13.07.2015 Views

Aharonov-Bohm interferences from local deformations in graphene

Aharonov-Bohm interferences from local deformations in graphene

Aharonov-Bohm interferences from local deformations in graphene

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Controll<strong>in</strong>g stra<strong>in</strong>“Controlled ripple textur<strong>in</strong>g ofsuspended <strong>graphene</strong> and ultrath<strong>in</strong> graphitemembranes” Bao et al. , Nat. Nanotech. 4562 (2009) “Impermeable atomic membranes <strong>from</strong> <strong>graphene</strong>sheets” Scott Bunch et al., Nanolett. 8, 2458 (2008)“Introduc<strong>in</strong>g Nonuniform Stra<strong>in</strong> to Graphene Us<strong>in</strong>g Dielectric Nanopillars”(cond-mat/1106.1507 Tomori et al.)“Graphene bubbles with controllable curvature” (APL 99, 093103 (2011), Manchester group )“Topological properties of artificial <strong>graphene</strong> assembled by atom manipulation”, where theyproduced atomically eng<strong>in</strong>eered stra<strong>in</strong>s. (Manoharan group, APS 2011)And the list goes on...


Electrons <strong>in</strong> <strong>graphene</strong>Nearest neighbour hopp<strong>in</strong>g: t ~2.7 eVTwo atoms per unit cell2x2 HamiltonianTight b<strong>in</strong>d<strong>in</strong>g band structure:


Introduc<strong>in</strong>g stra<strong>in</strong>Def<strong>in</strong>e displacement fieldStra<strong>in</strong> tensor measures relative changes <strong>in</strong> distance:Hopp<strong>in</strong>g changes to first order <strong>in</strong> stra<strong>in</strong>-Gu<strong>in</strong>ea, Horowitz, Le Doussal, Phys. Rev. B 77, 205421 (2008)-Vozmediano, Katsnelson, Gu<strong>in</strong>ea Phys. Rep. 496, 109–148 (2010)


Introduc<strong>in</strong>g stra<strong>in</strong> IIWhat can we build with ?In C 3there is an extra tensor!To first order <strong>in</strong> stra<strong>in</strong> we have


Direct evidence of gauge fields II“Observation of Landau level-like quantizations at 77 K along astra<strong>in</strong>ed-<strong>in</strong>duced <strong>graphene</strong> ridge” He et al. , cond-mat/1108.1016 (2011)See also: “Stra<strong>in</strong>-<strong>in</strong>duced pseudo-magnetic fieldsand charg<strong>in</strong>g effects on CVD-grown <strong>graphene</strong>”Yeh et al. Surf. Sci. 605, 1649 (2010)


<strong>Aharonov</strong>-<strong>Bohm</strong> <strong><strong>in</strong>terferences</strong>SolenoidAdd magnetic fluxthrough the solenoid:Probability of measur<strong>in</strong>g an electron <strong>in</strong> B depends onmagnetic flux through the region enclosed by the path


Quantum <strong>in</strong>terference <strong>in</strong> the LDOSWarm-up before <strong>graphene</strong>: the 2DEGSame AB physics <strong>in</strong> the LDOSImpurity scatter<strong>in</strong>g sets the pathSemiclassical approximationrequired“<strong>Aharonov</strong> <strong>Bohm</strong> oscillations<strong>in</strong> the <strong>local</strong> density of states”A. Cano and I. Paul, Phys. Rev.B 80 153401 (2009)


Quantum <strong>in</strong>terference <strong>in</strong> the LDOSMultiple scatter<strong>in</strong>g <strong>from</strong> the same impurityis resummed <strong>in</strong> the T-matrix.Multiple back and forth processes <strong>in</strong>the loop contribution are resummed<strong>in</strong> an analog function W.


Add a magnetic fieldA magnetic flux willmodify the loop terms:


Dirac fermions and <strong>in</strong>terference- Dirac fermions have a matrix Green's function1- The previous manipulations require to commute them: non trivial.But all commutators proportional to and vanish after the trace(note this is spoiled for gapped <strong>graphene</strong>!).2- Valley degree of freedom: very short range impurities may <strong>in</strong>duce<strong>in</strong>tervalley scatter<strong>in</strong>g. Pick longer ranged ones.


An experimental proposal- In the flat sample, the STM tip measures the usual stand<strong>in</strong>g wave patterns.


Induce controlled stra<strong>in</strong>(Pictorial representation, lattice not to scale)


Stra<strong>in</strong>-<strong>in</strong>duced <strong>in</strong>terferenceCircular perturbationMagnetic fieldLDOS- In the curved sample, and after substraction of N A=0, we see a new stand<strong>in</strong>gwave pattern (Nloop) modulated by the cos<strong>in</strong>e of the flux through the triangle.


Stra<strong>in</strong>-<strong>in</strong>duced <strong>in</strong>terferenceCircular perturbationMagnetic fieldLDOSThree-fold symmetricperturbationGu<strong>in</strong>ea et al. , Nat. Phys.. 6 30 (2010).


Conclusions and futureStra<strong>in</strong> <strong>in</strong>duces effective pseudo-magnetic fields which arephysically very real!These produce <strong>Aharonov</strong>-<strong>Bohm</strong> <strong><strong>in</strong>terferences</strong> <strong>in</strong> the LDOSwhich can be observed with STMThe required stra<strong>in</strong> is low but the measurement may still bechalleng<strong>in</strong>g.The effect could be potentially used to measure stra<strong>in</strong> <strong>local</strong>ly by<strong>in</strong>terferometry.Thanks for your attention!


AB <strong>in</strong> topological <strong>in</strong>sulatorsarXiv:1103.1710v1


Hopp<strong>in</strong>g change and gauge fieldsDirac fermions: expand H <strong>in</strong> qGauge field: expand H <strong>in</strong> t n


Hopp<strong>in</strong>g change <strong>from</strong> stra<strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!