13.07.2015 Views

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

v2006.03.09 - Convex Optimization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.3. PROPER STATEMENTS 441We can deduce from these, given nonsingular matrix Z and any particulardimensionally[ ]compatible Y : matrix A∈ S M is positive semidefinite if andZTonly ifY T A[Z Y ] is positive semidefinite.Products such as Z † Z and ZZ † are symmetric and positive semidefinitealthough, given A ≽ 0, Z † AZ and ZAZ † are neither necessarily symmetricor positive semidefinite.A.3.1.0.6 Theorem. Symmetric projector semidefinite. [15,III][16,6] [137, p.55] For symmetric idempotent matrices P and RP,R ≽ 0P ≽ R ⇔ R(P ) ⊇ R(R) ⇔ N(P ) ⊆ N(R)(1106)Projector P is never positive definite [214,6.5, prob.20] unless it is theidentity matrix.⋄A.3.1.0.7 Theorem. Symmetric positive semidefinite.Given real matrix Ψ with rank Ψ = 1Ψ ≽ 0 ⇔ Ψ = uu T (1107)where u is a real vector.⋄Proof. Any rank-one matrix must have the form Ψ = uv T . (B.1)Suppose Ψ is symmetric; id est, v = u . For all y ∈ R M , y T uu T y ≥ 0.Conversely, suppose uv T is positive semidefinite. We know that can hold ifand only if uv T + vu T ≽ 0 ⇔ for all normalized y ∈ R M , 2y T uv T y ≥ 0 ;but that is possible only if v = u .The same does not hold true for matrices of higher rank, as Example A.2.1.0.1shows.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!