13.07.2015 Views

BSIM3v3.2.2 MOSFET Model - The University of Texas at Dallas

BSIM3v3.2.2 MOSFET Model - The University of Texas at Dallas

BSIM3v3.2.2 MOSFET Model - The University of Texas at Dallas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>BSIM3v3.2.2</strong> <strong>MOSFET</strong> <strong>Model</strong>Users’ ManualWeidong Liu, Xiaodong Jin, James Chen, Min-Chie Jeng,Zhihong Liu, Yuhua Cheng, Kai Chen, Mansun Chan, Kelvin Hui,Jianhui Huang, Robert Tu, Ping K. Ko and Chenming HuDepartment <strong>of</strong> Electrical Engineering and Computer Sciences<strong>University</strong> <strong>of</strong> California, Berkeley, CA 94720Copyright © 1999<strong>The</strong> Regents <strong>of</strong> the <strong>University</strong> <strong>of</strong> CaliforniaAll Rights Reserved


Developers:<strong>The</strong> <strong>BSIM3v3.2.2</strong> <strong>MOSFET</strong> model is developed by• Pr<strong>of</strong>. Chenming Hu, UC Berkeley• Dr. Weidong Liu, UC Berkeley• Mr. Xiaodong Jin, UC BerkeleyDevelopers <strong>of</strong> Previous Versions:• Dr. Mansun Chan, USTHK• Dr. Kai Chen, IBM• Dr. Yuhua Cheng, Rockwell• Dr. Jianhui Huang, Intel Corp.• Dr. Kelvin Hui, L<strong>at</strong>tice Semiconductor• Dr. James Chen, UC Berkeley• Dr. Min-Chie Jeng, Cadence Design Systems• Dr. Zhi-Hong Liu, BTA Technology Inc.• Dr. Robert Tu, AMD• Pr<strong>of</strong>. Ping K. Ko, UST, Hong Kong• Pr<strong>of</strong>. Chenming Hu, UC BerkeleyWeb Sites to Visit:BSIM web site: http://www-device.eecs.berkeley.edu/~bsim3Compact <strong>Model</strong> Council web site: http://www.eia.org/eig/CMCTechnical Support:Dr. Weidong Liu: liuwd@bsim.eecs.berkeley.edu


Table <strong>of</strong> ContentsCHAPTER 1: Introduction 1-11.1 General Inform<strong>at</strong>ion 1-11.1 Backward comp<strong>at</strong>ibility 1-21.2 Organiz<strong>at</strong>ion <strong>of</strong> This Manual 1-2CHAPTER 2: Physics-Based Deriv<strong>at</strong>ion <strong>of</strong> I-V <strong>Model</strong> 2-12.1 Non-Uniform Doping and Small Channel Effects on Threshold Voltage 2-12.1.1 Vertical Non-Uniform Doping Effect 2-32.1.2 L<strong>at</strong>eral Non-Uniform Doping Effect 2-52.1.3 Short Channel Effect 2-72.1.4 Narrow Channel Effect 2-122.2 Mobility <strong>Model</strong> 2-152.3 Carrier Drift Velocity 2-172.4 Bulk Charge Effect 2-182.5 Strong Inversion Drain Current (Linear Regime) 2-192.5.1 Intrinsic Case (Rds=0) 2-192.5.2 Extrinsic Case (Rds>0) 2-212.6 Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime) 2-222.6.1 Channel Length Modul<strong>at</strong>ion (CLM) 2-252.6.2 Drain-Induced Barrier Lowering (DIBL) 2-262.6.3 Current Expression without Substr<strong>at</strong>e Current InducedBody Effect 2-272.6.4 Current Expression with Substr<strong>at</strong>e Current InducedBody Effect 2-282.7 Subthreshold Drain Current 2-302.8 Effective Channel Length and Width 2-312.9 Poly G<strong>at</strong>e Depletion Effect 2-33CHAPTER 3: Unified I-V <strong>Model</strong> 3-13.1 Unified Channel Charge Density Expression 3-13.2 Unified Mobility Expression 3-6<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 1


3.3 Unified Linear Current Expression 3-73.3.1 Intrinsic case (Rds=0) 3-73.3.2 Extrinsic Case (Rds > 0) 3-93.4 Unified Vds<strong>at</strong> Expression 3-93.4.1 Intrinsic case (Rds=0) 3-93.4.2 Extrinsic Case (Rds>0) 3-103.5 Unified S<strong>at</strong>ur<strong>at</strong>ion Current Expression 3-113.6 Single Current Expression for All Oper<strong>at</strong>ing Regimes <strong>of</strong> Vgs and Vds 3-123.7 Substr<strong>at</strong>e Current 3-153.8 A Note on V bs 3-15CHAPTER 4: Capacitance <strong>Model</strong>ing 4-14.1 General Description <strong>of</strong> Capacitance <strong>Model</strong>ing 4-14.2 Geometry Definition for C-V <strong>Model</strong>ing 4-24.3 Methodology for Intrinsic Capacitance <strong>Model</strong>ing 4-44.3.1 Basic Formul<strong>at</strong>ion 4-44.3.2 Short Channel <strong>Model</strong> 4-74.3.3 Single Equ<strong>at</strong>ion Formul<strong>at</strong>ion 4-94.4 Charge-Thickness Capacitance <strong>Model</strong> 4-144.5 Extrinsic Capacitance 4-194.5.1 Fringing Capacitance 4-194.5.2 Overlap Capacitance 4-19CHAPTER 5: Non-Quasi St<strong>at</strong>ic <strong>Model</strong> 5-15.1 Background Inform<strong>at</strong>ion 5-15.2 <strong>The</strong> NQS <strong>Model</strong> 5-15.3 <strong>Model</strong> Formul<strong>at</strong>ion 5-25.3.1 SPICE sub-circuit for NQS model 5-35.3.2 Relax<strong>at</strong>ion time 5-45.3.3 Terminal charging current and charge partitioning 5-55.3.4 Deriv<strong>at</strong>ion <strong>of</strong> nodal conductances 5-7<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2


CHAPTER 6: Parameter Extraction 6-16.1 Optimiz<strong>at</strong>ion str<strong>at</strong>egy 6-16.2 Extraction Str<strong>at</strong>egies 6-26.3 Extraction Procedure 6-26.3.1 Parameter Extraction Requirements 6-26.3.2 Optimiz<strong>at</strong>ion 6-46.3.3 Extraction Routine 6-66.4 Notes on Parameter Extraction 6-146.4.1 Parameters with Special Notes 6-146.4.2 Explan<strong>at</strong>ion <strong>of</strong> Notes 6-15CHAPTER 7: Benchmark Test Results 7-17.1 Benchmark Test Types 7-17.2 Benchmark Test Results 7-2CHAPTER 8: Noise <strong>Model</strong>ing 8-18.1 Flicker Noise 8-18.1.1 Parameters 8-18.1.2 Formul<strong>at</strong>ions 8-28.2 Channel <strong>The</strong>rmal Noise 8-48.3 Noise <strong>Model</strong> Flag 8-5CHAPTER 9: MOS Diode <strong>Model</strong>ing 9-19.1 Diode IV <strong>Model</strong> 9-19.1.1 <strong>Model</strong>ing the S/B Diode 9-19.1.2 <strong>Model</strong>ing the D/B Diode 9-39.2 MOS Diode Capacitance <strong>Model</strong> 9-59.2.1 S/B Junction Capacitance 9-59.2.2 D/B Junction Capacitance 9-79.2.3 Temper<strong>at</strong>ure Dependence <strong>of</strong> JunctionCapacitance 9-10<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3


9.2.4 Junction Capacitance Parameters 9-11APPENDIX A: Parameter List A-1A.1 <strong>Model</strong> Control Parameters A-1A.2 DC Parameters A-1A.3 C-V <strong>Model</strong> Parameters A-6A.4 NQS Parameters A-8A.5 dW and dL Parameters A-9A.6 Temper<strong>at</strong>ure Parameters A-10A.7 Flicker Noise <strong>Model</strong> Parameters A-12A.8 Process Parameters A-13A.9 Geometry Range Parameters A-14A.10 <strong>Model</strong> Parameter Notes A-14APPENDIX B: Equ<strong>at</strong>ion List B-1B.1 I-V <strong>Model</strong> B-1B.1.1 Threshold Voltage B-1B.1.2 Effective (Vgs-Vth) B-2B.1.3 Mobility B-3B.1.4 Drain S<strong>at</strong>ur<strong>at</strong>ion Voltage B-4B.1.5 Effective Vds B-5B.1.6 Drain Current Expression B-5B.1.7 Substr<strong>at</strong>e Current B-6B.1.8 Polysilicon Depletion Effect B-7B.1.9 Effective Channel Length and Width B-7B.1.10 Source/Drain Resistance B-8B.1.11 Temper<strong>at</strong>ure Effects B-8B.2 Capacitance <strong>Model</strong> Equ<strong>at</strong>ions B-9B.2.1 Dimension Dependence B-9B.2.2 Overlap Capacitance B-10B.2.3 Instrinsic Charges B-12<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4


APPENDIX C: References C-1APPENDIX D: <strong>Model</strong> Parameter Binning D-1D.1 <strong>Model</strong> Control Parameters D-2D.2 DC Parameters D-2D.3 AC and Capacitance Parameters D-7D.4 NQS Parameters D-9D.5 dW and dL Parameters D-9D.6 Temper<strong>at</strong>ure Parameters D-11D.7 Flicker Noise <strong>Model</strong> Parameters D-12D.8 Process Parameters D-13D.9 Geometry Range Parameters D-14<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5


6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


CHAPTER 1: Introduction1.1 General Inform<strong>at</strong>ionBSIM3v3 is the l<strong>at</strong>est industry-standard <strong>MOSFET</strong> model for deep-submicrondigital and analog circuit designs from the BSIM Group <strong>at</strong> the <strong>University</strong> <strong>of</strong>California <strong>at</strong> Berkeley. <strong>BSIM3v3.2.2</strong> is based on its predecessor, BSIM3v3.2, withthe following changes:• A bias-independent Vfb is used in the capacitance models, capMod=1 and 2 toelimin<strong>at</strong>e small neg<strong>at</strong>ive capacitance <strong>of</strong> C gs and C gd in the accumul<strong>at</strong>iondepletionregions.• A version number checking is added; a warning message will be given if userspecifiedversion number is different from its default value <strong>of</strong> 3.2.2.• Known bugs are fixed.1.2 Organiz<strong>at</strong>ion <strong>of</strong> This ManualThis manual describes the <strong>BSIM3v3.2.2</strong> model in the following manner:• Chapter 2 discusses the physical basis used to derive the I-V model.• Chapter 3 highlights a single-equ<strong>at</strong>ion I-V model for all oper<strong>at</strong>ing regimes.• Chapter 4 presents C-V modeling and focuses on the charge thickness model.• Chapter 5 describes in detail the restrutured NQS (Non-Quasi-St<strong>at</strong>ic) <strong>Model</strong>.• Chapter 6 discusses model parameter extraction.• Chapter 7 provides some benchmark test results to demonstr<strong>at</strong>e the accuracyand performance <strong>of</strong> the model.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 1-1


Organiz<strong>at</strong>ion <strong>of</strong> This Manual• Chapter 8 presents the noise model.• Chapter 9 describes the MOS diode I-V and C-V models.• <strong>The</strong> Appendices list all model parameters, equ<strong>at</strong>ions and references.1-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold VoltageFirst, if the g<strong>at</strong>e voltage is gre<strong>at</strong>er than the threshold voltage, the inversion chargedensity is larger than the substr<strong>at</strong>e doping concentr<strong>at</strong>ion and <strong>MOSFET</strong> is oper<strong>at</strong>ingin the strong inversion region and drift current is dominant. Second, if the g<strong>at</strong>evoltage is smaller than V th , the inversion charge density is smaller than thesubstr<strong>at</strong>e doping concentr<strong>at</strong>ion. <strong>The</strong> transistor is considered to be oper<strong>at</strong>ing in theweak inversion (or subthreshold) region. Diffusion current is now dominant [2].Lastly, if the g<strong>at</strong>e voltage is very close to V th , the inversion charge density is closeto the doping concentr<strong>at</strong>ion and the <strong>MOSFET</strong> is oper<strong>at</strong>ing in the transition region.In such a case, diffusion and drift currents are both important.For <strong>MOSFET</strong>’s with long channel length/width and uniform substr<strong>at</strong>e dopingconcentr<strong>at</strong>ion, V th is given by [2]:Vth= V +Φ + γ Φ −V= V + γFBssbsTideal( Φ −V− Φ )(2.1.1)where V FB is the fl<strong>at</strong> band voltage, V Tideal is the threshold voltage <strong>of</strong> the longchannel device <strong>at</strong> zero substr<strong>at</strong>e bias, and γ is the body bias coefficient and is givenby:sbssεγ = 2 siqNaCox(2.1.2)where N a is the substr<strong>at</strong>e doping concentr<strong>at</strong>ion. <strong>The</strong> surface potential is given by:(2.1.3)ΦskBT= 2q⎛ Nln⎜⎝ nia⎞⎟⎠2-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold VoltageEqu<strong>at</strong>ion (2.1.1) assumes th<strong>at</strong> the channel is uniform and makes use <strong>of</strong> the onedimensional Poisson equ<strong>at</strong>ion in the vertical direction <strong>of</strong> the channel. This modelis valid only when the substr<strong>at</strong>e doping concentr<strong>at</strong>ion is constant and the channellength is long. Under these conditions, the potential is uniform along the channel.Modific<strong>at</strong>ions have to be made when the substr<strong>at</strong>e doping concentr<strong>at</strong>ion is notuniform and/or when the channel length is short, narrow, or both.2.1.1 Vertical Non-Uniform Doping Effect<strong>The</strong> substr<strong>at</strong>e doping pr<strong>of</strong>ile is not uniform in the vertical direction asshown in Figure 2-1.N chN subFigure 2-1. Actual substr<strong>at</strong>e doping distribution and its approxim<strong>at</strong>ion.<strong>The</strong> substr<strong>at</strong>e doping concentr<strong>at</strong>ion is usually higher near the Si/SiO 2interface (due to V th adjustment) than deep into the substr<strong>at</strong>e. <strong>The</strong>distribution <strong>of</strong> impurity <strong>at</strong>oms inside the substr<strong>at</strong>e is approxim<strong>at</strong>ely a half<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-3


Non-Uniform Doping and Small Channel Effects on Threshold Voltagegaussian distribution, as shown in Figure 2-1. This non-uniformity willmake γ in Eq. (2.1.2) a function <strong>of</strong> the substr<strong>at</strong>e bias. If the depletionwidth is less than X t as shown in Figure 2-1, N a in Eq. (2.1.2) is equal toN ch ; otherwise it is equal to N sub .In order to take into account such non-uniform substr<strong>at</strong>e doping pr<strong>of</strong>ile, thefollowing V th model is proposed:( Φs−Vbs− Φs) K VbsVth= VTideal+ K1 −2(2.1.4)For a zero substr<strong>at</strong>e bias, Eqs. (2.1.1) and (2.1.4) give the same result. K 1and K 2 can be determined by the criteria th<strong>at</strong> V th and its deriv<strong>at</strong>ive versusV bs should be the same <strong>at</strong> V bm , where V bm is the maximum substr<strong>at</strong>e biasvoltage. <strong>The</strong>refore, using equ<strong>at</strong>ions (2.1.1) and (2.1.4), K 1 and K 2 [3] willbe given by the following:K= γ2− K212Φ−sV bm(2.1.5)K2( γ1− γ )( Φs− Vbx− Φs)Φs( Φs− Vbm− Φs) + Vbm=22(2.1.6)where γ 1 and γ 2 are body bias coefficients when the substr<strong>at</strong>e dopingconcentr<strong>at</strong>ion are equal to N ch and N sub , respectively:γ1=2qεNCsioxch(2.1.7)2-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold Voltageγ2=2qεNCsioxsub(2.1.8)V bx is the body bias when the depletion width is equal to X t . <strong>The</strong>refore, V bxs<strong>at</strong>isfies:(2.1.9)qNchX2εsi2t= Φs− VbxIf the devices are available, K 1 and K 2 can be determined experimentally. Ifthe devices are not available but the user knows the doping concentr<strong>at</strong>iondistribution, the user can input the appropri<strong>at</strong>e parameters to specifydoping concentr<strong>at</strong>ion distribution (e.g. N ch , N sub and X t ). <strong>The</strong>n, K 1 and K 2can be calcul<strong>at</strong>ed using equ<strong>at</strong>ions (2.1.5) and (2.1.6).2.1.2 L<strong>at</strong>eral Non-Uniform Doping EffectFor some technologies, the doping concentr<strong>at</strong>ion near the source/drain ishigher than th<strong>at</strong> in the middle <strong>of</strong> the channel. This is referred to as l<strong>at</strong>eralnon-uniform doping and is shown in Figure 2-2. As the channel lengthbecomes shorter, l<strong>at</strong>eral non-uniform doping will cause V th to increase inmagnitude because the average doping concentr<strong>at</strong>ion in the channel islarger. <strong>The</strong> average channel doping concentr<strong>at</strong>ion can be calcul<strong>at</strong>ed asfollows:<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-5


Non-Uniform Doping and Small Channel Effects on Threshold VoltageNeffN=≡ Naa( L−2L)⎛ ⋅ ⎜1+⎝xLNlx⎞⎟L ⎠+ Npocket ⋅2Lx⎛ 2L= N⎜a1+⎝ LxNpocket−N⋅Naa⎞⎠(2.1.10)Due to the l<strong>at</strong>eral non-uniform doping effect, Eq. (2.1.4) becomes:Vth= Vth0⎛+ K ⎜1⎜⎝+ K11 +( Φ −V− Φ )NlxLeffs⎞−1⎟⎟⎠bsΦss− K V2bs(2.1.11)Eq. (2.1.11) can be derived by setting V bs = 0, and using K 1 ∝ (N eff ) 0.5 . <strong>The</strong>fourth term in Eq. (2.1.11) is used to model the body bias dependence <strong>of</strong>the l<strong>at</strong>eral non-uniform doping effect. This effect gets stronger <strong>at</strong> a lowerbody bias. Examin<strong>at</strong>ion <strong>of</strong> Eq. (2.1.11) shows th<strong>at</strong> the threshold voltagewill increase as channel length decreases [3].NpocketNpocketN(x)N aL xXL xFigure 2-2. L<strong>at</strong>eral doping pr<strong>of</strong>ile is non-uniform.2-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold Voltage2.1.3 Short Channel Effect<strong>The</strong> threshold voltage <strong>of</strong> a long channel device is independent <strong>of</strong> the channellength and the drain voltage. Its dependence on the body bias is given byEq. (2.1.4). However, as the channel length becomes shorter, the thresholdvoltage shows a gre<strong>at</strong>er dependence on the channel length and the drainvoltage. <strong>The</strong> dependence <strong>of</strong> the threshold voltage on the body bias becomesweaker as channel length becomes shorter, because the body bias has lesscontrol <strong>of</strong> the depletion region. <strong>The</strong> short-channel effect is included in theV th model as:Vth= Vth0⎛+ K ⎜1⎜⎝+ K11+( Φ −V− Φ )NlxLeffs⎞−1⎟⎟⎠bsΦss− ∆V− K Vth2bs(2.1.12)where ∆V th is the threshold voltage reduction due to the short channeleffect. Many models have been developed to calcul<strong>at</strong>e ∆V th . <strong>The</strong>y usedeither numerical solutions [4], a two-dimensional charge sharing approach[5,6], or a simplified Poisson's equ<strong>at</strong>ion in the depletion region [7-9]. Asimple, accur<strong>at</strong>e, and physical model was developed by Z. H. Liu et al.[10]. This model was derived by solving the quasi 2D Poisson equ<strong>at</strong>ionalong the channel. This quasi-2D model concluded th<strong>at</strong>:thth( L) ( ( V − Φ ) V )∆V = θ 2 +bisds(2.1.13)where V bi is the built-in voltage <strong>of</strong> the PN junction between the source andthe substr<strong>at</strong>e and is given by<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-7


Non-Uniform Doping and Small Channel Effects on Threshold VoltageVbiKBTNchNd= ln( )2q ni(2.1.14)where N d in is the source/drain doping concentr<strong>at</strong>ion with a typical value <strong>of</strong>aroundcm -3 . <strong>The</strong> expression θ th (L) is a short channel effectcoefficient, which has a strong dependence on the channel length and isgiven by:1×10 20θ th ( L) = [exp( − L 2l t ) + 2exp( −L l t )](2.1.15)l t is referred to as the characteristic length and is given byltsiToxXdep= ε εoxη(2.1.16)X dep is the depletion width in the substr<strong>at</strong>e and is given byXdep=2εsi( Φ −V)sqNchbs(2.1.17)X dep is larger near the drain than in the middle <strong>of</strong> the channel due to thedrain voltage. X dep / η represents the average depletion width along thechannel.Based on the above discussion, the influences <strong>of</strong> drain/source chargesharing and DIBL effects onV th are described by (2.1.15). In order to makethe model fit different technologies, several parameters such as D vt0 , D vt2 ,2-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold VoltageDsub, Eta0 and Etab are introduced, and the following modes are used toaccount for charge sharing and DIBL effects separ<strong>at</strong>ely.θ th( L) = Dvt 0[exp( − Dvt1L/ 2lt ) + 2exp( −Dvt1L/ lt)]∆Vth( L) = θ ( L)( V − Φ )thbis(2.1.18)(2.1.19)ltεsiToxXdep= ( 1 + Dvt2Vbs)εox(2.1.20)θ dibl( L) = [exp( − Dsub L/ 2lt 0) + 2exp( −Dsub L/ lt0)]∆V ( V ) = θ ( )( E 0 + EV)Vth ds dibl L ta tab bs ds(2.1.21)(2.1.22)where l t0 is calcul<strong>at</strong>ed by Eq. (2.1.20) <strong>at</strong> zero body-bias. D vt1 is basicallyequal to 1/(η) 1/2 in Eq. (2.1.16). D vt2 is introduced to take care <strong>of</strong> thedependence <strong>of</strong> the doping concentr<strong>at</strong>ion on substr<strong>at</strong>e bias since the dopingconcentr<strong>at</strong>ion is not uniform in the vertical direction <strong>of</strong> the channel. X dep iscalcul<strong>at</strong>ed using the doping concentr<strong>at</strong>ion in the channel (N ch ). D vt0 ,D vt1 ,D vt2 , Eta0, Etab and Dsub, which are determined experimentally, canimprove accuracy gre<strong>at</strong>ly. Even though Eqs. (2.1.18), (2.1.21) and (2.1.15)have different coefficients, they all still have the same functional forms.Thus the device physics represented by Eqs. (2.1.18), (2.1.21) and (2.1.15)are still the same.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-9


Non-Uniform Doping and Small Channel Effects on Threshold VoltageAs channel length L decreases, ∆V th will increase, and in turn V th willdecrease. If a <strong>MOSFET</strong> has a LDD structure, N d in Eq. (2.1.14) is thedoping concentr<strong>at</strong>ion in the lightly doped region. V bi in a LDD-<strong>MOSFET</strong>will be smaller as compared to conventional <strong>MOSFET</strong>’s; therefore thethreshold voltage reduction due to the short channel effect will be smallerin LDD-<strong>MOSFET</strong>’s.As the body bias becomes more neg<strong>at</strong>ive, the depletion width will increaseas shown in Eq. (2.1.17). Hence ∆V th will increase due to the increase in l t .<strong>The</strong> term:VTideal+ K1 Φs−Vbs− K2Vbswill also increase as V bs becomes more neg<strong>at</strong>ive (for NMOS). <strong>The</strong>refore,the changes inVTideal+ K1 Φs−Vbs− K2Vbsand in ∆V th will compens<strong>at</strong>e for each other and make V th less sensitive toV bs . This compens<strong>at</strong>ion is more significant as the channel length isshortened. Hence, the V th <strong>of</strong> short channel <strong>MOSFET</strong>’s is less sensitive tobody bias as compared to a long channel <strong>MOSFET</strong>. For the same reason,the DIBL effect and the channel length dependence <strong>of</strong> V th are stronger asV bs is made more neg<strong>at</strong>ive. This was verified by experimental d<strong>at</strong>a shownin Figure 2-3 and Figure 2-4. Although Liu et al. found an acceler<strong>at</strong>ed V throll-<strong>of</strong>f and non-linear drain voltage dependence [10] as the channelbecame very short, a linear dependence <strong>of</strong> V th on V ds is nevertheless a goodapproxim<strong>at</strong>ion for circuit simul<strong>at</strong>ion as shown in Figure 2-4. This figureshows th<strong>at</strong> Eq. (2.1.13) can fit the experimental d<strong>at</strong>a very well.2-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold VoltageFurthermore, Figure 2-5 shows how this V th model can fit various channellengths under various bias conditions.Figure 2-3. Threshold voltage versus the drain voltage <strong>at</strong> different body biases.Figure 2-4. Channel length dependence <strong>of</strong> threshold voltage.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-11


Non-Uniform Doping and Small Channel Effects on Threshold VoltageFigure 2-5. Threshold voltage versus channel length <strong>at</strong> different biases.2.1.4 Narrow Channel Effect<strong>The</strong> actual depletion region in the channel is always larger than wh<strong>at</strong> isusually assumed under the one-dimensional analysis due to the existence <strong>of</strong>fringing fields [2]. This effect becomes very substantial as the channelwidth decreases and the depletion region underne<strong>at</strong>h the fringing fieldbecomes comparable to the "classical" depletion layer formed from thevertical field. <strong>The</strong> net result is an increase in V th . It is shown in [2] th<strong>at</strong> thisincrease can be modeled as:(2.1.23)πqNaX2CWox2d maxTox= 3πWΦs2-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Non-Uniform Doping and Small Channel Effects on Threshold Voltage<strong>The</strong> right hand side <strong>of</strong> Eq. (2.1.23) represents the additional voltageincrease. This change in V th is modeled by Eq. (2.1.24a). This formul<strong>at</strong>ionincludes but is not limited to the inverse <strong>of</strong> channel width due to the factth<strong>at</strong> the overall narrow width effect is dependent on process (i.e. isol<strong>at</strong>iontechnology) as well. Hence, parameters K 3 , K 3b , and W 0 are introduced asox( K3+ K3V ) ΦsbbsWeffT' + W0(2.1.24a)W eff ’ is the effective channel width (with no bias dependencies), whichwill be defined in Section 2.8. In addition, we must consider the narrowwidth effect for small channel lengths. To do this we introduce thefollowing:(2.1.24b)D''⎛WeffLeffWeffLeff⎞⎜exp( − DVT w ) + 2exp( −DVT w ) ⎟( Vbi− Φs)⎝2ltwltw⎠VT 0w1 1When all <strong>of</strong> the above consider<strong>at</strong>ions for non-uniform doping, short andnarrow channel effects on threshold voltage are considered, the finalcomplete V th expression implemented in SPICE is as follows:<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-13


Non-Uniform Doping and Small Channel Effects on Threshold VoltageVth= V+ K− D− Dth0ox1oxVT0wVT0+ K1ox⎛ ⎛⎜exp⎜ − D⎝ ⎝⎛ ⎛ − ⎜exp⎜ − D⎝ ⎝⎛ ⎛⎜exp⎜ − D⎝ ⎝sub⋅LVT1eff2lΦ −V⎛ Nlx ⎞⎜ 1+−1⎟⎜ L ⎟⎝ eff ⎠VT1wtosWbseffΦ +seff2l− K' Ltw( K + K V )eff2ox⎞ ⎛ ⎟ + 2exp⎜ − D⎠ ⎝Vsubbseff3bLeff⎞ ⎛Dl⎟ + 2exp⎜ −2t ⎠ ⎝3LlVT1efftobseff⎞ ⎛ ⎟ + 2exp⎜ − D⎠ ⎝Leffl⎞⎞⎟⎟⎠⎠tToxΦW ' + WeffVT1w⎞⎞⎟⎟⎠⎠W( V −Φ)biefftweff( E tao+ E tabV bseff) V ds0ls' Ls⎞⎞⎟⎟⎠⎠( V −Φ)bi(2.1.25)swhere T ox dependence is introduced in the model parameters K 1 and K 2 toimprove the scalibility <strong>of</strong> V th model with respect to T ox . V th0ox , K 1ox and K 2oxare modeled asVth0ox= Vth0−K1⋅ΦsandKKKTox1 ox= 1⋅ToxmTox2 ox= K 2⋅ToxmT oxm is the g<strong>at</strong>e oxide thickness <strong>at</strong> which parameters are extracted with adefault value <strong>of</strong> T ox .In Eq. (2.1.25), all V bs terms have been substituted with a V bseff expressionas shown in Eq. (2.1.26). This is done in order to set an upper bound for thebody bias value during simul<strong>at</strong>ions since unreasonable values can occur ifthis expression is not introduced (see Section 3.8 for details).2-14 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Mobility <strong>Model</strong>(2.1.26)Vbseff = Vbc + 05 .[ Vbs −Vbc − δ1+ ( Vbs −Vbc −δ1) 2 −4δ1Vbc]where δ 1 = 0.001V. <strong>The</strong> parameter V bc is the maximum allowable V bsvalue and is calcul<strong>at</strong>ed from the condition <strong>of</strong> dV th /dV bs =0 for the V thexpression <strong>of</strong> 2.1.4, 2.1.5, and 2.1.6, and is equal to:Vbc2⎛ K1= 0.9⎜Φs−2⎝ 4K2⎞⎠2.2 Mobility <strong>Model</strong>A good mobility model is critical to the accuracy <strong>of</strong> a <strong>MOSFET</strong> model. <strong>The</strong>sc<strong>at</strong>tering mechanisms responsible for surface mobility basically include phonons,coulombic sc<strong>at</strong>tering, and surface roughness [11, 12]. For good quality interfaces,phonon sc<strong>at</strong>tering is generally the dominant sc<strong>at</strong>tering mechanism <strong>at</strong> roomtemper<strong>at</strong>ure. In general, mobility depends on many process parameters and biasconditions. For example, mobility depends on the g<strong>at</strong>e oxide thickness, substr<strong>at</strong>edoping concentr<strong>at</strong>ion, threshold voltage, g<strong>at</strong>e and substr<strong>at</strong>e voltages, etc. Sabnisand Clemens [13] proposed an empirical unified formul<strong>at</strong>ion based on the concept<strong>of</strong> an effective field E eff which lumps many process parameters and bias conditionstogether. E eff is defined byEeffQ=B+ ( Qn2)εsi(2.2.1)<strong>The</strong> physical meaning <strong>of</strong> E eff can be interpreted as the average electrical fieldexperienced by the carriers in the inversion layer [14]. <strong>The</strong> unified formul<strong>at</strong>ion <strong>of</strong>mobility is then given by<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-15


Mobility <strong>Model</strong>µeffµ=01 + ( E E )eff0ν(2.2.2)Values for µ 0 , E 0 , and ν were reported by Liang et al. [15] and Toh et al. [16] to bethe following for electrons and holesParameter Electron (surface) Hole (surface)µ 0 (cm 2 /Vsec) 670 160E 0 (MV/cm) 0.67 0.7ν 1.6 1.0Table 2-1. Typical mobility values for electrons and holes.For an NMOS transistor with n-type poly-silicon g<strong>at</strong>e, Eq. (2.2.1) can be rewrittenin a more useful form th<strong>at</strong> explicitly rel<strong>at</strong>es E eff to the device parameters [14]EeffVgs+ Vth≅6Tox(2.2.3)Eq. (2.2.2) fits experimental d<strong>at</strong>a very well [15], but it involves a very timeconsuming power function in SPICE simul<strong>at</strong>ion. Taylor expansion Eq. (2.2.2) isused, and the coefficients are left to be determined by experimental d<strong>at</strong>a or to beobtained by fitting the unified formul<strong>at</strong>ion. Thus, we have2-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Carrier Drift Velocity(mobMod=1) (2.2.4)µ oµ eff =V gsteff + 2Vthgsteff thUa UcVbseffU + 2+ +V 21 ( )( V) + b( )TOXTOXwhere V gst =V gs -V th . To account for depletion mode devices, another mobilitymodel option is given by the following(mobMod=2) (2.2.5)µ oµ eff =V gsteffgsteffUa UcVbseffU21 + ( + )( V) + b( )TOXTOX<strong>The</strong> unified mobility expressions in subthreshold and strong inversion regions willbe discussed in Section 3.2.To consider the body bias dependence <strong>of</strong> Eq. 2.2.4 further, we have introduced thefollowing expression:(For mobMod=3) (2.2.6)µ oµ eff =V gsteff thgsteff thU + 2 VaU + 2 V 21 + [ ( V) + b( ) ]( 1 + UV c bseff)TOXTOX2.3 Carrier Drift VelocityCarrier drift velocity is also one <strong>of</strong> the most important parameters. <strong>The</strong> followingvelocity s<strong>at</strong>ur<strong>at</strong>ion equ<strong>at</strong>ion [17] is used in the model<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-17


Bulk Charge Effectµ eff Ev = , E < E1 + ( EE )s<strong>at</strong>= v ,E > Es<strong>at</strong>s<strong>at</strong>s<strong>at</strong>(2.3.1)<strong>The</strong> parameter E s<strong>at</strong> corresponds to the critical electrical field <strong>at</strong> which the carriervelocity becomes s<strong>at</strong>ur<strong>at</strong>ed. In order to have a continuous velocity model <strong>at</strong> E =E s<strong>at</strong> , E s<strong>at</strong> must s<strong>at</strong>isfy:Es<strong>at</strong>v= 2 s<strong>at</strong>µ eff(2.3.2)2.4 Bulk Charge EffectWhen the drain voltage is large and/or when the channel length is long, thedepletion "thickness" <strong>of</strong> the channel is non-uniform along the channel length. Thiswill cause V th to vary along the channel. This effect is called bulk charge effect[14].<strong>The</strong> parameter, A bulk , is used to take into account the bulk charge effect. Severalextracted parameters such as A 0 , B 0 , B 1 are introduced to account for the channellength and width dependences <strong>of</strong> the bulk charge effect. In addition, the parameterKeta is introduced to model the change in bulk charge effect under high substr<strong>at</strong>ebias conditions. It should be pointed out th<strong>at</strong> narrow width effects have beenconsidered in the formul<strong>at</strong>ion <strong>of</strong> Eq. (2.4.1). <strong>The</strong> A bulk expression is given byAbulk⎛⎜= ⎜1+⎜ 2⎝K1oxΦ −Vsbseff⎛⎜⎜L⎝effA L0+ 2effXJXdep⎛⎜⎜1−AgsV⎝gsteff⎛⎜⎜⎝LeffL+ 2effXJXdep(2.4.1)2⎞ ⎞ ⎞⎞⎟ ⎟ B ⎟0⎟ 1+ ⎟⎟⋅⎟ ⎟Weff' + B1⎟ 1+KetaV⎠ ⎠ ⎠⎠bseff2-18 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Drain Current (Linear Regime)where A 0 , A gs , B 0 , B 1 and Keta are determined by experimental d<strong>at</strong>a. Eq. (2.4.1)shows th<strong>at</strong> A bulk is very close to unity if the channel length is small, and A bulkincreases as channel length increases.2.5 Strong Inversion Drain Current (LinearRegime)2.5.1 Intrinsic Case (R ds =0)In the strong inversion region, the general current equ<strong>at</strong>ion <strong>at</strong> any point yalong the channel is given byI = WC ( V − A V ) vds ox gstbulk ( y) ( y)(2.5.1)<strong>The</strong> parameter V gst = (V gs - V th ), W is the device channel width, C ox is theg<strong>at</strong>e capacitance per unit area, V(y) is the potential difference betweenminority-carrier quasi-Fermi potential and the equilibrium Fermi potentialin the bulk <strong>at</strong> point y, v(y) is the velocity <strong>of</strong> carriers <strong>at</strong> point y.With Eq. (2.3.1) (i.e. before carrier velocity s<strong>at</strong>ur<strong>at</strong>es), the drain currentcan be expressed asµeffE ( y)Ids = WCox ( Vgs −Vth− AbulkV( y))1+E( y)Es<strong>at</strong>(2.5.2)Eq. (2.5.2) can be rewritten as follows<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-19


Strong Inversion Drain Current (Linear Regime)E( y)=µeffIdsWC ( V − AbulkV ( y)) − I Eoxgstdss<strong>at</strong>=dV ydy( )(2.5.3)By integr<strong>at</strong>ing Eq. (2.5.2) from y = 0 to y = L and V(y) = 0 to V(y) = V ds ,we arrive <strong>at</strong> the followingI C W 1L V E L V V A V Vds= µeff ox(gs−th− bulkds2)1+dss<strong>at</strong>ds(2.5.4)<strong>The</strong> drain current model in Eq. (2.5.4) is valid before velocity s<strong>at</strong>ur<strong>at</strong>es.For instances when the drain voltage is high (and thus the l<strong>at</strong>eral electricalfield is high <strong>at</strong> the drain side), the carrier velocity near the drain s<strong>at</strong>ur<strong>at</strong>es.<strong>The</strong> channel region can now be divided into two portions: one adjacent tothe source where the carrier velocity is field-dependent and the secondwhere the velocity s<strong>at</strong>ur<strong>at</strong>es. At the boundary between these two portions,the channel voltage is the s<strong>at</strong>ur<strong>at</strong>ion voltage (V ds<strong>at</strong> ) and the l<strong>at</strong>eralelectrical is equal to E s<strong>at</strong> . After the onset <strong>of</strong> s<strong>at</strong>ur<strong>at</strong>ion, we can substitute v= v s<strong>at</strong> and V ds = V ds<strong>at</strong> into Eq. (2.5.1) to get the s<strong>at</strong>ur<strong>at</strong>ion current:I = WC ( V − AbulkV ) vds ox gstds<strong>at</strong>s<strong>at</strong>(2.5.5)By equ<strong>at</strong>ing eqs. (2.5.4) and (2.5.5) <strong>at</strong> E = E s<strong>at</strong> and V ds = V ds<strong>at</strong> , we cansolve for s<strong>at</strong>ur<strong>at</strong>ion voltage V ds<strong>at</strong>(2.5.6)Vds<strong>at</strong>=E L( V −V)s<strong>at</strong> gs thAbulkE L+ ( V −V)s<strong>at</strong> gs th2-20 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Drain Current (Linear Regime)2.5.2 Extrinsic Case (R ds >0)Parasitic source/drain resistance is an important device parameter whichcan affect <strong>MOSFET</strong> performance significantly. As channel length scalesdown, the parasitic resistance will not be proportionally scaled. As a result,R ds will have a more significant impact on device characteristics. <strong>Model</strong>ing<strong>of</strong> parasitic resistance in a direct method yields a complic<strong>at</strong>ed drain currentexpression. In order to make simul<strong>at</strong>ions more efficient, the parasiticresistances is modeled such th<strong>at</strong> the resulting drain current equ<strong>at</strong>ion in thelinear region can be calcul<strong>at</strong>eed [3] asIds(2.5.9)V V= ds = dsRtotRch+ RdsW 1( Vgst − Abulk Vds 2 ) Vds= µ eff C oxL 1 + V E LW V A Vds ( s<strong>at</strong> )( gst − bulk ds 2 )1 + Rds µ eff CoxL 1 + Vds( Es<strong>at</strong>L)Due to the parasitic resistance, the s<strong>at</strong>ur<strong>at</strong>ion voltage V ds<strong>at</strong> will be largerthan th<strong>at</strong> predicted by Eq. (2.5.6). Let Eq. (2.5.5) be equal to Eq. (2.5.9).V ds<strong>at</strong> with parasitic resistance R ds becomesb b acV ds<strong>at</strong> = − − − 42a2(2.5.10)<strong>The</strong> following are the expression for the variables a, b, and c:<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-21


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)a = Abulk RdsCoxWvs<strong>at</strong>+ ( −1)Abulkλ2b =−( Vgst( − 1) + Abulk Es<strong>at</strong> L+3Abulk RdsCoxWvs<strong>at</strong>Vgst)λ2c = Es<strong>at</strong> LVgst +2RdsCoxWvs<strong>at</strong>Vgstλ = AV 1 gst + A22 1(2.5.11)<strong>The</strong> last expression for λ is introduced to account for non-s<strong>at</strong>ur<strong>at</strong>ion effect<strong>of</strong> the device. <strong>The</strong> parasitic resistance is modeled as:RdsR=dsw( 1+PrwgVgsteff+ Prwb( Φs−Vbseff− Φs)6 W( 10 W ') reff(2.5.11)<strong>The</strong> variable R dsw is the resistance per unit width, W r is a fitting parameter,P rwb and P rwg are the body bias and the g<strong>at</strong>e bias coeffecients, repectively.2.6 Strong Inversion Current and OutputResistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)A typical I-V curve and its output resistance are shown in Figure 2-6. Consideringonly the drain current, the I-V curve can be divided into two parts: the linear regionin which the drain current increases quickly with the drain voltage and thes<strong>at</strong>ur<strong>at</strong>ion region in which the drain current has a very weak dependence on thedrain voltage. <strong>The</strong> first order deriv<strong>at</strong>ive reveals more detailed inform<strong>at</strong>ion aboutthe physical mechanisms which are involved during device oper<strong>at</strong>ion. <strong>The</strong> outputresistance (which is the reciprocal <strong>of</strong> the first order deriv<strong>at</strong>ive <strong>of</strong> the I-V curve)2-22 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)curve can be clearly divided into four regions with distinct R out vs. V dsdependences.<strong>The</strong> first region is the triode (or linear) region in which carrier velocity is nots<strong>at</strong>ur<strong>at</strong>ed. <strong>The</strong> output resistance is very small because the drain current has a strongdependence on the drain voltage. <strong>The</strong> other three regions belong to the s<strong>at</strong>ur<strong>at</strong>ionregion. As will be discussed l<strong>at</strong>er, there are three physical mechanisms whichaffect the output resistance in the s<strong>at</strong>ur<strong>at</strong>ion region: channel length modul<strong>at</strong>ion(CLM) [4, 14], drain-induced barrier lowering (DIBL) [4, 6, 14], and the substr<strong>at</strong>ecurrent induced body effect (SCBE) [14, 18, 19]. All three mechanisms affect theoutput resistance in the s<strong>at</strong>ur<strong>at</strong>ion range, but each <strong>of</strong> them domin<strong>at</strong>es in only asingle region. It will be shown next th<strong>at</strong> channel length modul<strong>at</strong>ion (CLM)domin<strong>at</strong>es in the second region, DIBL in the third region, and SCBE in the fourthregion.3.0142.5TriodeCLMDIBLSCBE12I ds(mA)2.01.51086R out(KOhms)1.040.520.00 1 2 3 4V ds(V)0Figure 2-6. General behavior <strong>of</strong> <strong>MOSFET</strong> output resistance.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-23


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)Generally, drain current is a function <strong>of</strong> the g<strong>at</strong>e voltage and the drain voltage. Butthe drain current depends on the drain voltage very weakly in the s<strong>at</strong>ur<strong>at</strong>ion region.A Taylor series can be used to expand the drain current in the s<strong>at</strong>ur<strong>at</strong>ion region [3].where(2.6.1)∂Ids ( Vgs, Vds)Ids ( Vgs, Vds ) = Ids ( Vgs, Vds<strong>at</strong>) + ( Vds−Vds<strong>at</strong>)∂VV VIds −≡ds<strong>at</strong>ds<strong>at</strong> ( 1 + )VAdsIds<strong>at</strong> = Ids ( Vgs,Vds<strong>at</strong> ) = Wvs<strong>at</strong>Cox ( Vgst − AbulkVds<strong>at</strong>)(2.6.2)andVA∂ II ds −1= ds<strong>at</strong> ( )∂ Vds(2.6.3)<strong>The</strong> parameter V A is called the Early voltage and is introduced for the analysis <strong>of</strong>the output resistance in the s<strong>at</strong>ur<strong>at</strong>ion region. Only the first order term is kept in theTaylor series. We also assume th<strong>at</strong> the contributions to the Early voltage from allthree mechanisms are independent and can be calcul<strong>at</strong>ed separ<strong>at</strong>ely.2-24 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)2.6.1 Channel Length Modul<strong>at</strong>ion (CLM)If channel length modul<strong>at</strong>ion is the only physical mechanism to be takeninto account, then according to Eq. (2.6.3), the Early voltage can becalcul<strong>at</strong>ed byVACLM(2.6.4)∂ I LI ds ∂ −1 Abulk Es<strong>at</strong> L+Vgst∂ ∆L−1= ds<strong>at</strong> ( ) =( )∂ L ∂ VA E ∂ Vdsbulk s<strong>at</strong> dswhere ∆L is the length <strong>of</strong> the velocity s<strong>at</strong>ur<strong>at</strong>ion region; the effectivechannel length is L-∆L. Based on the quasi-two dimensionalapproxim<strong>at</strong>ion, V ACLM can be derived as the followingVACLM=Abulk Es<strong>at</strong> L+VgstAbulkEs<strong>at</strong>l( Vds− Vds<strong>at</strong>)(2.6.5)where V ACLM is the Early Voltage due to channel length modul<strong>at</strong>ionalone.<strong>The</strong> parameter P clm is introduced into the V ACLM expression not only tocompens<strong>at</strong>e for the error caused by the Taylor expansion in the Earlyvoltage model, but also to compens<strong>at</strong>e for the error in X J sinceand the junction depth X J can not generally be determined very accur<strong>at</strong>ely.Thus, the V ACLM becamel∝X JVACLM=1PclmAbulk Es<strong>at</strong> L+Vgst( Vds− Vds<strong>at</strong>)AbulkEs<strong>at</strong>l(2.6.6)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-25


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)2.6.2 Drain-Induced Barrier Lowering (DIBL)As discussed above, threshold voltage can be approxim<strong>at</strong>ed as a linearfunction <strong>of</strong> the drain voltage. According to Eq. (2.6.3), the Early voltagedue to the DIBL effect can be calcul<strong>at</strong>ed as:(2.6.7)VADIBLCVADIBLC( Vgsteff+ 2vt)=θ t1+P V∂ Ids∂ Vth−= Ids<strong>at</strong>( ) = 1 ( V − (11 +∂ V ∂Vθ () A V Vrou ( DIBLCB bseff )thds th L gst⎛ AbulkVds<strong>at</strong>⎞⎜1−⎟⎝ AbulkVds<strong>at</strong> + Vgsteff + 2vt⎠bulkds<strong>at</strong>During the deriv<strong>at</strong>ion <strong>of</strong> Eq. (2.6.7), the parasitic resistance is assumed tobe equal to 0. As expected, V ADIBLC is a strong function <strong>of</strong> L as shown in Eq.(2.6.7). As channel length decreases, V ADIBLC decreases very quickly. <strong>The</strong>combin<strong>at</strong>ion <strong>of</strong> the CLM and DIBL effects determines the output resistancein the third region, as was shown in Figure 2-6.Despite the formul<strong>at</strong>ion <strong>of</strong> these two effects, accur<strong>at</strong>e modeling <strong>of</strong> theoutput resistance in the s<strong>at</strong>ur<strong>at</strong>ion region requires th<strong>at</strong> the coefficientθ th (L) be replaced by θ rout (L). Both θ th (L) and θ rout (L) have the samechannel length dependencies but different coefficients. <strong>The</strong> expression forθ rout (L) is(2.6.8)( L) = P [exp( − D L / 2l ) + 2exp(− D L / l )] + Pθ rout diblc 1 rout t rout t diblc 2Parameters P diblc1 , P diblc2 , P diblcb and D rout are introduced to correct forDIBL effect in the strong inversion region. <strong>The</strong> reason why D vt0 is not2-26 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)equal to P diblc1 and D vt1 is not equal to D rout is because the g<strong>at</strong>e voltagemodul<strong>at</strong>es the DIBL effect. When the threshold voltage is determined, theg<strong>at</strong>e voltage is equal to the threshold voltage. But in the s<strong>at</strong>ur<strong>at</strong>ion regionwhere the output resistance is modeled, the g<strong>at</strong>e voltage is much larger thanthe threshold voltage. Drain induced barrier lowering may not be the same<strong>at</strong> different g<strong>at</strong>e bias. P diblc2 is usually very small (may be as small as8.0E-3). If P diblc2 is placed into the threshold voltage model, it will notcause any significant change. However it is an important parameter inV ADIBL for long channel devices, because P diblc2 will be dominant in Eq.(2.6.8) if the channel is long.2.6.3 Current Expression without Substr<strong>at</strong>e Current InducedBody EffectIn order to have a continuous drain current and output resistanceexpression <strong>at</strong> the transition point between linear and s<strong>at</strong>ur<strong>at</strong>ion region, theV As<strong>at</strong> parameter is introduced into the Early voltage expression. V As<strong>at</strong> isthe Early Voltage <strong>at</strong> V ds = V ds<strong>at</strong> and is as follows:VAs<strong>at</strong>=(2.6.9)Es<strong>at</strong> L+ Vds<strong>at</strong> + 2Rdsvs<strong>at</strong>CoxW( Vgst − AbulkVds/ 2)1 + Abulk Rdsvs<strong>at</strong>CoxWTotal Early voltage, V A , can be written as(2.6.10)VA1 1 −1= VAs<strong>at</strong>+ ( + )V VACLMADIBL<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-27


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)<strong>The</strong> complete (with no impact ioniz<strong>at</strong>ion <strong>at</strong> high drain voltages) currentexpression in the s<strong>at</strong>ur<strong>at</strong>ion region is given byVds− Vds<strong>at</strong>Idso= Wvs<strong>at</strong>Cox ( Vgst − AbulkVds<strong>at</strong>)( 1 + )VA(2.6.11)Furthermore, another parameter, P vag , is introduced in V A to account forthe g<strong>at</strong>e bias dependence <strong>of</strong> V A more accur<strong>at</strong>ely. <strong>The</strong> final expression forEarly voltage becomesVAPvagV gsteff−= VAs<strong>at</strong>+ ( 1+ 1 1 1)( + )Es<strong>at</strong>Leff VACLM VADIBLC(2.6.12)2.6.4 Current Expression with Substr<strong>at</strong>e Current Induced BodyEffectWhen the electrical field near the drain is very large (> 0.1MV/cm), someelectrons coming from the source will be energetic (hot) enough to causeimpact ioniz<strong>at</strong>ion. This cre<strong>at</strong>es electron-hole pairs when they collide withsilicon <strong>at</strong>oms. <strong>The</strong> substr<strong>at</strong>e current I sub thus cre<strong>at</strong>ed during impactioniz<strong>at</strong>ion will increase exponentially with the drain voltage. A well knownI sub model [20] is given as:Isub=AiIBidsi( V ) ⎜⎟ ds−Vds<strong>at</strong>exp −⎝ Vds−Vds<strong>at</strong>⎠⎛B l⎞(2.6.13)2-28 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Strong Inversion Current and Output Resistance (S<strong>at</strong>ur<strong>at</strong>ion Regime)<strong>The</strong> parameters A i and B i are determined from extraction. I sub will affectthe drain current in two ways. <strong>The</strong> total drain current will change because itis the sum <strong>of</strong> the channel current from the source as well as the substr<strong>at</strong>ecurrent. <strong>The</strong> total drain current can now be expressed [21] as followsI = Idso+ Ids⎡⎢= Idso⎢1+Bi⎢⎣ Aisub⎤( Vds− Vds<strong>at</strong>)⎥Bl ⎥iexp( ) ⎥Vds− Vds<strong>at</strong>⎦(2.6.14)<strong>The</strong> total drain current, including CLM, DIBL and SCBE, can be written as(2.6.15)Vds− Vds<strong>at</strong>Vds− Vds<strong>at</strong>Ids = Wvs<strong>at</strong>Cox ( Vgst − AbulkVds<strong>at</strong>)( 1+)( 1+)V VASCBEwhere V ASCBE can also be called as the Early voltage due to the substr<strong>at</strong>ecurrent induced body effect. Its expression is the followingAVASCBE=BiBl iexp( )AiVds− Vds<strong>at</strong>(2.6.16)From Eq. (2.6.16), we can see th<strong>at</strong> V ASCBE is a strong function <strong>of</strong> V ds . Inaddition, we also observe th<strong>at</strong> V ASCBE is small only when V ds is large. Thisis why SCBE is important for devices with high drain voltage bias. <strong>The</strong>channel length and g<strong>at</strong>e oxide dependence <strong>of</strong> V ASCBE comes from V ds<strong>at</strong> andl. We replace Bi with PSCBE2 and Ai/Bi with PSCBE1/L to yield thefollowing expression for V ASCBE<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-29


Subthreshold Drain CurrentV1 PSCBE2 PSCBE1ASCBEl= exp( − )L V − Vdsds<strong>at</strong>(2.6.17)<strong>The</strong> variables P scbe1 and P scbe2 are determined experimentally.2.7 Subthreshold Drain Current<strong>The</strong> drain current equ<strong>at</strong>ion in the subthreshold region can be expressed as [2, 3]IdsV V V Vdsgs−th−<strong>of</strong>f= Is0 ( 1−exp( − )) exp( )vnv tttm(2.7.1)I= µs0 0WLqεsiNchv2φs2t(2.7.2)Here the parameter v t is the thermal voltage and is given by K B T/q. V <strong>of</strong>f is the<strong>of</strong>fset voltage, as discussed in Jeng's dissert<strong>at</strong>ion [18]. V <strong>of</strong>f is an importantparameter which determines the drain current <strong>at</strong> V gs = 0. In Eq. (2.7.1), theparameter n is the subthreshold swing parameter. Experimental d<strong>at</strong>a shows th<strong>at</strong> thesubthreshold swing is a function <strong>of</strong> channel length and the interface st<strong>at</strong>e density.<strong>The</strong>se two mechanisms are modeled by the following(2.7.3)C C V C V D L effDL eff( dsc + dscd ds + dscb bseff )⎛⎜exp( − VT + −⎞1 ) 2exp( VT1) ⎟Cd⎝ 2ltlt⎠ Cn= 1+ Nfactor++CoxCoxCitoxwhere the term2-30 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Effective Channel Length and WidthC C V C V D L effDL eff( dsc + dscd ds + dscb bseff )⎛⎜exp( − VT + −⎞1 ) 2 exp( VT1) ⎟⎝ 2ltlt⎠+represents the coupling capacitance between the drain or source to the channel.<strong>The</strong> parameters C dsc , C dscd and C dscb are extracted. <strong>The</strong> parameter C it in Eq. (2.7.3)is the capacitance due to interface st<strong>at</strong>es. From Eq. (2.7.3), it can be seen th<strong>at</strong>subthreshold swing shares the same exponential dependence on channel length asthe DIBL effect. <strong>The</strong> parameter Nfactor is introduced to compens<strong>at</strong>e for errors inthe depletion width capacitance calcul<strong>at</strong>ion. Nfactor is determined experimentallyand is usually very close to 1.2.8 Effective Channel Length and Width<strong>The</strong> effective channel length and width used in all model expressions is givenbelowLeff= Ldrawn−2dLWeff= Wdrawn−2dWWeff= Wdrawn− 2dW(2.8.1)(2.8.2a)(2.8.2b)<strong>The</strong> only difference between Eq. (2.8.2a) and (2.8.2b) is th<strong>at</strong> the former includesbias dependencies. <strong>The</strong> parameters dW and dL are modeled by the following<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-31


Effective Channel Length and WidthdW = dW ' + dW VdW ' = WintgW+LlW lngsteffW+W+ dWwWwnb( Φ −V− Φ )sW+L WwlW ln WwnLlLwdL = L + + +L LwnL W Lbseffwlint ln LlnLwnLWs(2.8.3)(2.8.4)<strong>The</strong>se complic<strong>at</strong>ed formul<strong>at</strong>ions require some explan<strong>at</strong>ion. From Eq. (2.8.3), thevariable W int models represents the tradition manner from which "delta W" isextracted (from the intercepts <strong>of</strong> straights lines on a 1/R ds vs. W drawn plot). <strong>The</strong>parameters dW g and dW b have been added to account for the contribution <strong>of</strong> bothfront g<strong>at</strong>e and back side (substr<strong>at</strong>e) biasing effects. For dL, the parameter L intrepresents the traditional manner from which "delta L" is extracted (mainly fromthe intercepts <strong>of</strong> lines from a R ds vs. L drawn plot).<strong>The</strong> remaining terms in both dW and dL are included for the convenience <strong>of</strong> theuser. <strong>The</strong>y are meant to allow the user to model each parameter as a function <strong>of</strong>W drawn , L drawn and their associ<strong>at</strong>ed product terms. In addition, the freedom tomodel these dependencies as other than just simple inverse functions <strong>of</strong> W and L isalso provided for the user. For dW, they are Wln and Wwn. For dL they are Lln andLwn.By default all <strong>of</strong> the above geometrical dependencies for both dW and dL areturned <strong>of</strong>f. Again, these equ<strong>at</strong>ions are provided for the convenience <strong>of</strong> the user. Assuch, it is up to the user to adopt the correct extraction str<strong>at</strong>egy to ensure properuse.2-32 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Poly G<strong>at</strong>e Depletion Effect2.9 Poly G<strong>at</strong>e Depletion EffectWhen a g<strong>at</strong>e voltage is applied to a heavily doped poly-silicon g<strong>at</strong>e, e.g. NMOSwith n + poly-silicon g<strong>at</strong>e, a thin depletion layer will be formed <strong>at</strong> the interfacebetween the poly-silicon and g<strong>at</strong>e oxide. Although this depletion layer is very thindue to the high doping concentr<strong>at</strong>ion <strong>of</strong> the poly-Si g<strong>at</strong>e, its effect cannot beignored in the 0.1µm regime since the g<strong>at</strong>e oxide thickness will also be very small,possibly 50Å or thinner.Figure 2-7 shows an N<strong>MOSFET</strong> with a depletion region in the n + poly-silicong<strong>at</strong>e. <strong>The</strong> doping concentr<strong>at</strong>ion in the n + poly-silicon g<strong>at</strong>e is N g<strong>at</strong>e and the dopingconcentr<strong>at</strong>ion in the substr<strong>at</strong>e is N sub . <strong>The</strong> g<strong>at</strong>e oxide thickness is T ox . <strong>The</strong> depletionwidth in the poly g<strong>at</strong>e is X p . <strong>The</strong> depletion width in the substr<strong>at</strong>e is X d . If weassume the doping concentr<strong>at</strong>ion in the g<strong>at</strong>e is infinite, then no depletion regionwill exist in the g<strong>at</strong>e, and there would be one sheet <strong>of</strong> positive charge whosethickness is zero <strong>at</strong> the interface between the poly-silicon g<strong>at</strong>e and g<strong>at</strong>e oxide.In reality, the doping concentr<strong>at</strong>ion is, <strong>of</strong> course, finite. <strong>The</strong> positive charge nearthe interface <strong>of</strong> the poly-silicon g<strong>at</strong>e and the g<strong>at</strong>e oxide is distributed over a finitedepletion region with thickness X p . In the presence <strong>of</strong> the depletion region, thevoltage drop across the g<strong>at</strong>e oxide and the substr<strong>at</strong>e will be reduced, because part<strong>of</strong> the g<strong>at</strong>e voltage will be dropped across the depletion region in the g<strong>at</strong>e. Th<strong>at</strong>means the effective g<strong>at</strong>e voltage will be reduced.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-33


Poly G<strong>at</strong>e Depletion EffectNg<strong>at</strong>eFigure 2-7. Charge distribution in a <strong>MOSFET</strong> with the poly g<strong>at</strong>e depletion effect.<strong>The</strong> device is in the strong inversion region.<strong>The</strong> effective g<strong>at</strong>e voltage can be calcul<strong>at</strong>ed in the following manner. Assume thedoping concentr<strong>at</strong>ion in the poly g<strong>at</strong>e is uniform. <strong>The</strong> voltage drop in the poly g<strong>at</strong>e(V poly ) can be calcul<strong>at</strong>ed as1qNN 2 g<strong>at</strong>e poly Xpolypoly = XpolyEpoly=2 2εsi(2.9.1)where E poly is the maximum electrical field in the poly g<strong>at</strong>e. <strong>The</strong> boundarycondition <strong>at</strong> the interface <strong>of</strong> poly g<strong>at</strong>e and the g<strong>at</strong>e oxide isε E = ε E = 2qεN g<strong>at</strong>e Vox ox si poly si poly poly(2.9.2)2-34 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Poly G<strong>at</strong>e Depletion Effectwhere E ox is the electrical field in the g<strong>at</strong>e oxide. <strong>The</strong> g<strong>at</strong>e voltage s<strong>at</strong>isfiesV −V−Φ = V + VgsFBspolyox(2.9.3)where V ox is the voltage drop across the g<strong>at</strong>e oxide and s<strong>at</strong>isfies V ox = E ox T ox .According to the equ<strong>at</strong>ions (2.9.1) to (2.9.3), we obtain the following2( −V−Φ −V) −V= 0aVgsFBspolypoly(2.9.4)where (2.9.5)a =2εox22qεsiNg<strong>at</strong>eToxBy solving the equ<strong>at</strong>ion (2.9.4), we get the effective g<strong>at</strong>e voltage (V gs_eff ) which isequal to:Vgs_eff( V −V−Φ )2 ⎛2qε⎞siNg<strong>at</strong>eTox= +Φ +⎜ 2εox gs FB sV1+−1⎟FB s2 ⎜2ε⎟oxqεsiNg<strong>at</strong>eTox⎝⎠(2.9.6)Figure 2-8 shows V gs_eff / V gs versus the g<strong>at</strong>e voltage. <strong>The</strong> threshold voltage isassumed to be 0.4V. If T ox = 40 Å, the effective g<strong>at</strong>e voltage can be reduced by 6%due to the poly g<strong>at</strong>e depletion effect as the applied g<strong>at</strong>e voltage is equal to 3.5V.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-35


Poly G<strong>at</strong>e Depletion Effect1.00Tox=80A80 ÅVgs_eff / VgsVgs_eff/Vgs0.95Tox=60A60 ÅTox=40AT = Å0.900.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0V gs(V)Vgs (V)Figure 2-8. <strong>The</strong> effective g<strong>at</strong>e voltage versus applied g<strong>at</strong>e voltage <strong>at</strong> different g<strong>at</strong>eoxide thickness.<strong>The</strong> drain current reduction in the linear region as a function <strong>of</strong> the g<strong>at</strong>e voltagecan now be determined. Assume the drain voltage is very small, e.g. 50mV. <strong>The</strong>nthe linear drain current is proportional to C ox (V gs - V th ). <strong>The</strong> r<strong>at</strong>io <strong>of</strong> the linear draincurrent with and without poly g<strong>at</strong>e depletion is equal to:I( Vgs_eff ) ( Vgs_eff − Vth)=I ( V ) ( V − V )dsdsgsgsth(2.9.7)Figure 2-9 shows I ds (V gs_eff ) / I ds (V gs ) versus the g<strong>at</strong>e voltage using Eq. (2.9.7). <strong>The</strong>drain current can be reduced by several percent due to g<strong>at</strong>e depletion.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-36


Poly G<strong>at</strong>e Depletion Effect1.00Tox=80AÅIds(Vgs_eff)/Ids(Vgs)Ids(Vgs_eff) / Ids(Vgs)0.95Tox=60AÅTox=40AT = Å0.900.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Vgs V (V) (V)Figure 2-9. R<strong>at</strong>io <strong>of</strong> linear region current with poly g<strong>at</strong>e depletion effect and th<strong>at</strong>without.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-37


Poly G<strong>at</strong>e Depletion Effect<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-38


Poly G<strong>at</strong>e Depletion Effect<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 2-39


Poly G<strong>at</strong>e Depletion Effect2-40 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


CHAPTER 3: Unified I-V <strong>Model</strong><strong>The</strong> development <strong>of</strong> separ<strong>at</strong>e model expressions for such device oper<strong>at</strong>ion regimes assubthreshold and strong inversion were discussed in Chapter 2. Although theseexpressions can accur<strong>at</strong>ely describe device behavior within their own respective region <strong>of</strong>oper<strong>at</strong>ion, problems are likely to occur between two well-described regions or withintransition regions. In order to circumvent this issue, a unified model should be synthesizedto not only preserve region-specific expressions but also to ensure the continuities <strong>of</strong>current and conductance and their deriv<strong>at</strong>ives in all transition regions as well. Such highstandards are kept in BSIM3v3.2.1 . As a result, convergence and simul<strong>at</strong>ion efficiencyare much improved.This chapter will describe the unified I-V model equ<strong>at</strong>ions. While most <strong>of</strong> the parametersymbols in this chapter are explained in the following text, a complete description <strong>of</strong> all I-V model parameters can be found in Appendix A.3.1 Unified Channel Charge DensityExpressionSepar<strong>at</strong>e expressions for channel charge density are shown below for subthreshold(Eq. (3.1.1a) and (3.1.1b)) and strong inversion (Eq. (3.1.2)). Both expressions arevalid for small V ds .<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-1


Unified Channel Charge Density ExpressionQ= Qchsubs0 0Vgs−Vthexp( )nvt(3.1.1a)where Q 0 isQ0= qεsiNchV<strong>of</strong>fv t exp(2− )φsnvtQchs0 = Cox( Vgs −Vth)(3.1.1b)(3.1.2)In both Eqs. (3.1.1a) and (3.1.2), the parameters Q chsubs0 and Q chs0 are the channelcharge densities <strong>at</strong> the source for very small Vds. To form a unified expression, aneffective (V gs -V th ) function named V gsteff is introduced to describe the channelcharge characteristics from subthreshold to strong inversionVgsteff⎡ Vgs−Vth⎤2 nvtln⎢1+exp( ) ⎥nvt=⎣ 2 ⎦2ΦsVgs −Vth − 2V<strong>of</strong>f1+ 2 n COXexp( −)qεsiNch2 nvt(3.1.3)<strong>The</strong> unified channel charge density <strong>at</strong> the source end for both subthreshold andinversion region can therefore be written asQC Vchs0 = ox gsteff(3.1.4)Figures 3-1 and 3-2 show the smoothness <strong>of</strong> Eq. (3.1.4) from subthreshold tostrong inversion regions. <strong>The</strong> V gsteff expression will be used again in subsequentsections <strong>of</strong> this chapter to model the drain current.3-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Unified Channel Charge Density ExpressionVgsteff (V)3.02.52.01.51.00.50.0-0.5Vgsteff Functionexp[(Vgs-Vth)/n*v t]Vgs=Vth-1.0(Vgs-Vth)-1.5-1.0 -0.5 0.0 0.5 1.0 1.5 2.0V gs -V th (V)Vgs-Vth (V)Figure 3-1. <strong>The</strong> V gsteff function vs. (V gs -V th ) in linear scale.42Log(Vgsteff)0Log(Vgsteff)-2-4-6-8-10-12-14(Vgs-Vth)exp[(Vgs-Vth)/n*v t]Vgs=Vth-16-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5Vgs-Vth (V)Vgs-Vth (V)Figure 3-2. V gsteff function vs. (V gs -V th ) in log scale.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-3


Unified Channel Charge Density ExpressionEq. (3.1.4) serves as the cornerstone <strong>of</strong> the unified channel charge expression <strong>at</strong>the source for small V ds . To account for the influence <strong>of</strong> V ds , the V gsteff functionmust keep track <strong>of</strong> the change in channel potential from the source to the drain. Inother words, Eq. (3.1.4) will have to include a y dependence. To initi<strong>at</strong>e thisformul<strong>at</strong>ion, consider first the re-formul<strong>at</strong>ion <strong>of</strong> channel charge density for thecase <strong>of</strong> strong inversionQchs( y) = Cox( Vgs −Vth −AbulkVF ( y))(3.1.5)<strong>The</strong> parameter V F (y) stands for the quasi-Fermi potential <strong>at</strong> any given point y,along the channel with respect to the source. This equ<strong>at</strong>ion can also be written asQ = Q 0 + ∆Qchs( y) chs chs( y)(3.1.6)<strong>The</strong> term ∆Q chs (y) is the incremental channel charge density induced by the drainvoltage <strong>at</strong> point y. It can be expressed as∆Q =−CoxA Vchs( y) bulk F ( y)(3.1.7)For the subthreshold region (V gs


Unified Channel Charge Density ExpressionA Taylor series expansion <strong>of</strong> the right-hand side <strong>of</strong> Eq. (3.1.8) yields the following(keeping only the first two terms)Qchsubs( y)AbulkVF ( y)= Qchsubs0( 1−)nvt(3.1.9)Analogous to Eq. (3.1.6), Eq. (3.1.9) can also be written asQ = Q 0+∆Qchsubs( y) chsubs chsubs( y)(3.1.10)<strong>The</strong> parameter ∆Q chsubs (y) is the incremental channel charge density induced bythe drain voltage in the subthreshold region. It can be written as∆Qchsubs( y)AbulkVF ( y)=− Qchsubs0nvt(3.1.11)Note th<strong>at</strong> Eq. (3.1.9) is valid only when V F (y) is very small, which is maintainedfortun<strong>at</strong>ely, due to the fact th<strong>at</strong> Eq. (3.1.9) is only used in the linear regime (i.e. V ds≤2v t ).Eqs. (3.1.6) and (3.1.10) both have drain voltage dependencies. However, they aredecupled and a unified expression for Q ch (y) is needed. To obtain a unifiedexpression along the channel, we first assume∆Qch( y)=∆Q∆Q∆Q+ ∆Qchs( y) chsubs( y)chs( y) chsubs( y)(3.1.12)Here, ∆Q ch (y) is the incremental channel charge density induced by the drainvoltage. Substituting Eq. (3.1.7) and (3.1.11) into Eq. (3.1.12), we obtain<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-5


Unified Mobility Expression∆QVF( y)Vb Qch ( y ) = chs0(3.1.13)where V b = (V gsteff + n*v t )/A bulk . In order to remove any associ<strong>at</strong>ion between thevariable n and bias dependencies (V gsteff ) as well as to ensure more precisemodeling <strong>of</strong> Eq. (3.1.8) for linear regimes (under subthreshold conditions), n isreplaced by 2. <strong>The</strong> expression for V b now becomesVb=V+ 2vtAbulkgsteff(3.1.14)A unified expression for Q ch (y) from subthreshold to strong inversion regimes isnow <strong>at</strong> handQch( y)VF( y)= Qchs0( 1−)Vb(3.1.15)<strong>The</strong> variable Q chs0 is given by Eq. (3.1.4).3.2 Unified Mobility ExpressionUnified mobility model based on the V gsteff expression <strong>of</strong> Eq. 3.1.3 is described inthe following.3-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Unified Linear Current Expression(mobMod = 1) (3.2.1)µ oµ eff =Vgsteff+ 2Vthgsteff thUa UcVbseffU V + 2 V 21 + ( + )( ) + b( )TOXTOXTo account for depletion mode devices, another mobility model option is given bythe following(mobMod = 2) (3.2.2)µ oµ eff =VgsteffgsteffUa UcVbseffUV 21 + ( + )( ) + b( )TOXTOXTo consider the body bias dependence <strong>of</strong> Eq. 3.2.1 further, we have introduced thefollowing expression(For mobMod = 3) (3.2.3)µeffµ o=gsteff thgsteff thU V + 2 VaU V + 2 V 21 + [ ( ) + b( ) ]( 1 + UV c bseff)TOXTOX3.3 Unified Linear Current Expression3.3.1 Intrinsic case (Rds=0)Generally, the following expression [2] is used to account for both drift anddiffusion current<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-7


Unified Linear Current ExpressionI= WQ µd( y) ch( y) ne( y)dVdyF( y)(3.3.1)where the parameter u ne (y) can be written asµ effµ ne( y)=E1 +Eys<strong>at</strong>(3.3.2)Substituting Eq. (3.3.2) in Eq. (3.3.1) we getId( y)VF y µ eff= WQchso( 1 − )VbE1 +Eys<strong>at</strong>dVdy( ) F( y)(3.3.3)Eq. (3.3.3) resembles the equ<strong>at</strong>ion used to model drain current in the stronginversion regime. However, it can now be used to describe the currentcharacteristics in the subthreshold regime when V ds is very small (V ds


Unified Vds<strong>at</strong> Expression3.3.2 Extrinsic Case (R ds > 0)<strong>The</strong> current expression when R ds > 0 can be obtained based on Eq. (2.5.9)and Eq. (3.3.4). <strong>The</strong> expression for linear drain current from subthresholdto strong inversion is:IdsIdso=R I1 +Vds dsods(3.3.5)3.4 Unified Vds<strong>at</strong> Expression3.4.1 Intrinsic case (R ds =0)To get an expression for the electric field as a function <strong>of</strong> y along thechannel, we integr<strong>at</strong>e Eq. (3.3.1) from 0 to an arbitrary point y. <strong>The</strong> result isas followsEy=IIdso( WQchs0µeff − )Es<strong>at</strong>dso2Ids WQchs µ eff y−Vb2 0 0(3.4.1)If we assume th<strong>at</strong> drift velocity s<strong>at</strong>ur<strong>at</strong>es when Ey=Es<strong>at</strong>, we get thefollowing expression for I ds<strong>at</strong>(3.4.2)Ids<strong>at</strong>=µ eff chs0s<strong>at</strong> bW Q E LV2 LE ( s<strong>at</strong>L+Vb)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-9


Unified Vds<strong>at</strong> ExpressionLet V ds =V ds<strong>at</strong> in Eq. (3.3.4) and set this equal to Eq. (3.4.2), we get thefollowing expression for V ds<strong>at</strong>(3.4.3)Vds<strong>at</strong>=Es<strong>at</strong>L( Vgsteff + 2vt)AbulkEs<strong>at</strong>L+ Vgsteff + 2vt3.4.2 Extrinsic Case (R ds >0)<strong>The</strong> V ds<strong>at</strong> expression for the extrinsic case is formul<strong>at</strong>ed from Eq. (3.4.3)and Eq. (2.5.10) to be the followingb b acVds<strong>at</strong> = − − 2− 42a(3.4.4a)wherea = A W ν C R + ( −1)Aλ1bulk 2 eff s<strong>at</strong> ox DS bulk(3.4.4b)(3.4.4c)⎛2b=− ⎜( V + 2v)( − 1 ) + A E L + 3 A ( V + 2 v)W ν C R⎝λgsteff t bulk s<strong>at</strong> eff bulk gsteff t eff s<strong>at</strong> ox DS⎞⎟⎠2c = ( V + 2v ) E L + 2( V + 2v)W ν C Rgsteff t s<strong>at</strong> eff gsteff t eff s<strong>at</strong> ox DSλ = AVgsteff+ A1 2(3.4.4d)(3.4.4e)3-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Unified S<strong>at</strong>ur<strong>at</strong>ion Current Expression<strong>The</strong> parameter λ is introduced to account for non-s<strong>at</strong>ur<strong>at</strong>ion effects.Parameters A 1 and A 2 can be extracted.3.5 Unified S<strong>at</strong>ur<strong>at</strong>ion Current ExpressionA unified expression for the s<strong>at</strong>ur<strong>at</strong>ion current from the subthreshold to the stronginversion regime can be formul<strong>at</strong>ed by introducing the V gsteff function into Eq.(2.6.15). <strong>The</strong> resulting equ<strong>at</strong>ions are the followingIdsI=R I1 +Vdso( Vds<strong>at</strong>)ds dso( Vds<strong>at</strong>)ds<strong>at</strong>⎛ Vds− Vds<strong>at</strong>VdsV⎜ +⎞ −1 ⎟⎛⎜1+⎝ VA⎠⎝VASCBEds<strong>at</strong>⎞⎟⎠(3.5.1)whereVAPvagVgsteff1 1 −1= VAs<strong>at</strong>+ ( 1+ )( + )Es<strong>at</strong>Leff VACLM VADIBLC(3.5.2)VAs<strong>at</strong>=(3.5.3)AbulkVds<strong>at</strong>Es<strong>at</strong>Leff + Vds<strong>at</strong> + 2RDSνs<strong>at</strong>CoxWeff Vgsteff[1−2 ( Vgsteff+ 2 vt) ]2/λ− 1+RDSνs<strong>at</strong>CoxWeffAbulkVACLM=A E L + VPCLMAbulkEs<strong>at</strong>litlbulk s<strong>at</strong> eff gsteff( Vds− Vds<strong>at</strong>)(3.5.4)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-11


Single Current Expression for All Oper<strong>at</strong>ing Regimes <strong>of</strong> Vgs and VdsVADIBLC=θ( Vgsteff+ 2vt)t 1 + P Vrou ( DIBLCB bseff )⎛⎜1−⎝AbulkVds<strong>at</strong>⎞⎟AbulkVds<strong>at</strong> + Vgsteff + 2vt⎠(3.5.5)⎡LL ⎤exp( ) exp( ) P⎣2ll ⎦⎥ +effeffθrout = PDIBLC 1 DROUTDROUT⎢− + 2 −t 0 t 0DIBLC2(3.5.6)V−Plitlexp⎛ ⎞⎜ ⎟⎝ Vds− Vds<strong>at</strong>⎠1 scbe2 scbe1ASCBEP=Leff(3.5.7)3.6 Single Current Expression for AllOper<strong>at</strong>ing Regimes <strong>of</strong> V gs and V ds<strong>The</strong> V gsteff function introduced in Chapter 2 gave a unified expression for the lineardrain current from subthreshold to strong inversion as well as for the s<strong>at</strong>ur<strong>at</strong>iondrain current from subthreshold to strong inversion, separ<strong>at</strong>ely. In order to link thecontinuous linear current with th<strong>at</strong> <strong>of</strong> the continuous s<strong>at</strong>ur<strong>at</strong>ion current, a smoothfunction for V ds is introduced. In the past, several smoothing functions have beenproposed for <strong>MOSFET</strong> modeling [22-24]. <strong>The</strong> smoothing function used in BSIM3is similar to th<strong>at</strong> proposed in [24]. <strong>The</strong> final current equ<strong>at</strong>ion for both linear ands<strong>at</strong>ur<strong>at</strong>ion current now becomesIdsI=R I1 +Vdso( Vdseff )ds dso( Vdseff )dseff⎛ Vds− VdseffVdsV⎜ +⎞ −1 ⎟⎛⎜1+⎝ VA⎠⎝VASCBEdseff⎞⎟⎠(3.6.1)Most <strong>of</strong> the previous equ<strong>at</strong>ions which contain V ds and V ds<strong>at</strong> dependencies are nowsubstituted with the V dseff function. For example, Eq. (3.5.4) now becomes3-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Single Current Expression for All Oper<strong>at</strong>ing Regimes <strong>of</strong> Vgs and Vds(3.6.2)VACLM=A E L + VPCLMAbulkEs<strong>at</strong>litlbulk s<strong>at</strong> eff gsteff( Vds−Vdseff)Similarly, Eq. (3.5.7) now becomesV⎛ −Plitl⎞exp⎜⎟⎝ Vds−Vdseff⎠1 scbe2 scbe1ASCBEP=Leff(3.6.3)<strong>The</strong> V dseff expression is written as2( δ ( δ)4δ)1V = V − V −V − + V −V − + V2dseff ds<strong>at</strong> ds<strong>at</strong> ds ds<strong>at</strong> ds ds<strong>at</strong>(3.6.4)<strong>The</strong> expression for V ds<strong>at</strong> is th<strong>at</strong> given under Section 3.4. <strong>The</strong> parameter δ in theunit <strong>of</strong> volts can be extracted. <strong>The</strong> dependence <strong>of</strong> V dseff on V ds is given in Figure 3-3. <strong>The</strong> V dseff function follows V ds in the linear region and tends to V ds<strong>at</strong> in thes<strong>at</strong>ur<strong>at</strong>ion region. Figure 3-4 shows the effect <strong>of</strong> δ on the transition region betweenlinear and s<strong>at</strong>ur<strong>at</strong>ion regimes.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 3-13


KAPITEL 7RESULTAT OCH REKOMMENDATIONERKapitlet inleds med en återgivning av problemformuleringen, studiens övergripande forskningsfråga,syfte och frågeställningar. Vidare presteras studiens result<strong>at</strong> till var och en av de tre frågeställningarna.Därefter ges rekommend<strong>at</strong>ioner samt förslag till vidare studier. Avslutningsvis sammanf<strong>at</strong>tas kapitlet.7. Inledning till studiens result<strong>at</strong>Synen på m<strong>at</strong> har förändr<strong>at</strong>s under de senaste decennierna och m<strong>at</strong>en värdesätts idaginte i lika stor utsträckning som förr, vilket anses vara en bidragande orsak till <strong>at</strong>tm<strong>at</strong>svinn uppkommer. Idag slänger Sveriges befolkning årligen 2,3 miljoner ton m<strong>at</strong>.Även skolm<strong>at</strong>salars m<strong>at</strong>svinn är högt då det årligen slängs 3,2 miljoner kilo m<strong>at</strong> tillföljd av <strong>at</strong>t elever inte äter upp den m<strong>at</strong> de tagit till sig på tallriken. Med detta problem iåtanke presenteras studiens övergripande forskningsfråga, syfte och frågeställningar för<strong>at</strong>t underlätta förståelsen för studiens result<strong>at</strong>.Studiens övergripande forskningsfrågaKan m<strong>at</strong>produktion och dess påverkan på n<strong>at</strong>ur och samhälle uppnå en hållbarutveckling med tanke på den respektlösa inställning människor har gentemot <strong>at</strong>t slängam<strong>at</strong> i onödan?Studiens syfteAtt undersöka vilka incitament som kan bidra till en <strong>at</strong>tityd- och beteendeförändring hoselever med avsikt <strong>at</strong>t reducera m<strong>at</strong>svinn.Frågeställning 1Vad har elever för <strong>at</strong>tityd gentemot <strong>at</strong>t slänga m<strong>at</strong>?59


A Note on Vbs3-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


CHAPTER 4: Capacitance <strong>Model</strong>ingAccur<strong>at</strong>e modeling <strong>of</strong> <strong>MOSFET</strong> capacitance plays equally important role as th<strong>at</strong> <strong>of</strong> theDC model. This chapter describes the methodology and device physics considered in bothintrinsic and extrinsic capacitance modeling in <strong>BSIM3v3.2.2</strong>. Detailed model equ<strong>at</strong>ionsare given in Appendix B. One <strong>of</strong> the important fe<strong>at</strong>ures <strong>of</strong> BSIM3v3.2 is introduction <strong>of</strong> anew intrinsic capacitance model (capMod=3 as the default model), considering the finitecharge thickness determined by quantum effect, which becomes more important forthinner T ox CMOS technologies. This model is smooth, continuous and accur<strong>at</strong>ethroughout all oper<strong>at</strong>ing regions.4.1 General Description <strong>of</strong> Capacitance<strong>Model</strong>ing<strong>BSIM3v3.2.2</strong> models capacitance with the following general fe<strong>at</strong>ures:• Separ<strong>at</strong>e effective channel length and width are used for capacitance models.• <strong>The</strong> intrinsic capacitance models, capMod=0 and 1, use piece-wise equ<strong>at</strong>ions.capMod=2 and 3 are smooth and single equ<strong>at</strong>ion models; therefore both charge andcapacitance are continous and smooth over all regions.• Threshold voltage is consistent with DC part except for capMod=0, where a longchannelV th is used. <strong>The</strong>refore, those effects such as body bias, short/narrow channeland DIBL effects are explicitly considered in capMod=1, 2, and 3.• Overlap capacitance comprises two parts: (1) a bias-independent component whichmodels the effective overlap capacitance between the g<strong>at</strong>e and the heavily dopedsource/drain; (2) a g<strong>at</strong>e-bias dependent component between the g<strong>at</strong>e and the lightlydoped source/drain region.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-1


Geometry Definition for C-V <strong>Model</strong>ing• Bias-independent fringing capacitances are added between the g<strong>at</strong>e and source as wellas the g<strong>at</strong>e and drain.Name Function Default UnitcapMod Flag for capacitance models 3 (True)vfbcv the fl<strong>at</strong>-band voltage for capMod = 0 -1.0 (V)acdeExponential coefficient for X DC for accumul<strong>at</strong>ion and depletionregions1 (m/V)moin Coefficient for the surface potential 15 (V 0.5 )cgso Non-LDD region G/S overlap C per channel length Calcul<strong>at</strong>ed F/mcgdo Non-LDD region G/D overlap C per channel length Calcul<strong>at</strong>ed F/mCGS1 Lightly-doped source to g<strong>at</strong>e overlap capacitance 0 (F/m)CGD1 Lightly-doped drain to g<strong>at</strong>e overlap capacitance 0 (F/m)CKAPPA Coefficient for lightly-doped overlap capacitance 0.6CF Fringing field capacitance equ<strong>at</strong>ion(4.5.1)(F/m)CLC Constant term for short channel model 0.1 µmCLE Exponential term for short channel model 0.6DWC Long channel g<strong>at</strong>e capacitance width <strong>of</strong>fset Wint µmDLC Long channel g<strong>at</strong>e capacitance length <strong>of</strong>fset Lint µmTable 4-1. <strong>Model</strong> parameters in capacitance models.4.2 Geometry Definition for C-V <strong>Model</strong>ingFor capacitance modeling, <strong>MOSFET</strong>’s can be divided into two regions: intrinsicand extrinsic. <strong>The</strong> intrinsic capacitance is associ<strong>at</strong>ed with the region between themetallurgical source and drain junction, which is defined by the effective length4-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Geometry Definition for C-V <strong>Model</strong>ing(L active ) and width (W active ) when the g<strong>at</strong>e to S/D region is <strong>at</strong> fl<strong>at</strong> band voltage.L active and W active are defined by Eqs. (4.2.1) through (4.2.4).Lactive= Ldrawn−2δLeff(4.2.1)Wactive= Wdrawn−2δWeff(4.2.2)δLeffLlc= DLC+LLwcW+ +Lln LwnLwlclnL WLwn(4.2.3)δWeffWlc= DWC+LWwcW+ +W ln WwnWwlcW lnL WWwn(4.2.4)<strong>The</strong> meanings <strong>of</strong> DWC and DLC are different from those <strong>of</strong> Wint and Lint in the I-V model. L active and W active are the effective length and width <strong>of</strong> the intrinsicdevice for capacitance calcul<strong>at</strong>ions. Unlike the case with I-V, we assumed th<strong>at</strong>these dimensions have no voltage bias dependence. <strong>The</strong> parameter δL eff is equal tothe source/drain to g<strong>at</strong>e overlap length plus the difference between drawn andactual POLY CD due to processing (g<strong>at</strong>e printing, etching and oxid<strong>at</strong>ion) on oneside. Overall, a distinction should be made between the effective channel lengthextracted from the capacitance measurement and from the I-V measurement.Traditionally, the L eff extracted during I-V model characteriz<strong>at</strong>ion is used to gaugea technology. However this L eff does not necessarily carry a physical meaning. It isjust a parameter used in the I-V formul<strong>at</strong>ion. This L eff is therefore very sensitive tothe I-V equ<strong>at</strong>ions used and also to the conduction characteristics <strong>of</strong> the LDD<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-3


Methodology for Intrinsic Capacitance <strong>Model</strong>ingregion rel<strong>at</strong>ive to the channel region. A device with a large L eff and a smallparasitic resistance can have a similar current drive as another with a smaller L effbut larger R ds . In some cases L eff can be larger than the polysilicon g<strong>at</strong>e lengthgiving L eff a dubious physical meaning.<strong>The</strong> L active parameter extracted from the capacitance method is a closerrepresent<strong>at</strong>ion <strong>of</strong> the metallurgical junction length (physical length). Due to thegraded source/ drain junction pr<strong>of</strong>ile the source to drain length can have a verystrong bias dependence. We therefore define L active to be th<strong>at</strong> measured <strong>at</strong> g<strong>at</strong>e tosource/drain fl<strong>at</strong> band voltage. If DWC, DLC and the newly-introduced length/width dependence parameters (Llc, Lwc, Lwlc, Wlc, Wwc and Wwlc) are notspecified in technology files, <strong>BSIM3v3.2.2</strong> assumes th<strong>at</strong> the DC bias-independentL eff and W eff (Eqs. (2.8.1) - (2.8.4)) will be used for C-V modeling, and DWC,DLC,Llc, Lwc, Lwlc, Wlc, Wwc and Wwlc will be set equal to the values <strong>of</strong> theirDC counterparts (default values).4.3 Methodology for Intrinsic Capacitance<strong>Model</strong>ing4.3.1 Basic Formul<strong>at</strong>ionTo ensure charge conserv<strong>at</strong>ion, terminal charges instead <strong>of</strong> the terminalvoltages are used as st<strong>at</strong>e variables. <strong>The</strong> terminal charges Q g , Q b , Q s , andQ d are the charges associ<strong>at</strong>ed with the g<strong>at</strong>e, bulk, source, and draintermianls, respectively. <strong>The</strong> g<strong>at</strong>e charge is comprised <strong>of</strong> mirror chargesfrom these components: the channel inversion charge (Q inv ), accumul<strong>at</strong>ioncharge (Q acc ) and the substr<strong>at</strong>e depletion charge (Q sub ).4-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Methodology for Intrinsic Capacitance <strong>Model</strong>ing<strong>The</strong> accumul<strong>at</strong>ion charge and the substr<strong>at</strong>e charge are associ<strong>at</strong>ed with thesubstr<strong>at</strong>e while the channel charge comes from the source and drainterminals( )⎧Q =− Q + Q + Q⎪⎨Qb = Qacc + Qsub⎪⎩Qinv = Qs + Qdg sub inv acc(4.3.1)<strong>The</strong> substr<strong>at</strong>e charge can be divided into two components - the substr<strong>at</strong>echarge <strong>at</strong> zero source-drain bias (Q sub0 ), which is a function <strong>of</strong> g<strong>at</strong>e tosubstr<strong>at</strong>e bias, and the additional non-uniform substr<strong>at</strong>e charge in thepresence <strong>of</strong> a drain bias (δQ sub ). Q g now becomes( )Q =− Q + Q + Q + Qg inv acc sub0 δsub(4.3.2)<strong>The</strong> total charge is computed by integr<strong>at</strong>ing the charge along the channel.<strong>The</strong> threshold voltage along the channel is modified due to the nonuniformsubstr<strong>at</strong>e charge byth( y) = V th( 0) + ( A bulk − ) V yV 1(4.3.3)⎧⎪Qc= W⎪⎪⎨Qg= W⎪⎪⎪Qb= W⎪⎩Lactive∫Lactive∫Lactive∫q dy = −Wactive cactive ox0 0q dy = Wactive g active ox0 0q dy = −WCCCactive bactive ox0 0LLactive∫( Vgt− AbulkVy)active∫( Vgt+ Vth−VFB− Φs−Vy)Ldydyactive∫( Vth−VFB− Φs+ ( Abulk−1)Vy)dy(4.3.4)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-5


Methodology for Intrinsic Capacitance <strong>Model</strong>ingSubstituting the followingdydV yy= ε( ) yand(4.3.5)WactiveµeffCox⎛ Abulk⎞Ids= ⎜Vgt− V ds ⎟Vds= W activeµ effC oxV gt− A bulkV yEL ⎝ 2 ⎠activeinto Eq. (4.3.4), we have the following upon integr<strong>at</strong>ion⎧⎪⎪Q⎪⎪⎪⎪⎪⎨Q⎪⎪⎪⎪Q⎪⎪⎪⎪⎩cgb= −W= −Q= −Qactivesub 0gL− Qactive+ Wc=CactiveQoxsub⎛⎜⎜V⎜⎜⎝Lgtactive−C+ Qoxsub 0A2bulkVds⎛⎜⎜ VVgt−⎜ 2⎜⎝+ QaccAbulkV+⎛ A12 ⎜Vgt−⎝ 2ds2dsbulkV2dsAbulkV+⎛ A12 ⎜Vgt−⎝ 22bulkds(4.3.6)⎞⎟⎟⎞ ⎟⎟ ⎟⎠ ⎠Vds⎞⎟⎟⎞ ⎟⎟ ⎟⎠ ⎠where4-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Methodology for Intrinsic Capacitance <strong>Model</strong>ing(4.3.7)⎧Q⎪⎪⎨⎪δQ⎪⎪⎩sub 0sub= −W= WactiveactiveLLactiveactiveCox2εqNsi⎛⎜⎜ 1 − A⎜ 2⎜⎝subbulk( 2Φ− V )VdsBbsAbulk+⎛12⎜V⎝( A − 1)gtbulk−A2bulkVVdsds⎞2 ⎟⎟⎞ ⎟⎟ ⎟⎠ ⎠<strong>The</strong> inversion charges are supplied from the source and drain electrodessuch th<strong>at</strong> Q inv = Q s + Q d . <strong>The</strong> r<strong>at</strong>io <strong>of</strong> Q d and Q s is the charge partitioningr<strong>at</strong>io. Existing charge partitioning schemes are 0/100, 50/50 and 40/60(XPART = 0, 0.5 and 1) which are the r<strong>at</strong>ios <strong>of</strong> Q d to Q s in the s<strong>at</strong>ur<strong>at</strong>ionregion. We will revisit charge partitioning in Section 4.3.4.All capacitances are derived from the charges to ensure chargeconserv<strong>at</strong>ion. Since there are four terminals, there are altogether 16components. For each componentCijQi= ∂ ∂Vj(4.3.8)where i and j denote the transistor terminals. In addition∑iCij∑= C = 0j4.3.2 Short Channel <strong>Model</strong>In deriving the long channel charge model, mobility is assumed to beconstant with no velocity s<strong>at</strong>ur<strong>at</strong>ion. <strong>The</strong>refore in s<strong>at</strong>ur<strong>at</strong>ion region(V ds ≥V ds<strong>at</strong> ), the carrier density <strong>at</strong> the drain end is zero. Since no channellength modul<strong>at</strong>ion is assumed, the channel charge will remain a constantthroughout the s<strong>at</strong>ur<strong>at</strong>ion region. In essence, the channel charge in theij<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-7


Methodology for Intrinsic Capacitance <strong>Model</strong>ings<strong>at</strong>ur<strong>at</strong>ion region is assumed to be zero. This is a good approxim<strong>at</strong>ion forlong channel devices but fails when L eff < 2 µm. If we define a drain bias,V ds<strong>at</strong>,cv , in which the channel charge becomes a constant, we will find th<strong>at</strong>V ds<strong>at</strong>,cv in general is larger than V ds<strong>at</strong> but smaller than the long channel V ds<strong>at</strong> ,given by V gt /A bulk . However, in old long channel charge models, V ds<strong>at</strong>,cv isset to V gt /A bulk independent <strong>of</strong> channel length. Consequently, C ij /L eff has nochannel length dependence (Eqs. (4.3.6), (4.37)). A pseudo short channelmodific<strong>at</strong>ion from the long channel has been used in the past. It involvedthe parameter A bulk in the capacitance model which was redefined to beequal to V gt /V ds<strong>at</strong> , thereby equ<strong>at</strong>ing V ds<strong>at</strong>,cv and V ds<strong>at</strong> . This overestim<strong>at</strong>ed theeffect <strong>of</strong> velocity s<strong>at</strong>ur<strong>at</strong>ion and resulted in a smaller channel capacitance.<strong>The</strong> difficulty in developing a short channel model lies in calcul<strong>at</strong>ing thecharge in the s<strong>at</strong>ur<strong>at</strong>ion region. Although current continuity stipul<strong>at</strong>es th<strong>at</strong>the charge density in the s<strong>at</strong>ur<strong>at</strong>ion region is almost constant, it is difficultto calcul<strong>at</strong>e accur<strong>at</strong>ely the length <strong>of</strong> the s<strong>at</strong>ur<strong>at</strong>ion region. Moreover, due tothe exponentially increasing l<strong>at</strong>eral electric field, most <strong>of</strong> the charge in thes<strong>at</strong>ur<strong>at</strong>ion region are not controlled by the g<strong>at</strong>e electrode. However, onewould expect th<strong>at</strong> the total charge in the channel will exponentiallydecrease with drain bias. Experimentally,VV,< V,< V,=active →∞Agsteff ,cvds<strong>at</strong> iv ds<strong>at</strong> cv ds<strong>at</strong> iv Lbulk(4.3.9)and V ds<strong>at</strong>,cv is modeled by the following4-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Methodology for Intrinsic Capacitance <strong>Model</strong>ingVcds<strong>at</strong> , =ds<strong>at</strong>,cvAbulkVgsteff ,cv⎛ CLC+ ⎛ ⎝ ⎜ ⎞1⎜⎟⎝ Lactive⎠CLE⎞⎟⎠(4.3.10a)(4.3.10b)Vgsteff,cv⎛ ⎛V= n<strong>of</strong>f⋅nv⎜+⎜tln 1 exp⎝ ⎝gs−Vth−v<strong>of</strong>fcv⎞⎞⎟⎟n<strong>of</strong>f⋅nvt ⎠⎠Parameters n<strong>of</strong>f and v<strong>of</strong>fcv are introduced to better fit measured d<strong>at</strong>a abovesubthreshold regions. <strong>The</strong> parameter A bulk is substituted A bulk0 in the longchannel equ<strong>at</strong>ion byAbulk⎛' = Abulk+ ⎛ ⎝ ⎜ ⎞⎜⎟⎝ Lactive⎠⎞⎟⎠(4.3.11)0 1 CLC CLE bseff(4.3.11a)Abulk⎛=⎜1+⎜ 2⎝Ks1oxΦ −Vbseff⎛⎜⎜⎝LeffA L0+ 2effXJXdepB ⎞⎞0 ⎟⎟1+ ⋅Weff' + B ⎟⎟11+KetaV⎠⎠In (4.3.11), parameters CLC and CLE are introduced to consider channellengthmodul<strong>at</strong>ion.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-9


Methodology for Intrinsic Capacitance <strong>Model</strong>ing4.3.3 Single Equ<strong>at</strong>ion Formul<strong>at</strong>ionTraditional <strong>MOSFET</strong> SPICE capacitance models use piece-wise equ<strong>at</strong>ions.This can result in discontinuities and non-smoothness <strong>at</strong> transition regions.<strong>The</strong> following describes single-equ<strong>at</strong>ion formul<strong>at</strong>ion for charge,capacitance and voltage modeling in capMod=2 and 3.(a) Transition from depletion to inversion region<strong>The</strong> biggest discontinuity is the inversion capacitance <strong>at</strong> threshold voltage.Conventional models use step functions and the inversion capacitancechanges abruptly from 0 to C ox . Concurrently, since the substr<strong>at</strong>e charge isa constant, the substr<strong>at</strong>e capacitance drops abruptly to 0 <strong>at</strong> thresholdvoltage. Both <strong>of</strong> these effects can cause oscill<strong>at</strong>ion during circuitsimul<strong>at</strong>ion. Experimentally, capacitance starts to increase almostquadr<strong>at</strong>ically <strong>at</strong> ~0.2V below threshold voltage and levels <strong>of</strong>f <strong>at</strong> ~0.3Vabove threshold voltage. For analog and low power circuits, an accur<strong>at</strong>ecapacitance model around the threshold voltage is very important.<strong>The</strong> non-abrupt channel inversion capacitance and substr<strong>at</strong>e capacitancemodel is developed from the I-V model which uses a single equ<strong>at</strong>ion t<strong>of</strong>ormul<strong>at</strong>e the subthreshold, transition and inversion regions. <strong>The</strong> newchannel inversion charge model can be modified to any charge model bysubstituting V gt with V gsteff,cv as in the following( ) = Q( )QVgtV gsteff , CV(4.3.12)Capacitance now becomes4-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Methodology for Intrinsic Capacitance <strong>Model</strong>ing( ) = C( V )C Vgtgsteff,CV∂VVgsteff,CVgs,ds,bs(4.3.13)<strong>The</strong> “inversion” charge is always non-zero, even in the accumul<strong>at</strong>ionregion. However, it decreases exponentially with g<strong>at</strong>e bias in thesubthreshold region.(b) Transition from accumul<strong>at</strong>ion to depletion regionAn effective fl<strong>at</strong>band voltage V FBeff is used to smooth out the transitionbetween accumul<strong>at</strong>ion and depletion regions. It affects the accumul<strong>at</strong>ionand depletion charges(4.3.14)2{ V3 + V3+ 4δ3vfb} whereV3= vfb −Vgs+ Vbseff−δ3;= 0. VVFBeff = vfb − 0.5δ302vfb= Vth−Φs−K1oxΦ −Vsbseff(4.3.15)In <strong>BSIM3v3.2.2</strong>, a bias-independent V th is used to calcul<strong>at</strong>e vfb for capMod = 1, 2and 3. For capMod = 0, Vfbcv is used instead (refer to the appendices).Qsub0( )Q =−W L C V −vfbacc active active ox FBeff( V −V−V−V)2K ⎛⎜41oxgs FBeff= −WactiveLactiveCox⋅ −1+1+⎜22 K⎝1oxgsteffCV ,(4.3.16)(4.3.17)bseff⎞⎟⎟⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-11


Methodology for Intrinsic Capacitance <strong>Model</strong>ing(c) Transition from linear to s<strong>at</strong>ur<strong>at</strong>ion regionAn effective V ds , V cveff , is used to smooth out the transition between linearand s<strong>at</strong>ur<strong>at</strong>ion regions. It affects the inversion charge.(4.3.18)2{ V4+ V4+ 4δ4Vds<strong>at</strong>,cv} whereV4= Vds<strong>at</strong>, cv−Vds−δ4;0. VVcveff = Vds<strong>at</strong>, cv−0.5δ4= 02⎛⎜2 2A A Vbulkbulk cveffQinv =−Wactive LactiveC ⎜⎛' ⎞ 'ox ⎜Vgsteff− Vcveff ⎟ +,cv⎜⎝2 ⎠ ⎛ Abulk'⎜12⎜Vgsteff−,cv V⎝⎝ 2(4.3.19)cveff⎞⎟⎟⎞⎟⎟⎠⎟⎠δQ = W L Csub active active ox⎛⎜⎜1−A⎜ 2⎜⎝bulk( 1−)2bulk bulk cveff' A ' A ' VVcveff−⎛ Abulk'12⎜Vgsteff,cv− V⎝ 2(4.3.20)Below is a list <strong>of</strong> all the three partitioning schemes for the inversioncharge:(i) <strong>The</strong> 50/50 charge partitionThis is the simplest <strong>of</strong> all partitioning schemes in which the inversioncharges are assumed to be contributed equally from the source and drainnodes.cveff⎞⎟⎟⎞⎟⎟⎠⎟⎠4-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Methodology for Intrinsic Capacitance <strong>Model</strong>ing⎛⎜W L C AAactive active oxQs Qd QinvVbulk= = =− ⎜ '05 .gsteff− Vcveff+⎜,cv2 2 ⎛⎜12⎜V⎝⎝(4.3.21)2 2bulk'Vcveffgsteff ,cvAbulk'− V2(ii) <strong>The</strong> 40/60 channel-charge partitionThis is the most physical model <strong>of</strong> the three partitioning schemes in whichthe channel charges are alloc<strong>at</strong>ed to the source and drain terminals byassuming a linear dependence on the position y.cveff⎞⎟⎟⎞⎟⎟⎠⎟⎠Lactive⎧⎛Qs = Wactive qc⎜−⎪∫ 10⎝⎨Lactive⎪yQd = Wactive qc⎩⎪ ∫L0activeyLactivedy⎞⎟ dy⎠(4.3.22)WQs= −⎛2⎜V⎝activegsteffCVLactiveCoxAbulk'− V2cveff(4.3.23)2 23⎞( A ' V ) − ( A V ) ⎟⎠⎛ 3 4 2 2⎜V−+2 gsteffCVVgsteffCVAbulk'VcveffVgsteffCVbulk cveffbulk'⎞ ⎝ 3315⎟⎠(4.3.24)Wactive Lactive CoxQd=−⎛ 3 5Vgsteffcv Vgsteff ( A V ) V ( A V ) ( A V )A cv 22 13⎜ −bulk' cveff+gsteff cv bulk' cveff−bulk'⎞2cveff ⎟⎛bulk'⎞ ⎝ 35 ⎠2⎜Vgsteffcv− Vcveff ⎟⎝ 2 ⎠cveff(iii) <strong>The</strong> 0/100 Charge PartitionIn fast transient simul<strong>at</strong>ions, the use <strong>of</strong> a quasi-st<strong>at</strong>ic model may result in alarge unrealistic drain current spike. This partitioning scheme is developedto artificially suppress the drain current spike by assigning all inversion<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-13


Charge-Thickness Capacitance <strong>Model</strong>charges in the s<strong>at</strong>ur<strong>at</strong>ion region to the source electrode. Notice th<strong>at</strong> thischarge partitioning scheme will still give drain current spikes in the linearregion and aggrav<strong>at</strong>e the source current spike problem.⎛( )Q W L C V A V A V2⎜gstefcvf bulk cveff bulk cveffs=− ⎜gsteff,c ''active active ox+ −2 4 ⎛ Abulk'⎜24⎜Vgsteff,cgsteffcv− V⎝⎝ 2cveff(4.3.25)⎞⎟⎟⎞⎟⎠⎟⎠⎛⎜Q W L C V A V A Vd=− ⎜gsteff,c3 'active active ox− +2 4 ⎛ A⎜8⎜Vgsteffcv−⎝⎝gsteff,c2( ' )gsteffcv bulk cveff bulk cveffbulk2'V(4.3.26)cveff⎞⎟⎟⎞⎟⎠⎟⎠(d) Bias-dependent threshold voltage effects on capacitanceConsistent Vth between DC and CV is important for acur<strong>at</strong>e circuitsimul<strong>at</strong>ion. capMod=1, 2 and 3 use the same Vth as in the DC model.<strong>The</strong>refore, those effects, such as body bias, DIBL and short-channel effectsare all explicitly considered in capacitance modeling. In deriving thecapacitances additional differenti<strong>at</strong>ions are needed to account for thedependence <strong>of</strong> threshold voltage on drain and substr<strong>at</strong>e biases.4.4 Charge-Thickness Capacitance <strong>Model</strong>Current <strong>MOSFET</strong> models in SPICE generally overestim<strong>at</strong>e the intrinsiccapacitance and usually are not smooth <strong>at</strong> V fb and V th . <strong>The</strong> discrepancy is more4-14 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Charge-Thickness Capacitance <strong>Model</strong>pronounced in thinner T ox devices due to the assumption <strong>of</strong> inversion andaccumul<strong>at</strong>ion charge being loc<strong>at</strong>ed <strong>at</strong> the interface. <strong>The</strong> charge sheet model or theband-gap(E g )-reduction model <strong>of</strong> quantum effect [31] improves theand thusthe V th modeling but is inadequ<strong>at</strong>e for CV because they assume zero chargethickness. Numerical quantum simul<strong>at</strong>ion results in Figure 4-1 indic<strong>at</strong>e thesignificant charge thickness in all regions <strong>of</strong> the CV curves [32].This section describes the concepts used in the charge-thichness model (CTM).Appendix B lists all charge equ<strong>at</strong>ions. A full report and anaylsis <strong>of</strong> the CTM modelcan be found in [32].Φ BNormalized Charge Distribution0.150.100.050.00EDCgg (µF/cm 2 )1.0E0.8 A0.60.4B DC0.2C -4 -3 -2 -1 0 1 2 3Vgs (V)ATox=30ANsub=5e17cm -3B0 20 40 60Depth (A)Figure 4-1. Charge distribution from numerical quantum simul<strong>at</strong>ions show significantcharge thickness <strong>at</strong> various bias conditions shown in the inset.CTM is a charge-based model and therefore starts with the DC charge thicknss,X DC . <strong>The</strong> charge thicknss introduces a capacitance in series with C ox as illustr<strong>at</strong>edin Figure 4-2, resulting in an effective C ox , C oxeff . Based on numerical selfconsistentsolution <strong>of</strong> Shrodinger, Poisson and Fermi-Dirac equ<strong>at</strong>ions, universaland analytical X DC models have been developed. C oxeff can be expressed as<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-15


Charge-Thickness Capacitance <strong>Model</strong>(4.4.1)CoxeffC=CoxoxCcen+ Ccenwhereε=CsicenXDCVgsVgseΦsCoxPoly depl.Cacc Cdep CinvBFigure 4-2. Charge-thickness capacitance concept in CTM. V gse accounts for the polydepletion effect.(i) X DC for accumul<strong>at</strong>ion and depletion<strong>The</strong> DC charge thickness in the accumul<strong>at</strong>ion and depletion regions can beexpressed by [32](4.4.2)XDC1= L3debye⎡ ⎛ Nsubexp⎢acde⋅⎜⎢⎣⎝ 2×1016⎟⎠⎞−0.25V⋅gs−VTbsox−Vfb⎤⎥⎥⎦4-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Charge-Thickness Capacitance <strong>Model</strong>where X DC is in the unit <strong>of</strong> cm and (V gs - V bs - vfb) / T ox has a unit <strong>of</strong> MV/cm. <strong>The</strong>model parameter acde is introduced for better fitting with a default value <strong>of</strong> 1. Fornumerical st<strong>at</strong>bility, (4.4.2) is replaced by (4.4.3)XDC=X1−22( X0+ X0+ δxXmax)max4(4.4.3)whereX0= X max−X DC−δxand X max =L debye /3; =10 -3 T ox .(ii) X DC <strong>of</strong> inversion chargeδ x( )<strong>The</strong> inversion charge layer thichness [32] can be formul<strong>at</strong>ed asXDC=⎛V1+⎜⎝gsteff1.9 × 10−7+ 4Vth−vfb−2ΦB⎞⎟2Tox ⎠0.7[ cm](4.4.4)Through vfb in (4.3.30), this equ<strong>at</strong>ion is found to be applicable to N + or P + poly-Sig<strong>at</strong>es as well as other future g<strong>at</strong>e m<strong>at</strong>erials. Figure 4-3 illustr<strong>at</strong>es the universality <strong>of</strong>(4.3.30) as verified by the numerical quantum simul<strong>at</strong>ions, where the x-axe<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-17


Charge-Thickness Capacitance <strong>Model</strong>represents the boundary conditions (the average <strong>of</strong> the electric fields <strong>at</strong> the top andthe bottom <strong>of</strong> the charge layers) <strong>of</strong> the Schrodinger and the Poisson equ<strong>at</strong>ions.Inversion Charge Thickness (A)7060Tox=20A Tox=50ATox=70A Tox=90ASolid - Nsub=2e16cm -350Open - Nsub=2e17cm -340+ - Nsub=2e18cm -330<strong>Model</strong>2010-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0(Vgsteff+4(Vth-Vfb-2Φ f))/Tox (MV/cm)Figure 4-3. For all Tox and Nsub, modeled inversion charge thickness agrees with numericalquantum simul<strong>at</strong>ions.(iii) Body charge thichness in inversionIn inversion region, the body charge thickness effect is accur<strong>at</strong>ely modeled byincluding the devi<strong>at</strong>ion <strong>of</strong> the surface potential from 2 [32]Φ sΦ B( V , + 2K12Φ)⎛V⎞⎜gsteffcv , ⋅gsteffcv ox BΦ =Φ −2Φ= ln+ 1⎟δ s Bνt⎜2⎟⎝moin⋅K1oxνt ⎠(4.4.5)where the model parameter moin (defaulting to 15) is introduced for better fit todifferent technologies. <strong>The</strong> inversion channel charge density is therefore derivedasqinv,( V )= −Coxeff⋅gsteffcv−Φ δ(4.4.6)4-18 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extrinsic CapacitanceFigure 4-4 illustr<strong>at</strong>es the universality <strong>of</strong> CTM model by compariing C gg <strong>of</strong> a SiON/Ta 2 O 5 /TiN g<strong>at</strong>e stack structure with an equivalent T ox <strong>of</strong> 1.8nm between d<strong>at</strong>a,numerical quantum simul<strong>at</strong>ion and modeling [32].10.07.5Measured Q.M. simul<strong>at</strong>ion CTM18A equivalent SiO 2thicknessCgg (pF)5.02.50.0TiN60A Ta 2O 58A SiONp-Si-2 -1 0 1 2 3Vgs (V)Figure 4-4. Universality <strong>of</strong> CTM is demonstr<strong>at</strong>ed by modeling the Cgg <strong>of</strong> 1.8nm equivalentT ox N<strong>MOSFET</strong> with SiON/Ta 2 O 5 /TiN g<strong>at</strong>e stack.4.5 Extrinsic Capacitance4.5.1 Fringing Capacitance<strong>The</strong> fringing capacitance consists <strong>of</strong> a bias independent outer fringingcapacitance and a bias dependent inner fringing capacitance. Only the biasindependent outer fringing capacitance is implemented. Experimentally, itis virtually impossible to separ<strong>at</strong>e this capacitance with the overlapcapacitance. Nonetheless, the outer fringing capacitance can betheoretically calcul<strong>at</strong>ed by2ε⎛ toxCF ln⎜1+π ⎝ Tpoly=ox⎞⎟⎠(4.5.1)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-19


Extrinsic Capacitancewhere t poly is equal to4×10 – 7m. CF is a model parameter.4.5.2 Overlap CapacitanceAn accur<strong>at</strong>e model for the overlap capacitance is essential. This isespecially true for the drain side where the effect <strong>of</strong> the capacitance isamplified by the transistor gain. In old capacitance models this capacitanceis assumed to be bias independent. However, experimental d<strong>at</strong>a show th<strong>at</strong>the overlap capacitance changes with g<strong>at</strong>e to source and g<strong>at</strong>e to drainbiases. In a single drain structure or the heavily doped S/D to g<strong>at</strong>e overlapregion in a LDD structure the bias dependence is the result <strong>of</strong> depleting thesurface <strong>of</strong> the source and drain regions. Since the modul<strong>at</strong>ion is expected tobe very small, we can model this region with a constant capacitance.However in LDD <strong>MOSFET</strong>s a substantial portion <strong>of</strong> the LDD region canbe depleted, both in the vertical and l<strong>at</strong>eral directions. This can lead to alarge reduction <strong>of</strong> overlap capacitance. This LDD region can be inaccumul<strong>at</strong>ion or depletion. We use a single equ<strong>at</strong>ion for both regions byusing such smoothing parameters as V gs,overlap and V gd,overlap for the sourceand drain side, respectively. Unlike the case with the intrinsic capacitance,the overlap capacitances are reciprocal. In other words, C gs,overlap =C sg,overlap and C gd,overlap = C dg,overlap .(i) Source Overlap Charge(4.5.2)QW⎛+ CGS1⎜V⎜⎝CKAPPA⎛− ⎜−1+2 ⎜⎝V ⎞⎞gs overlap1−⎟⎟CKAPPA⎟⎟⎠⎠overlap s= CGS0⋅Vgsgs−Vgs,overlap4 ,active4-20 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extrinsic Capacitance2( V + δ ) 4δ⎞ ⎟,0. V1Vgs , overlap= ⎜ ⎛ Vgs+ δ1−gs 1 1 1= 022⎝+ δ⎠(4.5.3)where CKAPPA is a model parameter. CKAPPA is rel<strong>at</strong>ed to the averagedoping <strong>of</strong> LDD region byCKAPPA=2εqNsi LDD2Cox<strong>The</strong> typical value for N LDD is 5×10 17 cm -3 .(ii) Drain Overlap ChargeQW⎛+ CGD1⎜V⎜⎝(iii) G<strong>at</strong>e Overlap Charge(4.5.4)CKAPPA ⎛− ⎜−1+2 ⎜⎝(4.5.5)V ⎞⎞gd overlap1−⎟⎟CKAPPA ⎟⎟⎠⎠overlap , d4,= CGD0⋅Vgdgd−Vgd, overlapactive2( V + δ ) 4δ⎟⎞, 0. V⎠1Vgd , overlap= ⎜ ⎛ Vgd+ δ 1 −gd 11 1 = 022 ⎝+ δQoverlap , g(4.5.6)( Q + Q + ( CGB ⋅ L ) ⋅V)= −0overlap , doverlap , sactivegbIn the above expressions, if CGS0 and CGD0 (the overlap capacitancesbetween the g<strong>at</strong>e and the heavily doped source/drain regions, respectively)are not given, they are calcul<strong>at</strong>ed according to the followingCGS0 = (DLC*C ox ) - CGS1 (if DLC is given and DLC > 0)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-21


Extrinsic CapacitanceCGS0 = 0 (if the previously calcul<strong>at</strong>ed CGS0 is less than 0)CGS0 = 0.6 Xj*C ox (otherwise)CGD0 = (DLC*C ox ) - CGD1 (if DLC is given and DLC > CGD1/Cox)CGD0 = 0 (if previously calcul<strong>at</strong>ed CDG0 is less than 0)CGD0 = 0.6 Xj*C ox (otherwise).CGB0 in Eqn. (4.5.6) is a model parameter, which represents the g<strong>at</strong>e-tobodyoverlap capacitance per unit channel length.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 4-22


CHAPTER 5: Non-Quasi St<strong>at</strong>ic <strong>Model</strong>5.1 Background Inform<strong>at</strong>ionAs <strong>MOSFET</strong>’s become more performance-driven, the need for accur<strong>at</strong>e prediction<strong>of</strong> circuit performance near cut-<strong>of</strong>f frequency or under very rapid transientoper<strong>at</strong>ion becomes more essential. However, most SPICE <strong>MOSFET</strong> models arebased on Quasi-St<strong>at</strong>ic (QS) assumptions. In other words, the finite charging timefor the inversion layer is ignored. When these models are used with 40/60 chargepartitioning, unrealistically drain current spikes frequently occur [33]. In addition,the inability <strong>of</strong> these models to accur<strong>at</strong>ely simul<strong>at</strong>e channel charge re-distributioncauses problems in fast switched-capacitor type circuits. Many Non-Quasi-St<strong>at</strong>ic(NQS) models have been published, but these models (1) assume, unrealistically,no velocity s<strong>at</strong>ur<strong>at</strong>ion and (2) are complex in their formul<strong>at</strong>ions with considerablesimul<strong>at</strong>ion time.5.2 <strong>The</strong> NQS <strong>Model</strong><strong>The</strong> NQS model has been re-implemented in BSIM3v3.2 to improve thesimul<strong>at</strong>ion performance and accuracy. This model is based on the channel chargerelax<strong>at</strong>ion time approach. A new charge partitioning scheme is used, which isphysically consistent with quasi-st<strong>at</strong>ic CV model.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-1


<strong>Model</strong> Formul<strong>at</strong>ion5.3 <strong>Model</strong> Formul<strong>at</strong>ion<strong>The</strong> channel <strong>of</strong> a <strong>MOSFET</strong> is analogous to a bias dependent RC distributedtransmission line (Figure 5-1a). In the Quasi-St<strong>at</strong>ic (QS) approach, the g<strong>at</strong>ecapacitor node is lumped with both the external source and drain nodes (Figure 5-1b). This ignores the finite time for the channel charge to build-up. One Non-Quasi-St<strong>at</strong>ic (NQS) solution is to represent the channel as n transistors in series(Figure 5-1c). This model, although accur<strong>at</strong>e, comes <strong>at</strong> the expense <strong>of</strong> simul<strong>at</strong>iontime. <strong>The</strong> NQS model in <strong>BSIM3v3.2.2</strong> was based on the circuit <strong>of</strong> Figure 5-1d.This Elmore equivalent circuit models channel charge build-up accur<strong>at</strong>ely becauseit retains the lowest frequency pole <strong>of</strong> the original RC network (Figure 5-1a). <strong>The</strong>NQS model has two parameters as follows. <strong>The</strong> model flag, nqsMod, is now onlyan element (instance) parameter, no longer a model parameter. To turn on the NQSmodel, set nqsMod=1 in the instance st<strong>at</strong>ement. nqsMod defaults to zero with thismodel <strong>of</strong>f.Name Function Default UnitnqsMod Instance flag for the NQS model 0 noneelm Elmore constant 5 noneTable 5-1. NQS model and instance parameters.5-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


<strong>Model</strong> Formul<strong>at</strong>ionFigure 5-1. Quasi-St<strong>at</strong>ic and Non-Quasi-St<strong>at</strong>ic models for SPICE analysis.5.3.1 SPICE sub-circuit for NQS modelFigure 5-2 gives the RC-subcircuit <strong>of</strong> NQS model for SPICEimplement<strong>at</strong>ion. An additional node, Q def (t), is cre<strong>at</strong>ed to keep track <strong>of</strong> theamount <strong>of</strong> deficit/surplus channel charge necessary to reach theequilibrium based on the relax<strong>at</strong>ion time approach. <strong>The</strong> bias-dependentresistance R (1/R=G tau ) can be determined from the RC time constant ( τ ).<strong>The</strong> current source i cheq (t) results from the equilibrium channel charge,Q cheq (t). <strong>The</strong> capacitor C is multiplied by a scaling factor C fact (with <strong>at</strong>ypical value <strong>of</strong>1×10 – 9) to improve simul<strong>at</strong>ion accuracy. Q def now becomesQdef() t = V × ( 1⋅C)deffact(5.3.1)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-3


<strong>Model</strong> Formul<strong>at</strong>ionQ defi cheq (t)C=1×C factV defRFigure 5-2. NQS sub-circuit for SPICE implement<strong>at</strong>ion.5.3.2 Relax<strong>at</strong>ion time<strong>The</strong> relax<strong>at</strong>ion time is modeled as two components: and . Instrong inversion region, is determined by , which, in turn, isdetermined by the Elmore resistance R elm ; in subthreshold region,domin<strong>at</strong>es.τis expressed byτ τ driftτ diffτ τ driftτ diff1 1 1= +τ τ diffτ drift(5.3.2)R elm in strong inversoin is calcul<strong>at</strong>ed from the channel resistance asRelm2effch2effL L= ≈elm⋅µ Q elm⋅µQ00cheq(5.3.3)5-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


<strong>Model</strong> Formul<strong>at</strong>ionwhere elm is the Elmore constant <strong>of</strong> the RC channel network with <strong>at</strong>heorectical value <strong>of</strong> 5. <strong>The</strong> quasi-st<strong>at</strong>ic (or equilibrium) channel chargeQ cheq (t), equal to Q inv <strong>of</strong> capMod=0, 1, 2 and 3, is used to approxim<strong>at</strong>e theactual channel charge Q ch (t).τ driftis formul<strong>at</strong>ed as(5.3.4)τdrift≈ Relm⋅CoxWeffLeffCoxWeffL≈elm⋅µ Q03effcheqτ diffhas the form <strong>of</strong>(5.3.5)τdiff2qL eff=16 ⋅ µ kT05.3.3 Terminal charging current and charge partitioningConsidering both the transport and charging component, the total currentrel<strong>at</strong>ed to the terminals D, G and S can be written as∂Qd, g,siD , G,S() t = ID,G,S( DC)+∂t() t(5.3.6)Based on the relax<strong>at</strong>ion time approach, the terminal charge andcorresponding charging current can be formul<strong>at</strong>ed by<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-5


<strong>Model</strong> Formul<strong>at</strong>ionQdef() t = Q () t − Q () tcheqch(5.3.7)and∂Q∂Qdef∂td,g,s∂t() t ∂Q() t Q () t=cheq∂t−defτ() tQ () t= D,G,Sxpartdefτ(5.3.8a)(5.3.8b)where D,G,S xpart are the NQS channel charge partitioning number forterminals D, G and S, respectively; D xpart + S xpart = 1 and G xpart = -1. It isimportant for D xpart and S xpart to be consistent with the quasi-st<strong>at</strong>ic chargepartitioning number XPART and to be equal (D xpart = S xpart ) <strong>at</strong> V ds =0 (whichis not the case in the previous version), where the transistor oper<strong>at</strong>ion modechanges (between forward and reverse modes). Based on thisconsider<strong>at</strong>ion, D xpart is now formul<strong>at</strong>ed asQdD xpart = =Qd+ QsQQdcheq(5.3.9)which is now bias dependent. For example, the derivities <strong>of</strong> D xpart can beeasily obtained based on the quasi-st<strong>at</strong>ic results:dDxpartdVi= 1Qcheq( S ⋅C−D⋅C)xpartdixpartsi(5.3.10)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-6


<strong>Model</strong> Formul<strong>at</strong>ionwhere i represents the four terminals and C di and C si are the intrinsiccapacitances calcul<strong>at</strong>ed from the quasi-st<strong>at</strong>ic analysis. <strong>The</strong> correspondingvalues for S xpart can be derived from the fact th<strong>at</strong> D xpart + S xpart = 1.In the accumul<strong>at</strong>ion and depletion regions, Eq. (5.3.9) is simplified asIf XPART < 0.5, D xpart = 0.4;Else if XPART > 0.5, D xpart = 0.0;Else D xpart = 0.5;5.3.4 Deriv<strong>at</strong>ion <strong>of</strong> nodal conductancesThis section gives some examples <strong>of</strong> how to derive the nodal conductancesrel<strong>at</strong>ed to NQS for transient analysis. By noting th<strong>at</strong> τ = RC, G tau can bederived asCGtau=τfact(5.3.11)τis given by Eq. (5.3.2). Based on Eq. (5.3.8b), the self-conductance dueto NQS <strong>at</strong> the transistor node D can be derived asdDdVxpartd⋅( G ⋅V)taudef+ Dxpart⋅VdefdG⋅dVtaud(5.3.12)<strong>The</strong> trans-conductance due to NQS on the node D rel<strong>at</strong>ive to the node <strong>of</strong>Q def can be derived asDxpart ⋅Gtau(5.3.13)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-7


<strong>Model</strong> Formul<strong>at</strong>ionOther conductances can also be obtained in a similar way.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 5-8


CHAPTER 6: Parameter ExtractionParameter extraction is an important part <strong>of</strong> model development. Many differentextraction methods have been developed [23, 24]. <strong>The</strong> appropri<strong>at</strong>e methodology dependson the model and on the way the model is used. A combin<strong>at</strong>ion <strong>of</strong> a local optimiz<strong>at</strong>ion andthe group device extraction str<strong>at</strong>egy is adopted for parameter extraction.6.1 Optimiz<strong>at</strong>ion str<strong>at</strong>egy<strong>The</strong>re are two main, different optimiz<strong>at</strong>ion str<strong>at</strong>egies: global optimiz<strong>at</strong>ion andlocal optimiz<strong>at</strong>ion. Global optimiz<strong>at</strong>ion relies on the explicit use <strong>of</strong> a computer t<strong>of</strong>ind one set <strong>of</strong> model parameters which will best fit the available experimental(measured) d<strong>at</strong>a. This methodology may give the minimum average error betweenmeasured and simul<strong>at</strong>ed (calcul<strong>at</strong>ed) d<strong>at</strong>a points, but it also tre<strong>at</strong>s each parameteras a "fitting" parameter. Physical parameters extracted in such a manner mightyield values th<strong>at</strong> are not consistent with their physical intent.In local optimiz<strong>at</strong>ion, many parameters are extracted independently <strong>of</strong> oneanother. Parameters are extracted from device bias conditions which correspond todominant physical mechanisms. Parameters which are extracted in this mannermight not fit experimental d<strong>at</strong>a in all the bias conditions. Nonetheless, theseextraction methodologies are developed specifically with respect to a givenparameter’s physical meaning. If properly executed, it should, overall, predict<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-1


Extraction Str<strong>at</strong>egiesdevice performance quite well. Values extracted in this manner will now havesome physical relevance.6.2 Extraction Str<strong>at</strong>egiesTwo different str<strong>at</strong>egies are available for extracting parameters: the single deviceextraction str<strong>at</strong>egy and group device extraction str<strong>at</strong>egy. In single deviceextraction str<strong>at</strong>egy, experimental d<strong>at</strong>a from a single device is used to extract acomplete set <strong>of</strong> model parameters. This str<strong>at</strong>egy will fit one device very well butwill not fit other devices with different geometries. Furthermore, single deviceextraction str<strong>at</strong>egy can not guarantee th<strong>at</strong> the extracted parameters are physical. Ifonly one set <strong>of</strong> channel length and width is used, parameters rel<strong>at</strong>ed to channellength and channel width dependencies can not be determined.BSIM3v3 uses group device extraction str<strong>at</strong>egy. This requires measured d<strong>at</strong>a fromdevices with different geometries. All devices are measured under the same biasconditions. <strong>The</strong> resulting fit might not be absolutely perfect for any single devicebut will be better for the group <strong>of</strong> devices under consider<strong>at</strong>ion.6.3 Extraction Procedure6.3.1 Parameter Extraction RequirementsOne large size device and two sets <strong>of</strong> smaller-sized devices are needed toextract parameters, as shown in Figure 6-1.6-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureWOrthogonal Set <strong>of</strong> W and LW minL minLarge W and LLFigure 6-1. Device geometries used for parameter extraction<strong>The</strong> large-sized device (W ≥ 10µm, L ≥ 10µm) is used to extractparameters which are independent <strong>of</strong> short/narrow channel effects andparasitic resistance. Specifically, these are: mobility, the large-sized devicethreshold voltage V Tideal , and the body effect coefficients K 1 and K 2 whichdepend on the vertical doping concentr<strong>at</strong>ion distribution. <strong>The</strong> set <strong>of</strong> deviceswith a fixed large channel width but different channel lengths are used toextract parameters which are rel<strong>at</strong>ed to the short channel effects. Similarly,the set <strong>of</strong> devices with a fixed, long channel length but different channelwidths are used to extract parameters which are rel<strong>at</strong>ed to narrow width<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-3


Extraction Procedureeffects. Regardless <strong>of</strong> device geometry, each device will have to bemeasured under four, distinct bias conditions.(1) I ds vs. V gs @ V ds = 0.05V with different V bs .(2) I ds vs. V ds @ V bs = 0V with different V gs .(3) I ds vs. V gs @ V ds = V dd with different V bs . (V dd is the maximum drainvoltage).(4) I ds vs. V ds @ V bs = V bb with different V gs . (|V bb | is the maximum bodybias).6.3.2 Optimiz<strong>at</strong>ion<strong>The</strong> optimiz<strong>at</strong>ion process recommended is a combin<strong>at</strong>ion <strong>of</strong> Newton-Raphson's iter<strong>at</strong>ion and linear-squares fit <strong>of</strong> either one, two, or threevariables. This methodology was discussed by M. C. Jeng [18]. A flowchart <strong>of</strong> this optimiz<strong>at</strong>ion process is shown in Figure 6-2. <strong>The</strong> modelequ<strong>at</strong>ion is first arranged in a form suitable for Newton-Raphson's iter<strong>at</strong>ionas shown in Eq. (6.3.1):(6.3.1)( m) ( m) ( m)∂f P P P f P P P sim fP P m ∂ fsim m ∂ fsim P sim mexp ( 10, 20,30) − ( 1 , 2 , 3 ) = ∆ 1 + ∆ 2 + ∆P3∂ 1 ∂ P2∂ P3<strong>The</strong> variable f sim () is the objective function to be optimized. <strong>The</strong> variablef exp () stands for the experimental d<strong>at</strong>a. P 10 , P 20, and P 30 represent thedesired extracted parameter values. P(m) 1 , P2(m)and P(m) 3 representparameter values after the mth iter<strong>at</strong>ion.6-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureInitial Guess <strong>of</strong>Parameters Pi<strong>Model</strong> Equ<strong>at</strong>ionsMeasured D<strong>at</strong>aLinear Least SqusreFit Routine∆ P i(m+1) (m)P = P + ∆ Pi i i∆ P iP i(m)< δnoSTOPyesFigure 6-2. Optimiz<strong>at</strong>ion flow.To change Eq. (6.3.1) into a form th<strong>at</strong> a linear least-squares fit routine canbe used (i.e. in a form <strong>of</strong> y = a + bx1 + cx2), both sides <strong>of</strong> the Eq. (6.3.1)are divided by ∂f sim / ∂P 1 . This gives the change in P 1 , ∆P(m) 1 , for the nextiter<strong>at</strong>ion such th<strong>at</strong>:<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-5


Extraction Procedure( m + 1) ( m) ( m)i i iP = P + ∆P(6.3.2)where i=1, 2, 3 for this example. <strong>The</strong> (m+1) parameter values for P 2 and P 3are obtained in an identical fashion. This process is repe<strong>at</strong>ed until theincremental parameter change in parameter values ∆P i (m) are smaller thana pre-determined value. At this point, the parameters P 1 , P 2 , and P 3 havebeen extracted.6.3.3 Extraction RoutineBefore any model parameters can be extracted, some process parametershave to be provided. <strong>The</strong>y are listed below in Table 6-1:Input Parameters NamesT oxN chTL drawnW drawnX jPhysical MeaningG<strong>at</strong>e oxide thicknessDoping concentr<strong>at</strong>ion in the channelTemper<strong>at</strong>ure <strong>at</strong> which the d<strong>at</strong>a is takenMask level channel lengthMask level channel widthJunction depthTable 6-1. Prerequisite input parameters prior to extraction process.<strong>The</strong> parameters are extracted in the following procedure. <strong>The</strong>se proceduresare based on a physical understanding <strong>of</strong> the model and based on local6-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction Procedureoptimiz<strong>at</strong>ion. (Note: Fitting Target D<strong>at</strong>a refers to measurement d<strong>at</strong>a usedfor model extraction.)Step 1Extracted Parameters & Fitting TargetD<strong>at</strong>aV th0 , K 1 , K 2Fitting Target Exp. D<strong>at</strong>a: V th (V bs )Device & Experimental D<strong>at</strong>aLarge Size Device (Large W & L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsExtracted Experimental D<strong>at</strong>a V th (V bs )Step 2Extracted Parameters & Fitting TargetD<strong>at</strong>aµ 0 , U a , U b , U cFitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aLarge Size Device (Large W & L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 3Extracted Parameters & Fitting TargetD<strong>at</strong>aLint, R ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bs<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-7


Extraction ProcedureStep 4Extracted Parameters & Fitting TargetD<strong>at</strong>aWint, R ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed L& Different W).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> DifferentV bsStep 5Extracted Parameters & Fitting TargetD<strong>at</strong>aR dsw ,Prwb, WrDevices & Experimental D<strong>at</strong>aR ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: R ds (R dsw , W,V bs )Step 6Extracted Parameters & Fitting TargetD<strong>at</strong>aD vt0 , D vt1 , D vt2 , NlxOneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed W &Different L).V th (V bs , L, W)6-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureStep 7Extracted Parameters & Fitting TargetD<strong>at</strong>aD vt0w , D vt1w , D vt2wOneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed L &Different W).V th (V bs , L, W)Step 8Extracted Parameters & Fitting TargetD<strong>at</strong>aK 3 , K 3b , W 0OneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed L &Different W).V th (V bs , L, W)Step 9Extracted Parameters & Fitting TargetD<strong>at</strong>aV <strong>of</strong>f , Nfactor, C dsc , C dscbFitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 10Extracted Parameters & Fitting TargetD<strong>at</strong>aDevices & Experimental D<strong>at</strong>a<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-9


Extraction ProcedureC dscdFitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )One Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V bs = V bb <strong>at</strong> Different V dsStep 11Extracted Parameters & Fitting TargetD<strong>at</strong>adWbFitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 12Extracted Parameters & Fitting TargetD<strong>at</strong>av s<strong>at</strong> , A 0 , A gsFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsA 1 , A 2 (PMOS Only)Fitting Target Exp. D<strong>at</strong>a V as<strong>at</strong> (V gs )Step 13Extracted Parameters & Fitting TargetD<strong>at</strong>aDevices & Experimental D<strong>at</strong>a6-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureB0, B1Fitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WOne Set <strong>of</strong> Devices (Large and Fixed L &Different W).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 14Extracted Parameters & Fitting TargetD<strong>at</strong>adWgFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed L &Different W).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 15Extracted Parameters & Fitting TargetD<strong>at</strong>aP scbe1 , P scbe2Fitting Target Exp. D<strong>at</strong>a: R out (V gs , V ds )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 16Extracted Parameters & Fitting TargetD<strong>at</strong>aP clm , θ(D rout , P diblc1 , P diblc2 , L), PavgFitting Target Exp. D<strong>at</strong>a: R out (V gs , V ds )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gs<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-11


Extraction ProcedureStep 17Extracted Parameters & Fitting TargetD<strong>at</strong>aD rout , P dibl1c , Pdiblc2Fitting Target Exp. D<strong>at</strong>a: θ(D rout ,P diblc1 , P diblc2 , L)Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).θ(D rout , P diblc1 , P diblc2 , L)Step 18Extracted Parameters & Fitting TargetD<strong>at</strong>aP dibl1cbFitting Target Exp. D<strong>at</strong>a: θ(D rout ,P diblc1 , P diblc2 , L, V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ fixed V gs <strong>at</strong> Different V bsStep 19Extracted Parameters & Fitting TargetD<strong>at</strong>aθ dibl (Eta0, Etab, Dsub, L)Fitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = V dd <strong>at</strong> Different V bs6-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureStep 20Extracted Parameters & Fitting TargetD<strong>at</strong>aEta0, Etab, DsubFitting Target Exp. D<strong>at</strong>a: θ dibl (Eta0,Etab, L)Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = V dd <strong>at</strong> Different V bsStep 21Extracted Parameters & Fitting TargetD<strong>at</strong>aKetaFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = V bb <strong>at</strong> Different V gsStep 22Extracted Parameters & Fitting TargetD<strong>at</strong>aα 0 , α 1 , β 0Fitting Target Exp. D<strong>at</strong>a: I sub (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = V bb <strong>at</strong> Different V ds<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-13


Notes on Parameter Extraction6.4 Notes on Parameter Extraction6.4.1 Parameters with Special NotesBelow is a list <strong>of</strong> model parameters which have special notes for parameterextraction.Symbols usedin SPICEDescriptionDefaultValueUnitNotesVth0Threshold voltage for large W and L device @Vbs=0V0.7 (NMOS)-0.7 (PMOS)K1 First order body effect coefficient 0.5 V 1/2 nI-2K2 Second order body effect coefficient 0 none nI-2Vbm Maximum applied body bias -3 V nI-2Nch Channel doping concentr<strong>at</strong>ion 1.7E17 1/cm 3 nI-3gamma1 Body-effect coefficient near interface calcul<strong>at</strong>ed V 1/2 nI-4gamma2 Body-effect coefficient in the bulk calcul<strong>at</strong>ed V 1/2 nI-5Vbx Vbs <strong>at</strong> which the depletion width equals xt calcul<strong>at</strong>ed V nI-6CgsoCgdoNon-LDD source-g<strong>at</strong>e overlap capacitance perchannel lengthNon-Ldd drain-g<strong>at</strong>e overlap capacitance perchannel lengthVnI-1calcul<strong>at</strong>ed F/m nC-1calcul<strong>at</strong>ed F/m nC-2CF Fringing field capacitance calcul<strong>at</strong>ed F/m nC-3Table 6-2. Parameters with notes for extraction.6-14 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Notes on Parameter Extraction6.4.2 Explan<strong>at</strong>ion <strong>of</strong> NotesnI-1. If V th0 is not specified, it is calcul<strong>at</strong>ed byVth0= VFB+ Φs+ K1Φswhere the model parameter V FB =-1.0. If V th0 is specified, V FB defaults toVVKFB=th0−Φs−1ΦsnI-2. If K 1 and K 2 are not given, they are calcul<strong>at</strong>ed based onK= γ2− K212Φ−sV bmK2( γ1−γ)( Φs−Vbx− Φs)Φs( Φs−Vbm− Φs) + Vbm=22whereΦ sis calcul<strong>at</strong>ed byΦs=2Vtm0⎛ Nln⎜⎝ nich⎟ ⎞⎠Vtm 0=kBTqnom<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-15


Notes on Parameter Extractionni= 1.45 × 1010⎛ Tnom⎞⎜ ⎟⎝ 300.15 ⎠1.5⎛Eexp⎜ 21.5565981 −⎝2Vg 0tm0⎞⎟⎠Eg02nom−47.02×10 T= 1.16 −T + 1108nomwhere E g0 is the energy bandgap <strong>at</strong> temper<strong>at</strong>ure T nom .nI-3. If N ch is not given andγ 1is given, N ch is calcul<strong>at</strong>ed fromNch2γ1C=2qε2oxsiIf both and N ch are not given, N ch defaults to 1.7e23 m -3 and isγ 1γ 1calcul<strong>at</strong>ed from N ch .nI-4. Ifγ 1is not given, it is calcul<strong>at</strong>ed byγ1 =2qεNCsioxchnI-5. Ifγ 2is not given, it is calcul<strong>at</strong>ed byγ2=2qεNCsioxsubnI-6. If V bx is not given, it is calcul<strong>at</strong>ed byqNchX2εsi2t= Φs−Vbx6-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Notes on Parameter ExtractionnC-1. If Cgso is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er 0),Cgso = dlc * Cox - Cgs1if (Cgso < 0)Cgso = 0else Cgso = 0.6 Xj * CoxnC-2. If Cgdo is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er than 0),Cgdo = dlc * Cox - Cgd1if (Cgdo < 0)Cgdo = 0else Cgdo = 0.6 Xj * CoxnC-3. If CF is not given then it is calcul<strong>at</strong>ed usin byCF = ⎛ + × −2ε⎞⎜1 4 10 7oxln⎟π ⎝ Tox ⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-17


Notes on Parameter Extraction<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-18


CHAPTER 6: Parameter ExtractionParameter extraction is an important part <strong>of</strong> model development. Many differentextraction methods have been developed [23, 24]. <strong>The</strong> appropri<strong>at</strong>e methodology dependson the model and on the way the model is used. A combin<strong>at</strong>ion <strong>of</strong> a local optimiz<strong>at</strong>ion andthe group device extraction str<strong>at</strong>egy is adopted for parameter extraction.6.1 Optimiz<strong>at</strong>ion str<strong>at</strong>egy<strong>The</strong>re are two main, different optimiz<strong>at</strong>ion str<strong>at</strong>egies: global optimiz<strong>at</strong>ion andlocal optimiz<strong>at</strong>ion. Global optimiz<strong>at</strong>ion relies on the explicit use <strong>of</strong> a computer t<strong>of</strong>ind one set <strong>of</strong> model parameters which will best fit the available experimental(measured) d<strong>at</strong>a. This methodology may give the minimum average error betweenmeasured and simul<strong>at</strong>ed (calcul<strong>at</strong>ed) d<strong>at</strong>a points, but it also tre<strong>at</strong>s each parameteras a "fitting" parameter. Physical parameters extracted in such a manner mightyield values th<strong>at</strong> are not consistent with their physical intent.In local optimiz<strong>at</strong>ion, many parameters are extracted independently <strong>of</strong> oneanother. Parameters are extracted from device bias conditions which correspond todominant physical mechanisms. Parameters which are extracted in this mannermight not fit experimental d<strong>at</strong>a in all the bias conditions. Nonetheless, theseextraction methodologies are developed specifically with respect to a givenparameter’s physical meaning. If properly executed, it should, overall, predict<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-1


Extraction Str<strong>at</strong>egiesdevice performance quite well. Values extracted in this manner will now havesome physical relevance.6.2 Extraction Str<strong>at</strong>egiesTwo different str<strong>at</strong>egies are available for extracting parameters: the single deviceextraction str<strong>at</strong>egy and group device extraction str<strong>at</strong>egy. In single deviceextraction str<strong>at</strong>egy, experimental d<strong>at</strong>a from a single device is used to extract acomplete set <strong>of</strong> model parameters. This str<strong>at</strong>egy will fit one device very well butwill not fit other devices with different geometries. Furthermore, single deviceextraction str<strong>at</strong>egy can not guarantee th<strong>at</strong> the extracted parameters are physical. Ifonly one set <strong>of</strong> channel length and width is used, parameters rel<strong>at</strong>ed to channellength and channel width dependencies can not be determined.BSIM3v3 uses group device extraction str<strong>at</strong>egy. This requires measured d<strong>at</strong>a fromdevices with different geometries. All devices are measured under the same biasconditions. <strong>The</strong> resulting fit might not be absolutely perfect for any single devicebut will be better for the group <strong>of</strong> devices under consider<strong>at</strong>ion.6.3 Extraction Procedure6.3.1 Parameter Extraction RequirementsOne large size device and two sets <strong>of</strong> smaller-sized devices are needed toextract parameters, as shown in Figure 6-1.6-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureWOrthogonal Set <strong>of</strong> W and LW minL minLarge W and LLFigure 6-1. Device geometries used for parameter extraction<strong>The</strong> large-sized device (W ≥ 10µm, L ≥ 10µm) is used to extractparameters which are independent <strong>of</strong> short/narrow channel effects andparasitic resistance. Specifically, these are: mobility, the large-sized devicethreshold voltage V Tideal , and the body effect coefficients K 1 and K 2 whichdepend on the vertical doping concentr<strong>at</strong>ion distribution. <strong>The</strong> set <strong>of</strong> deviceswith a fixed large channel width but different channel lengths are used toextract parameters which are rel<strong>at</strong>ed to the short channel effects. Similarly,the set <strong>of</strong> devices with a fixed, long channel length but different channelwidths are used to extract parameters which are rel<strong>at</strong>ed to narrow width<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-3


Extraction Procedureeffects. Regardless <strong>of</strong> device geometry, each device will have to bemeasured under four, distinct bias conditions.(1) I ds vs. V gs @ V ds = 0.05V with different V bs .(2) I ds vs. V ds @ V bs = 0V with different V gs .(3) I ds vs. V gs @ V ds = V dd with different V bs . (V dd is the maximum drainvoltage).(4) I ds vs. V ds @ V bs = V bb with different V gs . (|V bb | is the maximum bodybias).6.3.2 Optimiz<strong>at</strong>ion<strong>The</strong> optimiz<strong>at</strong>ion process recommended is a combin<strong>at</strong>ion <strong>of</strong> Newton-Raphson's iter<strong>at</strong>ion and linear-squares fit <strong>of</strong> either one, two, or threevariables. This methodology was discussed by M. C. Jeng [18]. A flowchart <strong>of</strong> this optimiz<strong>at</strong>ion process is shown in Figure 6-2. <strong>The</strong> modelequ<strong>at</strong>ion is first arranged in a form suitable for Newton-Raphson's iter<strong>at</strong>ionas shown in Eq. (6.3.1):(6.3.1)( m) ( m) ( m)∂f P P P f P P P sim fP P m ∂ fsim m ∂ fsim P sim mexp ( 10, 20,30) − ( 1 , 2 , 3 ) = ∆ 1 + ∆ 2 + ∆P3∂ 1 ∂ P2∂ P3<strong>The</strong> variable f sim () is the objective function to be optimized. <strong>The</strong> variablef exp () stands for the experimental d<strong>at</strong>a. P 10 , P 20, and P 30 represent thedesired extracted parameter values. P(m) 1 , P2(m)and P(m) 3 representparameter values after the mth iter<strong>at</strong>ion.6-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureInitial Guess <strong>of</strong>Parameters Pi<strong>Model</strong> Equ<strong>at</strong>ionsMeasured D<strong>at</strong>aLinear Least SqusreFit Routine∆ P i(m+1) (m)P = P + ∆ Pi i i∆ P iP i(m)< δnoSTOPyesFigure 6-2. Optimiz<strong>at</strong>ion flow.To change Eq. (6.3.1) into a form th<strong>at</strong> a linear least-squares fit routine canbe used (i.e. in a form <strong>of</strong> y = a + bx1 + cx2), both sides <strong>of</strong> the Eq. (6.3.1)are divided by ∂f sim / ∂P 1 . This gives the change in P 1 , ∆P(m) 1 , for the nextiter<strong>at</strong>ion such th<strong>at</strong>:<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-5


Extraction Procedure( m + 1) ( m) ( m)i i iP = P + ∆P(6.3.2)where i=1, 2, 3 for this example. <strong>The</strong> (m+1) parameter values for P 2 and P 3are obtained in an identical fashion. This process is repe<strong>at</strong>ed until theincremental parameter change in parameter values ∆P i (m) are smaller thana pre-determined value. At this point, the parameters P 1 , P 2 , and P 3 havebeen extracted.6.3.3 Extraction RoutineBefore any model parameters can be extracted, some process parametershave to be provided. <strong>The</strong>y are listed below in Table 6-1:Input Parameters NamesT oxN chTL drawnW drawnX jPhysical MeaningG<strong>at</strong>e oxide thicknessDoping concentr<strong>at</strong>ion in the channelTemper<strong>at</strong>ure <strong>at</strong> which the d<strong>at</strong>a is takenMask level channel lengthMask level channel widthJunction depthTable 6-1. Prerequisite input parameters prior to extraction process.<strong>The</strong> parameters are extracted in the following procedure. <strong>The</strong>se proceduresare based on a physical understanding <strong>of</strong> the model and based on local6-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction Procedureoptimiz<strong>at</strong>ion. (Note: Fitting Target D<strong>at</strong>a refers to measurement d<strong>at</strong>a usedfor model extraction.)Step 1Extracted Parameters & Fitting TargetD<strong>at</strong>aV th0 , K 1 , K 2Fitting Target Exp. D<strong>at</strong>a: V th (V bs )Device & Experimental D<strong>at</strong>aLarge Size Device (Large W & L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsExtracted Experimental D<strong>at</strong>a V th (V bs )Step 2Extracted Parameters & Fitting TargetD<strong>at</strong>aµ 0 , U a , U b , U cFitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aLarge Size Device (Large W & L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 3Extracted Parameters & Fitting TargetD<strong>at</strong>aLint, R ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bs<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-7


Extraction ProcedureStep 4Extracted Parameters & Fitting TargetD<strong>at</strong>aWint, R ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed L& Different W).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> DifferentV bsStep 5Extracted Parameters & Fitting TargetD<strong>at</strong>aR dsw ,Prwb, WrDevices & Experimental D<strong>at</strong>aR ds (R dsw , W, V bs )Fitting Target Exp. D<strong>at</strong>a: R ds (R dsw , W,V bs )Step 6Extracted Parameters & Fitting TargetD<strong>at</strong>aD vt0 , D vt1 , D vt2 , NlxOneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed W &Different L).V th (V bs , L, W)6-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureStep 7Extracted Parameters & Fitting TargetD<strong>at</strong>aD vt0w , D vt1w , D vt2wOneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed L &Different W).V th (V bs , L, W)Step 8Extracted Parameters & Fitting TargetD<strong>at</strong>aK 3 , K 3b , W 0OneFitting Target Exp. D<strong>at</strong>a: V th (V bs , L, W)Devices & Experimental D<strong>at</strong>aSet <strong>of</strong> Devices (Large and Fixed L &Different W).V th (V bs , L, W)Step 9Extracted Parameters & Fitting TargetD<strong>at</strong>aV <strong>of</strong>f , Nfactor, C dsc , C dscbFitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 10Extracted Parameters & Fitting TargetD<strong>at</strong>aDevices & Experimental D<strong>at</strong>a<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-9


Extraction ProcedureC dscdFitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )One Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V bs = V bb <strong>at</strong> Different V dsStep 11Extracted Parameters & Fitting TargetD<strong>at</strong>adWbFitting Target Exp. D<strong>at</strong>a: Strong Inversionregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = 0.05V <strong>at</strong> Different V bsStep 12Extracted Parameters & Fitting TargetD<strong>at</strong>av s<strong>at</strong> , A 0 , A gsFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsA 1 , A 2 (PMOS Only)Fitting Target Exp. D<strong>at</strong>a V as<strong>at</strong> (V gs )Step 13Extracted Parameters & Fitting TargetD<strong>at</strong>aDevices & Experimental D<strong>at</strong>a6-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureB0, B1Fitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WOne Set <strong>of</strong> Devices (Large and Fixed L &Different W).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 14Extracted Parameters & Fitting TargetD<strong>at</strong>adWgFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed L &Different W).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 15Extracted Parameters & Fitting TargetD<strong>at</strong>aP scbe1 , P scbe2Fitting Target Exp. D<strong>at</strong>a: R out (V gs , V ds )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gsStep 16Extracted Parameters & Fitting TargetD<strong>at</strong>aP clm , θ(D rout , P diblc1 , P diblc2 , L), PavgFitting Target Exp. D<strong>at</strong>a: R out (V gs , V ds )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = 0V <strong>at</strong> Different V gs<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-11


Extraction ProcedureStep 17Extracted Parameters & Fitting TargetD<strong>at</strong>aD rout , P dibl1c , Pdiblc2Fitting Target Exp. D<strong>at</strong>a: θ(D rout ,P diblc1 , P diblc2 , L)Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).θ(D rout , P diblc1 , P diblc2 , L)Step 18Extracted Parameters & Fitting TargetD<strong>at</strong>aP dibl1cbFitting Target Exp. D<strong>at</strong>a: θ(D rout ,P diblc1 , P diblc2 , L, V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ fixed V gs <strong>at</strong> Different V bsStep 19Extracted Parameters & Fitting TargetD<strong>at</strong>aθ dibl (Eta0, Etab, Dsub, L)Fitting Target Exp. D<strong>at</strong>a: Subthresholdregion I ds (V gs , V bs )Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = V dd <strong>at</strong> Different V bs6-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Extraction ProcedureStep 20Extracted Parameters & Fitting TargetD<strong>at</strong>aEta0, Etab, DsubFitting Target Exp. D<strong>at</strong>a: θ dibl (Eta0,Etab, L)Devices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V gs @ V ds = V dd <strong>at</strong> Different V bsStep 21Extracted Parameters & Fitting TargetD<strong>at</strong>aKetaFitting Target Exp. D<strong>at</strong>a: I s<strong>at</strong> (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = V bb <strong>at</strong> Different V gsStep 22Extracted Parameters & Fitting TargetD<strong>at</strong>aα 0 , α 1 , β 0Fitting Target Exp. D<strong>at</strong>a: I sub (V gs , V bs )/WDevices & Experimental D<strong>at</strong>aOne Set <strong>of</strong> Devices (Large and Fixed W &Different L).I ds vs. V ds @ V bs = V bb <strong>at</strong> Different V ds<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-13


Notes on Parameter Extraction6.4 Notes on Parameter Extraction6.4.1 Parameters with Special NotesBelow is a list <strong>of</strong> model parameters which have special notes for parameterextraction.Symbols usedin SPICEDescriptionDefaultValueUnitNotesVth0Threshold voltage for large W and L device @Vbs=0V0.7 (NMOS)-0.7 (PMOS)K1 First order body effect coefficient 0.5 V 1/2 nI-2K2 Second order body effect coefficient 0 none nI-2Vbm Maximum applied body bias -3 V nI-2Nch Channel doping concentr<strong>at</strong>ion 1.7E17 1/cm 3 nI-3gamma1 Body-effect coefficient near interface calcul<strong>at</strong>ed V 1/2 nI-4gamma2 Body-effect coefficient in the bulk calcul<strong>at</strong>ed V 1/2 nI-5Vbx Vbs <strong>at</strong> which the depletion width equals xt calcul<strong>at</strong>ed V nI-6CgsoCgdoNon-LDD source-g<strong>at</strong>e overlap capacitance perchannel lengthNon-Ldd drain-g<strong>at</strong>e overlap capacitance perchannel lengthVnI-1calcul<strong>at</strong>ed F/m nC-1calcul<strong>at</strong>ed F/m nC-2CF Fringing field capacitance calcul<strong>at</strong>ed F/m nC-3Table 6-2. Parameters with notes for extraction.6-14 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Notes on Parameter Extraction6.4.2 Explan<strong>at</strong>ion <strong>of</strong> NotesnI-1. If V th0 is not specified, it is calcul<strong>at</strong>ed byVth0= VFB+ Φs+ K1Φswhere the model parameter V FB =-1.0. If V th0 is specified, V FB defaults toVVKFB=th0−Φs−1ΦsnI-2. If K 1 and K 2 are not given, they are calcul<strong>at</strong>ed based onK= γ2− K212Φ−sV bmK2( γ1−γ)( Φs−Vbx− Φs)Φs( Φs−Vbm− Φs) + Vbm=22whereΦ sis calcul<strong>at</strong>ed byΦs=2Vtm0⎛ Nln⎜⎝ nich⎟ ⎞⎠Vtm 0=kBTqnom<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-15


Notes on Parameter Extractionni= 1.45 × 1010⎛ Tnom⎞⎜ ⎟⎝ 300.15 ⎠1.5⎛Eexp⎜ 21.5565981 −⎝2Vg 0tm0⎞⎟⎠Eg02nom−47.02×10 T= 1.16 −T + 1108nomwhere E g0 is the energy bandgap <strong>at</strong> temper<strong>at</strong>ure T nom .nI-3. If N ch is not given andγ 1is given, N ch is calcul<strong>at</strong>ed fromNch2γ1C=2qε2oxsiIf both and N ch are not given, N ch defaults to 1.7e23 m -3 and isγ 1γ 1calcul<strong>at</strong>ed from N ch .nI-4. Ifγ 1is not given, it is calcul<strong>at</strong>ed byγ1 =2qεNCsioxchnI-5. Ifγ 2is not given, it is calcul<strong>at</strong>ed byγ2=2qεNCsioxsubnI-6. If V bx is not given, it is calcul<strong>at</strong>ed byqNchX2εsi2t= Φs−Vbx6-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Notes on Parameter ExtractionnC-1. If Cgso is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er 0),Cgso = dlc * Cox - Cgs1if (Cgso < 0)Cgso = 0else Cgso = 0.6 Xj * CoxnC-2. If Cgdo is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er than 0),Cgdo = dlc * Cox - Cgd1if (Cgdo < 0)Cgdo = 0else Cgdo = 0.6 Xj * CoxnC-3. If CF is not given then it is calcul<strong>at</strong>ed usin byCF = ⎛ + × −2ε⎞⎜1 4 10 7oxln⎟π ⎝ Tox ⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-17


Notes on Parameter Extraction<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 6-18


CHAPTER 7: Benchmark Test ResultsA series <strong>of</strong> benchmark tests [26] have been performed to check the model robustness,accuracy and performance. Although not all the benchmark test results are included in thischapter, the most important ones are demonstr<strong>at</strong>ed.7.1 Benchmark Test TypesTable 7-1 lists the various benchmark test conditions and associ<strong>at</strong>ed figure numberincluded in this section. Notice th<strong>at</strong> for each plot, smooth transitions are apparentfor current, transconductance, and source to drain resistance for all transitionregions regardless <strong>of</strong> bias conditions.Device Size Bias Conditions NotesFigureNumberW/L=20/5 Ids vs. Vgs @ Vbs=0V; Vds=0.05, 3.3V Log scale 7-1W/L=20/5 Ids vs. Vgs @ Vbs=0V; Vds=0.05, 3.3V Linear scale 7-2W/L=20/0.5 Ids vs. Vgs @ Vbs=0V; Vds=0.05, 3.3V Log scale 7-3W/L=20/0.5 Ids vs. Vgs @ Vbs=0V; Vds=0.05, 3.3V Linear scale 7-4W/L=20/5 Ids vs. Vgs @ Vds=0.05V; Vbs=0 to -3.3V Log scale 7-5W/L=20/5 Ids vs. Vgs @ Vds=0.05V; Vbs=0 to -3.3V; W/L=20/5Linear scale 7-6W/L=20/0.5 Ids vs. Vgs @ Vds=0.05V; Vbs=0 to -3.3V Log scale 7-7W/L=20/0.5 Ids vs. Vgs @ Vds=0.05V; Vbs=0 to -3.3V Linear scale 7-8W/L=20/5 Gm/Ids vs. Vgs @ Vds=0.05V, 3-3V; Vbs=0V Linear scale 7-9<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 7-1


Benchmark Test ResultsDevice Size Bias Conditions NotesFigureNumberW/L=20/0.5 Gm/Ids vs. Vgs @ Vds=0.05V, 3-3V; Vbs=0V Linear scale 7-10W/L=20/5 Gm/Ids vs. Vgs @ Vds=0.05V; Vbs=0V to - Linear scale 7-113.3VW/L=20/0.5 Gm/Ids vs. Vgs @ Vds=0.05V; Vbs=0V to - Linear scale 7-123.3VW/L=20/0.5 Ids vs. Vds @Vbs=0V; Vgs=0.5V, 0.55V, 0.6V Linear scale 7-13W/L=20/5 Ids vs. Vds @Vbs=0V; Vgs=1.15V to 3.3V Linear scale 7-14W/L=20/0.5 Ids vs. Vds @Vbs=0V; Vgs=1.084V to 3.3V Linear scale 7-15W/L=20/0.5 Rout vs. Vds @ Vbs=0V; Vgs=1.084V to 3.3V Linear scale 7-16Table 7-1. Benchmark test inform<strong>at</strong>ion.7.2 Benchmark Test ResultsAll <strong>of</strong> the figures listed in Table 7-1 are shown below. Unless otherwise indic<strong>at</strong>ed,symbols represent measurement d<strong>at</strong>a and lines represent the results <strong>of</strong> the model.All <strong>of</strong> these plots serve to demonstr<strong>at</strong>e the robustness and continuous behavior <strong>of</strong>the unified model expression for not only I ds but G m , G m /I ds , and R out as well.7-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Benchmark Test ResultsIds (A)1.E-021.E-031.E-041.E-051.E-061.E-071.E-081.E-091.E-101.E-111.E-12Vds=3.3VVds=0.05VSolid lines: <strong>Model</strong> resultsSymbols: Exp.d<strong>at</strong>aW/L=20/5Tox=9 nmVbs=0V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-1. Continuity from subthreshold to strong inversion (log scale).Ids (A)1.8E-031.6E-031.4E-031.2E-031.0E-038.0E-046.0E-044.0E-042.0E-040.0E+00Solid lines: <strong>Model</strong> resultSymbols: Exp.d<strong>at</strong>aW/L=20/5Tox=9 nmVbs=0VVds=3.3V0.0 1.0 2.0 3.0 4.0Vgs (V)Vds=0.05VFigure 7-2. Continuity from subthreshold to strong inversion (linear scale).<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 7-3


Benchmark Test ResultsIds (A)1.0E+001.0E-011.0E-021.0E-031.0E-041.0E-051.0E-061.0E-071.0E-081.0E-091.0E-101.0E-111.0E-12Vds=3.3VSolid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/0.5Tox=9 nmVbs=0VVds=0.05V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-3. Same as Figure 7-1 but for a short channel device.Ids (A)1.0E-029.0E-038.0E-037.0E-036.0E-035.0E-034.0E-033.0E-032.0E-031.0E-030.0E+00Solid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/0.5Tox=9 nmVbs=0VVds=3.3VVds=0.05V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-4. Same as Figure 7-2 but for a short channel device.7-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Benchmark Test ResultsIds (A)1.E-031.E-041.E-051.E-061.E-071.E-081.E-091.E-101.E-111.E-12Vbs=0VVbs=-3.3VSolid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/5Tox=9 nmVds=0.05V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-5. Subthreshold to strong inversion continuity as a function <strong>of</strong> V bs .Ids (A)7.E-056.E-055.E-054.E-053.E-052.E-051.E-05Solid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/5Tox=9 nmVds=0.05VVbs=0VVbs=-3.3V0.E+000.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-6. Subthreshold to strong inversion continuity as a function <strong>of</strong> V bs .<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 7-5


Benchmark Test ResultsIds (A)1.E-031.E-041.E-051.E-061.E-071.E-081.E-091.E-101.E-111.E-12Vbs=0VVbs=-3.3VSolid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/0.5Tox=9 nmVds=0.05V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-7. Same as Figure 7-5 but for a short channel device.Ids (A)5.E-045.E-044.E-044.E-043.E-043.E-042.E-042.E-041.E-045.E-050.E+00W/L=20/0.5Tox=9 nmVds=0.05VVbs=0VVbs=-3.3V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-8. Same as Figure 7-6 but for a short channel device.7-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Benchmark Test Resultsgm/Ids (mho/A)3025201510Vds=3.3VSolid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/5Tox=9 nmVbs=0V50Vds=0.05V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-9. G m /I ds continuity from subthreshold to strong inversion regions.30gm/Ids (mho/A)252015105Vds=3.3VVds=0.05VW/L=20/0.5Tox=9 nmVbs=0V00.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-10. Same as Figure 7-9 but for a short channel device.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 7-7


Benchmark Test Resultsgm/Ids (mho/A)353025201510Solid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/5Tox=9 nmVds=0.05VVbs=-3.3V50Vbs=0V0.0 1.0 2.0 3.0 4.0Vgs(V)Figure 7-11. G m /I ds continuity as a function <strong>of</strong> V bs .Gm/Id3530252015Solid lines: <strong>Model</strong> resultsSymbols: Exp. d<strong>at</strong>aW/L=20/0.5Tox=9 nmVds=0.05V1050Vbs=0VVbs=-1.98V0.0 1.0 2.0 3.0 4.0Vgs (V)Figure 7-12. Same as Figure 7-11 but for a short channel device.7-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Benchmark Test ResultsIds (A)8.E-057.E-056.E-055.E-054.E-053.E-05Solid lines:BSIM3v3Dotted lines:BSIM3v2W/L=20/0.5Vgs =0.6V2.E-051.E-050.E+00Vgs=0.55VVgs=0.5V0.0 0.2 0.4 0.6 0.8Vds (V)Figure 7-13. Comparison <strong>of</strong> G ds with BSIM3v2.Ids (A)1.6E-031.4E-031.2E-031.0E-038.0E-046.0E-044.0E-04W/L=20/5Tox=9 nmVbs=0VVgs=3.3V2.0E-040.0E+00Vgs=1.15V0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Vds (V)Figure 7-14. Smooth transitions from linear to s<strong>at</strong>ur<strong>at</strong>ion regimes.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 7-9


Benchmark Test ResultsIds (A)9.E-038.E-037.E-036.E-035.E-034.E-033.E-032.E-031.E-030.E+00W/L=20/0.5Tox=9nmVbs=0VVgs=3.3VVgs=1.084V0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5Vds (V)Figure 7-15. Same as Figure 7-14 but for a short channel device.Rout (Ohm)2.0E+051.8E+051.6E+051.4E+051.2E+051.0E+058.0E+046.0E+044.0E+042.0E+040.0E+00W/L=20/0.5Tox=9 nmVbs=0VVgs=1.084VVgs=3.3V0.0 1.0 2.0 3.0 4.0Vds (V)Figure 7-16. Continuous and non-neg<strong>at</strong>ive R out behavior.7-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


CHAPTER 8: Noise <strong>Model</strong>ing8.1 Flicker NoiseSymbolsused inequ<strong>at</strong>ion8.1.1 Parameters<strong>The</strong>re exist two models for flicker noise modeling. One is called SPICE2flicker noise model; the other is BSIM3 flicker noise model [35-36]. <strong>The</strong>flicker noise model parameters are listed in Table 8-1.Symbolsused inSPICEDescription Default UnitNoia noia Noise parameter A (NMOS) 1e20 none(PMOS) 9.9e18Noib noib Noise parameter B (NMOS) 5e4 none(PMOS) 2.4e3Noic noic Noise parameter C (NMOS) -1.4e-12 none(PMOS) 1.4e-12Em em S<strong>at</strong>ur<strong>at</strong>ion field 4.1e7 V/mAf af Flick noise exponent 1 noneEf ef Flicker noise frequency1 noneexponentKf kf Flicker noise coefficient 0 noneTable 8-1. Flicker noise model parameters.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 8-1


Flicker Noise8.1.2 Formul<strong>at</strong>ions1. For SPICE2 modeloxeffafdsKfINoise density=2C L fef(8.1)where f is the frequency.2. For BSIM3 modelIf V gs > V th + 0.12q kTµNoise density=C L fV+W2ox efftm ds2eff⋅ LeffeffefIds⎛ ⎛⎜N0+ 2 × 10Noia⋅log⎜8⋅10⎝ ⎝ Nl+ 2 × 10I ∆Lclmef 8f ⋅10Noia + Noib⋅Nl⋅1414( N + 2 × 1014 ) 2l+ Noic⋅N⎞⎟+ Noib⋅⎠2l(8.2)Noic 2 2( N0− Nl) + ( N0− Nl)2⎞⎟⎠where V tm is the thermal voltage, µ eff is the effective mobiity <strong>at</strong> the givenbias condition, and L eff and W eff are the effective channel length and width,respectively. <strong>The</strong> parameter N 0 is the charge density <strong>at</strong> the source sidegiven byN0C=ox( V −V)gsqth(8.3)<strong>The</strong> parameter N l is the charge density <strong>at</strong> the drain end given by8-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Flicker NoiseNlC=ox( V −V− min( V , V ))gsthqdsds<strong>at</strong>(8.4)∆L clm is the channel length reduction due to channel length modul<strong>at</strong>ion andgiven by⎧ ⎛V⎪ ⎜⎪Litl⋅log⎜∆Lclm= ⎨ ⎜⎪⎝⎪⎩02×vs<strong>at</strong>Es<strong>at</strong>=µeffds−VLitlE( otherwise)ds<strong>at</strong>s<strong>at</strong>+ Em⎞⎟⎟⎟⎠(8.5)( forV> V )dsds<strong>at</strong>whereLitl 3X j T ox= wiOtherwiseSNoise density=Slimitlimit× S+ Swi(8.6)Where, S limit is the flicker noise calcul<strong>at</strong>ed <strong>at</strong> V gs = V th + 0.1 and S wi is givenby<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 8-3


Channel <strong>The</strong>rmal NoiseSNoia⋅Vtmwi=efWeffLeff⋅ f2ds⋅ I⋅4×1036(8.7)8.2 Channel <strong>The</strong>rmal Noise<strong>The</strong>re also exist two models for channel thermal noise modeling. One is calledSPICE2 thermal noise model. <strong>The</strong> other is BSIM3v3 thermal noise model. Each <strong>of</strong>these can be toggled through the model flag, noiMod.1. For SPICE2 thermal noise model8kBT3( G + G + G )mbswhere G m , G mbs and G ds are the transconductances.2. For BSIM3v3 thermal noise model [37]m4 k TµB eff2effLQinvds(8.8)(8.9)Q inv is the inversion channel charge computed from the capacitance models(capMod = 0, 1, 2 or 3).8-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Noise <strong>Model</strong> Flag8.3 Noise <strong>Model</strong> FlagA model flag, noiMod, is used to select different combin<strong>at</strong>ion <strong>of</strong> flicker andthermal noise models discussed above with possible optoins described in Table 8-2.noimodflag Flicker noise model<strong>The</strong>rmal noisemodel1 SPICE2 SPICE22 BSIM3v3 BSIM3v33 BSIM3v3 SPICE24 SPICE2 BSIM3v3Table 8-2. noiMod flag for differnet noise models.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 8-5


Noise <strong>Model</strong> Flag<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 8-6


CHAPTER 9: MOS Diode <strong>Model</strong>ing9.1 Diode IV <strong>Model</strong><strong>The</strong> diode IV modeling now supports a resistance-free diode model and a currentlimitingfe<strong>at</strong>ure by introducing a new model parameter ijth (defaulting to 0.1A). Ifijth is explicitly specified to be zero, a resistance-free diode model will betriggered; otherwise two critical junction votages Vjsm for S/B diode and Vjdm forD/B diode will be computed from the value <strong>of</strong> ijth.9.1.1 <strong>Model</strong>ing the S/B DiodeIf the S/B s<strong>at</strong>ur<strong>at</strong>ion current I sbs is larger than zero, the following equ<strong>at</strong>ionsis used to calcul<strong>at</strong>e the S/B diode current I bs .Case 1 - ijth is equal to zero: A resistance-free diode.Ibs= I⎛⎜⎝⎛⎜⎝V⎞⎟⎠⎞⎟⎠bssbsexp 1 +⎜ ⎜−NV ⎟tmGVmin bs(9.1)whereNV tm= NJ ⋅ KbT q⁄; NJ is a model parameter, known as the junctionemission coefficient.Case 2 - ijth is non-zero: Current limiting fe<strong>at</strong>ure.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-1


Diode IV <strong>Model</strong>If V bs < VjsmIbs= I⎛⎜⎝⎛⎜⎝V⎞⎟⎠⎞⎟⎠bssbs⎜exp⎜−1+NV ⎟tmGminVbs(9.2)otherwiseIbsijth+I= ijth+NVtmsbs( Vbs−Vjsm) + GminVbs(9.3)with Vjsm computed by⎛ ijth ⎞Vjsm = NV⎜⎟tmln + 1⎝ Isbs⎠<strong>The</strong> s<strong>at</strong>ur<strong>at</strong>ion current I sbs is given byI = A J + P Jsbssssssw(9.4)where J s is the junction s<strong>at</strong>ur<strong>at</strong>ion current density, A S is the source junctionarea, J ssw is the sidewall junction s<strong>at</strong>ur<strong>at</strong>ion current density, P s is theperimeter <strong>of</strong> the source junction. J s and J ssw are functions <strong>of</strong> temper<strong>at</strong>ureand can be written asJs= Js0⎛ E⎜⎜ Vexp⎜⎜⎝g0tm0E−Vgtm⎛ T+ XTIln⎜⎝TNJnom⎞ ⎞⎟⎟⎠ ⎟⎟⎟⎠(9.5)9-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Diode IV <strong>Model</strong>Jssw= Js0sw⎛ E⎜⎜ Vexp⎜⎜⎝g0tm0E−Vgtm⎛ T+ XTIln⎜⎝TNJnom⎞ ⎞⎟⎟⎠ ⎟⎟⎟⎠(9.6)<strong>The</strong> energy band-gap E g0 and E g <strong>at</strong> the nominal and oper<strong>at</strong>ing temper<strong>at</strong>uresare expressed by (9.7a) and (9.7b), repectively:Eg 02nom−47.02 × 10 T= 1.16 −T + 1108nom(9.7a)E g= 1.16 −−47.02 × 10 TT + 11082(9.7b)In the above deriv<strong>at</strong>oins, J s0 is the s<strong>at</strong>ur<strong>at</strong>ion current density <strong>at</strong> T nom . If J s0 isnot given,J s0= 1×10 – 4<strong>at</strong> T nom , with a default value <strong>of</strong> zero.If I sbs is not positive, I bs is calcul<strong>at</strong>ed byA/m 2 . J s0sw is the sidewall s<strong>at</strong>ur<strong>at</strong>ion current densityIbs= G min⋅V bs(9.8)9.1.2 <strong>Model</strong>ing the D/B DiodeIf the D/B s<strong>at</strong>ur<strong>at</strong>ion current I sbd is larger than zero, the following equ<strong>at</strong>ionsis used to calcul<strong>at</strong>e the D/B diode current I bd .Case 1 - ijth is equal to zero: A resistance-free diode.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-3


Diode IV <strong>Model</strong>(9.9)Ibd= I⎛⎜⎝⎛⎜⎝V⎞⎟⎠⎞⎟⎠bdsbdexp 1 +⎜ ⎜−NV ⎟tmGminVbdCase 2 - ijth is non-zero: Current limiting fe<strong>at</strong>ure.If V bd < Vjdm(9.10)otherwiseIbd= I⎛⎜⎝⎛⎜⎝V⎞⎟⎠⎞⎟⎠bdsbd⎜exp ⎜−1+NV⎟tmGminVbdIbdijth + I= ijth +NVtmsbd( Vbd−Vjdm) + GminVbd(9.11)with Vjdm computed by⎛ ijth ⎞Vjdm = NV ln⎜ + 1⎟tm⎝ Isbd⎠<strong>The</strong> s<strong>at</strong>ur<strong>at</strong>ion current I sbd is given by(9.12)I = A J + PsbddsdJsswwhere A d is the drain junction area and P d is the perimeter <strong>of</strong> the drainjunction. If I sbd is not positive, I bd is calcul<strong>at</strong>ed by(9.13)Ibd= G min⋅V bd<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-4


MOS Diode Capacitance <strong>Model</strong>9.1.3 <strong>Model</strong> Parameter Lists<strong>The</strong> diode DC model parameters are listed in Table 9-1.Symbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default UnitJs0 js S<strong>at</strong>ur<strong>at</strong>ion current density 1e-4 A/m 2Js0sw jssw Side wall s<strong>at</strong>ur<strong>at</strong>ion current density 0 A/mNJ nj Emission coefficient 1 noneXTI xti Junction current temper<strong>at</strong>ure exponent3.0 nonecoefficientijth ijth Limiting current 0.1 ATable 9-1. MOS diode model parameters.9.2 MOS Diode Capacitance <strong>Model</strong>Source and drain junction capacitance can be divided into two components:the junction bottom area capacitance C jb and the junction peripherycapacitance C jp . <strong>The</strong> formula for both the capacitances is similar, but withdifferent model parameters. <strong>The</strong> equ<strong>at</strong>ion <strong>of</strong> C jb includes the parameterssuch as C j , M j , and P b . <strong>The</strong> equ<strong>at</strong>ion <strong>of</strong> C jp includes the parameters such asC jsw , M jsw , P bsw , C jswg , M jswg , and P bswg .9.2.1 S/B Junction Capacitance<strong>The</strong> S/B junction capacitance can be calcul<strong>at</strong>ed byIf P s > W eff(9.14)sjbs( Ps−Weff) CjbsswWeffCjbsswgCapbs = A C ++<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-5


MOS Diode Capacitance <strong>Model</strong>Otherwise(9.15)Capbs = A C + P Csjbssjbsswgwhere C jbs is the unit bottom area capacitance <strong>of</strong> the S/B junction,C jbssw is the periphery capacitance <strong>of</strong> the S/B junction along thefield oxide side, and C jbsswg is the periphery capacitance <strong>of</strong> the S/Bjunction along the g<strong>at</strong>e oxide side.If C j is larger than zero, C jbs is calcul<strong>at</strong>ed byif V bs < 0(9.16)Cjbs⎛ V ⎞bsCj⎜ −P⎟⎝ b ⎠−M j= 1⎟ ⎟ ⎠otherwise(9.17)⎛C ⎜jbsCj1 + M⎝V=bsjPb⎞If C jsw is large than zero, C jbssw is calcul<strong>at</strong>ed byif V bs < 09-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


MOS Diode Capacitance <strong>Model</strong>(9.18)CjbsswCjsw⎛ V⎜ −⎝ Pbsbsw⎞⎟⎠−M jsw= 1⎟ ⎟ ⎠otherwise(9.19)⎛C ⎜jbsswCjsw1 + M⎝V=bsjswPbsw⎞If C jswg is larger than zero, C jbsswg is calcul<strong>at</strong>ed byif V bs < 0(9.20)CjbsswgCjswg⎛⎜V −⎝ Pbsbswg−⎞⎟⎠M jswg= 1⎟ ⎟ ⎠otherwise(9.21)⎛C ⎜jbsswgCjswg1 + M⎝V=bsjswgPbswg⎞9.2.2 D/B Junction Capacitance<strong>The</strong> D/B junction capacitance can be calcul<strong>at</strong>ed by<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-7


MOS Diode Capacitance <strong>Model</strong>If P d > W eff(9.22)djbd( Pd−Weff) CjbdswWeffCjbdswgCapbd = A C ++Otherwise(9.23)Capbd = A C + P Cdjbddjbdswgwhere C jbd is the unit bottom area capacitance <strong>of</strong> the D/B junction,C jbdsw is the periphery capacitance <strong>of</strong> the D/B junction along thefield oxide side, and C jbdswg is the periphery capacitance <strong>of</strong> the D/Bjunction along the g<strong>at</strong>e oxide side.If C j is larger than zero, C jbd is calcul<strong>at</strong>ed byif V bd < 0(9.24)Cjbd⎛ V ⎞bdCj⎜ −P⎟⎝ b ⎠−M j= 1⎟ ⎟ ⎠otherwise(9.25)⎛ VC ⎜jbdCj1 + M⎝=bdjPb⎞If C jsw is large than zero, C jbdsw is calcul<strong>at</strong>ed byif V bd < 09-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


MOS Diode Capacitance <strong>Model</strong>(9.26)CjbdswCjsw⎛ V⎜ −⎝ Pbdbsw⎞⎟⎠−M jsw= 1⎟ ⎟ ⎠otherwise(9.27)⎛C ⎜jbdswCjsw1 + M⎝V=bdjswPbsw⎞If C jswg is larger than zero, C jbdswg is calcul<strong>at</strong>ed byif V bd < 0(9.28)CjbdswgCjswg⎛⎜V −⎝ Pbdbswg−⎞⎟⎠M jswg= 1⎟ ⎟ ⎠otherwise(9.29)⎛C ⎜jbdswgCjswg1 + M⎝V=bdjswgPbswg⎞<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-9


MOS Diode Capacitance <strong>Model</strong>9.2.3 Temper<strong>at</strong>ure Dependence <strong>of</strong> Junction Capacitance<strong>The</strong> temper<strong>at</strong>ure dependence <strong>of</strong> the junction capacitance is modeled.Both zero-bias unit-area junction capacitance (C j , C jsw andC jswg ) and built-in potential <strong>of</strong> the junction (P b , P bsw and P bswg ) aretemper<strong>at</strong>ure dependent and modeled in the following.For zero-bias junction capacitance:CCjswj( T ) = C ( T ) ⋅ ( 1+tcj ⋅ ∆T)jnom( T ) = C ( T ) ⋅( 1+tcjsw⋅∆T)jswnom(9.30a)(9.30b)Cjswg( T ) = C ( T ) ⋅( 1+tcjswg ⋅ ∆T)jswgnom(9.30c)For the built-in potential:PPbswb( T ) = P ( T ) − tpb⋅∆Tbnom( T) = P ( T ) −tpbsw⋅∆Tbswnom(9.31a)(9.31b)Pbswg( T) = P ( T ) −tpbswg⋅∆Tbswgnom(9.31c)In Eqs. (9.30) and (9.31), the temper<strong>at</strong>ure difference is defined as9-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


MOS Diode Capacitance <strong>Model</strong>(9.32)∆T= T −T nom<strong>The</strong> six new model parameters in the above equ<strong>at</strong>ions are describedin Table 9-2.9.2.4 Junction Capacitance Parameters<strong>The</strong> following table give a full description <strong>of</strong> those model parametersused in the diode junction capacitance modeling.Symbolsused inequ<strong>at</strong>ionSymbolsused inSPICECj cj Bottom junction capacitance perunit area <strong>at</strong> zero biasDescription Default Unit5e-4 F/m 2Mj mj Bottom junction capacitance grading0.5 nonecoefficientPb pb Bottom junction built-in potential 1.0 VCjsw cjsw Source/drain sidewall junctioncapacitance per unit length <strong>at</strong> zerobias5e-10 F/mMjsw mjsw Source/drain sidewall junctioncapacitance grading coefficientPbsw pbsw Source/drain side wall junctionbuilt-in potentialCjswg cjswg Source/drain g<strong>at</strong>e side wall junctioncapacitance per unit length <strong>at</strong>zero biasMjswg mjswg Source/drain g<strong>at</strong>e side wall junctioncapacitance grading coefficient0.33 none1.0 VCjswMjswPbswg pbswg Source/drain g<strong>at</strong>e side wall junctionPbswVbuilt-in potentialtpb tpb Temper<strong>at</strong>ure coefficient <strong>of</strong> Pb 0.0 V/Ktpbsw tpbsw Temper<strong>at</strong>ure coefficient <strong>of</strong> Pbsw 0.0 V/KF/mnone<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley 9-11


MOS Diode Capacitance <strong>Model</strong>Symbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unittpbswg tpbswg Temper<strong>at</strong>ure coefficient <strong>of</strong> Pbswg 0.0 V/Ktcj tcj Temper<strong>at</strong>ure coefficient <strong>of</strong> Cj 0.0 1/Ktcjsw tcjsw Temper<strong>at</strong>ure coefficient <strong>of</strong> Cjsw 0.0 1/Ktcjswg tcjswg Temper<strong>at</strong>ure coefficient <strong>of</strong> Cjswg 0.0 1/KTable 9-2. MOS Junction Capacitance <strong>Model</strong> Parameters.9-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


APPENDIX A: Parameter ListA.1 <strong>Model</strong> Control ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteNone level <strong>The</strong> model selector 8 noneNone version <strong>Model</strong> version selector 3.2 noneNone binUnit Bining unit selector 1 noneNone param- Parameter value check False noneChkmobMod mobMod Mobility model selector 1 nonecapMod capMod Flag for capacitance models 3 nonenqsMod a nqsMod Flag for NQS model 0 nonenoiMod noiMod Flag for noise models 1 nonea. nqsMod is now an element (instance) parameter, no longer a modelparameter.A.2 DC Parameters<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-1


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEVth0 vth0 Threshold voltage @Vbs=0 forLarge L.Description Default Unit Note0.7(NMOS)-0.7(PMOS)VFB vfb Fl<strong>at</strong>-band voltage Calcul<strong>at</strong>ed V nI-1K1 k1 First order body effect coefficient0.5 V 1/2 nI-2K2 k2 Second order body effect coefficient0.0 none nI-2K3 k3 Narrow width coefficient 80.0 noneK3b k3b Body effect coefficient <strong>of</strong> k3 0.0 1/VW0 w0 Narrow width parameter 2.5e-6 mNlx nlx L<strong>at</strong>eral non-uniform doping 1.74e-7 mparameterVbm vbm Maximum applied body bias in -3.0 VVth calcul<strong>at</strong>ionDvt0 dvt0 first coefficient <strong>of</strong> short-channeleffect on Vth2.2 noneDvt1 dvt1 Second coefficient <strong>of</strong> shortchanneleffect on VthDvt2 dvt2 Body-bias coefficient <strong>of</strong> shortchanneleffect on VthDvt0w dvt0w First coefficient <strong>of</strong> narrowwidth effect on Vth for smallchannel lengthDvt1w dvtw1 Second coefficient <strong>of</strong> narrowwidth effect on Vth for smallchannel lengthV0.53 none-0.032 1/V0 1/m5.3e6 1/mnI-1A-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteDvt2w dvt2w Body-bias coefficient <strong>of</strong> narrowwidth effect for small channellengthµ0 u0 Mobility <strong>at</strong> Temp = TnomN<strong>MOSFET</strong>P<strong>MOSFET</strong>Ua ua First-order mobility degrad<strong>at</strong>ioncoefficientUb ub Second-order mobility degrad<strong>at</strong>ioncoefficientUc uc Body-effect <strong>of</strong> mobility degrad<strong>at</strong>ioncoefficient-0.032 1/V670.0250.02.25E-9cm 2 /Vsm/V5.87E-19 (m/V) 2mobMod=1, 2:-4.65e-11mobMod=3:-0.046m/V 21/Vνs<strong>at</strong> vs<strong>at</strong> S<strong>at</strong>ur<strong>at</strong>ion velocity <strong>at</strong> Temp =TnomA0 a0 Bulk charge effect coefficientfor channel length8.0E4 m/sec1.0 noneAgs ags g<strong>at</strong>e bias coefficient <strong>of</strong> Abulk 0.0 1/VB0 b0 Bulk charge effect coefficientfor channel width0.0 mB1 b1 Bulk charge effect width <strong>of</strong>fset 0.0 mKeta keta Body-bias coefficient <strong>of</strong> bulk -0.047 1/Vcharge effectA1 a1 First non-s<strong>at</strong>ur<strong>at</strong>ion effect0.0 1/VparameterA2 a2 Second non-s<strong>at</strong>ur<strong>at</strong>ion factor 1.0 none<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-3


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteRdsw rdsw Parasitic resistance per unitwidth0.0 Ω-µm WrPrwb prwb Body effect coefficient <strong>of</strong> Rdsw 0 V -1/2Prwg prwg G<strong>at</strong>e bias effect coefficient <strong>of</strong>RdswWr wr Width Offset from Weff forRds calcul<strong>at</strong>ionWint wint Width <strong>of</strong>fset fitting parameterfrom I-V without biasLint lint Length <strong>of</strong>fset fitting parameterfrom I-V without biasdWg dwg Coefficient <strong>of</strong> Weff’s g<strong>at</strong>edependencedWb dwb Coefficient <strong>of</strong> Weff’s substr<strong>at</strong>ebody bias dependenceV<strong>of</strong>f v<strong>of</strong>f Offset voltage in the subthresholdregion <strong>at</strong> large W and L0 1/V1.0 none0.0 m0.0 m0.0 m/V0.0 m/V 1/2-0.08 VNfactor nfactor Subthreshold swing factor 1.0 noneEta0 eta0 DIBL coefficient in subthresholdregion0.08 noneEtab etab Body-bias coefficient for the -0.07 1/Vsubthreshold DIBL effectDsub dsub DIBL coefficient exponent in drout nonesubthreshold regionCit cit Interface trap capacitance 0.0 F/m 2Cdsc cdsc Drain/Source to channel couplingcapacitance2.4E-4 F/m 2A-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteCdscb cdscb Body-bias sensitivity <strong>of</strong> Cdsc 0.0 F/Vm 2Cdscd cdscd Drain-bias sensitivity <strong>of</strong> Cdsc 0.0 F/Vm 2Pclm pclm Channel length modul<strong>at</strong>ionparameterPdiblc1 pdiblc1 First output resistance DIBLeffect correction parameterPdiblc2 pdiblc2 Second output resistance DIBLeffect correction parameterPdiblcb pdiblcb Body effect coefficient <strong>of</strong>DIBL correction parametersDrout drout L dependence coefficient <strong>of</strong> theDIBL correction parameter inRoutPscbe1 pscbe1 First substr<strong>at</strong>e current bodyeffectparameterPscbe2 pscbe2 Second substr<strong>at</strong>e current bodyeffectparameterPvag pvag G<strong>at</strong>e dependence <strong>of</strong> Early voltage1.3 none0.39 none0.0086 none0 1/V0.56 none4.24E8 V/m1.0E-5 m/V nI-30.0 noneδ delta Effective Vds parameter 0.01 VNg<strong>at</strong>e ng<strong>at</strong>e poly g<strong>at</strong>e doping concentr<strong>at</strong>ion 0 cm -3α0 alpha0 <strong>The</strong> first parameter <strong>of</strong> impactioniz<strong>at</strong>ion currentα1 alpha1 Isub parameter for length scalingβ0 beta0 <strong>The</strong> second parameter <strong>of</strong> impactioniz<strong>at</strong>ion current0 m/V0.0 1/V30 V<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-5


C-V <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICERsh rsh Source drain sheet resistance inohm per squareJs0sw jssw Side wall s<strong>at</strong>ur<strong>at</strong>ion currentdensityJs0 js Source drain junction s<strong>at</strong>ur<strong>at</strong>ioncurrent per unit areaDescription Default Unit Note0.0 Ω/square0.0 A/m1.0E-4 A/m 2ijth ijth Diode limiting current 0.1 A nI-3A.3 C-V <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionDefault Unit NoteXpart xpart Charge partitioning flag 0.0 noneCGS0 cgso Non LDD region source-g<strong>at</strong>eoverlap capacitance perchannel lengthCGD0 cgdo Non LDD region drain-g<strong>at</strong>eoverlap capacitance perchannel lengthCGB0 cgbo G<strong>at</strong>e bulk overlap capacitanceper unit channel lengthCj cj Bottom junction capacitanceper unit area <strong>at</strong> zero biascalcul<strong>at</strong>ed F/m nC-1calcul<strong>at</strong>ed F/m nC-20.0 F/m5.0e-4 F/m 2A-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


C-V <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionMj mj Bottom junction capacitancegr<strong>at</strong>ing coefficientMjsw mjsw Source/Drain side wall junctioncapacitance grading coefficientCjsw cjsw Source/Drain side wall junctioncapacitance per unit areaCjswg cjswg Source/drain g<strong>at</strong>e side walljunction capacitance gradingcoefficientMjswg mjswg Source/drain g<strong>at</strong>e side walljunction capacitance gradingcoefficientDefault Unit Note0.50.33 none5.E-10CjswMjswF/mF/mnonePbsw pbsw Source/drain side wall junction1.0 Vbuilt-in potentialPb pb Bottom built-in potential 1.0 VPbswg pbswg Source/Drain g<strong>at</strong>e side wall Pbsw Vjunction built-in potentialCGS1 cgs1 Light doped source-g<strong>at</strong>e 0.0 F/mregion overlap capacitanceCGD1 cgd1 Light doped drain-g<strong>at</strong>e region 0.0 F/moverlap capacitanceCKAPPA ckappa Coefficient for lightly dopedregion overlapcapacitance Fringing fieldcapacitance0.6 VCf cf fringing field capacitance calcul<strong>at</strong>ed F/m nC-3CLC clc Constant term for the short 0.1E-6 mchannel modelCLE cle Exponential term for the shortchannel model0.6 none<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-7


NQS ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionDLC dlc Length <strong>of</strong>fset fitting parameterfrom C-VDWC dwc Width <strong>of</strong>fset fitting parameterfrom C-VVfbcv vfbcv Fl<strong>at</strong>-band voltage parameter(for capMod=0 only)n<strong>of</strong>f n<strong>of</strong>f CV parameter in Vgsteff,CVfor weak to strong inversionv<strong>of</strong>fcv v<strong>of</strong>fcv CV parameter in Vgsteff,CVfor week to strong inversionacde acde Exponential coefficient forcharge thickness in capMod=3for accumul<strong>at</strong>ion and depletionregionsmoin moin Coefficient for the g<strong>at</strong>e-biasdependent surface potentialDefault Unit Notelint mwint m-1 V1.0 none nC-40.0 V nC-41.0 m/V nC-415.0 none nC-4A.4 NQS ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteElm elm Elmore constant <strong>of</strong> the channel 5 noneA-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


dW and dL ParametersA.5 dW and dL ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEWl wl Coefficient <strong>of</strong> length dependencefor width <strong>of</strong>fsetDescription Default Unit Note0.0 m WlnWln wln Power <strong>of</strong> length dependence <strong>of</strong>width <strong>of</strong>fsetWw ww Coefficient <strong>of</strong> width dependencefor width <strong>of</strong>fsetWwn wwn Power <strong>of</strong> width dependence <strong>of</strong>width <strong>of</strong>fsetWwl wwl Coefficient <strong>of</strong> length and widthcross term for width <strong>of</strong>fsetLl ll Coefficient <strong>of</strong> length dependencefor length <strong>of</strong>fsetLln lln Power <strong>of</strong> length dependence forlength <strong>of</strong>fsetLw lw Coefficient <strong>of</strong> width dependencefor length <strong>of</strong>fsetLwn lwn Power <strong>of</strong> width dependence forlength <strong>of</strong>fsetLwl lwl Coefficient <strong>of</strong> length and widthcross term for length <strong>of</strong>fset1.0 none0.0 m Wwn1.0 none0.0 m Wwn+Wln0.0 m Lln1.0 none0.0 m Lwn1.0 none0.0 m Lwn+LlnLlc Llc Coefficient <strong>of</strong> length dependencefor CV channel length<strong>of</strong>fsetLlm Lln<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-9


Temper<strong>at</strong>ure ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteLwc Lwc Coefficient <strong>of</strong> width dependencefor CV channel length<strong>of</strong>fsetLwlc Lwlc Coefficient <strong>of</strong> length and widthdependencefor CV channellength <strong>of</strong>fsetWlc Wlc Coefficient <strong>of</strong> length dependencefor CV channel width<strong>of</strong>fsetWwc Wwc Coefficient <strong>of</strong> widthdependencefor CV channel width <strong>of</strong>fsetWwlc Wwlc Coefficient <strong>of</strong> length and widthdependencefor CV channelwidth <strong>of</strong>fsetLwLwlWlWwWwlm Lwnm Lwn+Llnm Wlnm Wwnm Wln+WwnA.6 Temper<strong>at</strong>ure ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICETnom tnom Temper<strong>at</strong>ure <strong>at</strong> which parametersare extractedDescription Default Unit Note27o Cµte ute Mobility temper<strong>at</strong>ure exponent-1.5 noneA-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Temper<strong>at</strong>ure ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteKt1 kt1 Temper<strong>at</strong>ure coefficient forthreshold voltageKt1l kt1l Channel length dependence <strong>of</strong>the temper<strong>at</strong>ure coefficient forthreshold voltageKt2 kt2 Body-bias coefficient <strong>of</strong> Vthtemper<strong>at</strong>ure effect-0.11 V0.0 Vm0.022 noneUa1 ua1 Temper<strong>at</strong>ure coefficient forUa4.31E-9m/VUb1 ub1 Temper<strong>at</strong>ure coefficient forUbUc1 uc1 Temper<strong>at</strong>ure coefficient forUcAt <strong>at</strong> Temper<strong>at</strong>ure coefficient fors<strong>at</strong>ur<strong>at</strong>ion velocityPrt prt Temper<strong>at</strong>ure coefficient forRdswAt <strong>at</strong> Temper<strong>at</strong>ure coefficient fors<strong>at</strong>ur<strong>at</strong>ion velocitynj nj Emission coefficient <strong>of</strong> junctionXTI xti Junction current temper<strong>at</strong>ureexponent coefficient-7.61E-18mob-Mod=1,2:-5.6E-11mob-Mod=3:-0.056(m/V) 2m/V 21/V3.3E4 m/sec0.0 Ω-µm3.3E4 m/sec1.0 none3.0 none<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-11


Flicker Noise <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEtpb tpb Temper<strong>at</strong>ure coefficient <strong>of</strong> Pb 0.0 V/Ktpbsw tpbsw Temper<strong>at</strong>ure coefficient <strong>of</strong> 0.0 V/KPbswtpbswg tpbswg Temper<strong>at</strong>ure coefficient <strong>of</strong> 0.0 V/KPbswgtcj tcj Temper<strong>at</strong>ure coefficient <strong>of</strong> Cj 0.0 1/Ktcjsw tcjsw Temper<strong>at</strong>ure coefficient <strong>of</strong>Cjswtcjswg tcjswg Temper<strong>at</strong>ure coefficient <strong>of</strong>CjswgDescription Default Unit Note0.0 1/K0.0 1/KA.7 Flicker Noise <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteNoia noia Noise parameter A (NMOS) 1e20(PMOS) 9.9e18Noib noib Noise parameter B (NMOS) 5e4(PMOS) 2.4e3Noic noic Noise parameter C (NMOS) -1.4e-12(PMOS) 1.4e-12nonenonenoneEm em S<strong>at</strong>ur<strong>at</strong>ion field 4.1e7 V/mA-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Process ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteAf af Flicker noise exponent 1 noneEf ef Flicker noise frequencyexponent1 noneKf kf Flicker noise coefficient 0 noneA.8 Process ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteTox tox G<strong>at</strong>e oxide thickness 1.5e-8 mToxm toxm Tox <strong>at</strong> which parameters areextractedTox m nI-3Xj xj Junction Depth 1.5e-7 mγ1 gamma1 Body-effect coefficient near thesurfacecalcul<strong>at</strong>edV 1/2nI-5γ2 gamma2 Body-effect coefficient in thebulkcalcul<strong>at</strong>edV 1/2nI-6Nch nch Channel doping concentr<strong>at</strong>ion 1.7e17 1/cm 3 nI-4Nsub nsub Substr<strong>at</strong>e doping concentr<strong>at</strong>ion 6e16 1/cm 3Vbx vbx Vbs <strong>at</strong> which the depletionregion width equals xtcalcul<strong>at</strong>edVnI-7Xt xt Doping depth 1.55e-7 m<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-13


Geometry Range ParametersA.9 Geometry Range ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescription Default Unit NoteLmin lmin Minimum channel length 0.0 mLmax lmax Maximum channel length 1.0 mWmin wmin Minimum channel width 0.0 mWmax wmax Maximum channel width 1.0 mbinUnit binunit Bin unit scale selector 1.0 noneA.10<strong>Model</strong> Parameter NotesnI-1. If V th0 is not specified, it is calcul<strong>at</strong>ed byVth0= VFB+ Φs+ K1Φswhere the model parameter V FB =-1.0. If V th0 is specified, V FB defaults toVVKFB=th0−Φs−1ΦsnI-2. If K 1 and K 2 are not given, they are calcul<strong>at</strong>ed based onK= γ2− K212Φ−sV bm<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-14


<strong>Model</strong> Parameter NotesK2( γ1−γ)( Φs−Vbx− Φs)Φs( Φs−Vbm− Φs) + Vbm=22whereΦ sis calcul<strong>at</strong>ed byΦs=2Vtm0⎛ Nln⎜⎝ nich⎟ ⎞⎠Vtm 0=kBTqnomni= 1.45 × 1010⎛ Tnom⎞⎜ ⎟⎝ 300.15 ⎠1.5⎛Eexp⎜ 21.5565981 −⎝2Vg 0tm0⎞⎟⎠Eg02nom−47.02×10 T= 1.16 −T + 1108nomwhere E g0 is the energy bandgap <strong>at</strong> temper<strong>at</strong>ure T nom .nI-3.If pscbe2


<strong>Model</strong> Parameter NotesnI-4. If N ch is not given andγ 1is given, N ch is calcul<strong>at</strong>ed fromNch2γ1C=2qε2oxsiIf both and N ch are not given, N ch defaults to 1.7e23 m -3 and isγ 1γ 1calcul<strong>at</strong>ed from N ch .nI-5. Ifγ 1is not given, it is calcul<strong>at</strong>ed byγ1 =2qεNCsioxchnI-6. Ifγ 2is not given, it is calcul<strong>at</strong>ed byγ2=2qεNCsioxsubnI-7. If V bx is not given, it is calcul<strong>at</strong>ed byqNchX2εsi2t= Φs−VbxnC-1. If Cgso is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er 0),Cgso = dlc * Cox - Cgs1if (Cgso < 0)Cgso = 0else Cgso = 0.6 Xj * CoxnC-2. If Cgdo is not given, it is calcul<strong>at</strong>ed byif (dlc is given and is gre<strong>at</strong>er than 0),<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-16


<strong>Model</strong> Parameter NotesCgdo = dlc * Cox - Cgd1if (Cgdo < 0)Cgdo = 0else Cgdo = 0.6 Xj * CoxnC-3. If CF is not given then it is calcul<strong>at</strong>ed usin byCF = ⎛ + × −2ε⎞⎜1 4 10 7oxln⎟π ⎝ Tox ⎠nC-4.If (acde < 0.4) or (acde > 1.6), a warning message will be given.If (moin < 5.0) or (moin > 25.0), a warning message will be given.If (n<strong>of</strong>f < 0.1) or (n<strong>of</strong>f > 4.0), a warning message will be given.If (v<strong>of</strong>fcv < -0.5) or (v<strong>of</strong>fcv > 0.5), a warning message will be given.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-17


<strong>Model</strong> Parameter Notes<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley A-18


APPENDIX B: Equ<strong>at</strong>ion ListB.1 I-V <strong>Model</strong>B.1.1 Threshold VoltageVth= V+ K− D− Dth0ox1ox⎛⎜⎜⎝VT 0wVT 0+ K1ox1+⎛ ⎛ − ⎜exp⎜ − D⎝ ⎝NlxLsub⋅eff⎛ ⎛⎜exp⎜ − D⎝ ⎝⎛ ⎛⎜exp⎜ − D⎝ ⎝LVT1eff2lΦVT1wtos⎞−1⎟⎟⎠−VLeff2lWtbseffΦeffs2l' Ltw− K+( K + K V )eff2ox3⎞ ⎛ ⎟ + 2exp⎜ − D⎠ ⎝Vsubbseff3b⎞ ⎛ ⎟ + 2exp⎜ − D⎠ ⎝LlVT 1efftobseff⎞ ⎛ ⎟ + 2exp⎜ − D⎠ ⎝L⎞⎞⎟⎟⎠⎠lToxΦW ' + WeffteffVT1w⎞⎞⎟⎟⎠⎠W( V − Φ )biefftweff( E tao+ E tabV bseff) V ds0l' Lss⎞⎞⎟⎟⎠⎠( V − Φ )bisVth0ox= Vth0− K1⋅ΦsKox= K 1T⋅Toxoxm1oxmK2 ox= K 2T⋅Tox<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-1


I-V <strong>Model</strong>lt = ε siXdep / Cox ( 1 + DVT 2Vbseff)ltw = ε siXdep / Cox( 1 + DVT 2 wVbseff)lto = εsiXdep0 / CoxXdep=2ε si( Φs − Vbseff)qNchXdep02εsiΦs=qNch(δ1=0.001)Vbseff = Vbc + 05 .[ Vbs −Vbc − δ1+ ( Vbs −Vbc −δ1) 2 −4δ1Vbc]Vbc2⎛ K⎜1= 0.9Φs−2⎝ 4K2⎞⎟⎠VbiNchNDS= vtln( )2niB.1.2 Effective (V gs -V th )Vgsteff⎡ Vgs− Vth⎤2nvtln⎢1+exp( )nvt=⎣ 2⎥⎦2ΦsVgs − Vth − 2V<strong>of</strong>f1+ 2n COXexp( −)qεsiNch2 nvtB-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


I-V <strong>Model</strong>C C V C V D L effDL effdsc + dscd ds +⎛dscb bseff − VT + −⎞( ) ⎜exp( 1 ) 2exp( VT1) ⎟Cd⎝ 2ltlt⎠ Cn= 1+ Nfactor++CoxCoxCitoxCdsi= εXdepB.1.3 MobilityFor mobMod=1µeffµ o=Vgsteff+ 2Vthgsteff thUa UcVbseffU V + 2 V 21 + ( + )( ) + b( )TOXTOXFor mobMod=2µeffµ o=Vgsteffgsteff1 + ( Ua UcVbseffUV + )( ) + b( )TOXTOX2For mobMod=3µeffµ o=gsteff thgsteff thU V + 2 VaU V + 2 V 21 + [ ( ) + b( ) ]( 1 + UV c bseff)TOXTOX<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-3


I-V <strong>Model</strong>B.1.4 Drain S<strong>at</strong>ur<strong>at</strong>ion VoltageFor R ds > 0 or λ ≠ 1:b b acVds<strong>at</strong> = − − 2− 42aa = A W ν C R + ( −1)Aλ1bulk 2 eff s<strong>at</strong> ox DS bulk⎛2b =− ⎜( V + 2v )( − 1) + A E L + 3A ( V + 2v ) W ν C R⎝λgsteff t bulk s<strong>at</strong> eff bulk gsteff t eff s<strong>at</strong> ox DS⎞⎟⎠2c = ( V + 2v) E L + 2( V + 2v)W ν C Rgsteff t s<strong>at</strong> eff gsteff t eff s<strong>at</strong> ox DSFor R ds = 0 and λ = 1:λ = AVgsteff+ A1 2Vds<strong>at</strong>=Es<strong>at</strong> Leff ( Vgsteff + 2vt)Abulk Es<strong>at</strong> Leff + ( Vgsteff + 2vt)Abulk⎛⎜= ⎜1+⎜ 2⎝K1oxΦ −Vsbseff⎛⎜⎜L⎝effA L0+ 2effX XJdep⎛⎜⎜1−A V⎝gs gsteff⎛⎜⎜⎝LeffL+ 2effX XJdep2⎞ ⎞ ⎞⎞⎟ ⎟ B ⎟0⎟ 1+ ⎟⎟⋅⎟ ⎟Weff'+ B1⎟ 1+KetaV⎠ ⎠ ⎠⎠bseffB-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


I-V <strong>Model</strong>Es<strong>at</strong>s<strong>at</strong>= 2νµ effB.1.5 Effective V ds2( δ ( δ)4δ)1V = V − V −V − + V −V − + V2dseff ds<strong>at</strong> ds<strong>at</strong> ds ds<strong>at</strong> ds ds<strong>at</strong>B.1.6 Drain Current ExpressionIdsI=R I1 +Vdso( Vdseff )ds dso( Vdseff )dseff⎛ Vds− VdseffVdsV⎜ +⎞ −1 ⎟⎛⎜1+⎝ VA⎠⎝VASCBEdseff⎞⎟⎠Idso=VdseffWeffµ effCoxVgsteff ( 1 − AbulkV2( Vgsteff+ 2vt) )Leff[ 1 + Vdseff /( Es<strong>at</strong>Leff)]dseffVAPvagVgsteff1 1 −1= VAs<strong>at</strong>+ ( 1+ )( + )Es<strong>at</strong>Leff VACLM VADIBLCVACLM=A E L + VPCLMAbulkEs<strong>at</strong>litlbulk s<strong>at</strong> eff gsteff( Vds−Vdseff)<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-5


I-V <strong>Model</strong>VADIBLC=θ( Vgsteff+ 2vt)t 1 + P Vrou ( DIBLCB bseff )⎛⎜1−⎝AbulkVds<strong>at</strong>⎞⎟AbulkVds<strong>at</strong> + Vgsteff + 2vt⎠⎡LL ⎤exp( ) exp( ) P⎣2ll ⎦⎥ +effeffθrout = PDIBLC 1 DROUTDROUT⎢− + 2 −t 0 t 0DIBLC2V⎛ −Plitl⎞exp⎜⎟⎝ Vds−Vdseff⎠1 scbe2 scbe1ASCBEP=LeffVAs<strong>at</strong>=AbulkVds<strong>at</strong>Es<strong>at</strong>Leff + Vds<strong>at</strong> + 2RDSνs<strong>at</strong>CoxWeff Vgsteff[1−2 ( Vgsteff+ 2 vt) ]2/λ− 1+RDSνs<strong>at</strong>CoxWeffAbulksiToxXlitl = ε ε oxjB.1.7 Substr<strong>at</strong>e Currentα0+ α1⋅ Leff⎛ β ⎞Isub=1Leff⎝⎠ 1 +V−V⎛( )⎟ ⎞⎜0⎟Ids 0ds dseffVds− Vdseffexp −⎜ +V −dsV RdseffdsIds 0 ⎝ VA ⎠dseffVB-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


I-V <strong>Model</strong>B.1.8 Polysilicon Depletion Effect21qNN g<strong>at</strong>e poly Xpolypoly = XpolyEpoly=2 2εsiε E = ε E = 2qεN g<strong>at</strong>e Vox ox si poly si poly polyV −V− Φ = V + VgsFBspolyox2( −V− Φ −V) −V= 0a VgsFBspolypolya =2εox22qεsiNg<strong>at</strong>eToxVgs_eff( V −V−Φ )2 ⎛2qε⎞siNg<strong>at</strong>eTox= +Φ +⎜ 2εox gs FB sVFBs1+−12 ⎜2εoxqεsiNg<strong>at</strong>eTox⎝⎠B.1.9 Effective Channel Length and WidthLeff= Ldrawn−2dLWeff= Wdrawn−2dW<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-7


I-V <strong>Model</strong>'Weff= Wdrawn−2dW'dW = dW'+ dW VdW'= WintgW+LlW lngsteffW+W+ dWwWwnb( Φ −V− Φ )sW+L WwlW ln WwnbseffsLlLwdL = L + + +L LwnL W Lwlint ln LlnLwnLWB.1.10Source/Drain ResistanceRds=Rdsw( 1+P V + P ( Φ −V− Φ)rwggsteffrwb6 W( 10 W ') reffsbseffsB.1.11Temper<strong>at</strong>ure EffectsVth ( T) = Vth ( Tnorm) + ( KT 1+ Kt 1l / Leff + KT 2Vbseff )( T/ Tnorm−1)Tµ oT ( ) = µ oTnorm ( )( )Tnormµ tevs<strong>at</strong> ( T) = vs<strong>at</strong> ( Tnorm ) −AT( T/ Tnorm−1)B-8 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsTRdsw( T ) = Rdsw( Tnorm) + P r t( −1)TnormUa( T ) = Ua( Tnorm) + Ua1( T / Tnorm−1)Ub( T ) = Ub( Tnorm) + Ub1( T / Tnorm−1)Uc( T ) = Uc( Tnorm) + Uc1( T / Tnorm−1)B.2 Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsB.2.1 Dimension DependenceLactive = Ldrawn −2δLeffWactive = Wdrawn −2δWeffδLeffLlc= DLC+LLwcW+ +Lln LwnLwlclnL WLwnδWeffWlc= DWC+LWwcW+ +W ln WwnWwlcW lnL WWwn<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-9


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsB.2.2 Overlap CapacitanceB.2.2.1 Source Overlap Capacitance(1) for capMod = 0Qoverlap,sWactive= CGS0Vgs(2) for capMod = 1If V gs < 0QWCKAPPA ⋅ CGS1⎛+⎜ − 1 +2 ⎜⎝Vgs1 −CKAPPAoverlap , s4= CGS 0 ⋅Vgsactive⎞⎟⎟⎠ElseQoverlap,sWactive( CGS0+ CKAPPA⋅CGS ) ⋅Vgs= 1(3) for capMod = 2QW⎛+ CGS1⎜V⎜⎝CKAPPA⎛− ⎜−1+2 ⎜⎝V ⎞⎞gs overlap1−⎟⎟CKAPPA⎟⎟⎠⎠overlap , s= CGS0⋅Vgsgs−Vgs, overlap4,activeV2( V + δ ) 4δ⎟⎞, 0. 02 ⎠1= ⎜ ⎛ V + δ1−1 1 12⎝+gsgsδgs, overlap=B-10 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsB.2.2.2 Drain Overlap Capacitance(1) for capMod = 0Qoverlap,dWactive= CGD0Vgd(2) for capMod = 1If V gd < 0ElseQWCKAPPA⋅CGD1⎛+⎜−1+2 ⎜⎝V ⎞gd1−⎟CKAPPA⎟⎠overlap,d4= CGD0⋅VgsactiveQoverlap , dWactive( CGD0+ CKAPPA ⋅ CGD ) ⋅Vgd= 1(3) for capMod = 2QW⎛+ CGD1⎜V⎜⎝CKAPPA⎛− ⎜−1+2 ⎜⎝V ⎞⎞gd overlap1−⎟CKAPPA⎟⎠⎠overlap , d4,= CGD0⋅Vgdgd−Vgd,overlapactiveV2( V + δ ) 4δ⎞⎟, 0. 021= ⎜ ⎛ V +1−1 1 12 ⎝+gdδgdδ⎠gd, overlap=<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-11


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsB.2.2.3 G<strong>at</strong>e Overlap Charge( )Q =− Q + Qoverlap,g overlap,s overlap,dB.2.3 Instrinsic Charges(1) capMod = 0a. Accumul<strong>at</strong>ion region (V gs < V fbcv + V bs )Qg= WactiveLactiveCox( V −V−V)gsbsfbcvQ= −subQ gQ inv= 0b. Subthreshold region (V gs < V th )Qsub0( V −V−V)2K ⎛ 41ox= − ⋅ ⎜gsWactiveLactiveCox−1+1+⎜22⎝K1oxfbcvbs⎞⎟⎟⎠Qg=−QbB-12 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsQ inv= 0c. Strong inversion (V gs > V th )Vgs−VthVds<strong>at</strong>,cv=Abulk'CLE⎛⎞⎜ ⎛ CLC ⎞A ⎟bulk' = Abulk01+⎜⎜⎟⎟⎝ ⎝ Leff ⎠ ⎠⎛K ⎛ A Loxeff BA⎜1 ⎜ 00bulk0=⎜1++2 ΦWs−V⎜bseffLeffXJXdep eff+ B⎝⎝+ 2'Vth= Vfbcv+ Φs+ K1oxΦs−Vbseff(i) 50/50 Charge partitionIf V ds < V ds<strong>at</strong>1⎞⎞⎟⎟1⋅⎟⎟1+KetaV⎠⎠bseffQ = C WgoxLactive active⎛⎜⎜V⎜⎜⎝gs−VfbcvVds−Φs−2+⎛12⎜V⎝gsAbulk−Vth2' VdsAbulk'V−2ds⎞⎟⎟⎞⎟⎟⎟⎠⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-13


Capacitance <strong>Model</strong> Equ<strong>at</strong>ions2 2Abulk ' Vds Abulk ' VdsQinv =−Wactive LactiveCox[Vgs −Vth− +2A12(Vgs−Vth−2bulk'Vds])( 1−Abulk ') Vds ( 1 − Abulk ') Abulk ' VdsQb = Wactive LactiveCox[Vfb − Vth + Φs+−2Abulk'12(Vgs−Vth− V22ds])A V A VQs Qd inv Wactive LactiveC ox V gs V th bulk ' ds bulk ' ds= = 05Q . =− [ − − +2A12(Vgs−Vth−2otherwise2 2bulk]'Vds)Vds<strong>at</strong>Qg = Wactive LactiveCox( Vgs −Vfb −Φs− )31Qs = Qd = − Wactive LactiveCox( Vgs −Vth)3( 1 − Abulk') VQb =− Wactive LactiveCox(Vfb + Φs − Vth+3ds<strong>at</strong>)(ii) 40/60 channel-charge PartitionB-14 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsif (V ds < V ds<strong>at</strong> )Vds Abulk VdsQg = CoxWactive Lactive [ Vgs −Vfb −Φs− +]'2AbulkVds12( Vgs−Vth− )2'22 2Abulk ' Vds Abulk ' VdsQinv =−Wactive LactiveCox[Vgs −Vth− +2A12(Vgs−Vth−2bulk'Vds])( 1−Abulk ') Vds ( 1−Abulk ') Abulk ' VdsQb = Wactive LactiveCox[Vfb − Vth + Φs+−2Abulk'12(Vgs−Vth− V22ds])Q =−W L Cd active active ox⎡⎢AVgs − Vth Abulk'⎢ − Vds+⎢ 2 2⎣⎢bulk2 2Vgs − Vth Abulk Vds Vgs − Vth Abulk Vds' Vds[ ( ) −' ( ) +( ' )6 8 40Abulk'2( Vgs−Vth− Vds)2⎤⎥⎥⎥⎦⎥Qs =− ( Qg+ Qb+Qd)otherwiseVds<strong>at</strong>Qg = Wactive LactiveCox( Vgs −Vfb −Φs− )3<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-15


Capacitance <strong>Model</strong> Equ<strong>at</strong>ions4Qd =− Wactive LactiveCox( Vgs −Vth)15Qs =− ( Qg+ Qb+Qd)( 1−Abulk') VQb =− Wactive LactiveCox(Vfb + Φs − Vth+3(iii) 0/100 Channel-charge Partitionif V ds < V ds<strong>at</strong>ds<strong>at</strong>)Vds Abulk VdsQg = CoxWactive Lactive [ Vgs −Vfb −Φs− +]'2AbulkVds12( Vgs−Vth− )2'22 2Abulk ' Vds Abulk ' VdsQinv =−Wactive LactiveCox[Vgs −Vth− +2A12(Vgs−Vth−2bulk'Vds])( 1−Abulk ') Vds ( 1−Abulk ') Abulk ' VdsQb = Wactive LactiveCox[Vfb − Vth + Φs+−2Abulk'12(Vgs−Vth− V22ds])B-16 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


Capacitance <strong>Model</strong> Equ<strong>at</strong>ions⎡Q W L C V V A 2⎢ gs − th bulk ' ( Abulk' Vds)d=−active active ox⎢+ Vds−A⎢ 2 424(Vgs−Vth−⎣2bulk'Vds⎤⎥⎥) ⎥⎦Qs =− ( Qg+ Qb+Qd)otherwiseVds<strong>at</strong>Qg = Wactive LactiveCox( Vgs −Vfb −Φs− )3( 1 − Abulk') VQb =− Wactive LactiveCox(Vfb + Φs − Vth+3ds<strong>at</strong>)Q d= 0( ) Q gQ bQs = − +(2) capMod = 1<strong>The</strong> fl<strong>at</strong>-band voltage V fb is calcul<strong>at</strong>ed fromVfb= Vth− Φs− K1oxΦs−Vbseff<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-17


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionswhere the bias dependences <strong>of</strong> V th given in Section B.1.1 are notconsidered in calcul<strong>at</strong>ing V fb for capMod = 1.if (V gs < V fb + V bs + V gsteffcv )( )Q 1 =−W L C V −Vfb −V −Vg active active ox gs bs gsteffcvelseQg1( V −V−V−V)2K ⎛⎜ 41oxgs fb= WactiveLactiveCox⋅ −1+1+⎜22 K⎝1oxgsteff , CVbseff⎞⎟⎟⎠Q=−Qb1 g1Vds<strong>at</strong>,cv=VgsteffcvAbulk'Abulk⎛'= Abulk+ ⎛ ⎝ ⎜ ⎞01⎜⎟⎝ Leff⎠CLC CLE⎞⎟⎠Abulk0⎛=⎜+⎜12⎝Ks1oxΦ −Vbseff⎛⎜⎜⎝LeffA L0+ 2effXJXdepB ⎞⎞0 ⎟⎟1+ ⋅Weff' + B ⎟⎟11+KetaV⎠⎠bseff<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-18


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsVgsteff , cv= n<strong>of</strong>f⋅ nvt⎛ ⎛Vln⎜1+exp⎜⎝ ⎝gs−Vth− v<strong>of</strong>fcv ⎞⎞⎟⎟n<strong>of</strong>f ⋅ nvt ⎠⎠if (V ds


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsQsWactive LactiveCox=−⎛ AVgsteff cv bulk '2⎜− V⎝ 2ds⎞⎟⎠2⎛ 422⎜V − V A V + V A V − A V⎝ 3315( ' ) ( ' ) ( ' )3 2 2 3gsteffcv gstefcvf bulk ds gsteffcv bulk ds bulk ds⎞⎟⎠Q =− ( Q + Q + Q )d g b s(iii) 0/100 Channel-charge Partition⎛⎜( )Q W L C V gstefcv Abulk Vds Abulk Vdss=− ⎜''active active ox+ −2 4 ⎛ A⎜24⎜Vgsteffcv−⎝⎝ 22bulk'Vds⎞⎟⎟⎞⎟⎠⎟⎠Q =− ( Q + Q + Q )d g b sif (V ds > V ds<strong>at</strong> )VQ = Q + W L C⎛1⎜V−⎝ 3g g active active ox gsteff cv ds<strong>at</strong>⎞⎟⎠( gsteffcv − ds<strong>at</strong> )Q Q W L C V Vb = b1 − active active ox3<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-20


Capacitance <strong>Model</strong> Equ<strong>at</strong>ions(i) 50/50 Channel-charge PartitionQs= Wactive LactiveCoxQd= − V3gsteff cv(ii) 40/60 Channel-charge PartitionQsWactive LactiveCox=− 2 V5gsteffcvQ =− ( Q + Q + Q )d g b s(iii) 0/100 Channel-charge PartitionQ =−W L Cs active active ox2Vgstefcv3Q =− ( Q + Q + Q )d g b s(3) capMod = 2<strong>The</strong> fl<strong>at</strong>-band voltage V fb is calcul<strong>at</strong>ed fromvfb= Vth− Φs− K1oxΦ −Vsbseff<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-21


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionswhere the bias dependences <strong>of</strong> V th given in Section B.1.1 are notconsidered in calcul<strong>at</strong>ing V fb for capMod = 2.( )Q =− Q + Q + Q + Qg inv acc sub0 δsubQ = Q + Q + Qb acc sub0 δsubQinv = Qs + Qd2{ 3 3 }V = vfb− 05 . V + V + 4δ vfb where V = vfb−V− δ ; δ = 002 .FBeff3 3 gb 3 3( )Q =−W L C V −vfbacc active active ox FBeffQsub0( V −V−V−V)2K ⎛⎜ 41oxgs FBeff= −WactiveLactiveCox⋅ − 1 + 1 +⎜22⎝K1oxgsteff , CVbseff⎞⎟⎟⎠Vds<strong>at</strong>,cvVgstefcvf= gsteff,cvAbulk'Abulk⎛' = Abulk+ ⎛ ⎝ ⎜ ⎞0 ⎜1 CLC CLE⎟⎝ Lactive⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-22


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsAbulk0⎛=⎜1+⎜ 2⎝Ks1oxΦ −Vbseff⎛⎜⎜⎝LeffA L0+ 2effXJXdepB ⎞⎞0 ⎟⎟1+ ⋅Weff' + B ⎟⎟11+KetaV⎠⎠bseffVgsteff , cv= n<strong>of</strong>f ⋅ nvt⎛ ⎛Vln⎜1+exp⎜⎝ ⎝gs−Vth− v<strong>of</strong>fcv⎞⎞⎟⎟n<strong>of</strong>f ⋅ nvt ⎠⎠2{ 4 4ds<strong>at</strong>,cv}V = V − 05 . V + V + 4δ V where V = V −V− δ ; δ = 002 .cveffds<strong>at</strong> , cv4 4 ds<strong>at</strong>,cv ds 4 4⎛⎜⎛ AQ =−W L C ⎜⎜V−⎝ 2⎜⎝inv active active ox gsteff cv bulk'Vcveff⎞ A⎟ +⎠ ⎛12⎜V⎝bulkgsteff cv'V2 2cveffA−2bulk'Vcveff⎞⎟⎟⎞⎟⎠⎟⎠δQ = W L Csub active active ox⎛⎜⎜1 − A2⎜⎝bulk( 1 − )' A ' A ' VVcveff−⎛ Abulk'12⎜Vgsteffcv− V⎝ 22bulk bulk cveffcveff⎞⎟⎟⎞⎟⎠⎟⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-23


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsB.2.3.1 50/50 Charge partition⎛⎜W L C AAactive active oxQs Qd QinvVgsteff cv bulk= = =− ⎜ '05 .− Vcveff+2 ⎜ 2 ⎛⎜12⎜V⎝⎝V2 2bulk cveffgsteffcv'A−2bulkVcveff⎞⎟⎟⎞⎟⎟⎟⎠⎠B.2.3.2 40/60 Channel-charge PartitionQ22( ' ) ( ' ) ( ' )WactiveLactiveCoxQs=−⎛ 3 4 2⎜V − V A V + V A V −2A V⎛ AVgsteff cv bulk ⎞ ⎝gsteffc'33152⎜− Vcveff ⎟⎝ 2 ⎠d2 3gsteffcv gstefcvf bulk cveff gsteff bulk cveff bulk cveff1( ' ) ( ' ) ( ' )WactiveLactiveCox=−⎛ 3 5 2V − V A V + V A V −2⎜A V⎛ Abulk⎞ ⎝gsteffc'352⎜Vgsteffcv− Vcveff ⎟⎝ 2 ⎠gsteffcv gsteff cv bulk cveff gsteff cv bulk cveff bulk cveff⎞⎟⎠2 3⎞⎟⎠B.2.3.3 0/100 Charge Partition⎛⎜Q W L C V gsteffcv A V A Vgstefcvf bulk'cveff bulk cveffs=− ⎜active active ox+ −2 4 ⎛ A⎜24⎜Vgsteffcv−⎝⎝ 2( ' )bulk2'V⎛( )Q W L C V A V A V2⎜gsteffcv3bulk'cveff bulk'cveffd=− ⎜active active ox− +2 4 ⎛ Abulk'⎜8⎜Vgsteffcv− V⎝⎝ 2cveffcveff⎞⎟⎟⎞⎟⎠⎟⎠⎞⎟⎟⎞⎟⎠⎟⎠<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-24


Capacitance <strong>Model</strong> Equ<strong>at</strong>ions(3) capMod = 3 (Charge-Thickness <strong>Model</strong>)capMod = 3 also uses the bias-independent V th to calcul<strong>at</strong>e V fb as incapMod = 1 and 2.vfb= Vth− Φs− K1oxΦ −VsbseffFor the finite charge thickness (X DC ) formul<strong>at</strong>ions, refer to Chapter 4.Qacc= WLCoxeff⋅Vgbacc1= ⋅22[ V0 + V0+ 4δ]Vgbacc 3V fbV0= Vfb+ Vbseff−Vgs− δ 32{ 3 3 }V = vfb− 05 . V + V + 4δ vfb where V = vfb−V− δ ; δ = 002 .FBeff3 3 gb 3 3CoxeffC=CoxoxCcen+ Ccenε=CsicenXDC<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-25


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsΦ⎛⎜V= νtln⎜⎝⋅ ( V+ 2KgsteffCV gsteffCVδ= Φs− 2ΦB2moin ⋅ K1oxν1ox2tΦB⎞⎟⎟⎠Qsub0= −WLCoxeff2oxK1⋅2⎡⋅ ⎢-1+⎢⎣4 V1+( −V−V−V)gsFBeffK21oxbseffsgsteff,cv⎤⎥⎥⎦=1− ⋅22( V1 + V1+ 4δVds<strong>at</strong>)VcveffVds<strong>at</strong>3V1= V ds<strong>at</strong>−Vds−δ 3Vds<strong>at</strong>V=gsteff , cvAbulk− ϕ δ'Qinv= −WLCoxeff⎡⎢⋅ ⎢V⎢⎢⎣gsteff,cv1−ϕδ− A2bulk' Vcveff+⎛12⋅⎜V⎝Agsteff,cv'2bulk−ϕδV2cveffA−bulk' Vcveff⎤⎥⎥⎞⎥2⎟⎥⎠ ⎦<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-26


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsδQsub= WLCoxeff⎡⎢1− A⋅ ⎢⎢ 2⎢⎣bulk'Vcveff−⎛12 ⋅ ⎜V⎝( 1 − A ')gsteff , cvbulk−ϕ δ⋅ AbulkA−' Vbulk2cveff' Vcveff2⎤⎥⎥⎞⎥⎟⎥⎠ ⎦(i) 50/50 Charge PartitionQ = QSD1= Q2invWLC=−2oxeff⎡⎢⎢V⎢⎢⎣gsteffcv ,(ii) 40/60 Charge Partition1−ϕδ− A2bulk' Vcveff+⎛12⋅⎜V⎝Agsteffcv ,'2bulkV2cveffA−ϕ−δbulk' Vcveff⎤⎥⎥⎞⎥2⎟⎥⎠ ⎦QS=−⎛2⎜V⎝gsteffcv ,WLCoxeffA−ϕ−δbulk' Vcveff⎡2 ⎢⎞ ⎣2⎟⎠3 42 22 23⎤( V −ϕ) − ( V −ϕ) A ' V + ( V −ϕ)( A ' V ) − ( A ' V ) ⎥⎦gsteff , cvδ3gsteff , cvδbulkcveff3gsteff , cvδbulkcveff15bulkcveffQD=−⎛2⎜V⎝gsteff , cvWLCoxeffA−ϕ−δbulk' Vcveff⎡2 ⎢⎞ ⎣2⎟⎠(iii) 0/100 Charge Partition3 522 13⎤( V −ϕ) − ( V −ϕ) A ' V + ( V −ϕ)( A ' V ) − ( A ' V ) ⎥⎦gsteff , cvδ3gsteff , cvδbulkcveffgsteff , cvδbulkcveff5bulkcveffQSWLC=−2oxeff⎡⎢⋅ ⎢V⎢⎢⎣gsteff,cv1−ϕδ+ A2bulk' Vcveff−⎛12⋅⎜V⎝Agsteff,cv'2bulk−ϕδV2cveffA−bulk' Vcveff⎤⎥⎥⎞⎥2⎟⎥⎠⎦<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-27


Capacitance <strong>Model</strong> Equ<strong>at</strong>ionsQDWLC= −2oxeff⎡⎢⋅ ⎢V⎢⎢⎣gsteff,cv3−ϕδ−2Abulk' Vcveff+⎛4⋅⎜V⎝gsteff,cvA'2bulk−ϕδV2cveffA−bulk' Vdveff⎤⎥⎥⎞⎥2⎟⎥⎠⎦<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley B-28


APPENDIX C: References[1] G.S. Gildenbl<strong>at</strong>, VLSI Electronics: Microstructure Science, p.11, vol. 18, 1989.[2] Muller and Kamins, Devices Electronics for Integr<strong>at</strong>ed Circuits, Second Edition.[3] J. H. Huang, Z. H. Liu, M. C. Jeng, K. Hui, M. Chan, P. K. Ko and C. Hu., BSIM3Version 2.0 User’s Manual, March 1994.[4] J.A. Greenfield and R.W. Dutton, "Nonplanar VLSI Device Analysis Using theSolution <strong>of</strong> Poisson's Equ<strong>at</strong>ion," IEEE Trans. Electron Devices, vol. ED-27, p.1520,1980.[5] H.S. Lee. "An Analysis <strong>of</strong> the Threshold Voltage for Short-Channel IGFET's," Solid-St<strong>at</strong>e Electronics, vol.16, p.1407, 1973.[6] G.W. Taylor, "Subthreshold Conduction in <strong>MOSFET</strong>'s," IEEE Trans. ElectronDevices, vol. ED-25, p.337, 1978.[7] T. Toyabe and S. Asai, "Analytical <strong>Model</strong>s <strong>of</strong> Threshold Voltage and BreakdownVoltage <strong>of</strong> Short-Channel <strong>MOSFET</strong>'s Derived from Two-Dimensional Analysis,"IEEE J. Solid-St<strong>at</strong>e Circuits, vol. SC-14, p.375, 1979.[8] D.R. Poole and D.L. Kwong, "Two-Dimensional Analysis <strong>Model</strong>ing <strong>of</strong> ThresholdVoltage <strong>of</strong> Short-Channel <strong>MOSFET</strong>'s," IEEE Electron Device Letter, vol. ED-5,p.443, 1984.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley C-1


[9] J.D. Kendall and A.R. Boothroyd, "A Two-Dimensional Analytical Threshold Voltage<strong>Model</strong> for <strong>MOSFET</strong>'s with Arbitrarily Doped Substr<strong>at</strong>e," IEEE Electron DeviceLetter, vol. EDL-7, p.407, 1986.[10] Z.H. Liu, C. Hu, J.H. Huang, T.Y. Chan, M.C. Jeng, P.K. Ko, and Y.C. Cheng,"Threshold Voltage <strong>Model</strong> For Deep-Submicrometer <strong>MOSFET</strong>s," IEEE Tran.Electron Devices, vol. 40, pp. 86-95, Jan., 1993.[11] Y.C. Cheng and E.A. Sullivan, "Effect <strong>of</strong> Coulombic Sc<strong>at</strong>tering on Silicon SurfaceMobility," J. Appl. Phys. 45, 187 (1974).[12] Y.C. Cheng and E.A. Sullivan, Surf. Sci. 34, 717 (1973).[13] A.G. Sabnis and J.T. Clemens, "Characteriz<strong>at</strong>ion <strong>of</strong> Electron Velocity in the Inverted Si Surface," Tech. Dig.- Int. Electron Devices Meet., pp. 18-21 (1979).[14] G.S. Gildenbl<strong>at</strong>, VLSI Electronics: Microstructure Science, p. 11, vol. 18, 1989.[15] M.S. Liang, J.Y. Choi, P.K. Ko, and C. Hu, "Inversion-Layer Capacitance andMobility <strong>of</strong> Very Thin G<strong>at</strong>e-Oxide <strong>MOSFET</strong>'s," IEEE Trans. Electron Devices, ED-33, 409, 1986.[16] F. Fang and X. Fowler, "Hot-electron Effects and S<strong>at</strong>ur<strong>at</strong>ion velocity in SiliconInversion Layer," J. Appl. Phys., 41, 1825, 1969.[17] E. A. Talkhan, I. R. Manour and A. I. Barboor, "Investig<strong>at</strong>ion <strong>of</strong> the Effect <strong>of</strong> Drift-Field-Dependent Mobility on <strong>MOSFET</strong> Characteristics," Parts I and II. IEEE Trans.on Electron Devices, ED-19(8), 899-916, 1972.C-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


[18] M.C. Jeng, "Design and <strong>Model</strong>ing <strong>of</strong> Deep-Submicrometer <strong>MOSFET</strong>s," Ph. D.Dissert<strong>at</strong>ion, <strong>University</strong> <strong>of</strong> California.[19] K.Y. Toh, P.K. Ko and R.G. Meyer, "An Engineering <strong>Model</strong> for Short-channel MOSDevices," IEEE Jour. <strong>of</strong> Solid-St<strong>at</strong>e Circuits, vol. 23, No. 4, Aug. 1988.[20] C. Hu, S. Tam, F.C. Hsu, P.K. Ko, T.Y. Chan and K.W. Kyle, "Hot-Electron Induced<strong>MOSFET</strong> Degrad<strong>at</strong>ion - <strong>Model</strong>, Monitor, Improvement," IEEE Tran. on ElectronDevices, Vol. 32, pp. 375-385, Feb. 1985.[21] F.C. Hsu, P.K. Ko, S. Tam, C. Hu and R.S. Muller, "An Analytical Breakdown<strong>Model</strong> for Short-Channel <strong>MOSFET</strong>'s," IEEE Trans. on Electron Devices, Vol.ED-29, pp. 1735, Nov. 1982[22] H. J. Parke, P. K. Ko, and C. Hu, “ A Measurement-based Charge Sheet Capacitance<strong>Model</strong> <strong>of</strong> Short-Channel <strong>MOSFET</strong>’s for SPICE,” in IEEE IEDM 86, Tech. Dig., pp.485-488, Dec. 1986.[23] M. Shur, T.A. Fjeldly, T. Ytterdal, and K. Lee, “ A Unified <strong>MOSFET</strong> <strong>Model</strong>,” Solid-St<strong>at</strong>e Electron., 35, pp. 1795-1802, 1992.[24] MOS9 Document<strong>at</strong>ion.[25] C. F. Machala, P. C. P<strong>at</strong>tnaik and P. Yang, "An Efficient Algorithms for theExtraction <strong>of</strong> Parameters with High Confidence from Nonlinear <strong>Model</strong>s," IEEEElectron Device Letters, Vol. EDL-7, no. 4, pp. 214-218, 1986.[26] Y. Tsividis and K. Suyama, “<strong>MOSFET</strong> <strong>Model</strong>ing for Analog Circuit CAD: Problemsand Prospects,” Tech. Dig. vol. CICC-93, pp. 14.1.1-14.1.6, 1993.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley C-3


[27] C. L. Huang and G. Sh. Gildenbl<strong>at</strong>, "Measurements and <strong>Model</strong>ing <strong>of</strong> the n-channel<strong>MOSFET</strong> Inversion Layer Mobility and Device Characteristics in the Temper<strong>at</strong>ureRange 60-300 K," IEEE Tran. on Electron Devices, vol. ED-37, no.5, pp. 1289-1300, 1990.[28] D. S. Jeon, et al, IEEE Tran. on Electron Devices, vol. ED-36, no. 8, pp1456-1463,1989.[29] S. M. Sze, Physics <strong>of</strong> Semiconductor Devices, 2nd Edition.[30] P. Gray and R. Meyer, Analysis and Design <strong>of</strong> Analog Integr<strong>at</strong>ed Circuits, SecondEdition.[31] R. Rios, N. D. Arora, C.-L. Huang, N. Khalil, J. Faricelli, and L. Gruber, “A physicalcompact <strong>MOSFET</strong> model, including quantum mechanical effects, for st<strong>at</strong>isticalcircuit design applic<strong>at</strong>ions”, IEDM Tech. Dig., pp. 937-940, 1995.[32] Weidong Liu, Xiaodong Jin, Ya-Chin King, and Chenming Hu, “An efficient andaccur<strong>at</strong>e compact model for thin-oxide-<strong>MOSFET</strong> intrinsic capacitance consideringthe finite charge layer thickness”, IEEE Trans. on Electron Devices, vol. ED-46,May, 1999.[33] Mansun Chan, et al, "A Relax<strong>at</strong>ion time Approach to <strong>Model</strong> the Non-Quasi-St<strong>at</strong>icTransient Effects in <strong>MOSFET</strong>s," IEDM, 1994 Technical Digest, pp. 169-172, Dec.1994.[34] P. K. Ko, “Hot-electron Effects in <strong>MOSFET</strong>’s”, Ph. D Dissert<strong>at</strong>ion, <strong>University</strong> <strong>of</strong>California, Berkeley, 1982C-4 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


[35] K.K. Hung et al, “A Physics-Based <strong>MOSFET</strong> Noise <strong>Model</strong> for Circuit Simul<strong>at</strong>ors,”IEEE Transactions on Electron Devices, vol. 37, no. 5, May 1990.[36] K.K. Hung et al, “A Unified <strong>Model</strong> for the Flicker Noise in Metal-OxideSemiconductor Field-Effect Transistors,” IEEE Transactions on Electron Devices,vol. 37, no. 3, March 1990.[37] T.P. Tsividis, Oper<strong>at</strong>ion and <strong>Model</strong>ing <strong>of</strong> the MOS Transistor, McGraw-Hill,New York, 1987.<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley C-5


C-6 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


APPENDIX D: <strong>Model</strong> Parameter BinningBelow is the inform<strong>at</strong>ion on parameter binning regarding which model parameters can orcannot be binned. All those parameters which can be binned follow this implement<strong>at</strong>ion:PPLP +L= 0effP+WWeff+LeffP× WeffFor example, for the parameter k1: P 0 = k1, P L = lk1, P W = wk1, P P = pk1. binUnit is abining unit selector. If binUnit = 1, the units <strong>of</strong> L eff and W eff used in the binning equ<strong>at</strong>ionabove have the units <strong>of</strong> microns; therwise in meters.For example, for a device with L eff = 0.5µm and W eff = 10µm. If binUnit = 1, the parametervalues for vs<strong>at</strong> are 1e5, 1e4, 2e4, and 3e4 for vs<strong>at</strong>, lvs<strong>at</strong>, wvs<strong>at</strong>, and pvs<strong>at</strong>, respectively.<strong>The</strong>refore, the effective value <strong>of</strong> vs<strong>at</strong> for this device isvs<strong>at</strong> = 1e5 + 1e4/0.5 + 2e4/10 + 3e4/(0.5*10) = 1.28e5To get the same effective value <strong>of</strong> vs<strong>at</strong> for binUnit = 0, the values <strong>of</strong> vs<strong>at</strong>, lvs<strong>at</strong>, wvs<strong>at</strong>, andpvs<strong>at</strong> would be 1e5, 1e-2, 2e-2, 3e-8, respectively. Thus,vs<strong>at</strong> = 1e5 + 1e-2/0.5e6 + 2e-2/10e-6 + 3e-8/(0.5e-6 * 10e-6) = 1.28e5<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-1


<strong>Model</strong> Control ParametersD.1 <strong>Model</strong> Control ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?None level <strong>The</strong> model selector NONone version <strong>Model</strong> version selector NONone binUnit Bining unit selector NONone param- Parameter value check NOChkmobMod mobMod Mobility model selector NOcapMod capMod Flag for the short channel NOcapacitance modelnqsMod nqsMod Flag for NQS model NOnoiMod noiMod Flag for Noise model NOD.2 DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Vth0 vth0 Threshold voltage @V bs =0 for YESLarge L.VFB vfb Fl<strong>at</strong> band voltage YESK1 k1 First order body effect coefficientYESK2 k2 Second order body effect coefficientYESD-2 <strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionK3 k3 Narrow width coefficient YESK3b k3b Body effect coefficient <strong>of</strong> k3 YESW0 w0 Narrow width parameter YESNlx nlx L<strong>at</strong>eral non-uniform doping YESparameterDvt0 dvt0 first coefficient <strong>of</strong> short-channeleffect on VthYESDvt1 dvt1 Second coefficient <strong>of</strong> shortchanneleffect on VthDvt2 dvt2 Body-bias coefficient <strong>of</strong> shortchanneleffect on VthDvt0w dvt0w First coefficient <strong>of</strong> narrowwidth effect on Vth for smallchannel lengthDvt1w dvtw1 Second coefficient <strong>of</strong> narrowwidth effect on Vth for smallchannel lengthDvt2w dvt2w Body-bias coefficient <strong>of</strong> narrowwidth effect for small channellengthµ0 u0 Mobility <strong>at</strong> Temp = TnomN<strong>MOSFET</strong>P<strong>MOSFET</strong>Ua ua First-order mobility degrad<strong>at</strong>ioncoefficientUb ub Second-order mobility degrad<strong>at</strong>ioncoefficientCan BeBinned?YESYESYESYESYESYESYESYES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-3


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Uc uc Body-effect <strong>of</strong> mobility degrad<strong>at</strong>ioncoefficientνs<strong>at</strong> vs<strong>at</strong> S<strong>at</strong>ur<strong>at</strong>ion velocity <strong>at</strong> Temp =TnomA0 a0 Bulk charge effect coefficientfor channel lengthYESYESYESAgs ags g<strong>at</strong>e bias coefficient <strong>of</strong> Abulk YESB0 b0 Bulk charge effect coefficientfor channel widthYESB1 b1 Bulk charge effect width <strong>of</strong>fset YESKeta keta Body-bias coefficient <strong>of</strong> bulk YEScharge effectA1 a1 First non0s<strong>at</strong>ur<strong>at</strong>ion effect YESparameterA2 a2 Second non-s<strong>at</strong>ur<strong>at</strong>ion factor YESRdsw rdsw Parasitic resistance per unitwidthYESPrwb prwb Body effect coefficient <strong>of</strong> Rdsw YESPrwg prwg G<strong>at</strong>e bias effect coefficient <strong>of</strong>RdswWr wr Width Offset from Weff for Rdscalcul<strong>at</strong>ionWint wint Width <strong>of</strong>fset fitting parameterfrom I-V without biasLint lint Length <strong>of</strong>fset fitting parameterfrom I-V without biasYESYESNONO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-4


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?dWg dwg Coefficient <strong>of</strong> Weff’s g<strong>at</strong>edependencedWb dwb Coefficient <strong>of</strong> Weff’s substr<strong>at</strong>ebody bias dependenceV<strong>of</strong>f v<strong>of</strong>f Offset voltage in the subthresholdregion for large W and LYESYESYESNfactor nfactor Subthreshold swing factor YESEta0 eta0 DIBL coefficient in subthresholdregionYESEtab etab Body-bias coefficient for the YESsubthreshold DIBL effectDsub dsub DIBL coefficient exponent in YESsubthreshold regionCit cit Interface trap capacitance YESCdsc cdsc Drain/Source to channel couplingcapacitanceYESCdscb cdscb Body-bias sensitivity <strong>of</strong> Cdsc YESCdscd cdscd Drain-bias sensitivity <strong>of</strong> Cdsc YESPclm pclm Channel length modul<strong>at</strong>ionparameterPdiblc1 pdiblc1 First output resistance DIBLeffect correction parameterPdiblc2 pdiblc2 Second output resistance DIBLeffect correction parameterPdiblcb pdiblcb Body effect coefficient <strong>of</strong>DIBL correction parametersYESYESYESYES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-5


DC ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionDrout drout L dependence coefficient <strong>of</strong> theDIBL correction parameter inRoutPscbe1 pscbe1 First substr<strong>at</strong>e current bodyeffectparameterPscbe2 pscbe2 Second substr<strong>at</strong>e current bodyeffectparameterPvag pvag G<strong>at</strong>e dependence <strong>of</strong> Early voltageYESYESYESYESδ delta Effective Vds parameter YESNg<strong>at</strong>e ng<strong>at</strong>e poly g<strong>at</strong>e doping concentr<strong>at</strong>ion YESα0 alpha0 <strong>The</strong> first parameter <strong>of</strong> impactioniz<strong>at</strong>ion currentα1 alpha1 Isub parameter for length scalingβ0 beta0 <strong>The</strong> second parameter <strong>of</strong> impactioniz<strong>at</strong>ion currentRsh rsh Source drain sheet resistance inohm per squareJs0 js Source drain junction s<strong>at</strong>ur<strong>at</strong>ioncurrent per unit areaCan BeBinned?YESYESYESNONOijth ijth Diode limiting current NO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-6


AC and Capacitance ParametersD.3 AC and Capacitance ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Xpart xpart Charge partitioning r<strong>at</strong>e flag NOCGS0 cgso Non LDD region source-g<strong>at</strong>eoverlap capacitance perchannel lengthNOCGD0 cgdo Non LDD region drain-g<strong>at</strong>eoverlap capacitance perchannel lengthNOCGB0 cgbo G<strong>at</strong>e bulk overlap capacitanceNOper unit channel lengthCj cj Bottom junction per unit area NOMj mj Bottom junction capacitancegr<strong>at</strong>ing coefficientMjsw mjsw Source/Drain side junctioncapacitance grading coefficientNONOCjsw cjsw Source/Drain side junction NOcapacitance per unit areaPb pb Bottom built-in potential NOPbsw pbsw Source/Drain side junction NObuilt-in potentialCGS1 cgs1 Light doped source-g<strong>at</strong>e YESregion overlap capacitanceCGD1 cgd1 Light doped drain-g<strong>at</strong>e regionoverlap capacitanceYES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-7


AC and Capacitance ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCKAPPA ckappa Coefficient for lightly dopedregion overlapcapacitance Fringing fieldcapacitanceYESCf cf fringing field capacitance YESCLC clc Constant term for the short YESchannel modelCLE cle Exponential term for the short YESchannel modelDLC dlc Length <strong>of</strong>fset fitting parameterYESfrom C-VDWC dwc Width <strong>of</strong>fset fitting parameter YESfrom C-VVfbcv vfbcv Fl<strong>at</strong>-band voltage parameter YES(for capMod = 0 only)n<strong>of</strong>f n<strong>of</strong>f CV parameter in Vgsteff,CV YESfor weak to strong inversionv<strong>of</strong>fcv v<strong>of</strong>fcv CV parameter in Vgsteff,CV YESfor weak to strong inversionacde acde Exponential coefficient forcharge thickness in capMod=3for accumul<strong>at</strong>ion and depletionregionsYESmoin moin Coefficient for the g<strong>at</strong>e-biasdependent surface potentialCan BeBinned?YES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-8


NQS ParametersD.4 NQS ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Elm elm Elmore constant <strong>of</strong> the channel YESD.5 dW and dL ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Wl wl Coefficient <strong>of</strong> length dependencefor width <strong>of</strong>fsetWln wln Power <strong>of</strong> length dependence <strong>of</strong>width <strong>of</strong>fsetWw ww Coefficient <strong>of</strong> width dependencefor width <strong>of</strong>fsetWwn wwn Power <strong>of</strong> width dependence <strong>of</strong>width <strong>of</strong>fsetWwl wwl Coefficient <strong>of</strong> length and widthcross term for width <strong>of</strong>fsetLl ll Coefficient <strong>of</strong> length dependencefor length <strong>of</strong>fsetLln lln Power <strong>of</strong> length dependence forlength <strong>of</strong>fsetNONONONONONONO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-9


dW and dL ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Lw lw Coefficient <strong>of</strong> width dependencefor length <strong>of</strong>fsetLwn lwn Power <strong>of</strong> width dependence forlength <strong>of</strong>fsetLwl lwl Coefficient <strong>of</strong> length and widthcross term for length <strong>of</strong>fsetLlc Llc Coefficient <strong>of</strong> length dependencefor CV channel length<strong>of</strong>fsetLwc Lwc Coefficient <strong>of</strong> width dependencefor CV channel length<strong>of</strong>fsetLwlc Lwlc Coefficient <strong>of</strong> length and widthdependencefor CV channellength <strong>of</strong>fsetWlc Wlc Coefficient <strong>of</strong> length dependencefor CV channel width<strong>of</strong>fsetWwc Wwc Coefficient <strong>of</strong> widthdependencefor CV channel width <strong>of</strong>fsetWwlc Wwlc Coefficient <strong>of</strong> length and widthdependencefor CV channelwidth <strong>of</strong>fsetNONONONONONONONONO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-10


Temper<strong>at</strong>ure ParametersD.6 Temper<strong>at</strong>ure ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionTnom tnom Temper<strong>at</strong>ure <strong>at</strong> which parametersare extractedµte ute Mobility temper<strong>at</strong>ure exponentKt1 kt1 Temper<strong>at</strong>ure coefficient forthreshold voltageKt1l kt1l Channel length dependence <strong>of</strong>the temper<strong>at</strong>ure coefficient forthreshold voltageKt2 kt2 Body-bias coefficient <strong>of</strong> Vthtemper<strong>at</strong>ure effectUa1 ua1 Temper<strong>at</strong>ure coefficient forUaCan BeBinned?NOYESYESYESYESYESUb1 ub1 Temper<strong>at</strong>ure coefficient for YESUbUc1 uc1 Temper<strong>at</strong>ure coefficient for YESUcAt <strong>at</strong> Temper<strong>at</strong>ure coefficient for YESs<strong>at</strong>ur<strong>at</strong>ion velocityPrt prt Temper<strong>at</strong>ure coefficient for YESRdswnj nj Emission coefficient YESXTI xti Junction current temper<strong>at</strong>ureexponent coefficientYES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-11


Flicker Noise <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptiontpb tpb Temper<strong>at</strong>ure coefficient <strong>of</strong> Pb NOtpbsw tpbsw Temper<strong>at</strong>ure coefficient <strong>of</strong> NOPbswtpbswg tpbswg Temper<strong>at</strong>ure coefficient <strong>of</strong> NOPbswgtcj tcj Temper<strong>at</strong>ure coefficient <strong>of</strong> Cj NOtcjsw tcjsw Temper<strong>at</strong>ure coefficient <strong>of</strong>Cjswtcjswg tcjswg Temper<strong>at</strong>ure coefficient <strong>of</strong>CjswgCan BeBinned?NONOD.7 Flicker Noise <strong>Model</strong> ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Noia noia Noise parameter A NONoib noib Noise parameter B NONoic noic Noise parameter C NOEm em S<strong>at</strong>ur<strong>at</strong>ion field NOAf af Flicker noise exponent NO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-12


Process ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Ef ef Flicker noise frequency NOexponentKf kf Flicker noise parameter NOD.8 Process ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Tox tox G<strong>at</strong>e oxide thickness NOToxm toxm Tox <strong>at</strong> which parameters are NOextractedXj xj Junction Depth YESγ1 gamma1 Body-effect coefficient nearthe surfaceYESγ2 gamma2 Body-effect coefficient in the YESbulkNch nch Channel doping concentr<strong>at</strong>ion YESNsub nsub Substr<strong>at</strong>e doping concentr<strong>at</strong>ion YESVbx vbx Vbs <strong>at</strong> which the depletionregion width equals xtVbm vbm Maximum applied body bias inVth calcul<strong>at</strong>ionYESYESXt xt Doping depth YES<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-13


Geometry Range ParametersD.9 Geometry Range ParametersSymbolsused inequ<strong>at</strong>ionSymbolsused inSPICEDescriptionCan BeBinned?Lmin lmin Minimum channel length NOLmax lmax Maximum channel length NOWmin wmin Minimum channel width NOWmax wmax Maximum channel width NObinUnit binUnit Binning unit selector NO<strong>BSIM3v3.2.2</strong> Manual Copyright © 1999 UC Berkeley D-14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!