13.07.2015 Views

Electrons in bilayer graphene - Physics at Lancaster University

Electrons in bilayer graphene - Physics at Lancaster University

Electrons in bilayer graphene - Physics at Lancaster University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

E. McCann et al. / Solid St<strong>at</strong>e Communic<strong>at</strong>ions 143 (2007) 110–115 113Fig. 3. (a) Schem<strong>at</strong>ic of the Fermi l<strong>in</strong>e <strong>at</strong> low energy <strong>in</strong> the valley K, ξ = 1, fordifferent values of the Fermi energy. Note th<strong>at</strong> the asymmetry of the Fermi l<strong>in</strong>e<strong>at</strong> the other valley, ξ = −1, is <strong>in</strong>verted. (b) The low energy bands plotted alongthe l<strong>in</strong>e p y = 0. They are obta<strong>in</strong>ed by tak<strong>in</strong>g <strong>in</strong>to account <strong>in</strong>tralayer hopp<strong>in</strong>gwith velocity v, B1A2 <strong>in</strong>terlayer coupl<strong>in</strong>g γ 1 , A1B2 <strong>in</strong>terlayer coupl<strong>in</strong>g γ 3[with v 3 /v = 0.1] and zero layer asymmetry . Dashed l<strong>in</strong>es show the bandsobta<strong>in</strong>ed by neglect<strong>in</strong>g γ 3 [i.e. with v 3 /v = 0].densities n < n L ∼ (v 3 /v) 2 n ∗ ∼ 1 × 10 11 cm −2 . In thisestim<strong>at</strong>ion of n L , the constant of proportionality is of the order 1as determ<strong>in</strong>ed by the strongly warped shape of the Fermi l<strong>in</strong>e <strong>at</strong>the Lifshitz transition. For n < n L , the central part of the Fermisurface is approxim<strong>at</strong>ely circular with area A c ≈ πɛ 2 /(¯hv 3 ) 2 ,and each leg part is elliptical with area A l ≈3 1 A c. The lowenergy part of the band structure is plotted <strong>in</strong> Fig. 3(b) alongthe l<strong>in</strong>e p y = 0. Tak<strong>in</strong>g the l<strong>in</strong>e p y = 0, φ = 0, <strong>at</strong> the firstvalley ξ = 1 gives ɛ ± (1) ≈ ±|v 3 p − p 2 /(2m)|. It shows th<strong>at</strong>,<strong>at</strong> zero energy, the leg pocket of the Fermi surface develops<strong>at</strong> p = 2mv 3 = γ 1 v 3 /v 2 , Fig. 3(a), and th<strong>at</strong> the overlapbetween the conduction and valence bands, Fig. 3(b), is givenby 2ɛ L ≈ (γ 1 /2)(v 3 /v) 2 ≈ 2 meV [15] us<strong>in</strong>g γ 1 ≈ 0.4 eV andv 3 /v ≈ 0.1.5. Stability of the <strong>bilayer</strong> aga<strong>in</strong>st ferroelectric order<strong>in</strong>g anda voltage-controlled gap <strong>in</strong> the spectrumThe parameter <strong>in</strong> the Hamiltonian equ<strong>at</strong>ion (1) takes<strong>in</strong>to account a possibly-externally-controlled asymmetry =ɛ 2 − ɛ 1 between on-site energies <strong>in</strong> the two layers, ɛ 2 =2 1 ,ɛ 1 = −2 1 . The electronic bands near the K po<strong>in</strong>t, Eq. (2), areshown <strong>in</strong> Fig. 4(a) for a large value of the layer asymmetry .For simplicity, we neglect A1B2 <strong>in</strong>terlayer coupl<strong>in</strong>g γ 3 :√ɛ ± (α)2 ≈ γ 12 2 + 24 + v2 p 2 + (−1) α γ14 4 + v2 p 2 ( γ1 2 + 2) .The energies of the bands exactly <strong>at</strong> the K po<strong>in</strong>t are |ɛ ± (2)√(p =0)| = γ1 2 + 2 /4 and |ɛ ± (1) (p = 0)| = ||/2: the lowenergy bands, ɛ ± (1) , are split by the layer asymmetry <strong>at</strong> theK po<strong>in</strong>t [30].In an asymmetrical <strong>bilayer</strong>, the electronic densities on the<strong>in</strong>dividual layers, n 1 and n 2 , are given by an <strong>in</strong>tegral withrespect to momentum p = ¯h|k| over the circularly symmetricFermi surface, tak<strong>in</strong>g <strong>in</strong>to account the rel<strong>at</strong>ive weight of theFig. 4. (a) Schem<strong>at</strong>ic of the electronic bands near the K po<strong>in</strong>t <strong>in</strong> the presenceof f<strong>in</strong>ite layer asymmetry (for illustr<strong>at</strong>ive purposes a very large asymmetry = γ 1 is used) obta<strong>in</strong>ed by tak<strong>in</strong>g <strong>in</strong>to account <strong>in</strong>tralayer hopp<strong>in</strong>g withvelocity v and B1A2 <strong>in</strong>terlayer coupl<strong>in</strong>g γ 1 , but neglect<strong>in</strong>g A1B2 <strong>in</strong>terlayercoupl<strong>in</strong>g γ 3 . Dotted l<strong>in</strong>es show the bands for zero asymmetry = 0. (b)Dependence of the function f Λ (x), Eq. (14), describ<strong>in</strong>g the density dependenceof the layer asymmetry on the argument x for different values of the screen<strong>in</strong>gparameter Λ.wave functions:n 1(2) = 2 ∫π ¯h 2(p dp |ψ A1(2) (p) | 2 + |ψ B1(2) (p) | 2) , (8)where we have <strong>in</strong>cluded a factor of four to take <strong>in</strong>to accountsp<strong>in</strong> and valley degeneracy. By determ<strong>in</strong><strong>in</strong>g the wavefunctionamplitudes on the four separ<strong>at</strong>e <strong>at</strong>omic sites we f<strong>in</strong>d∫n 1(2) = dp p g ∓ (ɛ, p), (9)g ∓ (ɛ, p) = ɛ ∓ /2π ¯h 2 ɛ[(ɛ 2 − 2 /4 ) 2]∓ 2v 2 p 2 ɛ − v 4 p 4(ɛ 2 − 2 /4 ) ,2 + v 2 p 2 2 − v 4 p 4where the m<strong>in</strong>us (plus) sign is for the first (second) layer.We establish the stability of an undoped, gapless <strong>bilayer</strong>system with respect to ferroelectric order<strong>in</strong>g (redistributionof charge density between the two layers) by compar<strong>in</strong>g thega<strong>in</strong> <strong>in</strong> the total energy due to the open<strong>in</strong>g of a gap <strong>in</strong> thelow energy spectrum with the energetic cost due to Coulombenergy E c equal to th<strong>at</strong> of a capacitor with oppositely chargepl<strong>at</strong>es. We estim<strong>at</strong>e the charg<strong>in</strong>g energy by approxim<strong>at</strong><strong>in</strong>gthe excess electronic densities on the <strong>in</strong>dividual layers, n 1and n 2 , as uniformly distributed with<strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimally th<strong>in</strong> 2dlayers. Then, the charg<strong>in</strong>g energy is E c = Q 2 /2C b whereQ = en 1 L 2 = −en 2 L 2 is the excess charge on one of thelayers <strong>in</strong> the presence of f<strong>in</strong>ite asymmetry = ɛ 2 − ɛ 1 , andC b = ε r ε 0 L 2 /c 0 is the capacitance of a <strong>bilayer</strong> with <strong>in</strong>terlayersepar<strong>at</strong>ion c 0 and area L 2 . For an undoped system, with Fermienergy ɛ F = 0 and zero excess total density n 1 = −n 2 , we onlyneed to consider the valence bands ɛ −(1) and ɛ(2) − . On <strong>in</strong>tegr<strong>at</strong><strong>in</strong>gEq. (9) from zero momentum to a large momentum p ∞ , andus<strong>in</strong>g an expansion <strong>in</strong> /γ 1 , we f<strong>in</strong>d th<strong>at</strong> the change <strong>in</strong> thedensity of the valence bands for f<strong>in</strong>ite , as compared to = 0,isn 1(2) ≈ ±γ (14π ¯h 2 v 2 ln 4γ1||), (10)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!