <str<strong>on</strong>g>and</str<strong>on</strong>g> that the electric currentdensity (J) outside the spherical model doma<str<strong>on</strong>g>in</str<strong>on</strong>g> is zero. This is a first approximati<strong>on</strong>to the situati<strong>on</strong> expected at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> is also the assumpti<strong>on</strong> made<str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.The c<strong>on</strong>diti<strong>on</strong> that J = 0 <strong>on</strong> the outer boundary means that the perturbati<strong>on</strong> to theelectrical current density should also be zero there, so that ∇×b=0 at r = 1. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong>ly the radial part of this c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fact that ̂r · (∇ × b) = L 2 g,̂r · (∇ × b) = L 2 g = 0 so g = 0 at r=1 (radial electrical current vanishes) (7.30)To determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the implicati<strong>on</strong>s of the horiz<strong>on</strong>tal part of the electrical current vanish<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<strong>on</strong>e can note that this implies ̂r ·∇×(∇×b) = 0 at r = 1, but ̂r ·∇×(∇×b) = L 2 D 2 h soD 2 h = 0 or ∂2 h− L2 h∂r 2 r 2= 0 at r=1. Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g h = H(r)Plm (cos θ)e imφ this equati<strong>on</strong> can bePm(cos l θ)e imφsolved <str<strong>on</strong>g>and</str<strong>on</strong>g> ensures that for r ≥1 soluti<strong>on</strong>s for h take the form h = ∑ l h lmr lso that the poloidal magnetic field is a solenoidal potential field.The other magnetic boundary c<strong>on</strong>diti<strong>on</strong> is that the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic field shouldbe zero across the outer boundary. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the poloidal-toroidal expansi<strong>on</strong> of b <str<strong>on</strong>g>in</str<strong>on</strong>g>equati<strong>on</strong> (7.11), this will be satisfied if h <str<strong>on</strong>g>and</str<strong>on</strong>g> ∂h∂rare c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous at the boundary. Nowthe c<strong>on</strong>diti<strong>on</strong> that the electrical current vanishes at the boundary has been shown toimply that h = ∑ h lml r l Pm l (cos θ)eimφ at r = 1, so c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity of ∂h∂rtherefore means that,∂h∂r = −lh rat r=1 (c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity of magnetic field) (7.31)


176 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>For further details <strong>on</strong> the applicati<strong>on</strong> of electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> aspherical geometry when us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a poloidal-toroidal numerical expansi<strong>on</strong>s, the <str<strong>on</strong>g>in</str<strong>on</strong>g>terestedreader should c<strong>on</strong>sult Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004) or Livermore (2003).Boundary c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the temperature fieldThe temperature at the outer boundary is c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to be homogeneous, with thetemperature perturbati<strong>on</strong> (Θ) there be<str<strong>on</strong>g>in</str<strong>on</strong>g>g set to zero.Θ = 0 at r=1 (isothermal outer boundary) (7.32)This boundary c<strong>on</strong>diti<strong>on</strong> is implemented <str<strong>on</strong>g>in</str<strong>on</strong>g> order to simplify the physics of the model,<str<strong>on</strong>g>and</str<strong>on</strong>g> is unlikely to be true at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary. The heterogeneous nature ofthe lowermost mantle (Lay et al., 1998; Wysessi<strong>on</strong> et al., 1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> the likelihood ofstructurally complex c<strong>on</strong>vecti<strong>on</strong> there (Hilst et al., 1998; Tackley, 1998) suggest that theouter boundary of the <str<strong>on</strong>g>core</str<strong>on</strong>g> will experience thermally <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous boundary c<strong>on</strong>diti<strong>on</strong>s.Discussi<strong>on</strong> of the impact of <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous thermal boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> flowwith<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> can be found, for example, <str<strong>on</strong>g>in</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1993), Gibb<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2000), Bloxham (2002) <str<strong>on</strong>g>and</str<strong>on</strong>g> Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (2003).7.2.6 Formulati<strong>on</strong> of the eigenvalue problemSubstitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s (7.23) to (7.27) <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong>s (7.13) to (7.17) yields a set of l<str<strong>on</strong>g>in</str<strong>on</strong>g>earequati<strong>on</strong>s, each specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time derivative of each of the modes of e nl , f nl , g ln , h nl<str<strong>on</strong>g>and</str<strong>on</strong>g> Θ nl <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the other coefficients. Such sets of equati<strong>on</strong>s are c<strong>on</strong>structed at Ncollocati<strong>on</strong> po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> radius, whose positi<strong>on</strong>s are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the first N n<strong>on</strong>-trivialzeros of the Chebyshev polynomial T N . The boundary c<strong>on</strong>diti<strong>on</strong>s (exclud<str<strong>on</strong>g>in</str<strong>on</strong>g>g those forregularity) are also <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> the system provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g 6 additi<strong>on</strong>al c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t equati<strong>on</strong>s.Not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that because all the modes are proporti<strong>on</strong>al to e −iωt so that ∂ ∂t= −iω , thesystem of equati<strong>on</strong>s can be recast <str<strong>on</strong>g>in</str<strong>on</strong>g> the the form of an complex, generalised eigenvalueproblemλBx = Ax (7.33)where λ = −iω is a complex eigenvalue, B is a matrix of the factors pre-multiply<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe ∂ ∂tterms <str<strong>on</strong>g>in</str<strong>on</strong>g> the system of equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> A is a matrix c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the pre-factorsof all the other terms <str<strong>on</strong>g>in</str<strong>on</strong>g> the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s. x is a vector c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the (5N +6)(L + 1) unknown coefficients (the +6 comes from the 6 boundary c<strong>on</strong>diti<strong>on</strong>s) arrangedsequentially <str<strong>on</strong>g>in</str<strong>on</strong>g> the order f ln , e ln , Θ ln , g ln , h ln , list<str<strong>on</strong>g>in</str<strong>on</strong>g>g the N Chebyshev modes <str<strong>on</strong>g>and</str<strong>on</strong>g> the 6boundary c<strong>on</strong>diti<strong>on</strong>s (1 for each scalar except f ln which has 2), before loop<str<strong>on</strong>g>in</str<strong>on</strong>g>g over the(L + 1) spherical harm<strong>on</strong>ic modes (see Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004) for further details).1 c<strong>on</strong>sult Boyd (2001) or Canuto et al. (2001) for further details <strong>on</strong> the collocati<strong>on</strong> method.


177 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Due to the special properties of the Malkus field (see §6.5.2), <strong>on</strong>ly the operator Q (aris<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom the Coriolis force) couples the evoluti<strong>on</strong> equati<strong>on</strong>s for a particular spherical harm<strong>on</strong>icmode to adjacent (l±1) spherical harm<strong>on</strong>ic modes (?). With appropriate <str<strong>on</strong>g>in</str<strong>on</strong>g>dex<str<strong>on</strong>g>in</str<strong>on</strong>g>gof the matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> vectors, this means that the matrix B turns out to be diag<strong>on</strong>al (withno mode coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>and</str<strong>on</strong>g> the matrix A is b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed (see, for example, Golub <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Loan(1996) for an explanati<strong>on</strong> of this c<strong>on</strong>cept <str<strong>on</strong>g>and</str<strong>on</strong>g> its numerical advantages).7.3 Numerical soluti<strong>on</strong> of eigenvalue problemSeveral techniques exist for solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g generalised, complex eigenvalue problems such asequati<strong>on</strong> (7.33). The most widely used (<str<strong>on</strong>g>and</str<strong>on</strong>g> that employed by J<strong>on</strong>es et al. (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g>Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004)) is that of <str<strong>on</strong>g>in</str<strong>on</strong>g>verse iterati<strong>on</strong> (Press et al., 1992), whereby λ (with Re {λ}the mode’s growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> Im{λ} the mode’s angular frequency) can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed,given some <str<strong>on</strong>g>in</str<strong>on</strong>g>itial guess for λ. Usually the guess Re{λ}=0 is made to enable modes withzero growth rate (marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al modes) to be located; <str<strong>on</strong>g>in</str<strong>on</strong>g> this case <strong>on</strong>ly a guess for the angularfrequency of the marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave is required <str<strong>on</strong>g>in</str<strong>on</strong>g> order for the procedure to be carried out.For a specific choice of the parameters Λ, E, P r <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m , a particular m is typicallyc<strong>on</strong>sidered for a range of Ra. The Ra for which the mode has zero growth rate is foundby successive iterati<strong>on</strong>s, with Ra varied <str<strong>on</strong>g>in</str<strong>on</strong>g> a systematic manner, (Numerical AlgorithmGroup (NAG) rout<str<strong>on</strong>g>in</str<strong>on</strong>g>es are available to enable <strong>on</strong>e to do this efficiently). By do<str<strong>on</strong>g>in</str<strong>on</strong>g>g thisfor all m, the m requir<str<strong>on</strong>g>in</str<strong>on</strong>g>g the lowest Ra for a zero growth rate can be identified. Thismode is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as possess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the critical wavenumber (m c ), critical angular frequency(ω c ) <str<strong>on</strong>g>and</str<strong>on</strong>g> critical Rayleigh number (Ra c ) for a specific choice of Λ, P r <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m <str<strong>on</strong>g>and</str<strong>on</strong>g>E. The successful applicati<strong>on</strong> of this method was dem<strong>on</strong>strated by Worl<str<strong>on</strong>g>and</str<strong>on</strong>g> (2004) forΛ < 0.1 when predicti<strong>on</strong>s for m c , ω c <str<strong>on</strong>g>and</str<strong>on</strong>g> Ra c were available from the global asymptotictheory of J<strong>on</strong>es et al. (2003). It was unfortunately observed that the numerical results<str<strong>on</strong>g>and</str<strong>on</strong>g> asymptotic predicti<strong>on</strong>s began diverg<str<strong>on</strong>g>in</str<strong>on</strong>g>g when Λ ∼ 1, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>in</str<strong>on</strong>g> the str<strong>on</strong>gfield regime the asymptotic theory was no l<strong>on</strong>ger useful for supply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the start<str<strong>on</strong>g>in</str<strong>on</strong>g>g guessesrequired by <str<strong>on</strong>g>in</str<strong>on</strong>g>verse iterati<strong>on</strong>.To circumvent the need for a reas<strong>on</strong>able <str<strong>on</strong>g>in</str<strong>on</strong>g>itial guess for the angular frequency of the soluti<strong>on</strong>(<str<strong>on</strong>g>and</str<strong>on</strong>g> to enable several eigenvalues <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> associated eigenvectors to be exam<str<strong>on</strong>g>in</str<strong>on</strong>g>edsimultaneously) an implicitly-restarted Arnoldi soluti<strong>on</strong> method (Golub <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Loan,1996) was implemented us<str<strong>on</strong>g>in</str<strong>on</strong>g>g ARPACK rout<str<strong>on</strong>g>in</str<strong>on</strong>g>es 2 (Lehoucq et al., 1998) appropriatefor solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g a complex, generalised eigenvalue problem with b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed matrices. Insteadof solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the eigenvalue problem directly, this method solves a problem with the similarmatrices, but with shifted eigenvalues. The largest magnitude eigenvalues found <str<strong>on</strong>g>in</str<strong>on</strong>g>the shifted problem then corresp<strong>on</strong>d to the eigenvalues of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al problem closest2 See the website http://www.caam.rice.edu/software/ARPACK; the rout<str<strong>on</strong>g>in</str<strong>on</strong>g>e znbdr4.f describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g anexample of the soluti<strong>on</strong> to a generalised eigenvalue problem with b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed matrices was the basis for thesoluti<strong>on</strong> rout<str<strong>on</strong>g>in</str<strong>on</strong>g>e implemented <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis.


178 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> magnitude to the user chosen shift (see, for example, the discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Livermore(2003)). In the c<strong>on</strong>text of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear stability problem, eigenvalues with the largest realpart (growth rate) are sought; these will be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed provided the user chosen real shiftis much larger than user chosen imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary shift. In the present applicati<strong>on</strong>, becausethe optimal imag<str<strong>on</strong>g>in</str<strong>on</strong>g>ary shift was unknown, it was varied <str<strong>on</strong>g>in</str<strong>on</strong>g> regularly spaced steps over arange of c<strong>on</strong>ceivable values <str<strong>on</strong>g>and</str<strong>on</strong>g> the largest (unshifted) eigenvalues were recorded.7.3.1 Criteria for except<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> rejected eigenvaluesIn practise, the implicitly-restarted Arnoldi method described above was implemented(us<str<strong>on</strong>g>in</str<strong>on</strong>g>g fairly low truncati<strong>on</strong>s) <str<strong>on</strong>g>and</str<strong>on</strong>g> the 5 eigenvalues with largest real part were found.Next, each of these 5 eigenvalues was found aga<str<strong>on</strong>g>in</str<strong>on</strong>g> to higher accuracy us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the moreefficient <str<strong>on</strong>g>in</str<strong>on</strong>g>verse iterati<strong>on</strong> method with the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial guess for Im{λ} supplied by the resultfrom of the low resoluti<strong>on</strong> Arnoldi calculati<strong>on</strong>.The residual (A x − λ Bx) <str<strong>on</strong>g>and</str<strong>on</strong>g> theabsolute difference between complex eigenvalues at two different truncati<strong>on</strong> levels (δλ =λ L1N1 − λ L2N2 ) were calculated.Only eigenvalues with (A x − λ Bx) < 10 −12 <str<strong>on</strong>g>and</str<strong>on</strong>g>δλ|λ| < 10−5 were accepted as good eigenvalues 3 (see Boyd (2001) for a discussi<strong>on</strong> of theseuseful criteria for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g eigenvalues correctly).All the results reported <str<strong>on</strong>g>and</str<strong>on</strong>g> discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter use a n<strong>on</strong>-dimensi<strong>on</strong>al schemebased around the viscous diffusi<strong>on</strong> time scale, but the matrices actually solved <str<strong>on</strong>g>in</str<strong>on</strong>g> theeigenvalue code employed a different n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong>, based <strong>on</strong> the MC timescale (τ MC = 2Ωr2 0 ρ 0µ 0). There is a <strong>on</strong>e-to-<strong>on</strong>e mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the viscous <str<strong>on</strong>g>and</str<strong>on</strong>g> MCB02n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong>s, so this issue has no bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the results reported <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>smade. Numerically, however, for large Λ <str<strong>on</strong>g>and</str<strong>on</strong>g> small E, the viscous n<strong>on</strong>dimensi<strong>on</strong>alisati<strong>on</strong>leads to very small matrix elements caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the matrices to be illc<strong>on</strong>diti<strong>on</strong>ed.The MC n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> was used <str<strong>on</strong>g>in</str<strong>on</strong>g> order to lessen this problemthough it can never be completely avoided.Graphics rout<str<strong>on</strong>g>in</str<strong>on</strong>g>es were written <str<strong>on</strong>g>in</str<strong>on</strong>g> MATLAB allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soluti<strong>on</strong>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with<str<strong>on</strong>g>in</str<strong>on</strong>g> theeigenvector x to be plotted: u r , u θ , u φ , b r , b θ , b φ or Θ could be plotted <str<strong>on</strong>g>in</str<strong>on</strong>g> equatorialsecti<strong>on</strong>s, meridi<strong>on</strong>al secti<strong>on</strong>s or <str<strong>on</strong>g>in</str<strong>on</strong>g> Hammer-Aitoff projecti<strong>on</strong>s of a spherical surface.7.3.2 Benchmark<str<strong>on</strong>g>in</str<strong>on</strong>g>g the eigenvalue solver codeTwo benchmark<str<strong>on</strong>g>in</str<strong>on</strong>g>g tests were carried out to ensure that the numerical method wasfuncti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g correctly. First, the established results of J<strong>on</strong>es et al. (2003) <str<strong>on</strong>g>in</str<strong>on</strong>g> the weak field(small Λ) regime were reproduced us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the new code (with the ARPACK solver <str<strong>on</strong>g>and</str<strong>on</strong>g> MC3 Optimal truncati<strong>on</strong> parameters were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> two steps: (i) Perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>verse iterati<strong>on</strong> at highresoluti<strong>on</strong> with guesses supplied from the Arnoldi calculati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> enforc<str<strong>on</strong>g>in</str<strong>on</strong>g>g selecti<strong>on</strong> criteria <str<strong>on</strong>g>in</str<strong>on</strong>g> orderto accurately determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the eigenvalue <str<strong>on</strong>g>and</str<strong>on</strong>g> (ii) Start<str<strong>on</strong>g>in</str<strong>on</strong>g>g from low truncati<strong>on</strong> values the eigenvalue wasrecalculated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>verse iterati<strong>on</strong>. The truncati<strong>on</strong> was then <str<strong>on</strong>g>in</str<strong>on</strong>g>creased <str<strong>on</strong>g>in</str<strong>on</strong>g> small steps until the criteriafor good eigenvalues was just satisfied <str<strong>on</strong>g>and</str<strong>on</strong>g> an eigenvalue identical to 6 significant figures to that found<str<strong>on</strong>g>in</str<strong>on</strong>g> the high resoluti<strong>on</strong> calculati<strong>on</strong> was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.


179 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong>). This dem<strong>on</strong>strated that these extensi<strong>on</strong>s to the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al codehad not <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced any errors. Sec<strong>on</strong>dly, the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear eigenvalue code was benchmarked<str<strong>on</strong>g>in</str<strong>on</strong>g> the Λ ∼ 1 regime aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st results from a n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g code (the LeedsSpherical Dynamo 4 (LSD) code that was developed by Steve Gibb<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Ashley Willis).Results were k<str<strong>on</strong>g>in</str<strong>on</strong>g>dly provided by A. Willis, pers<strong>on</strong>al communicati<strong>on</strong>, March 2005. In LSD,the Malkus magnetic field was imposed al<strong>on</strong>g with stress free, electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>isothermal boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the spherical shell thickness <str<strong>on</strong>g>in</str<strong>on</strong>g>creased until it wasalmost a full sphere <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly E S modes <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded. These c<strong>on</strong>diti<strong>on</strong>s were designed tomatch as closely as possible those <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear eigenvalue code. Examples of resultsobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed look<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (over a range of 0.1 ≤ Λ ≤ 10) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g thetwo codes are plotted for comparis<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> listed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 7.1. The twoapproaches agree well, especially given that the time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g code is actually a thickspherical shell, whereas the eigenvalue solver code is a full sphere. This good agreementover at Λ ∼ O(1) gives c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g> that results reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g secti<strong>on</strong>s arecorrect.(a)(b)10 72e+02Rayleigh number for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>Leeds spherical dynamo codeL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear eigenvalue code of J<strong>on</strong>es, Mussa <str<strong>on</strong>g>and</str<strong>on</strong>g> Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, modified by F<str<strong>on</strong>g>in</str<strong>on</strong>g>layAngular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units of (2π/τ ν )1e+020e+00−1e+02Leeds spherical dynamo codeL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear eigenvalue code of J<strong>on</strong>es, Mussa <str<strong>on</strong>g>and</str<strong>on</strong>g> Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, modified by F<str<strong>on</strong>g>in</str<strong>on</strong>g>lay10 60 1 10Elsasser Number (Λ)−2e+0210 −1 10 0 10 1Elsasser Number (Λ)Figure 7.1: Benchmark<str<strong>on</strong>g>in</str<strong>on</strong>g>g of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear Magnetoc<strong>on</strong>vecti<strong>on</strong> code.Comparis<strong>on</strong> of results from the eigensolver code <str<strong>on</strong>g>and</str<strong>on</strong>g> the LSD code for E = 10 −4 , P r = 1,P r m =1 <str<strong>on</strong>g>and</str<strong>on</strong>g> m=5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 ≤ Λ ≤ 10. Results for the Rayleigh number at the <strong>on</strong>set ofc<strong>on</strong>vecti<strong>on</strong> are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g angular frequencies are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> (b).7.4 ResultsIn this secti<strong>on</strong>, the results from a parameter survey of the properties of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> are reported.All the results c<strong>on</strong>cern <str<strong>on</strong>g>waves</str<strong>on</strong>g> that are marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ally critical (havezero growth rate), for a particular choice of azimuthal wavenumber m <str<strong>on</strong>g>and</str<strong>on</strong>g> the n<strong>on</strong>dimensi<strong>on</strong>al c<strong>on</strong>trol parameters: the Ekman number E, Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r, magneticPr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m <str<strong>on</strong>g>and</str<strong>on</strong>g> Elsasser number Λ. The Ra number for zero growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g>4 The LSD code has successfully reproduced the dynamo benchmark (Christensen et al., 2001) <str<strong>on</strong>g>and</str<strong>on</strong>g> isalso capable of perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> studies with an imposed field.


180 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Elsasser Number (Λ) Ra (eig code) Ra (time-step code) ω (eig code) ω (time-step code)0.1 0.14367e7 0.14337e7 -0.17679e3 - 0.1752e30.25 0.17266e7 0.17123e7 -0.11565e3 -0.1133e30.5 0.13494e7 0.13455e7 -0.20176e2 -0.1996e20.75 0.13171e7 0.13150e7 0.70652e1 0.7162e11.0 0.13819e7 0.13801e7 0.23258e2 0.2325e22.5 0.21442e7 0.21433e7 0.74607e2 0.7487e25.0 0.3644e7 0.36457e7 0.12471e3 0.1252e37.5 0.51401e7 0.51387e7 0.94588e2 0.9471e210.0 0.63047e7 0.63059e7 0.11067e3 0.11110e3Table 7.1: Comparis<strong>on</strong> of results from eigenvalue <str<strong>on</strong>g>and</str<strong>on</strong>g> time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g codes.Results (to 6 S.F.) obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g code <str<strong>on</strong>g>and</str<strong>on</strong>g> the eigenvalue code for thesame imposed field, boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> parameters.the associated angular frequencies ω al<strong>on</strong>g with the eigenvectors def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the physicalstructure of the wave perturbati<strong>on</strong>s are calculated by the numerical eigenvalue solvercode described <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong>. By c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al modes for all m,attenti<strong>on</strong> is not just focused <strong>on</strong> the most unstable mode, but other modes that couldalso be excited dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g supercritical c<strong>on</strong>vecti<strong>on</strong> (Zhang, 1999) or by some other excitati<strong>on</strong>mechanism (see §6.6, chapter 6) are also c<strong>on</strong>sidered. The range of parameters studiedis chosen to span likely values <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> as far as computati<strong>on</strong>al limitati<strong>on</strong>s willpermit. The types of <str<strong>on</strong>g>waves</str<strong>on</strong>g> possible <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> different structures are described firstas illustrative examples before dependences of wave properties <strong>on</strong> each of the c<strong>on</strong>trolparameters is described.7.4.1 Wave types <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> structureIn this secti<strong>on</strong>, brief descripti<strong>on</strong>s of def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g properties of the structure of different typesof thermal (c<strong>on</strong>vecti<strong>on</strong>) driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> are described, so they can be c<strong>on</strong>trasted.The best way to appreciate the wave’s structure is of course to c<strong>on</strong>sult thefigures.Magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>An example of a magnetically-modified thermal Rossby wave is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.2 for acase when Λ=0.1, m=8, P r=1, P r m =1, E=10 −6 . Field perturbati<strong>on</strong>s are localised athigh latitudes, are almost z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent, have small latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al extent <str<strong>on</strong>g>and</str<strong>on</strong>g> are str<strong>on</strong>glyspirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> are most easily excited for weak Λ so are unlikely to be ofimportance <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see §7.4.3 for a discussi<strong>on</strong> of <str<strong>on</strong>g>their</str<strong>on</strong>g> dependence <strong>on</strong> Λ).


181 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Magnetically-modified thermal Rossby waveEQUATORIAL SECTION0Radial velocity field (u r)MERIDIONAL SECTION0R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URSouthward velocity field (u θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UTHETAUTHETAEastward velocity field (u φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIRadial magnetic field (b r)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRSouthward magnetic field (b θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BTHETABTHETAEastward magnetic field (b φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHITemperature field (Θ)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTEMP−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘT−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTFigure 7.2: Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave with m = 8, Λ=0.1, m=8, P r=1, P r m =1 E=10 −6 .


182 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Magnetically-modified thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial waveEQUATORIAL SECTION0Radial velocity field (u r)MERIDIONAL SECTION0R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URSouthward velocity field (u θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UTHETAUTHETAEastward velocity field (u φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIRadial magnetic field (b r)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRSouthward magnetic field (b θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BTHETABTHETAEastward magnetic field (b φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHITemperature field (Θ)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTEMP−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘT−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTFigure 7.3: Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave for Λ=1, m=5, P r =10 −3 , P r m = 1, E=10 −6 .


183 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Thermal magneto-Rossby waveEQUATORIAL SECTION0Radial velocity field (u r)MERIDIONAL SECTION0R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URSouthward velocity field (u θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UTHETAUTHETAEastward velocity field (u φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIRadial magnetic field (b r)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRSouthward magnetic field (b θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BTHETABTHETAEastward magnetic field (b φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHITemperature field (Θ)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTEMP−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘT−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTFigure 7.4: Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave for m=5, Λ=1, P r=0.1, P r m =10 −6 ,E=10 −6 .


184 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Thermal MC-Rossby waveEQUATORIAL SECTION0Radial velocity field (u r)MERIDIONAL SECTION0R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URSouthward velocity field (u θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UTHETAUTHETAEastward velocity field (u φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIRadial magnetic field (b r)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRSouthward magnetic field (b θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BTHETABTHETAEastward magnetic field (b φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHITemperature field (Θ)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTEMP−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘT−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTFigure 7.5: Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave with Λ=1, m=8, P r=1, P r m =10 3 , E=10 −6 .


185 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Thermal MAC waveEQUATORIAL SECTION0Radial velocity field (u r)MERIDIONAL SECTION0R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URSouthward velocity field (u θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1URR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UTHETAUTHETAEastward velocity field (u φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIRadial magnetic field (b r)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1UPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRMERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRSouthward magnetic field (b θ )−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRR=0.95R 0330303006027090240120210150180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BTHETABTHETAEastward magnetic field (b φ )EQUATORIAL SECTIONMERIDIONAL SECTION00R=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIEQUATORIAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHITemperature field (Θ)MERIDIONAL SECTION0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BPHIR=0.95R 0330303303030060300602709027090240120240120210150210150180180−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTEMP−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘT−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1ΘTFigure 7.6: Marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al wave for m=3, Λ=10, P r=1, P r m =1, E=10 −6 .


186 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>Magnetically-modified thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>An example of a magnetically-modified thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.3 fora case when Λ=1, m=5, P r=10 −3 , P r m =1, E=10 −6 . Field perturbati<strong>on</strong>s are locatedclose to the outer boundary, there is little spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>siderable z dependence withdisturbances hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g highest amplitude close to the outer boundary <str<strong>on</strong>g>in</str<strong>on</strong>g> the equatorialplane. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> are <strong>on</strong>ly easily excited for very low P r so are also unlikely to be ofimportance <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see §7.4.4 for a discussi<strong>on</strong> of <str<strong>on</strong>g>their</str<strong>on</strong>g> dependence <strong>on</strong> P r).Thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>An example of a thermal magneto-Rossby wave is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.4 for a case whenΛ=1.0, m=5, P r=0.1, P r m =10 −6 , E=10 −6 . Field perturbati<strong>on</strong>s are localised at lowlatitudes close to the outer boundary where the imposed magnetic field is str<strong>on</strong>g, but havelarge latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al extent <str<strong>on</strong>g>and</str<strong>on</strong>g> are not str<strong>on</strong>gly spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Perturbati<strong>on</strong>s are aga<str<strong>on</strong>g>in</str<strong>on</strong>g> almostz <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent <str<strong>on</strong>g>in</str<strong>on</strong>g> this case. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> are very likely to be excited by c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> but are characterised by <str<strong>on</strong>g>their</str<strong>on</strong>g> rather slow propagati<strong>on</strong> speeds (from chapter6 equati<strong>on</strong> (6.67), ω ∼β ∗ mΛ(P r−P r m)<strong>on</strong> the viscous diffusi<strong>on</strong> time scale).Thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>An example of a thermal MC-Rossby wave is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.5 for a case whenΛ=1.0, m=8, P r=1, P r m =10 3 , E=10 −6 . The structure of thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> israther similar to the thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly z <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent,though these <str<strong>on</strong>g>waves</str<strong>on</strong>g> are more str<strong>on</strong>gly spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> are <strong>on</strong>ly easily excited forvery large P r m so are also unlikely to be of importance <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see §7.4.5 for adiscussi<strong>on</strong> of <str<strong>on</strong>g>their</str<strong>on</strong>g> dependence <strong>on</strong> P r m ).Thermal MAC <str<strong>on</strong>g>waves</str<strong>on</strong>g>An example of a thermal MAC wave is found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.6 for a case when Λ=10.0, m=3,P r=1, P r m =1, E=10 −6 . This wave has str<strong>on</strong>g z dependence, with the structure be<str<strong>on</strong>g>in</str<strong>on</strong>g>gfully 3D <str<strong>on</strong>g>and</str<strong>on</strong>g> the disturbance fill<str<strong>on</strong>g>in</str<strong>on</strong>g>g the whole sphere. These <str<strong>on</strong>g>waves</str<strong>on</strong>g> are <strong>on</strong>ly easily excitedfor Λ > 5 so are probably unlikely to be the important <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.Generic c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> hydromagnetic wave structureThe perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> b r observed close to the outer boundary can <strong>on</strong>ly be caused by adistorti<strong>on</strong> of the imposed azimuthal magnetic field associated with the hydromagneticwave mechanism. This is therefore a possible mechanism by which hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>could produce an observable wave pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. It is noticeable


187 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>that maxima <str<strong>on</strong>g>in</str<strong>on</strong>g> b r produced by this mechanism occur where the perturbati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the azimuthalcomp<strong>on</strong>ent of the magnetic field (b φ ) is zero (this is especially clear <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.3).This will be a useful diagnostic when study<str<strong>on</strong>g>in</str<strong>on</strong>g>g more realistic models <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g poloidalimposed fields <str<strong>on</strong>g>and</str<strong>on</strong>g> attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the mechanism caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B rat the outer boundary.The velocity field perturbati<strong>on</strong>s associated with the hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> also follow ageneric pattern. The <str<strong>on</strong>g>waves</str<strong>on</strong>g> are associated with a alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sequence of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g>downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> u r close to the outer boundary. Upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are found at positi<strong>on</strong>s ofdivergence of the azimuthal flow while downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are found at positi<strong>on</strong>s of c<strong>on</strong>vergenceof the azimuthal flow. This generic pattern of flow can be utilised <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong> ofsimple models of the acti<strong>on</strong> of wave flows <strong>on</strong> B r (see chapter 8).7.4.2 Dependence <strong>on</strong> EAll the results shown so far have been for E = 10 −6 . What impact does vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ehave <strong>on</strong> hydromagnetic wave properties? To address this questi<strong>on</strong> the properties of two<str<strong>on</strong>g>waves</str<strong>on</strong>g> (m=8 <str<strong>on</strong>g>and</str<strong>on</strong>g> m=5 for Λ=1.0, P r = P r m = 1) were studied for E between 10 −2 <str<strong>on</strong>g>and</str<strong>on</strong>g>5 × 10 −8 . The results of this <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> are found <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.7.(a)(b)10 10100Rayleigh number at the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>10 810 6For Λ=1, Pr=1, Pr m =1m=5m=8Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units of 2π/τ v9080706050403020For Λ=1, Pr=1, Pr m =1m=5m=81010 410 −8 10 −6 10 −4 10 −2Ekman Number (E)010 −8 10 −6 10 −4 10 −2Ekman number (E)Figure 7.7: Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> E for m=5, 8.The Rayleigh number Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermally-drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated angular frequencies ω <str<strong>on</strong>g>in</str<strong>on</strong>g> (b). For Evaried from 10 −2 to 5 × 10 −8 for m=5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8. The Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r, the magneticPr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m <str<strong>on</strong>g>and</str<strong>on</strong>g> the Elsasser number Λ are 1 for all cases shown.It is found that for E < 10 −4 the results approach an asymptotic low E limit with Raproporti<strong>on</strong>al to E −1 for fixed m. This is the dependence expected for Ra at the <strong>on</strong>set ofc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (see chapter 6). ω approachesa c<strong>on</strong>stant value (measured <strong>on</strong> the viscous diffusi<strong>on</strong> time scale) as E tends to zero.These results suggest that when study<str<strong>on</strong>g>in</str<strong>on</strong>g>g l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>, E = 10 −6 issufficient to be <str<strong>on</strong>g>in</str<strong>on</strong>g> the low E regime appropriate to Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (where E ∼ 10 −15 ).


188 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>However, this result may not extend to the study of n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>where saturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms must also be <str<strong>on</strong>g>in</str<strong>on</strong>g> the low E asymptotic regime.7.4.3 Dependence <strong>on</strong> ΛThe most important parameter for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the mechanism underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g the hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed is the Elsasser number Λ which measures the strength of theimposed magnetic field when the rotati<strong>on</strong> rate is fixed. The value of the Elsasser number<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is not well known because the toroidal field strength there cannotbe directly measured. Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the observed poloidal field strength leads to an estimateΛ ∼ 0.1 which is taken to be the lower limit of the Elsasser numbers <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated here.It is however possible (<str<strong>on</strong>g>and</str<strong>on</strong>g> perhaps even likely if the dynamo is <str<strong>on</strong>g>in</str<strong>on</strong>g> a str<strong>on</strong>g field regime (see, for example, Roberts (1978); Hide <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1979); Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert (2000)))that the toroidal magnetic field is many times str<strong>on</strong>ger than the poloidal field. Zhang<str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn (1993) have argued that magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability becomes very likely for Λ > 10so this provides an upper limit for the time-averaged Λ <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>; this estimate isemployed as the upper limit for the range of Λ <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated here.In figure 7.8 the Rayleigh number Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the angular frequencyω of the associated <str<strong>on</strong>g>waves</str<strong>on</strong>g> are plotted as a functi<strong>on</strong> of Λ for different choices ofm between 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9 with E = 10 −6 <str<strong>on</strong>g>and</str<strong>on</strong>g> P r = P r m = 1. Two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct behaviours areevident. For low Λ <str<strong>on</strong>g>and</str<strong>on</strong>g> m=2 to 6, as Λ <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, Ra <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the angular frequencybecom<str<strong>on</strong>g>in</str<strong>on</strong>g>g larger <str<strong>on</strong>g>and</str<strong>on</strong>g> the propagati<strong>on</strong> directi<strong>on</strong> eastwards. This is the behaviourpredicted <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 6 for magnetically-modified thermal Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. For Λ ∼ 1 orgreater, <str<strong>on</strong>g>waves</str<strong>on</strong>g> have smaller angular frequencies (propagate more slowly) <str<strong>on</strong>g>and</str<strong>on</strong>g> Ra is observedto decrease to a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum around Λ = 1 before beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease aga<str<strong>on</strong>g>in</str<strong>on</strong>g>. Thisis behaviour that expected for both thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> also for thermalMAC <str<strong>on</strong>g>waves</str<strong>on</strong>g> 5 that may be present at larger Λ.The behaviour illustrated by the redcurve mark<str<strong>on</strong>g>in</str<strong>on</strong>g>g the lowest Ra for m between 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9 <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.8a is <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement withthe scenario proposed by Fearn (1979b) (see figure 6.6).In figure 7.9, Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω are plotted versus m for a range of Λ between 0.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10. Figure7.9a shows that for low Λ <str<strong>on</strong>g>waves</str<strong>on</strong>g> are more easily excited when m is large, while for Λ ∼ 1wavenumbers <str<strong>on</strong>g>in</str<strong>on</strong>g> the range m= 3 to 6 are most easily excited <str<strong>on</strong>g>and</str<strong>on</strong>g> at large Λ ∼ 10 thelowest wavenumbers (m=2, 3) are most easily excited. Figure 7.9b <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.9c illustrate thedispersi<strong>on</strong> (dependence of ω <strong>on</strong> m) for the various <str<strong>on</strong>g>waves</str<strong>on</strong>g>. At low Λ, as the wavenumber<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>waves</str<strong>on</strong>g> travel faster eastwards. For Λ = 1 lower wavenumbers appear to preferto travel eastwards, while the higher wavenumbers prefer to travel westwards (all are5 It is difficult to make a clear dist<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> between thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal MAC<str<strong>on</strong>g>waves</str<strong>on</strong>g> look<str<strong>on</strong>g>in</str<strong>on</strong>g>g at Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω, because for a particular m the transiti<strong>on</strong> between the modes is c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous.They are best dist<str<strong>on</strong>g>in</str<strong>on</strong>g>guished by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wave structures (see figures 7.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.6). The thermalMAC wave deviate str<strong>on</strong>gly from z <str<strong>on</strong>g>in</str<strong>on</strong>g>variance, while thermal magneto-Rossby wave structure is primarilyz <str<strong>on</strong>g>in</str<strong>on</strong>g>variant.


189 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>(a)Rayleigh Number for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>10 9m=2m=3m=4m=5m=6m=7m=8m=9Lowest Ra (m=2 to 9)Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units (2π/τ ν)10 81e−01 1e+00 1e+01Elasser Number (Λ)5.0e+020.0e+00−5.0e+02−1.0e+03−1.5e+03−2.0e+03−2.5e+03(b)m=2m=3m=4m=5m=6m=7m=8m=9Lowest Ra (m=2 to 9)−3.0e+03−3.5e+031e−01 1e+00 1e+01Elasser Number (Λ)Figure 7.8: Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> Λ for m=2 to 9.The Rayleigh number Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermally-drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated angular frequencies ω of the <str<strong>on</strong>g>waves</str<strong>on</strong>g>(c<strong>on</strong>venti<strong>on</strong> negative ω means eastward propagati<strong>on</strong>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), as the Elsasser number is<str<strong>on</strong>g>in</str<strong>on</strong>g>creased from 0.1 to 1.0, for azimuthal wavenumbers m=2 to 9. The red squares markthe trend for the lowest Rayleigh number found over this range of wavenumbers. ThePr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r <str<strong>on</strong>g>and</str<strong>on</strong>g> the magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m are 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> all cases <str<strong>on</strong>g>and</str<strong>on</strong>g> theEkman number E is 10 −6 <str<strong>on</strong>g>in</str<strong>on</strong>g> all cases.


190 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g very slowly <strong>on</strong> a time scale ∼ 0.1 to 0.01 τ ν where τ ν is the viscous diffusi<strong>on</strong>time scale. For large Λ modes always appear to travel westwards, with high wavenumberstravell<str<strong>on</strong>g>in</str<strong>on</strong>g>g faster, but be<str<strong>on</strong>g>in</str<strong>on</strong>g>g more difficult to excite.(a)10 10Rayleigh number for <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>10 9For E=10 −6Pr=1Pr m=1Λ=0.1Λ=0.25Λ=0.5Λ=0.75Λ=1.0Λ=2.5Λ=5.0Λ=7.5Λ=10.010 82 4 6 8 10Azimuthal wavenumber (m)(b)(c)Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units (2π / τ ν )10000−1000−2000−3000Λ=0.1Λ=0.25Λ=0.5Λ=0.75Λ=1.0Λ=2.5Λ=5.0Λ=7.5Λ=10.0For E=10 −6Pr=1Pr m =1Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units (2π / τ ν )3002001000−100Λ=1.0Λ=2.5Λ=5.0Λ=7.5Λ=10.0For E=10 −6Pr=1Pr m =1−40002 4 6 8 10Azimuthal wavenumber (m)−2002 3 4 5 6 7 8 9Azimuthal wavenumber (m)Figure 7.9: Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> m for Λ=0.1 to 10.Rayleigh number Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermally-driven hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated angular frequencies ω plotted aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st mfor Λ=0.1 to 10 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b). (c) is a magnified versi<strong>on</strong> of (b) with <strong>on</strong>ly Λ > 1 plotted. ThePr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r, the magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m are 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> all cases <str<strong>on</strong>g>and</str<strong>on</strong>g> the Ekmannumber E is always 10 −6 <str<strong>on</strong>g>in</str<strong>on</strong>g> the examples plotted.7.4.4 Dependence <strong>on</strong> P rThe Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the ratio of the thermal diffusi<strong>on</strong> time scale to the viscousdiffusi<strong>on</strong> time scale. If values for the expected molecular diffusivities <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> areadopted, this will have size ∼ 0.1, whilst if turbulent diffusivities are <str<strong>on</strong>g>in</str<strong>on</strong>g>voked (Roberts<str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, 2000a) then it has been argued that P r = 1. A range of values P r from10 −3 to 10 5 was <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated: the results are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.10.Two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct regimes are evident, with a transiti<strong>on</strong> regi<strong>on</strong> between them close to P r=1.At large P r, Ra is <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of P r, <str<strong>on</strong>g>and</str<strong>on</strong>g> ω is very small. As P r is decreased to P r=1,Ra beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to fall until at very low P r a different trend for Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω is observed. In this


191 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>(a)(b)10 95e+05m=5m=84e+05For Λ=1, Pr=1, E=10 −6Rayleigh number at the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>10 810 7Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units of (2π/τ ν )For Λ=1, Pr=1, E=10 −6 1e−04 1e−02 1e+00 1e+02 1e+04 1e+063e+052e+051e+050e+00−1e+05−2e+05−3e+05−4e+05m=5m=810 61e−04 1e−02 1e+00 1e+02 1e+04 1e+06Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (Pr)−5e+05Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (Pr)Figure 7.10: Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> P r for m=5, 8.The Rayleigh number (Ra) for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermally drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated angular frequencies (ω) of the <str<strong>on</strong>g>waves</str<strong>on</strong>g> asplotted as a functi<strong>on</strong> of P r which varies from 10 −3 to 10 5 for m=5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8. The magneticPr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m is 1, the Ekman number E is 10 −6 <str<strong>on</strong>g>and</str<strong>on</strong>g> the Elsasser number Λ is1 <str<strong>on</strong>g>in</str<strong>on</strong>g> all cases shown.regime Ra is significantly smaller <str<strong>on</strong>g>and</str<strong>on</strong>g> ω is much larger with both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westwardpropagati<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g possible.In this low P r regime, <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial effects are very large <str<strong>on</strong>g>and</str<strong>on</strong>g> the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> are the magnetically modified thermal-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> first discussed by Zhang(1995). The structure of these <str<strong>on</strong>g>waves</str<strong>on</strong>g> is displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> is noteworthy becausefield perturbati<strong>on</strong>s occur close to the outer boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>siderable z dependenceis present. Is is however unlikely that such <str<strong>on</strong>g>waves</str<strong>on</strong>g> will be of relevance <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>because the P r below which they are found scales as E 1/2 so will be many orders ofmagnitude lower than the value of 0.1 expected <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (Ardes et al., 1997).7.4.5 Dependence <strong>on</strong> P r mThe magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number P r m is the ratio of the magnetic diffusi<strong>on</strong> time scale tothe viscous diffusi<strong>on</strong> time scale. In Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g molecular values this would be∼ 10 −6 while it would be ∼ 1 if <strong>on</strong>e prefers to use turbulent values for diffusivities. P r mbetween 10 −6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 2 were <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated for E = 10 −6 , P r=1, Λ=1 <str<strong>on</strong>g>and</str<strong>on</strong>g> m = 5, 8. Theresults are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 7.11.Two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct regimes are evident: <strong>on</strong>e at large P r m <str<strong>on</strong>g>and</str<strong>on</strong>g> the other at small P r m witha gradual transiti<strong>on</strong> between them close to P r m =1. The high P r m mode is very slow,propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the westward directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> with low Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> is probably a thermal MC-Rossby wave that occurs when the effects of magnetic diffusi<strong>on</strong> can be neglected (seefigure 7.5 for an example of the structure of such a wave). At very low P r m <str<strong>on</strong>g>waves</str<strong>on</strong>g>also travel westwards, but faster <str<strong>on</strong>g>and</str<strong>on</strong>g> with slightly higher Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>


192 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>(a)(b)3e+08120Rayleigh number at the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>2e+082e+082e+081e+085e+07m=5m=8Angular frequency (ω) <str<strong>on</strong>g>in</str<strong>on</strong>g> units of (2π/τ ν )100806040200For Λ=1, Pr=1, E=10 −6For Λ=1, Pr=1, E=10 −6 1e−07 1e−05 1e−03 1e−01 1e+01 1e+03m=5m=80e+001e−07 1e−05 1e−03 1e−01 1e+01 1e+03Magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (Pr m )−20Magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number (Pr m )Figure 7.11: Dependence of Ra <str<strong>on</strong>g>and</str<strong>on</strong>g> ω <strong>on</strong> P r m for m=5, 8.The Rayleigh number Ra for the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> the form of thermally drivenhydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated angular frequencies ω of the <str<strong>on</strong>g>waves</str<strong>on</strong>g> areplotted aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st P r m which varies from 10 −6 to 10 3 for m=5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b). The Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tlnumber P r is 1 the Ekman number E is 10 −6 <str<strong>on</strong>g>and</str<strong>on</strong>g> the Elsasser number Λ is 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> all cases.than for the thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.This mode has the properties predicted forthe thermal magneto-Rossby wave. The transiti<strong>on</strong> between the two types is regular forRa, but there is a disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity <str<strong>on</strong>g>in</str<strong>on</strong>g> trend for ω, because the thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>frequency varies like P rm−1 (diverges for small P r m), while simple models for thermalmagneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (see §6.6.2) predict that <str<strong>on</strong>g>their</str<strong>on</strong>g> frequency will tend to a c<strong>on</strong>stantfor small P r m <str<strong>on</strong>g>and</str<strong>on</strong>g> diverge when P r = P r m . In Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> it is likely that magneticdiffusi<strong>on</strong> is much more important than viscous diffusi<strong>on</strong>, so P r m is anticipated to bemuch less than 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> the most relevant <str<strong>on</strong>g>waves</str<strong>on</strong>g> will be thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>rather than thermal MC-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.7.5 Discussi<strong>on</strong> of implicati<strong>on</strong>s for <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>A simple model of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> has been <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter to documentthe parameter dependence of wave properties <str<strong>on</strong>g>in</str<strong>on</strong>g> a regime relevant to Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.It would be foolhardy to attempt to l<str<strong>on</strong>g>in</str<strong>on</strong>g>k any of the precise details of wave structures<str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> speeds to observati<strong>on</strong>s of the geomagnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface giventhe over-simplified nature of the imposed magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the lack of any backgroundazimuthal flow. However, several robust c<strong>on</strong>clusi<strong>on</strong>s can be made <strong>on</strong> the basis of theresults of this chapter.In the Λ ∼ 1, P r m


193 Chapter 7 — L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>waves</str<strong>on</strong>g>eastwards <strong>on</strong> slow time scales of order 1 to 0.01 τ ν . The viscous diffusi<strong>on</strong> time scale <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is not well known, but lies <str<strong>on</strong>g>in</str<strong>on</strong>g> the range between 10 10 years (when molecularvalues for viscosity are adopted) <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 5 years (when turbulent values for viscosity areadopted). Thus the fastest c<strong>on</strong>ceivable time scale for the thermal magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>studied <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter is ∼ 1000 years, which is rather slower than the wave-like moti<strong>on</strong>sidentified <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3 with typical time scales ∼ 250 years. This result suggests thatpropagati<strong>on</strong> of such c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> al<strong>on</strong>e may not be a goodexplanati<strong>on</strong> of the observed azimuthal moti<strong>on</strong>s of B r features at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.The models <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter also c<strong>on</strong>v<str<strong>on</strong>g>in</str<strong>on</strong>g>c<str<strong>on</strong>g>in</str<strong>on</strong>g>gly dem<strong>on</strong>strated that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>can produce spatially coherent, wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r close to the outer boundary ofa c<strong>on</strong>vect<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid when a toroidal magnetic field is present. Furthermore, alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence close to the outer boundary are found tobe a generic feature associated with such <str<strong>on</strong>g>waves</str<strong>on</strong>g>. For the E S thermal magneto-Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> studied <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter, with an E S imposed magnetic field, the magnetic fieldperturbati<strong>on</strong>s at the outer boundary are found to be E S <str<strong>on</strong>g>and</str<strong>on</strong>g> centred <strong>on</strong> the equator.To match with the observati<strong>on</strong>s, this suggests that some E S background magnetic field(either poloidal or toroidal) is required <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.7.6 SummaryIn this chapter, a numerical <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong> of the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> drivenby c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry with a simple imposed toroidal magnetic field hasbeen carried out. The set of l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s was solved us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an eigenvalueapproach <str<strong>on</strong>g>and</str<strong>on</strong>g> marg<str<strong>on</strong>g>in</str<strong>on</strong>g>ally stable modes found. C<strong>on</strong>vecti<strong>on</strong>-driven, magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>were found to be the most likely type of wave to be excited <str<strong>on</strong>g>in</str<strong>on</strong>g> the regime expected <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. The E S <str<strong>on</strong>g>waves</str<strong>on</strong>g> that were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed distorted the E S imposed toroidal fieldto produce E S perturbati<strong>on</strong>s of B r close to the outer boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> were focused <strong>on</strong> lowlatitudes. However, <str<strong>on</strong>g>their</str<strong>on</strong>g> propagati<strong>on</strong> speeds were found to be too slow to account forthe azimuthal moti<strong>on</strong>s of field features identified <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3 at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Morerealistic models <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the presence of the background azimuthal flow <str<strong>on</strong>g>and</str<strong>on</strong>g> imposedmagnetic fields compatible with the geodynamo mechanism should be <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated asthe next step towards a more rigorous comparis<strong>on</strong> with observati<strong>on</strong>s.


194Chapter 8Patterns of magnetic field evoluti<strong>on</strong>caused by wave flows8.1 Introducti<strong>on</strong>The aim of this chapter is to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> how a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow will alter magneticfields <str<strong>on</strong>g>and</str<strong>on</strong>g> to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e if such a mechanism can produce spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporallycoherent, wave-like, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field patterns. Will propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>sof magnetic field arise? If so what factors govern the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> speedof the field c<strong>on</strong>centrati<strong>on</strong>s? Are the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g patterns of field evoluti<strong>on</strong> c<strong>on</strong>sistent withobservati<strong>on</strong>s of magnetic field changes at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface? To study these issues purelyk<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic models with simple, specified, wave flows are <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>and</str<strong>on</strong>g> the evoluti<strong>on</strong>of magnetic fields from chosen <str<strong>on</strong>g>in</str<strong>on</strong>g>itial states are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through the soluti<strong>on</strong> of themagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong>.Two approaches to the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic problem are undertaken. In the first, a simple <strong>on</strong>edimensi<strong>on</strong>al model of a travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g pattern of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence is solved analytically. This example providesvaluable <str<strong>on</strong>g>in</str<strong>on</strong>g>sight regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanisms that could operate <str<strong>on</strong>g>in</str<strong>on</strong>g> more complex scenarios.Sec<strong>on</strong>dly, <str<strong>on</strong>g>in</str<strong>on</strong>g> a more Earth-like situati<strong>on</strong>, the radial comp<strong>on</strong>ent of the magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>equati<strong>on</strong> at an impenetrable spherical surface is solved for the case of a parameterisedspherical wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a simple (axial dipole) <str<strong>on</strong>g>in</str<strong>on</strong>g>itial radial magnetic field. Aparameter survey is carried out to catalogue changes <str<strong>on</strong>g>in</str<strong>on</strong>g> field evoluti<strong>on</strong> characteristics asthe phase speed <str<strong>on</strong>g>and</str<strong>on</strong>g> the wave flow amplitude are varied.F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally the effect of wave flows <strong>on</strong> more complex <str<strong>on</strong>g>in</str<strong>on</strong>g>itial fields is <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. The 1590field from gufm1 is time-stepped forward us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different choices of prescribed wave flow<str<strong>on</strong>g>and</str<strong>on</strong>g> limited magnetic diffusi<strong>on</strong>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the regularisati<strong>on</strong> applied to field modelsto elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by the crustal field is studied. Hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g>field evoluti<strong>on</strong> patterns are described <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> discussed. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally implicati<strong>on</strong>s forthe orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of geomagnetic secular variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s for <str<strong>on</strong>g>core</str<strong>on</strong>g> flows are discussed.


195 Chapter 8 — Wave flows8.2 1D model of a wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a magnetic field8.2.1 Frozen-flux equati<strong>on</strong> for field evoluti<strong>on</strong>The frozen flux <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> describes how <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of magnetic diffusi<strong>on</strong>magnetic field changes are entirely due to advecti<strong>on</strong> of field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es al<strong>on</strong>g with the electricallyc<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. This can be expressed mathematically as∂B∂t= ∇ × (u × B). (8.1)The full magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> (see equati<strong>on</strong> (D.3) <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D) simplifies tothis form when the term η∇ 2 B associated with the effects of magnetic diffusi<strong>on</strong> (Ohmicdissipati<strong>on</strong>) is negligible. The frozen flux assumpti<strong>on</strong> is made <str<strong>on</strong>g>in</str<strong>on</strong>g> the first, simple modelpresented <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter. It is a good first approximati<strong>on</strong> to the scenario be<str<strong>on</strong>g>in</str<strong>on</strong>g>g modelledat Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface when l<strong>on</strong>g length scales, <str<strong>on</strong>g>and</str<strong>on</strong>g> time scales much shorter than themagnetic diffusi<strong>on</strong> time scale are c<strong>on</strong>sidered.Theoretical arguments <str<strong>on</strong>g>in</str<strong>on</strong>g> favour of theadopti<strong>on</strong> of the frozen flux assumpti<strong>on</strong> can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> the sem<str<strong>on</strong>g>in</str<strong>on</strong>g>al papers of Roberts<str<strong>on</strong>g>and</str<strong>on</strong>g> Scott (1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus (1968) <str<strong>on</strong>g>and</str<strong>on</strong>g> also <str<strong>on</strong>g>in</str<strong>on</strong>g> the review of Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>(1991). The results of numerical experiments suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that frozen flux assumpti<strong>on</strong>was a useful approximati<strong>on</strong> were reported by Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier (2000b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Rauet al. (2000). Recently, geomagnetic field models <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g frozen flux c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>tshave been developed by Jacks<strong>on</strong> et al. (2005) that are capable of fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>with<str<strong>on</strong>g>in</str<strong>on</strong>g> error bounds. The circumstances under which magnetic diffusi<strong>on</strong> should not beneglected have been discussed by Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Kelly (1996) <str<strong>on</strong>g>and</str<strong>on</strong>g> Love (1999). The limitof advecti<strong>on</strong>-diffusi<strong>on</strong> balance highlighted <str<strong>on</strong>g>in</str<strong>on</strong>g> the latter papers is discussed further <str<strong>on</strong>g>in</str<strong>on</strong>g>§8.2.5.<str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> wave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, spherical c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ers c<strong>on</strong>sist of a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gsequence of upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g as has been discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7. To studythe generic <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of such wave flows <strong>on</strong> magnetic fields, a simple 2D wave flow isc<strong>on</strong>sidered here. The idealised wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated is shown schematically <str<strong>on</strong>g>in</str<strong>on</strong>g> figure8.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed mathematically as⎛⎞ ⎛u x (x, z, t)̂xu = ⎝ u y (x, z, t)ŷ ⎠ = ⎝u z (x, z, t)ẑ−U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) cos(kz)̂x0U cos(kx − ωt) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kz)ẑ⎞⎠ , (8.2)2πwhere U is maximum magnitude of the flow,k is the flow wavelength <str<strong>on</strong>g>and</str<strong>on</strong>g> 2π ωis theperiod of the flow. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce this flow is two-dimensi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible, it can bewritten <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of a potential functi<strong>on</strong>Ψ =U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kz), (8.3)kwhere the flow is then def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to be u = ∇ × Ψŷ = − ∂Ψ ∂Ψ∂z ̂x +∂x ẑ. C<strong>on</strong>tours of Ψrepresent <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous particle trajectories of the flow <str<strong>on</strong>g>and</str<strong>on</strong>g> are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.1.


196 Chapter 8 — Wave flowst=0.0t=0.25t=0.5Figure 8.1: Incompressible wave flow used <str<strong>on</strong>g>in</str<strong>on</strong>g> simple k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic model.C<strong>on</strong>tours of the stream-functi<strong>on</strong> Ψ <str<strong>on</strong>g>in</str<strong>on</strong>g> the xz plane show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneous fluid parceltrajectories for the model wave flow as time progresses. The flow pattern always has thesame form, but drifts as time progresses towards +x. Spatial units <str<strong>on</strong>g>in</str<strong>on</strong>g> the x <str<strong>on</strong>g>and</str<strong>on</strong>g> zdirecti<strong>on</strong>s are the flow wavelength (λ = 2π k) <str<strong>on</strong>g>and</str<strong>on</strong>g> time is measured <str<strong>on</strong>g>in</str<strong>on</strong>g> units of the flowperiod (T = 2π ω ).Equati<strong>on</strong> (8.2) is a modificati<strong>on</strong> of a steady 2D flow that was designed to model c<strong>on</strong>vecti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> has been the subject of several previous k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic studies by Allan <str<strong>on</strong>g>and</str<strong>on</strong>g>Bullard (1966), Bloxham (1985; 1986) <str<strong>on</strong>g>and</str<strong>on</strong>g> Drew (1992). The flow studied here has beenaltered so the regi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence drift towards + ̂x at a c<strong>on</strong>stantphase speed (c ph = ω k) rather than be<str<strong>on</strong>g>in</str<strong>on</strong>g>g stati<strong>on</strong>ary. Flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence isobserved to occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the ̂x directi<strong>on</strong> at depths z = 2nπkwhere n is any <str<strong>on</strong>g>in</str<strong>on</strong>g>teger (physicallythis represents the top <str<strong>on</strong>g>and</str<strong>on</strong>g> bottom edges of the flow cells). Upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>goccurs <str<strong>on</strong>g>in</str<strong>on</strong>g> the z directi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> is a maximum at z = (2n+1)πkat mid-depth <str<strong>on</strong>g>in</str<strong>on</strong>g> the flowcells.The magnetic field whose evoluti<strong>on</strong> will be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the flow (under the frozen fluxassumpti<strong>on</strong>) can <str<strong>on</strong>g>in</str<strong>on</strong>g> the most general case be written as⎛B = ⎝B x (x, y, z, t)̂xB y (x, y, z, t)ŷB z (x, y, z, t)ẑ⎞⎠ . (8.4)Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible flow (∇ · u = 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> solenoidal magnetic fields(∇ · B = 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> the well known vector identity∇ × (u × B) = (B · ∇)u − (u · ∇)B + u(∇ · B) + B(∇ · u) (8.5)


197 Chapter 8 — Wave flowsthe frozen-flux <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> becomes∂B∂tThe comp<strong>on</strong>ent of this equati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the ẑ directi<strong>on</strong> is then= (B · ∇)u − (u · ∇)B. (8.6)∂B z∂t∂u z= (B x∂x + B ∂u zy∂y + B ∂u zz∂z ) − (u ∂B zx∂x + u ∂B zy∂y + u ∂B zz∂z ) (8.7)For the 2D model wave flow described above, u y = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> ∂uz∂yequati<strong>on</strong> reduces to= 0 so the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g∂B z∂t∂u z= (B x∂x + B ∂u zz∂z ) − (u ∂B zx∂x + u z∂B z). (8.8)∂zEarth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary is a solid <str<strong>on</strong>g>in</str<strong>on</strong>g>terface through which no vertical flow occurs.At the top of a flow cell for example at z = π/k <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.3) there is also no verticalflow. This similarity means that <strong>on</strong>e can c<strong>on</strong>sider the flow def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.3) atsuch a depth to be a crude model that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the key <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients of a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g waveflow adjacent to a rigid boundary such as the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. Adopt<str<strong>on</strong>g>in</str<strong>on</strong>g>g this assumpti<strong>on</strong>,the flow at z = π/k is u x = U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt), u z = 0, ∂uz∂uz∂x= 0 <str<strong>on</strong>g>and</str<strong>on</strong>g>∂z= −kU cos(kx − ωt)so the frozen flux <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of B z becomes∂B z∂t+ U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) ∂B z∂x + kU cos(kx − ωt)B z = 0. (8.9)It is noteworthy that this is identical to the 1D <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> without diffusi<strong>on</strong>describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effects of a compressible wave flow U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) ̂x act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a field B z ẑ.This flow c<strong>on</strong>sists of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence. Henceforththe subscript z <str<strong>on</strong>g>in</str<strong>on</strong>g> B z (x, t) is dropped <str<strong>on</strong>g>and</str<strong>on</strong>g> the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the ẑ directi<strong>on</strong> is referredto simply as B(x, t) <str<strong>on</strong>g>and</str<strong>on</strong>g> similarly U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) is simply denoted by u(x, t).8.2.2 Chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame to move al<strong>on</strong>g with wave flowThe mathematical problem can be simplified by transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a frame of referencemov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the phase speed of the wave flow (c ph = ω k), which for the present flowis a c<strong>on</strong>stant. In a frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the phase speed, the wave-pattern is stati<strong>on</strong>aryso it is more straightforward to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the flow <strong>on</strong> magnetic fieldevoluti<strong>on</strong>.Similar transformati<strong>on</strong>s have been made to aid the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>core</str<strong>on</strong>g>flows from geomagnetic secular variati<strong>on</strong> by Davis <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler (1996) <str<strong>on</strong>g>and</str<strong>on</strong>g> Holme <str<strong>on</strong>g>and</str<strong>on</strong>g>Whaler (2001).Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Galilean transformati<strong>on</strong> to the reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the phase speedof the wave flow, a new variable def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g spatial positi<strong>on</strong> (ψ) is def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed that is related tothe orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates by ψ = x − c ph t. Transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g the flow field u <str<strong>on</strong>g>and</str<strong>on</strong>g> the magneticfield B to the new co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate system these becomeu(ψ, t) = dψdt = dxdt − d(c pht)= u(x, t) − c ph = U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph , (8.10)dt


198 Chapter 8 — Wave flows<str<strong>on</strong>g>and</str<strong>on</strong>g>B(ψ, t) = B(x, t). (8.11)The <str<strong>on</strong>g>in</str<strong>on</strong>g>variance of magnetic fields under Galilean transformati<strong>on</strong> arises because relativisticeffects are negligible when c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g transformati<strong>on</strong>s to frames travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g much slowerthan the speed of light.This fundamental assumpti<strong>on</strong> is implicit <str<strong>on</strong>g>in</str<strong>on</strong>g> the pre-Maxwellform of the equati<strong>on</strong>s of electrodynamics employed <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of magnetohydrodynamicsfrom which the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> is derived (Moffatt, 1978).Therefore <str<strong>on</strong>g>in</str<strong>on</strong>g> the new reference frame, equati<strong>on</strong> (8.9) govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field evoluti<strong>on</strong> transformsto∂B(ψ, t)∂t+ (U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph )∂B(ψ, t)∂ψ+ (Uk cos kψ) B(ψ, t) = 0, (8.12)or more compactly∂B(ψ, t)= − ∂ [u(ψ, t)B(ψ, t)]. (8.13)∂t ∂ψA st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard mathematical procedure for solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g such first order, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, homogeneouspartial differential equati<strong>on</strong>s is the method of characteristics (see, for example, Rileyet al. (2002) or Ockend<strong>on</strong> et al. (2003)) which <str<strong>on</strong>g>in</str<strong>on</strong>g>volves simplify<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a set of ord<str<strong>on</strong>g>in</str<strong>on</strong>g>arydifferential equati<strong>on</strong>s. This method is employed <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong> to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d an analyticalsoluti<strong>on</strong> to the problem.8.2.3 Soluti<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the method of characteristicsThe method of characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g>volves f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g a curve <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> space al<strong>on</strong>g whichthe govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g partial differential equati<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g> this case equati<strong>on</strong> (8.12)) is reduced toan ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary differential equati<strong>on</strong> that can easily be solved. The method c<strong>on</strong>sists of twoparts, f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g appropriate curves <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> space (the characteristic curves) <str<strong>on</strong>g>and</str<strong>on</strong>g> solv<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary differential equati<strong>on</strong> al<strong>on</strong>g these characteristic curves.Positi<strong>on</strong> <strong>on</strong> the characteristic curve can be specified by a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle parameter s = s(ψ, t)with derivatives of s, t, ψ related via the cha<str<strong>on</strong>g>in</str<strong>on</strong>g> ruledBds = dt ( ) ∂B+ dψ ( ) ∂B. (8.14)ds ∂tψds ∂ψtBy choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g the equati<strong>on</strong>s of the characteristic curves C to bedtds = 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> dψds = U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c dψph so thatdt = U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph, (8.15)equati<strong>on</strong> (8.12) simplifies to an ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary differential equati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> s,dBds= −kU cos kψ B. (8.16)dψUs<str<strong>on</strong>g>in</str<strong>on</strong>g>g the relati<strong>on</strong> from equati<strong>on</strong> (8.15) that ds =U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ−c ph, divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g both sides by B<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, equati<strong>on</strong> (8.16) can be rewritten as∫CdBB= ∫C−kU cos kψU s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kψ) − c phdψ, (8.17)


199 Chapter 8 — Wave flowsso thator[ln B = −lnB =s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phUKs<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phU]+ lnK, (8.18), (8.19)where K is a c<strong>on</strong>stant that can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial state of B. For example,if at t=0, it is known that ψ=ψ 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> B(ψ, t)=B 0 (ψ 0 , 0), then(K = B 0 (ψ 0 , 0)s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ 0 − c phUSo an expressi<strong>on</strong> for B <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of this <str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>diti<strong>on</strong> is<str<strong>on</strong>g>and</str<strong>on</strong>g> recognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g thatthis can be written asB = B 0(ψ 0 , 0)s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phUB = B 0(ψ 0 , 0)s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phU(s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ 0 − c phU). (8.20)), (8.21)s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ 0 = 2 tan kψ 021 + tan 2 kψ 0, (8.22)2(2 tankψ 021 + tan 2 kψ 02− c phU). (8.23)Provided an expressi<strong>on</strong> for tan kψ 02<str<strong>on</strong>g>in</str<strong>on</strong>g> terms of ψ <str<strong>on</strong>g>and</str<strong>on</strong>g> t can be found, the developmentof B(ψ 0 , 0) is therefore completely known.Expressi<strong>on</strong>s for tan kψ 02<str<strong>on</strong>g>in</str<strong>on</strong>g> terms of ψ <str<strong>on</strong>g>and</str<strong>on</strong>g> t can be derived from the equati<strong>on</strong>s of thecharacteristic curves, though unfortunately this procedure is rather algebraically cumbersome.Recall that the equati<strong>on</strong> of the characteristic curves from equati<strong>on</strong> (8.15) isLett<str<strong>on</strong>g>in</str<strong>on</strong>g>g z = kψ so that dψ = dzk∫dψdt = U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph. (8.24)<str<strong>on</strong>g>and</str<strong>on</strong>g> then separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the variables <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>gdzU s<str<strong>on</strong>g>in</str<strong>on</strong>g> z − c ph=∫k dt = kt + K 2 , (8.25)where K 2 is a c<strong>on</strong>stant to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. The <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral <strong>on</strong> the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> side of equati<strong>on</strong>(8.25) is recognisable as a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral of elementary transcendental functi<strong>on</strong>s(equati<strong>on</strong> (4.3.131) <strong>on</strong> p.78 of Abramowitz <str<strong>on</strong>g>and</str<strong>on</strong>g> Stegun (1964)). The soluti<strong>on</strong> falls <str<strong>on</strong>g>in</str<strong>on</strong>g>to3 possible categories depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> relative amplitudes of U <str<strong>on</strong>g>and</str<strong>on</strong>g> c ph .When U 2 > c 2 ph , lett<str<strong>on</strong>g>in</str<strong>on</strong>g>g Γ 1 = (U 2 − c 2 ph )1/2∫dzU s<str<strong>on</strong>g>in</str<strong>on</strong>g> z − c ph= 1 Γ 1ln[−cph tan z 2 + U − Γ 1−c ph tan z 2 + U + Γ 1], (8.26)


200 Chapter 8 — Wave flowswhen U 2 = c 2 ph , ∫1Uwhile when U 2 < c 2 ph , lett<str<strong>on</strong>g>in</str<strong>on</strong>g>g Γ 2 = (c 2 ph − U 2 ) 1/2 ,∫dzs<str<strong>on</strong>g>in</str<strong>on</strong>g> z − 1 = − 1 ( πU tan 4 + z ), (8.27)2dz= 2 [ U − cph tan z ]2arctan. (8.28)U s<str<strong>on</strong>g>in</str<strong>on</strong>g> z − c ph Γ 2 Γ 2When t=0 <str<strong>on</strong>g>and</str<strong>on</strong>g> ψ=ψ 0 so that z=z 0 =kψ 0 then equati<strong>on</strong> (8.25) can be used to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>eK 2 ,∫K 2 =dz 0U s<str<strong>on</strong>g>in</str<strong>on</strong>g> z 0 − c ph, (8.29)which has the same soluti<strong>on</strong>s as is listed <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>s (8.26) to (8.28), but with z replacedby z 0 <str<strong>on</strong>g>in</str<strong>on</strong>g> each case. All the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> required to l<str<strong>on</strong>g>in</str<strong>on</strong>g>k tan kψ 02to ψ <str<strong>on</strong>g>and</str<strong>on</strong>g> t is nowavailable — the required expressi<strong>on</strong>s are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g for ∫<str<strong>on</strong>g>and</str<strong>on</strong>g>K 2 = ∫ dz 0U s<str<strong>on</strong>g>in</str<strong>on</strong>g> z 0 −c ph<str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.25) <str<strong>on</strong>g>and</str<strong>on</strong>g> rearrang<str<strong>on</strong>g>in</str<strong>on</strong>g>g.First c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the case when U 2 > c 2 ph , def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>and</str<strong>on</strong>g>dzU s<str<strong>on</strong>g>in</str<strong>on</strong>g> z−c ph[−cph tan z 2A =+ U − Γ ] [1 −cph tan kψ−c ph tan z 22 + U + Γ =+ U − Γ ]11 −c ph tan kψ 2 + U + Γ , (8.30)1X = −c ph tan z 02 , (8.31)then equati<strong>on</strong> (8.25) becomes1lnA = kt + 1 [ ]X + U − Γ1ln, (8.32)Γ 1 Γ 1 X + U + Γ 1us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the laws of logarithms this can be written,⎛so thatsolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g for X gives−kΓ 1 t = ln ⎝A =[ ]X+U−Γ1X+U+Γ 1A⎞⎠ , (8.33)[ ]X + U − Γ1e kΓ1t , (8.34)X + U + Γ 1X = (U + Γ 1)A + (Γ 1 − U)e kΓ 1te kΓ1t , (8.35)− A<str<strong>on</strong>g>and</str<strong>on</strong>g> the required expressi<strong>on</strong> for tan z 02= tan kψ 02is thereforetan kψ 02 = (U + Γ 1)A + (Γ 1 − U)e kΓ 1tc ph (A − e kΓ1t . (8.36))When U 2 = c 2 ph , def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g ( πA ′ = tan4 + z ( π= tan2)4 + kψ 2), (8.37)


201 Chapter 8 — Wave flows<str<strong>on</strong>g>and</str<strong>on</strong>g> lett<str<strong>on</strong>g>in</str<strong>on</strong>g>gthen equati<strong>on</strong> (8.25) becomesbut because of the identitythis becomesX ′ = tan z 02 = tan kψ 02 , (8.38)− A′U = kt − 1 ( πU tan 4 + z )0, (8.39)2tan( π 4 + z 02 ) = 1 + tan z 021 − tan z 02= 1 + X′1 − X ′ , (8.40)which when rearranged to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e X ′ = tan kψ 02yieldsA ′ + Ukt = 1 + X′1 − X ′ , (8.41)tan kψ 02 = A′ + Ukt − 1A ′ + Ukt + 1 . (8.42)F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, for the case when U 2 < c 2 ph , def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>and</str<strong>on</strong>g>then equati<strong>on</strong> (8.25) becomesA ′′ = U − c ph tan z 2Γ 2= U − c ph tan kψ 2Γ 2, (8.43)X ′′ = tan z 02 = tan kψ 02 , (8.44)2arctanA ′′ = kt + 2 [−cph X ′′ ]+ Uarctan. (8.45)Γ 2 Γ 2 Γ 2Divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g by 2Γ 2, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g 1 2 Γ 2kt to the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> side <str<strong>on</strong>g>and</str<strong>on</strong>g> then tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the tangent of bothsidestan(− 1 )2 Γ 2kt + arctanA ′′ = −c phX ′′ + U(8.46)Γ 2which when rearranged to yield X ′′ = tan kψ 02<str<strong>on</strong>g>and</str<strong>on</strong>g> simplified gives( [tan kψ 02 = 1 U − 1 A ′′ − tan ( 12 Γ 2kt ) ])c ph Γ 2 1 − A ′′ tan ( 12 Γ 2kt ) . (8.47)Equati<strong>on</strong> (8.23) together with the expressi<strong>on</strong>s for tan kψ 02<str<strong>on</strong>g>in</str<strong>on</strong>g> terms of ψ <str<strong>on</strong>g>and</str<strong>on</strong>g> t for thethree cases U > c ph (equati<strong>on</strong> (8.36)), U = c ph (equati<strong>on</strong> (8.42)) <str<strong>on</strong>g>and</str<strong>on</strong>g> U < c ph (equati<strong>on</strong>(8.47)) c<strong>on</strong>stitutes the soluti<strong>on</strong> to the problem. For c<strong>on</strong>venient future reference the resultsare collected <str<strong>on</strong>g>in</str<strong>on</strong>g> the box below.


202 Chapter 8 — Wave flowsB(ψ, t) = B 0(ψ 0 , 0)s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phU( 2ζ1 + ζ 2 − c )ph,Uwhen U 2 > c 2 ph then ζ = (U + Γ 1)A + (Γ 1 − U)e kΓ 1tc ph (A − e kΓ1t ,)when U 2 = c 2 ph then ζ = A′ + Ukt − 1A ′ + Ukt + 1 ,( [when U 2 < c 2 ph then ζ = 1 U − 1 A ′′ − tan ( 12 Γ 2kt ) ])c ph Γ 2 1 − A ′′ tan ( 12 Γ 2kt ) ,where Γ 1 = (U 2 − c 2 ph )1/2 , Γ 2 = (c 2 ph − U 2 ) 1/2 <str<strong>on</strong>g>and</str<strong>on</strong>g>( π4 + kψ )2A = −c ph tan kψ 2 + U − Γ 1−c ph tan kψ 2 + U + Γ , A ′ = tan1<str<strong>on</strong>g>and</str<strong>on</strong>g> A ′′ = U − c ph tan kψ 2Γ 2.(8.48)This soluti<strong>on</strong> shows that the space-time evoluti<strong>on</strong> of any <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic field c<strong>on</strong>figurati<strong>on</strong>B 0 is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the functi<strong>on</strong>F w =( )2ζ− c ph1+ζ 2 Us<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phU. (8.49)For simplicity results <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong> are <strong>on</strong>ly presented for the case B 0 = c<strong>on</strong>stant,to emphasise the characteristics of F w al<strong>on</strong>e rather than the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of B 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> F w .It should however be noted that the framework developed here applies to any <str<strong>on</strong>g>in</str<strong>on</strong>g>itialmagnetic field profile.limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g cases are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong>.The physical mean<str<strong>on</strong>g>in</str<strong>on</strong>g>g of equati<strong>on</strong> (8.49) <str<strong>on</strong>g>and</str<strong>on</strong>g> some important8.2.4 Discussi<strong>on</strong> of soluti<strong>on</strong>s to 1D frozen flux wave flow problemIn this secti<strong>on</strong> the evoluti<strong>on</strong> of an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially uniform magnetic field B 0 (x, t) = B 0 is describedfor a particular choice of the c<strong>on</strong>trol parameters U <str<strong>on</strong>g>and</str<strong>on</strong>g> c ph . For c<strong>on</strong>veniencethe choice k=1 (corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a flow wavelength of 2π) is fixed, so chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g c phcorresp<strong>on</strong>ds to chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g the frequency ω of the wave flow. The different magnetic fieldevoluti<strong>on</strong> processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the regimes with |U| > |c ph |, |U| < |c ph | <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>termediatecase when |U| ∼ |c ph | are discussed. The existence of these regimes will haveimportant implicati<strong>on</strong>s for diagnos<str<strong>on</strong>g>in</str<strong>on</strong>g>g the likely effects of wave flows near to the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <strong>on</strong> radial magnetic fields.Case when |U| > |c ph |: Slowly drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flowsWhen the wave flow is faster than the drift speed (|U| > |c ph |) propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>sof magnetic field are generated as illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.2. When the flow with<str<strong>on</strong>g>in</str<strong>on</strong>g> thewave is very much faster than the drift speed then to a first approximati<strong>on</strong> the flow can


203 Chapter 8 — Wave flowsbe c<strong>on</strong>sidered as stati<strong>on</strong>ary <str<strong>on</strong>g>and</str<strong>on</strong>g> the situati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g referenceframes are almost identical. As observed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.2a,b, magnetic field c<strong>on</strong>centrati<strong>on</strong>sbecome <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly sharp <str<strong>on</strong>g>and</str<strong>on</strong>g> develop at the positi<strong>on</strong>s of flow c<strong>on</strong>vergence (which areassociated with flow downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible flow), where kx = (2n + 1)π <str<strong>on</strong>g>and</str<strong>on</strong>g>n is any <str<strong>on</strong>g>in</str<strong>on</strong>g>teger. At positi<strong>on</strong>s of flow divergence (associated with flow upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs) wherekx = 2nπ, the magnetic field is found to decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude. In future discussi<strong>on</strong>sthis pattern of field evoluti<strong>on</strong> will be referred to as the c<strong>on</strong>centrati<strong>on</strong> regime.(a) U=1, c ph =11 × 10 −10 , n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g(b) U=1, c ph =11 × 10 −10 , drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g20181082018108166166144144t (units of t 0)1210820−2t (units of t 0)1210820−26−46−44−64−6200 5 10 15 20x (units of x 0)−8−10200 5 10 15 20x (units of x 0)−8−10(c) U=1, c ph =0.5, n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g(d) U=1, c ph =0.5, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g20181082018108166166144144t (units of t 0)1210820−2t (units of t 0)1210820−26−46−44−64−6200 5 10 15 20x (units of x 0)−8−10200 5 10 15 20x (units of x 0)−8−10Figure 8.2: Soluti<strong>on</strong> for evoluti<strong>on</strong> of B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| > |c ph |.Time-distance plots show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of the magnetic field (displayed as c<strong>on</strong>toursof log B B 0so orange colours represent field amplificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> blue colours represent fieldweaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g) when U=1, c ph = 1 × 10 −10 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> when U=1, c ph = 0.5 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) with thesituati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the frame of reference drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the flow pattern displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d).The solid black l<str<strong>on</strong>g>in</str<strong>on</strong>g>e tracks the positi<strong>on</strong> the of the neutral po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g>the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame. The unit of distance is x 0 = 1 k while the unit of time is t 0 = 1 ω .Mathematically, whenUc ph>> 1 then ψ ∼ x, Γ 1 ∼ U, A ∼ −c ph2Utan( kx 2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> ζ ∼tan( kx 2 )e−kUt so that the expressi<strong>on</strong> for B simplifies to,B(x, t) = 2B 0 tan( kx 2 ) e−Ukts<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx) 1 + tan 2 ( kx 2 ) = B 0 e −Ukte−2Ukt cos 2 ( kx2 ) + s<str<strong>on</strong>g>in</str<strong>on</strong>g>2 ( kx . (8.50)2)e−2UktThe soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this limit was first obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Parker (1963) <str<strong>on</strong>g>in</str<strong>on</strong>g> his model of solar


204 Chapter 8 — Wave flowssuper-granulati<strong>on</strong> be<str<strong>on</strong>g>in</str<strong>on</strong>g>g caused by k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic c<strong>on</strong>centrati<strong>on</strong> of vertical magnetic fields bydownwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow. That Parker’s soluti<strong>on</strong> is c<strong>on</strong>sistent with equati<strong>on</strong> (8.48) is a usefulcheck <strong>on</strong> its validity. By exam<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the form taken by the soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.50)al<strong>on</strong>g the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence, further <str<strong>on</strong>g>in</str<strong>on</strong>g>sight may be ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed:(i) Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of flow divergence <str<strong>on</strong>g>and</str<strong>on</strong>g> upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g where kx = 2nπBecause cos 2 (nπ) = 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 (nπ) = 0, equati<strong>on</strong> 8.50 simplifies toB( 2nπk , t) = B 0e −Ukt . (8.51)The frozen-flux theorem (see Davids<strong>on</strong> (2001) or Moffatt (1978)) suggests that magneticfield l<str<strong>on</strong>g>in</str<strong>on</strong>g>es will be c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously pulled away from locati<strong>on</strong>s of flow divergence <str<strong>on</strong>g>and</str<strong>on</strong>g>upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g a physical justificati<strong>on</strong> for this field decay.(ii) Follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g where kx = (2n + 1)πBecause cos 2 ((2n + 1)π) = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 ((2n + 1)π) = 1, equati<strong>on</strong> 8.50 simplifies toB( 2nπk , t) = B 0e Ukt . (8.52)Exp<strong>on</strong>ential growth can also be understood physically because at these locati<strong>on</strong>s of flowdownwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vergence, the frozen-flux theorem implies that magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>eswill be pulled together, becom<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly c<strong>on</strong>centrated.In figure 8.2c,d where U is <strong>on</strong>ly slightly greater than c ph , magnetic field c<strong>on</strong>centrati<strong>on</strong>saga<str<strong>on</strong>g>in</str<strong>on</strong>g> develop close to positi<strong>on</strong>s of flow c<strong>on</strong>vergence (downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs) <str<strong>on</strong>g>and</str<strong>on</strong>g> move with thesame speed <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the same directi<strong>on</strong> as those locati<strong>on</strong>s of c<strong>on</strong>vergence. However thefield c<strong>on</strong>centrati<strong>on</strong>s no l<strong>on</strong>ger occur <strong>on</strong> top of the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> then<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame, but lag slightly beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d. This un<str<strong>on</strong>g>in</str<strong>on</strong>g>tuitive phenomen<strong>on</strong> is most easilyunderstood by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the case shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.3 where the maximum magnitudeof the flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the flow drift speed are equal (|c ph | = |U|).Case when |U| = |c ph |When |U| = |c ph | the positi<strong>on</strong> of magnetic field c<strong>on</strong>centrati<strong>on</strong> lags beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the positi<strong>on</strong>of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame by 1/4 of the flow wavelength. This turnsout to be the locati<strong>on</strong> of the neutral po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g referenceframe, where kψ= (2n + 1 2)π. The reas<strong>on</strong> for this requires a moment’s c<strong>on</strong>siderati<strong>on</strong>.The wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame is U s<str<strong>on</strong>g>in</str<strong>on</strong>g>(kx − ωt) <str<strong>on</strong>g>and</str<strong>on</strong>g> is drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a phasespeed c ph = ω k. Mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a frame of reference travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g at this speed where the newpositi<strong>on</strong> co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate is ψ = x − c ph t, the flow becomes U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph . It is crucial tounderst<str<strong>on</strong>g>and</str<strong>on</strong>g> that this is not the same as U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ which would be a simple stati<strong>on</strong>arywave flow. Mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the new reference frame <str<strong>on</strong>g>in</str<strong>on</strong>g>volves not just chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g the drift speedof the wave flow, but also the additi<strong>on</strong> of a new velocity comp<strong>on</strong>ent (equal <str<strong>on</strong>g>in</str<strong>on</strong>g> magnitude


205 Chapter 8 — Wave flows(a) U=1, c ph =1, n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g(b) U=1, c ph =1, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g20187.756.220187.756.2164.65164.65143.1143.1t (units of t 0)121081.550−1.55t (units of t 0)121081.550−1.556−3.16−3.14−4.654−4.65200 5 10 15 20x (units of x 0)−6.2−7.75200 5 10 15 20x (units of x 0)−6.2−7.75Figure 8.3: Soluti<strong>on</strong>s for B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| = |c ph |.Time-distance plots show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of the magnetic field (displayed as c<strong>on</strong>toursof log B B 0so orange colours represent field amplificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> blue colours represent fieldweaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g) when U=1, c ph =1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> with the results <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame of reference drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gwith the flow pattern displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> (b). The solid black l<str<strong>on</strong>g>in</str<strong>on</strong>g>e marks the moti<strong>on</strong> of thecentre of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame. The unit of distance is x 0 = 1 kwhile the unit of time is t 0 = 1 ω .<str<strong>on</strong>g>and</str<strong>on</strong>g> opposite <str<strong>on</strong>g>in</str<strong>on</strong>g> directi<strong>on</strong> to the moti<strong>on</strong> of the new frame relative to the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al frame)to all the fluid parcels <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow. In the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame this means that thepositi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence are shifted to the zeros of U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c phrather than the zeros of U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ, so when |U| = |c ph |, field c<strong>on</strong>centrati<strong>on</strong>s are found atkψ=(2n + 1 2)π rather than at kψ=(2n + 1)π.In the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame there is therefore a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ual competiti<strong>on</strong> between the ability ofthe c<strong>on</strong>vergent flow to c<strong>on</strong>centrate magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects of the movementof the positi<strong>on</strong> of flow c<strong>on</strong>vergence.As shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.3b, <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference framedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the phase speed of the flow, this becomes a competiti<strong>on</strong> between fieldadvecti<strong>on</strong> by the wave flow (U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ) <str<strong>on</strong>g>and</str<strong>on</strong>g> by the Galilean correcti<strong>on</strong> flow (−c ph ). Aftera transient <str<strong>on</strong>g>in</str<strong>on</strong>g>terval, magnetic field c<strong>on</strong>centrati<strong>on</strong>s become localised at the neutral po<str<strong>on</strong>g>in</str<strong>on</strong>g>tof flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame, where field advecti<strong>on</strong> by the waveflow <str<strong>on</strong>g>and</str<strong>on</strong>g> by the Galilean correcti<strong>on</strong> flow are <str<strong>on</strong>g>in</str<strong>on</strong>g> balance.Case when |U| < |c ph |: Fast drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flowsThe rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g case when |U| < |c ph | is documented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.4 where (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) showthe case when U is <strong>on</strong>ly slightly less than c ph <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) show what happens when Uis almost negligible compared to c ph . The space-time evoluti<strong>on</strong> of the field morphology<str<strong>on</strong>g>in</str<strong>on</strong>g> the two cases is similar, but the amplitude of the <str<strong>on</strong>g>in</str<strong>on</strong>g>duced field c<strong>on</strong>centrati<strong>on</strong>s arevery different. In both cases the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> field amplitude are much smaller than when|U| ≥ |c ph |; for U = c ph /2 field amplitudes less than 3 times greater <str<strong>on</strong>g>and</str<strong>on</strong>g> smaller than


206 Chapter 8 — Wave flowsthe orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field are produced, while when U = c ph /10 10 changes <str<strong>on</strong>g>in</str<strong>on</strong>g> field amplitude aremore than 60000 smaller than orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field. The amplitude of field changes thus dependsrather str<strong>on</strong>gly <strong>on</strong> the ratio c ph /U.(a) U=0.5, c ph =1, n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g(b) U=0.5, c ph =1, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g20181.25120181.251160.75160.75140.5140.5t (units of t 0)121080.250−0.25t (units of t 0)121080.250−0.256−0.56−0.54−0.754−0.75200 5 10 15 20x (units of x ) 0−1−1.25200 5 10 15 20x (units of x ) 0−1−1.25(c) U=1 × 10 −10 , c ph =1, n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g(d) U=1 × 10 −10 c ph =1, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g201820162018201616121612148148t (units of t 0)1210840−4t (units of t 0)1210840−46−86−84−124−12200 5 10 15 20x (units of x 0)−16−20200 5 10 15 20x (units of x 0)−16−20Figure 8.4: Soluti<strong>on</strong>s for B <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D problem, when |U| < |c ph |.Time-distance plots show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the evoluti<strong>on</strong> of the magnetic field (displayed as c<strong>on</strong>toursof log B B 0so orange colours represent field amplificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> blue colours represent fieldweaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g) when U=0.5, c ph =1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> when U = 1 × 10 −10 , c ph = 1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) with theresults <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame of reference drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the flow pattern displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d). Thesolid black l<str<strong>on</strong>g>in</str<strong>on</strong>g>e marks the moti<strong>on</strong> of the centre of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gframe. The unit of distance is x 0 = 1 k while the unit of time is t 0 = 1 ω .The most strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspect of the field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this case is the cyclic changes <str<strong>on</strong>g>in</str<strong>on</strong>g> theamplitude of field c<strong>on</strong>centrati<strong>on</strong>s.These changes <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude will be referred to aspulsati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> future discussi<strong>on</strong>s. One pulsati<strong>on</strong> cycle beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s with the <str<strong>on</strong>g>in</str<strong>on</strong>g>itially uniformfield develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>tense field c<strong>on</strong>centrati<strong>on</strong>s separated by patches of<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly weak field. The field c<strong>on</strong>centrati<strong>on</strong>s eventually reach a maximum amplitude(<str<strong>on</strong>g>and</str<strong>on</strong>g> the weak field patches reaches <str<strong>on</strong>g>their</str<strong>on</strong>g> smallest amplitude), before the field amplitudesbeg<str<strong>on</strong>g>in</str<strong>on</strong>g> to return toward <str<strong>on</strong>g>their</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al values.Eventually the field returns back to itsorig<str<strong>on</strong>g>in</str<strong>on</strong>g>al uniform morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> the cycle starts over aga<str<strong>on</strong>g>in</str<strong>on</strong>g>. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce there is no dissipati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> this model the pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g behaviour repeats perfectly <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely. The time taken


207 Chapter 8 — Wave flowsfor <strong>on</strong>e cycle of this oscillati<strong>on</strong> is T = 2π ω(the time taken for the Galilean correcti<strong>on</strong>flow to cover 1 wavelength of the flow pattern) which <str<strong>on</strong>g>in</str<strong>on</strong>g> the examples shown with k=1= 2πkc ph<str<strong>on</strong>g>and</str<strong>on</strong>g> c ph =1 leads to a period of 2π. In the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame, the positi<strong>on</strong> where thefield maxima are found is the same as where field c<strong>on</strong>centrati<strong>on</strong> were observed when U =c ph . The positi<strong>on</strong> where the weakest field develops similarly occurs where <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>glyweak field was found when U = c ph . In the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame this causes locati<strong>on</strong>s ofoscillatory field highs <str<strong>on</strong>g>and</str<strong>on</strong>g> lows that move with the speed c ph of the wave flow pattern.The reas<strong>on</strong> for the pulsati<strong>on</strong> phenomen<strong>on</strong> can be understood by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g locati<strong>on</strong>sof flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame. In this frame the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed waveflow plus the Galilean correcti<strong>on</strong> flow (U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kψ − c ph |U|. The maxima of field c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>ima offield weaken<str<strong>on</strong>g>in</str<strong>on</strong>g>g no l<strong>on</strong>ger occur simultaneously with the maxima occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g slightly afterthe m<str<strong>on</strong>g>in</str<strong>on</strong>g>ima. However, even <str<strong>on</strong>g>in</str<strong>on</strong>g> this case the fundamental pulsati<strong>on</strong> behaviour rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s.The existence of the c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regimes <str<strong>on</strong>g>in</str<strong>on</strong>g> this problem does not appearto have been discussed before. It has important c<strong>on</strong>sequences c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g whether waveflows are a viable mechanism for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the spatially coherent, azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gpatterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r that were observed <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3.Beforec<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g more realistic models of this situati<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> the next secti<strong>on</strong> an attempt ismade to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the amplitude magnetic field c<strong>on</strong>centrati<strong>on</strong>s that might be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edat positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> a wave flow.


8.2.5 Steady state balance between advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong>208 Chapter 8 — Wave flowsWhen flow with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave is much faster than the drift speed of the wave pattern(|U| >> |c ph |), the soluti<strong>on</strong>s from the previous secti<strong>on</strong> are unrealistic <str<strong>on</strong>g>in</str<strong>on</strong>g> the l<strong>on</strong>g timelimit because magnetic field gradients become so large that magnetic diffusi<strong>on</strong> can nol<strong>on</strong>ger be neglected. In this scenario, eventually a steady state balance between advecti<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es will arise, as discussed by Moffatt (1978) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>necti<strong>on</strong> with the scenario at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface by Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Kelly (1996).In this secti<strong>on</strong>, horiz<strong>on</strong>tal magnetic diffusi<strong>on</strong> is re-<str<strong>on</strong>g>in</str<strong>on</strong>g>troduced to the model equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>the limit when the wave flow is effectively stati<strong>on</strong>ary (|U| >> |c ph |) 1 . The soluti<strong>on</strong> tothis problem when advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> of magnetic field are <str<strong>on</strong>g>in</str<strong>on</strong>g> balance provides auseful estimate of the maximum magnetic field amplitude that can be achieved givena particular choice of wave flow <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusivity. The analysis <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>closely follows that of Clark (1965) who studied a similar problem when attempt<str<strong>on</strong>g>in</str<strong>on</strong>g>g tomodel solar super granulati<strong>on</strong>.Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g |U| >> |c ph |, u x ∼ U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g horiz<strong>on</strong>tal magnetic diffusi<strong>on</strong> η themagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g field evoluti<strong>on</strong> is∂B∂t( ∂ 2 )+ U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx∂B∂x + Uk cos kxB = η B∂x 2 + ∂2 B∂z 2 . (8.53)To f<str<strong>on</strong>g>in</str<strong>on</strong>g>d the steady state amplitude of the magnetic field, two assumpti<strong>on</strong>s are made thatc<strong>on</strong>siderably simplify the analysis:(i) Steady state assumpti<strong>on</strong> ( ∂B∂t= 0): A balance between advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> diffusi<strong>on</strong> ofmagnetic field is assumed: this is reas<strong>on</strong>able <strong>on</strong>ce sufficiently large gradients of magneticfield have been established.(ii) Horiz<strong>on</strong>tal magnetic diffusi<strong>on</strong> dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates vertical magnetic diffusi<strong>on</strong>: This requiresthat diffusi<strong>on</strong> of vertical magnetic field B due to field gradients <str<strong>on</strong>g>in</str<strong>on</strong>g> the ẑ directi<strong>on</strong> isnegligible <str<strong>on</strong>g>in</str<strong>on</strong>g> comparis<strong>on</strong> to diffusi<strong>on</strong> of magnetic field due to gradients of the magneticfield <str<strong>on</strong>g>in</str<strong>on</strong>g> the ̂x directi<strong>on</strong>.If <strong>on</strong>e accepts these assumpti<strong>on</strong>s, the govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong> simplifies to (Clark, 1965)U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx dBdx + (Uk cos kx)B = η d2 Bdx 2 . (8.54)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce this <str<strong>on</strong>g>in</str<strong>on</strong>g>volves <strong>on</strong>ly x derivatives <str<strong>on</strong>g>and</str<strong>on</strong>g> is exact, it can be rewritten <str<strong>on</strong>g>in</str<strong>on</strong>g> the form(d dBdx dx − U )η s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx B = 0. (8.55)1 When |U| < |c ph | no steady state can be reached because the field c<strong>on</strong>stantly pulsates <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude, s<strong>on</strong>o advecti<strong>on</strong>-diffusi<strong>on</strong> balance is likely to be reached <str<strong>on</strong>g>and</str<strong>on</strong>g> this scenario is not studied. When |U| > |c ph |but of similar order of magnitude an advecti<strong>on</strong>-diffusi<strong>on</strong> balance is likely to arise, but the physicalmechanism of flow c<strong>on</strong>vergence caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong> balanced by advecti<strong>on</strong> then occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> thedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame so the results of the present analysis should aga<str<strong>on</strong>g>in</str<strong>on</strong>g> be applicable.


209 Chapter 8 — Wave flowsIntegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g with respect to x∂B∂x − U η s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx B = C 1. (8.56)The advecti<strong>on</strong>-diffusi<strong>on</strong> balance is therefore described by a 1st order ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary differentialequati<strong>on</strong>. The arbitrary c<strong>on</strong>stant C 1 will be zero if when x=0, dBdx = 0 also2 . If this isthe case then∂B∂x = U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx B. (8.57)ηSeparat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the variables<str<strong>on</strong>g>and</str<strong>on</strong>g> then <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g∫ dBB = ∫ Uηs<str<strong>on</strong>g>in</str<strong>on</strong>g> kx dx, (8.58)ln B = − U kη cos kx + C 2, (8.59)so thatB(x, t) t→∞ = C 2 e − U kη cos kx . (8.60)To determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the amplitude of this steady state magnetic field, the c<strong>on</strong>stant C 2 must beevaluated <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial <str<strong>on</strong>g>and</str<strong>on</strong>g> steady state field strengths must be l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked. This can beachieved follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the approach adopted by Clark (1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegratedmagnetic field over <strong>on</strong>e wavelength of the wave flowddtπ∫k− π kB(x, t) dx. (8.61)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the velocity field u is periodic <str<strong>on</strong>g>in</str<strong>on</strong>g> x (wavelength 2π k ), if the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field B 0 is uniform,then the steady state field B <str<strong>on</strong>g>and</str<strong>on</strong>g> its derivatives with respect to x(∂B∂x<str<strong>on</strong>g>and</str<strong>on</strong>g> ∂2 B∂x 2 )also always be periodic with the same period as u <str<strong>on</strong>g>and</str<strong>on</strong>g> will <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrate to zero over the<str<strong>on</strong>g>in</str<strong>on</strong>g>terval ( −πk , π k). Therefore, return<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the time dependent <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong>will∂B∂t+ U s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx∂B∂x + Uk cos kxB = η ∂2 B∂x 2 , (8.62)<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from x = −πkto x = π k leavesddtπ∫k− π kB(x, t)dx = 0. (8.63)Physically this says that the amount vertical magnetic flux with<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e wavelength ofthe stati<strong>on</strong>ary wave pattern is c<strong>on</strong>served. This property then allows the flux with<str<strong>on</strong>g>in</str<strong>on</strong>g> a2 This cannot be rigorously established at this po<str<strong>on</strong>g>in</str<strong>on</strong>g>t. The analysis, however, proceeds <strong>on</strong> the assumpti<strong>on</strong>that C 1=0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the assumpti<strong>on</strong> is justified a posteriori by the fact that the steady state soluti<strong>on</strong>found for B does <str<strong>on</strong>g>in</str<strong>on</strong>g>deed have this form.


210 Chapter 8 — Wave flowswavelength of the flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the steady state to be related to the flux with<str<strong>on</strong>g>in</str<strong>on</strong>g> that wavelengthof the flow <str<strong>on</strong>g>in</str<strong>on</strong>g>itially when the magnetic field is assumed to be uniformπ∫kC 2 e − U kη cos kx dx =π∫kB 0 dx, (8.64)− π k− π korC 2π∫k− π ke − U kη cos kx dx = 2πB 0k . (8.65)But us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral for a zeroth order modified Bessel functi<strong>on</strong> (Abramowitz<str<strong>on</strong>g>and</str<strong>on</strong>g> Stegun, 1964)π∫ke − U kη cos kx dx = 2πI 0( Ukη), (8.66)− π kwhere I 0 is a zeroth order modified Bessel Functi<strong>on</strong>, so thatC 2 = B 0I 0 ( U (8.67)kη).Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g back <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (8.60) the steady state magnetic field profile is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edB(x, t) t→∞ = B 0I 0 ( U kη )e− U kη cos kx . (8.68)This result was first stated by Clark (1965). The n<strong>on</strong>-dimensi<strong>on</strong>al parameter govern<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe amplitude of steady state magnetic field is a versi<strong>on</strong> of the magnetic Reynolds numberof the wave flow that was def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Clark (1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> is here referred to as R clmwhere 2π kcan be c<strong>on</strong>centrated by is thereforeR clm = U kη , (8.69)is the wavelength of the flow. The factor by which the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic fielde Rcl m. Smaller scale, more <str<strong>on</strong>g>in</str<strong>on</strong>g>tense magnetic fieldI 0 (R cl m)c<strong>on</strong>centrati<strong>on</strong>s will be produced when the amplitude of the wave flow U is str<strong>on</strong>ger, thelength scale of the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow 2π kis larger <str<strong>on</strong>g>and</str<strong>on</strong>g> when the magnetic diffusivity ηis smaller. In the limit of large Rm, cl I 0 (Rm) cl → (2πRm) cl 1/2 e Rcl m so the maximum fieldamplitude will be ∼ B 0 (2πRm cl )1/2 . In figure 8.5, equati<strong>on</strong> (8.68) is plotted for a rangeof Rm cl to illustrate the c<strong>on</strong>centrati<strong>on</strong> achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> this simple 1D model.Apply<str<strong>on</strong>g>in</str<strong>on</strong>g>g the results of this model to estimate the amplitude of field c<strong>on</strong>centrati<strong>on</strong>sproduced by wave flows act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> B r at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface is difficult because thegeometry there is 2D not 1D. Clark (1965) addressed this by analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 2D axisymmetricflow f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g that for large R clm <str<strong>on</strong>g>in</str<strong>on</strong>g> 2D the maximum field approached B 0 (R clm) 1/2rather than the 1D result of B 0 (2πR clm) 1/2 . The factor (2π) 1/2 means that the maximumc<strong>on</strong>centrati<strong>on</strong> estimates obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the 1D model will be ∼ 3 times too large.


211 Chapter 8 — Wave flowsField Amplitude (B)17.51512.5Rm=1Rm=5Rm=10Rm=20Rm=30Rm=50107.552.5−10 −5 5 10xFigure 8.5: 1D advecti<strong>on</strong>-diffusi<strong>on</strong> balance: Amplitude as a functi<strong>on</strong> of Rm.clC<strong>on</strong>centrati<strong>on</strong> of an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially uniform magnetic field, by a wave flow assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 1Dadvecti<strong>on</strong>-diffusi<strong>on</strong> balance for Rm=1, cl 5, 10, 20, 30, 40, 50. An estimate of the c<strong>on</strong>centrati<strong>on</strong>sexpected <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2D geometry can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g the field amplitude bya factor of ∼ 3.Magnetic field features with amplitude at least 10 times that of the surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldhave been <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (Jacks<strong>on</strong>, 2003) from observati<strong>on</strong>s of the geomagneticfield <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g maximum entropy regularisati<strong>on</strong> methods that do not penaliselarge amplitudes. In the present model, tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to account 2D geometry this suggests13e Rcl me Rcl mI 0> 10. When(R clRclm ) m =150, 1 3 I 0 (R cl m ) = 10.2, so R m > 150 seems to be the lower limitrequired by the observati<strong>on</strong>s. The observed features are of length scale ∼ 1800 × 10 3 m,so with magnetic diffusivity ∼ 1m 2 s −1 Rm cl > 150 implies <strong>on</strong>ly rather low wave flowamplitudes U > 3 km yr −1 are required to produce field features with the observed c<strong>on</strong>centrati<strong>on</strong>.The shape <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial extent of field c<strong>on</strong>centrati<strong>on</strong>s produced as a result of a 1Dadvecti<strong>on</strong>-diffusi<strong>on</strong> balance can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by l<str<strong>on</strong>g>in</str<strong>on</strong>g>earis<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.68)around x max = (2n+1)πk. If δ represents a small displacement <str<strong>on</strong>g>in</str<strong>on</strong>g> ̂x away from x max thencos kx = cos(kx max + kδ) = cos kx max cos kδ − s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx max s<str<strong>on</strong>g>in</str<strong>on</strong>g> kδ, (8.70)But x max = (2n+1)πkso then s<str<strong>on</strong>g>in</str<strong>on</strong>g> kx max = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> cos kx max = −1 <str<strong>on</strong>g>and</str<strong>on</strong>g>cos kx = − cos kδ. (8.71)S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce δ is a small departure from x max a reas<strong>on</strong>able first approximati<strong>on</strong> is that<str<strong>on</strong>g>and</str<strong>on</strong>g> the expressi<strong>on</strong> for B close to x max isRecognis<str<strong>on</strong>g>in</str<strong>on</strong>g>g that B 0 (x, 0)e U kηlabell<str<strong>on</strong>g>in</str<strong>on</strong>g>g it as B max , equati<strong>on</strong> (8.73) becomescos kδ = (1 − k2 δ 2), (8.72)2B = B 0 (x, 0)e U kη e −Ukδ22η . (8.73)is the maximum c<strong>on</strong>centrati<strong>on</strong> reached by the field, <str<strong>on</strong>g>and</str<strong>on</strong>g>B = B max e −Ukδ22η . (8.74)


212 Chapter 8 — Wave flowsClose to the maximum flux density at the positi<strong>on</strong> of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> a 1D advecti<strong>on</strong>diffusi<strong>on</strong>balance, the field profile will therefore be Gaussian, as previously noted throughdifferent analysis by Moffatt (1978) <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (1985). One might exam<str<strong>on</strong>g>in</str<strong>on</strong>g>e fieldc<strong>on</strong>centrati<strong>on</strong>s at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether they c<strong>on</strong>formed to this profile,though it would also be necessary to take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account changes <str<strong>on</strong>g>in</str<strong>on</strong>g> morphology <str<strong>on</strong>g>in</str<strong>on</strong>g>troducedby the regularisati<strong>on</strong> applied dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g to elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ate c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by crustalfields (see §8.3.6).8.3 2D wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a radial magnetic field at a spherical surfaceThe 1D model developed <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong> has provided underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of thephysical mechanisms by which propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flows can produce propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>sof magnetic field. The geometry of this model is, however, very different fromthe scenario motivat<str<strong>on</strong>g>in</str<strong>on</strong>g>g this study: that at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. In the present secti<strong>on</strong>, amore complicated k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic model <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry that also <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes horiz<strong>on</strong>talmagnetic diffusi<strong>on</strong> is developed <str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong>s found numerically.8.3.1 2D model equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> imposed flowThe magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> is aga<str<strong>on</strong>g>in</str<strong>on</strong>g> used to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the magnetic field evoluti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>. In spherical geometry at a rigid, <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, boundary the radial comp<strong>on</strong>entof the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> can be written follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (1985)as∂B r∂t( ∂ 2 B r+ ∇ H · (uB r ) = η∂r 2 + 4 ∂B rr ∂r + 2B rr 2 + ∆B )rr 2 , (8.75)where B r is the radial comp<strong>on</strong>ent of the magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, u is thevelocity field <strong>on</strong> the surface, ∇ H = ∇ − ∂ ∂r ̂r denotes the horiz<strong>on</strong>tal gradient, ∆ denotesthe angular part of r 2 ∇ 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> η is as before the magnetic diffusivity.The follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g analysis proceeds <strong>on</strong> the assumpti<strong>on</strong> that the last two terms <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>(8.75) are the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant magnetic diffusi<strong>on</strong> terms because it is difficult to evaluate theother diffusi<strong>on</strong> terms <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the radial derivatives from knowledge of <strong>on</strong>ly B r at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface. This assumpti<strong>on</strong> will underestimate magnetic diffusi<strong>on</strong> particularly if thereare str<strong>on</strong>g radial gradients of the B r near the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, but has previously been employedby other authors Ols<strong>on</strong> et al. (2002). The equati<strong>on</strong> that will be solved numerically<str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> is then∂B r∂t+ ∇ H · (uB r ) = η r 2 (2B r + ∆B r ) . (8.76)The imposed flows are chosen to have the same 2D spatial structure as simple, butdynamically plausible, wave flows close to the outer boundary <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid sphere.Snapshots show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the morphology of the flows studied are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.6. These


213 Chapter 8 — Wave flows(a) m=8, E S , Zhang’00 <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave flow at outer spherical boundary(b) m=8, E A , Zhang’00 <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave flow at outer spherical boundaryFigure 8.6: 2D wave flows <strong>on</strong> a spherical surface at an impenetrable boundary.Snapshots of (a) Equatorially symmetric (E S ) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) Equatorially antisymmetric (E A )wave flows from Zhang et al. (2000) with N zhang = 1, m=1, at the spherical outerboundary <str<strong>on</strong>g>and</str<strong>on</strong>g> with flow amplitude normalised to a maximum value of 1. Arrows showdirecti<strong>on</strong> of the flow <strong>on</strong> the surface, with the size of the arrow proporti<strong>on</strong>al to theamplitude of the flow. Coloured c<strong>on</strong>tours show flow divergence, orange colours representpositive divergence, associated with upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, blue colours represent flow c<strong>on</strong>vergenceassociated with downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.


214 Chapter 8 — Wave flowswave flows have a spatial structure 3 U zhang (θ, φ) that is the 2D structure at the outerboundary of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave 4 soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere derived by Zhang et al. (2000))The flow amplitude U, l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear phase (drift) speed at the equator c ph = ωcm<str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthalwavenumber m are taken to be free parameters with 2π ωthe wave period, c the radiusof the spherical surface <str<strong>on</strong>g>and</str<strong>on</strong>g> m the azimuthal wavenumber. Mathematically, the flowtherefore has the formu = U [U zhang (θ, φ) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(mφ − ωt)] . (8.77)Two different classes of U zhang are c<strong>on</strong>sidered: equatorially symmetric E S flows (as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>s (2.15) <str<strong>on</strong>g>and</str<strong>on</strong>g> (4.1) of Zhang et al. (2000)) <str<strong>on</strong>g>and</str<strong>on</strong>g> equatorially antisymmetricE A flows (as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by equati<strong>on</strong>s (2.16) <str<strong>on</strong>g>and</str<strong>on</strong>g> (4.6) of Zhang et al. (2000)). Only modeswith the simplest structure al<strong>on</strong>g the rotati<strong>on</strong> axis (i.e. with N zhang =1 where N zhang isZhang’s N: a parameter determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the complexity of the soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> parallelto the rotati<strong>on</strong> axis). The azimuthal wavenumber was chosen to be m=8, match<str<strong>on</strong>g>in</str<strong>on</strong>g>gthat <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred from high resoluti<strong>on</strong> images of the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface derived from satellite data(Jacks<strong>on</strong>, 2003).The Zhang <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial wave flows correctly capture the generic pattern of propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong>sof flow c<strong>on</strong>vergence (downwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence (upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>g) associated with morecomplex thermally-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> such as those studied <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7, butare simpler to study because of <str<strong>on</strong>g>their</str<strong>on</strong>g> analytic form. Treat<str<strong>on</strong>g>in</str<strong>on</strong>g>g U as a free parameter canbe justified because the amplitude U cannot be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear analyticalapproach of Zhang et al. (2000), because no dissipati<strong>on</strong> or n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear energy transfer <str<strong>on</strong>g>and</str<strong>on</strong>g>saturati<strong>on</strong> mechanisms are taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account. Treat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c ph as a free parameter can bejustified because follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g Malkus (1967) (see §6.5.2) <str<strong>on</strong>g>and</str<strong>on</strong>g> tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> to besoluti<strong>on</strong>s of the hydromagnetic wave problem, the wave frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> hence phase speedc ph depend <strong>on</strong> the toroidal field strength <str<strong>on</strong>g>in</str<strong>on</strong>g>side Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> whose strength is not wellc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (Hide <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, 1979). Study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> B r of wave flows of theform equati<strong>on</strong> (8.77) while vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g U <str<strong>on</strong>g>and</str<strong>on</strong>g> c ph therefore allows a systematic <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>of the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic effects of hydromagnetic wave flows at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.8.3.2 Numerical soluti<strong>on</strong> of 2D wave flow modelTo determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the evoluti<strong>on</strong> of a prescribed <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r produced by the wave flow def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.77), equati<strong>on</strong> (8.76) is numerically <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated (time-stepped) <strong>on</strong> a surfacewhere r=c, with c=3485 km <str<strong>on</strong>g>and</str<strong>on</strong>g> the magnetic diffusivity η=1 m 2 s −1 (=31.536 km 2 yr −1 )3 U zhang (θ, φ) is normalised so that the maximum flow velocity with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave <strong>on</strong> the surface hasmagnitude 1 km yr −1 .4 Although the soluti<strong>on</strong>s found by Zhang et al. (2000) were for <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere, as described<str<strong>on</strong>g>in</str<strong>on</strong>g> §6.5.2, Malkus (1967) showed that such modes are also hydromagnetic wave soluti<strong>on</strong>s if the imposedmagnetic field is of the form B = B 0r s<str<strong>on</strong>g>in</str<strong>on</strong>g> θφ, b with <strong>on</strong>ly the wave frequencies (<str<strong>on</strong>g>and</str<strong>on</strong>g> hence c ph ) modified<str<strong>on</strong>g>in</str<strong>on</strong>g> a manner depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> B 0 (see equati<strong>on</strong> (6.45)).


215 Chapter 8 — Wave flowsto aid comparis<strong>on</strong> with the situati<strong>on</strong> at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. B r <str<strong>on</strong>g>and</str<strong>on</strong>g> its time derivativeare exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> real, Schmidt quasi-normalised, spherical harm<strong>on</strong>ic series. These <str<strong>on</strong>g>in</str<strong>on</strong>g>volveutilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g associated Legendre polynomials of degree l <str<strong>on</strong>g>and</str<strong>on</strong>g> order m (Plm ), truncated atdegree L <str<strong>on</strong>g>and</str<strong>on</strong>g> L sv respectively (for an explanati<strong>on</strong> of the properties of spherical harm<strong>on</strong>ics,see Backus et al. (1996))∂B r (θ, φ)∂t==l=L∑ svl=1m=l∑m=0i=L sv(L sv+2)∑i=1( a(l + 1)c) l+2(γmclcos mφ + γlms s<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ)Pl m (cos θ)( a) l+2(l + 1) γi Y i (θ, φ), (8.78)cwhere∫ 2π ∫ π00B r (θ, φ) ==∑l=Lm=l∑l=1 m=0j=L(L+2)∑j=1P ml (cos θ)P m′l ′ (cos θ) {( a(l + 1)c) l+2(bmclcos mφ + b msl s<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ)Pl m (cos θ)( a) l+2(l + 1) bi Y i (θ, φ), (8.79)ccos mφ cos m ′ φs<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ s<str<strong>on</strong>g>in</str<strong>on</strong>g> m ′ φ}{4π2l+1s<str<strong>on</strong>g>in</str<strong>on</strong>g> θdθdφ =if l=l′ , m=m ′0 otherwise}. (8.80)The notati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the subscripts i <str<strong>on</strong>g>and</str<strong>on</strong>g> j (for γ i or b j ) is c<strong>on</strong>venient for represent<str<strong>on</strong>g>in</str<strong>on</strong>g>gnumerical manipulati<strong>on</strong>s.These <str<strong>on</strong>g>in</str<strong>on</strong>g>dices run sequentially over the L sv (L sv + 2) <str<strong>on</strong>g>and</str<strong>on</strong>g>L(L + 2) model parameters <str<strong>on</strong>g>in</str<strong>on</strong>g> the expansi<strong>on</strong>s of ∂Br∂t<str<strong>on</strong>g>and</str<strong>on</strong>g> B r , <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g both cos<str<strong>on</strong>g>in</str<strong>on</strong>g>ecoefficients (b mcl<str<strong>on</strong>g>and</str<strong>on</strong>g> γlmc ) <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>e coefficients (b msl<str<strong>on</strong>g>and</str<strong>on</strong>g> γlms ). The notati<strong>on</strong> Y i (θ, φ) issensible because each i is associated with unique values of m, l <str<strong>on</strong>g>and</str<strong>on</strong>g> with either cos ors<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore with a particular spherical harm<strong>on</strong>ic coefficient.The velocity field is expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of poloidal <str<strong>on</strong>g>and</str<strong>on</strong>g> toroidal scalars <strong>on</strong> a sphericalsurface 5 . The toroidal scalar T <str<strong>on</strong>g>and</str<strong>on</strong>g> the poloidal scalar <strong>on</strong> a surface S are related to thevelocity field through the expressi<strong>on</strong> (Jacks<strong>on</strong>, 1997)u(θ, φ) = u T + u P = ∇ × (T r) + ∇ H (rS). (8.81)The toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> poloidal scalars are then each exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of spherical harm<strong>on</strong>ics,aga<str<strong>on</strong>g>in</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Schmidt quasi-normalised spherical harm<strong>on</strong>ics, <str<strong>on</strong>g>and</str<strong>on</strong>g> truncated at degree L uso thatT (θ, φ) ==l=L∑ ul=1∑m=l(u T lmcm=0k=L u(L u+2)∑k=1cos mφ + u T lms s<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ)Pl m (cos θ)u k Y k (θ, φ), (8.82)5 See chapter 7 for a general discussi<strong>on</strong> of this representati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1991) for itsuse with a surface vector field; the implementati<strong>on</strong> used here is that described <str<strong>on</strong>g>in</str<strong>on</strong>g> Jacks<strong>on</strong> et al. (1993)<str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1997).


216 Chapter 8 — Wave flowsS(θ, φ) ==l=L∑ ul=1∑m=l(u Smclm=0k=2L u(L u+2)∑k=L u(L u+2)+1cos mφ + u Smsl s<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ)Pl m (cos θ)u k Y k (θ, φ). (8.83)The arrays of flow coefficients used <str<strong>on</strong>g>in</str<strong>on</strong>g> the numerical manipulati<strong>on</strong>s (labelled by the<str<strong>on</strong>g>in</str<strong>on</strong>g>dex k) comes <str<strong>on</strong>g>in</str<strong>on</strong>g> two parts; the first half of the array specifies the toroidal scalar T<str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d half def<str<strong>on</strong>g>in</str<strong>on</strong>g>es the poloidal scalar S. Note that because the wave flow istime dependent, the coefficients u k are time dependent <str<strong>on</strong>g>and</str<strong>on</strong>g> must be recomputed at eachtime-step.Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g from equati<strong>on</strong> (8.83) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> (8.82) <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (8.81), then fromequati<strong>on</strong>s (8.81), (8.78) <str<strong>on</strong>g>and</str<strong>on</strong>g> (8.79) <str<strong>on</strong>g>in</str<strong>on</strong>g>to equati<strong>on</strong> (8.76) leads to the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g expressi<strong>on</strong>for the secular variati<strong>on</strong> model parameters γ iγ i = ∑ j,kA ijk b j u k −η(2 − l(l + 1))c 2 b i , (8.84)where A ijk is a matrix def<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the secular variati<strong>on</strong> for the spherical harm<strong>on</strong>ic coefficientγ i generated by a unit of the flow comp<strong>on</strong>ent u k act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a unit of the sphericalharm<strong>on</strong>ic of the magnetic field b j .A ijk is related to the matrix A(b) described byJacks<strong>on</strong> (1997) through the relati<strong>on</strong> A(b) ik = ∑ j A ijkb j <str<strong>on</strong>g>and</str<strong>on</strong>g> is calculated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the efficientvector spherical transform method of Lloyd <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1990), modified to treatSchmidt quasi-normalised spherical harm<strong>on</strong>ics, as implemented by Jacks<strong>on</strong> et al. (1993)<str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1997).Discretis<str<strong>on</strong>g>in</str<strong>on</strong>g>g time <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals (...q−1, q, q+1, ...) separated by equal steps of size δq, thesystem can be numerically <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated forward to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the evoluti<strong>on</strong> of the field us<str<strong>on</strong>g>in</str<strong>on</strong>g>gknowledge of the field <str<strong>on</strong>g>and</str<strong>on</strong>g> flow at previous time-steps. A mixed implicit-explicit timestepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g scheme was implemented, with the advecti<strong>on</strong> term treated explicitly us<str<strong>on</strong>g>in</str<strong>on</strong>g>g asec<strong>on</strong>d order Adams-Bashforth technique <str<strong>on</strong>g>and</str<strong>on</strong>g> the diffusi<strong>on</strong> term treated implicitly us<str<strong>on</strong>g>in</str<strong>on</strong>g>ga sec<strong>on</strong>d order Crank-Nicols<strong>on</strong> technique (see Fornberg (1998) p.204-206 for a detaileddescripti<strong>on</strong> of these methods), result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g algorithm[ ]b q+1 1 η(2 − l(l + 1)) −1 [ ] 1 η(2 − l(l + 1))i= −δq 2c 2 +δq 2c 2 b q i⎛⎞ ⎛⎞+ 3 ⎝ ∑ ∑A ijk u q2k bq ⎠j− 1 ⎝ ∑ ∑A ijk u q−12kb q−1 ⎠j. (8.85)jjkThe first term is the implicit Crank-Nichols<strong>on</strong> treatment of diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d termis the explicit Adams-Bashforth treatment of advecti<strong>on</strong>.kS<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the Adams-Bashforthscheme requires knowledge of the magnetic field at two previous time-steps it cannot beused for the first two time steps. A simple Euler method (aga<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sult Fornberg (1998)for further details) was therefore used for the first two time-steps which were made shorter


217 Chapter 8 — Wave flowsthan the other time-steps to limit the <str<strong>on</strong>g>in</str<strong>on</strong>g>accuracies <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by this crude approach.The size of time-step was chosen to always be much smaller than the length scale of theflow ( 2πcm) divided by the fastest speed of <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> transport <str<strong>on</strong>g>in</str<strong>on</strong>g> the system (the largerof U <str<strong>on</strong>g>and</str<strong>on</strong>g> c ph ). The scheme was successfully benchmarked by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the limit<str<strong>on</strong>g>in</str<strong>on</strong>g>gcases of (i) pure diffusi<strong>on</strong> of a m=4, l=4 field with no flow present, (ii) a simple, steadysolid body flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> a simple l=2, m=2 (cos term <strong>on</strong>ly n<strong>on</strong>-zero) <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field.Trials showed that this numerical method permitted accurate time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>equati<strong>on</strong> <strong>on</strong> a spherical surface, but it was rather slow <str<strong>on</strong>g>and</str<strong>on</strong>g> resoluti<strong>on</strong> was limitedas the approach was very memory <str<strong>on</strong>g>in</str<strong>on</strong>g>tensive.The source of <str<strong>on</strong>g>in</str<strong>on</strong>g>efficiency was that thevelocity field u q changes at each time step, so the ∑ k A ijku k had to be recomputed ateach step. Also hold<str<strong>on</strong>g>in</str<strong>on</strong>g>g the large array A ijk <str<strong>on</strong>g>in</str<strong>on</strong>g> memory limited the truncati<strong>on</strong> of B r thatcould be studied <str<strong>on</strong>g>and</str<strong>on</strong>g> hence the resoluti<strong>on</strong> of the soluti<strong>on</strong>s. Fortunately it proved possibleto circumvent both these problems by mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g use of the c<strong>on</strong>stant propagati<strong>on</strong> speed ofthe simple wave flows be<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated.By mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a reference frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g atthe same speed as the phase speed of the wave flow (<str<strong>on</strong>g>and</str<strong>on</strong>g> carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out the appropriateGalilean correcti<strong>on</strong> to the velocity), the wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> this reference frame becomessteady. Therefore ∑ k A ijku k is c<strong>on</strong>stant <str<strong>on</strong>g>and</str<strong>on</strong>g> need <strong>on</strong>ly be computed <strong>on</strong>ce at the startof the calculati<strong>on</strong>, reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount of memory required <str<strong>on</strong>g>and</str<strong>on</strong>g> greatly speed<str<strong>on</strong>g>in</str<strong>on</strong>g>g up thecalculati<strong>on</strong>s. The evoluti<strong>on</strong> of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the results reported was therefore determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> areference frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g at phase speed of the wave flow.The evoluti<strong>on</strong> of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the stati<strong>on</strong>ary (mantle) reference frame was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by coord<str<strong>on</strong>g>in</str<strong>on</strong>g>atetransformati<strong>on</strong>s similar to those previously described by Holme <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler (2001).For a wave flow pattern drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthally at a c<strong>on</strong>stant angular rate ˙Υ = c ph(θ=90 ◦ )c,then the accumulated drift angle Υ can be def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after time t to beΥ = ˙Υt = ω t, (8.86)mso for example, after a wave period (t = 2π ω ), the accumulated drift is Υ = 2π m . Thel<strong>on</strong>gitude coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al frame φ is then related to the l<strong>on</strong>gitude coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate<str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame φ ′ byφ ′ = φ − Υ. (8.87)The transformati<strong>on</strong> of the velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical polar co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates to the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gframe is thenu ′ (θ, φ ′ ) = u(θ, φ, t) − c ph s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ ˆφ (8.88)where ˆφ is a unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the eastward directi<strong>on</strong> <strong>on</strong> the spherical surface. The transformati<strong>on</strong>sfrom the spherical harm<strong>on</strong>ic representati<strong>on</strong> of the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gframe to the spherical harm<strong>on</strong>ics representati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> stati<strong>on</strong>ary frame can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>edtak<str<strong>on</strong>g>in</str<strong>on</strong>g>g comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of the expressi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (7) of Holme <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler (2001) (whouse ψ rather than Υ to denote accumulated drift rate). Denot<str<strong>on</strong>g>in</str<strong>on</strong>g>g real spherical harm<strong>on</strong>ic


coefficients <str<strong>on</strong>g>in</str<strong>on</strong>g> the stati<strong>on</strong>ary frame by (b mcb msl′ ) the required expressi<strong>on</strong>s areb mclb msl= b mcl= b mcll218 Chapter 8 — Wave flows, b msl) <str<strong>on</strong>g>and</str<strong>on</strong>g> those <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame by (b mcl′ ,′ cos mΥ − b ms′s<str<strong>on</strong>g>in</str<strong>on</strong>g> mΥ, (8.89)l′ s<str<strong>on</strong>g>in</str<strong>on</strong>g> mΥ + b ms′cos mΥ. (8.90)The method of time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame <str<strong>on</strong>g>and</str<strong>on</strong>g> then transform<str<strong>on</strong>g>in</str<strong>on</strong>g>g back to thestati<strong>on</strong>ary frame was benchmarked aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al method of time-stepp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> thestati<strong>on</strong>ary frame: the results <str<strong>on</strong>g>in</str<strong>on</strong>g> each case were found to agree very well, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fidence<str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame methods which was, as expected, several of ordersof magnitude faster <str<strong>on</strong>g>and</str<strong>on</strong>g> had smaller memory requirements.The choice of the truncati<strong>on</strong> level L of the spherical harm<strong>on</strong>ic representati<strong>on</strong>s of themagnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> both the stati<strong>on</strong>ary <str<strong>on</strong>g>and</str<strong>on</strong>g> drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame methodswere limited by the memory capacity of the available computers <str<strong>on</strong>g>and</str<strong>on</strong>g> by the desire toproduce accurately c<strong>on</strong>verged soluti<strong>on</strong>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> a sensible time period 6 . Typically, exceptfor a few high resoluti<strong>on</strong> runs carried out when the chosen flows were particularly <str<strong>on</strong>g>in</str<strong>on</strong>g>tense,truncati<strong>on</strong> at spherical harm<strong>on</strong>ic degree L=L sv =40 was found to be sufficient to capturethe evoluti<strong>on</strong> of the field over the range of parameter space explored.Trials showed that when the flow possesses regi<strong>on</strong>s of str<strong>on</strong>g c<strong>on</strong>vergence, the magneticfield eventually tends to become very localised <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense (as was earlier suggestedthe 1D model) <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of magnetic diffusi<strong>on</strong>. It was therefore both numericallynecessary <str<strong>on</strong>g>and</str<strong>on</strong>g> more physically realistic to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude some magnetic diffusi<strong>on</strong> (specifically,the terms η r 2 (2B r + ∆B r ) that could be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from knowledge of the field at thesurface) at the level expected <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (η=1m 2 s −1 ). All results reported have beencomputed with this level of limited magnetic diffusi<strong>on</strong>.l8.3.3 A parameter survey of results from the 2D wave flow modelResults reported <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> c<strong>on</strong>cern the acti<strong>on</strong> of the m=8 wave flows displayed <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 8.6. The primary aims of this parameter survey were to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether thef<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of the 1D model that different regimes of field evoluti<strong>on</strong> behaviour are possibledepend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the relative amplitudes of c ph <str<strong>on</strong>g>and</str<strong>on</strong>g> U carry over to a more Earth-likegeometry <str<strong>on</strong>g>and</str<strong>on</strong>g> to to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of different equatorial flow symmetries <strong>on</strong>magnetic field evoluti<strong>on</strong> styles.The simplest possible <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r approximat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the scenario at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (anaxial dipole 7 , of amplitude -0.3×10 5 nT) was chosen <str<strong>on</strong>g>and</str<strong>on</strong>g> its evoluti<strong>on</strong> calculated for a6 c<strong>on</strong>vergence was checked by exam<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the power spectra of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al magnetic field; if this decayedby several orders of magnitude prior to reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g the maximum spherical harm<strong>on</strong>ic degree the soluti<strong>on</strong>was c<strong>on</strong>sidered to be well c<strong>on</strong>verged.7 The axial dipole is actually a rather special case because azimuthal flows do not generate any secularvariati<strong>on</strong> when they act <strong>on</strong> it. To ensure that the results reported are not atypical, simple fields withm >0 are <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> later.


219 Chapter 8 — Wave flowssuite of flow parameters with U vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g between 0.01 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> withc ph vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g between 0.01 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 km yr −1 ). Both equatorially symmetric (E S )<str<strong>on</strong>g>and</str<strong>on</strong>g> antisymmetric (E A ) flows were <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated for each choice of (U, c ph ) . The resultswere classified <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the regimes identified <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D model (either c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g,pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g or an <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate regime called transiti<strong>on</strong>), by exam<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the time seriesfor the evoluti<strong>on</strong> of the magnetic energy <strong>on</strong> the spherical surface. The results of theparameter survey are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.7.1e+031e+02C<strong>on</strong>centrati<strong>on</strong> (m=8, antisym flow)C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsati<strong>on</strong> (m=8, antisym flow)Pulsati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decay (m=8, antisym flow)Pulsati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decay (m=8, sym flow)C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsati<strong>on</strong> (m=8, sym flow)C<strong>on</strong>centrati<strong>on</strong> (m=8, sym flow)l<str<strong>on</strong>g>in</str<strong>on</strong>g>e denot<str<strong>on</strong>g>in</str<strong>on</strong>g>g c ph= Uflow speed with<str<strong>on</strong>g>in</str<strong>on</strong>g> wave (U)1e+011e+001e−011e−021e−031e−03 1e−02 1e−01 1e+00 1e+01 1e+02 1e+03Drift speed of wave flow (c ph)Figure 8.7: Acti<strong>on</strong> of 2D wave flow <strong>on</strong> a axial dipole <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic field.Classificati<strong>on</strong> of the result of an m=8 wave flow from Zhang et al. (2000) act<str<strong>on</strong>g>in</str<strong>on</strong>g>g atthe outer boundary of a spherical c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>er <strong>on</strong> an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially dipolar magnetic field, withlimited magnetic diffusi<strong>on</strong> present. c ph was varied from 0.01 km yr −1 to 100 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U from 0.01 km yr −1 to 10 km yr −1 . Crosses represent the acti<strong>on</strong> of the E A waveflows, circles represent E S wave flows. Red represents c<strong>on</strong>centrati<strong>on</strong> of magnetic field<str<strong>on</strong>g>in</str<strong>on</strong>g>to drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field maxima <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>ima; blue represents pulsati<strong>on</strong> of amplitude of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield c<strong>on</strong>centrati<strong>on</strong>s; green represents a transiti<strong>on</strong> between these two regimes with veryslow pulsati<strong>on</strong> of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s. The dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represents the boundarybetween the c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regimes predicted to arise at |c ph | = |U| from a1D analytic model which neglects diffusi<strong>on</strong>. All speeds shown are measured <str<strong>on</strong>g>in</str<strong>on</strong>g> units ofkm yr −1 .The spherical geometry, different equatorial symmetries of the flows <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence ofmagnetic diffusi<strong>on</strong> makes little difference to the qualitative character of the magnetic fieldevoluti<strong>on</strong>, which matched the predicti<strong>on</strong>s of the 1D model. Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>sare obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed when |U| >> |c ph | <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edwhen |U|


220 Chapter 8 — Wave flowsas simple c<strong>on</strong>centrati<strong>on</strong> than was expected. This is probably because the field pulsati<strong>on</strong>swere so l<strong>on</strong>g period (l<strong>on</strong>ger than the models were <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated for) that the associatedpulsati<strong>on</strong>s were not observed. When c ph was small <str<strong>on</strong>g>and</str<strong>on</strong>g> U was larger, is was not possibleto follow the field evoluti<strong>on</strong> for l<strong>on</strong>g because field c<strong>on</strong>centrati<strong>on</strong> was so much str<strong>on</strong>gerthan the horiz<strong>on</strong>tal diffusi<strong>on</strong> that the resoluti<strong>on</strong> of the models was <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient to capturethe details of the very sharp field features formed. The major c<strong>on</strong>clusi<strong>on</strong> from the surveyis clear: two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct regimes of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g field <str<strong>on</strong>g>and</str<strong>on</strong>g> drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldare produced by the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic acti<strong>on</strong> of a wave flows <strong>on</strong> a spherical surface depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<strong>on</strong> whether U or c ph is larger.Time series from c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pulsati<strong>on</strong> regimesIn figure 8.8 time series for 400 years of evoluti<strong>on</strong> of the maximum amplitude of then<strong>on</strong>-axial dipole radial magnetic field (B NADr ) are shown, <str<strong>on</strong>g>in</str<strong>on</strong>g> examples taken from thetwo regimes identified <str<strong>on</strong>g>in</str<strong>on</strong>g> the parameter survey. Each row documents a particular wavedrift rate (c ph ), the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> column is for E S <str<strong>on</strong>g>waves</str<strong>on</strong>g>, the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> column is for E A<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the different l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <strong>on</strong> each plot represent different magnitudes of fluid velocity(U) with<str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave.When the drift speed is slow (c ph =0.05 km yr −1 ) as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.8a,b, c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uousgrowth <str<strong>on</strong>g>in</str<strong>on</strong>g> field amplitude is observed, with the highest amplitudes be<str<strong>on</strong>g>in</str<strong>on</strong>g>g obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed forthe largest U. The maximum field amplitudes seem to be approach<str<strong>on</strong>g>in</str<strong>on</strong>g>g a steady state,though this would require l<strong>on</strong>ger model runs for c<strong>on</strong>firmati<strong>on</strong>— the results shown arestill slowly grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude after 400 years. Such an approach to a steady state ofbalance between field advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal diffusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference framewas anticipated <str<strong>on</strong>g>in</str<strong>on</strong>g> the modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of §8.2.5. To compare to the analytic model of §8.2.5,it is worth not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that <str<strong>on</strong>g>in</str<strong>on</strong>g> the present model Rmclmodel predicts field c<strong>on</strong>centrati<strong>on</strong> factors <str<strong>on</strong>g>in</str<strong>on</strong>g> the advecti<strong>on</strong>-diffusi<strong>on</strong> balance of= Ucmη∼ 14U. The 1D analyticale 14UI 0 (14U)which translates <str<strong>on</strong>g>in</str<strong>on</strong>g>to factors of 1.8, 2.6, 9.3, 20.9 respectively for U of 0.05, 0.1, 0.5,1, <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 km yr −1 . Lower field c<strong>on</strong>centrati<strong>on</strong>s are, however, expected <str<strong>on</strong>g>in</str<strong>on</strong>g> 2D (by abouta factor for 3 <str<strong>on</strong>g>in</str<strong>on</strong>g> the high R m limit) because the flows are not c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g field <str<strong>on</strong>g>in</str<strong>on</strong>g>such a precise, symmetrical way as <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D model. Furthermore, the results shownhave not yet reached the advecti<strong>on</strong>-diffusi<strong>on</strong> balance so it may be premature to comparethem to the 1D model where this is assumed to be the case.Bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d thesecaveats the results shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.8 seem compatible with the 1D analytic predicti<strong>on</strong>sof advecti<strong>on</strong>-diffusi<strong>on</strong> balance.E S wave flows were found to be slightly more efficient at produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>sthan E A flows, <str<strong>on</strong>g>and</str<strong>on</strong>g> flow amplitudes of 5km yr −1 or greater were found to be required toproduce field amplitudes 2 or more times str<strong>on</strong>ger than the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial dipole field strength(i.e. for BrNAD to exceed 1 × 10 5 nT). This is because there is more flow c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g>divergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the E S flow compared to the E A flows (see figure 8.6).


221 Chapter 8 — Wave flows(a) Max. of B NADr, c ph =0.05, E S . (b) Max. of B NADr, c ph =0.05, E A .1e+071e+07Maximum amplitude of NAD magnetic field (nT)1e+061e+051e+041e+031e+021e+01U=0.05 km/yrU=0.1 km/yrU=0.5 km/yrU=1 km/yrU=5 km/yrMaximum amplitude of NAD magnetic field (nT)1e+061e+051e+041e+031e+021e+01U=0.05 km/yrU=0.1 km/yrU=0.5 km/yrU=1 km/yrU=5 km/yr1e+000 100 200 300 400Time (yrs)1e+000 100 200 300 400Time (yrs)(c) Max. of B NADr, c ph =50, E S . (d) Max. of B NADr, c ph =50, E A .1e+071e+07Maximum amplitude of NAD magnetic field (nT)1e+061e+051e+041e+031e+021e+01U=0.05 km/yrU=0.1 km/yrU=0.5 km/yrU=1 km/yrU=5 km/yrMaximum amplitude of NAD magnetic field (nT)1e+061e+051e+041e+031e+021e+01U=0.05 km/yrU=0.1 km/yrU=0.5 km/yrU=1 km/yrU=5 km/yr1e+000 100 200 300 400Time (yrs)1e+000 100 200 300 400Time (yrs)Figure 8.8: Time series of evoluti<strong>on</strong> of maximum amplitude of Br NAD .Time series of the evoluti<strong>on</strong> of the maximum amplitude of the n<strong>on</strong> axial dipole (NAD)part of the radial magnetic field (B NADr ), obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed when an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole radialmagnetic field is acted <strong>on</strong> by an the m=8 wave of the form specified <str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong> (8.77).The left h<str<strong>on</strong>g>and</str<strong>on</strong>g> column shows the effect of E S flows, the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> column the effect of E Aflows. The top row is for c ph = 0.05km yr −1 while the bottom row is for c ph = 50km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> each plot illustrates the effect of 5 different wave flows with amplitudes U=0.05,0.1, 0.5, 1.0, 5.0 km yr −1 . Only the first 400 years of the field evoluti<strong>on</strong> is shown <str<strong>on</strong>g>in</str<strong>on</strong>g> eachcase, <str<strong>on</strong>g>and</str<strong>on</strong>g> the field amplitudes (BrNAD ) are plotted <strong>on</strong> a log scale.When |U|


222 Chapter 8 — Wave flowssmall scale to be followed with the resoluti<strong>on</strong> chosen. This does not however limit theapplicability of the results reported.8.3.4 Spatial characteristics of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the 2D wave flow modelThe evoluti<strong>on</strong> of the morphology of B rat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface provides <strong>on</strong>e of the fewc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> the fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>side of Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. In this chapter the aim isto test the hypothesis that k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic acti<strong>on</strong> of wave flows is capable of expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g someaspects of that magnetic field evoluti<strong>on</strong>. In this secti<strong>on</strong> the patterns of evoluti<strong>on</strong> of B rproduced by simple wave flows are described to enable comparis<strong>on</strong> with the evoluti<strong>on</strong>found <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models as was described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.In figures 8.9 to 8.14 B r result<str<strong>on</strong>g>in</str<strong>on</strong>g>g when an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole is acted <strong>on</strong> by m=8, E S<str<strong>on</strong>g>and</str<strong>on</strong>g> E A flows for a range of choices of c ph <str<strong>on</strong>g>and</str<strong>on</strong>g> U are presented. In each case (a) <str<strong>on</strong>g>and</str<strong>on</strong>g>(b) are B r after 100 years <str<strong>on</strong>g>and</str<strong>on</strong>g> 300 years <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (stati<strong>on</strong>ary) reference frame(SF), where the mean azimuthal flow is zero <str<strong>on</strong>g>and</str<strong>on</strong>g> the wave propagates with a phase speedc ph ; (c) is the velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame (RF) where the waveflow is steady but there is an azimuthal Galilean correcti<strong>on</strong> flow. (d) is BrNAD (the radialmagnetic field m<str<strong>on</strong>g>in</str<strong>on</strong>g>us its axial dipole comp<strong>on</strong>ent) <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame(RF) after 300 years. This plot can easily be compared with (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> allows <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>of the relative positi<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> thedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame. The stati<strong>on</strong>ary field c<strong>on</strong>centrati<strong>on</strong>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> thedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame of course move azimuthally with speed c ph <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al reference frame.C<strong>on</strong>centrati<strong>on</strong> regimeIn figure 8.9 the field evoluti<strong>on</strong> produced by an E S flow with c ph = 0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g>U=5 km yr −1 (so that U/c ph =100: well <str<strong>on</strong>g>in</str<strong>on</strong>g>side the c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g field regime) is presented.Associated animati<strong>on</strong>s of B r <str<strong>on</strong>g>and</str<strong>on</strong>g> BrNAD are found <str<strong>on</strong>g>in</str<strong>on</strong>g> A8.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> A8.2 respectively.As time goes <strong>on</strong>, field c<strong>on</strong>centrati<strong>on</strong>s (of the same polarity as the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field) are observedto form <str<strong>on</strong>g>and</str<strong>on</strong>g> become <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly sharp <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tense at locati<strong>on</strong>s of flow c<strong>on</strong>vergence<str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame, which are almost identical to the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g>the stati<strong>on</strong>ary frame because c ph is very small. The positi<strong>on</strong>s of str<strong>on</strong>gest c<strong>on</strong>vergence(where largest arrows <str<strong>on</strong>g>in</str<strong>on</strong>g> the flow plot po<str<strong>on</strong>g>in</str<strong>on</strong>g>t towards each other) occur at regi<strong>on</strong>s of c<strong>on</strong>verg<str<strong>on</strong>g>in</str<strong>on</strong>g>geastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward flow at the equator, but because the axial dipole <str<strong>on</strong>g>in</str<strong>on</strong>g>itialB r is weak there, highest c<strong>on</strong>centrati<strong>on</strong>s of B r develop at compromise latitudes close to15 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 15 ◦ S. Because the flow is E S <str<strong>on</strong>g>and</str<strong>on</strong>g> is act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> an E A <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field, there is nodistorti<strong>on</strong> of the magnetic equator <str<strong>on</strong>g>and</str<strong>on</strong>g> B r c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e hemisphere occur at thesame l<strong>on</strong>gitude as the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the opposite hemisphere. The whole pattern isobserved to move slowly <str<strong>on</strong>g>in</str<strong>on</strong>g> the stati<strong>on</strong>ary frame of reference while the amplitude of fieldc<strong>on</strong>centrati<strong>on</strong>s gradually <str<strong>on</strong>g>in</str<strong>on</strong>g>creases.


223 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =0.05, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =0.05, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =0.05, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =0.05, U =5, 300yrs.Figure 8.9: Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =0.05, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E S ,c ph =0.05 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nT after100 yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after 300years. (c) is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) withthe phase speed c ph of the wave: arrows show the flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> thespherical surface. (d) shows the n<strong>on</strong>-axial dipole comp<strong>on</strong>ent of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference framemov<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with the wave flow, after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at thepositi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame. These <str<strong>on</strong>g>and</str<strong>on</strong>g> all subsequent snapshots<strong>on</strong> a spherical surface <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter are <str<strong>on</strong>g>in</str<strong>on</strong>g> Mollewiede equal area map projecti<strong>on</strong>. Theunits of the c<strong>on</strong>tours of B r are nT, while those for the flow vectors arekm yr −1 .


224 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =0.05, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =0.05, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =0.05, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =0.05, U =5, 300yrs.Figure 8.10: Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =0.05, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E A ,c ph =0.05 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nTafter 100 yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after300 years. (c) is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g)with the phase speed of the wave: arrows show the flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> thespherical surface. (d) shows the n<strong>on</strong>-axial dipole comp<strong>on</strong>ent of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference framemov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave, after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at the positi<strong>on</strong>s offlow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame.


225 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =5, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =5, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =5, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =5, U=5, 300yrs.Figure 8.11: Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =5, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E S ,c ph =5 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nT after 100yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after 300 years. (c)is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) with the phasespeed of the wave: arrows show flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> the spherical surface.(d) shows the n<strong>on</strong>-axial dipole parts of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave,after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> thedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame.


226 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =5, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =5, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =5, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =5, U=5, 300yrs.Figure 8.12: Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =5, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E A ,c ph =5 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nT after 100yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after 300 years.(c) is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) with thephase speed of the wave: arrows show the flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> the sphericalsurface. (d) shows the n<strong>on</strong>-axial dipole comp<strong>on</strong>ent of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the frame rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g with thewave, after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g>the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame.


227 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =50, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =50, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =50, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =50, U=5, 300yrs.Figure 8.13: Axial dipole evoluti<strong>on</strong> for flow with m=8, E S , c ph =50, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E S ,c ph =50 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nT after100 yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after 300 years.(c) is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) with the phasespeed of the wave: arrows show the flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> the spherical surface.(d) shows the n<strong>on</strong>-axial dipole comp<strong>on</strong>ent of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference frame mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g with thewave, after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g>the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame.


228 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =50, U=5, 100yrs.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: c ph =50, U=5, 300yrs.(c)u <str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =50, U=5 .(d)B NADr<str<strong>on</strong>g>in</str<strong>on</strong>g> RF: c ph =50, U=5, 300yrs.Figure 8.14: Axial dipole evoluti<strong>on</strong> for flow with m=8, E A , c ph =50, U=5.Drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s produced from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial axial dipole B r for a m=8, E A ,c ph =50 km yr −1 , U=5 km yr −1 flow. In (a) is a c<strong>on</strong>tour plot of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> units of nT after100 yrs <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame that is not drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow; (b) is the same after 300 years.(c) is a plot of the steady wave flow <str<strong>on</strong>g>in</str<strong>on</strong>g> a reference frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) with thephase speed of the wave: arrows show the flow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong> <strong>on</strong> the sphericalsurface. (d) shows the n<strong>on</strong>-axial dipole parts of B r <str<strong>on</strong>g>in</str<strong>on</strong>g> the reference frame rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g withthe wave, after 300 years. Field c<strong>on</strong>centrati<strong>on</strong>s occur at the positi<strong>on</strong>s of flow c<strong>on</strong>vergence<str<strong>on</strong>g>in</str<strong>on</strong>g> the mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame.


229 Chapter 8 — Wave flowsFigure 8.10 documents the field evoluti<strong>on</strong> produced by an E A flow with the same parametersof c ph = 0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 . Animati<strong>on</strong>s of the evoluti<strong>on</strong> of B r <str<strong>on</strong>g>and</str<strong>on</strong>g>B NADrare found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong>s A7.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> A7.4. In this case although less <str<strong>on</strong>g>in</str<strong>on</strong>g>tense fieldc<strong>on</strong>centrati<strong>on</strong>s are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, the major acti<strong>on</strong> of the wave flow is to produce oscillati<strong>on</strong>sof the magnetic equator. Field c<strong>on</strong>centrati<strong>on</strong>s aga<str<strong>on</strong>g>in</str<strong>on</strong>g> arise at locati<strong>on</strong>s of flow c<strong>on</strong>vergence<str<strong>on</strong>g>in</str<strong>on</strong>g> the rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame: here these arise where poleward flow from low latitudemeets equatorward flow from high latitudes, aga<str<strong>on</strong>g>in</str<strong>on</strong>g> near 15 ◦ north <str<strong>on</strong>g>and</str<strong>on</strong>g> south.Transiti<strong>on</strong> RegimeFigures 8.11 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8.12 al<strong>on</strong>g with animati<strong>on</strong>s A8.5 to A8.8 illustrate the properties of B revoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the transiti<strong>on</strong> regi<strong>on</strong> between the c<strong>on</strong>centrati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g> the pulsati<strong>on</strong>regime (when c ph = U= 5km yr −1 ). Field morphologies <str<strong>on</strong>g>in</str<strong>on</strong>g> this case are similar to thosefound <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong> regime, but the amplitude of the c<strong>on</strong>centrati<strong>on</strong>s are smaller<str<strong>on</strong>g>and</str<strong>on</strong>g> have stopped grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g, probably as part of some l<strong>on</strong>g period pulsati<strong>on</strong>, by the endof the 300 year <str<strong>on</strong>g>in</str<strong>on</strong>g>terval studied. Field c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong>ce aga<str<strong>on</strong>g>in</str<strong>on</strong>g> appear at the positi<strong>on</strong>sof flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame, but these are no l<strong>on</strong>ger the positi<strong>on</strong>s of flowc<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the stati<strong>on</strong>ary frame (they are offset by a quarter of a cycle or π 2 radiansdescribed as previously <str<strong>on</strong>g>in</str<strong>on</strong>g> the 1D model). The drift <str<strong>on</strong>g>in</str<strong>on</strong>g> the field c<strong>on</strong>centrati<strong>on</strong>s is observedvery clearly <str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the stati<strong>on</strong>ary frame. This is unequivocal evidence thatpropagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flows can produce drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphericalgeometry.Pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regimeFigures 8.13 <str<strong>on</strong>g>and</str<strong>on</strong>g> 8.14 al<strong>on</strong>g with animati<strong>on</strong>s A8.9 to A8.12 illustrate the properties ofB r evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the pulsat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regime when c ph = 50km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U= 5km yr −1 . For thesame strength of U clear distorti<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>centrat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregime; now <strong>on</strong>ly weak modulati<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field is seen. The perturbati<strong>on</strong> to B r hasthe same morphology as that found <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transiti<strong>on</strong> regimes, withfield c<strong>on</strong>centrati<strong>on</strong>s occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g at locati<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g referenceframe. However, the flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame is now dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated bythe back-flow <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by the Galilean change of reference frame, so no neutral po<str<strong>on</strong>g>in</str<strong>on</strong>g>tsof flow exist <str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>in</str<strong>on</strong>g> a manner similar to the 1D model, the field is advected over regi<strong>on</strong>sof net c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the characteristic pulsati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude.For the cases exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed this pulsati<strong>on</strong> manifests itself <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals of growth of deviati<strong>on</strong>sof the c<strong>on</strong>tours of magnetic field from the axial dipole (either E S or E A depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>the parity of the wave flow), followed by a rapid decay back to the purely dipolar state,followed by another <str<strong>on</strong>g>in</str<strong>on</strong>g>terval of rapid growth as the pulsati<strong>on</strong> starts aga<str<strong>on</strong>g>in</str<strong>on</strong>g>. For sufficiently<str<strong>on</strong>g>in</str<strong>on</strong>g>tense U (but it must be less than c ph if pulsati<strong>on</strong> is to occur) this regime can producedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s of B r that periodically pulsate <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude.


230 Chapter 8 — Wave flowsEffect of <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic fields with m > 0A possible objecti<strong>on</strong> to generalis<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of the previous secti<strong>on</strong> might be that<strong>on</strong>ly the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the flow <strong>on</strong> an m=0, E A , axial dipole <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r has been studied.To deal with this objecti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g>itial fields with m=1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 were also studied for the casewhen c ph = U = 5 km yr −1 . The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r morphology after 300 years is shown <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 8.15 <str<strong>on</strong>g>and</str<strong>on</strong>g> animati<strong>on</strong>s of the evoluti<strong>on</strong> can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong>s A8.13 <str<strong>on</strong>g>and</str<strong>on</strong>g> A8.14.(a)B INITr(m=1), c ph =0.05, U=5. (b)BrINIT (m=4), c ph =0.05, U=5.Figure 8.15: Evoluti<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r with m=1, 4.Snapshots of the B r , produced by after 300 years acti<strong>on</strong> by the m=8 E S wave flow withc ph =0.05 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5. In (a) the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r was an equatorial dipole field (m = 1 while <str<strong>on</strong>g>in</str<strong>on</strong>g>(b) it was a l=4, m=4 (cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e term <strong>on</strong>ly) spherical harm<strong>on</strong>ic.The presence of an m > 0 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field does not <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the number of str<strong>on</strong>gest magneticfield c<strong>on</strong>centrati<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed: this still matches the azimuthal wavenumber m of thewave flow. Field c<strong>on</strong>centrati<strong>on</strong>s are co<str<strong>on</strong>g>in</str<strong>on</strong>g>cident with the locati<strong>on</strong>s of the maxima offlow c<strong>on</strong>vergence at the geographical equator <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame.The wavenumber of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field does however determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the polarity of the fieldc<strong>on</strong>centrati<strong>on</strong>s. The field c<strong>on</strong>centrati<strong>on</strong> will always be of the same polarity as the <str<strong>on</strong>g>in</str<strong>on</strong>g>itialfield at the locati<strong>on</strong> of the c<strong>on</strong>vergence of the flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame. Whenthis flow c<strong>on</strong>vergence positi<strong>on</strong> occurs at a po<str<strong>on</strong>g>in</str<strong>on</strong>g>t where the magnetic field is close to zero,field c<strong>on</strong>centrati<strong>on</strong>s of both polarities are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed very close together.8.3.5 Evoluti<strong>on</strong> of realistic magnetic fields produced by wave flowsHav<str<strong>on</strong>g>in</str<strong>on</strong>g>g established the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of a wave flow <strong>on</strong> a variety of simple <str<strong>on</strong>g>in</str<strong>on</strong>g>itial radialmagnetic fields, the next logical step is to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the effect such a flow would have<strong>on</strong> a more complex <str<strong>on</strong>g>and</str<strong>on</strong>g> realistic <str<strong>on</strong>g>in</str<strong>on</strong>g>itial B r . The 1590 B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface from gufm1(see appendix A for a descripti<strong>on</strong> of this model) shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.16a was chosen for thispurpose. Its observed evoluti<strong>on</strong> is illustrated by a snapshot of the field 200 years later<str<strong>on</strong>g>in</str<strong>on</strong>g> 1790 <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.16b. A particularly notable feature is the westward moti<strong>on</strong> of the B r


231 Chapter 8 — Wave flowsc<strong>on</strong>centrati<strong>on</strong> start<str<strong>on</strong>g>in</str<strong>on</strong>g>g under India that f<str<strong>on</strong>g>in</str<strong>on</strong>g>ishes under the middle of the Indian ocean. Itis the behaviour of such azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features that the acti<strong>on</strong> of wave flowsmust be able to reproduce <str<strong>on</strong>g>in</str<strong>on</strong>g> order to be c<strong>on</strong>sidered as a plausible mechanisms for theorig<str<strong>on</strong>g>in</str<strong>on</strong>g> of azimuthal geomagnetic secular variati<strong>on</strong>.(a) 1590 (b) 1790Figure 8.16: B r from gufm1 at <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1790.Snapshots of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, from the model gufm1, <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> 200 yearslater <str<strong>on</strong>g>in</str<strong>on</strong>g> 1790 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b).The propagati<strong>on</strong> speed c ph of wave flows was chosen to match the observed westwarddrift speed of field features at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (17 km yr −1 ) 8 , magnetic diffusi<strong>on</strong> wasset to the expected <str<strong>on</strong>g>core</str<strong>on</strong>g> value of 1 m 2 s −1 (31.5 km 2 yr −1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field was<str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated forward for 200 years with both E S <str<strong>on</strong>g>and</str<strong>on</strong>g> E A wave flows with speeds with<str<strong>on</strong>g>in</str<strong>on</strong>g>the wave (U) of 1, 5, 10, 15, 17 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 km yr −1 . Snapshots of the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r fromE S flows are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.17 <str<strong>on</strong>g>and</str<strong>on</strong>g> animati<strong>on</strong>s A8.15 to A8.20 <str<strong>on</strong>g>and</str<strong>on</strong>g> from E A flows<str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.18 <str<strong>on</strong>g>and</str<strong>on</strong>g> animati<strong>on</strong>s A8.21 to A8.26 (further details of the animati<strong>on</strong>s can befound <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix F).The E S flow is c<strong>on</strong>sidered first. When U is 1 km yr −1 the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of flow c<strong>on</strong>vergenceis too weak to produce much observable effect <strong>on</strong> the field morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> the result<str<strong>on</strong>g>in</str<strong>on</strong>g>gpulsati<strong>on</strong>s are too weak to be seen, except through t<str<strong>on</strong>g>in</str<strong>on</strong>g>y oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the amplitude<str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>s of pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g low latitude field c<strong>on</strong>centrati<strong>on</strong>s. When U=5 km yr −1 , theflow is str<strong>on</strong>g enough to produce observable effects, but the positi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> moti<strong>on</strong>s offield c<strong>on</strong>centrati<strong>on</strong>s are still dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field c<strong>on</strong>figurati<strong>on</strong>. The animati<strong>on</strong>A8.16 of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this case shows both growth <str<strong>on</strong>g>and</str<strong>on</strong>g> drift of field c<strong>on</strong>centrati<strong>on</strong>s,but dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the rapid decay phase of the pulsati<strong>on</strong> the field returns back toward its<str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>figurati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> no c<strong>on</strong>sistent moti<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s are achieved. ForU=10 km yr −1 , the effects of field c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> drift can be clearly seen, withfield amplitudes several times that of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field are produced as the field is pulled8 This is an extreme scenario designed to highlight the effects of pure wave propagati<strong>on</strong>. If azimuthalflows also c<strong>on</strong>tributed to the westward drift of B rcould be envisaged.features as seems likely, then lower choices for c ph


232 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=1.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=5.(c)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=10.(d)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=15.(e)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=17.(f)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E S with c ph =17, U=20.Figure 8.17: Acti<strong>on</strong> of E S , m=8 flow <strong>on</strong> 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field after 200yrs.Result of 200 years of field evoluti<strong>on</strong> produced by E S wave flows <str<strong>on</strong>g>and</str<strong>on</strong>g> weak magneticdiffusi<strong>on</strong> start<str<strong>on</strong>g>in</str<strong>on</strong>g>g from B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590. The wave flows were chosen tohave a propagati<strong>on</strong> speed of c ph = 17km yr −1 to match the observed westward drift speed<str<strong>on</strong>g>and</str<strong>on</strong>g> have wave amplitudes (U) of 1 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), 5 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), 10 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c),15 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (d), 17 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (f) (note the change <str<strong>on</strong>g>in</str<strong>on</strong>g> scale <str<strong>on</strong>g>in</str<strong>on</strong>g>(e) <str<strong>on</strong>g>and</str<strong>on</strong>g> (f)).


233 Chapter 8 — Wave flows(a)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=1.(b)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=5.(c)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=10.(d)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=15.(e)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=17.(f)B r <str<strong>on</strong>g>in</str<strong>on</strong>g> SF: E A with c ph =17, U=20.Figure 8.18: Acti<strong>on</strong> of E A , m=8 flow <strong>on</strong> 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field after 200yrs.Result of 200 years of field evoluti<strong>on</strong> produced by E A wave flows <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong><strong>on</strong> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590. The wave flows were chosen to have a drift speed ofc ph =17 km yr −1 to match the observed westward drift speed <str<strong>on</strong>g>and</str<strong>on</strong>g> have wave amplitudes(U) of 1 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), 5 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), 10 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c), 15 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (d), 17 km yr −1<str<strong>on</strong>g>in</str<strong>on</strong>g> (e) <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (f).


234 Chapter 8 — Wave flowstowards the positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g (rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g) reference frame.However the field evoluti<strong>on</strong> is still <str<strong>on</strong>g>in</str<strong>on</strong>g> the pulsati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sistently propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfield features are still not observed. For example, the field c<strong>on</strong>centrati<strong>on</strong> under India is<str<strong>on</strong>g>in</str<strong>on</strong>g>itially <str<strong>on</strong>g>in</str<strong>on</strong>g>tensified for the first 25 years of the wave flow acti<strong>on</strong>, then is observed to driftwestward at speed c ph for 75 years, but <strong>on</strong>ce the decay phase of the pulsati<strong>on</strong> beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s, theamplitude of the field perturbati<strong>on</strong> decays <str<strong>on</strong>g>and</str<strong>on</strong>g> the field feature decays, even appear<str<strong>on</strong>g>in</str<strong>on</strong>g>gto return towards its <str<strong>on</strong>g>in</str<strong>on</strong>g>itial locati<strong>on</strong>.When U=15 km yr −1 the field morphology becomes dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by the positi<strong>on</strong>s of flowc<strong>on</strong>vergence, rather than by the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial magnetic field c<strong>on</strong>figurati<strong>on</strong>. The feature underIndia can now be followed drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g as far as Africa, but has become much smaller scale.The pulsati<strong>on</strong> phenomena is still evident, but now seems to have a l<strong>on</strong>ger period. WhenU=17 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=20km yr −1 the field evoluti<strong>on</strong> is completely dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by thepositi<strong>on</strong>s of the flow c<strong>on</strong>vergence: clearly the simple wave flow chosen is not sufficientlycomplex to capture the detailed moti<strong>on</strong>s of field features at a range of latitudes. Foran E S wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field the field c<strong>on</strong>centrati<strong>on</strong>s formed are E Ssuggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g they result primarily from the acti<strong>on</strong> of the E S wave flow <strong>on</strong> the E S part ofthe 1590 field (that dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates the E A comp<strong>on</strong>ent at low latitudes). Wave flows withlarge amplitudes are observed to produce field c<strong>on</strong>centrati<strong>on</strong>s much more <str<strong>on</strong>g>in</str<strong>on</strong>g>tense <str<strong>on</strong>g>and</str<strong>on</strong>g>smaller scale than those seen <str<strong>on</strong>g>in</str<strong>on</strong>g> observati<strong>on</strong>s (though the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>ghas not yet been taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account — see next secti<strong>on</strong>).Mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> to c<strong>on</strong>sider the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of E A wave flows <strong>on</strong> the 1590 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field shown <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 8.18, the situati<strong>on</strong> is similar to the E S flow case with regard to little <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong>the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field when U is small (1 or 5 km yr −1 ) while the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the flow aga<str<strong>on</strong>g>in</str<strong>on</strong>g>dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates field evoluti<strong>on</strong> when U is greater than 15 km yr −1 . The major impact of thisflow <strong>on</strong> the field morphology is not to produce str<strong>on</strong>g drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s but toproduces oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the magnetic equator which drift westward. The observed fieldevoluti<strong>on</strong> with the E A wave flows seems qualitatively different from that observed <str<strong>on</strong>g>in</str<strong>on</strong>g> thehistorical geomagnetic field model gufm1.8.3.6 Impact of crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> sources of hemispherical asymmetryUnfortunately, it is at present impossible to observe the small length scale (l < 13) detailsof the radial magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface us<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>s made at Earth’s surfacebecause crustal magnetic fields c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ate measurements. This c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> meansthat <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>verged images of the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, regularisati<strong>on</strong>must be applied dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of observati<strong>on</strong>s for a field model. Details of theregularisati<strong>on</strong> techniques can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix A or <str<strong>on</strong>g>in</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2004). Field modelsobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from regularised <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> (us<str<strong>on</strong>g>in</str<strong>on</strong>g>g quadratic norms, as is the case for gufm1) aretherefore a smoothed image of the true <str<strong>on</strong>g>core</str<strong>on</strong>g> field. In order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether thefield morphologies produced by the acti<strong>on</strong> of wave flows bear any resemblance to the


235 Chapter 8 — Wave flowsobserved field evoluti<strong>on</strong>, the calculated fields should be smoothed <str<strong>on</strong>g>in</str<strong>on</strong>g> the same manneras is the observed field.A taper functi<strong>on</strong> which mimics the effect of field regularisati<strong>on</strong> can be derived fromthe expressi<strong>on</strong> for the norm m<str<strong>on</strong>g>in</str<strong>on</strong>g>imised <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>structi<strong>on</strong> offield models. This <str<strong>on</strong>g>in</str<strong>on</strong>g>volves differentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the objective functi<strong>on</strong> (see appendix A) withrespect to the gauss coefficients, sett<str<strong>on</strong>g>in</str<strong>on</strong>g>g the differential to zero <str<strong>on</strong>g>and</str<strong>on</strong>g> rearrang<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Forfurther details see Ward<str<strong>on</strong>g>in</str<strong>on</strong>g>ski (2005), chapter 3, page 44). For the Ohmic heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g normm<str<strong>on</strong>g>in</str<strong>on</strong>g>imised dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>structi<strong>on</strong> of gufm1 the regularised (damped) gauss coefficientsg m l D are found to be related to the true coefficients gm lg m l D =by the expressi<strong>on</strong>glm4π(l+1)(2l+1)(2l+3)(1 + λ a) 2l+4(8.91)S lcUs<str<strong>on</strong>g>in</str<strong>on</strong>g>g the same choice of the damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameter as for gufm1 (λ S = 1 × 10 −12 nT −2 ),the results of the field evoluti<strong>on</strong> computati<strong>on</strong>s reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the previous secti<strong>on</strong> can nowbe processed to mimic what would be observed <str<strong>on</strong>g>in</str<strong>on</strong>g> a regularised field model. Snapshotsof the results of the applicati<strong>on</strong> of such process<str<strong>on</strong>g>in</str<strong>on</strong>g>g are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> figure 8.19. Examplesfor E S flows with c ph = 17km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=15, 17, 20 km yr −1 after 150 <str<strong>on</strong>g>and</str<strong>on</strong>g> 400 yearsof evoluti<strong>on</strong> from the 1590 gufm1 field are presented. Animati<strong>on</strong>s of all 400 years ofevoluti<strong>on</strong> for these 3 cases can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> animati<strong>on</strong>s A8.27, A8.28 <str<strong>on</strong>g>and</str<strong>on</strong>g> A8.29.Figure 8.19 clearly shows that even if the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> is small scale <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s large amplitude features, then field models derived us<str<strong>on</strong>g>in</str<strong>on</strong>g>g quadratic regularisati<strong>on</strong>techniques from observati<strong>on</strong>s at Earth’s surface will be large scale <str<strong>on</strong>g>and</str<strong>on</strong>g> smooth. Thismakes it difficult to rule out particular <str<strong>on</strong>g>core</str<strong>on</strong>g> flows as unreas<strong>on</strong>able because of the highamplitude, sharp field features they would produce. Field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the dampedmodels occur centred <strong>on</strong> the positi<strong>on</strong>s of field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the undamped case, butare of lower amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> larger spatial extent. As U becomes larger the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field ismore readily distorted, with field c<strong>on</strong>centrati<strong>on</strong> form<str<strong>on</strong>g>in</str<strong>on</strong>g>g at positi<strong>on</strong>s of drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g flow c<strong>on</strong>vergence,even <str<strong>on</strong>g>in</str<strong>on</strong>g> areas where the field <str<strong>on</strong>g>in</str<strong>on</strong>g>itially has low amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients. Withthe smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of regularisati<strong>on</strong> taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account, the field morphology producedwhen U is large is still rather different to that found <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field modelsbe<str<strong>on</strong>g>in</str<strong>on</strong>g>g very dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by spatially periodic c<strong>on</strong>centrati<strong>on</strong>s produced by the wave flow.It seems probable that whatever flows at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface are <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the observedgeomagnetic secular variati<strong>on</strong>, they will be of magnitude less than 17 km yr −1 , otherwise<str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s (see, for example, Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1991)) would be compelledto reproduce these large magnitudes.The present experiments also give <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the problem of whether the field structure<str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific means that the effects a global wave flow would be seen <strong>on</strong>ly weakly there(see §3.5). It is found that early <str<strong>on</strong>g>in</str<strong>on</strong>g> the experiments, when the field <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific waslow amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> featureless (similar to the 1590 gufm1 field), that the wave flowsproduced high amplitude, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s of field <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere but


236 Chapter 8 — Wave flows(a)B r D : E S , c ph =17, U=15, t=150.(b)B r D : E S , c ph =17, U=15, t=400.(c)B r D : E S , c ph =17, U=17, t=150.(d)B r D : E S , c ph =17, U=17, t=400.(e)B r D : E S , c ph =17, U=20, t=150.(f)B r D : E S , c ph =17, U=20, t=400.Figure 8.19: B r D due to E S , m=8 flows act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> 1590 B r for 150, 400 yrs.Result of 150 <str<strong>on</strong>g>and</str<strong>on</strong>g> 400 years of field evoluti<strong>on</strong> produced by E S wave flows al<strong>on</strong>g withlimited magnetic diffusi<strong>on</strong> act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface start<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the 1590 gufm1field <str<strong>on</strong>g>and</str<strong>on</strong>g> with a synthetic crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g applied. The wave flows were chosen to have adrift speed of c ph =17 km yr −1 to match the observed westward drift speed <str<strong>on</strong>g>and</str<strong>on</strong>g> have waveamplitudes U of 15 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b), 15 km yr −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d), <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 km yr −1<str<strong>on</strong>g>in</str<strong>on</strong>g> (e), (f).


237 Chapter 8 — Wave flows<strong>on</strong>ly weaker field evoluti<strong>on</strong> of a similar form <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere. However, afterseveral hundred years, the global wave flow alters the background field <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacificsufficiently that high amplitude, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s are also observed there.Str<strong>on</strong>ger flows (larger U) were found to produce str<strong>on</strong>ger patterns of field evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>the Pacific hemisphere after shorter amounts of time.These results <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that <str<strong>on</strong>g>in</str<strong>on</strong>g> order for the Pacific to have exhibited c<strong>on</strong>sistently weakerpatterns of field evoluti<strong>on</strong> over the past 400 years, then the smooth field structure <str<strong>on</strong>g>in</str<strong>on</strong>g>the Pacific would need to ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. One possible explanati<strong>on</strong> c<strong>on</strong>sistent with thesef<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <str<strong>on</strong>g>and</str<strong>on</strong>g> with the results of chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 is that a global wave flow is present, butthere is a stratified layer close to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface at low <str<strong>on</strong>g>and</str<strong>on</strong>g> southern latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> thePacific hemisphere. This layer would reduce the amplitude of the vertical fluid moti<strong>on</strong>,<str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the amplitude of associated flow c<strong>on</strong>vergence, mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g it more difficult togenerate field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients <str<strong>on</strong>g>in</str<strong>on</strong>g> this regi<strong>on</strong>. The existence of such a layercould also expla<str<strong>on</strong>g>in</str<strong>on</strong>g> why the wave flows are <strong>on</strong>ly seen weakly <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphereover several centuries. Another, perhaps simpler, possibility is that the geodynamomechanism operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g with an <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous pattern of heat flow <str<strong>on</strong>g>in</str<strong>on</strong>g>to the mantle tendsto generate background fields <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific that are c<strong>on</strong>sistently of the required lowamplitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> gradients.8.3.7 Discussi<strong>on</strong> of implicati<strong>on</strong>s for mechanisms of geomagnetic secular variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> techniquesThe purpose of this chapter was to test whether propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flows were a reas<strong>on</strong>ablemodel for the orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r observed at the<str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The results from both the 1D <str<strong>on</strong>g>and</str<strong>on</strong>g> the 2D modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g have shown that waveflows can produce azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, wave-like,magnetic field c<strong>on</strong>centrati<strong>on</strong>s from an <str<strong>on</strong>g>in</str<strong>on</strong>g>itially uniform field. The c<strong>on</strong>centrati<strong>on</strong>s eithergrow <str<strong>on</strong>g>in</str<strong>on</strong>g> strength <str<strong>on</strong>g>and</str<strong>on</strong>g> sharpness until balanced by magnetic diffusi<strong>on</strong> or undergo periodicpulsati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude. It is therefore possible that the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic effect of propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregi<strong>on</strong>s of c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> wave flows close to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface could expla<str<strong>on</strong>g>in</str<strong>on</strong>g> both thesource of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent anomalies <str<strong>on</strong>g>in</str<strong>on</strong>g> B r <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> azimuthal moti<strong>on</strong>.However, for a simple m=8 wave flow propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the rate required to reproduce theobserved westward drift of field c<strong>on</strong>centrati<strong>on</strong>s (c ph = 17km yr −1 ), there are difficulties<str<strong>on</strong>g>in</str<strong>on</strong>g> reproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspects of field evoluti<strong>on</strong> observed <str<strong>on</strong>g>in</str<strong>on</strong>g> historical geomagnetic field models.When the wave flow amplitude U is small, the result<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r morphology is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated bythat of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field <str<strong>on</strong>g>and</str<strong>on</strong>g> systematic pulsati<strong>on</strong> prevents the generati<strong>on</strong> of c<strong>on</strong>sistentlydrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g features. It should however be noted that there are <str<strong>on</strong>g>in</str<strong>on</strong>g>dicati<strong>on</strong>s of some pulsati<strong>on</strong>typebehaviour of westward mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1, particularly of the fieldfeature that starts <str<strong>on</strong>g>in</str<strong>on</strong>g> the Indian ocean <str<strong>on</strong>g>in</str<strong>on</strong>g> 1590. If |c ph | > |U|, but U was large enough toproduce field c<strong>on</strong>centrati<strong>on</strong>s, the wave flow mechanism could perhaps account for both


238 Chapter 8 — Wave flowsthe drift <str<strong>on</strong>g>and</str<strong>on</strong>g> the pulsati<strong>on</strong> of this feature. However other systematically puls<str<strong>on</strong>g>in</str<strong>on</strong>g>g fieldfeatures (not seen <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1) would also be expected to exist.On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, when the flow is str<strong>on</strong>g enough so that pulsati<strong>on</strong>s are not observed(U ≥ 17km yr −1 ), positi<strong>on</strong>s of flow c<strong>on</strong>vergence dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate field evoluti<strong>on</strong>, with fieldobserved be<str<strong>on</strong>g>in</str<strong>on</strong>g>g collected towards these locati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to a series of <str<strong>on</strong>g>in</str<strong>on</strong>g>tense, small scaledrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features. Although these characteristics are smoothed when the effectsof crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g are taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account, the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of field morphology by the<str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the wave flow (overwhelm<str<strong>on</strong>g>in</str<strong>on</strong>g>g any memory the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial field c<strong>on</strong>figurati<strong>on</strong>)suggests that such str<strong>on</strong>g wave flows are unlikely.In this chapter <strong>on</strong>ly the extreme case of azimuthal moti<strong>on</strong> of field features be<str<strong>on</strong>g>in</str<strong>on</strong>g>g totallydue to wave propagati<strong>on</strong> was c<strong>on</strong>sidered. If <str<strong>on</strong>g>in</str<strong>on</strong>g>stead <strong>on</strong>e admits the possibility that some(or most) of the observed westward drift is due to azimuthal flow, then large U areno l<strong>on</strong>ger required to avoid pulsati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce c ph is smaller <str<strong>on</strong>g>and</str<strong>on</strong>g> the dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of fieldmorphology be the wave flows can be avoided. Such azimuthal flows are likely to exist<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> due to thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see, for example,Fearn et al., (1988) <str<strong>on</strong>g>and</str<strong>on</strong>g> Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (2005)). If <strong>on</strong>e imag<str<strong>on</strong>g>in</str<strong>on</strong>g>es that c ph isvery small (as would be case for the c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> studied <str<strong>on</strong>g>in</str<strong>on</strong>g>the previous chapter) then field c<strong>on</strong>centrati<strong>on</strong>s could still be produced by the wave flows,<str<strong>on</strong>g>and</str<strong>on</strong>g> the whole pattern could move <str<strong>on</strong>g>in</str<strong>on</strong>g>stead via advecti<strong>on</strong> by azimuthal flows. Perhaps thetriple c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts of satisfy<str<strong>on</strong>g>in</str<strong>on</strong>g>g (i) the observed drift speed, (ii) the absence of systematicstr<strong>on</strong>g pulsati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> (iii) absence of dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of field morphology by the wave flowpattern, may <str<strong>on</strong>g>in</str<strong>on</strong>g> the future prove useful <str<strong>on</strong>g>in</str<strong>on</strong>g> help<str<strong>on</strong>g>in</str<strong>on</strong>g>g to quantify the relative proporti<strong>on</strong> ofwave propagati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk advecti<strong>on</strong> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g observed azimuthal field moti<strong>on</strong>s.It should also be remarked that there are several deficiencies <str<strong>on</strong>g>in</str<strong>on</strong>g> the model presented <str<strong>on</strong>g>in</str<strong>on</strong>g>this chapter of how hydromagnetic wave flows produce patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r . These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude thatradial magnetic diffusi<strong>on</strong> has been neglected; that the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic wave flows employedare dynamically over-simplified with no feedback from magnetic field c<strong>on</strong>centrati<strong>on</strong>s(through the Lorentz force) <strong>on</strong> the flow; <str<strong>on</strong>g>and</str<strong>on</strong>g> that models ignore 3D aspects of fielddistorti<strong>on</strong> which can produce B r through the acti<strong>on</strong> of the flow <strong>on</strong> the unknown toroidalmagnetic field. These limitati<strong>on</strong>s will result <str<strong>on</strong>g>in</str<strong>on</strong>g> field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> these models priorto crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g that are smaller scale <str<strong>on</strong>g>and</str<strong>on</strong>g> more <str<strong>on</strong>g>in</str<strong>on</strong>g>tense than is actually likely to bethe case.The amplitude of U expected for hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> is another importantmiss<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t that is crucial for assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the relevance of the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic c<strong>on</strong>centrati<strong>on</strong>by wave flow mechanism for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secular variati<strong>on</strong>. If U saturatesat too small a value this mechanism will never be feasible. Knowledge of the amplitudeof U from theory requires fully n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g bothsaturati<strong>on</strong> mechanisms <str<strong>on</strong>g>and</str<strong>on</strong>g> realistic toroidal fields <str<strong>on</strong>g>in</str<strong>on</strong>g> the parameter regime appropriateto Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>— such models do not yet exist (but see §9.3).


239 Chapter 8 — Wave flows<str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> have however been found <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo models (see chapter 5).These models <str<strong>on</strong>g>in</str<strong>on</strong>g>clude all the physical processes described above that have been neglected<str<strong>on</strong>g>in</str<strong>on</strong>g> the model of this chapter, though they are not <str<strong>on</strong>g>in</str<strong>on</strong>g> the correct dynamical regime forthe Earth. In the geodynamo model DYN1 that was studied <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter ??, it was foundthat |U| >> |c ph | <str<strong>on</strong>g>and</str<strong>on</strong>g> observed that magnetic field c<strong>on</strong>centrati<strong>on</strong>s (without pulsati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>amplitude) were formed at <str<strong>on</strong>g>and</str<strong>on</strong>g> moved al<strong>on</strong>g with positi<strong>on</strong>s of flow c<strong>on</strong>vergence. Thesef<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with the results reported <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter <str<strong>on</strong>g>and</str<strong>on</strong>g> suggest thatthe 2D model presented here can correctly predict observable c<strong>on</strong>sequences, despite itssimplicity. The magnetic field c<strong>on</strong>centrati<strong>on</strong>s observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the geodynamo model were lesssharp than those found <str<strong>on</strong>g>in</str<strong>on</strong>g> the simple 2D model, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the presence of a Lorentzforce <str<strong>on</strong>g>and</str<strong>on</strong>g> radial magnetic diffusi<strong>on</strong> moderates the amplitude of field gradients that c<str<strong>on</strong>g>and</str<strong>on</strong>g>evelop. The n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> between the wave flow <str<strong>on</strong>g>and</str<strong>on</strong>g> other flows <str<strong>on</strong>g>in</str<strong>on</strong>g> DYN1led to the break up of the field c<strong>on</strong>centrati<strong>on</strong>s associated with the <str<strong>on</strong>g>waves</str<strong>on</strong>g>. This suggeststhat the l<strong>on</strong>g lived field c<strong>on</strong>centrati<strong>on</strong>s found <str<strong>on</strong>g>in</str<strong>on</strong>g> the simple 2D model are unphysical <str<strong>on</strong>g>and</str<strong>on</strong>g>fits <str<strong>on</strong>g>in</str<strong>on</strong>g> well with the episodic evoluti<strong>on</strong> of azimuthally mov<str<strong>on</strong>g>in</str<strong>on</strong>g>g field patches observed <str<strong>on</strong>g>in</str<strong>on</strong>g>geomagnetic field models (see chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4).The results reported <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter have implicati<strong>on</strong>s for the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of geomagneticfield models to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e fluid moti<strong>on</strong>s at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. If drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r c<strong>on</strong>centrati<strong>on</strong>sare (even partly) a result of a hydromagnetic wave propagati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> not just the bulkadvecti<strong>on</strong> of magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es by a flow, then the str<strong>on</strong>g westward flows <str<strong>on</strong>g>in</str<strong>on</strong>g>ferred atlow latitudes under the Atlantic hemisphere <str<strong>on</strong>g>in</str<strong>on</strong>g> many <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s (Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>,1991) may be quantitatively <str<strong>on</strong>g>in</str<strong>on</strong>g>correct. This fact has already been noted by Love (1999)<str<strong>on</strong>g>and</str<strong>on</strong>g> Rau et al. (2000) where the flow calculated from the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of B r evoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>a numerical dynamo model produced spurious equatorial jets where wave-related fielddrift was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the model. The results <str<strong>on</strong>g>in</str<strong>on</strong>g> this chapter suggest that the failureof the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> technique was not due to the frozen flux assumpti<strong>on</strong> (the frozen fluxassumpti<strong>on</strong> was made <str<strong>on</strong>g>in</str<strong>on</strong>g> the models used to dem<strong>on</strong>strate that drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>can be produced by propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flows <str<strong>on</strong>g>in</str<strong>on</strong>g> §8.2). Instead it seem most likely thatthe regularisati<strong>on</strong> applied dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> favours an <str<strong>on</strong>g>in</str<strong>on</strong>g>correct explanati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> termsof large scale flow rather than the small scale flows <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> a wave. Dynamicalc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts that are <str<strong>on</strong>g>in</str<strong>on</strong>g>stantaneously <str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>sistent with the wave flows may also play apart <str<strong>on</strong>g>in</str<strong>on</strong>g> such failures of flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s.If drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s are produced by a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow, then carry<str<strong>on</strong>g>in</str<strong>on</strong>g>gout a <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g al<strong>on</strong>g with the wave (Davis <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler,1996; Holme <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler, 2001) should yield useful <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>. In the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame,<strong>on</strong>e could then recover the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the Galilean correcti<strong>on</strong> flow −c ph <str<strong>on</strong>g>and</str<strong>on</strong>g> thestati<strong>on</strong>ary wave flow U produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g field c<strong>on</strong>centrati<strong>on</strong>s. It might even be possible tosimultaneously <str<strong>on</strong>g>in</str<strong>on</strong>g>vert for several wave flows, each with an associated reference framedrift<str<strong>on</strong>g>in</str<strong>on</strong>g>g at a different speed. However <str<strong>on</strong>g>in</str<strong>on</strong>g> order to have c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g> this procedure, itwould be necessary that the flows <str<strong>on</strong>g>in</str<strong>on</strong>g> the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame had a flow structure compatible


240 Chapter 8 — Wave flowswith wave propagati<strong>on</strong>. It seems unlikely that this is the case <str<strong>on</strong>g>in</str<strong>on</strong>g> the studies that havebeen carried out to date.If, as seems possible given the results <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7, the distorti<strong>on</strong> of the toroidal magneticfield by hydromagnetic wave flows c<strong>on</strong>tributes to the perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r observed atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface, the <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s issomewhat more difficult. For <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g a drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame, the speed ofthe drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame would yield <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wave propagati<strong>on</strong> speed (or themean azimuthal flow speed advect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wave). The flow <str<strong>on</strong>g>in</str<strong>on</strong>g>side the drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g referenceframe would, however, not be that produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r c<strong>on</strong>centrati<strong>on</strong>s, so the detailed waveflow patterns could not be retrieved. The fundamental limitati<strong>on</strong> of <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>sis that they c<strong>on</strong>sider <strong>on</strong>ly the rearrangement of radial magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>es as the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>of secular variati<strong>on</strong>, so are unable to yield any useful <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> regard<str<strong>on</strong>g>in</str<strong>on</strong>g>g radial fieldchange result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from distorti<strong>on</strong> of the toroidal magnetic field. These limitati<strong>on</strong>s shouldbe borne <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d by the practiti<strong>on</strong>ers of <str<strong>on</strong>g>core</str<strong>on</strong>g> flow modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g.8.3.8 SummaryIn this chapter the mechanism of magnetic field evoluti<strong>on</strong> produced by the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematicacti<strong>on</strong> of a propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow has been <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated. A simplified 1D frozen fluxmodel was developed <str<strong>on</strong>g>and</str<strong>on</strong>g> solved analytically to prove the existence of two dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ct regimesof field evoluti<strong>on</strong>. Both <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the producti<strong>on</strong> of spatially periodic field c<strong>on</strong>centrati<strong>on</strong>sthat move al<strong>on</strong>g with the wave flow pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of a mean flow. One regime<str<strong>on</strong>g>in</str<strong>on</strong>g>volves steady growth <str<strong>on</strong>g>in</str<strong>on</strong>g> the amplitude of field c<strong>on</strong>centrati<strong>on</strong>s while the other <str<strong>on</strong>g>in</str<strong>on</strong>g>volvespulsati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude. A more Earth-like model us<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flow patterns derivedfrom models of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> flows <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry, act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> realistic<str<strong>on</strong>g>in</str<strong>on</strong>g>itial radial magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g limited magnetic diffusi<strong>on</strong>, dem<strong>on</strong>strated thatsimilar regimes could exist at Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The geodynamo models analysed <str<strong>on</strong>g>in</str<strong>on</strong>g>chapter 5 are found to be c<strong>on</strong>sistent with the results of the simple models developedhere, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that despite the large number of assumpti<strong>on</strong>s made useful c<strong>on</strong>clusi<strong>on</strong>scan be drawn. The 2D modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g results suggest that hydromagnetic wave flows couldproduce spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>centrati<strong>on</strong>s of B rsimilar to those observed <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field models, particularly if there is also someazimuthal flow that also c<strong>on</strong>tributes to the moti<strong>on</strong> of the field features.


241Chapter 9C<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> suggesti<strong>on</strong>s for furtherresearch9.1 A synthesis of resultsIn this c<strong>on</strong>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g chapter results from the various avenues <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this thesisare collected <str<strong>on</strong>g>and</str<strong>on</strong>g> a self-c<strong>on</strong>sistent explanati<strong>on</strong> is proposed. Answers are suggested to thequesti<strong>on</strong>s posed <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the nature of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> geomagnetic secular variati<strong>on</strong>.Can hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>?As was described <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.3, hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> will exist when a magnetic field str<strong>on</strong>genough to <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence flow dynamics is present. The properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> willbe str<strong>on</strong>gly <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced by the rapid rotati<strong>on</strong> of the fluid <str<strong>on</strong>g>core</str<strong>on</strong>g>. The elasticity impartedto the fluid by a latitude dependent Coriolis force <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> theresistance of str<strong>on</strong>g toroidal magnetic fields to distorti<strong>on</strong> provides the restor<str<strong>on</strong>g>in</str<strong>on</strong>g>g forcesfor wave moti<strong>on</strong>. A number of mechanisms that could excite hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> were discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.6. Although other excitati<strong>on</strong> mechanisms cannotbe ruled out, <str<strong>on</strong>g>in</str<strong>on</strong>g>stability driven by c<strong>on</strong>vecti<strong>on</strong> requires the fewest additi<strong>on</strong>al assumpti<strong>on</strong>s<str<strong>on</strong>g>and</str<strong>on</strong>g> is entirely c<strong>on</strong>sistent with current underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>core</str<strong>on</strong>g> properties <str<strong>on</strong>g>and</str<strong>on</strong>g> moti<strong>on</strong>s.Of the different hydromagnetic wave types that can be driven by c<strong>on</strong>vecti<strong>on</strong>, magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (see §6.6.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> §7.4.1) seem most compatible with the regime expected<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Furthermore, as was shown <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 5, it is not necessary to have asteady background magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>: they can exist<str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a time-dependent, dynamo generated magnetic field. It is thereforeproposed that magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> driven by c<strong>on</strong>vecti<strong>on</strong> will exist <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g>will <str<strong>on</strong>g>in</str<strong>on</strong>g>volve distorti<strong>on</strong> of the time-dependent, dynamo generated, magnetic field.What would be the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>?The properties of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere <str<strong>on</strong>g>and</str<strong>on</strong>g> with no az-


242 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>simuthal flows present were <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7. C<strong>on</strong>vecti<strong>on</strong>-driven, magneto-Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> were found to be dispersive with higher wavenumbers propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g faster <str<strong>on</strong>g>in</str<strong>on</strong>g> thewestward directi<strong>on</strong> (see, for example, figure 7.9). The simple analytic model of these<str<strong>on</strong>g>waves</str<strong>on</strong>g> developed <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.6.2 (see equati<strong>on</strong> (6.67)) also suggests they will travel fastest atlow latitudes. The time scale for the propagati<strong>on</strong> of such <str<strong>on</strong>g>waves</str<strong>on</strong>g> was found to be thethermal diffusi<strong>on</strong> time scale which is thought to be thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s to milli<strong>on</strong>s of years <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> 1 . However as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> §6.6.2, the presence of azimuthal flows (likelyfor realistic magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature fields <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> — see Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g>Bloxham (2005)) will have a major impact <strong>on</strong> the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>(Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor, 1983), especially <strong>on</strong> <str<strong>on</strong>g>their</str<strong>on</strong>g> observed azimuthal speeds.How would hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the evoluti<strong>on</strong> of B r atthe <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> hence geomagnetic secular variati<strong>on</strong>?In this thesis it has been dem<strong>on</strong>strated that hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenceB r observed at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> two ways:The first mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g>volves hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> distort<str<strong>on</strong>g>in</str<strong>on</strong>g>g toroidal magnetic fields<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> to generate spatially coherent, wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.This mechanism was dem<strong>on</strong>strated <str<strong>on</strong>g>in</str<strong>on</strong>g> a model of c<strong>on</strong>vecti<strong>on</strong>-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere <str<strong>on</strong>g>in</str<strong>on</strong>g> §7.4.1 (see, for example, figure 7.4). An example of the type of pattern<str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the outer boundary that can be produced by this mechanism is presented <str<strong>on</strong>g>in</str<strong>on</strong>g>figure 9.1. The details of the equatorial symmetry, latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al positi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> extent ofsuch patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r will depend <strong>on</strong> both the toroidal magnetic field morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> theazimuthal flow structure <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> (see §6.6.2).A sec<strong>on</strong>d possible mechanism by which hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> could <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence B r <str<strong>on</strong>g>in</str<strong>on</strong>g>volvesthe acti<strong>on</strong> of wave flows close to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The wave flows c<strong>on</strong>sist of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>gregi<strong>on</strong>s of fluid c<strong>on</strong>vergence <str<strong>on</strong>g>and</str<strong>on</strong>g> divergence (see §7.4.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> will act <strong>on</strong> pre-exist<str<strong>on</strong>g>in</str<strong>on</strong>g>gB r to produce spatially coherent, wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r that propagate al<strong>on</strong>g withthe wave flow. This mechanism was dem<strong>on</strong>strated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic model <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter8. C<strong>on</strong>centrati<strong>on</strong>s of B r are produced at positi<strong>on</strong>s of flow c<strong>on</strong>vergence <str<strong>on</strong>g>in</str<strong>on</strong>g> a frame ofreference drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the wave flow. These c<strong>on</strong>centrati<strong>on</strong>s will pulsate <str<strong>on</strong>g>in</str<strong>on</strong>g> amplitude ifthe wave is propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g faster than the speed of the flows with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave (see §8.2.4).The pulsati<strong>on</strong> effect will, however, be avoided <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> if propagati<strong>on</strong> speeds arevery slow.Of these two mechanisms, the first seems certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly to operate because it is a fundamentalaspect the hydromagnetic wave mechanism.The sec<strong>on</strong>d mechanism is however alsoc<strong>on</strong>ceivable, particularly if a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> str<strong>on</strong>g azimuthalflows are present. Future tests us<str<strong>on</strong>g>in</str<strong>on</strong>g>g more realistic wave models will help resolve whether<strong>on</strong>ly <strong>on</strong>e or both of these mechanisms operates <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (see §9.3 for further1 If c<strong>on</strong>vecti<strong>on</strong> is driven by buoyant light elements rather than by thermal effects, this time could beeven l<strong>on</strong>ger because the diffusivities of light elements are expected to be smaller than that of heat.


243 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>sR=0.95R 0−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1BRFigure 9.1: B r perturbati<strong>on</strong> caused by a m=5 hydromagnetic wave.Pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at r = 0.95r 0 from the marg<str<strong>on</strong>g>in</str<strong>on</strong>g>al mode of a thermal magneto-Rossby wave<str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical geometry where the imposed magnetic field is purely toroidal<str<strong>on</strong>g>and</str<strong>on</strong>g> Λ = P r = P r m = 1 , E = 10 −6 . This shows how a toroidal magnetic field can bedistorted <str<strong>on</strong>g>in</str<strong>on</strong>g>to B r by a hydromagnetic wave. Units are arbitrary because no n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>earsaturati<strong>on</strong> mechanisms are <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> this model.details).The temporally coherent moti<strong>on</strong> of spatially periodic patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface(a form of geomagnetic secular variati<strong>on</strong>) could be produced either by wave propagati<strong>on</strong>,by advecti<strong>on</strong> due to flows, or by a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of these processes. The propagati<strong>on</strong>speeds of c<strong>on</strong>vecti<strong>on</strong>-driven magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> (the most likely type of wave to beexcited <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>) are probably too slow (operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the thermal diffusi<strong>on</strong> time scale)to expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the observed azimuthal moti<strong>on</strong>s of B r (see §7.5). This leaves the advecti<strong>on</strong> ofthe spatially coherent pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> B r by azimuthal flows as the most plausible mechanismproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g azimuthal geomagnetic secular variati<strong>on</strong>.Is there any evidence support<str<strong>on</strong>g>in</str<strong>on</strong>g>g the existence of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>?Spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent wave patterns c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of positive <str<strong>on</strong>g>and</str<strong>on</strong>g> negativeanomalies are observed <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> the geomagnetic field model gufm1.The clearest signal found <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.2.3 us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the techniques described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 2 has azimuthalwavenumber m=5, is equatorially symmetric <str<strong>on</strong>g>and</str<strong>on</strong>g> is centred <strong>on</strong> the geographicalequator. Figure 9.2 shows a rec<strong>on</strong>structi<strong>on</strong> of this m=5 signal <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830 A.D.. The m=5signal is not stati<strong>on</strong>ary, but moves westwards with a speed of ∼17 km yr −1 at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface.In chapter 4, evidence was found for spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent wave-like patterns<str<strong>on</strong>g>in</str<strong>on</strong>g> the archeomagnetic field model CALS7K.1. The patterns were observed to travel<str<strong>on</strong>g>in</str<strong>on</strong>g> both eastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward directi<strong>on</strong>s (sometimes simultaneously but at different


244 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>s201612840−4−8−12−16−20Figure 9.2: m=5 spatially coherent pattern <str<strong>on</strong>g>in</str<strong>on</strong>g>rfrom gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830.Wave-like pattern isolated <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>in</str<strong>on</strong>g> 1830 from gufm1. The timeaveragedaxisymmetric field <str<strong>on</strong>g>and</str<strong>on</strong>g> changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> time scales l<strong>on</strong>ger than 400 yearshave been removed. The signal has also been spatially filtered so <strong>on</strong>ly the str<strong>on</strong>g m=5signal rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s. This spatially coherent, wave-like pattern <str<strong>on</strong>g>in</str<strong>on</strong>g> B r is observed mov<str<strong>on</strong>g>in</str<strong>on</strong>g>gwestwards from the 16th to the 20th century <str<strong>on</strong>g>and</str<strong>on</strong>g> is evidence for the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <strong>on</strong> geomagnetic secular variati<strong>on</strong>.˜Brecl<strong>on</strong>gitudes, see figure 4.9) <strong>on</strong> millennial time scales. Such simultaneous eastward <str<strong>on</strong>g>and</str<strong>on</strong>g>westward moti<strong>on</strong> could arise from geographical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal flows but it ishard to envisage how it could result from wave propagati<strong>on</strong>, unless the directi<strong>on</strong> ofpropagati<strong>on</strong> rests <strong>on</strong> a very delicate force balance.It was shown <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> §3.7 that there is no evidence <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 for the dispersiveeffects or systematic geographical (latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al) trends <str<strong>on</strong>g>in</str<strong>on</strong>g> azimuthal speeds that are characteristicof hydromagnetic wave propagati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. Neither of thesephenomen<strong>on</strong> are expected to be present if advecti<strong>on</strong> by azimuthal flows were the primarymechanism produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g moti<strong>on</strong> of patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r . These f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs lend further weight tothe argument that azimuthal flows rather than wave propagati<strong>on</strong> produce the observedmoti<strong>on</strong> of patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.Can study of hydromagnetic wave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> shed any light <strong>on</strong> theorig<str<strong>on</strong>g>in</str<strong>on</strong>g> of hemispherical differences <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic field evoluti<strong>on</strong> at <str<strong>on</strong>g>core</str<strong>on</strong>g> surface?It was shown <str<strong>on</strong>g>in</str<strong>on</strong>g> §3.5 that <str<strong>on</strong>g>in</str<strong>on</strong>g> the historical field model gufm1 wave-like features <str<strong>on</strong>g>in</str<strong>on</strong>g> B rat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface are str<strong>on</strong>gest <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere, but are also present <str<strong>on</strong>g>in</str<strong>on</strong>g> thePacific hemisphere. Synthetic tests <str<strong>on</strong>g>in</str<strong>on</strong>g> §2.8 dem<strong>on</strong>strated that such signals <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacifichemisphere could not be aliased there from the Atlantic hemisphere, but are real. Studyof the archeomagnetic field evoluti<strong>on</strong> over the past 3000 years us<str<strong>on</strong>g>in</str<strong>on</strong>g>g CALS7K.1 <str<strong>on</strong>g>in</str<strong>on</strong>g> §4.3.3suggested that high amplitude, drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, field features have been present at northernmid-latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere. The observed field evoluti<strong>on</strong> was much weaker<str<strong>on</strong>g>and</str<strong>on</strong>g> less coherent at low <str<strong>on</strong>g>and</str<strong>on</strong>g> southern latitudes <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific hemisphere, though the


245 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>sresoluti<strong>on</strong> of CALS7K.1 is likely <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficient to capture the weak wave-like signals thatmay be present there. Forward models of a global wave flow act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the 1590 B r fromgufm1 (with synthetic crustal damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g applied) dem<strong>on</strong>strated that a low amplitude,featureless field <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific was sufficient to ensure weak field evoluti<strong>on</strong> patterns there.However, <str<strong>on</strong>g>in</str<strong>on</strong>g> order for such a featureless field scenario to persist for several hundred yearsthe mechanism produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g this background field must <str<strong>on</strong>g>in</str<strong>on</strong>g>volve persistent hemisphericaldifferences.A proposed scenario c<strong>on</strong>sistent with observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> theoretical modelsThe theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> observati<strong>on</strong>al results outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed above can be rec<strong>on</strong>ciled <str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>gscenario which is suggested here as a work<str<strong>on</strong>g>in</str<strong>on</strong>g>g model of azimuthal geomagnetic secularvariati<strong>on</strong> to be tested <str<strong>on</strong>g>in</str<strong>on</strong>g> the future:East-west moti<strong>on</strong>s of the geomagnetic field can arise from azimuthal advecti<strong>on</strong> of spatiallycoherent patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> the B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface produced by c<strong>on</strong>vecti<strong>on</strong>-driven magneto-Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. These patterns are produced by the distorti<strong>on</strong> of underly<str<strong>on</strong>g>in</str<strong>on</strong>g>gtoroidal magnetic fields <str<strong>on</strong>g>and</str<strong>on</strong>g> modulati<strong>on</strong> of exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r by wave flows. Hemisphericaldifferences <str<strong>on</strong>g>in</str<strong>on</strong>g> the background magnetic field morphology result <str<strong>on</strong>g>in</str<strong>on</strong>g> such patterns hav<str<strong>on</strong>g>in</str<strong>on</strong>g>glower amplitudes under the Pacific hemisphere.9.2 Summary of work carried out <str<strong>on</strong>g>and</str<strong>on</strong>g> ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s· Development of tools for analysis of azimuthal evoluti<strong>on</strong> of scalar fields.Codes carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out space-time spectral analysis of a scalar field <strong>on</strong> a spherical surface<str<strong>on</strong>g>and</str<strong>on</strong>g> generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g time-l<strong>on</strong>gitude plots, frequency-wavenumber power spectra <str<strong>on</strong>g>and</str<strong>on</strong>g> latitudeazimuthalspeed plots have been developed <str<strong>on</strong>g>and</str<strong>on</strong>g> benchmarked us<str<strong>on</strong>g>in</str<strong>on</strong>g>g realistic syntheticexamples.· Detecti<strong>on</strong> of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent, azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wavelikepatterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r .Space-time spectral analysis tools have been applied to the historical geomagnetic fieldmodel gufm1. Remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the time-averaged axisymmetric field <str<strong>on</strong>g>and</str<strong>on</strong>g> field variati<strong>on</strong>s withtime scales l<strong>on</strong>ger than 400 years, a str<strong>on</strong>g m=5 signal was observed at low latitudes.This signal was shown to move westwards at ∼17 km yr −1 , c<strong>on</strong>sistent with the westwarddrift of the geomagnetic field observed at Earth’s surface. The wave-like signal was foundto be str<strong>on</strong>gest <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere, but also present <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic hemisphere.· Observati<strong>on</strong> of episodes of eastwards <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> B r .Space-time spectral analysis tools have been applied to the archeomagnetic field modelCALS7K.1. Problems <str<strong>on</strong>g>in</str<strong>on</strong>g> the accurate <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of precise wavenumbers <str<strong>on</strong>g>and</str<strong>on</strong>g> azimuthalspeeds of field features were identified, but clear evidence for <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals of both


246 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>seastward <str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong>s were found.· Identificati<strong>on</strong> of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo models.Space-time spectral analysis tools have been applied to the magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity fieldsfrom two c<strong>on</strong>vecti<strong>on</strong>-driven geodynamo models. The existence <str<strong>on</strong>g>and</str<strong>on</strong>g> propagati<strong>on</strong> of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a time vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g, dynamo generated magnetic fieldwas dem<strong>on</strong>strated.· Review of the theory of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids.A review of the physics of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> has been carried out. Wave propagati<strong>on</strong>mechanisms, time scales, effects of diffusi<strong>on</strong>, spherical geometry, realistic imposedmagnetic fields, azimuthal flows, n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear effects <str<strong>on</strong>g>and</str<strong>on</strong>g> stratificati<strong>on</strong> have been discussed.The role of azimuthal flows <str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g wave properties has been emphasised.· Documentati<strong>on</strong> of parameter dependence of simple hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>.An exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g eigenvalue solver code has been extended to allow the study of simple hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the regime Λ ∼ 1. The dependence of critical Ra, ω <str<strong>on</strong>g>and</str<strong>on</strong>g> the structureof the <str<strong>on</strong>g>waves</str<strong>on</strong>g> <strong>on</strong> m, Λ, E, P r <str<strong>on</strong>g>and</str<strong>on</strong>g> P r m has been documented. The distorti<strong>on</strong> of toroidalmagnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g>to wave-like perturbati<strong>on</strong>s of B r at the outer boundary was observed.Wave flow patterns were dem<strong>on</strong>strated to c<strong>on</strong>sist of alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g regi<strong>on</strong>s of c<strong>on</strong>vergence<str<strong>on</strong>g>and</str<strong>on</strong>g> divergence close to the outer boundary. Very slow wave propagati<strong>on</strong> speeds werefound <str<strong>on</strong>g>in</str<strong>on</strong>g> the absence of azimuthal flow.· Deducti<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of hydromagnetic wave flows <strong>on</strong> B r .A simple analytic model of the acti<strong>on</strong> of a generic wave flow <strong>on</strong> a magnetic field wasdeveloped. This dem<strong>on</strong>strated that propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s of magnetic field areproduced by the travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g wave flows. Field c<strong>on</strong>centrati<strong>on</strong>s were found to pulsate whenthe wave phase speed was faster than the flow with<str<strong>on</strong>g>in</str<strong>on</strong>g> the wave. A possible applicati<strong>on</strong>of these results to Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> was dem<strong>on</strong>strated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a numerical model of advecti<strong>on</strong>of B r by wave flows at a spherical surface.· Proposal of a scenario c<strong>on</strong>sistent with theory <str<strong>on</strong>g>and</str<strong>on</strong>g> observati<strong>on</strong>s.<str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> distort the magnetic field with<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> to produce patterns <str<strong>on</strong>g>in</str<strong>on</strong>g>B r that are subsequently advected by azimuthal flows, produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g geomagnetic secularvariati<strong>on</strong>. It rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s for this proposal to be tested <str<strong>on</strong>g>in</str<strong>on</strong>g> the future.9.3 Suggesti<strong>on</strong>s of extensi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>s for future researchThe scenario outl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed above should certa<str<strong>on</strong>g>in</str<strong>on</strong>g>ly not be regarded as a rigorously proventheory, but rather as c<strong>on</strong>jecture that provides a work<str<strong>on</strong>g>in</str<strong>on</strong>g>g model for a particular aspect ofgeomagnetic secular variati<strong>on</strong>. Like any scientific hypothesis, it will <strong>on</strong>ly be of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest


247 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>sso l<strong>on</strong>g as it is c<strong>on</strong>sistent with advances <str<strong>on</strong>g>in</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> theoretical underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g.In this ve<str<strong>on</strong>g>in</str<strong>on</strong>g>, future research directi<strong>on</strong>s that might help to support or falsify the proposedscenario are suggested <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong>.In the immediate future, much work can be carried out <strong>on</strong> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g models of hydromagnetic<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>, build<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g ga<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g thesimple model of chapter 7. Realistic background magnetic fields should be studied withself-c<strong>on</strong>sistent background azimuthal flows (magnetic w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds) <str<strong>on</strong>g>and</str<strong>on</strong>g> full n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>gto allow developed wave moti<strong>on</strong>s to be studied. Such models would permit tests of thehypothesis that azimuthal flows (rather than wave propagati<strong>on</strong>) are resp<strong>on</strong>sible for theobserved moti<strong>on</strong> of wave patterns. Both poloidal <str<strong>on</strong>g>and</str<strong>on</strong>g> toroidal magnetic fields could bestudied to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e whether distorti<strong>on</strong> of the toroidal magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g>to B r (as suggested<str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7) or the c<strong>on</strong>centrati<strong>on</strong> of exist<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r by the wave flows (as discussed<str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8) is primarily resp<strong>on</strong>sible for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g observed perturbati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> B r . Arange of equatorial symmetries of imposed toroidal <str<strong>on</strong>g>and</str<strong>on</strong>g> poloidal fields could be studiedto determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e those comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s that can reproduce the observed equatorially focusedpatterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 3. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, it would be <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g to study the effectsof time-dependent background fields (mimick<str<strong>on</strong>g>in</str<strong>on</strong>g>g dynamo generated fields) <strong>on</strong> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> lifetime of spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally coherent wave patterns. It is already possible tocarry out all these proposed tests us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a magnetoc<strong>on</strong>vecti<strong>on</strong> versi<strong>on</strong> of the Leeds SphericalDynamo code that was benchmarked aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the eigenvalue solver code <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter7. This work is underway <str<strong>on</strong>g>in</str<strong>on</strong>g> collaborati<strong>on</strong> with Nicolas Gillet <str<strong>on</strong>g>and</str<strong>on</strong>g> Ashley Willis at theUniversity of Leeds <str<strong>on</strong>g>and</str<strong>on</strong>g> will hopefully yield answers to some of the theoretical issues leftunresolved by this thesis.Tests of the proposed scenario us<str<strong>on</strong>g>in</str<strong>on</strong>g>g currently available observati<strong>on</strong>al data are c<strong>on</strong>ceivable.In particular, given that azimuthal moti<strong>on</strong> of the wave-like patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r isascribed primarily to advecti<strong>on</strong>, it should be possible to perform a <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>of gufm1 specifically to retrieve these azimuthal flows (see, for example, the study byDumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (2005) of archeomagnetic field models). Unfortunately, theassumpti<strong>on</strong> of tangential geostrophy breaks down at the low latitudes of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, so anotherdynamic assumpti<strong>on</strong> must be made if unique soluti<strong>on</strong>s are to be found (Backus,1968; Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, 1991). Look<str<strong>on</strong>g>in</str<strong>on</strong>g>g for flows c<strong>on</strong>sistent with theoretical modelsof magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds might be a fruitful directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this regard. It would beof <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the latitud<str<strong>on</strong>g>in</str<strong>on</strong>g>al structure of the azimuthal flows <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>siderthe implicati<strong>on</strong>s for the morphology of the underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature fields<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>.Tests may also be envisaged us<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>al data that are not yet available, but whichmay be possible at some time <str<strong>on</strong>g>in</str<strong>on</strong>g> the future. The collecti<strong>on</strong> of many new measurementsof the geomagnetic field over the past 7000 years (particularly at low latitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>the oceanic regi<strong>on</strong>s of the Southern hemisphere) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to improved


248 Chapter 9 — C<strong>on</strong>clusi<strong>on</strong>sgeomagnetic field models would allow a more detailed study of the episodes of eastward<str<strong>on</strong>g>and</str<strong>on</strong>g> westward moti<strong>on</strong> identified <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 4. An improved knowledge of the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>,spatial structure, evoluti<strong>on</strong> (<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g possible changes <str<strong>on</strong>g>in</str<strong>on</strong>g> directi<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> eventual decayof wave patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r over this <str<strong>on</strong>g>in</str<strong>on</strong>g>terval <str<strong>on</strong>g>and</str<strong>on</strong>g> a comparis<strong>on</strong> of the results with morerealistic theoretical models would enable a variety of tests of the proposed mechanism.New, higher resoluti<strong>on</strong>, geomagnetic field models are capable of resolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g sub-decadalgeomagnetic field evoluti<strong>on</strong> over the past 20 years (see, for example, the recent study ofWard<str<strong>on</strong>g>in</str<strong>on</strong>g>ski (2005)). In the near future these could be extended to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude more data frompast (POGO, Magsat), <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Ørsted, CHAMP <str<strong>on</strong>g>and</str<strong>on</strong>g> SAC-C) <str<strong>on</strong>g>and</str<strong>on</strong>g> future (SWARM)satellite missi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> resoluti<strong>on</strong> could be further improved by utilis<str<strong>on</strong>g>in</str<strong>on</strong>g>g new field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>gtechniques such as the maximum entropy norm method of Jacks<strong>on</strong> (2003). Theresult<str<strong>on</strong>g>in</str<strong>on</strong>g>g high quality images of field evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface (suitably processed tofocus <strong>on</strong> signals of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest) could be used to map the positi<strong>on</strong>s, amplitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> moti<strong>on</strong>sof spatially coherent patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> to test whether azimuthalfield evoluti<strong>on</strong> is dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated by particular wavenumbers.Improvements <str<strong>on</strong>g>in</str<strong>on</strong>g> satellite m<strong>on</strong>itor<str<strong>on</strong>g>in</str<strong>on</strong>g>g of Earth’s gravitati<strong>on</strong>al field, as showcased by therecent GRACE missi<strong>on</strong> (Tapley et al., 2004), suggest the possibility of isolat<str<strong>on</strong>g>in</str<strong>on</strong>g>g timevary<str<strong>on</strong>g>in</str<strong>on</strong>g>g gravity signals caused by fluid moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> (Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham,2004; Greff-Lefftz et al., 2004; Jiang et al., 2004). In pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, this could enable themapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of moti<strong>on</strong>s of density anomalies <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> which could then be compared totheoretical predicti<strong>on</strong>s. In the present c<strong>on</strong>text, the relative positi<strong>on</strong>s of density anomalies<str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> models of advected wave patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r producedby hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> could be compared to the observed gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic fields.Both observati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> theoretical studies of the properties of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> are still at a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary stage. More work, especially <strong>on</strong> possible excitati<strong>on</strong>mechanisms (such as shear <str<strong>on</strong>g>in</str<strong>on</strong>g>stability, topographic forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> precessi<strong>on</strong>al driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g)would be beneficial to the subject area. The current emphasis <strong>on</strong> modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g purely azimuthaltoroidal magnetic fields (<str<strong>on</strong>g>and</str<strong>on</strong>g> hence azimuthally propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>waves</str<strong>on</strong>g>) also seemsrather restrictive; it would be of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest to use numerical models to test whether hydromagneticwave propagati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> north-south directi<strong>on</strong>s is also possible. Investigati<strong>on</strong> of themoti<strong>on</strong>s of patterns <str<strong>on</strong>g>in</str<strong>on</strong>g> B r aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> fully n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> couldalso aid underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of the relative importance of advecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic diffusi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> large scale magnetic field evoluti<strong>on</strong>. Comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g such advances <str<strong>on</strong>g>in</str<strong>on</strong>g> theoretical underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gwith improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis methods would allow fresh <str<strong>on</strong>g>in</str<strong>on</strong>g>sights<str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>core</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> the mechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s magnetic field.


249Appendix AHistorical geomagnetic field model gufm1A.1 Historical observati<strong>on</strong>s of Earth’s magnetic fieldDirect observati<strong>on</strong>s of the geomagnetic field with the extensive geographical coveragerequired for global field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g exist from the 16th century <strong>on</strong>wards from a variety ofsources:(i) Maritime observati<strong>on</strong>s(ii) Observatory measurements (after 1830)(iii) Magnetic surveys (18th, 19th <str<strong>on</strong>g>and</str<strong>on</strong>g> 20th century)(iv) Satellite magnetometer data (POGO late 1960s, Magsat 1980)Jacks<strong>on</strong> et al. (2000) c<strong>on</strong>structed a time-dependent field model known as gufm1 based<strong>on</strong> a new compilati<strong>on</strong> of all suitable historical observati<strong>on</strong>s. Model gufm1 represents asignificant advance <strong>on</strong> previous historical models such as the ufm model of Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g>Jacks<strong>on</strong> (1992), particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> the number <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial distributi<strong>on</strong> of observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>the 18th <str<strong>on</strong>g>and</str<strong>on</strong>g> 19th centuries, though there are still changes <str<strong>on</strong>g>in</str<strong>on</strong>g> coverage with time (seefigure A.1). The temporal change <str<strong>on</strong>g>in</str<strong>on</strong>g> the number of observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> each five year periodbetween 1590 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1990 is displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> figure A.2.A.2 Field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodologyAn outl<str<strong>on</strong>g>in</str<strong>on</strong>g>e of the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> techniques used to c<strong>on</strong>struct the field model gufm1 fromhistorical observati<strong>on</strong>s is given here to aid underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of the limitati<strong>on</strong>s of the model.The c<strong>on</strong>clusi<strong>on</strong>s from the analysis <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 3 of the properties of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1are <strong>on</strong>ly trusted if the field features seen <str<strong>on</strong>g>in</str<strong>on</strong>g> the model can be c<strong>on</strong>sidered robust.Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g the mantle to be an <str<strong>on</strong>g>in</str<strong>on</strong>g>sulator, then the magnetic field outside the <str<strong>on</strong>g>core</str<strong>on</strong>g> can beexpressed as the gradient of a scalar potential V that satisfies Laplace’s equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is


250 Appendix A — gufm1(a) Locati<strong>on</strong>s of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> observati<strong>on</strong>s from 1650-1699(b) Locati<strong>on</strong>s of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> observati<strong>on</strong>s from 1750-1799(c) Locati<strong>on</strong>s of all observati<strong>on</strong>s from 1850-1899Figure A.1: Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> spatial distributi<strong>on</strong> of observati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1.Stars show the locati<strong>on</strong> of observati<strong>on</strong>s for the fifty year periods 1650-1699 <str<strong>on</strong>g>in</str<strong>on</strong>g> (a), 1750-1799 <str<strong>on</strong>g>in</str<strong>on</strong>g> (b), <str<strong>on</strong>g>and</str<strong>on</strong>g> 1850-1899 <str<strong>on</strong>g>in</str<strong>on</strong>g> (c). For further details see Jacks<strong>on</strong> et al. (2000) <str<strong>on</strong>g>and</str<strong>on</strong>g>J<strong>on</strong>kers et al. (2003)


251 Appendix A — gufm125000Frequency200001500010000500001600 1700 1800 1900 2000DateFigure A.2: Temporal distributi<strong>on</strong> of gufm1 observati<strong>on</strong>s.The number of measurements used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g gufm1 <str<strong>on</strong>g>in</str<strong>on</strong>g> five year <str<strong>on</strong>g>in</str<strong>on</strong>g>tervals— forfurther details see Jacks<strong>on</strong> et al. (2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>kers et al. (2003)also a functi<strong>on</strong> of timeB = −∇V,where ∇ 2 V = 0,(A.1)(A.2)<str<strong>on</strong>g>and</str<strong>on</strong>g> V −→ 1 r 2 as r −→ ∞, (A.3)where it has also been assumed that there are no field sources at <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ity. Choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g aspherical polar co-ord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate system (r, θ, φ) the method of separati<strong>on</strong> of variables is usedto f<str<strong>on</strong>g>in</str<strong>on</strong>g>d a soluti<strong>on</strong> to Laplace’s equati<strong>on</strong> subject to these boundary c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> the formof a spherical harm<strong>on</strong>ic expansi<strong>on</strong>V (t) = a∞∑l=1 m=0l∑ ( a) l+1{gmr l (t) cos(mφ) + h m l (t) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(mφ)} Pl m (cos θ), (A.4)where <strong>on</strong>ly the soluti<strong>on</strong>s corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal field sources (found <str<strong>on</strong>g>in</str<strong>on</strong>g> modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g to bethe dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant terms) have been reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, a=6371.2 km is Earth’s mean radius <str<strong>on</strong>g>and</str<strong>on</strong>g> P mlare the Schmidt quasi-normalised associated Legendre functi<strong>on</strong>s of degree l <str<strong>on</strong>g>and</str<strong>on</strong>g> order mwith normalisati<strong>on</strong> def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as∫ 2π ∫ π00P ml (cos θ)P m′l ′ (cos θ) {cos mφ cos m ′ φs<str<strong>on</strong>g>in</str<strong>on</strong>g> mφ s<str<strong>on</strong>g>in</str<strong>on</strong>g> m ′ φ}{4π2l+1s<str<strong>on</strong>g>in</str<strong>on</strong>g> θdθdφ =if l=l′ , m=m ′0 otherwise}. (A.5)The c<strong>on</strong>stants g m l(t), h m l(t) are exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> fourth order B-spl<str<strong>on</strong>g>in</str<strong>on</strong>g>e basis functi<strong>on</strong>s M n (t)erected <strong>on</strong> a series of knots such thatg m l (t) = ∑ ng mnl M n (t), (A.6)


252 Appendix A — gufm1h m l (t) = ∑ nh mnl M n (t), (A.7)where M n (t) > 0 if t ɛ | t n , t n+4 | <str<strong>on</strong>g>and</str<strong>on</strong>g> is zero otherwise.Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the gradient of equati<strong>on</strong>((A.4)) we obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g expressi<strong>on</strong>s for the spherical polar comp<strong>on</strong>ents of themagnetic field B: the radial magnetic field B r , the southward magnetic field B θ <str<strong>on</strong>g>and</str<strong>on</strong>g> theeastward magnetic field B φ .B r =∞∑l∑l=1 m=0( a) l+2 {gm(l + 1)r l (t) cos(mφ) + h m l (t) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(mφ) } Plm (cos θ) (A.8)B θ = −∞∑l∑l=1 m=0( ar) l+2 {gml (t) cos(mφ) + h m l (t) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(mφ) } dP ml(cos θ)dθ(A.9)B φ =1s<str<strong>on</strong>g>in</str<strong>on</strong>g> θ∞∑l∑l=1 m=0( a) l+2 {gmmr l (t) s<str<strong>on</strong>g>in</str<strong>on</strong>g>(mφ) − h m l (t) cos(mφ) } Plm (cos θ)(A.10)The <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem of geomagnetic field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g now <str<strong>on</strong>g>in</str<strong>on</strong>g>volves f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g the parametersglmn , h mnlthat determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the most reas<strong>on</strong>able (<str<strong>on</strong>g>in</str<strong>on</strong>g> a sense def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed below) magnetic fieldat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface given geomagnetic observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> a priori <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> the fieldstructure. The prior <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the fact that the mantle is approximately an<str<strong>on</strong>g>in</str<strong>on</strong>g>sulator, that the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal field must orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>, the known <str<strong>on</strong>g>core</str<strong>on</strong>g> radius, <str<strong>on</strong>g>and</str<strong>on</strong>g>an upper limit <strong>on</strong> Ohmic heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the magnetic field derived from the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong>equati<strong>on</strong> (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1975).Spherical harm<strong>on</strong>ic expansi<strong>on</strong>s were truncated at degree l = L where L = 14 to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> af<str<strong>on</strong>g>in</str<strong>on</strong>g>ite representati<strong>on</strong> of an otherwise <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite dimensi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem. However, thefavoured field models c<strong>on</strong>verge at l < L thanks to the regularisati<strong>on</strong> applied that penalisesspatially complex field structures (see further discussi<strong>on</strong> of regularisati<strong>on</strong> below). 163B-spl<str<strong>on</strong>g>in</str<strong>on</strong>g>es were employed to represent the time period 1590 to 1990, erected <strong>on</strong> N = 167knots (spl<str<strong>on</strong>g>in</str<strong>on</strong>g>e end po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts) placed every 2.5 years. The total number of free parameters <str<strong>on</strong>g>in</str<strong>on</strong>g>the model is thus P = N(L(L + 2)) = 36512.The data <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem were magnetic field observati<strong>on</strong>s of various types: northwardfield comp<strong>on</strong>ent (X), eastward field comp<strong>on</strong>ent (Y ), downward field comp<strong>on</strong>ent(Z), decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (D), <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (I), horiz<strong>on</strong>tal field comp<strong>on</strong>ent (H) <str<strong>on</strong>g>and</str<strong>on</strong>g> total field (F ).These are related to the spherical polar field comp<strong>on</strong>ents (B r , B θ , B φ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> hence themodel parameters by the relati<strong>on</strong>sX = −B θ ,Y = B φ ,(A.11)(A.12)Z = −B r ,(A.13)H = ( B 2 θ + B2 φ) 12, (A.14)


⎢I = Arctan ⎣253 Appendix A — gufm1F = ( Bθ 2 + B2 φ + ) 1B2 2r , (A.15)⎡⎤−Br(Bθ 2 + B2 φ) 12⎥⎦ where − π 2 ≤ I ≤ π 2 ,[ ]BφD = Arctan − where π ≤ D ≤ π,−B θ(A.16)(A.17)Equati<strong>on</strong>s ((A.11)) to ((A.13)) are l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g> the model coefficients {glmn , h mnl} while those<str<strong>on</strong>g>in</str<strong>on</strong>g> equati<strong>on</strong>s ((A.14)) to ((A.17)) are n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear. This means the whole <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problemmust be solved iteratively if all the data types are to be <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded. If the observati<strong>on</strong>aldata X, Y, Z, H, F, I, D are listed <str<strong>on</strong>g>in</str<strong>on</strong>g> a vector d of D observati<strong>on</strong>s (D= 365 694 <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1),<str<strong>on</strong>g>and</str<strong>on</strong>g> the model coefficients are listed <str<strong>on</strong>g>in</str<strong>on</strong>g> a vector m = (g1 00,g10problem can be written <str<strong>on</strong>g>in</str<strong>on</strong>g> matrix form as1 , h10 1..) then the forwardd = f(m) + e,(A.18)where f is the n<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear functi<strong>on</strong>al relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the data to the model <str<strong>on</strong>g>and</str<strong>on</strong>g> e is an errorvector of length D which gives the error associated with each observati<strong>on</strong>. Errors varydepend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the method of data acquisiti<strong>on</strong>.The <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem of f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g the model parameters (spherical harm<strong>on</strong>ic coefficients)that best represent the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface field, given geomagnetic measurements at Earth’ssurface is n<strong>on</strong>-unique. The n<strong>on</strong>-uniqueness arises due to the f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite number of data (magneticfield observati<strong>on</strong>s at specific locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> times) be<str<strong>on</strong>g>in</str<strong>on</strong>g>g used to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d a c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uousfuncti<strong>on</strong> (the global, time-dependent magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface). Geophysicallyplausible soluti<strong>on</strong>s can be found by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the method of regularised least squares <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong>,that looks for soluti<strong>on</strong>s that both fit the data as well as possible <str<strong>on</strong>g>in</str<strong>on</strong>g> a leastsquares sense <str<strong>on</strong>g>and</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise suitable model norms. Two model norms are employed <str<strong>on</strong>g>in</str<strong>on</strong>g>the c<strong>on</strong>structi<strong>on</strong> of gufm1, <strong>on</strong>e measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g roughness <str<strong>on</strong>g>in</str<strong>on</strong>g> the spatial doma<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the otherroughness <str<strong>on</strong>g>in</str<strong>on</strong>g> the temporal doma<str<strong>on</strong>g>in</str<strong>on</strong>g>. The spatial norm is a quadratic norm that is physicallyassociated with m<str<strong>on</strong>g>in</str<strong>on</strong>g>imis<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ohmic dissipati<strong>on</strong> (Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, 1975) <str<strong>on</strong>g>and</str<strong>on</strong>g> can be writtenaswhereF(B r ) = 4πThe temporal norm isΨ = 1t e − t s∫ teL∑l=1Φ = 1t e − t s∫ tet sF(B r )dt = m T S −1 m, (A.19)(l + 1)(2l + 1)(2l + 3)lt s∮CMB( a) 2l+4l∑ [(gmc l ) 2 + (h m l ) 2] , (A.20)m=0(∂ 2 t B r ) 2 dΩdt = m T T −1 m, (A.21)Measurements (due to crustal fields, external fields, field measurement errors, mislocati<strong>on</strong>errors) were estimated <str<strong>on</strong>g>and</str<strong>on</strong>g> assumed to be Gaussian (though this may not be totally


254 Appendix A — gufm1correct — see Walker <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (2001) for a discussi<strong>on</strong>), allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>structi<strong>on</strong> ofthe data covariance matrix C e . The model estimate is then that which m<str<strong>on</strong>g>in</str<strong>on</strong>g>imises theobjective functi<strong>on</strong> ΘΘ(m) = [d − f(m)] T C −1e [d − f(m)] + mT C −1m m,(A.22)with the model covariance matrix be<str<strong>on</strong>g>in</str<strong>on</strong>g>gC −1m = ( λ S S −1 + λ T T −1) (A.23)where λ S is the spatial damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameter (chosen to be 1 ×10 −12 nT −2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> λ T is thetemporal damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameter (chosen to be 5 ×10 −4 nT −2 yr −4 ). The optimal soluti<strong>on</strong> issought by iterat<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the scheme <str<strong>on</strong>g>in</str<strong>on</strong>g> (A.24) below, until c<strong>on</strong>vergence <strong>on</strong> a model withm<str<strong>on</strong>g>in</str<strong>on</strong>g>imum Θ. The scheme is derived by differentiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (A.22) with respect to m i , theith model parameter, <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a first order approximati<strong>on</strong> f(m + δm) = f(m) + Aδmwhere A ij = ∂f i∂m jm<str<strong>on</strong>g>in</str<strong>on</strong>g>imis<str<strong>on</strong>g>in</str<strong>on</strong>g>g model<str<strong>on</strong>g>and</str<strong>on</strong>g> δm is the difference between the current approximati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> them i+1 = m i + (A T C −1e A + C −1m ) −1 [A T C −1e (d − f(m i )) − C −1m m i ].(A.24)The regularisati<strong>on</strong> ensures that expansi<strong>on</strong>s c<strong>on</strong>verge before the truncati<strong>on</strong> levels arereached, so the soluti<strong>on</strong>s are <str<strong>on</strong>g>in</str<strong>on</strong>g>sensitive to truncati<strong>on</strong>. The procedure effectively dampsout most power at degrees 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> higher. The choice of damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameters is howeverrather subjective—large differences <str<strong>on</strong>g>in</str<strong>on</strong>g> model complexity can be produced by vary<str<strong>on</strong>g>in</str<strong>on</strong>g>gthem. The values used here were chosen to produce qualitatively similar mapsto those of other authors at fixed epochs (refer e.g. Shure et al. (1985)) yield<str<strong>on</strong>g>in</str<strong>on</strong>g>ga c<strong>on</strong>servative √ picture of the field structures required to produce a normalised misfit[d−f(m)]χ =T C −1e [d−f(m)], where D is the total number of data observati<strong>on</strong>s, asDclose to 1.0 as possible (i.e. fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g observati<strong>on</strong>s to with<str<strong>on</strong>g>in</str<strong>on</strong>g> estimated errors). The preferredmodel gufm1 actually has a normalised misfit of 1.16. More complex models withmore power at higher spherical harm<strong>on</strong>ic degree <str<strong>on</strong>g>and</str<strong>on</strong>g> larger time variati<strong>on</strong>s that fit observati<strong>on</strong>sbetter can be produced, but analys<str<strong>on</strong>g>in</str<strong>on</strong>g>g field features from these models <str<strong>on</strong>g>and</str<strong>on</strong>g>bas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>s <strong>on</strong> them <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the chances that the data are be<str<strong>on</strong>g>in</str<strong>on</strong>g>g over-fit oreffects due to n<strong>on</strong>-<str<strong>on</strong>g>core</str<strong>on</strong>g> fields err<strong>on</strong>eously <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded.A.3 Comparis<strong>on</strong> to observatory dataPerhaps the most rigorous test of the reliability of the model gufm1 is how well it managesto fit ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field <str<strong>on</strong>g>and</str<strong>on</strong>g> secular variati<strong>on</strong> data recorded at observatories. Here the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field<str<strong>on</strong>g>and</str<strong>on</strong>g> secular variati<strong>on</strong> from 5 observatories are plotted <str<strong>on</strong>g>in</str<strong>on</strong>g> figure (A.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> figure (A.4)respectively. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field comp<strong>on</strong>ent typically has little scatter <str<strong>on</strong>g>and</str<strong>on</strong>g> gufm1 excellentlyfits the signal at all the observatories c<strong>on</strong>sidered. There is c<strong>on</strong>siderably more scatter <str<strong>on</strong>g>in</str<strong>on</strong>g>


255 Appendix A — gufm1(a) Annual means at Fuquene (MF)(b) Annual means at Mauritius (MF)(c) Annual means at Niemegk (MF)(d) Annual means at Tusc<strong>on</strong> (MF)Figure A.3: Comparis<strong>on</strong> of gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> observatory annual means (ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field).Comparis<strong>on</strong> of the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field predicted by the model gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> annual means of thema<str<strong>on</strong>g>in</str<strong>on</strong>g> field comp<strong>on</strong>ents (X = −B θ , Y = B φ <str<strong>on</strong>g>and</str<strong>on</strong>g> Z = −B r ) measured at observatories <str<strong>on</strong>g>in</str<strong>on</strong>g>different locati<strong>on</strong>s (Fuquene, Mauritius, Niemegk <str<strong>on</strong>g>and</str<strong>on</strong>g> Tusc<strong>on</strong>). Observatory data wereobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the world data centre. The black squares, triangles <str<strong>on</strong>g>and</str<strong>on</strong>g> crosses are theobservatory annual means <str<strong>on</strong>g>and</str<strong>on</strong>g> the red l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is the predicti<strong>on</strong> of gufm1. There was a sitechange <str<strong>on</strong>g>in</str<strong>on</strong>g> Mauritius <str<strong>on</strong>g>in</str<strong>on</strong>g> 1920, observatory results from both before <str<strong>on</strong>g>and</str<strong>on</strong>g> after the sitechange are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> (b).


256 Appendix A — gufm1(a) Annual means at Fuquene (SV)(b) Annual means at Mauritius (SV)(c) Annual means at Niemegk (SV)(d) Annual means at Tusc<strong>on</strong> (SV)Figure A.4: Comparis<strong>on</strong> of gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> observatory annual means (SV).Comparis<strong>on</strong> of the secular variati<strong>on</strong> (SV) predicted by the model gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> annualmeans of the secular variati<strong>on</strong> comp<strong>on</strong>ents (Ẋ = − ∂B θ∂t , Ẏ = ∂B φ∂t<str<strong>on</strong>g>and</str<strong>on</strong>g> Ż = − ∂Br∂t ) measuredat observatories <str<strong>on</strong>g>in</str<strong>on</strong>g> different locati<strong>on</strong>s (Fuquene, Mauritius, Niemegk <str<strong>on</strong>g>and</str<strong>on</strong>g> Tusc<strong>on</strong>).Observatory data were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from the world data centre. The green triangles are theobservatory annual means of secular variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the yellow l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is the predicti<strong>on</strong> ofgufm1. Only results from the first observatory site <strong>on</strong> Mauritius are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> (b).


257 Appendix A — gufm1the secular variati<strong>on</strong> observati<strong>on</strong>s, but gufm1 aga<str<strong>on</strong>g>in</str<strong>on</strong>g> does a good job of fitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g the trend<str<strong>on</strong>g>in</str<strong>on</strong>g> these data.Comparis<strong>on</strong> with direct, high quality observati<strong>on</strong>s magnetic field measurements at Earth’ssurface shows that gufm1 is an excellent descripti<strong>on</strong> of the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> field <str<strong>on</strong>g>and</str<strong>on</strong>g> its secular variati<strong>on</strong>,giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>fidence <str<strong>on</strong>g>in</str<strong>on</strong>g> its use <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis to analyse patterns of field evoluti<strong>on</strong>.A.4 Limitati<strong>on</strong>s of gufm1Although gufm1 is our most detailed picture of how the geomagnetic field has varied <str<strong>on</strong>g>in</str<strong>on</strong>g>space <str<strong>on</strong>g>and</str<strong>on</strong>g> time over the past 400 years, it does have its limitati<strong>on</strong>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> particular thosedue to the chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g quality <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> of the available observati<strong>on</strong>s with time.The mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of surface observati<strong>on</strong>s down to the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface means this variability ismanifested <str<strong>on</strong>g>in</str<strong>on</strong>g> the chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g width of the resolv<str<strong>on</strong>g>in</str<strong>on</strong>g>g kernel (the filter through which wemust view the field at the CMB) with space <str<strong>on</strong>g>and</str<strong>on</strong>g> time. Backus et al. (1996) discussesthat <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences about the <str<strong>on</strong>g>core</str<strong>on</strong>g> field <strong>on</strong> spatial scales smaller than the area of averag<str<strong>on</strong>g>in</str<strong>on</strong>g>gkernel peak are impossible, referr<str<strong>on</strong>g>in</str<strong>on</strong>g>g to this as the circle of c<strong>on</strong>fusi<strong>on</strong>. Jacks<strong>on</strong> (1989)has produced maps show<str<strong>on</strong>g>in</str<strong>on</strong>g>g how the width of the averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g kernel varies with geographicalpositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ds it closely follows the density of observati<strong>on</strong>s, so for example <str<strong>on</strong>g>in</str<strong>on</strong>g>1882.5 the width of the kernel varies from 11.5 degrees below Europe to 16.5 degrees<str<strong>on</strong>g>in</str<strong>on</strong>g> Antarctica where there were no measurements. Animati<strong>on</strong>s of gufm1 show the fieldmodel becomes <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly complex as time passes, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the circle ofc<strong>on</strong>fusi<strong>on</strong> with time; the smallest features become visible especially <str<strong>on</strong>g>in</str<strong>on</strong>g> the last 20 yearswhen satellite data has become available.The model gufm1 is ultimately c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (even with perfect data coverage) by the limitplaced <strong>on</strong> spatial resoluti<strong>on</strong> by crustal field c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Unless a sensible method ofremov<str<strong>on</strong>g>in</str<strong>on</strong>g>g the crustal field from the signal can be found, our images of the magnetic fieldat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface will always be limited to less than spherical harm<strong>on</strong>ic degree l=12(around 1800 km at the equator of the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface), at which po<str<strong>on</strong>g>in</str<strong>on</strong>g>t the crustal fieldbeg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate, <str<strong>on</strong>g>and</str<strong>on</strong>g> where the field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g strategy employed <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 meansthat regularisati<strong>on</strong> rather than the fit to the data c<strong>on</strong>trols the field structure. In figureA.5 the spatial, spherical harm<strong>on</strong>ic power spectra (as def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Lowes (1974)) is plottedevery 50 years to show how the <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> c<strong>on</strong>tent of gufm1 changes with time — atall epochs the power decays m<strong>on</strong>ot<strong>on</strong>ically to less than 10 −3 % of the total power byspherical harm<strong>on</strong>ic degree 10. It is also clear that the more recent epochs c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> morepower at lower harm<strong>on</strong>ics than the older epochs. This is because of the requirementthat the models fit the data given the error estimates, therefore a larger misfit (hencesmoother model) is permitted when data errors are larger at earlier epochs. The subjectof absolute field amplitude errors <str<strong>on</strong>g>in</str<strong>on</strong>g>herent <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface field maps is troublesome.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (1985) produced variance estimates for <str<strong>on</strong>g>their</str<strong>on</strong>g> radial magnetic field


258 Appendix A — gufm1Figure A.5: Spherical harm<strong>on</strong>ic power spectra from gufm1.Lowes power spectra of gufm1 show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the change <str<strong>on</strong>g>in</str<strong>on</strong>g> spectral power at Earth’s surface ofthe geomagnetic field field gufm1 <str<strong>on</strong>g>and</str<strong>on</strong>g> illusstrates limits to resoluti<strong>on</strong> imposed by damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g> order to prevent signal c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by the crustal field.models based <strong>on</strong> the error covariance matrix C e <str<strong>on</strong>g>and</str<strong>on</strong>g> the asymptotic form of the modelcovariance matrix C m (where C −1m = λ S S −1 + λ T T −1 <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1 ). Unfortunately, theseerror estimates depend <strong>on</strong> the choice of damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameters for which at present there isno objective way of determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (the Ohmic heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g bound suggests much weaker damp<str<strong>on</strong>g>in</str<strong>on</strong>g>gthan is needed to suppress crustal fields — see Backus (1988)). The methodologyemployed here solves the existence problem but not the uniqueness problem: as such itappears difficult to place rigorous bounds <strong>on</strong> field amplitude errors.Despite these limitati<strong>on</strong>s, gufm1 is undoubtedly a good model of how the magnetic fieldat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface has changed over the past four hundred years. It is c<strong>on</strong>sistent witha huge number of measurements <str<strong>on</strong>g>and</str<strong>on</strong>g> shows the c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous changes <str<strong>on</strong>g>in</str<strong>on</strong>g> space <str<strong>on</strong>g>and</str<strong>on</strong>g> timeexpected of a real magnetic field. Core flow models derived from it can k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematicallyaccount for observed changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day <str<strong>on</strong>g>in</str<strong>on</strong>g> the 20th century (Jacks<strong>on</strong> et al.,1993), an <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent c<strong>on</strong>firmati<strong>on</strong> that the models are reas<strong>on</strong>able.A.5 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g of gufm1 for analysis <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceIn order to carry out a space-time analysis of the magnetic field features <str<strong>on</strong>g>in</str<strong>on</strong>g> gufm1, thespherical harm<strong>on</strong>ic field model for V was used al<strong>on</strong>g with equati<strong>on</strong> (A.8) to evaluate B r<strong>on</strong> a regularly spaced grid <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude, l<strong>on</strong>gitude <str<strong>on</strong>g>and</str<strong>on</strong>g> time <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The spatialgrid was chosen to be 2 degrees <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 years <str<strong>on</strong>g>in</str<strong>on</strong>g> time. These areboth much f<str<strong>on</strong>g>in</str<strong>on</strong>g>er scale then the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al field model, ensur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that no <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> waslost as a result of the grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure.


259Appendix BThe archeomagnetic field model CALS7K.1B.1 Introducti<strong>on</strong>Knowledge of Earth’s magnetic field prior to direct human measurements (such as thoseused to c<strong>on</strong>struct gufm1, see appendix A) comes from <str<strong>on</strong>g>in</str<strong>on</strong>g>direct sources, where the magneticfield <str<strong>on</strong>g>in</str<strong>on</strong>g> the past has been recorded either naturally dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g rock formati<strong>on</strong> or accidentallyas a by-product of early human activities such as pottery fir<str<strong>on</strong>g>in</str<strong>on</strong>g>g. CALS7K.1(Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, 2005; Korte et al., 2005) is a geomagnetic field model cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g thepast seven millennia from 5000 B.C to 1950 A.D. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this <str<strong>on</strong>g>in</str<strong>on</strong>g>terval sufficient spatial<str<strong>on</strong>g>and</str<strong>on</strong>g> temporal coverage of <str<strong>on</strong>g>in</str<strong>on</strong>g>direct records exists to make feasible the c<strong>on</strong>structi<strong>on</strong> of aglobal time-dependent field model. In this appendix a brief survey of the data compilati<strong>on</strong>,the estimated data errors, field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g assumpti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> model characteristicsare given. For further details the comprehensive papers of Korte et al. (2005) whichdescribes the data compilati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2005) which describes the fieldmodel should be c<strong>on</strong>sulted.B.2 Data sourcesThe records of Earth’s magnetic field used to create CALS7K.1 come from,• Detrital (depositi<strong>on</strong>al) Remanent Magnetizati<strong>on</strong> (DRM) of lake sediments (10637decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 12316 <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>)• Thermal Remanent Magnetizati<strong>on</strong> (TRM) of archaeological artifacts <str<strong>on</strong>g>and</str<strong>on</strong>g> lavas(2443 decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 3769 <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 3488 <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity).For detailed discussi<strong>on</strong>s of DRM <str<strong>on</strong>g>and</str<strong>on</strong>g> TRM <str<strong>on</strong>g>and</str<strong>on</strong>g> the problems associated with determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gthe remanent magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> each case, the reader should c<strong>on</strong>sult Butler (1992).


B.3 Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal distributi<strong>on</strong> of data260 Appendix B — CALS7K.1The spatial distributi<strong>on</strong> of the records used <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>struct<str<strong>on</strong>g>in</str<strong>on</strong>g>g CALS7K.1 are highly heterogeneous.The most serious shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>g is the under-representati<strong>on</strong> of the southernhemisphere, particularly <str<strong>on</strong>g>in</str<strong>on</strong>g> archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> lava data c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity (<strong>on</strong>ly12738 measurements are from the southern hemisphere <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly 228 of these are <str<strong>on</strong>g>in</str<strong>on</strong>g>tensitymeasurements, of 64706 measurements <str<strong>on</strong>g>in</str<strong>on</strong>g> total of which 3188 are measurementsof <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity). This is because there are very few records from Africa, South America<str<strong>on</strong>g>and</str<strong>on</strong>g> oceanic locati<strong>on</strong>s. In c<strong>on</strong>trast, Europe is over-represented, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> terms ofarcheomagnetic data. In figure B.1 the c<strong>on</strong>centrati<strong>on</strong> of data as a functi<strong>on</strong> of positi<strong>on</strong>at Earth’s surface is plotted al<strong>on</strong>g with the locati<strong>on</strong>s of the lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> average locati<strong>on</strong>sof the archeomagnetic sites.4.543.532.521.510.50Figure 1: Locati<strong>on</strong>s of the global compilati<strong>on</strong> of archeo- <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic data. Sites oflakes (a), of archeomagnetic directi<strong>on</strong>al data (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> of archeomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data (c).Figure B.1: Spatial locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of data <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1.On the left locati<strong>on</strong>s of the lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> average locati<strong>on</strong>s of the archeomagnetic regi<strong>on</strong>s areLocati<strong>on</strong>s of the global compilati<strong>on</strong> of archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> paleomagnetic data used <str<strong>on</strong>g>in</str<strong>on</strong>g>the c<strong>on</strong>structi<strong>on</strong> plotted, while of<strong>on</strong> CALS7K.1 the right the (from c<strong>on</strong>centrati<strong>on</strong> Korte et of al. data(2005)). is c<strong>on</strong>toured Sites (seeofsecti<strong>on</strong> lakes4are for shown details). <str<strong>on</strong>g>in</str<strong>on</strong>g> (a),of the archeomagnetic directi<strong>on</strong>al data <str<strong>on</strong>g>in</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> of the archeomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data <str<strong>on</strong>g>in</str<strong>on</strong>g>(c). In the left column the locati<strong>on</strong>s of lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> average locati<strong>on</strong>s of the archeomagneticregi<strong>on</strong>sdata, are plotted, while for other whileregi<strong>on</strong>s, the particularly right the the logwhole of the southern c<strong>on</strong>centrati<strong>on</strong> hemisphere, of data data areis scarce. c<strong>on</strong>touredC<strong>on</strong>sequently the regi<strong>on</strong> files, <str<strong>on</strong>g>in</str<strong>on</strong>g> which the data are grouped do not cover equal areas.(c<strong>on</strong>centrati<strong>on</strong> is calculated by represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g each datum locati<strong>on</strong> by a Fisherian probabilitydensity <strong>on</strong>ly <strong>on</strong>efuncti<strong>on</strong> file for both centred Australia <strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> theNew dataZeal<str<strong>on</strong>g>and</str<strong>on</strong>g>, locati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> order withtoanf<str<strong>on</strong>g>in</str<strong>on</strong>g>d angular a compromise st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard between deviati<strong>on</strong>For example we chose to have <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual files for several parts of Europe, while there isof 2.6 degrees; geographic the area <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral covered of <str<strong>on</strong>g>and</str<strong>on</strong>g>the amount c<strong>on</strong>centrati<strong>on</strong> of data <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>e over file. theWe Earth’s do not want surface the yields numberthe of totalnumberdata of data <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>epo<str<strong>on</strong>g>in</str<strong>on</strong>g>ts— file to be too see large Korte noretoo al. small (2005) for easy for further visual comparis<strong>on</strong>. details.) Figure 1 showsthe locati<strong>on</strong>s of the lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> average locati<strong>on</strong>s of the archeomagnetic regi<strong>on</strong>s given <str<strong>on</strong>g>in</str<strong>on</strong>g> thetables with c<strong>on</strong>tour plots of the c<strong>on</strong>centrati<strong>on</strong> of data accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to locati<strong>on</strong>.


261 Appendix B — CALS7K.1Temporal resoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> coverage of the data also varies greatly, with the archeomagneticdata worse at earlier times. As an illustrati<strong>on</strong> of the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the temporal distributi<strong>on</strong>of data the number of lake sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagnetic decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> dataper 100 years are plotted for different regi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> figure B.2. The archeomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tensitydata follow similar trends. The <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the number of European data as time goes<strong>on</strong> is particularly strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g.200Europe −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>200Europe −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data100Nr. of data1000−5000 −4000 −3000 −2000 −1000 0 1000 2000100Asia −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>0−5000 −4000 −3000 −2000 −1000 0 1000 2000100Asia −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data50Nr. of data500−5000 −4000 −3000 −2000 −1000 0 1000 2000Africa −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>0−5000 −4000 −3000 −2000 −1000 0 1000 2000Africa −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data4020Nr. of data40200−5000 −4000 −3000 −2000 −1000 0 1000 2000100South America −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>0−5000 −4000 −3000 −2000 −1000 0 1000 2000100South America −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data50Nr. of data500−5000 −4000 −3000 −2000 −1000 0 1000 2000100North America −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>0−5000 −4000 −3000 −2000 −1000 0 1000 2000100North America −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data50Nr. of data500−5000 −4000 −3000 −2000 −1000 0 1000 2000100Australia −− Decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>0−5000 −4000 −3000 −2000 −1000 0 1000 2000100Australia −− Incl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>Nr. of data50Nr. of data500−5000 −4000 −3000 −2000 −1000 0 1000 2000Year0−5000 −4000 −3000 −2000 −1000 0 1000 2000YearFigure 2: Histograms of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (left) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (right) data through time. BlackFigure are lake B.2: sediment Temporal data, distributi<strong>on</strong> red archeomagnetic of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, data. Note the<str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> different scales<str<strong>on</strong>g>in</str<strong>on</strong>g><strong>on</strong> CALS7K.1.the y-axes.Histograms of decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (left) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (right) data through time <str<strong>on</strong>g>in</str<strong>on</strong>g> 100 yearb<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Black are lake sediment data, red are archeomagnetic data. Note the differentscales <strong>on</strong> the y-axes (from Korte et al. (2005)).17


262 Appendix B — CALS7K.1B.4 Uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty estimatesTo take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account the reliability of data when perform<str<strong>on</strong>g>in</str<strong>on</strong>g>g global geomagnetic fieldmodell<str<strong>on</strong>g>in</str<strong>on</strong>g>g it is necessary to weight data accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty estimates that are <str<strong>on</strong>g>in</str<strong>on</strong>g>ternallyc<strong>on</strong>sistent with<str<strong>on</strong>g>in</str<strong>on</strong>g> the dataset. Unfortunately the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al error estimates of thedata were not found to be c<strong>on</strong>sistent, so new criteria for determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g errors were employed.M<str<strong>on</strong>g>in</str<strong>on</strong>g>imum directi<strong>on</strong>al uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty estimates of 2.5 ◦ for <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.5 ◦ fordecl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with archeomagnetic data <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.5 ◦ for <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.0 ◦ for decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>with lake sediment data were used because <str<strong>on</strong>g>in</str<strong>on</strong>g> previous studies (C<strong>on</strong>stable et al., 2000;Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, 2003) these uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties have allowed c<strong>on</strong>structi<strong>on</strong> of smoothglobal models that satisfactorily fit the data. If orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al error estimates (often a 95 percentc<strong>on</strong>fidence c<strong>on</strong>e calculated around a mean directi<strong>on</strong> from <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent measurementsat a given site (α 95 ), rescaled to give st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>s of the uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty (see Korteet al. (2005)) were greater than the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum estimates then these were used <str<strong>on</strong>g>in</str<strong>on</strong>g>stead.Error estimates for the archeomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data were assigned by allocat<str<strong>on</strong>g>in</str<strong>on</strong>g>g eachmeasurement to a category based <strong>on</strong> a selecti<strong>on</strong> criteria that is a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of themethodology employed, the dispersi<strong>on</strong> of the mean <str<strong>on</strong>g>and</str<strong>on</strong>g> whether alterati<strong>on</strong> tests werecarried out. The classificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated errors estimates were then (i) reliable:6 to 10 percent relative error, (ii) reliable but dispersed: orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al dispersi<strong>on</strong> greaterthan 10 percent reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, (iii) less reliable: m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum relative error of 20 percent, or theorig<str<strong>on</strong>g>in</str<strong>on</strong>g>al dispersi<strong>on</strong> estimate if this was larger.In additi<strong>on</strong>, errors <str<strong>on</strong>g>in</str<strong>on</strong>g> dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g were taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the data uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>tiesby the measurement error that would result from the dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty as calculatedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g simple l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of secular variati<strong>on</strong> derived from recent global models. Ifdat<str<strong>on</strong>g>in</str<strong>on</strong>g>g uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty was estimated to be less than 10 years, then no additi<strong>on</strong>al error wasadded. If the dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty was 10 to 50 years an <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> error of 0.5 ◦ wasadded, a decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> error of 1.5 ◦ was added <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity error of 1.5µT was added. Forage uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties of 50 to 100 years, 1 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 3 ◦ decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity 2.5µTerrors were added. For age uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties of 100 to 500 years errors of 2 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>,6 ◦ decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity 5µT were added. For dat<str<strong>on</strong>g>in</str<strong>on</strong>g>g errors estimated to be greaterthan 500 years, the data were rejected. Similarly, locati<strong>on</strong> uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties for sites of thearcheomagnetic data from compilati<strong>on</strong>s were taken <str<strong>on</strong>g>in</str<strong>on</strong>g>to account as additi<strong>on</strong>al measurementerrors us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear model for gradients of magnetic field elements, so each 1 ◦latitude error corresp<strong>on</strong>ded to an additi<strong>on</strong>al error of 1 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 0.3 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5µT <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity while each 1 ◦ l<strong>on</strong>gitude error corresp<strong>on</strong>ded to an additi<strong>on</strong>al errorof 0.5 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 0.5 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.25µT <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity.The result<str<strong>on</strong>g>in</str<strong>on</strong>g>g average error estimates calculated from all the data used <str<strong>on</strong>g>in</str<strong>on</strong>g> the modell<str<strong>on</strong>g>in</str<strong>on</strong>g>gwere 4.0 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, 6.7 ◦ <str<strong>on</strong>g>in</str<strong>on</strong>g> decl<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 11µT <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity.


B.5 Field modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodology263 Appendix B — CALS7K.1The method of regularised <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of geomagnetic observati<strong>on</strong>s to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a spatially<str<strong>on</strong>g>and</str<strong>on</strong>g> temporally smooth, c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous model of the global magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceas applied by Bloxham <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> (1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong> et al. (2000) to historicaldata <str<strong>on</strong>g>and</str<strong>on</strong>g> by Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2003) to a prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> lake sedimentdataset was applied to the dataset described above <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the modelCALS7K.1. A mathematical descripti<strong>on</strong> of the methodology can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> appendixA. The data are weighted by the error estimates described above <str<strong>on</strong>g>and</str<strong>on</strong>g> the RMS misfitsof the model to the data (normalised by the errors <str<strong>on</strong>g>and</str<strong>on</strong>g> number of data) are calculated.The model is a spherical harm<strong>on</strong>ic expansi<strong>on</strong> up to degree <str<strong>on</strong>g>and</str<strong>on</strong>g> order 10 <str<strong>on</strong>g>in</str<strong>on</strong>g> space <str<strong>on</strong>g>and</str<strong>on</strong>g> cubicB-spl<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> time, with node spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 60 years. The Ohmic heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g bound of Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s(1975) is used for the spatial norm, while the temporal norm is the <str<strong>on</strong>g>in</str<strong>on</strong>g>tegral of the sec<strong>on</strong>dderivative of B r over the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. The lack of <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data was compensated forby (i) the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of an artificial multiplicative weight<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data(ii) reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g an additi<strong>on</strong>al c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t (with an associated weight<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor) <strong>on</strong> the axialdipole by <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g a simple model for g1 0 (see Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2003)) as additi<strong>on</strong>aldata. These 4 parameters must be specified <str<strong>on</strong>g>in</str<strong>on</strong>g> such a way that the most geophysicallyreas<strong>on</strong>able model is arrived at. The spatial damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g is chosen to be the m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum thatgives a B r that is predom<str<strong>on</strong>g>in</str<strong>on</strong>g>antly dipolar, the temporal damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g is chosen to be thelowest value which elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ates temporal variati<strong>on</strong>s <strong>on</strong> time scales shorter than 100 years.The weight<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor for the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data <str<strong>on</strong>g>and</str<strong>on</strong>g> the factor for the axial dipole c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>tare picked so that all data types are fitted well with<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> estimated uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties. Aweight<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor of 2 is found to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imise the total RMS misfit, while reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the axialdipole c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t with low weight<str<strong>on</strong>g>in</str<strong>on</strong>g>g factor of 0.001 can <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the overall misfit, <str<strong>on</strong>g>and</str<strong>on</strong>g>particularly the misfit to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity data.The soluti<strong>on</strong> to the <str<strong>on</strong>g>in</str<strong>on</strong>g>verse problem obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this way is clearly n<strong>on</strong>-unique, <str<strong>on</strong>g>and</str<strong>on</strong>g> reliesup<strong>on</strong> the subjective choice of both the regularisati<strong>on</strong> norms <str<strong>on</strong>g>and</str<strong>on</strong>g> the damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameters.The strategy employed was to try to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d the simplest possible model that fitted the datato its estimated accuracy. However, with the archeomagnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> lake sediment data, theuncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ties <str<strong>on</strong>g>in</str<strong>on</strong>g> the data are very difficult to estimate accurately, <str<strong>on</strong>g>and</str<strong>on</strong>g> as a result the f<str<strong>on</strong>g>in</str<strong>on</strong>g>almodels did not yield a misfit to with<str<strong>on</strong>g>in</str<strong>on</strong>g> the desired tolerance. The model residuals from<str<strong>on</strong>g>in</str<strong>on</strong>g>itial attempts at modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g were exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> it was found that compared to a normaldistributi<strong>on</strong> many of the data were not satisfactorily fit <str<strong>on</strong>g>and</str<strong>on</strong>g> outliers were present. Thedata that could not be fit by the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial model to with<str<strong>on</strong>g>in</str<strong>on</strong>g> two times the average uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>tyof the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al dataset were rejected <str<strong>on</strong>g>and</str<strong>on</strong>g> the model recalculated. After this procedure,the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g data could be fitted to with<str<strong>on</strong>g>in</str<strong>on</strong>g> the estimated tolerance by the new model,with the distributi<strong>on</strong> of the residuals be<str<strong>on</strong>g>in</str<strong>on</strong>g>g much closer to a normal distributi<strong>on</strong>. It wasfound at this stage that the use of an axial dipole c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t no l<strong>on</strong>ger <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenced themodel, so it was removed, yield<str<strong>on</strong>g>in</str<strong>on</strong>g>g the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al preferred model referred to as CALS7K.1.


264 Appendix B — CALS7K.1B.6 Characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> of the model CALS7K.1An RMS misfit of 1.00 was achieved for the model CALS7K.1 after data rejecti<strong>on</strong>, us<str<strong>on</strong>g>in</str<strong>on</strong>g>ga spatial damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameter of 3 ×10 −7 nT −2 (spatial norm was 40 × 10 9 nT 2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> atemporal damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameter of 5 × 10 −1 nT −2 yr 4 (temporal norm was 63×10 3 nT 2 yr −4 ).The best way of assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the success of a model is to compare its predicti<strong>on</strong>s to theorig<str<strong>on</strong>g>in</str<strong>on</strong>g>al data. This has been carried out by Korte <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable (2005) with lakesediment data <str<strong>on</strong>g>and</str<strong>on</strong>g> archeomagnetic data at a number of sites. In general the fit ofthe model to the data was found to be good, though there are some discrepancies, forexample <str<strong>on</strong>g>in</str<strong>on</strong>g> Lake Baikal <str<strong>on</strong>g>in</str<strong>on</strong>g> Japan where not even the trend was been well captured,suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that this record may have some serious errors. The good fit of the modelto records <str<strong>on</strong>g>in</str<strong>on</strong>g> the Southern hemisphere was particularly encourag<str<strong>on</strong>g>in</str<strong>on</strong>g>g, given the sparsenature of data coverage there.B.7 Grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g of CALS7K.1 for analysis <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceIn order to carry out a space-time analysis of field features <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1, the sphericalharm<strong>on</strong>ic field model for the magnetic potential V supplied by M<strong>on</strong>ika Korte (pers<strong>on</strong>alcommunicati<strong>on</strong> July 2004) was used al<strong>on</strong>g with equati<strong>on</strong>s (A.8)-(A.17) to evaluate B r<strong>on</strong> a regularly spaced grid <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude, l<strong>on</strong>gitude <str<strong>on</strong>g>and</str<strong>on</strong>g> time at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface.In all cases a grid of spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g 2 degrees <str<strong>on</strong>g>in</str<strong>on</strong>g> l<strong>on</strong>gitude by 2 degrees <str<strong>on</strong>g>in</str<strong>on</strong>g> latitude was used.This is c<strong>on</strong>siderably smaller then the resoluti<strong>on</strong> of a degree 10 spherical harm<strong>on</strong>ic model,ensur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that no <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> was lost through the grid<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure.For comparis<strong>on</strong> to gufm1 a subset of CALS7K.1 runn<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 1600A.D to 1950A.D(called CALS7K.1h) was gridded with a temporal spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 2 years. This is obviouslymuch higher than the temporal resoluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CALS7K.1, but facilitates straightforwardcomparis<strong>on</strong>s with the historical record. When study<str<strong>on</strong>g>in</str<strong>on</strong>g>g the full span of CALS7K.1 atemporal spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 25 years was employed, aga<str<strong>on</strong>g>in</str<strong>on</strong>g> significantly less than the resoluti<strong>on</strong>of CALS7K.1. The study of the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval from 2000B.C to 1700A.D. employs a 25 yeargrid spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g.


265Appendix CA 3D, c<strong>on</strong>vecti<strong>on</strong>-driven, spherical shelldynamo model (MAGIC)C.1 Introducti<strong>on</strong>In chapter 5 results from runs of the Wicht (2002) model of time dependent, 3D, Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esqthermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field generati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> an electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluidc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical shell geometry (known as MAGIC) are analysed. MAGIC isdesigned to simulate as well as possible the geodynamo process thought to be operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> given current computati<strong>on</strong>al limits. In this appendix, the modelequati<strong>on</strong>s, boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> numerics of MAGIC are summarised, the parametersof the runs exam<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis are detailed, <str<strong>on</strong>g>and</str<strong>on</strong>g> possible scal<str<strong>on</strong>g>in</str<strong>on</strong>g>gs to Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> the problems associated with such scal<str<strong>on</strong>g>in</str<strong>on</strong>g>gs are discussed.C.2 Model equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>sMAGIC is described <str<strong>on</strong>g>in</str<strong>on</strong>g> detail by Wicht (2002), here the important details are collectedfor completeness.The n<strong>on</strong>-dimensi<strong>on</strong>alised equati<strong>on</strong>s of Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq c<strong>on</strong>vecti<strong>on</strong> of anelectrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a magnetic field used <str<strong>on</strong>g>in</str<strong>on</strong>g> MAGIC are( )∂uE∂t + (u · ∇)u − ∇2 u + 2(ẑ × u) + ∇P = 1 ((∇ × B) × B) + Ra m T r , (C.1)P r m r 0∂B∂t= ∇ × (u × B) +1P r m∇ 2 B,(C.2)∂T1= −(u · ∇)T +∂t P r ∇2 T,(C.3)∇ · u = 0, ∇ · B = 0. (C.4)N<strong>on</strong>-dimensi<strong>on</strong>alised was carried out us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the viscous diffusi<strong>on</strong> timescale of D2ν(whereD = r 0 −r i where r 0 is the radius of the outer shell <str<strong>on</strong>g>and</str<strong>on</strong>g> r i is the radius of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner shell),<str<strong>on</strong>g>and</str<strong>on</strong>g> measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> units of(ρ0 Ωσ) 1/2(where σ = µ0 η is the electrical


266 Appendix C — MAGICc<strong>on</strong>ductivity) <str<strong>on</strong>g>and</str<strong>on</strong>g> the temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> units of the temperature difference across thespherical shell (∆T ). Detailed derivati<strong>on</strong>s of these govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gsof the various symbols can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D. When discuss<str<strong>on</strong>g>in</str<strong>on</strong>g>g MAGIC <str<strong>on</strong>g>and</str<strong>on</strong>g> theresults obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from it, the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong>s of the n<strong>on</strong>-dimensi<strong>on</strong>al numbers def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Wicht(2002) will be employedE =νΩD 2 , P r = ν κ , P r m = ν η , Ra m = αg 0∆T DνΩ , (C.5)where g 0 is the gravity field at the outer boundary. These are the same as those described<str<strong>on</strong>g>in</str<strong>on</strong>g> appendix D except that the Ekman number E is a factor 2 larger <str<strong>on</strong>g>and</str<strong>on</strong>g> Ra mis a differential heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rayleigh number that has been modified by multiply<str<strong>on</strong>g>in</str<strong>on</strong>g>g by theEkman number <str<strong>on</strong>g>and</str<strong>on</strong>g> divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g by the Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number.The govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s are solved <str<strong>on</strong>g>in</str<strong>on</strong>g> the geometry of a rigid spherical fluid shell surround<str<strong>on</strong>g>in</str<strong>on</strong>g>ga solid <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> with the same electrical c<strong>on</strong>ductivity as the fluid. The <str<strong>on</strong>g>in</str<strong>on</strong>g>ner<str<strong>on</strong>g>core</str<strong>on</strong>g> is free to rotate under mechanical <str<strong>on</strong>g>and</str<strong>on</strong>g> electrical torques (with no slip boundaryc<strong>on</strong>diti<strong>on</strong>s). The magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the diffusi<strong>on</strong> of thetime-dependent magnetic field from the fluid regi<strong>on</strong>. Rigid, no-slip boundary c<strong>on</strong>diti<strong>on</strong>sare applied to the velocity field of the fluid at both boundaries <str<strong>on</strong>g>and</str<strong>on</strong>g> electrically <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>gboundary c<strong>on</strong>diti<strong>on</strong>s are applied to the magnetic field at the outer boundary. Both the<str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer boundaries are held at fixed temperatures.MAGIC does not use the c<strong>on</strong>troversial hyperdiffusi<strong>on</strong> parameterisati<strong>on</strong> of sub-grid scaleeffects (see Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es (1997) for discussi<strong>on</strong>sof this approach) <str<strong>on</strong>g>and</str<strong>on</strong>g> does not <str<strong>on</strong>g>in</str<strong>on</strong>g>corporate <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneous thermal boundary c<strong>on</strong>diti<strong>on</strong>s(see, for example, Gibb<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2000) or Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (2003)).C.3 Numerical soluti<strong>on</strong>The numerical method used to solve this system is based <strong>on</strong> the pseudo-spectral method<str<strong>on</strong>g>in</str<strong>on</strong>g> spherical coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates developed by Glatzmaier (1984) that has been used <str<strong>on</strong>g>in</str<strong>on</strong>g> a numberof recent 3D studies of the geodynamo (see, for example, Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts(1995) or Ols<strong>on</strong> et al. (1999)). The velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field are expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> termsof poloidal <str<strong>on</strong>g>and</str<strong>on</strong>g> toroidal scalars, ensur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the solenoidal c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> u <str<strong>on</strong>g>and</str<strong>on</strong>g> B areautomatically satisfiedu = ∇ × (∇ × f ̂r) + ∇ × êr(C.6)B = ∇ × (∇ × ĥr) + ∇ × ĝr(C.7)The scalar fields are then exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of Chebyshev polynomials as a functi<strong>on</strong> ofthe transformed radial variable ( 2(r−r i)r 0 −r i− 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> truncated at degree N x , <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> termsof complex surface spherical harm<strong>on</strong>ics <str<strong>on</strong>g>in</str<strong>on</strong>g> co-latitude θ <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gitude φ, truncated atdegree L, so for example the toroidal scalar for the velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> the fluid spherical


267 Appendix C — MAGICshell is represented ase(r, θ, φ) =n=N∑n=0∑l=Lm=l∑l=0 m=−le nlm T n ( 2(r − r i)r 0 − r i− 1)P lm (cos θ)e imφ , (C.8)where T n is a Chebyshev polynomial of degree n <str<strong>on</strong>g>and</str<strong>on</strong>g> P lm is an associated Legendrefuncti<strong>on</strong> of degree l <str<strong>on</strong>g>and</str<strong>on</strong>g> order m. To ensure c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity <str<strong>on</strong>g>and</str<strong>on</strong>g> differentiability at the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>,fields <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> are represented <str<strong>on</strong>g>in</str<strong>on</strong>g>stead by schemes such ase i (r, θ, φ) =n=N∑<str<strong>on</strong>g>in</str<strong>on</strong>g>=0∑l=Lm=l∑l=0 m=−le i nlm( ) r l+1 ( )2(r − ri )T 2n − 1 P lm (cos θ)e imφ .r i r 0 − r i(C.9)A mixed implicit/explicit algorithm is used to timestep the system of govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s.N<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial terms <str<strong>on</strong>g>and</str<strong>on</strong>g> Coriolis terms are calculated explicitly by transform<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom spectral to physical space <str<strong>on</strong>g>and</str<strong>on</strong>g> back us<str<strong>on</strong>g>in</str<strong>on</strong>g>g fast Fourier transforms for theazimuthal representati<strong>on</strong>, Gauss-Legendre <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> to deal with the latitude dependence<str<strong>on</strong>g>and</str<strong>on</strong>g> a fast cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e transform to transform the Chebyshev polynomials <strong>on</strong> a suitablychosen radial grid. Further details can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Wicht (2002), Glatzmaier (1984),Glatzmaier <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1995) <str<strong>on</strong>g>and</str<strong>on</strong>g> Christensen et al. (1999).The MAGIC code has reproduced the numerical benchmark soluti<strong>on</strong> reported by Christensenet al. (2001) <str<strong>on</strong>g>and</str<strong>on</strong>g> the versi<strong>on</strong> with a f<str<strong>on</strong>g>in</str<strong>on</strong>g>itely c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g, rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> hasbeen successful benchmarked aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st other schemes (A. Willis, pers<strong>on</strong>al communicati<strong>on</strong>,December 2004). The truncati<strong>on</strong> parameters are chosen so that the magnetic <str<strong>on</strong>g>and</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>eticenergy associated with the highest spherical harm<strong>on</strong>ic degrees is several orders ofmagnitude lower than the peak energy <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectrum (a good <str<strong>on</strong>g>in</str<strong>on</strong>g>dicator of c<strong>on</strong>vergence)while the time-step is chosen adaptively to ensure optimal efficiency. The soluti<strong>on</strong>s foreach set of parameters are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after several magnetic diffusi<strong>on</strong> times, after alltransient effects have decayed. The <str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>diti<strong>on</strong>s used are those of previous runs atnearby parameter values.C.4 Parameters of models studiedTwo soluti<strong>on</strong>s generated by Johannes Wicht us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the model MAGIC (pers<strong>on</strong>al communicati<strong>on</strong>sAugust 2004, November 2004) are analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 5 of this thesis. ModelDYN1 is a high Ekman number case (E=2×10 −2 ) with relatively low magnetic Reynoldsnumber R m = U RMS D/η ∼ 100 (this n<strong>on</strong>-dimensi<strong>on</strong>al number quantifies the ratio of theamount of magnetic field change caused by advecti<strong>on</strong> to the amount of magnetic fieldchange caused by magnetic diffusi<strong>on</strong>), while model DYN2 is a lower Ekman number case(E=3 × 10 −4 ) with larger R m ∼ 500. The precise parameter values <str<strong>on</strong>g>and</str<strong>on</strong>g> a comparis<strong>on</strong> tothe estimated parameters <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> are listed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table C.1.In model DYN1 the length scales of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic fields are relatively largeso that when the model is truncated at degree L=32 little power is found spherical


268 Appendix C — MAGICParameter Model 1 Model 2 Earth(lam<str<strong>on</strong>g>in</str<strong>on</strong>g>ar) Earth(turbulent)Ekman No. (E) 2 ×10 −2 3×10 −4 10 −16 10 −9Modified Rayleigh No. (Ra m = ERaP r ) 3×102 9×10 2 10 15 (10 24 ) 10 3 (10 6 )Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl No. (P r) 1 1 0.1 1Magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl No. (P r m ) 10 3 10 −6 1Magnetic Reynolds No. (R m ) 100 500 ∼ 1200 ∼ 1200Table C.1: Parameters of dynamo models <str<strong>on</strong>g>and</str<strong>on</strong>g> estimates for Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.The n<strong>on</strong>-dimensi<strong>on</strong>al parameters specify<str<strong>on</strong>g>in</str<strong>on</strong>g>g the regime of the 3D c<strong>on</strong>vective dynamomodels whose output is analysed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> estimated parameters for the Earth’sliquid ir<strong>on</strong> outer <str<strong>on</strong>g>core</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g typical estimates of the molecular diffusivities at <str<strong>on</strong>g>core</str<strong>on</strong>g> pressures<str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures from Table 1 of Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2000) (ν = 10 −6 mboxm 2 s −1 , κ =8.6 × 10 −6 m 2 s −1 , η = 1.6 m 2 s −1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the turbulent viscosity <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal diffusivitiesν t = κ t = η = 1.6 m 2 s −1 . This crude parameterisati<strong>on</strong> of the effect of small scale turbulenteddies <strong>on</strong> the thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> viscous diffusi<strong>on</strong> is discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> detail by Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g>Glatzmaier (2000a). Estimates for the modified Rayleigh number due to thermal c<strong>on</strong>vecti<strong>on</strong>also come from Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s (2000), estimates for the Rayleigh numbers appropriate forcompositi<strong>on</strong>al c<strong>on</strong>vecti<strong>on</strong> are given <str<strong>on</strong>g>in</str<strong>on</strong>g> brackets. The estimates of the magnetic Reynoldsnumber <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> are based <strong>on</strong> the estimates of Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Tilgner (2004).harm<strong>on</strong>ic degrees greater than 10. In c<strong>on</strong>trast for Model DYN2 the flow <str<strong>on</strong>g>and</str<strong>on</strong>g> magneticfield features are much smaller scale <str<strong>on</strong>g>and</str<strong>on</strong>g> a truncati<strong>on</strong> level of L=85 is necessary forc<strong>on</strong>vergence. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce such small scales are masked by crustal effects (Langel <str<strong>on</strong>g>and</str<strong>on</strong>g> H<str<strong>on</strong>g>in</str<strong>on</strong>g>ze,1998) when Earth’s magnetic field is observed from its surface, a versi<strong>on</strong> of Model DYN2(called Model DYN2d) that <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes the power up to spherical harm<strong>on</strong>ic degree 14,(with degrees 13 <str<strong>on</strong>g>and</str<strong>on</strong>g> 14 progressively damped) was also studied.C.5 Relat<str<strong>on</strong>g>in</str<strong>on</strong>g>g geodynamo model output to the Earth: problems withtime scalesThe c<strong>on</strong>vecti<strong>on</strong> driven geodynamo model MAGIC encapsulates the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order physicalprocesses believed to be operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thought to be <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g>generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g Earth’s magnetic field. Can it therefore be used to improve knowledge of themechanisms underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g the observed magnetic field change at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface?The first step towards answer<str<strong>on</strong>g>in</str<strong>on</strong>g>g this questi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>volves determ<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g whether the patternsof field change produced by the model have the same character as geomagnetic secularvariati<strong>on</strong>. In order to compare the form of observed secular variati<strong>on</strong> to that seen <str<strong>on</strong>g>in</str<strong>on</strong>g>the model, the scales of length, time <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field must be re-scaled from the n<strong>on</strong>dimensi<strong>on</strong>alnumbers output by the model, to the scales appropriate for the Earth. Thiscan be achieved by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g estimates of the physical properties thought to be present <str<strong>on</strong>g>in</str<strong>on</strong>g>Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the relevant scales of shell thicknessD = r 0 − r i = 3480km − 1220km ∼ 2.3 × 10 6 m(C.10)


269 Appendix C — MAGICmagnetic diffusi<strong>on</strong> timeτ η = D2η= (2.3 × 10 6 ) 2 m 2 · 4π × 10 −7 T 2 m 2 kg −1 s 2 · 5 × 10 5 T −2 kgs −1= 3.3 × 10 12 s ∼ 10 5 yrs, (C.11)<str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic field strength( ) ρΩ 1/2 ( 10 4 kg · 7.3 × 10 −5 s −1 ) 1/2B = =σ5 × 10 5 T −2 kgs −1 ∼ 1.2 × 10 −3 T. (C.12)These factors can then be used to transform the model output to a dimensi<strong>on</strong>al formthat can be compared <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trasted with observati<strong>on</strong>s as has been d<strong>on</strong>e by severalprevious workers (see for example Kuang <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (1998), Christensen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>(2003), Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham (2003) <str<strong>on</strong>g>and</str<strong>on</strong>g> Wicht <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong> (2004)).Although a dimensi<strong>on</strong>ally correct approach, the results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this proceduremust be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted with care, <str<strong>on</strong>g>and</str<strong>on</strong>g> it should always be remembered that the time scales ofdynamic processes <str<strong>on</strong>g>in</str<strong>on</strong>g> the model may not be comparable to those present <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.As discussed by J<strong>on</strong>es (2000), Dormy et al. (2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollerbach (2003), the problem<str<strong>on</strong>g>in</str<strong>on</strong>g> time scale <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> arises because the n<strong>on</strong>-dimensi<strong>on</strong>al parameters are ratios ofthe natural time scales of the system. In particular, E (the parameter that the modelhas most seriously wr<strong>on</strong>g) can be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as the ratio of the rotati<strong>on</strong>al to the viscousdiffusi<strong>on</strong> time scale. Therefore dynamic mechanisms associated with the rotati<strong>on</strong> timescale <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> will have very different time scales <str<strong>on</strong>g>in</str<strong>on</strong>g> redimensi<strong>on</strong>alised model years.For example, <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> typically have periods <strong>on</strong> the order of a day <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>but will have periods of around 100 re-dimensi<strong>on</strong>alised years <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of Model DYN2,because the ratio of the rotati<strong>on</strong>al time scale to the magnetic diffusi<strong>on</strong> time scale (thatequals the viscous diffusi<strong>on</strong> time scale when P r=1) is a factor of 10 5 too large <str<strong>on</strong>g>in</str<strong>on</strong>g> Model2 compared to the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> (turbulent case). Even worse, the dynamical balanceproduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid moti<strong>on</strong>s could be very different <str<strong>on</strong>g>in</str<strong>on</strong>g> the models than is the case <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s<str<strong>on</strong>g>core</str<strong>on</strong>g> (especially viscous effects will unrealistically large), aga<str<strong>on</strong>g>in</str<strong>on</strong>g> lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to changes <str<strong>on</strong>g>in</str<strong>on</strong>g> thecharacteristic time scales <str<strong>on</strong>g>and</str<strong>on</strong>g> damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of dynamics (Dumberry <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, 2003).Only if the models get the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order force balance <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> a particular dynamicmechanism correct, <str<strong>on</strong>g>and</str<strong>on</strong>g> if the characteristic time scale of that mechanism is <str<strong>on</strong>g>in</str<strong>on</strong>g>dependentof the c<strong>on</strong>trol parameters would direct comparis<strong>on</strong>s of the space-time characteristics ofgeodynamo model output <str<strong>on</strong>g>and</str<strong>on</strong>g> the space-time characteristics of Earth’s magnetic field bemean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful. It is for this reas<strong>on</strong> that we prefer to leave the time scales <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 5 <str<strong>on</strong>g>in</str<strong>on</strong>g>terms of the n<strong>on</strong>-dimensi<strong>on</strong>al magnetic diffusi<strong>on</strong> time scale.N<strong>on</strong>etheless, analysis of geodynamo model output provides <str<strong>on</strong>g>in</str<strong>on</strong>g>valuable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> (especiallyregard<str<strong>on</strong>g>in</str<strong>on</strong>g>g the mechanisms produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic field evoluti<strong>on</strong> at the outer surfaceof its generati<strong>on</strong> regi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>side a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid) that cannot be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from any othersource. These models are potential very useful tools provided that <str<strong>on</strong>g>their</str<strong>on</strong>g> limitati<strong>on</strong>s areborne <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d.


270Appendix DEquati<strong>on</strong>s govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>D.1 Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq hydromagnetic equati<strong>on</strong>s for c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfluidQuantitative modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g> requires equati<strong>on</strong>sencapsulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the physical laws govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fluid dynamics of a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, electricalc<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g liquid <str<strong>on</strong>g>in</str<strong>on</strong>g> a spherical c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>er with a magnetic field present. The relevantlaws are the c<strong>on</strong>servati<strong>on</strong> of mass, momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> energy al<strong>on</strong>g with the pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciplesof electromagnetism (for the background to these laws c<strong>on</strong>sult, for example, Feynmanet al. (1963); L<strong>on</strong>gair (2003)).A suitable system <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g these pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples butmak<str<strong>on</strong>g>in</str<strong>on</strong>g>g reas<strong>on</strong>able simplify<str<strong>on</strong>g>in</str<strong>on</strong>g>g assumpti<strong>on</strong>s 1 is the system of Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq, hydromagneticequati<strong>on</strong>s for a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. A comprehensive <str<strong>on</strong>g>and</str<strong>on</strong>g> rigorous derivati<strong>on</strong> of these equati<strong>on</strong>sdetail<str<strong>on</strong>g>in</str<strong>on</strong>g>g the assumpti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>volved can be found <str<strong>on</strong>g>in</str<strong>on</strong>g> Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar (1961). A discussi<strong>on</strong>of the applicability of this system to modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dynamics of Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> can be found<str<strong>on</strong>g>in</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts (1987).In this thesis, ρ 0 is taken to represent the lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g order, c<strong>on</strong>stant density of the fluid, uthe velocity field, Ω the angular rotati<strong>on</strong> rate of the fluid, P the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed mechanical<str<strong>on</strong>g>and</str<strong>on</strong>g> centrifugal pressures, α the coefficient of volume expansi<strong>on</strong>, T the temperature field,g the gravitati<strong>on</strong>al accelerati<strong>on</strong>, µ 0 the magnetic permeability of a material that is notpermanently magnetised, B the magnetic flux density (comm<strong>on</strong>ly called the magneticfield), ν the k<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic viscosity, κ the thermal diffusivity, ɛ =J Hρ 0 C pwhere J H is the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternalheat<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate per unit volume <str<strong>on</strong>g>and</str<strong>on</strong>g> C p is the heat capacity at c<strong>on</strong>stant pressure, <str<strong>on</strong>g>and</str<strong>on</strong>g> ηthe magnetic diffusivity where η = 1µ 0 σ<str<strong>on</strong>g>and</str<strong>on</strong>g> σ is the electrical c<strong>on</strong>ductivity. The Boussi-1 These <str<strong>on</strong>g>in</str<strong>on</strong>g>clude assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fluid to be homogeneous, isotropic, <str<strong>on</strong>g>in</str<strong>on</strong>g>compressible except with regardto the acti<strong>on</strong> of the buoyancy force, <str<strong>on</strong>g>and</str<strong>on</strong>g> that it exhibits Newt<strong>on</strong>ian viscosity. Moti<strong>on</strong> is driven byuniform <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g per unit volume <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical <str<strong>on</strong>g>and</str<strong>on</strong>g> joule heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects are ignored <str<strong>on</strong>g>in</str<strong>on</strong>g> theheat equati<strong>on</strong>. The MHD approximati<strong>on</strong> is also made, neglect<str<strong>on</strong>g>in</str<strong>on</strong>g>g relativistic effects <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence ofdisplacement currents <str<strong>on</strong>g>in</str<strong>on</strong>g> Maxwell’s equati<strong>on</strong>s, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong>.


271 Appendix D — Govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>snesq hydromagnetic equati<strong>on</strong>s for a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid are then the Navier-Stokes equati<strong>on</strong>express<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>servati<strong>on</strong> of momentumρ 0[ ∂u∂t + (u · ∇)u ]+ 2ρ 0 (Ω × u) = −∇P − ρ 0 αT g + 1 µ 0(∇ × B) × B + ρ 0 ν∇ 2 u, (D.1)the Bouss<str<strong>on</strong>g>in</str<strong>on</strong>g>esq heat equati<strong>on</strong> express<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>servati<strong>on</strong> of energy∂T∂t + (u · ∇)T = κ∇2 T + ɛ,the magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> derived from Maxwell’s equati<strong>on</strong>sthe <str<strong>on</strong>g>in</str<strong>on</strong>g>compressibility c<strong>on</strong>diti<strong>on</strong>∂B∂t = ∇ × (u × B) + η∇2 B,∇ · u = 0,<str<strong>on</strong>g>and</str<strong>on</strong>g> the solenoidal c<strong>on</strong>diti<strong>on</strong> for no magnetic m<strong>on</strong>opoles(D.2)(D.3)(D.4)∇ · B = 0.(D.5)D.2 L<str<strong>on</strong>g>in</str<strong>on</strong>g>earised govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>sThe properties of small, time dependent perturbati<strong>on</strong>s to a background state of thissystem (def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of an imposed velocity field U 0 , temperature field T 0 , magneticfield B 0 , <str<strong>on</strong>g>and</str<strong>on</strong>g> associated pressure field P 0 ) can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g theexpressi<strong>on</strong>su = U 0 + u ′ where |u ′ |


272 Appendix D — Govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s∂Θ∂t + (U 0 · ∇)Θ + (u ′ · ∇)T 0 = κ∇ 2 Θ,(D.11)∂b ′∂t = ∇ × (U 0 × b ′ ) + ∇ × (u ′ × B 0 ) + η∇ 2 b ′ ,(D.12)In the special case that B 0 is a force free field (i.e. (∇ × B 0 ) × B 0 = 0) then U 0 = 0 is asoluti<strong>on</strong> to the steady state balance, (∇×b ′ )×B 0 +(∇×B 0 )×b ′ = (B 0·∇)b ′ +(b ′·∇)B 0<str<strong>on</strong>g>and</str<strong>on</strong>g> the perturbati<strong>on</strong> equati<strong>on</strong>s with (u ′ , b ′ , P’) relabelled as (u, b, P) for notati<strong>on</strong>alc<strong>on</strong>venience becomeρ 0∂u∂t + 2ρ 0(Ω × u) = −∇P − ρ 0 αΘg + 1 µ 0[(B 0 · ∇)b + (b · ∇)B 0 ] + ρ 0 ν∇ 2 u, (D.13)∂Θ∂t + (u · ∇)T 0 = κ∇ 2 Θ,∂b∂t = ∇ × (u × B 0) + η∇ 2 b,∇ · u = 0,(D.14)(D.15)(D.16)∇ · b = 0.(D.17)D.3 N<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the viscous time scaleIt is useful to group the physical parameters <str<strong>on</strong>g>in</str<strong>on</strong>g>to a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal number of n<strong>on</strong>-dimensi<strong>on</strong>alquantities which then c<strong>on</strong>trol the dynamics of the soluti<strong>on</strong>. In this thesis a n<strong>on</strong>-dimensi<strong>on</strong>alisati<strong>on</strong>based <strong>on</strong> the viscous diffusi<strong>on</strong> time scale (τ ν = d2 0ν) that facilitates straightforward comparis<strong>on</strong>to n<strong>on</strong>-magnetic c<strong>on</strong>vecti<strong>on</strong> is adopted. This requires that variables are re-scaledas follows∇ → ∇ , t → d2 0d 0 ν t, u → ν u, b → B 0νd 0 η b, Θ → |∇T 0|d 0 νΘ, p → 2Ωνp. (D.18)κThe govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s then become( ) ∂E∂t − ∇2 u + ( ̂Ω × u) = −∇P − ERaΘĝ + Λ[( ̂B 0 · ∇)b + (b · ∇) ̂B]0 , (D.19)(∇ 2 − P r ∂ )Θ = u ·∂t̂∇T 0 ,(D.20)()∇ 2 ∂− P r m b = ∇ × (u ×∂t̂B 0 ).(D.21)al<strong>on</strong>g with the <str<strong>on</strong>g>in</str<strong>on</strong>g>compressibility c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> u <str<strong>on</strong>g>and</str<strong>on</strong>g> the solenoidal c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> b <str<strong>on</strong>g>and</str<strong>on</strong>g>where ĝ is a unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the gravitati<strong>on</strong> accelerati<strong>on</strong> (except <str<strong>on</strong>g>in</str<strong>on</strong>g> thecase of a sphere 2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> ̂Ω is a unit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the rotati<strong>on</strong> axis, ̂B0 is a2 The def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of the Rayleigh number used here (see equati<strong>on</strong> (D.26)) is that of the c<strong>on</strong>venti<strong>on</strong>al<str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rayleigh number which for a plane layer problem is Ra = γαβ′ d 4 0κν(Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar, 1961)with β’ the magnitude of the temperature gradient (|∇T 0| = β ′ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> γ the magnitude of the gravitati<strong>on</strong>alforce (|g| = γ). However, <str<strong>on</strong>g>in</str<strong>on</strong>g> a self-gravitat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere (d 0 = r 0) with uniform <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g per unitvolume the expressi<strong>on</strong>s for the gravitati<strong>on</strong>al force <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature gradient become g = γr 0r <str<strong>on</strong>g>and</str<strong>on</strong>g>∇T 0 = −β ′ r 0r where r varies between 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1. Tak<str<strong>on</strong>g>in</str<strong>on</strong>g>g the magnitudes of the gravitati<strong>on</strong>al force <str<strong>on</strong>g>and</str<strong>on</strong>g> thetemperature gradient appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> Ra to be those at the outer boundary where |r|=1, leads to a revisedexpressi<strong>on</strong> for the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g Rayleigh number c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g an additi<strong>on</strong>al factor r 2 0 (Ra = γαβ′ d 6 0κν)which is used <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7.


273 Appendix D — Govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>sunit vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the background magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> ̂∇T 0 is a unit vector<str<strong>on</strong>g>in</str<strong>on</strong>g> the directi<strong>on</strong> of the background temperature gradient. The n<strong>on</strong> dimensi<strong>on</strong>al c<strong>on</strong>trolparameters areΛ = B2 02Ωµρ 0 η=Magnetic diffusi<strong>on</strong> time scaleMC timescale(Elsasser No.)(D.22)P r = ν Thermal diffusi<strong>on</strong> time scale= (Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl No.),κ Viscous diffusi<strong>on</strong> time scaleP r m = ν Magnetic diffusi<strong>on</strong> time scale= (Magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl No.)η Viscous diffusi<strong>on</strong> time scaleE =Ra = |g| α |∇T 0| d 4 0κνν2Ωd 02 ==Rotati<strong>on</strong>al time scaleViscous diffusi<strong>on</strong> time scale(Ekman No.),Time scale for buoyant moti<strong>on</strong> of viscous fluidThermal diffusi<strong>on</strong> time scale(D.23)(D.24)(D.25)(Rayleigh No.),(D.26)The Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number <str<strong>on</strong>g>and</str<strong>on</strong>g> the magnetic Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number are material properties of thefluid (perhaps adjusted if turbulence dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ates transport <str<strong>on</strong>g>and</str<strong>on</strong>g> eddy diffusi<strong>on</strong> becomeimportant — see the discussi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> (Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, 2000a)). For a particularfluid, the Ekman number is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the rotati<strong>on</strong> rate of the fluid, the Elsassernumber depends <strong>on</strong> the strength <strong>on</strong> the imposed magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> the Rayleigh numberdepends <strong>on</strong> the temperature gradient driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong>.


274Appendix EEquatorial symmetry c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>spherical geometryE.1 OverviewIn this appendix, the issue of equatorial symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical geometry isdiscussed follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the notati<strong>on</strong> of Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang (1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> Sars<strong>on</strong> (1994). Theequatorial symmetries possible for l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> this geometry are documented<str<strong>on</strong>g>and</str<strong>on</strong>g> the relati<strong>on</strong>ship between the equatorial symmetry of the B r observed atEarth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the equatorial symmetry of flows with<str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> is discussed.E.2 Equatorial symmetry operati<strong>on</strong>sThe discussi<strong>on</strong> here is based around spherical polar coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates (r, θ, φ), with rotati<strong>on</strong>understood to occur about the z axis where θ = 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the x, y coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates referr<str<strong>on</strong>g>in</str<strong>on</strong>g>g topositi<strong>on</strong>s the plane perpendicular to the rotati<strong>on</strong> axis (see (Arfken, 1985) for a discussi<strong>on</strong>of transformati<strong>on</strong>s between different coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate systems).Reflecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the equatorial (xy) plane <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical polar coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ates (r, θ, φ) <str<strong>on</strong>g>in</str<strong>on</strong>g>volvesthe transformati<strong>on</strong> θ → π − θ <str<strong>on</strong>g>and</str<strong>on</strong>g> is denoted by the symbol E. E S denotes symmetry 1with respect to this operati<strong>on</strong> while E A denotes antisymmetry. Thus for a scalar field sE S ⇐⇒ s(r, θ, φ) = s(r, π − θ, φ), (E.1)E A ⇐⇒ s(r, θ, φ) = −s(r, π − θ, φ), (E.2)1 There has been some c<strong>on</strong>fusi<strong>on</strong> over the def<str<strong>on</strong>g>in</str<strong>on</strong>g>iti<strong>on</strong> of equatorial symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature c<strong>on</strong>cern<str<strong>on</strong>g>in</str<strong>on</strong>g>gthermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere because <str<strong>on</strong>g>in</str<strong>on</strong>g> the sem<str<strong>on</strong>g>in</str<strong>on</strong>g>al paper of Busse (1970) vector velocityfields u with E S symmetry are referred to as hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g ’odd’ symmetry because u z(r, θ, φ) = −u z(r, π−θ, φ).In this thesis such modes are referred to as equatorially symmetric.


275 Appendix E — Symmetrywhile for a vector field V = (V r , V θ , V φ )E S ⇐⇒ [V r , V θ , V φ ](r, θ, φ) = [V r , −V θ , V φ ](r, π − θ, φ), (E.3)E A ⇐⇒ [V r , V θ , V φ ](r, θ, φ) = [−V r , V θ , −V φ ](r, π − θ, φ). (E.4)The antisymmetric behaviour of the θ comp<strong>on</strong>ent arises from the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of the θ comp<strong>on</strong>entdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the E transformati<strong>on</strong>, as can be seen by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g how the coord<str<strong>on</strong>g>in</str<strong>on</strong>g>atesystem changes under this transformati<strong>on</strong>.In order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e allowed comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of equatorial symmetries for fields <str<strong>on</strong>g>in</str<strong>on</strong>g> a systemof <str<strong>on</strong>g>in</str<strong>on</strong>g>terest (whose mathematical govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g equati<strong>on</strong>s are known), it is necessary todeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>e how relevant comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of differential operators, vector operators, scalarfields <str<strong>on</strong>g>and</str<strong>on</strong>g> vector fields behave under the equatorial symmetry transformati<strong>on</strong>The b<str<strong>on</strong>g>in</str<strong>on</strong>g>ary vector operators have the propertiesa · b = a i b i ⇐⇒ E S , a × b = ɛ ijk a j b k ⇐⇒ E A , (E.5)where ɛ ijk is the isotropic alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g tensor, itself reflecti<strong>on</strong>ally antisymmetric (see, forexample, Arfken (1985)).The operator E <str<strong>on</strong>g>in</str<strong>on</strong>g>volves θ → π − θ, so that dθ → −dθ. Differential operators thereforehave the symmetries∂∂r⇐⇒ E S ,∂∂θ⇐⇒ E A ,∂∂φ⇐⇒ E S . (E.6)It is now also possible to establish the symmetry of vector differential operators∇ ⇐⇒ E S , ∇· ⇐⇒ E S , ∇× ⇐⇒ E A , ∇ 2 ⇐⇒ E S . (E.7)The rules for calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the symmetry of compounds of variables <str<strong>on</strong>g>and</str<strong>on</strong>g> operators is analogousto calculat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the resultant parity of a product of algebraic terms, each of whichis either positive or negative, but now the operator itself can have a parity, with themultiplicati<strong>on</strong> operator always positive. For example, c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g an E S scalar s, an E Ascalar a, an E S vector V s <str<strong>on</strong>g>and</str<strong>on</strong>g> an E A vector V a thenV a · V a ⇐⇒ E S , V a · V s ⇐⇒ E A , V s × V s ⇐⇒ E A , V s × V a ⇐⇒ E S ,(E.8)<str<strong>on</strong>g>and</str<strong>on</strong>g> ∇ · V a ⇐⇒ E A , ∇s ⇐⇒ E S , ∇ × V s ⇐⇒ E A . ∇ × V a ⇐⇒ E S .(E.9)It should also be noted that any scalar or vector quantity can be decomposed <str<strong>on</strong>g>in</str<strong>on</strong>g>to E S<str<strong>on</strong>g>and</str<strong>on</strong>g> E A parts: for an arbitrary vector Q, if Q ′ = E S Q then the quantity Q S = 1 2 (Q+Q′ )is E S <str<strong>on</strong>g>and</str<strong>on</strong>g> Q A = 1 2 (Q − Q′ ) is E A <str<strong>on</strong>g>and</str<strong>on</strong>g> Q = (Q A + Q S ) is the required decompositi<strong>on</strong>.


276 Appendix E — SymmetryE.3 Symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear models of thermally-driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g>Hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g established the equatorial symmetry properties of the operators of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest, relati<strong>on</strong>sbetween the symmetries of the perturbati<strong>on</strong>s to the velocity field u, the magneticfield b <str<strong>on</strong>g>and</str<strong>on</strong>g> the temperature field Θ associated with hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> can now beestablished. The l<str<strong>on</strong>g>in</str<strong>on</strong>g>earised momentum, <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> heat equati<strong>on</strong>s (see appendix ??)govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> are( ) ∂E∂t − ∇2 u + (ẑ × u) = −∇P + ERaΘr + Λ[( ̂B 0 · ∇)b + (b · ∇) ̂B]0 , (E.10)(∇ 2 ∂− P r m∂t(∇ 2 − P r ∂ ∂t)b = ∇ × (u × ̂B 0 ),)Θ = −r · u,(E.11)(E.12)The l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between the equatorial symmetry of b <str<strong>on</strong>g>and</str<strong>on</strong>g> u can be established by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> (E.11). All terms <str<strong>on</strong>g>in</str<strong>on</strong>g> the equati<strong>on</strong> must have the same equatorialsymmetry. Therefore because (∇ 2 − P r m∂∂t ) is ES , b must have the same symmetry as∇ × (u× ̂B 0 ). S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce ∇× <str<strong>on</strong>g>and</str<strong>on</strong>g> × are both E A this means that b <str<strong>on</strong>g>and</str<strong>on</strong>g> the product of u <str<strong>on</strong>g>and</str<strong>on</strong>g>̂B 0 will have the same equatorial symmetry. Therefore if ̂B 0 is E S , u <str<strong>on</strong>g>and</str<strong>on</strong>g> b will havethe same equatorial symmetry, while if ̂B 0 is E A , u <str<strong>on</strong>g>and</str<strong>on</strong>g> b will have different equatorialsymmetry.A similar l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between Θ <str<strong>on</strong>g>and</str<strong>on</strong>g> u can be found by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the heat equati<strong>on</strong> (E.12).Because (∇ 2 −P r ∂ ∂t ) is ES , <str<strong>on</strong>g>and</str<strong>on</strong>g> −r· is E S , u <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ will always have the same equatorialsymmetry. The relati<strong>on</strong> between the equatorial symmetry of Θ <str<strong>on</strong>g>and</str<strong>on</strong>g> b is therefore alsothat they will be the same symmetry if ̂B 0 is E S <str<strong>on</strong>g>and</str<strong>on</strong>g> the opposite symmetry if ̂B 0 isE A . Substitut<str<strong>on</strong>g>in</str<strong>on</strong>g>g these symmetry relati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to the momentum equati<strong>on</strong> (E.10) showsthat these are <str<strong>on</strong>g>in</str<strong>on</strong>g>deed the required relati<strong>on</strong>s between the symmetries of the perturbati<strong>on</strong>fields.At the <strong>on</strong>set of thermal c<strong>on</strong>vecti<strong>on</strong>, magneto-c<strong>on</strong>vecti<strong>on</strong> or magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability <str<strong>on</strong>g>in</str<strong>on</strong>g> arapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere, wave flows u <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated temperature perturbati<strong>on</strong>s Θare always found to have E S symmetry (Busse, 1970; Fearn, 1979b; Zhang <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn,1995) as a result of the preference for fluid moti<strong>on</strong>s to be <str<strong>on</strong>g>in</str<strong>on</strong>g>variant parallel to the rotati<strong>on</strong>axis <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. The appropriate symmetries of u <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ are then[u r , u θ , u φ ](r, θ, φ) = [u r , −u θ , u φ ](r, π − θ, φ) ⇐⇒ E S , (E.13)Θ(r, θ, φ) = Θ(r, π − θ, φ) ⇐⇒ E S .(E.14)Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g this is the case, there are two possible equatorial symmetries of the accompany<str<strong>on</strong>g>in</str<strong>on</strong>g>gb depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the choice of ̂B 0 . If ̂B 0 is E S (as is the Malkus field, see results<str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7) then[b r , b θ , b φ ](r, θ, φ) = [b r , −b θ , b φ ](r, π − θ, φ) ⇐⇒ E S . (E.15)


277 Appendix E — SymmetryOn the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> if ̂B 0 is E A as simple αω dynamo theory suggests should be the caseto obta<str<strong>on</strong>g>in</str<strong>on</strong>g> an E A poloidal magnetic field (see Fearn <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor (1983), Zhang (1995)<str<strong>on</strong>g>and</str<strong>on</strong>g> L<strong>on</strong>gbottom et al. (1995)) then[B r , B θ , B φ ](r, θ, φ) = [−B r , B θ , −B φ ](r, π − θ, φ) ⇐⇒ E A . (E.16)Attenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis has focused <strong>on</strong> the simpler E S symmetry of magnetic fields,future work should address the E A symmetry <str<strong>on</strong>g>in</str<strong>on</strong>g> more detail.As well as giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g>to the physical processes <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> pattern formati<strong>on</strong>, knowledgeof the symmetry properties of soluti<strong>on</strong>s can lead to substantial computati<strong>on</strong>al sav<str<strong>on</strong>g>in</str<strong>on</strong>g>gs— this is because certa<str<strong>on</strong>g>in</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of fields are disallowed, so need not bec<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> the computati<strong>on</strong>s. In chapter 7 <strong>on</strong>ly E S symmetry of u, Θ <str<strong>on</strong>g>and</str<strong>on</strong>g> b isused <str<strong>on</strong>g>in</str<strong>on</strong>g> computati<strong>on</strong>s, which is c<strong>on</strong>sistent given the E S imposed magnetic field <str<strong>on</strong>g>and</str<strong>on</strong>g> theknowledge that u <str<strong>on</strong>g>and</str<strong>on</strong>g> Θ will be E S as the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong>.E.4 Equatorial symmetry of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> its relati<strong>on</strong> toequatorial symmetry of flows at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfaceThe l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between patterns of equatorial symmetry seen <str<strong>on</strong>g>in</str<strong>on</strong>g> the evoluti<strong>on</strong> of B r at the <str<strong>on</strong>g>core</str<strong>on</strong>g>surface <str<strong>on</strong>g>and</str<strong>on</strong>g> the fluid flow there is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> (D.3).C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong>ly changes <str<strong>on</strong>g>in</str<strong>on</strong>g> B r caused by advecti<strong>on</strong> of B r by u <str<strong>on</strong>g>and</str<strong>on</strong>g> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the fact thatat the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface u r =0, the magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>ducti<strong>on</strong> equati<strong>on</strong> reduces to the form (Backus,1968)∂B r∂t= −∇ H · (uB r ), (E.17)where ∇ H = ∇ − ∂ ∂r ̂r. Writ<str<strong>on</strong>g>in</str<strong>on</strong>g>g B r = B r0 + B ′ r with B r0 be<str<strong>on</strong>g>in</str<strong>on</strong>g>g a background radialmagnetic field acted <strong>on</strong> by the flow <str<strong>on</strong>g>and</str<strong>on</strong>g> B r ′ the perturbati<strong>on</strong> produced, then equati<strong>on</strong>(E.17) becomes∂B r′ = −∇ H · (uB r0 ) − ∇ H · (uB ′∂tr). (E.18)Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g that B r0 >> B r ′ this simplifies to∂B ′ r∂t= −∇ H · (uB r0 ). (E.19)Therefore because −∇ H· has E S symmetry the equatorial symmetry of B r ′ will be thesame as that of the product u <str<strong>on</strong>g>and</str<strong>on</strong>g> B r0 . So for example, if flows <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> are E S , thenB ′ r <str<strong>on</strong>g>and</str<strong>on</strong>g> B r0 will have the same equatorial symmetry. This predicti<strong>on</strong> has been c<strong>on</strong>firmedby the numerical results reported reported <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 8.It should be noted that the approach described <str<strong>on</strong>g>in</str<strong>on</strong>g> this secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> also employed <str<strong>on</strong>g>in</str<strong>on</strong>g>chapter 8 implicitly assumes that changes <str<strong>on</strong>g>in</str<strong>on</strong>g> B r can <strong>on</strong>ly be produced by rearrangementsof B r . This will not be true <str<strong>on</strong>g>in</str<strong>on</strong>g> general, because as described <str<strong>on</strong>g>in</str<strong>on</strong>g> chapter 7 fluid moti<strong>on</strong>scan distort toroidal magnetic fields <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> to produce new B r .


278Appendix FAnimati<strong>on</strong>sF.1 Animati<strong>on</strong>s as a visualisati<strong>on</strong> toolIt is rather difficult to appreciate how a time-dependent field <strong>on</strong> a surface evolves merelyby look<str<strong>on</strong>g>in</str<strong>on</strong>g>g at snapshots or space-time diagrams. Human visual percepti<strong>on</strong> has evolvedto allow us to efficiently process chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g images <str<strong>on</strong>g>and</str<strong>on</strong>g> to accurately <str<strong>on</strong>g>in</str<strong>on</strong>g>terpret them.For example, most <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <str<strong>on</strong>g>in</str<strong>on</strong>g> studies of fluid dynamics often comes from watch<str<strong>on</strong>g>in</str<strong>on</strong>g>g thedevelopment of a particular flow pattern. It was therefore felt essential that animati<strong>on</strong>sof the magnetic field evoluti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface were produced <str<strong>on</strong>g>and</str<strong>on</strong>g> made available, <str<strong>on</strong>g>in</str<strong>on</strong>g>order that the field evoluti<strong>on</strong> modes be<str<strong>on</strong>g>in</str<strong>on</strong>g>g discussed were fully appreciated.F.2 C<strong>on</strong>structi<strong>on</strong> of animati<strong>on</strong>sThe animati<strong>on</strong>s detailed <str<strong>on</strong>g>in</str<strong>on</strong>g> this appendix <str<strong>on</strong>g>and</str<strong>on</strong>g> referenced throughout the thesis werec<strong>on</strong>structed by comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g snapshots of the field at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface. These snapshotswere chosen to be sufficiently closely spaced <str<strong>on</strong>g>in</str<strong>on</strong>g> time that whenever displayed sequentiallythe impressi<strong>on</strong> of a smooth evoluti<strong>on</strong> was c<strong>on</strong>veyed to the viewer. The snapshots werecreated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the M—map freeware tool used with the MATLAB software package orthe nview package developed by Nick Barber. The images were then comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to giveanimated gifs us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the gifsicle freeware package.F.3 Locati<strong>on</strong>s of animati<strong>on</strong>sThe animati<strong>on</strong>s can be found <strong>on</strong> the CD <str<strong>on</strong>g>in</str<strong>on</strong>g>side the back cover of this thesis. Animatedgifs can be viewed by some web browsers (e.g. Netscape) <str<strong>on</strong>g>and</str<strong>on</strong>g> most media players. Forbest results the files should be copied <strong>on</strong>to the local hard disk. The tables below givethe animati<strong>on</strong> number, apage reference, the associated filename (preced<str<strong>on</strong>g>in</str<strong>on</strong>g>g the .gif) <str<strong>on</strong>g>and</str<strong>on</strong>g>a brief descripti<strong>on</strong>.


279 Appendix F — Animati<strong>on</strong>sReference Filename Prefix Page no. Descripti<strong>on</strong>A3.1 Brg 55 B r from gufm1 unprocessedA3.2 BrgZ 58 B r from gufm1 with time-averaged axisymmetricfield removedA3.3 BrgZT400 61 B r from gufm1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high passfiltered with t c =400yrsA3.4 BrgZT600 65 B r from gufm1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> high passfiltered with t c =600yrsA3.5 BrgZT400F38K7 68 B r from gufm1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencywavenumberfiltered so <strong>on</strong>ly m=7 with periods125 to 333 yrs rema<str<strong>on</strong>g>in</str<strong>on</strong>g>sA3.6 BrgZT400F38K5 68 B r from gufm1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencywavenumberfiltered so <strong>on</strong>ly m=5 with periods125 to 333 yrs rema<str<strong>on</strong>g>in</str<strong>on</strong>g>sA3.7 BrgZT400F38K3 68 B r from gufm1 with time-averaged axisymmetricfield removed <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencywavenumberfiltered so <strong>on</strong>ly m=3 with periods125 to 333 yrs rema<str<strong>on</strong>g>in</str<strong>on</strong>g>sTable F.1: Animati<strong>on</strong>s from chapter 3.References, the filename prefix (the full filenames are prefix.gif), page number wherethe animati<strong>on</strong>s are referenced, <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief descripti<strong>on</strong> of the field <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g> surfacefrom gufm1 displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong>. This table c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the animati<strong>on</strong>s referencedChapter 3.Reference Filename Prefix Page No. Descripti<strong>on</strong>A4.1 Brarcheohist 81 B r from CALS7K.1h , unprocessed from1650 to 1950.A4.2 Brgufmd 81 B r from gufm1d (gufm1 processedso power spectra matches that ofCALS7K.1) from 1650 to 1950.A4.3 Brarcheo 88 B r from unprocessed CALS7K.1 , from5000B.C. to 1950A.D.A4.4 BrZT2500archeosub 91 ˜Br from CALS7K.1 over the <str<strong>on</strong>g>in</str<strong>on</strong>g>terval2000B.C. to 500A.D.Table F.2: Animati<strong>on</strong>s from chapter 4.References, the filename prefix (the full filenames are prefix.gif), page number where theanimati<strong>on</strong>s are referenced, <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief descripti<strong>on</strong> of the field from CALS7K.1 displayed<str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong>s. This table c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the animati<strong>on</strong>s from chapter 4.


280 Appendix F — Animati<strong>on</strong>sReference Filename Prefix Page No. Descripti<strong>on</strong>A5.1 Brd1 101 B r from DYN1, unprocessedA5.2 Urd1 108 u r from DYN1, unprocessedA5.3 Upd1 112 u φ from DYN1, unprocessedA5.4 Brd2HR 117 B r from DYN2, unprocessedA5.5 Brd2DAMP 122 B r from DYN2, with spherical harm<strong>on</strong>icdegrees l=13,15 damped, l> 15 set to zeroA5.6 Urd2HR 125 u r from DYN2, unprocessedA5.7 Upd2HR 128 u r from DYN2, unprocessedTable F.3: Animati<strong>on</strong>s from chapter 5.References, the filename prefix (the full filenames are prefix.gif), page number where theanimati<strong>on</strong>s are referenced, <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief descripti<strong>on</strong> of the field from DYN1 or DYN2 be<str<strong>on</strong>g>in</str<strong>on</strong>g>gdisplayed <str<strong>on</strong>g>in</str<strong>on</strong>g> the animati<strong>on</strong>s. This table c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the animati<strong>on</strong>s from chapter 5.


281 Appendix F — Animati<strong>on</strong>sReference Filename Prefix Page No. Descripti<strong>on</strong>A8.1 mfzvS8C0.05U5 223 B r evoluti<strong>on</strong> from an axial dipoledue to m=8, E S wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .evoluti<strong>on</strong> from an axial dipoleB r due to m=8, E S wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.3 mfzvA8C0.05U5 230 B r evoluti<strong>on</strong> from an axial dipoledue to a m=8, E A wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.2 NDmfzvS8C0.05U5 223 B NAD revoluti<strong>on</strong> from an axial dipoleB r due to a m=8, E A wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.5 mfzvS8C5U5 230 B r evoluti<strong>on</strong> from an axial dipole due to am=8, E S wave flow with c ph =5 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.4 NDmfzvA8C0.05U5 230 B NAD revoluti<strong>on</strong> from an axial dipoleB r due to a m=8, E S wave flow withc ph =5 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.7 mfzvA8C5U5 230 B r evoluti<strong>on</strong> from an axial dipole due to am=8, E A wave flow with c ph =5 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.6 NDmfzvS8C5U5 230 B NAD rA8.8 NDmfzvA8C5U5 230 B NAD r evoluti<strong>on</strong> from an axial dipoleB r due to a m=8, E A wave flow withc ph =5 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.9 mfzvS8C50U5 230 B r evoluti<strong>on</strong> from an axial dipole due to am=8, E S wave flow with c ph =5k0myr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.10 NDmfzvS8C50U5 230 B NAD r evoluti<strong>on</strong> from an axial dipoleB r due to a m=8, E S wave flow withc ph =50 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.11 mfzvA8C50U5 230 B r evoluti<strong>on</strong> from an axial dipole due to am=8, E A wave flow with c ph =50 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.12 NDmfzvA8C50U5 230 B NAD revoluti<strong>on</strong> from an axial dipoleB r due to a m=8, E A wave flow withc ph =50 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.13 Bm1C0.05U5m8S 231 B r evoluti<strong>on</strong> from a m=1 E S B rdue to a m=8, E S wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.14 Bm4C0.05U5m8S 231 B r evoluti<strong>on</strong> from a m=4 E S B rdue to a m=8, E S wave flow withc ph =0.05 km yr −1 <str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.15 1590C17U1ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=1 km yr −1 .Table F.4: Animati<strong>on</strong>s from chapter 8 (Part i).References, the filename prefix (the full filenames are prefix.gif), page number where theanimati<strong>on</strong>s are referenced, <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief descripti<strong>on</strong> of the field model displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> theanimati<strong>on</strong>. This table c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the first half of the animati<strong>on</strong>s from Chapter 8.


282 Appendix F — Animati<strong>on</strong>sReference Filename Prefix Page No. Descripti<strong>on</strong>A8.16 1590C17U5ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.17 1590C17U10ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=10 km yr −1 .A8.18 1590C17U15ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=15 km yr −1 .A8.19 1590C17U17ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=17 km yr −1 .A8.20 1590C17U20ES 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E S wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=20 km yr −1 .A8.21 1590C17U1EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=1 km yr −1 .A8.23 1590C17U5EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=5 km yr −1 .A8.23 1590C17U10EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=10 km yr −1 .A8.24 1590C17U15EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=15 km yr −1 .A8.25 1590C17U17EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=17 km yr −1 .A8.26 1590C17U20EA 232 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=20 km yr −1 .A8.27 1590C17U15ESTAPER 236 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=15 km yr −1 , with crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.A8.28 1590C17U17ESTAPER 236 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=17 km yr −1 , with crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.A8.29 1590C17U20ESTAPER 236 B r evoluti<strong>on</strong> from the 1590 B r due to am=8, E A wave flow with c ph =17 km yr −1<str<strong>on</strong>g>and</str<strong>on</strong>g> U=20 km yr −1 , with crustal filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Table F.5: Animati<strong>on</strong>s from chapter 8 (Part (ii).References, the filename prefix (the full filenames are prefix.gif), page number where theanimati<strong>on</strong>s are referenced, <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief descripti<strong>on</strong> of the field model displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> theanimati<strong>on</strong>. This table c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s the sec<strong>on</strong>d half of the animati<strong>on</strong>s from Chapter 8.


283ReferencesAbramowitz, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stegun, I. A. H<str<strong>on</strong>g>and</str<strong>on</strong>g>book of mathematical functi<strong>on</strong>s. Dover, 1964.Aches<strong>on</strong>, D. J. On hydromagnetic stability of a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid annulus. J. Fluid Mech., 52(3),529–541, 1972.Aches<strong>on</strong>, D. J. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> wavelike <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilies <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g stratified fluid. J. FluidMech., 61(3), 609–624, 1973.Aches<strong>on</strong>, D. J. Magnetohydrodynamic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids. <str<strong>on</strong>g>in</str<strong>on</strong>g> Rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfluids <str<strong>on</strong>g>in</str<strong>on</strong>g> geophysics Ed P. H. Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> A. M. Soward, Academic Press, L<strong>on</strong>d<strong>on</strong>, pages315–349, 1978.Aches<strong>on</strong>, D. J. Stable density stratificati<strong>on</strong> as a cataylst for <str<strong>on</strong>g>in</str<strong>on</strong>g>stability. J. Fluid Mech., 96,723–733, 1980.Aches<strong>on</strong>, D. J. Local analysis of thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid.Geophys. Astrophys. Fluid Dyn., 27, 123–136, 1983.Aches<strong>on</strong>, D. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hide, R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g>s of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids. Reports of Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Physics,36, 159–221, 1973.Aldridge, K. D. Dynamics of the <str<strong>on</strong>g>core</str<strong>on</strong>g> at short periods. Earthth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lower mantle,Ed. byJ<strong>on</strong>es, C. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang, K., In series The Fluid Mechanics of Astrophysics<str<strong>on</strong>g>and</str<strong>on</strong>g> Geophysics, pages 180–210, 2003.Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>rescu, M., Gibert, D., Hulot, G., LeMouël, J. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Saracco, G. Worldwide waveletanalysis of geomagnetic jerks. J. Geophys. Res., 101(B10), 21975–21994, 1996.Alfé, D., Gillan, M.J., Vo˘cadlo, L., J., Brodholt, <str<strong>on</strong>g>and</str<strong>on</strong>g> D., Price G. The ab-<str<strong>on</strong>g>in</str<strong>on</strong>g>itio simulati<strong>on</strong> ofthe Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 360, 1227–1224, 2002.Alfvén, H. Existence of EM-hydrodynamic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Nature, 150, 405–406, 1942.Allan, D.W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bullard, E.C. The secular variati<strong>on</strong> of the Earth’s magnetic field. Proc. Camb.Phil. Soc., 62(3), 783–809, 1966.Allègre, C. J., Poirier, J. P., Humler, E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Hofmann, A. W. The chemical compositi<strong>on</strong> of theEarth. Earth Planet. Sci. Lett., 134, 515–526, 1995.Andrews, D. G. An <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to Atmospheric Physics. Cambridge Univeristy Press, 2000.Ardes, M., Busse, F. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Wicht, J. Thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shells. Phys.Earth Planet. Int., 99, 55–67, 1997.Arfken, G. Mathematical Methods for Physicists. Academic Press, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, 1985.Aubert, J., Gillet, N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. Quasigeostrophic models of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphericalshells. Geochem. Geophys. Geosyst., 4, doi:10.1029/2002GC000456, 2003.Backus, G. A class of self-susta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g dissipative spherical dynamos. Ann. Phys., 4, 372–447,1958.Backus, G. K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematics of geomagnetic secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a perfectly c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phil.Trans. R. Soc. L<strong>on</strong>d. A, 263, 239–266, 1968.Backus, G. Bayesian <str<strong>on</strong>g>in</str<strong>on</strong>g>ference <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetism. Geophys. J. R. Astr. Soc., 92, 125–142, 1988.


284 ReferencesBackus, G., Parker, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, C. Foundati<strong>on</strong>s of geomagnetism. Cambridge UniveristyPress, 1996.Batchelor, G. K. An <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to fluid mechanics. Cambridge Univeristy Press, 1967.Bell, P. I. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of surface-topography <strong>on</strong> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong>. J.Fluid Mech., 313, 147–180, 1996.Bergman, M. I. Magnetic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a stably stratified layer near the surface of Earth’souter <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. Astrophys. Fluid Dyn., 68, 151–176, 1993.Birch, F. Density <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> of mantle <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g>. J. Geophys. Res., 69, 4377–4388, 1964.Bloxham, J. Geomagnetic secular variati<strong>on</strong>. Ph. D. Thesis, University of Cambridge, 1985.Bloxham, J. The expulsi<strong>on</strong> of magnetic flux from the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. J. R. Astr. Soc.,87, 669–678, 1986.Bloxham, J. Global magnetic field. Global Earth Physics: A H<str<strong>on</strong>g>and</str<strong>on</strong>g>book of Physical C<strong>on</strong>stants,pages 47–65, 1995.Bloxham, J. Dynamics of angular momentum <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Annu. Rev. Earth Planet.Sci., 26, 501–517, 1998.Bloxham, J. Time-<str<strong>on</strong>g>in</str<strong>on</strong>g>dependent <str<strong>on</strong>g>and</str<strong>on</strong>g> time-dependent behaviour of high-latitude flux bundles atthe <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary. Geophys. Res. Lett., 29(18), 1854–1858, 2002.Bloxham, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. The secular variati<strong>on</strong> of Earth’s magnetic field. Nature, 317,777–781, 1985.Bloxham, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Geomagnetic field analysis IV - Test<str<strong>on</strong>g>in</str<strong>on</strong>g>g the frozen flux hypothesis.Geophys. J. R. Astr. Soc., 84, 139–152, 1986.Bloxham, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Thermal <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s. Nature, 325, 511–513, 1987.Bloxham, J., Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. Geomagnetic secular variati<strong>on</strong>. Phil. Trans. R. Soc.L<strong>on</strong>d. A, 329(1606), 415–502, November 1989.Bloxham, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. Fluid flow near the surface of the Earth’s outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. Rev. Geophys.,29, 97–120, 1991.Bloxham, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. Time-dependent mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the magnetic field at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantleboundary. J. Geophys. Res., 97(B13), 19537–19563, 1992.Bloxham, J., Zatman, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Dumberry, M.. The orig<str<strong>on</strong>g>in</str<strong>on</strong>g> of geomagnetic jerks. Nature, 420,685–687, 2002.Boulanger, J.-P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Menkes, C. L<strong>on</strong>g equatorial wave reflecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> th Pacific ocean fromTOPEX/POSEDIDON data dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the 1992-1998 period. Climate Dynamics, 15, 205–225,1999.Boyd, J.P. Chebyshev <str<strong>on</strong>g>and</str<strong>on</strong>g> Fourier Spectral Methods. Dover, 2001.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Magnetohydrodynamics of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy, 7,698–712, 1964.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Magnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy, 7, 851–859,1967.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Torsi<strong>on</strong>al magnetohydrodynamic vibrati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> day length. Geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy, 10, 1–8, 1970.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Analytic descripti<strong>on</strong> of the geomagnetic field of past epochs <str<strong>on</strong>g>and</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of the spectrum of magnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> of the Earth I. Geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy,12, 947–957, 1972.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Analytic descripti<strong>on</strong> of the geomagnetic field of past epochs <str<strong>on</strong>g>and</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of the spectrum of magnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g> of the Earth II. Geomagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy,14, 441–447, 1974.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Magnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> II. Geophys. Astrophys. Fluid Dyn., 14,189–208, 1980.


285 ReferencesBrag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Waves <str<strong>on</strong>g>in</str<strong>on</strong>g> a stably stratified layer <strong>on</strong> the surface of the terrestrial <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geomagnetism<str<strong>on</strong>g>and</str<strong>on</strong>g> Aer<strong>on</strong>omy, 27, 410–414, 1987.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Magnetohydrodynamic <str<strong>on</strong>g>waves</str<strong>on</strong>g> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth. Encyclopedia of solid Earthgeophysics, 1989.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. MAC oscillati<strong>on</strong>s of the hidden ocean of the <str<strong>on</strong>g>core</str<strong>on</strong>g>. J. Geomagn. Geoelectr., 45,1517–1538, 1993.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. Dynamics of the stably stratified ocean at the top of the <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phys. EarthPlanet. Int., 111, 21–34, 1999.Brag<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, S. I. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. Magnetic field generati<strong>on</strong> by barocl<str<strong>on</strong>g>in</str<strong>on</strong>g>ic <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Proc. R. Soc.L<strong>on</strong>d. A, 347, 125–140, 1975.Brito, D., Arnou, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. Turbulent viscosity measurements relevant to planetary<str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle dynamics. Phys. Earth Planet. Int., 141, 3–8, 2004.Buffett, B. A. Gravitai<strong>on</strong>al oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day. Geophys. Res. Lett., 23, 2279–2282,1996a.Buffett, B. A. A mechanism for decade fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the length of day. Geophys. Res. Lett.,23, 3803–3806, 1996b.Buffett, B. A. Geodynamic estimates for the viscosity of Earth’s <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>. Nature, 388, 571–573,1997.Buffett, B. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. A. Gravitati<strong>on</strong>al brak<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> rotati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamosimulati<strong>on</strong>s. Geophys. Res. Lett., 27, 3125–3128, 2000.Bullard, E. C. The magnetic field with<str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth. Proc. R. Soc. L<strong>on</strong>d. A, 197, 433–453, 1949.Bullard, E. C., Freedman, C., Gellman, H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Nix<strong>on</strong>, J. The westward drift of Earth’s magneticfield. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 243, 67–92, 1950.Bullard, E. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gellman, H. Homogeneous dynamos <str<strong>on</strong>g>and</str<strong>on</strong>g> terrestrial magnetism. Phil. Trans.R. Soc. L<strong>on</strong>d. A, 247, 213–278, 1954.Busse, F. H. Thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems. J. Fluid Mech., 44, 441–460, 1970.Busse, F. H. Generati<strong>on</strong> of planetary magnetism by c<strong>on</strong>vecti<strong>on</strong>. Phys. Earth Planet. Int., 12,350–358, 1976.Busse, F. H. Asymptotic theory of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical annulus. J. Fluid Mech.,173, 545–556, 1986.Busse, F. H. C<strong>on</strong>vective flows <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spheres <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> dynamo acti<strong>on</strong>. Prog. Ocean.,14(4), 1301–1314, 2002.Busse, F. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Or, A. C. C<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical annulus I: Thermal rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>.J. Fluid Mech., 166(4), 173–187, 1986.Butler, R. F. Paleomagnetism: Magnetic doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s to geological terranes. Blackwell, 1992.Buttkus, B. Spectral analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> filter theory <str<strong>on</strong>g>in</str<strong>on</strong>g> applied geophysics. Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>,2000.Canuto, C., Hussa<str<strong>on</strong>g>in</str<strong>on</strong>g>i, M. Y., Quarter<strong>on</strong>i, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Zang, T. A. Spectral Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> Fluid Mechanics.Dover, 2001.Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, P. Chaotic thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shell: c<strong>on</strong>sequencesfor flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phys. Earth Planet. Int., 82, 235–259, 1994.Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, P. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of the toroidal magnetic field <strong>on</strong> c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>.Earth Planet. Sci. Lett., 132, 167–181, 1995.Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>rasekhar, S. Hydrodynamic <str<strong>on</strong>g>and</str<strong>on</strong>g> hydromagnetic stability. Clarend<strong>on</strong> Press, 1961.Chelt<strong>on</strong>, B. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Schlax, M. G. Global observati<strong>on</strong>s of oceanic Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Science, 272,234–238, 1996.


286 ReferencesChelt<strong>on</strong>, B. C., Schlax, M. G., Lyman, J. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Johns<strong>on</strong>, G. C. Equatorially trapped Rossby<str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of meridi<strong>on</strong>ally sheared barocl<str<strong>on</strong>g>in</str<strong>on</strong>g>ic flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific ocean. Progress <str<strong>on</strong>g>in</str<strong>on</strong>g>Oceanography, 56, 323–380, 2003.Christensen, J.,U. R.<str<strong>on</strong>g>and</str<strong>on</strong>g> Aubert, Dormy, E., Gibb<strong>on</strong>s, S., Glatzmaier, G. A., Grote, E., H<strong>on</strong>kura,Y., J<strong>on</strong>es, C., K<strong>on</strong>o, M., Matsushima, M., Sakuraba, A., Tabahashi, F., Tilgner, A., Wicht, J.,<str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang, K. A numerical dynamo benchmark. Phys. Earth Planet. Int., 128, 25–34, 2001.Christensen, U. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, P. Secular variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> numerical geodynamo models with lateralvariati<strong>on</strong>s of boundary heat flow. Phys. Earth Planet. Int., 138, 39–54, 2003.Christensen, U. R., Ols<strong>on</strong>, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. A dynamo model <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of geomagneticfield structures. Geophys. Res. Lett., 25, 1565–1568, 1998.Christensen, U. R, Ols<strong>on</strong>, P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. Numerical model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the geodynamo. Geophys.J. Int., 138, 393–409, 1999.Christensen, U. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Tilgner, A. Power requirement of the geodynamo from Ohmic losses <str<strong>on</strong>g>in</str<strong>on</strong>g>numerical <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory dynamos. Nature, 429, 169–171, 2004.Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i, P., Cromwell, D., Challenor, P. G., <str<strong>on</strong>g>and</str<strong>on</strong>g> Raffaglio, S. Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g> detected <str<strong>on</strong>g>in</str<strong>on</strong>g> globalocean data. Geophys. Res. Lett., 28, 323–326, 2001.Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i, P., Cromwell, D., J<strong>on</strong>es, M. S., Quartly, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Challenor, P. G. C<strong>on</strong>current altimeter<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>frared observati<strong>on</strong>s of Rossby wave propagati<strong>on</strong> near 34N <str<strong>on</strong>g>in</str<strong>on</strong>g> the Northeast Atlantic.Geophys. Res. Lett., 24, 889–892, 1997.Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i, P., Quartly, D., Challenor, P. G., Cromwell, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, I. S. Remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g ofextra-equatorial planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the oceans. Manual of remote sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g, page Submitted,2004.Clark, A. Some exact soluti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetohydrodynamics with astrophysical applicati<strong>on</strong>s. Phys.Fluids, 8, 644–649, 1965.Clement, B. Dependence of the durati<strong>on</strong> of geomagnetic polarity reversals <strong>on</strong> site latitide. Nature,428, 637–640, 2004.C<strong>on</strong>stable, C. G., Johns<strong>on</strong>, C. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> .P., Lund S. Global geomagnetic field models for the past3000 years: transient or permanent flux lobes? Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 991–1008,2000.Courtillot, V., Ducruix, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Le Mouël, J. L. Sur une accelerati<strong>on</strong> recente de la variati<strong>on</strong>seculaire du champ magnetique terrestre. C. R. Acad. Sci. Paris, D287, 1095–1098, 1978.Courtillot, V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Le Mouël, J. L. Geomagnetic secular variati<strong>on</strong> impulses. Nature, 311, 709–716,1984.Cowl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, T.G. The magnetic field of sunspots. M<strong>on</strong>. Not. R. Astr. Soc., 94, 39–48, 1934.Davids<strong>on</strong>, P.A. An <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> to magnetohydrodynamics. Cambridge Univeristy Press, 2001.Davis, R.G <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler, K. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of a steady velocity field <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g frame ofreference at the surface of Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. J. Int., 1126, 92–100, 1996.Deans, S. R. The Rad<strong>on</strong> transform <str<strong>on</strong>g>and</str<strong>on</strong>g> some of its applicati<strong>on</strong>s. John Wiley, New York, 1988.deWijs, G. A., Kresse, G., Vo˘cadlo, L., D., Dobs<strong>on</strong>, Alfeé, D., J., Gillan M., <str<strong>on</strong>g>and</str<strong>on</strong>g> D., Price G. Theviscosity of liquid ir<strong>on</strong> at the physical c<strong>on</strong>diti<strong>on</strong>s of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Nature, 392, 805–808,1998.Dick<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, R. E. Rossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>— l<strong>on</strong>g-period oscillati<strong>on</strong>s of oceans <str<strong>on</strong>g>and</str<strong>on</strong>g> atmospheres. Annu. Rev.Fluid Mech., 10, 159–195, 1978.Doell, R. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Cox, A. J. Geophys. Res., 70, 3377–3405, 1965.Doell, R. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Cox, A. Pacific Geomagnetic Secular Variati<strong>on</strong>. Science, 171, 248–254, 1971.Dormy, E., Soward, A. M., J<strong>on</strong>es, C.A., Jault, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Card<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. The <strong>on</strong>set of thermal c<strong>on</strong>vecti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shells. J. Fluid Mech., 501, 43–70, 2004.Dormy, E., Valet, J.-P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Courtillot, V. Numerical models of the geodynamo <str<strong>on</strong>g>and</str<strong>on</strong>g> observati<strong>on</strong>alc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. Geochem. Geophys. Geosyst., 1, 1–42, October 2000.


287 ReferencesDraz<str<strong>on</strong>g>in</str<strong>on</strong>g>, P. G. Introducti<strong>on</strong> to hydrodynamic <str<strong>on</strong>g>in</str<strong>on</strong>g>stability. Cambridge Univeristy Press, 2002.Drew, S. The effect of a stable layer at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary <strong>on</strong> thermal c<strong>on</strong>vecti<strong>on</strong>. Geophys.Astrophys. Fluid Dyn., 65, 173–182, 1992.Drew, S. Magnetic field l<str<strong>on</strong>g>in</str<strong>on</strong>g>e expulsi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to a c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g mantle. Geophys. J. Int., 115, 303–312,1993.Dumberry, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. Torque balance, Taylor’s c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t <str<strong>on</strong>g>and</str<strong>on</strong>g> torsi<strong>on</strong>al oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>a numerical model of the geodynamo. Phys. Earth Planet. Int., 140, 29–51, 2003.Dumberry, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. Variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> Earth’s gravity field caused by torsi<strong>on</strong>al oscillati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. J. Int., 159, 417–434, 2004.Dumberry, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. Azimuthal flows <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the lengthof day <strong>on</strong> millennial timescales. Geophys. J. Int., page submitted, 2005.Dziew<strong>on</strong>ski, A. M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong>, D. L. Prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary reference Earth model. Phys. Earth Planet.Int., 25, 297–356, 1981.El Sawi, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Eltayeb, I. A. Wave acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> critcial surfaces for hydromagnetic-<str<strong>on</strong>g>in</str<strong>on</strong>g>ertialgravity<str<strong>on</strong>g>waves</str<strong>on</strong>g>. Quart. App. Math., 34, 187–202, 1981.Elsasser, W.M. Inducti<strong>on</strong> effects <str<strong>on</strong>g>in</str<strong>on</strong>g> terrestrial magnetism I. Phys. Rev., 69(3-4), 106–116, 1946.Eltayeb, I. A. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid layer. Proc. R. Soc. L<strong>on</strong>d.,326, 229–254, 1972.Eltayeb, I. A. Propagati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stability of wave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic systems. Phys.Earth Planet. Int., 24, 259–271, 1981.Eltayeb, I. A. The propagati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stability of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear wave moti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphericalshells: weak magnetic fields. Geophys. Astrophys. Fluid Dyn., 67, 211–239, 1992.Eltayeb, I. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kumar, S. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> c<strong>on</strong>vective <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g, self-gravitat<str<strong>on</strong>g>in</str<strong>on</strong>g>gfluid sphere c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a uniform distributi<strong>on</strong> of heat sources. Proc. R. Soc. L<strong>on</strong>d., 353,145–162, 1977.Ewen, S. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. Phase mixed rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor’s c<strong>on</strong>diti<strong>on</strong>I. Amplitide equati<strong>on</strong>s. Geophys. Astrophys. Fluid Dyn., 77, 209–230, 1994a.Ewen, S. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. Phase mixed rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor’s c<strong>on</strong>diti<strong>on</strong>II. Travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g pulses. Geophys. Astrophys. Fluid Dyn., 77, 231–262, 1994b.Ewen, S. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. Phase mixed rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor’s c<strong>on</strong>diti<strong>on</strong>III. Wave tra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Geophys. Astrophys. Fluid Dyn., 77, 263–283, 1994c.Farrell, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ioannou, P.J. Generalized stability theory, part i: Aut<strong>on</strong>omous operators. J.Atmos. Sci., 53, 2025–2040, 1996.Fearn, D. R. Thermally-driven hydromagnetic c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. Proc. R.Soc. L<strong>on</strong>d., 369, 227–242, 1979a.Fearn, D. R. Thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid sphere. Geophys.Astrophys. Fluid Dyn., 14, 102–126, 1979b.Fearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a differentially rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g annulus I: A test of local stabilityanalysis. Geophys. Astrophys. Fluid Dyn., 27, 137–162, 1983.Fearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a differentially rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g annulus II. resistive <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities.Geophys. Astrophys. Fluid Dyn., 30, 227–239, 1984.Fearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a differentially rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g annulus IV. <str<strong>on</strong>g>in</str<strong>on</strong>g>sulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g boundaries.Geophys. Astrophys. Fluid Dyn., 44, 55–75, 1988.Fearn, D. R. Differential rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydromagneticsystem. Geophys. Astrophys. Fluid Dyn., 49, 173–193, 1989.Fearn, D. R. Magnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g systems. Theory of solar <str<strong>on</strong>g>and</str<strong>on</strong>g> planetarydynamos, Edited by Proctor, M. R. E., Matthews, P. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Rucklidge, A. M., pages 59–68,1993.


288 ReferencesFearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g> planetary <str<strong>on</strong>g>core</str<strong>on</strong>g>s. Rep. Prog. Phys., 61, 175–235, 1998.Fearn, D. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper, D. E. Compositi<strong>on</strong>al c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stratificati<strong>on</strong> of earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Nature,289, 393–394, Jan 1981.Fearn, D. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Proctor, M. R. E. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a differentially rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. J.Fluid Mech., 128, 1–20, 1983.Fearn, D. R., Proctor, M. R. E., <str<strong>on</strong>g>and</str<strong>on</strong>g> Sellar, C. C. N<strong>on</strong>-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere <str<strong>on</strong>g>and</str<strong>on</strong>g> Taylor’s c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t. Geophys. Astrophys. Fluid Dyn., 77, 111–132, 1994.Fearn, D. R., Roberts, P. H., <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. C<strong>on</strong>vecti<strong>on</strong>, stability <str<strong>on</strong>g>and</str<strong>on</strong>g> the dynamo. PitmanResearch notes <str<strong>on</strong>g>in</str<strong>on</strong>g> Mathematics Series, 168, 60–324, 1988.Feynman, R. P., Leight<strong>on</strong>, R. B., <str<strong>on</strong>g>and</str<strong>on</strong>g> S<str<strong>on</strong>g>and</str<strong>on</strong>g>s, M. The Feynman Lectures <strong>on</strong> Physics, Volume 1.Addis<strong>on</strong>-Wesley, 1963.F<str<strong>on</strong>g>in</str<strong>on</strong>g>lay, C. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. Equatorially dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ated magnetic field change at the surface ofEarth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Science, 300, 2084–2086, 2003.Fisk, H. W. Isopors <str<strong>on</strong>g>and</str<strong>on</strong>g> isoporic movements. Intern. Geodet. Geophys. Uni<strong>on</strong>, Secti<strong>on</strong> Terrest.Magnet. Elec. Bull. Stockholm, 8, 280–292, 1931.Forbes, A. J. General Instrumentati<strong>on</strong>. Geomagnetism, Ed. Jacobs, J.A., 1, 51–142, 1987.Fornberg, B. A practical guide to pseudosectral methods. Cambridge Univeristy Press, 1998.Gibb<strong>on</strong>s, S. J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. C<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> driven by lateral variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary heat flux. Geophys. J. Int., 142, 631–642, 2000.Gill, A. E. Atmosphere-Ocean dynamics. Cambridge Univeristy Press, 1982.Gillet, N., Brito, D., Jault, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Mass<strong>on</strong>, J.-P. Developed magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere: Experimental study versus quasi-geostrophic modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g. J. Fluid Mech. (submitted),2005.Glatzmaier, G. A. Numerical simulati<strong>on</strong>s of stellar c<strong>on</strong>vective dynamos I. the model <str<strong>on</strong>g>and</str<strong>on</strong>g> methods.J. Comp. Phys., 55, 461–484, 1984.Glatzmaier, G. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, P. Prob<str<strong>on</strong>g>in</str<strong>on</strong>g>g the geodynamo. Scientific American, 292(4), 33–39,2005.Glatzmaier, G. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. A three-dimensi<strong>on</strong>al c<strong>on</strong>vective dynamo with rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>itely c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle. Phys. Earth Planet. Int., 91, 63–75, 1995.Glatzmaier, G. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. Simulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the geodynamo. C<strong>on</strong>temp. Physics, 38(4),269–288, 1997.Golub, G. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Van Loan, C. F. Matrix Computati<strong>on</strong>s. John Hopk<str<strong>on</strong>g>in</str<strong>on</strong>g>s Press, 1996.Greenspan, H. P. The theory of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids. Cambridge Univeristy Press, 1968.Greff-Lefftz, M., Pais, M. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> LeMouël, J.-L. Surface gravitati<strong>on</strong>al field <str<strong>on</strong>g>and</str<strong>on</strong>g> topography<str<strong>on</strong>g>in</str<strong>on</strong>g>duced by the Earth’s fluid <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s. Journal of Geodesy, 78, 386–392, 2004.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Can the Earth’s magnetic field be susta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>core</str<strong>on</strong>g> oscillati<strong>on</strong>s?Lett., 2(9), 409–512, 1975.Geophys. Res.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Mechanism for geomagnetic polarity reversals. Nature, 326, 167–169, 1987.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Geomagnetic polarity reversals: a c<strong>on</strong>necti<strong>on</strong> with secular variati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>. Rev. Geophys., 32(1), 61–83, 1994.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. A formalism for the <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> of geomagnetic data for <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s with diffusi<strong>on</strong>.Phys. Earth Planet. Int., 98, 193–206, 1996.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. The dist<str<strong>on</strong>g>in</str<strong>on</strong>g>cti<strong>on</strong> between geomagnetic excursi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> reversals. Geophys. J. Int.,173, F1–F3, 1999.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. The Rayleigh number for c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phys. Earth Planet. Int.,128, 3–12, 2000.


289 ReferencesGubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Time series analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>verse theory for geophysicists. Cambridge UniveristyPress, 2004.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D., Alfe, D., Masters, G., Price, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> M., Gillan. Can the Earth’s dynamo run <strong>on</strong>heat al<strong>on</strong>e? Geophys. J. Int., 155, 609–622, 2003.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D., Alfe, D., Masters, G., Price, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> M., Gillan. Gross thermodynamics of 2-comp<strong>on</strong>ent <str<strong>on</strong>g>core</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong>. Geophys. J. Int., 157, 1407–1414, 2004.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D., Barber, C. N, Gibb<strong>on</strong>s, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Love, J.J. K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic dynamo acti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a sphere: IEffects of diferential roati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> meridi<strong>on</strong>al circulati<strong>on</strong> <strong>on</strong> soluti<strong>on</strong>s with axial dipole symmetry.Proc. R. Soc. L<strong>on</strong>d. A, 456, 1333–1353, 2000.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. Geomagnetic field analysis- III. Magnetic fields <strong>on</strong> the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantleboundary. Geophys. J. R. Astr. Soc., 80, 695–713, 1985.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibb<strong>on</strong>s, S. Low Pacific Secular Variati<strong>on</strong>. Timescales of the Paleomagneticfield, Geophysical M<strong>on</strong>ograph Series, 145, 279–286, 2004.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kelly, P. A difficulty with us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the frozen flux hypothesis to f<str<strong>on</strong>g>in</str<strong>on</strong>g>d steady <str<strong>on</strong>g>core</str<strong>on</strong>g>moti<strong>on</strong>s. Geophys. Res. Lett., 23, 1825–1828, 1996.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Masters, T. G. Driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g mechanism for the Earth’s dynamo. Advances <str<strong>on</strong>g>in</str<strong>on</strong>g>Geophysics, 21, 1–50, 1979.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. Magnetohydrodynamics of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geomagnetism, Ed.Jacobs, J.A., 2, 1–183, 1987.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D., Thomps<strong>on</strong>, C.J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler, K.A.Geophys. J. R. Astr. Soc., 68, 241–251, 1982.Stable regi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s liquid <str<strong>on</strong>g>core</str<strong>on</strong>g>.Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang, K. Symmetry properties of the dynamo equati<strong>on</strong>s for paleomagnetism<str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetism. Phys. Earth Planet. Int., 75, 225–241, 1993.Hale, C. J. New paleomagnetic data suggest a l<str<strong>on</strong>g>in</str<strong>on</strong>g>k between the archean-proterozoic boundary<str<strong>on</strong>g>and</str<strong>on</strong>g> nucleati<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>. Nature, 329, 233–237, 1987.Halley, E. On the cause of the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the variati<strong>on</strong> of the magnetic needle, with a hypothesisof the structure of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal parts of the Earth. Phil. Trans. R. Soc. L<strong>on</strong>d., 17, 470–478,1692.Hayashi, Y. Spectral analysis of tropical disturbances appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a GFDL general circulati<strong>on</strong>model. J. Atmos. Sci., 31, 180–218, 1974.Hayashi, Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Golder, D. G. Tropical <str<strong>on</strong>g>in</str<strong>on</strong>g>traseas<strong>on</strong>al oscillati<strong>on</strong>s appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a GFDL generalcirculati<strong>on</strong> model <str<strong>on</strong>g>and</str<strong>on</strong>g> FGGE data. Part I: Phase propagati<strong>on</strong>. J. Atmos. Sci., 43, 3058–3067,1986.Hayashi, Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Golder, D. G. Kelv<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed Rossby-gravity <str<strong>on</strong>g>waves</str<strong>on</strong>g> appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the GFDL‘SKYHI’ general circulati<strong>on</strong> model <str<strong>on</strong>g>and</str<strong>on</strong>g> the fgge dataset: Implicati<strong>on</strong>s for <str<strong>on</strong>g>their</str<strong>on</strong>g> generati<strong>on</strong>mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> role <str<strong>on</strong>g>in</str<strong>on</strong>g> QBO. J. Atmos. Sci., 72, 901–934, 1994.Helffrich, G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kaneshima, S. Seismological c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> <str<strong>on</strong>g>core</str<strong>on</strong>g> compositi<strong>on</strong> from Fe-O-S liquidimmiscibility. Science, 306, 2239–2242, 2004.Herzenberg, A. Geomagnetic dynamos. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 250, 543–583, 1958.Hide, R. Free hydromagnetic oscillati<strong>on</strong>s of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the theory of geomagneticsecular variati<strong>on</strong>. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 259, 615–647, 1966.Hide, R. Moti<strong>on</strong>s of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle <str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field.Science, 157, 55–56, 1967.Hide, R. Fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s rotati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> topography of the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle <str<strong>on</strong>g>in</str<strong>on</strong>g>terface. Phil.Trans. R. Soc. L<strong>on</strong>d. A, 259, 351–363, 1989.Hide, R. Generic n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear processes <str<strong>on</strong>g>in</str<strong>on</strong>g> self-excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g dynamos <str<strong>on</strong>g>and</str<strong>on</strong>g> the l<strong>on</strong>g-term behaviour of thema<str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g superchr<strong>on</strong>s. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 943–955,2000.Hide, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mal<str<strong>on</strong>g>in</str<strong>on</strong>g>, S. R. C. On the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the size of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> from observati<strong>on</strong>sof geomgnetic secular variati<strong>on</strong>. Proc. R. Soc. L<strong>on</strong>d. A, 374, 15–33, 1981.


290 ReferencesHide, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. How str<strong>on</strong>g is the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> earth’s liquid <str<strong>on</strong>g>core</str<strong>on</strong>g>? Phys. EarthPlanet. Int., 20, 124–126, 1979.Hide, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stewarts<strong>on</strong>, K. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> oscillati<strong>on</strong>s of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Rev. Geophys., 10(2), 579–598, 1973.Hill, K. L., Rob<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong>, I. S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i, P. Propagati<strong>on</strong> characteristics of extratropical plaentary<str<strong>on</strong>g>waves</str<strong>on</strong>g> observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the ATSR global sea surface temperature record. J. Geophys. Res., 105(C9),21927–21945, 2000.Hilst, R. D., Widiyantoro, S., Creager, K. C., <str<strong>on</strong>g>and</str<strong>on</strong>g> McSweeney, T. J. Deep subducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>aspherical variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> P-<str<strong>on</strong>g>waves</str<strong>on</strong>g>peed at the base of Earth’s mantle. The Core-Mantle BoundaryRegi<strong>on</strong>, AGU Geodynamics M<strong>on</strong>ograph, 28, 5–20, 1998.Hollerbach, R. A spectral soluti<strong>on</strong> of the magneto-c<strong>on</strong>vecti<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical geometry.Int. J. Numer. Meth. Fluids, 32, 773–797, 2000.Hollerbach, R. The range of timescales <strong>on</strong> which the geodynamo operates. The <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantleboundary regi<strong>on</strong>, AGU geodynamic m<strong>on</strong>ograph, 31, 181–192, 2003.Holme, R. Electromagnetic <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g I: Expla<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g decadal changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the length ofday. Geophys. J. Int., 132, 167–180, 1998a.Holme, R. Electromagnetic <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g II: Prob<str<strong>on</strong>g>in</str<strong>on</strong>g>g deep mantle c<strong>on</strong>ductance. TheCore-Mantle Boundary Regi<strong>on</strong>, Ed. Gurnis, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Wysessi<strong>on</strong>, M. E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Knittle, E. <str<strong>on</strong>g>and</str<strong>on</strong>g>Buffett, B. A., AGU Geodynamics series, 1998b.Holme, R. Electromagnetic <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g III: Laterally vary<str<strong>on</strong>g>in</str<strong>on</strong>g>g mantle c<strong>on</strong>ductance.Phys. Earth Planet. Int., 117, 329–344, 2000.Holme, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> deVir<strong>on</strong>, O. Geomagnetic jerks <str<strong>on</strong>g>and</str<strong>on</strong>g> a high resoluti<strong>on</strong> length-of-day profile for<str<strong>on</strong>g>core</str<strong>on</strong>g> studies. Geophys. J. Int., 160, 435–439, 2005.Holme, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Whaler, K. A. Steady <str<strong>on</strong>g>core</str<strong>on</strong>g> flow <str<strong>on</strong>g>in</str<strong>on</strong>g> an azimuthally drift<str<strong>on</strong>g>in</str<strong>on</strong>g>g reference frame.Geophys. J. Int., 145, 560–569, 2001.Hovmöller, E. The trough <str<strong>on</strong>g>and</str<strong>on</strong>g> ridge diagram. Tellus, 1(2), 62–66, 1949.Jacks<strong>on</strong>, A. The Earth’s Magnetic Field at the Core-Mantle Boundary. Ph. D Thesis, Universityof Cambridge, 1989.Jacks<strong>on</strong>, A. Time-dependency of tangentially geostrophic <str<strong>on</strong>g>core</str<strong>on</strong>g> surface moti<strong>on</strong>s. Phys. EarthPlanet. Int., 103, 293–311, 1997.Jacks<strong>on</strong>, A. Intense equatorial flux spots <strong>on</strong> the surface of Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Nature, 424, 760–763,2003.Jacks<strong>on</strong>, A., Bloxham, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Time-dependent flow at the <str<strong>on</strong>g>core</str<strong>on</strong>g> suface <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>of angular momentum <str<strong>on</strong>g>in</str<strong>on</strong>g> the coupled <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle system. Dynamics of Earth’s DeepInterior <str<strong>on</strong>g>and</str<strong>on</strong>g> Earth Rotati<strong>on</strong>, Geophysical M<strong>on</strong>ograph, 72, 97–107, 1993.Jacks<strong>on</strong>, A., C<strong>on</strong>stable, C. G., Walker, M. R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Parker, R.L. Models of Earth’s ma<str<strong>on</strong>g>in</str<strong>on</strong>g> magneticfield <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g flux <str<strong>on</strong>g>and</str<strong>on</strong>g> radial vorticity c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. Geophys. J. Int., page In Press, 2005.Jacks<strong>on</strong>, A., J<strong>on</strong>kers, A. R. T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Walker, M. R. Four centuries of geomagnetic secular variati<strong>on</strong>from historical records. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 957–990, 2000.Jacobs, J. A. A textbook <strong>on</strong> ge<strong>on</strong>omy. Adam Hilger, 1974.Jacobs, J. A. Reversals of the Earth’s magnetic field. Cambridge University Press, 2nd editi<strong>on</strong>,1994.James, I. N. Introducti<strong>on</strong> to circulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g atmospheres. Cambridge Univeristy Press, 1994.Jault, D., Gire, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> LeMouël, J. L. Westward drift, <str<strong>on</strong>g>core</str<strong>on</strong>g> moti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> exchanges of angularmomentum between <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle. Nature, 333, 353–356, 1988.Jault, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> LeMouël, J. L. The topographic torque associated with a tangentially geostrophicmoti<strong>on</strong> at the <str<strong>on</strong>g>core</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ferences <strong>on</strong> the flow <str<strong>on</strong>g>in</str<strong>on</strong>g>side the <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. Astrophys.Fluid Dyn., 48, 273–296, 1989.


291 ReferencesJiang, W., Kuang, W., Chao, B. F., <str<strong>on</strong>g>and</str<strong>on</strong>g> Fang, M. Time-variable gravity anomaly aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g fromdynamical mass transport <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>. Eos Trans. AGU, 85(47), G31C–0809, Fall Meet. Suppl. 2004.Johns<strong>on</strong>, C. L. <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, C. G. Persistently anomalous pacific geomagnetic fields. Geophys.Res. Lett., 25, 1011–10114, 1998.J<strong>on</strong>es, C. A. C<strong>on</strong>vecti<strong>on</strong>-driven geodynamo models. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 873–897,2000.J<strong>on</strong>es, C. A., Soward, A. M., <str<strong>on</strong>g>and</str<strong>on</strong>g> Mussa, A. I. Thermal c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere.J. Fluid Mech., 405, 157–179, 2000.J<strong>on</strong>es, C.A., Mussa, A. I., <str<strong>on</strong>g>and</str<strong>on</strong>g> Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, S. J. Magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere:the weak field case. Proc. R. Soc. L<strong>on</strong>d., 429, 773–797, 2003.J<strong>on</strong>kers, A. R. T., Jacks<strong>on</strong>, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Murray, A. Four centuries of geomagnetic data from historicalrecords. Rev. Geophys., 41, 1006 doi:10.1029/2002RG000115, 2003.Kageyama, A., Sato, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> the Complexity Simulati<strong>on</strong> Group. Computer simulati<strong>on</strong> of amagnetohydrodynamic dynamo. II. Phys. Plasmas, 2, 1421–1431, 1995.Kerswell, R. R. Tidal excitati<strong>on</strong> of hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>their</str<strong>on</strong>g> damp<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth. J.Fluid Mech., 274, 219–241, 1994.Kerswell, R. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Davey, A. On the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of elliptic pipe flow. J. Fluid Mech., 316,307–324, 1996.Killworth, P.D., Chelt<strong>on</strong>, D.B., <str<strong>on</strong>g>and</str<strong>on</strong>g> Szoekede, R.A. The speed of observed <str<strong>on</strong>g>and</str<strong>on</strong>g> theoretical l<strong>on</strong>gextratropical planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g>. J. Phys. Oceanogr., 27, 1946–1966, 1997.Kivels<strong>on</strong>, M. G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Russell, C. T. Introducti<strong>on</strong> to space physics. Cambridge Univeristy Press,1995.K<strong>on</strong>o, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Roberts, P. H. Recent geodynamo simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> observati<strong>on</strong>s of the geomagneticfield. Rev. Geophys., 40, 1013, doi:10.1029/2000RG00102, 2003.K<strong>on</strong>o, M., Sakuraba, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Ishida, M. Dynamo simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> paleosecular variati<strong>on</strong> models.Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 1123–1139, 2000.Korte, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, C. C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous global geomagnetic field models for the past 3000 years.Phys. Earth Planet. Int., 140, 73–89, 2003.Korte, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>stable, C. C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous geomagnetic field models for the past 7 millennia II:CALS7K.1. Geochem. Geophys. Geosyst., 6(1), Q02H16,doi:10.1029/2004GC000801, 2005.Korte, M., Genevey, A., C<strong>on</strong>stable, C., Frank, U., <str<strong>on</strong>g>and</str<strong>on</strong>g> Schnepp, E. C<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous geomagnetic fieldmodels for the 7 millennia I: A new global data compilati<strong>on</strong>. Geochem. Geophys. Geosyst., 6(2), Q02H15,doi:10.1029/2004GC000800, 2005.Kuang, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. On the effect of boundary topography <strong>on</strong> flow <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.Geophys. Astrophys. Fluid Dyn., 72, 161–195, 1993.Kuang, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bloxham, J. Numerical dynamo modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g: Comparis<strong>on</strong> with the Earth’s magneticfield. The Core-Mantle Boundary Regi<strong>on</strong>, AGU Geodynamics, 28, 197–209, 1998.Kuang, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Chao, B. F. Topographic <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> geodynamo model<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Geophys.Res. Lett., 28(9), 1871–1874, 2001.Langel, R. A. The Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> Field. Geomagnetism, Ed. Jacobs, J.A., 2, 1987.Langel, R. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> H<str<strong>on</strong>g>in</str<strong>on</strong>g>ze, W. J. The magnetic field of Earth’s lithosphere. The planetary perspective.Cambridge Univeristy Press, 1998.Larmor, J. How could a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g body such as the Sun become a magnet?Adv. Sci., pages 159–160, 1919.Rept. Brit. Assoc.Lay, T., Williams, Q., Garnero, E. J., Kellogg, L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Wysessi<strong>on</strong>, M. E. Seismic wave anisotropy<str<strong>on</strong>g>in</str<strong>on</strong>g> the D ′′ regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> its implicati<strong>on</strong>s. The Core-Mantle Boundary Regi<strong>on</strong>, AGU GeodynamicsM<strong>on</strong>ograph, 28, 97–118, 1998.


292 ReferencesLayer, P., Kröner, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> McWilliams, M. An Archean geomagnetic reversal <str<strong>on</strong>g>in</str<strong>on</strong>g> the Kaap Valleyplut<strong>on</strong>, South Africa. Science, 273, 943–946, 1996.Lehnert, B. Magnetohydrodynamic <str<strong>on</strong>g>waves</str<strong>on</strong>g> under the acti<strong>on</strong> of the coriolis force. AstrophysicalJournal, 119, 647–654, 1954.Lehoucq, R. B., C., Sorensen D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Yang, C. ARPACK Users’ Guide: Soluti<strong>on</strong> of Large-ScaleEigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial <str<strong>on</strong>g>and</str<strong>on</strong>g>Applied Mathematics, 1998.LeMouël, J. L. Outer <str<strong>on</strong>g>core</str<strong>on</strong>g> geostrophic flow <str<strong>on</strong>g>and</str<strong>on</strong>g> secular variati<strong>on</strong> of Earth’s magnetic field.Nature, 311, 734–735, 1984.Lighthill, M. J. Dynamics of rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids: a survey. J. Fluid Mech., 26, 411–431, 1966.Lighthill, M. J. Waves <str<strong>on</strong>g>in</str<strong>on</strong>g> fluids. Cambridge University Press, 1978.Lister, J.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Buffett, B.A. Stratificati<strong>on</strong> of the outer <str<strong>on</strong>g>core</str<strong>on</strong>g> at the <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle boundary. Phys.Earth Planet. Int., 105, 5–19, 1998.Livermore, P. W. Magnetic stability analysis for the geodynamo. Ph.D Thesis, University ofLeeds, 2003.Livermore, P. W. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. On magnetic energy <str<strong>on</strong>g>in</str<strong>on</strong>g>stability <str<strong>on</strong>g>in</str<strong>on</strong>g> spherical stati<strong>on</strong>ary flows.Proc. R. Soc. L<strong>on</strong>d. A, 460(2045), 1453–1476, 2004.Lloyd, D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Toroidal fluid moti<strong>on</strong> at the top of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. J. Int.,100, 455–467, 1990.L<strong>on</strong>gair, M. Theoretical c<strong>on</strong>cepts <str<strong>on</strong>g>in</str<strong>on</strong>g> Physics. Cambridge Univeristy Press, 2003.L<strong>on</strong>gbottom, A. W., J<strong>on</strong>es, C. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> R., Hollerbach. L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>gspherical shell <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a f<str<strong>on</strong>g>in</str<strong>on</strong>g>itely c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. Astrophys. Fluid Dyn.,80, 205–227, 1995.L<strong>on</strong>guet-Higg<str<strong>on</strong>g>in</str<strong>on</strong>g>s, M. S. Planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g> <strong>on</strong> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. Proc. R. Soc. L<strong>on</strong>d., 279, 446–73,1964.Love, J. J. A critique of frozen-flux <str<strong>on</strong>g>in</str<strong>on</strong>g>verse modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a nearly steady geodynamo. Geophys.J. Int., 138, 353–365, 1999.Lowes, F. J. Spatial power spectrum of the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic field, <str<strong>on</strong>g>and</str<strong>on</strong>g> extrapolati<strong>on</strong> to the<str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. J. R. Astr. Soc., 36, 717–730, 1974.Mal<str<strong>on</strong>g>in</str<strong>on</strong>g>, S. R. C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hodder, B. M. Was the 1970 geomagnetic jerk of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal or external orig<str<strong>on</strong>g>in</str<strong>on</strong>g>?Nature, 296, 726–728, 1982.Malkus, W. V. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g>. J. Fluid Mech., 28(4), 793–802, 1967.Malkus, W. V. R. Energy sources for planetary dynamos. Lectures <strong>on</strong> Solar <str<strong>on</strong>g>and</str<strong>on</strong>g> PlanetaryDynamos, (Ed. M. R. E. Proctor <str<strong>on</strong>g>and</str<strong>on</strong>g> A.D. Gilbert), pages 161–179, 1994.M<str<strong>on</strong>g>and</str<strong>on</strong>g>ea, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Macmillan, S. Internati<strong>on</strong> Geomagnetic Reference Field— the eighth generati<strong>on</strong>.Earth, Planets, Space, 52, 1119–1124, 2000.Masters, T. G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Shearer, P. M. Summary of the seismological c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>ts <strong>on</strong> the structure ofEarth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. J. Geophys. Res., 95, 21691–21695, 1990.McD<strong>on</strong>ough, W. F. <str<strong>on</strong>g>and</str<strong>on</strong>g> Sun, S.-S. The compositi<strong>on</strong> of the Earth. Chemical Geology, 120,223–253, 1995.McElh<str<strong>on</strong>g>in</str<strong>on</strong>g>ny, M. W. <str<strong>on</strong>g>and</str<strong>on</strong>g> McFadden, P. L. Paleomagnetism. Academic Press, 2000.McFadden, P. L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Merrill, R. T. Lower mantle c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> geomagnetism. J. Geophys.Res., 89, 3345–3362, 1984.McIntyre, M. E. On global scale atmospheric circulati<strong>on</strong>s. <str<strong>on</strong>g>in</str<strong>on</strong>g> Perspectives <str<strong>on</strong>g>in</str<strong>on</strong>g> fluids dynamics edG. K. Batchelor, H. K. Moffatt, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. G. Worster, pages 557–624, 2000.Melchoir, P. Physics of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Pergam<strong>on</strong> Press, 1986.Merrill, R. T. <str<strong>on</strong>g>and</str<strong>on</strong>g> McFadden, P .L. Geomagnetic polarity transiti<strong>on</strong>. Rev. Geophys., 37, 201–226,1999.


293 ReferencesMete Uz, B., Yoder, J. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Osychny, V. Pump<str<strong>on</strong>g>in</str<strong>on</strong>g>g of nutrients to ocean surface waters by theacti<strong>on</strong> of propagat<str<strong>on</strong>g>in</str<strong>on</strong>g>g planetary <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Nature, 409, 597–600, 2001.Moffatt, H. K. Magnetic field generati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> electrically c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids. Cambridge UniveristyPress, 1978.Mound, J. E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Buffett, B. A. Interannual oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> length of day: Implicati<strong>on</strong>s for thestructure of the mantle <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>core</str<strong>on</strong>g>. J. Geophys. Res., 108(B7), 2334, doi:10.1029/2002/JB002054,2003.Mound, J. E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Buffett, B. A. Mechanisms of <str<strong>on</strong>g>core</str<strong>on</strong>g>-mantle angular momentum exchange <str<strong>on</strong>g>and</str<strong>on</strong>g>the observed spectral properties of torsi<strong>on</strong>al oscillati<strong>on</strong>s. J. Geophys. Res., 110, B08103, 2005.Needham, J. Science <str<strong>on</strong>g>and</str<strong>on</strong>g> civilisati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a, Volume 4. Cambridge University Press, 1962.Ockend<strong>on</strong>, J., Howis<strong>on</strong>, S., A., Lacey, <str<strong>on</strong>g>and</str<strong>on</strong>g> A., Movchan. Applied Partial Differential Equati<strong>on</strong>s.Oxford University Press, 2nd editi<strong>on</strong>, 2003.Ols<strong>on</strong>, P., Christensen, U., <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G.A. Numerical modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the geodynamo; Mechanismsof field generati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> equilibriati<strong>on</strong>. J. Geophys. Res., 104(B5), 10383–10404, 1999.Ols<strong>on</strong>, P. <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. A. Magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shell: structure offlow <str<strong>on</strong>g>in</str<strong>on</strong>g> the outer <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phys. Earth Planet. Int., 92, 109–118, 1995.Ols<strong>on</strong>, P., Sumita, I., <str<strong>on</strong>g>and</str<strong>on</strong>g> Aurnou, J. Diffusive magnetic images of <str<strong>on</strong>g>core</str<strong>on</strong>g> upwell<str<strong>on</strong>g>in</str<strong>on</strong>g>gs. J. Geophys.Res., 107, 10.1029/JB000384, 2002.Parker, E. N. K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic hydromagnetic theory <str<strong>on</strong>g>and</str<strong>on</strong>g> its applicati<strong>on</strong> to the low solar photosphere.Astr. J., 138, 552–578, 1963.Parker, R. L. Geophysical <str<strong>on</strong>g>in</str<strong>on</strong>g>verse theory. Pr<str<strong>on</strong>g>in</str<strong>on</strong>g>cet<strong>on</strong> Univeristy Press, 1994.Pawlowski, R. S. Use of the slant stack for geologic or geophysical map l<str<strong>on</strong>g>in</str<strong>on</strong>g>eament analysis.Geophysics, 62(6), 1774–1778, 1997.Pedlosky, J. Geophysical fluid dynamics. Cambridge Univeristy Press, 1987.Percival, D. B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Walden, A. T. Spectral analysis for physical applicati<strong>on</strong>s. Cambridge UniveristyPress, 1993.Poirier, J. P. Physical properties of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. C. R. Acad. Sci. Paris, 318, 341–350, 1994.Press, W. H., Teukolsky, S. A., Vetterl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, W. T., <str<strong>on</strong>g>and</str<strong>on</strong>g> Flannery, B.P. Numerical Recipies <str<strong>on</strong>g>in</str<strong>on</strong>g>Fortran 77. Cambridge Univeristy Press, 2nd editi<strong>on</strong>, 1992.Priestley, M. B. Spectral Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> Time Series. Academic Press, 1981.Proctor, M. R. E. C<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. Lectures <strong>on</strong>Solar <str<strong>on</strong>g>and</str<strong>on</strong>g> Planetary Dynamos, Edited by Proctor, M. R.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gilbert, A. D., pages 97–115,1994.Quartly, G. D., Cipoll<str<strong>on</strong>g>in</str<strong>on</strong>g>i, P., Cromwell, D., <str<strong>on</strong>g>and</str<strong>on</strong>g> Challenor, P. G. Synergistic observati<strong>on</strong>s ofRossby <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 361, 57–63, 2003.Rau, S., Christensen, U., Jacks<strong>on</strong>, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Wicht, J. Core flow <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> tested with numericaldynamo models. Geophys. J. Int., 141, 484–497, 2000.Riley, K. F., Hobs<strong>on</strong>, M. P., <str<strong>on</strong>g>and</str<strong>on</strong>g> Bence, S. J. Mathematical methods for physics <str<strong>on</strong>g>and</str<strong>on</strong>g> eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Cambridge Univeristy Press, 2nd editi<strong>on</strong>, 2002.Roberts, P. H. On the thermal <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid sphere c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g heatsources. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 263, 93–117, 1968.Roberts, P. H. Mac <str<strong>on</strong>g>waves</str<strong>on</strong>g>. Geofluiddynamical Wave Mechanics Research, ed W. Crim<str<strong>on</strong>g>in</str<strong>on</strong>g>ale.Publ. of Appl. Math. Dept. Univ. of Wash., Seattle, pages 218–225, (repr<str<strong>on</strong>g>in</str<strong>on</strong>g>ted <str<strong>on</strong>g>in</str<strong>on</strong>g> Magnetohydrodynamics<str<strong>on</strong>g>and</str<strong>on</strong>g> Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>: Selected works of Paul Roberts ed A. M. Soward, Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g>Francis, 2003, pp 261–263), 1977.Roberts, P. H. Magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly roata<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. <str<strong>on</strong>g>in</str<strong>on</strong>g> Rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids <str<strong>on</strong>g>in</str<strong>on</strong>g> geophysicsed P. H. Roberts <str<strong>on</strong>g>and</str<strong>on</strong>g> A. M. Soward, Academic Press, L<strong>on</strong>d<strong>on</strong>, pages 421–435, 1978.


294 ReferencesRoberts, P. H. Fundamentals of dynamo theroy. Lectures <strong>on</strong> Solar <str<strong>on</strong>g>and</str<strong>on</strong>g> Planetary Dynamos,Edited by Proctor, M. R. E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gilbert, A. D., pages 1–58, 1994.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. A. Geodynamo theory <str<strong>on</strong>g>and</str<strong>on</strong>g> simulati<strong>on</strong>s. Rev. Mod. Phys., 72(4), 1081–1123, 2000a.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Glatzmaier, G. A. A test of the frozen flux approximati<strong>on</strong> us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a newgeodynamo model. Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 1109–1121, 2000b.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. The <strong>on</strong>set of magnetoc<strong>on</strong>vecti<strong>on</strong> at large Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number <str<strong>on</strong>g>in</str<strong>on</strong>g> arotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer I. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ite magnetic diffusi<strong>on</strong>. Geophys. Astrophys. Fluid Dyn., 92, 289–325, 2000.Roberts, P. H., J<strong>on</strong>es, C. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Calderwood, A. R. Energy fluxes <str<strong>on</strong>g>and</str<strong>on</strong>g> Ohmic dissipati<strong>on</strong>.In Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lower mantle, Ed. J<strong>on</strong>es, C. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Zhang, K., pages100–129, 2003.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Loper, D. E. On the diffusive <str<strong>on</strong>g>in</str<strong>on</strong>g>stability of some simple, steady magnetohydrodynamicflows. J. Fluid Mech., 90, 641–668, 1979.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Scott, S. On the analysis of the secular variati<strong>on</strong> — 1 : A hydromagneticc<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g>t. J. Geomagn. Geoelectr., 17(2), 137–151, 1965.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A. M. Magnetohydrodynamics of the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Annu. Rev. FluidMech., 4, 117–153, 1972.Roberts, P. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Stewarts<strong>on</strong>, K. On f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite amplitude c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g magnetic system.Phil. Trans. R. Soc. L<strong>on</strong>d., 277, 287–315, 1974.Romanowicz, B. Inversi<strong>on</strong> of surface <str<strong>on</strong>g>waves</str<strong>on</strong>g>: a review. IASPEI H<str<strong>on</strong>g>and</str<strong>on</strong>g>book (W. Lee Editor), 1,1–26, 2002.Rossby, C.-G. Relati<strong>on</strong> between variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the z<strong>on</strong>al circulati<strong>on</strong> of the atmosphere<str<strong>on</strong>g>and</str<strong>on</strong>g> the displacements of the semi-permanent centres of acti<strong>on</strong>. J.Mar. Res., 2(0),33–55, 1939.Rotvig, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. Rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong> driven dynamos at low Ekman number. Phys.Rev. E, 66, 056308, 2002.Rüdiger, G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hollerbach, R. The magnetic universe. Wiley-VCH, 2004.Sabaka, T. J., Olsen, N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Langel, R. A. A comprehensive model of the quiet-time, near-earthmagnetic field: phase 3. Geophys. J. Int., 151, 32–68, 2002.Sabaka, T. J., Olsen, N., <str<strong>on</strong>g>and</str<strong>on</strong>g> Purucker, M. E. Extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g comprehensive models of the Earth’smagnetic field with Oersted <str<strong>on</strong>g>and</str<strong>on</strong>g> CHAMP data. Geophys. J. Int., 159, 521–547, 2004.Sakuraba, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> K<strong>on</strong>o, M. Effect of a uniform magnetic field <strong>on</strong> n<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid spherical shell. Geophys. Astrophys. Fluid Dyn., 92, 255–287, 2000.Sars<strong>on</strong>, G. R. K<str<strong>on</strong>g>in</str<strong>on</strong>g>ematic dynamo calculati<strong>on</strong>s for geomagnetism. Ph. D. Thesis, University ofLeeds, 1994.Secco, R. A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Schloess<str<strong>on</strong>g>in</str<strong>on</strong>g>, H. H. The electrical reistivity of solid <str<strong>on</strong>g>and</str<strong>on</strong>g> liquid Fe at pressures upto 7 GPa. J. Geophys. Res., 94, 5887–5894, 1989.Shankl<str<strong>on</strong>g>and</str<strong>on</strong>g>, T. J., Peyr<strong>on</strong>neau, J., <str<strong>on</strong>g>and</str<strong>on</strong>g> Poirier, J.-P. Electrical c<strong>on</strong>ductivity of the Earth’s lowermantle. Nature, 366, 453–455, 1993.Shearer, P. M. Introducti<strong>on</strong> to Seismology. Cambridge Univeristy Press, 2001.Shepp, K. L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kruskal, J. B. Computerised tomography: The new medical X-Ray technology.Amer. Math. M<strong>on</strong>thly, 85, 420–439, 1978.Shure, L., Parker, R. L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Langel, R. A. A prelim<str<strong>on</strong>g>in</str<strong>on</strong>g>ary harm<strong>on</strong>ic spl<str<strong>on</strong>g>in</str<strong>on</strong>g>e model from Magsatdata. J. Geophys. Res., 90(B13), 11505–11512, 1985.Sim<strong>on</strong>s, F. J., Dahlen, F. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> Wieczorek, M. A. Spatiospectral c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> a sphere.SIAM Review (submitted), 2005.Smith, S. W. The Scientist <str<strong>on</strong>g>and</str<strong>on</strong>g> Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer’s Guide to Digital Signal Process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. California TechnicalPublish<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 1997.


295 ReferencesSoward, A. M. C<strong>on</strong>vecti<strong>on</strong> driven dynamos. Phys. Earth Planet. Int., 20, 134–151, 1979a.Soward, A. M. Thermally <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetically driven c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid layer.J. Fluid Mech., 90, 669–684, 1979b.Soward, A. M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Dormy, E. Dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spheres: Boundary layers <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g>.Mathematical Aspects of Natural Dynamos (Ed. E. Dormy), 2005.Stellmach, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hansen, U. Cartesian c<strong>on</strong>vecti<strong>on</strong> driven dynamos at low Ekman number. Phys.Rev. E, 70, 056312, 2004.Stewarts<strong>on</strong>, K. Slow oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g cavity <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a toroidal magnetic field.Proc. R. Soc. L<strong>on</strong>d., 299, 173–187, 1967.Stewarts<strong>on</strong>, K. Waves <str<strong>on</strong>g>in</str<strong>on</strong>g> homogeneous fluids. Rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluids <str<strong>on</strong>g>in</str<strong>on</strong>g> geophysics, Ed. Roberts, P.H.<str<strong>on</strong>g>and</str<strong>on</strong>g> Soward, A.M., pages 67–103, 1978.Stewarts<strong>on</strong>, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Rickard, J. A. Pathological oscillati<strong>on</strong>s of a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid. J. Fluid Mech.,35, 759–773, 1969.Sutt<strong>on</strong>, R. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Allen, M. R. Decadal predictability of North Atlantic sea surface temperature<str<strong>on</strong>g>and</str<strong>on</strong>g> climate. Nature, 388, 563–567, 1997.Tackley, P. J. Three-dimensi<strong>on</strong>al simulati<strong>on</strong>s of mantle c<strong>on</strong>vecti<strong>on</strong> with a thermo-chemical basalboundary layer: D”? 1998.Tapley, B. D., Bettadpur, S., Ries, J. C., Thomps<strong>on</strong>, P. F., <str<strong>on</strong>g>and</str<strong>on</strong>g> Watk<str<strong>on</strong>g>in</str<strong>on</strong>g>s, M. M. GRACEmeasurements of mass variability <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth system. Science, 305, 502–505, 2004.Taylor, J.B. The magneto-hydrodynamics of a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> the Earth’s dynamo problem.Proc. R. Soc. L<strong>on</strong>d. A, 9, 274–283, 1963.Tritt<strong>on</strong>, D. J. Physical fluid dynamics. Oxford University Press, 1987.Valet, J.-P. Time variati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> geomagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity. Rev. Geophys., 41, 1004,doi:10.1029/2001RG000104, 2003.Valet, J.-P., Meynadier, L., <str<strong>on</strong>g>and</str<strong>on</strong>g> Guyodo, Y. Geomagnetic dipole strength <str<strong>on</strong>g>and</str<strong>on</strong>g> reversal rate overthe past two milli<strong>on</strong> years. Nature, 435, 802–805, 2005.Vest<str<strong>on</strong>g>in</str<strong>on</strong>g>e, E. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kahle, E. The small amplitude of magnetic secular change <str<strong>on</strong>g>in</str<strong>on</strong>g> the pacific area.J. Geophys. Res., 71(2), 527–530, 1966.Vest<str<strong>on</strong>g>in</str<strong>on</strong>g>e, E. H. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kahle, E. The weswtard drift <str<strong>on</strong>g>and</str<strong>on</strong>g> the geomagnetic secular change. Geophys.J. R. Astr. Soc., 15, 29–37, 1968.Voorhies, C. V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus, G. E. Steady flows at the top of the <str<strong>on</strong>g>core</str<strong>on</strong>g> from geomagnetic fieldmodels. Geophys. Astrophys. Fluid Dyn., 32, 163–173, 1985.Walker, A. D. <str<strong>on</strong>g>and</str<strong>on</strong>g> Backus, G. E. On the difference between the average values of Br2atlantic <str<strong>on</strong>g>and</str<strong>on</strong>g> pacific hemipheres. Geophys. Res. Lett., 23, 1965–1968, 1996.<str<strong>on</strong>g>in</str<strong>on</strong>g> theWalker, M. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Barenghi, C. F. Magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. Geophys.Astrophys. Fluid Dyn., 85, 129–162, 1997.Walker, M. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Barenghi, C. F. N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the geostrophic flow. Phys.Earth Planet. Int., 111, 35–46, 1999.Walker, M. R., Barenghi, C. F., <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. A note <strong>on</strong> dynamo acti<strong>on</strong> at asymptoticallysmall Ekman number. Geophys. Astrophys. Fluid Dyn., 88, 261–275, 1998.Walker, M. R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Jacks<strong>on</strong>, A. Robust modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the Earth’s magnetic field. Geophys. J. Int.,143, 799–808, 2001.Ward<str<strong>on</strong>g>in</str<strong>on</strong>g>ski, I. Core flow models from decadal <str<strong>on</strong>g>and</str<strong>on</strong>g> sub-decadal secular variati<strong>on</strong> of the ma<str<strong>on</strong>g>in</str<strong>on</strong>g>geomagnetic field. Ph.D. Thesis, Der Freien Universität Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>, 2005.Wheeler, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Kiladis, G. N. C<strong>on</strong>vectively coupled equatorial <str<strong>on</strong>g>waves</str<strong>on</strong>g>: Analysis of clouds <str<strong>on</strong>g>and</str<strong>on</strong>g>temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> the wavenumber-frequency doma<str<strong>on</strong>g>in</str<strong>on</strong>g>. J. Atmos. Sci., 56, 374–399, 1999.Whitham, K. The relati<strong>on</strong>ships between the secular change <str<strong>on</strong>g>and</str<strong>on</strong>g> the n<strong>on</strong>-dipole fields. Can. J.Phys.,, 36, 1372–1396, 1958.


296 ReferencesWicht, J. Inner-<str<strong>on</strong>g>core</str<strong>on</strong>g> c<strong>on</strong>ductivity <str<strong>on</strong>g>in</str<strong>on</strong>g> numerical dynamo simulati<strong>on</strong>s. Phys. Earth Planet. Int.,132, 281–302, 2002.Wicht, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ols<strong>on</strong>, P. A detailed study of the polarity reversal mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g> a numericaldynamo model. Geochem. Geophys. Geosyst., 5, Q03H10, doi:10.1029/2003GC000602, 2004.Worl<str<strong>on</strong>g>and</str<strong>on</strong>g>, S. J. Magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spheres. Ph.D Thesis, University of Exeter,2004.Wysessi<strong>on</strong>, M. E., Lay, T., Revenaugh, J., Williams, Q., Garnero, E. J., Jeanloz, R., <str<strong>on</strong>g>and</str<strong>on</strong>g> Kellogg,L. H. The D ′′ disc<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uity <str<strong>on</strong>g>and</str<strong>on</strong>g> its implicati<strong>on</strong>s. The Core-Mantle Boundary Regi<strong>on</strong>, AGUGeodynamics M<strong>on</strong>ograph, 28, 273–297, 1998.Yano, J.-I., Talagr<str<strong>on</strong>g>and</str<strong>on</strong>g>, O., <str<strong>on</strong>g>and</str<strong>on</strong>g> Drossart, P. Outer planets: Orig<str<strong>on</strong>g>in</str<strong>on</strong>g>s of atmospheric z<strong>on</strong>al w<str<strong>on</strong>g>in</str<strong>on</strong>g>ds.Nature, 421, 36, doi:10.1038/421036a, 2003.Yokoyama, Y. <str<strong>on</strong>g>and</str<strong>on</strong>g> Yukutake, T. Sixty year variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a time series of geomagnetic gausscoefficients between 1910 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1983. J. Geomagn. Geoelectr., 43, 563–584, 1991.Zhang, K. Spirall<str<strong>on</strong>g>in</str<strong>on</strong>g>g columnar c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical fluid shells. J. FluidMech., 236, 535–556, 1992.Zhang, K. On equatorially trapped boundary <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g>. J. Fluid Mech., 248, 203–217, 1993.Zhang, K. On coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the po<str<strong>on</strong>g>in</str<strong>on</strong>g>care equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat equati<strong>on</strong>. J. Fluid Mech.,268, 211–229, 1994a.Zhang, K. On coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the po<str<strong>on</strong>g>in</str<strong>on</strong>g>care equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat equati<strong>on</strong>: no slip boundaryc<strong>on</strong>diti<strong>on</strong>s. J. Fluid Mech., 284, 239–256, 1994b.Zhang, K. Spherical shell rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a toroidal magnetic field. Proc.R. Soc. L<strong>on</strong>d., 448, 245–268, 1995.Zhang, K. N<strong>on</strong>l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetohydrodynamic c<strong>on</strong>vective flows <str<strong>on</strong>g>in</str<strong>on</strong>g> earth’s fluid <str<strong>on</strong>g>core</str<strong>on</strong>g>. Phys. EarthPlanet. Int., 111, 93–103, 1999.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Busse, F. H. On the <strong>on</strong>set of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shells. Geophys.Astrophys. Fluid Dyn., 39, 119–147, 1987.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Busse, F. H. On hydromagnetic <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities driven by the hartmann boundarylayer <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. J. Fluid Mech., 304, 363–283, 1995.Zhang, K., Earnshaw, P., Liao, X., <str<strong>on</strong>g>and</str<strong>on</strong>g> Busse, F.H. On <str<strong>on</strong>g>in</str<strong>on</strong>g>ertial <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g fluid sphere.J. Fluid Mech., 437, 103–119, 2000.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn, D. R. How str<strong>on</strong>g is the <str<strong>on</strong>g>in</str<strong>on</strong>g>visible comp<strong>on</strong>ent of the magnetic field <str<strong>on</strong>g>in</str<strong>on</strong>g> theearth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>. Geophys. Res. Lett., 20(19), 2083–2086, 1993.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shells, generatedby magnetic toroidal decay modes. Geophys. Astrophys. Fluid Dyn., 77, 133–157, 1994.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Fearn, D. R. <str<strong>on</strong>g>Hydromagnetic</str<strong>on</strong>g> <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical shells, generatedby magnetic poloidal decay modes. Geophys. Astrophys. Fluid Dyn., 81, 193–209, 1995.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. C<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical fluid shell with <str<strong>on</strong>g>in</str<strong>on</strong>g>homogeneoustemperature boundary c<strong>on</strong>diti<strong>on</strong>s at <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number. J. Fluid Mech., 250, 209–232,1993.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Is the geodynamo process <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sically unstable? Geophys. J. Int.,140, F1–F4, 2000a.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. Scale disparities <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetohydrodynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> the Earth’s <str<strong>on</strong>g>core</str<strong>on</strong>g>.Phil. Trans. R. Soc. L<strong>on</strong>d. A, 358, 899–920, 2000b.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Gubb<str<strong>on</strong>g>in</str<strong>on</strong>g>s, D. C<strong>on</strong>vecti<strong>on</strong> driven hydromagnetic <str<strong>on</strong>g>waves</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> planetary fluid <str<strong>on</strong>g>core</str<strong>on</strong>g>s.Mathematical <str<strong>on</strong>g>and</str<strong>on</strong>g> Computer Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 36, 389–401, 2002.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of Ekman boundary layers <strong>on</strong> rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>vecti<strong>on</strong>.Geophys. Astrophys. Fluid Dyn., 71, 145–162, 1993.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. On small roberts number magnetoc<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>gsystems. Proc. R. Soc. L<strong>on</strong>d. A, 452, 981–995, 1996.


297 ReferencesZhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> J<strong>on</strong>es, C. A. The effect of hyperviscosity <strong>on</strong> geodynamo models. Geophys. Res.Lett., 24, 2869–2872, 1997.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Liao, X. A new asymptotic method for the analysis of c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a rapidlyrotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. J. Fluid Mech., 518, 319–346, 2004.Zhang, K., Liao, X., <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert, G. N<strong>on</strong>-axisymmetric <str<strong>on</strong>g>in</str<strong>on</strong>g>stabilities of a torioidal magneticfield <str<strong>on</strong>g>in</str<strong>on</strong>g> a rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g sphere. Astr. J., 585, 1124–1137, 2003.Zhang, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Schubert, G.. Magnetohydrodynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> rapidly rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g spherical systems. Annu.Rev. Fluid Mech., 32, 409–443, 2000.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!