13.07.2015 Views

Market impact and trading profile of large trading orders in stock ...

Market impact and trading profile of large trading orders in stock ...

Market impact and trading profile of large trading orders in stock ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

2data sets each transaction is labeled with codes identify<strong>in</strong>gthe members <strong>of</strong> the exchange who made the transaction.In most cases the member is act<strong>in</strong>g as a broker,i.e. they are h<strong>and</strong>l<strong>in</strong>g a trade for another <strong>in</strong>stitutionwho is not a member <strong>of</strong> the exchange. In other cases themember may trade for their own account. Thus a s<strong>in</strong>glemembership code may lump together trades from manydifferent <strong>in</strong>stitutions, orig<strong>in</strong>ated by many different <strong>trad<strong>in</strong>g</strong>strategies. As a consequence several hidden <strong>orders</strong>from different <strong>trad<strong>in</strong>g</strong> accounts may be active with thesame broker at the same time, mak<strong>in</strong>g it impossible tobe certa<strong>in</strong> that all <strong>orders</strong> are correctly identified.The detection problem is aided by the fact that thesize <strong>of</strong> hidden <strong>orders</strong> has a heavy-tailed distribution, <strong>and</strong><strong>large</strong> hidden <strong>orders</strong> can cause dramatic changes <strong>in</strong> therate at which a given membership code participates <strong>in</strong>trades to either buy or to sell. The method we use wasorig<strong>in</strong>ally developed for detection <strong>of</strong> local stationary regions<strong>in</strong> physiological time series [28]. As we use it here, itlooks for time <strong>in</strong>tervals <strong>in</strong> the time series <strong>of</strong> <strong>orders</strong> com<strong>in</strong>gthrough a given membership code when the firm acts asa net buyer or seller at an approximately constant rate.As <strong>in</strong> reference [27] we <strong>in</strong>terpret these series <strong>of</strong> tradesas belong<strong>in</strong>g to hidden <strong>orders</strong>. This method can neverbe perfectly accurate, but a variety <strong>of</strong> tests performed<strong>in</strong> reference [27] suggest that the reconstruction is goodenough to recover the most important statistical properties<strong>of</strong> hidden <strong>orders</strong> reasonably well. An importantadvantage <strong>of</strong> this approach is that we are able to study<strong>large</strong> samples <strong>of</strong> hidden <strong>orders</strong> com<strong>in</strong>g from the wholemarket rather than only a subset belong<strong>in</strong>g to a specific<strong>in</strong>stitution.The paper is organized as follows. In Section II wediscuss our data sets, the algorithm for detect<strong>in</strong>g hidden<strong>orders</strong> <strong>and</strong> the <strong>in</strong>vestigated variables. In Section IIIwe discuss the statistical properties <strong>of</strong> the variables characteriz<strong>in</strong>gthe hidden <strong>orders</strong>. In Section IV <strong>and</strong> V wepresent our empirical results on the <strong>impact</strong> <strong>of</strong> hidden <strong>orders</strong><strong>and</strong> on their <strong>trad<strong>in</strong>g</strong> <strong>pr<strong>of</strong>ile</strong>, respectively. Section VIconcludes.II.DATA AND INVESTIGATED VARIABLESOur databases conta<strong>in</strong> the on-book (SETS) markettransactions <strong>of</strong> the London Stock Exchange (LSE) fromJanuary 2002 to December 2004 <strong>and</strong> the electronic openbookmarket (SIBE) <strong>of</strong> the Spanish Stock Exchange(BME, Bolsas y Mercados Españoles) from January 2001to December 2004. Roughly 62% <strong>of</strong> the transactionsat the LSE are executed <strong>in</strong> the open book market <strong>and</strong>roughly 90% <strong>of</strong> the transactions at the BME are executed<strong>in</strong> the electronic market.We have <strong>in</strong>itially considered a subset consist<strong>in</strong>g <strong>of</strong> themost heavily traded <strong>stock</strong>s <strong>in</strong> the two markets, 74 <strong>stock</strong>straded <strong>in</strong> the LSE <strong>and</strong> 23 <strong>stock</strong>s traded <strong>in</strong> the BME. Forboth markets we have considered exchange members whomade at least one trade per day for at least 200 <strong>trad<strong>in</strong>g</strong>days per year <strong>and</strong> with a m<strong>in</strong>imum <strong>of</strong> 1000 transactionsper year. This filter yielded approximately 60 exchangemember firms per <strong>stock</strong>. We then applied the algorithmfor detect<strong>in</strong>g hidden <strong>orders</strong> described <strong>in</strong> Ref. [27], whichwe have already discussed, to identify hidden <strong>orders</strong> thatconsist <strong>of</strong> at least ten transactions. It is worth not<strong>in</strong>gthat the detected patches are not necessarily composed<strong>of</strong> the same type <strong>of</strong> trades (buy or sell) but that at least75% <strong>of</strong> the transacted volume <strong>in</strong> the patch must have thesame sign. The algorithm detected 90,393 hidden <strong>orders</strong><strong>in</strong> the LSE <strong>and</strong> 55,309 <strong>in</strong> the BME.This study is based entirely on trades that take placethrough a cont<strong>in</strong>uous double auction. “Cont<strong>in</strong>uous”refers to the fact that <strong>trad<strong>in</strong>g</strong> takes places cont<strong>in</strong>uously<strong>and</strong> asynchronously, <strong>and</strong> “double” to the fact that bothbuyers <strong>and</strong> sellers are allowed to place <strong>and</strong> cancel <strong>orders</strong>at any time. There are two fundamentally different waysto execute an order <strong>in</strong> such a market. One is to use alimit order, <strong>in</strong> which an order is placed <strong>in</strong>side the orderbook, which is essentially a list <strong>of</strong> unexecuted <strong>orders</strong> atdifferent prices. The other is to place a market order,which we def<strong>in</strong>e as any order that results <strong>in</strong> an immediatetransaction. Every transaction <strong>in</strong>volves a marketorder transact<strong>in</strong>g aga<strong>in</strong>st a limit order. A given real ordermight act as both, e.g. part <strong>of</strong> it might result <strong>in</strong> animmediate transaction <strong>and</strong> part <strong>of</strong> it might be left <strong>in</strong> theorder book. We only consider transactions, so <strong>in</strong> the exampleabove we would treat the first part as a marketorder <strong>and</strong> treat the second part as a limit order, but thesecond part will enter our analysis only if it eventuallyresults <strong>in</strong> a transaction. The LSE database allows us toidentify whether the <strong>in</strong>itiator <strong>of</strong> the transaction was thebuyer or the seller. For BME this <strong>in</strong>formation is not available<strong>and</strong> we <strong>in</strong>fer it with the Lee <strong>and</strong> Ready algorithm[29]A hidden order is characterized by several variables.These are• The execution time T (<strong>in</strong> seconds) <strong>of</strong> the hidden order,measured as the <strong>trad<strong>in</strong>g</strong> time <strong>in</strong>terval betweenthe first <strong>and</strong> the last transaction <strong>of</strong> the hidden order.• The number N <strong>of</strong> transactions <strong>of</strong> the hidden order.We consider hidden <strong>orders</strong> <strong>of</strong> length N > 10.• The volume V <strong>of</strong> the hidden order def<strong>in</strong>ed asV =N∑v j , (1)j=1where v j is the signed volume <strong>of</strong> each transaction<strong>of</strong> the hidden order. For buy trades v i > 0 <strong>and</strong> forsell trades v i < 0. We consider the hidden order tobe a buy order if V > 0 <strong>and</strong> a sell order if V < 0.The buy<strong>in</strong>g/sell<strong>in</strong>g nature <strong>of</strong> a hidden order is thusencoded <strong>in</strong> its sign, ɛ = sign(V ). The volume is theproduct <strong>of</strong> the number <strong>of</strong> shares times the price <strong>and</strong>is measured <strong>in</strong> Pounds (LSE) or <strong>in</strong> Euro (BME).


3• The volume fraction <strong>of</strong> market <strong>orders</strong> f mo . A hiddenorder can be implemented with very differentliquidity strategies, i.e. with different compositions<strong>of</strong> market <strong>and</strong> limit <strong>orders</strong>. In order to quantifythis we def<strong>in</strong>e the fraction (<strong>in</strong> volume) <strong>of</strong> market<strong>orders</strong> with<strong>in</strong> a hidden order as∑ Nj=1f mo =|v j,mo|∑ Nj=1 |v , (2)j|where v j,mo is the traded volume at each transactiondone through market <strong>orders</strong>. Values <strong>of</strong> f moclose to zero mean that the broker completed thehidden order by us<strong>in</strong>g ma<strong>in</strong>ly limit <strong>orders</strong>, whilevalues <strong>of</strong> f mo close to one imply the broker usedma<strong>in</strong>ly market <strong>orders</strong> dur<strong>in</strong>g the execution <strong>of</strong> thehidden order.• The participation rate α <strong>of</strong> a hidden order def<strong>in</strong>edas∑ Ni=1α =|v i|, (3)V Mwhere V M is the unsigned volume <strong>of</strong> the <strong>stock</strong>traded <strong>in</strong> the market concurrently with the hiddenorder. Values <strong>of</strong> α close to zero imply the hidden orderwas negligible compared to the activity <strong>in</strong> themarket, while values <strong>of</strong> α close to one mean thatmost <strong>of</strong> the activity <strong>in</strong> the market came from thetransactions <strong>of</strong> the hidden order.Summariz<strong>in</strong>g, we expect that the market <strong>impact</strong> <strong>of</strong> ahidden order is a functionr = f(N, V, T, f mo ), (4)plus possibly other variables specific <strong>of</strong> the <strong>stock</strong>, suchas the participation rate, the capitalization, the volatility,or the spread. We will now try to simplify this byunderst<strong>and</strong><strong>in</strong>g some <strong>of</strong> the relationships between the dependentvariables <strong>and</strong> by condition<strong>in</strong>g on some <strong>of</strong> them<strong>in</strong> our analysis. Note that <strong>in</strong> all the analyses <strong>and</strong> figureswe compute error bars as st<strong>and</strong>ard errors. It should beborn <strong>in</strong> m<strong>in</strong>d that this procedure underestimates the errorsdue to the heavy tails <strong>of</strong> the fluctuations <strong>and</strong> due topossible long-memory properties <strong>of</strong> the data.III.STATISTICAL PROPERTIES OF HIDDENORDERSWe <strong>in</strong>vestigate the statistical properties <strong>of</strong> the variablescharacteriz<strong>in</strong>g hidden <strong>orders</strong>. Ref. [27] considered a set <strong>of</strong>3 most capitalized <strong>stock</strong>s traded at the BME <strong>and</strong> studiedthe probability distribution <strong>of</strong> the variables characteriz<strong>in</strong>gthe hidden <strong>orders</strong> <strong>and</strong> the scal<strong>in</strong>g relations betweenthese variables. In Ref. [27] no restriction on the lengthor on the fraction <strong>of</strong> market <strong>orders</strong> was set on the hidden<strong>orders</strong>. The authors <strong>of</strong> Ref. [27] found that the distribution<strong>of</strong> hidden order size is fat tailed <strong>and</strong> consistent witha distribution with <strong>in</strong>f<strong>in</strong>ite variance. They also showedthat this broad distribution is due to an heterogeneity <strong>of</strong>scales among different brokerage firms rather than to theheterogeneity <strong>of</strong> scales with<strong>in</strong> the hidden <strong>orders</strong> <strong>of</strong> eachbrokerage firm. By us<strong>in</strong>g Pr<strong>in</strong>cipal Component Analysis(PCA) on the logarithm <strong>of</strong> the variables characteriz<strong>in</strong>gthe hidden <strong>orders</strong>, it was found that N, V <strong>and</strong> T arerelated through scal<strong>in</strong>g relationshipsN ∼ V g1 , T ∼ V g2 , N ∼ T g3 . (5)where g 1 ≃ 1, g 2 ≃ 2 <strong>and</strong> g 3 ≃ 0.66 for 3 highly capitalized<strong>stock</strong>s <strong>in</strong> the BME <strong>and</strong> <strong>in</strong>clud<strong>in</strong>g all hidden <strong>orders</strong>.We repeat the two dimensional PCA analysis <strong>of</strong> [27] onour much <strong>large</strong>r data set. Figure 1 shows the value <strong>of</strong>the three exponents for all the <strong>stock</strong>s as a function <strong>of</strong>the number <strong>of</strong> hidden <strong>orders</strong> per year. We observe thatfor <strong>stock</strong>s with a small number <strong>of</strong> hidden <strong>orders</strong> the heterogeneity<strong>in</strong> the value <strong>of</strong> the exponents is pretty <strong>large</strong>,while, as the number <strong>of</strong> hidden <strong>orders</strong> detected by the algorithm<strong>in</strong>creases, the exponent estimations become lessnoisy <strong>and</strong> tend to converge to similar values. Moreoverfor BME <strong>stock</strong>s there is a clear trend <strong>of</strong> the exponents asa function <strong>of</strong> the number <strong>of</strong> hidden <strong>orders</strong>. In order tomeasure market <strong>impact</strong> <strong>in</strong> a statistically reliable way, wepool together data from different <strong>stock</strong>s. We need thereforean homogeneous sample <strong>of</strong> <strong>stock</strong>s. To this end <strong>in</strong> thefollow<strong>in</strong>g analysis we restrict our dataset to those <strong>stock</strong>sfor which our algorithm detects at least 250 <strong>orders</strong> peryear. These <strong>stock</strong>s are TEF, SAN, BBVA (as <strong>in</strong> [27]) butalso REP, ELE, IBE, POP <strong>and</strong> ALT for the BME market<strong>and</strong> AZN, BSY, CCH, DVR, GUS, KEL, PO, PSON,SIG, TATE <strong>and</strong> TSCO for the LSE market. Moreover, <strong>in</strong>this paper we will focus ma<strong>in</strong>ly on short hidden <strong>orders</strong>,consider<strong>in</strong>g the set <strong>of</strong> hidden <strong>orders</strong> <strong>of</strong> time duration Tsmaller than one <strong>trad<strong>in</strong>g</strong> day. The reason for this choice,detailed below, is to obta<strong>in</strong> stable statistical averages forthe market <strong>impact</strong>. Apply<strong>in</strong>g these two restrictions, weobta<strong>in</strong> a f<strong>in</strong>al dataset that conta<strong>in</strong>s 14,655 hidden <strong>orders</strong><strong>in</strong> the BME <strong>and</strong> 11,165 <strong>orders</strong> for the LSE (see Table I).We repeat the two-dimensional PCA analysis <strong>of</strong> [27] onthe pooled set <strong>of</strong> hidden <strong>orders</strong> from different <strong>stock</strong>s. Wef<strong>in</strong>d for the BME market the follow<strong>in</strong>g exponentsg 1 = 0.81 (0.79; 0.82), (6)g 2 = 1.57 (1.43; 1.72), (7)g 3 = 0.67 (0.65; 0.68), (8)where quantities <strong>in</strong> parenthesis are 95% confidence <strong>in</strong>tervalsobta<strong>in</strong>ed through bootstrapp<strong>in</strong>g the data. Theserelations expla<strong>in</strong>s 83%, 61% <strong>and</strong> 80%, respectively, <strong>of</strong> thevariance observed <strong>in</strong> the data. For the LSE dataset wegetg 1 = 0.99 (0.98; 1.01), (9)g 2 = 2.41 (2.29; 2.52), (10)g 3 = 0.58 (0.57; 0.59), (11)


-810 100N10 1004g 1g 2g 31,510,50432100,80,60,40,20LSE50 100 200 5001,510,50432100,90,80,70,60,50,4#hidden <strong>orders</strong> (per year)BME50 100 200 500Figure 1: Exponents g i (i = 1, 2, 3) <strong>of</strong> the allometric relations<strong>of</strong> Eq. 5 for each <strong>of</strong> the <strong>stock</strong>s considered <strong>in</strong> our LSE <strong>and</strong> BMEdatabases <strong>and</strong> for hidden <strong>orders</strong> with N ≥ 10 <strong>and</strong> T < 1 day,as a function <strong>of</strong> the number <strong>of</strong> detected hidden <strong>orders</strong> peryear. Error bars are 95% confidence <strong>in</strong>tervals obta<strong>in</strong>ed bybootstrapp<strong>in</strong>g the data. In the analysis <strong>of</strong> market <strong>impact</strong> weconsider only <strong>stock</strong>s with at least 250 hidden <strong>orders</strong> per year(those <strong>in</strong> the white area <strong>of</strong> the figure).Table I: Statistics <strong>of</strong> the hidden order ensembles used <strong>in</strong> thepaper. Only hidden <strong>orders</strong> with T < 1 day <strong>and</strong> N > 10transactions are used.<strong>Market</strong> # <strong>orders</strong> 〈N〉 〈f mo〉 〈α〉 〈R〉 〈R〉 fmo>0.8BME 14,655 95.58 0.52 0.17 1.127 3.983LSE 11,165 97.53 0.53 0.34 0.587 2.156P(!)P(f mo)65432100 0,2 0,4 0,6 0,8 132,521,510,500 0,2 0,4 0,6 0,8 1BMELSE00 0,2 0,4 0,6 0,8 1f mo0,60,50,40,30,20,1〈α|fmo〉Figure 2: Ensemble statistics <strong>of</strong> the fraction <strong>of</strong> market <strong>orders</strong>f mo <strong>and</strong> participation rate α <strong>of</strong> hidden <strong>orders</strong> <strong>in</strong> both theBME <strong>and</strong> LSE. Left panels show the probability distributionfunction <strong>of</strong> both parameters, while the right panel shows theconditional average <strong>of</strong> the participation rate conditioned on agiven value <strong>of</strong> f mo.lot <strong>in</strong> terms <strong>of</strong> the fraction <strong>of</strong> market <strong>orders</strong> used to completethem. In the <strong>in</strong>vestigation <strong>of</strong> the market <strong>impact</strong> <strong>of</strong>hidden <strong>orders</strong> we will consider hidden <strong>orders</strong> characterizedby a restricted set <strong>of</strong> values <strong>of</strong> f mo to better characterizetheir <strong>pr<strong>of</strong>ile</strong> with respect to the fraction <strong>of</strong> market<strong>orders</strong> used to complete the hidden order. Specifically wewill use f mo > 0.8 (<strong>large</strong> fraction <strong>of</strong> market <strong>orders</strong> used)<strong>and</strong> f mo < 0.2 (<strong>large</strong> fraction <strong>of</strong> limit <strong>orders</strong> used). Thereasons why we expect this dist<strong>in</strong>ction to be criticallyimportant will be described <strong>in</strong> the next section.IV.MARKET IMPACT<strong>and</strong> these relations expla<strong>in</strong> 88%, 75% <strong>and</strong> 86%, respectively,<strong>of</strong> the variance. These allometric relations areroughly consistent with those obta<strong>in</strong>ed <strong>in</strong> Ref. [27].The left panels <strong>of</strong> Fig. 2 show the probability densityfunction <strong>of</strong> f mo <strong>and</strong> <strong>of</strong> the participation rate α. Weobserve that the distribution <strong>of</strong> the fraction <strong>of</strong> market<strong>orders</strong> is rather broad <strong>and</strong> is roughly centered aroundf mo = 0.5. In addition two peaks are observed forf mo ≃ 0 <strong>and</strong> f mo ≃ 1. For the BME the participationrate has a peak around α = 5%, while for the LSE thedistribution <strong>of</strong> α is broader, <strong>and</strong> peaks at a value closerto 20%. This value is pretty <strong>large</strong> <strong>and</strong> we do not havean explanation for the difference <strong>in</strong> the participation ratebetween the two markets. F<strong>in</strong>ally, the two parameters α<strong>and</strong> f mo are not <strong>in</strong>dependent. Figure 2 shows the expectedvalue <strong>of</strong> α conditioned on f mo . For the BME theexpected value <strong>of</strong> α is almost constant except for verysmall values <strong>of</strong> f mo . In contrast, for the LSE the dependenceis much stronger. The participation rate is higherwhen f mo is at either <strong>of</strong> its extremes.The bottom left panel <strong>of</strong> Fig. 2 shows that f mo has abroad distribution. Hidden <strong>orders</strong> can therefore differ aA. Def<strong>in</strong>itionThe ma<strong>in</strong> focus <strong>of</strong> this paper is the empirical measurement<strong>of</strong> the market <strong>impact</strong> <strong>of</strong> hidden <strong>orders</strong>. Givena hidden order traded on <strong>stock</strong> i between times t <strong>and</strong>t + T , we measure the market <strong>impact</strong> by consider<strong>in</strong>g thechange <strong>in</strong> the log price <strong>of</strong> the <strong>stock</strong> between time t <strong>and</strong>time t + T , i.e.r i (t, T ) = log p i,t+T − log p i,t , (12)where p i,t is the price <strong>of</strong> <strong>stock</strong> i at time t. We have usedfor p i the midprice, but our results do not depend onthis. Our objective is to study how r i (t, T ) changes asa function <strong>of</strong> the ma<strong>in</strong> properties <strong>of</strong> the hidden order.Different <strong>stock</strong>s have different scales <strong>of</strong> their price fluctuations.In order to be able to take the average <strong>of</strong> market<strong>impact</strong> across different <strong>stock</strong>s, we rescale it by divid<strong>in</strong>gby the mean value <strong>of</strong> the spread s i <strong>of</strong> the <strong>stock</strong> dur<strong>in</strong>gthe year, where the spread is the difference between thelowest sell<strong>in</strong>g price (ask) <strong>and</strong> the highest buy<strong>in</strong>g price(bid). Specifically, we def<strong>in</strong>e the rescaled market <strong>impact</strong>


5Return0,0020-0,002-0,004-0,006-0,008FTSE100IBEX352001 2002 2003 2004Year50001Days10000<strong>in</strong>g the years 2001-2004 <strong>stock</strong> markets were <strong>in</strong> a substantialdecl<strong>in</strong>e for more than two years, only recover<strong>in</strong>g atthe end <strong>of</strong> 2003 <strong>and</strong> 2004 (see the <strong>in</strong>set <strong>of</strong> Figure 3).Figure 3 shows the conditional average 〈R|T 〉 <strong>of</strong> therescaled market <strong>impact</strong> <strong>of</strong> the hidden <strong>orders</strong> as a function<strong>of</strong> their time duration T . We observe that for T<strong>large</strong>r than one day, rescaled <strong>impact</strong> is on average negative,irrespectively <strong>of</strong> the sign <strong>of</strong> the hidden order. Thereason for this phenomenon is that market-wide movementswere mostly negative for values <strong>of</strong> T <strong>large</strong>r thanone day. Only for hidden <strong>orders</strong> <strong>of</strong> duration close to orbelow one day do we observe negligible changes <strong>in</strong> market<strong>in</strong>dexes when compared to price changes dur<strong>in</strong>g hiddenorder completion. This is the ma<strong>in</strong> motivation <strong>of</strong> ourchoice <strong>of</strong> restrict<strong>in</strong>g our study to hidden <strong>orders</strong> <strong>of</strong> durationT less or equal to one day 1 .Figure 3: Conditional average 〈R|T 〉 <strong>of</strong> the rescaled <strong>impact</strong> <strong>of</strong>hidden <strong>orders</strong> (Eq. (13)) as a function <strong>of</strong> their time duration T(symbols) compared to the average return <strong>of</strong> the <strong>stock</strong> market<strong>in</strong>dex over r<strong>and</strong>om periods <strong>of</strong> the same time duration (solidl<strong>in</strong>es). The <strong>in</strong>set shows the price <strong>of</strong> the FTSE100 <strong>and</strong> IBEX35<strong>in</strong>dices over the period <strong>of</strong> study. In this figure we are us<strong>in</strong>gall detected hidden <strong>orders</strong> without any condition<strong>in</strong>g on T orf mo values but with N > 10.asR i (t, T ) = ɛ i r i (t, T )/s i . (13)where, as before, ɛ i = +1 for a buy hidden order <strong>and</strong>ɛ i = −1 for a sell hidden order. Although we observe asmall asymmetry between the market <strong>impact</strong> <strong>of</strong> buy vs.sell <strong>orders</strong>, similar to that observed elsewhere [31], forthe purpose <strong>of</strong> our study here we lump together buy <strong>and</strong>sell hidden <strong>orders</strong> <strong>in</strong> order to obta<strong>in</strong> better statistics.B. The noisy nature <strong>of</strong> market <strong>impact</strong>While a given hidden order is <strong>trad<strong>in</strong>g</strong> there are typicallymany other <strong>orders</strong> <strong>trad<strong>in</strong>g</strong> at the same time, as wellas news arrival, <strong>and</strong> thus there is a considerable amount<strong>of</strong> noise <strong>in</strong> the price change associated with any particularhidden order. The price change associated with a hiddenorder functionally depends on several factors, which canbe writtenr i (t, T ) = R[r M (t, T ), ρ i (t, T ), η i (t, T )]. (14)where r M corresponds to market-wide movements [25],ρ is the average market <strong>impact</strong> <strong>of</strong> the hidden order, <strong>and</strong>η i is the background uncorrelated noise com<strong>in</strong>g from the<strong>trad<strong>in</strong>g</strong> <strong>of</strong> the rest <strong>of</strong> the market [12]. While the backgroundnoise can be controlled by tak<strong>in</strong>g averages overdifferent <strong>orders</strong> with the same properties or restrict<strong>in</strong>gour analysis to very small values <strong>of</strong> T , market-wide movementsrema<strong>in</strong> <strong>large</strong>, especially for <strong>large</strong> values <strong>of</strong> T . Dur-C. Impact <strong>of</strong> limit <strong>orders</strong> vs. market <strong>orders</strong>It is important to stress that market <strong>impact</strong> comesabout through changes <strong>in</strong> supply <strong>and</strong> dem<strong>and</strong>, <strong>and</strong> thatthis causes a strong a priori difference <strong>in</strong> the <strong>impact</strong> oneexpects to observe <strong>in</strong> the execution <strong>of</strong> a limit order vs. amarket order. For example consider buy <strong>orders</strong>. A buymarket order reflects an <strong>in</strong>crease <strong>in</strong> dem<strong>and</strong> at the currentprice. If sufficiently <strong>large</strong> it will cause a positive pricechange. S<strong>in</strong>ce <strong>in</strong> a cont<strong>in</strong>uous double auction market <strong>orders</strong>always execute aga<strong>in</strong>st limit <strong>orders</strong>, this implies thatthe sell limit order that the buy market order executesaga<strong>in</strong>st will generate a positive market <strong>impact</strong>. We thereforeexpect that executed limit <strong>orders</strong> have the opposite<strong>impact</strong> <strong>of</strong> market <strong>orders</strong>: Buy<strong>in</strong>g drives the price down<strong>and</strong> sell<strong>in</strong>g drives it up.The problem with this l<strong>in</strong>e <strong>of</strong> reason<strong>in</strong>g is that we areconsider<strong>in</strong>g only executed limit <strong>orders</strong>, which creates astrong selection bias. To measure the <strong>impact</strong> <strong>of</strong> limit<strong>orders</strong> correctly we need to condition on all <strong>orders</strong> thatare placed, rather than only on those that are executed.When this is done the <strong>impact</strong>s for limit <strong>orders</strong> should beroughly the same as for market <strong>orders</strong>, as otherwise itwould be possible to make a pr<strong>of</strong>it by simply us<strong>in</strong>g limit<strong>orders</strong> <strong>in</strong>stead <strong>of</strong> market <strong>orders</strong>. If a buy limit order isplaced below the current price it is executed only if theprice drops. The probability <strong>of</strong> execution <strong>of</strong> a limit orderdepends on future price movements: under an adverseprice movement the probability <strong>of</strong> execution is higherthan for a favorable price movement. This is caused <strong>in</strong>part by the mechanical dynamics <strong>of</strong> a r<strong>and</strong>om walk, butalso by asymmetric <strong>in</strong>formation: Plac<strong>in</strong>g a limit ordergives others the option <strong>of</strong> execut<strong>in</strong>g at their will, when1 Other authors [25] have proposed to use <strong>in</strong>dustrial sector <strong>in</strong>dexesas proxies for market-wide movements <strong>of</strong> a given <strong>stock</strong> <strong>and</strong> thusthe study can be extended to <strong>large</strong>r values <strong>of</strong> T . We do not followthis procedure due to lack <strong>of</strong> that <strong>in</strong>formation.


6they have <strong>in</strong>formation that <strong>in</strong>dicates it is favorable todo so. This phenomenon is called adverse <strong>in</strong>formation.When this is properly taken <strong>in</strong>to account, limit <strong>orders</strong>have <strong>impact</strong> <strong>in</strong> the direction one would expect, i.e. buy<strong>in</strong>ghas positive <strong>impact</strong> <strong>and</strong> sell<strong>in</strong>g has negative <strong>impact</strong>[32, 33]. Furthermore the magnitude <strong>of</strong> the <strong>impact</strong> <strong>of</strong>limit <strong>orders</strong> when the selection effects are properly taken<strong>in</strong>to account is comparable to that <strong>of</strong> market <strong>orders</strong>.For the BME we have a record <strong>of</strong> transactions but not<strong>of</strong> <strong>orders</strong>. Thus to measure market <strong>impact</strong> <strong>and</strong> avoid theselection bias associated with executed limit <strong>orders</strong> weare forced to use only those hidden <strong>orders</strong> that are predom<strong>in</strong>antlybuilt out <strong>of</strong> market <strong>orders</strong>. For consistencywe analyze both the BME <strong>and</strong> the LSE data <strong>in</strong> the sameway.In Table I we show the mean value <strong>of</strong> the rescaledmarket <strong>impact</strong> R <strong>of</strong> Eq. (13) for hidden <strong>orders</strong> <strong>of</strong> durationless than one day. We also show the mean value〈R〉 fmo>0.8 <strong>of</strong> the rescaled market <strong>impact</strong> computed overthe set <strong>of</strong> hidden <strong>orders</strong> with a <strong>large</strong> fraction <strong>of</strong> market<strong>orders</strong> (f mo > 0.8). 〈R〉 fmo>0.8 is significantly <strong>large</strong>rthan 〈R〉 <strong>in</strong>dicat<strong>in</strong>g that hidden <strong>orders</strong> ma<strong>in</strong>ly composedby market <strong>orders</strong> have on average a <strong>large</strong>r market <strong>impact</strong>than hidden <strong>orders</strong> composed <strong>of</strong> both limit <strong>and</strong> market<strong>orders</strong>.D. Impact vs. NFigure 4 shows the average over all hidden <strong>orders</strong> <strong>of</strong>the rescaled market <strong>impact</strong> 〈R|N〉 as a function <strong>of</strong> thecondition<strong>in</strong>g variable N. This grows slightly as a function<strong>of</strong> N, but one must keep <strong>in</strong> m<strong>in</strong>d that the mean<strong>in</strong>g <strong>of</strong> thisis difficult to <strong>in</strong>terpret <strong>in</strong> view <strong>of</strong> the discussion above,s<strong>in</strong>ce we are averag<strong>in</strong>g together a roughly equal number<strong>of</strong> market <strong>orders</strong> <strong>and</strong> executed limit <strong>orders</strong>.To <strong>in</strong>vestigate the average market <strong>impact</strong> <strong>and</strong> m<strong>in</strong>imizethe effect <strong>of</strong> the selection bias, we divide the data <strong>in</strong>to twogroups: liquidity provid<strong>in</strong>g hidden <strong>orders</strong>, with f mo 0.8. As expected, for the former group the market <strong>impact</strong>is on average negative, while for the latter it is positive.Us<strong>in</strong>g ord<strong>in</strong>ary least squares, we f<strong>in</strong>d that for both groupsthe dependence <strong>of</strong> 〈R|N〉 on N is well described by thepower law|〈R|N〉| = A N γ . (15)The estimated parameters are <strong>in</strong> Table II. In summary,we f<strong>in</strong>d that the market <strong>impact</strong> <strong>of</strong> hidden <strong>orders</strong> dom<strong>in</strong>atedby market <strong>orders</strong> is consistent with〈r|N〉 ∝ ɛsN γ (16)where ɛ is the sign <strong>of</strong> the order <strong>and</strong> s is the spread. Forhidden <strong>orders</strong> dom<strong>in</strong>ated by limit <strong>orders</strong> the market <strong>impact</strong>is very similar to m<strong>in</strong>us the <strong>impact</strong> <strong>of</strong> hidden <strong>orders</strong>dom<strong>in</strong>ated by market <strong>orders</strong>.Table II: Parameters <strong>of</strong> the fitt<strong>in</strong>g <strong>of</strong> the market <strong>impact</strong> withEq. 15.<strong>Market</strong> A fmo>0.8 γ fmo>0.8 A fmo


8BMELSEVI.CONCLUSIONSv(t) / < v(t) >1,31,21,110,90,80 0,2 0,4 0,6 0,8 1t / T1,31,21,110,9HiddenTotal0,80 0,2 0,4 0,6 0,8 1t / TFigure 6: Trad<strong>in</strong>g <strong>pr<strong>of</strong>ile</strong> <strong>in</strong>side the hidden order. Averagevolume <strong>of</strong> the transactions with<strong>in</strong> the hidden order dividedby the average volume <strong>in</strong> the hidden order as a function <strong>of</strong>the normalized time t/T . Circles are the results for all hidden<strong>orders</strong>, while squares are the volume traded <strong>in</strong> the market (<strong>in</strong>the same <strong>stock</strong>) concurrently with the hidden order. Data isonly for hidden <strong>orders</strong> with f mo > 0.8.In this paper we have empirically studied the ma<strong>in</strong>properties <strong>of</strong> the <strong>impact</strong> <strong>and</strong> <strong>of</strong> the <strong>trad<strong>in</strong>g</strong> protocol<strong>of</strong> <strong>in</strong>tradaily hidden <strong>orders</strong> us<strong>in</strong>g a <strong>large</strong> fraction <strong>of</strong> eithermarket <strong>orders</strong> or limit <strong>orders</strong>. We have found thatthe temporary <strong>impact</strong> <strong>of</strong> hidden <strong>orders</strong> is concave <strong>and</strong>roughly described by a square root function <strong>of</strong> the hiddenorder size. Moreover the price reverts after the completion<strong>of</strong> the hidden order <strong>in</strong> such a way that the permanent<strong>impact</strong> is equal to roughly 0.5 − 0.7 <strong>of</strong> the temporary <strong>impact</strong>.We have also studied how the order is completed <strong>in</strong>time <strong>and</strong> we have shown that more volume <strong>of</strong> the hiddenorder is traded at the beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> at the end <strong>of</strong> thehidden order. When we take <strong>in</strong>to account that hidden<strong>orders</strong> are more likely to start at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a day<strong>and</strong> are more likely to end near the end <strong>of</strong> the day, thisroughly matches the volume traded <strong>in</strong> the market.The fact that we observe similar behavior <strong>in</strong> both theLondon <strong>and</strong> Spanish <strong>stock</strong> exchanges, <strong>and</strong> that othershave also observed this <strong>in</strong> the New York Stock Exchange,suggests the possibility <strong>of</strong> a “law” for market <strong>impact</strong>. Itwill be very <strong>in</strong>terest<strong>in</strong>g to see whether this hypothesizedlaw cont<strong>in</strong>ues to hold up under future studies.BMELSE56AcknowledgmentsP(t)432100 0,2 0,4 0,6 0,8 1t (days)54321t <strong>in</strong>it f<strong>in</strong>00 0,2 0,4 0,6 0,8 1t ( days )Figure 7: Initial <strong>and</strong> f<strong>in</strong>al times <strong>of</strong> the hidden <strong>orders</strong>. Probabilitydistributions <strong>of</strong> the <strong>in</strong>itial time t i <strong>and</strong> f<strong>in</strong>al time t f <strong>of</strong>the hidden <strong>orders</strong>, measured with respect <strong>of</strong> the time <strong>of</strong> theday. Data is only for hidden <strong>orders</strong> with f mo > 0.8FL <strong>and</strong> JDF acknowledge Bence Toth <strong>and</strong> HenriWaelbroeck for useful discussion. GV, FL, <strong>and</strong>RNM acknowledge f<strong>in</strong>ancial support from the PRINproject 2007TKLTSR “Computational markets design<strong>and</strong> agent-based models <strong>of</strong> <strong>trad<strong>in</strong>g</strong> behavior”. EM,GV, FL, <strong>and</strong> RNM acknowledge Sociedad de Bolsasfor provid<strong>in</strong>g the data <strong>and</strong> the Integrated Action Italy-Spa<strong>in</strong> “Mesoscopics <strong>of</strong> a <strong>stock</strong> market” for f<strong>in</strong>ancial support.EM acknowledges partial support from MEC(Spa<strong>in</strong>) through grants Ingenio-MATHEMATICA <strong>and</strong>MOSAICO <strong>and</strong> Comunidad de Madrid through grantSIMUMAT-CM. JDF, JV <strong>and</strong> AG would like to thankBarclays Bank, Bill Miller, <strong>and</strong> National Science Foundationgrant 0624351 for support. Any op<strong>in</strong>ions, f<strong>in</strong>d<strong>in</strong>gs,<strong>and</strong> conclusions or recommendations expressed <strong>in</strong> thismaterial are those <strong>of</strong> the authors <strong>and</strong> do not necessarilyreflect the views <strong>of</strong> the National Science Foundation.[1] R. Kissell <strong>and</strong> M. Glantz. Optimal Trad<strong>in</strong>g Strategies:Quantitative Approaches for Manag<strong>in</strong>g <strong>Market</strong> Impact<strong>and</strong> Trad<strong>in</strong>g Risk. American Management Association,(2003).[2] J. B. Berk <strong>and</strong> R. C. Greene, Journal <strong>of</strong> Political Economy,112 1269 (2004)[3] Y. Schwarzkopf <strong>and</strong> J. D. Farmer, Time Evolution<strong>of</strong> the Mutual Fund Size Distribution, prepr<strong>in</strong>t atarXiv:0807.3800 (2008).[4] J.P. Bouchaud, J. D. Farmer, <strong>and</strong> F. Lillo, How marketsslowly digest changes <strong>in</strong> supply <strong>and</strong> dem<strong>and</strong>, <strong>in</strong> H<strong>and</strong>book<strong>of</strong> F<strong>in</strong>ancial <strong>Market</strong>s: Dynamics <strong>and</strong> Evolution,T. Hens <strong>and</strong> K.R. Schenk-Hoppé (Editors), 57 (North-Holl<strong>and</strong>, 2009).[5] F. Lillo, J. D. Farmer <strong>and</strong> R. N. Mantegna, Nature 421129-130 (2003).


[6] M. Potters, J.P. Bouchaud, Physica A, 324, 133 (2003).[7] J. D. Farmer <strong>and</strong> F. Lillo, Quantitative F<strong>in</strong>ance 314, 7(2004).[8] J. D. Farmer, P. Patelli, <strong>and</strong> I. Zovko, Proceed<strong>in</strong>gs <strong>of</strong>the National Academy <strong>of</strong> Sciences <strong>of</strong> the United States<strong>of</strong> America 102, 2254 (2005).[9] C. Hopman, Quantitative F<strong>in</strong>ance 7, 37 (2007).[10] F. Lillo, J.D. Farmer, <strong>and</strong> A. Gerig. A theory <strong>of</strong> aggregatemarket <strong>impact</strong> (<strong>in</strong> preparation).[11] A. Kempf, O. Korn, Journal <strong>of</strong> F<strong>in</strong>ancial <strong>Market</strong>s 2, 29(1999).[12] V. Plerou, P. Gopikrishnan, X. Gabaix, <strong>and</strong> H.E. Stanley,Phys. Rev. E 66, 027104 (2002).[13] X. Gabaix, P. Gopikrishnan, V. Plerou, <strong>and</strong> H.E. Stanley,Nature 423, 267 (2003).[14] D. B. Keim <strong>and</strong> A. Madhavan, Review <strong>of</strong> F<strong>in</strong>ancial Studies9, 1 (1996).[15] A. S. Kyle, Econometrica 53, 1315 (1985).[16] D. Bertsimas <strong>and</strong> A. W. Lo, Journal <strong>of</strong> F<strong>in</strong>ancial <strong>Market</strong>s1, 1 (1998).[17] R. Almgren <strong>and</strong> N. Chriss, Journal <strong>of</strong> Risk 3, 5 (2000).[18] R. Almgren, Applied Mathematical F<strong>in</strong>ance 10, 1 (2003).[19] J.-P. Bouchaud, Y. Gefen, M. Potters, <strong>and</strong> M. Wyart,Quantitative F<strong>in</strong>ance 4, 176 (2004).[20] G. Huberman <strong>and</strong> W. Stanzl, Review <strong>of</strong> F<strong>in</strong>ance 9, 165(2005).[21] A. A. Obizhaeva <strong>and</strong> J. Wang, Optimal Trad<strong>in</strong>g Strategy<strong>and</strong> Supply/Dem<strong>and</strong> Dynamics, AFA 2006 BostonMeet<strong>in</strong>gs Paper (2005).[22] A. A. Gerig, Theory for <strong>Market</strong> Impact: How Order FlowAffects Stock Price. PhD thesis, University <strong>of</strong> Ill<strong>in</strong>ois,2007.[23] J.D. Farmer, A. Gerig, F. Lillo, <strong>and</strong> H. Waelbroeck, Informationarbitrage <strong>and</strong> the rational pric<strong>in</strong>g <strong>of</strong> market<strong>impact</strong>, <strong>in</strong> preparation (2009).[24] N. Torre. BARRA <strong>Market</strong> Impact Model H<strong>and</strong>book.BARRA Inc., Berkeley (1997).[25] L. Chan <strong>and</strong> J. Lakonishok, Journal <strong>of</strong> F<strong>in</strong>ance 50, 1147(1997).[26] R. Almgren, C. Thum, H. L. Hauptmann, <strong>and</strong> H. Li,Risk, July 2005, 57 (2005).[27] G. Vaglica, F. Lillo, E. Moro, <strong>and</strong> R. N. Mantegna, PhysicalReview E 77, 036110 (2008).[28] P. Bernaola-Galvan, P.Ch. Ivanov, L.A.N. Amaral, <strong>and</strong>H. E. Stanley, Phys. Rev. Lett. 87, 168105 (2001).[29] C. M.C. Lee <strong>and</strong> M. J. Ready, J. F<strong>in</strong>ance 46, 733 (1991).[30] F. Lillo, E. Moro, G. Vaglica, <strong>and</strong> R. Mantegna, NewJournal <strong>of</strong> Physics 10, 043019 (2008)[31] M. J. Aitken <strong>and</strong> A. Fr<strong>in</strong>o. Asymmetry <strong>in</strong> Stock ReturnsFollow<strong>in</strong>g Block Trades on the ASX: A Note, Abacus, 32(1996).[32] N. Zamani <strong>and</strong> J.D. Farmer (<strong>in</strong> preparation).[33] Z. Eisler, J.-P. Bouchaud, <strong>and</strong> J. Kockelkoren, The price<strong>impact</strong> <strong>of</strong> order book events: market <strong>orders</strong>, limit <strong>orders</strong><strong>and</strong> cancellations. Prepr<strong>in</strong>t at arxiv.org/0904.0900[34] M. Wyart, J.-P. Bouchaud, J. Kockelkoren, M. Potters,<strong>and</strong> M. Vettorazzo. Relation between bid-ask spread, <strong>impact</strong><strong>and</strong> volatility <strong>in</strong> double auction markets. prepr<strong>in</strong>t atarXiv:physics/0603084 (2006).[35] J. Hasbrouck, Empirical market microstructure: The <strong>in</strong>stitutions,economics <strong>and</strong> econometrics <strong>of</strong> securities <strong>trad<strong>in</strong>g</strong>,Oxford University Press, Oxford (2007).9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!