13.07.2015 Views

Landau-Zener interferometry with superconducting qubits

Landau-Zener interferometry with superconducting qubits

Landau-Zener interferometry with superconducting qubits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Landau</strong>-<strong>Zener</strong> <strong>interferometry</strong><strong>with</strong> <strong>superconducting</strong> <strong>qubits</strong>Yuriy Makhlin<strong>Landau</strong> InstituteM. Sillanpää, T. Lehtinen, A. Paila, P. Hakonen (Helsinki)Thanks toM. Feigel‘man, R. Fazio


Outline• <strong>Landau</strong>, <strong>Zener</strong> and others (1932)(after Di Giacomo, Nikitin, Phys. Usp. 2005)• <strong>superconducting</strong> <strong>qubits</strong>• LZ interferometer• Stokes phase• continuous CSET quantum measurement• data and discussion


<strong>Landau</strong>, <strong>Zener</strong> and others (1932)atomic collisionsL. <strong>Landau</strong>, Phys. Z. Sowjetunion 1, 88 (1932)sudden limit: ζ¿1L. <strong>Landau</strong>, Phys. Z. Sowjetunion 2, 46 (1932)adiabatic limit: ζÀ1


C.<strong>Zener</strong>, Proc. R. Soc. London Ser. A 137, 696 (1932)one crossingdouble crossingh vs. ~


E.C.G. Stueckelberg, Helv. Phys. Acta 5, 369 (1932)semiclassical approximation, analytical continuationof the WKB solution across Stokes lines=> LZ expression


E. Majorana, Nuovo Cimento 9, 43 (1932)spin dynamics in a time-dependent magnetic field


Phase sensitivity and interferenceatomic collisionsL. <strong>Landau</strong>, Phys. Z. Sowjetunion 1, 88 (1932)Φ Lsudden limit: ζ¿1


Josephson charge <strong>qubits</strong>NΦ xV gˆθ, ˆNθ, NΦ xV g2 degrees of freedomN, θ =−i[ ]2 energy scales E C , E Jcharge and phasecharging energy, Josephson couplingHCgVg2 Φx= EC( N − ) −EJcos(π ) cosθ2eΦtunableEJ02 control fields: V g and Φ xgate voltage, flux


Josephson charge <strong>qubits</strong>NΦ xV gˆθ, ˆNθ, NΦ xV gHCgVg2 Φx= EC( N − ) −EJcos(π ) cosθ2eΦ0tunableEJ2 states only, e.g. for E C »E JH1=− E (V ) σ − E ( Φ ) σ2chgz12Jxx


Josephson charge <strong>qubits</strong>NΦ xV gˆθ, ˆNθ, NΦ xV gHCgVg2 Φx= EC( N − ) −EJcos(π ) cosθ2eΦ0tunableEJ


Charge-phase qubitVion et al. (Saclay)Quantronium1 1=− E ch g σz−220.5E 10.250E-0.25 0H ( V ) E ( Φ ) σ--11 Ђ2 0Φ x /Φ 00.5121Ђ01Ђ22 V g1Jxxoperation at saddle pointswitching probability (%)55detuning=50MHz5045403530T 2= 300 ns250 200 400 600 800Delay between π/2 pulses (ns)


Charge-phase qubitVion et al. (Saclay)Quantronium1 1=− E ch g σz−220.5E 10.250E-0.25 0H ( V ) E ( Φ ) σ--11 ЂJxxoperation at saddle point2 0Φ x /Φ 00.5121Ђ01Ђ22 V g11 1 ∂E1 ∂ EH = − E V − δ2ch J2J( Φx0) σx−Vδgo gσz2 Φ Φxo xσx∂V∂Φgx2 2 4


LZ <strong>interferometry</strong>Henry, Lang `77Lopez-Castillo et al. `92Kayanuma 90‘sShytov, Ivanov, Feigelman `03probe decoherence in sc. <strong>qubits</strong>


One period:LZ:Φinterference:oscillating dependence on control parameters


Multipass interferometer (Mach-Zehnder)operation per period:phases picked away from the crossing:


in terms of spin-1/2 rotations:Euler anglesStokes phase modifies φ, φ‘ :


Scattering phasephase = „dynamic“ + ...


Transformation at the crossing U LZadiabaticity parameter:Stokes phase:


Many periods:period 2π in φ and φ‘φ, φ`=multiples of 2π –maxima- minimaNote: depends only on offset n g ,not rf amplitude !


Multiphoton resonancesin the rotating frame:Bloch eqs. give stationary solution <strong>with</strong> population response ∝NMR


Setup and readoutΓ - reflection coefficient


Population response


What is monitored?Read-out frequency f m >> relax. rate:too weakFast relaxation => account for(too strong response)In practice, they are comparable: f m ~ relax. rate


Simulations of the Bloch equationsXηApplicable? More or lessBloch eqs. in discrete time(cf. Shytov et al.)


Simulations of the Bloch equations


Stronger drive: quasiparticle states


Stokes phase?w/ Stokes w/o Stokes


Variation <strong>with</strong> frequency


Josephson flux <strong>qubits</strong>


LZ interference in flux <strong>qubits</strong>Oliver et al. (MIT)low ∆


Some applications• investigation of decoherence• sensitive readout of charge or flux• coherent manipulations

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!