13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.3. THIRD PREVALENT PROBLEM: 4137.3 Third prevalent problem:Projection on EDM cone in d ijReformulating Problem 2 (p.405) in terms of EDM D changes the problemconsiderably:⎫minimize ‖D − H‖ 2 F ⎪⎬Dsubject to rankVN TDV N ≤ ρ Problem 3 (999)⎪D ∈ EDM N ⎭This third prevalent proximity problem is a Euclidean projection of givenmatrix H on a generally nonconvex subset (when ρ < N −1) of theboundary of the convex cone of Euclidean distance matrices ∂EDM N relativeto subspace S N h (Figure 74(d)). Because coordinates of projection aredistance-square and H presumably now holds distance-square measurements,numerical solution to Problem 3 is generally different than that of Problem 2.For the moment, we need make no assumptions regarding measurementmatrix H .7.3.1 <strong>Convex</strong> caseminimize ‖D − H‖ 2 FD(1000)subject to D ∈ EDM NWhen the rank constraint disappears (for ρ = N −1), this third problembecomes obviously convex because the feasible set is then the entire EDMcone and because the objective function‖D − H‖ 2 F = ∑ i,j(d ij − h ij ) 2 (1001)is a strictly convex quadratic in D ; 7.167.16 For nonzero Y ∈ S N h and some open interval of t∈R (3.1.2.3.2,D.2.3)d 2dt 2 ‖(D + tY ) − H‖2 F = 2 tr Y T Y > 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!