Views
3 years ago

Fun with Algorithms, 4 conf., FUN 2007(LNCS4475, Springer, 2007)(ISBN 9783540729136)(281s)_CsLn_

Fun with Algorithms, 4 conf., FUN 2007(LNCS4475, Springer, 2007)(ISBN 9783540729136)(281s)_CsLn_

Fun with Algorithms, 4 conf., FUN 2007(LNCS4475, Springer, 2007)(ISBN

  • Page 2 and 3: Lecture Notes in Computer Science 4
  • Page 4 and 5: Volume EditorsPierluigi CrescenziUn
  • Page 6 and 7: Conference OrganizationProgram Chai
  • Page 8 and 9: Table of ContentsOn Embedding a Gra
  • Page 10 and 11: On Embedding a Graph in the Grid wi
  • Page 12 and 13: On Embedding a Graph in the Grid wi
  • Page 14 and 15: On Embedding a Graph in the Grid wi
  • Page 16 and 17: On Embedding a Graph in the Grid wi
  • Page 18 and 19: On Embedding a Graph in the Grid wi
  • Page 20 and 21: On Embedding a Graph in the Grid wi
  • Page 22 and 23: On Embedding a Graph in the Grid wi
  • Page 24 and 25: Fun with Sub-linear Time Algorithms
  • Page 26 and 27: Wooden Geometric Puzzles: Design an
  • Page 28 and 29: Wooden Geometric Puzzles: Design an
  • Page 30 and 31: Wooden Geometric Puzzles: Design an
  • Page 32 and 33: Wooden Geometric Puzzles: Design an
  • Page 34 and 35: Wooden Geometric Puzzles: Design an
  • Page 36 and 37: Wooden Geometric Puzzles: Design an
  • Page 38 and 39: Wooden Geometric Puzzles: Design an
  • Page 40 and 41: HIROIMONO Is NP-Complete 31We will
  • Page 42 and 43: HIROIMONO Is NP-Complete 33x 1 x 1
  • Page 44 and 45: HIROIMONO Is NP-Complete 35R chi (t
  • Page 46 and 47: HIROIMONO Is NP-Complete 37- There
  • Page 48 and 49: HIROIMONO Is NP-Complete 39Peter Br
  • Page 50 and 51: Tablatures for Stringed Instruments
  • Page 52 and 53:

    Tablatures for Stringed Instruments

  • Page 54 and 55:

    Tablatures for Stringed Instruments

  • Page 56 and 57:

    Tablatures for Stringed Instruments

  • Page 58 and 59:

    Tablatures for Stringed Instruments

  • Page 60 and 61:

    Tablatures for Stringed Instruments

  • Page 62 and 63:

    Knitting for Fun: A Recursive Sweat

  • Page 64 and 65:

    Knitting for Fun: A Recursive Sweat

  • Page 66 and 67:

    Knitting for Fun: A Recursive Sweat

  • Page 68 and 69:

    Knitting for Fun: A Recursive Sweat

  • Page 70 and 71:

    Knitting for Fun: A Recursive Sweat

  • Page 72 and 73:

    Knitting for Fun: A Recursive Sweat

  • Page 74 and 75:

    Knitting for Fun: A Recursive Sweat

  • Page 76 and 77:

    Pictures from Mongolia 67this paper

  • Page 78 and 79:

    Pictures from Mongolia 69elements x

  • Page 80 and 81:

    Pictures from Mongolia 714 Small-Wi

  • Page 82 and 83:

    Pictures from Mongolia 73log n−1

  • Page 84 and 85:

    Algorithm 3. An algorithm for good

  • Page 86 and 87:

    Pictures from Mongolia 77Note that,

  • Page 88 and 89:

    Efficient Algorithms for the Spoone

  • Page 92 and 93:

    Efficient Algorithms for the Spoone

  • Page 94 and 95:

    Efficient Algorithms for the Spoone

  • Page 96 and 97:

    Efficient Algorithms for the Spoone

  • Page 98 and 99:

    Efficient Algorithms for the Spoone

  • Page 100 and 101:

    Efficient Algorithms for the Spoone

  • Page 102 and 103:

    High Spies(or How to Win a Programm

  • Page 104 and 105:

    2 Problem ModelHigh Spies (or How t

  • Page 106 and 107:

    High Spies (or How to Win a Program

  • Page 108 and 109:

    High Spies (or How to Win a Program

  • Page 110 and 111:

    High Spies (or How to Win a Program

  • Page 112 and 113:

    High Spies (or How to Win a Program

  • Page 114 and 115:

    High Spies (or How to Win a Program

  • Page 116 and 117:

    6 Concluding RemarksHigh Spies (or

  • Page 118 and 119:

    Robots and Demons (The Code of the

  • Page 120 and 121:

    Robots and Demons (The Code of the

  • Page 122 and 123:

    Robots and Demons (The Code of the

  • Page 124 and 125:

    Robots and Demons (The Code of the

  • Page 126 and 127:

    4.2 Gathering ProblemRobots and Dem

  • Page 128 and 129:

    Robots and Demons (The Code of the

  • Page 130 and 131:

    The Traveling Beams Optical Solutio

  • Page 132 and 133:

    The Traveling Beams Optical Solutio

  • Page 134 and 135:

    The Traveling Beams Optical Solutio

  • Page 136 and 137:

    The Traveling Beams Optical Solutio

  • Page 138 and 139:

    The Traveling Beams Optical Solutio

  • Page 140 and 141:

    The Traveling Beams Optical Solutio

  • Page 142 and 143:

    The Traveling Beams Optical Solutio

  • Page 144 and 145:

    The Worst Page-Replacement Policy

  • Page 146 and 147:

    The Worst Page-Replacement Policy 1

  • Page 149 and 150:

    140 K. Agrawal, M.A. Bender, and J.

  • Page 151 and 152:

    142 K. Agrawal, M.A. Bender, and J.

  • Page 153 and 154:

    144 K. Agrawal, M.A. Bender, and J.

  • Page 155 and 156:

    Die Another DayRudolf Fleischer ⋆

  • Page 157 and 158:

    148 R. Fleischer(P1) The subtree to

  • Page 159 and 160:

    150 R. FleischerAmerican when Gardn

  • Page 161 and 162:

    152 R. Fleischeryy y ′uzvxwyuzu

  • Page 163 and 164:

    154 R. FleischerReferences1. Avigad

  • Page 165 and 166:

    Approximating Rational Numbers by F

  • Page 167 and 168:

    158 M. Forišekcontains all fractio

  • Page 169 and 170:

    160 M. ForišekTable 1. Example inp

  • Page 171 and 172:

    162 M. ForišekWe assumed that p a

  • Page 173 and 174:

    164 M. Forišek}# update the interv

  • Page 175 and 176:

    Cryptographic and Physical Zero-Kno

  • Page 177 and 178:

    168 R. Gradwohl et al.Organization:

  • Page 179 and 180:

    170 R. Gradwohl et al.turning the c

  • Page 181 and 182:

    172 R. Gradwohl et al.Proof sketch

  • Page 183 and 184:

    174 R. Gradwohl et al.4 Physical Pr

  • Page 185 and 186:

    176 R. Gradwohl et al.- For each ro

  • Page 187 and 188:

    178 R. Gradwohl et al.c−1worse so

  • Page 189 and 190:

    180 R. Gradwohl et al.prover use a

  • Page 191 and 192:

    182 R. Gradwohl et al.11. Hayes, B.

  • Page 193 and 194:

    184 H. Gruber, M. Holzer, and O. Ru

  • Page 195 and 196:

    186 H. Gruber, M. Holzer, and O. Ru

  • Page 197 and 198:

    188 H. Gruber, M. Holzer, and O. Ru

  • Page 199 and 200:

    190 H. Gruber, M. Holzer, and O. Ru

  • Page 201 and 202:

    192 H. Gruber, M. Holzer, and O. Ru

  • Page 203 and 204:

    194 H. Gruber, M. Holzer, and O. Ru

  • Page 205 and 206:

    196 H. Gruber, M. Holzer, and O. Ru

  • Page 207 and 208:

    The Troubles of Interior Design-A C

  • Page 209 and 210:

    200 M. Holzer and O. Ruepp≥ 1(a)

  • Page 211 and 212:

    202 M. Holzer and O. RueppThe wire

  • Page 213 and 214:

    204 M. Holzer and O. Ruepp5 5 5 5 5

  • Page 215 and 216:

    206 M. Holzer and O. Ruepp5 5 5 5 5

  • Page 217 and 218:

    208 M. Holzer and O. Ruepp5 2 5 2 5

  • Page 219 and 220:

    210 M. Holzer and O. RueppNow we fi

  • Page 221 and 222:

    212 M. Holzer and O. Rueppcan be do

  • Page 223 and 224:

    214 K. Iwama, E. Miyano, and H. Ono

  • Page 225 and 226:

    216 K. Iwama, E. Miyano, and H. Ono

  • Page 227 and 228:

    218 K. Iwama, E. Miyano, and H. Ono

  • Page 229 and 230:

    220 K. Iwama, E. Miyano, and H. Ono

  • Page 231 and 232:

    222 K. Iwama, E. Miyano, and H. Ono

  • Page 233 and 234:

    224 K. Iwama, E. Miyano, and H. Ono

  • Page 235 and 236:

    226 K. Iwama, E. Miyano, and H. Ono

  • Page 237 and 238:

    228 M. Lampis and V. Mitsouis trivi

  • Page 239 and 240:

    230 M. Lampis and V. MitsouDefiniti

  • Page 241 and 242:

    232 M. Lampis and V. MitsouFig. 1.

  • Page 243 and 244:

    234 M. Lampis and V. MitsouTheorem

  • Page 245 and 246:

    236 M. Lampis and V. MitsouThe abov

  • Page 247 and 248:

    238 M. Lampis and V. MitsouCorollar

  • Page 249 and 250:

    Web Marshals Fighting Curly Link Fa

  • Page 251 and 252:

    242 F. Luccio and L. Pagliexchange

  • Page 253 and 254:

    244 F. Luccio and L. PagliTheorem 1

  • Page 255 and 256:

    246 F. Luccio and L. Pagliwhen M m

  • Page 257 and 258:

    248 F. Luccio and L. Pagli7. Gyöng

  • Page 259 and 260:

    250 F.L. Luccionode-decontamination

  • Page 261 and 262:

    252 F.L. LuccioThe Sierpiński grap

  • Page 263 and 264:

    254 F.L. Luccion agents could be fi

  • Page 265 and 266:

    256 F.L. LuccioSub2G’V1’2V4’1

  • Page 267 and 268:

    258 F.L. Luccious now assume all th

  • Page 269 and 270:

    260 F.L. Lucciovisibility capabilit

  • Page 271 and 272:

    On the Complexity of the Traffic Gr

  • Page 273 and 274:

    264 M. Shalom, W. Unger, and S. Zak

  • Page 275 and 276:

    266 M. Shalom, W. Unger, and S. Zak

  • Page 277 and 278:

    268 M. Shalom, W. Unger, and S. Zak

  • Page 279 and 280:

    270 M. Shalom, W. Unger, and S. Zak

  • Page 281:

    Author IndexAgrawal, Kunal 135Alt,

Exact Algorithms for Cluster Editing: Evaluation and ... - Springer
Convergence Analysis of Batch Gradient Algorithm for ... - Springer
Algorithms and Data Structures - IARCS
Algorithms and Theory of Computation Handbook, Second Edition
Distance Approximating Trees: Complexity and Algorithms
Chapter 4 Algorithmic State Machines and Finite State Machines
Optimal randomized algorithms for local sorting and set-maxima
an optimal randomized algorithm - Department of Mathematics
A fast algorithm to find all high degree vertices in graphs with a ...
Home work for Fundamental Algorithms SS 2007 Sheet 6