04.12.2012 Views

Network analysis to analyse complex agroecosystems

Network analysis to analyse complex agroecosystems

Network analysis to analyse complex agroecosystems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Network</strong> <strong>analysis</strong> <strong>to</strong> <strong>analyse</strong><br />

<strong>complex</strong> agro­ecosystems<br />

Mariana Rufino, Pytrik Reidsma, Santiago López­Ridaura, Pablo Tit<strong>to</strong>nell, Ken Giller<br />

Plant Production System Group


The context<br />

� Rural­poor farm households<br />

� Food security (primary goal)<br />

� Risk (income and/or consumption)<br />

� (Scarce) resources


Population (People per Km 2 )<br />

0 ­ 2<br />

3 ­ 10<br />

11 ­ 20<br />

21 ­ 50<br />

51 ­ 100<br />

101 ­ 200<br />

201 ­ 500<br />

501 ­ 1000<br />

>1000<br />

Tigray ­<br />

Ethiopia<br />

Kakamega ­<br />

Kenya<br />

Murewa ­<br />

Zimbabwe<br />

Source FAO


The Highlands of Tigray ­ Northern<br />

Ethiopia


Communal farming ­ Murewa NE Zimbabwe


The Highlands of Western Kenya


The objectives<br />

� To test:<br />

� Whether ecological network <strong>analysis</strong> was applicable <strong>to</strong> agro­<br />

ecosystems<br />

� Whether their application provide insights in<strong>to</strong> current<br />

performance and development across environments<br />

� To reflect<br />

� Whether the results of the applications were informative<br />

enough <strong>to</strong> contribute <strong>to</strong> discussion on sustainable<br />

livelihoods


The system definition – the network<br />

� The unit of <strong>analysis</strong> ­> the farm household<br />

� <strong>Network</strong> compartments ­> the farming activities<br />

� Difference with ecosystems ­> human agency<br />

� Resource flows ­> purposively managed<br />

� Currency ­> Nitrogen<br />

� Timescale ­> year


Using existing information<br />

� Farm typology + household data<br />

� Resource flow mapping<br />

� Observations and farmers interviews<br />

� Field measurements<br />

� Existing information from:<br />

� Tigray – Northern Ethiopia (n=50)<br />

� Kakamega – Western Kenya (n=15)<br />

� Murewa – NE Zimbabwe (n=50)


Conceptualising the network<br />

For each<br />

farm<br />

type<br />

Pasture<br />

Maize<br />

Fodder crops<br />

Fertiliser + seeds<br />

Manure<br />

s<strong>to</strong>rage<br />

Maize<br />

Compost<br />

Feed<br />

Waste<br />

Excreta<br />

Maize<br />

Household<br />

Grain<br />

Food<br />

Vegetables<br />

Animal products<br />

Chicken<br />

Feed<br />

Cattle<br />

Ground<br />

nuts<br />

Food crops<br />

Excreta<br />

Products<br />

Goats<br />

Food<br />

Lives<strong>to</strong>ck<br />

Excreta<br />

Feed


The network <strong>analysis</strong><br />

� Ecological network <strong>analysis</strong><br />

� Leontief (1951) input­output <strong>analysis</strong> in economics<br />

� Hannon (1973) application in Ecology<br />

� J.T. Finn (1976, 1980)<br />

� R.E. Ulanowicz (1980, 1986, 1997,…)<br />

� B.C. Patten, B.D. Fath, S.E. Jørgensen and others


The indices of the network <strong>analysis</strong><br />

� System size (activity)<br />

� System structure and organisation<br />

� Efficiency measures<br />

� A measure of growth and development<br />

� Ascendency


Agro­ecosystems as networks<br />

Roles (#)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10 12 14<br />

Connectivity (flows node ­1 )<br />

A window of vitality<br />

Random networks<br />

Natural ecosystems<br />

Agroecosystems<br />

Effective # of nodes<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Natural ecosystems<br />

Agroecosystems<br />

0 5 10 15 20 25 30 35 40 45<br />

Effective # of flows<br />

After Zorach and Ulanowicz (2003) Complexity 8, 68­76


Size and organisation<br />

Measure of growth & development (A)<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Kakamega<br />

Murewa<br />

Tigray<br />

0 500 1000 1500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0.5 1 1.5 2<br />

Measure of size (T) Measure of organisation (AMI)<br />

Ascendency = T x AMI


Size and organisation<br />

Measure of growth & development (A)<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Kakamega<br />

Murewa<br />

Tigray<br />

lives<strong>to</strong>ck<br />

0 500 1000 1500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0.5 1 1.5 2<br />

Measure of size (T) Measure of organisation (AMI)<br />

Ascendency = T x AMI


Capacity<br />

Inputs (Φ I )<br />

Exports (ΦE)<br />

Dissipations (Φs)<br />

Pathway redundancy (Φo)<br />

Ascendency (A)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

farm types ­­><br />

P M W P M M W P M W<br />

Tigray­<br />

Ethiopia<br />

Ascendency = size x organisation<br />

Overhead<br />

Murewa­<br />

Zimbabwe<br />

Currency: kg N fhh ­1 y ­1 bits<br />

Kakamega­<br />

Kenya


Relationship <strong>to</strong> food self­sufficiency<br />

Food selfsufficiency<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

other<br />

Ethiopia<br />

0 500 1000 1500 2000<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0 10 20 30 40 50 60 70<br />

Ascendency <strong>Network</strong> organisation<br />

Food self­sufficiency = Food produced/food needed


Relationship with productivity<br />

Biomass (t ha ­1 )<br />

12.0<br />

8.0<br />

4.0<br />

0.0<br />

0 400 800 1200 1600<br />

Biomass (t ha ­1 )<br />

12.0<br />

Ascendency (kg N fhh ­1 y ­1 bits) <strong>Network</strong> organisation<br />

8.0<br />

4.0<br />

0.0<br />

0 10 20 30 40 50 60 70


Relationship with productivity<br />

Biomass (t ha ­1 )<br />

12.0<br />

8.0<br />

4.0<br />

0.0<br />

0 400 800 1200 1600<br />

Biomass (t ha ­1 )<br />

12.0<br />

8.0<br />

4.0<br />

others<br />

Kakamega­Kenya<br />

0.0<br />

0 10 20 30 40 50 60 70<br />

Ascendency (kg N fhh ­1 y ­1 bits) <strong>Network</strong> organisation


N cycling (% of <strong>to</strong>tal)<br />

Elements of stability and resilience<br />

12.0<br />

9.0<br />

6.0<br />

3.0<br />

0.0<br />

Nutrient cycling Dependency<br />

0 300 600 900 1200 1500<br />

1.0<br />

0.8<br />

Fraction of N<br />

imported<br />

0.5<br />

0.3<br />

0.0<br />

Ascendency (size x organisation)<br />

0 300 600 900 1200 1500


Elements of stability and resilience<br />

N cycling (% of <strong>to</strong>tal)<br />

12.0<br />

8.0<br />

4.0<br />

0.0<br />

Nutrient cycling Dependency<br />

0 10 20 30 40 50 60 70<br />

Fraction of N<br />

imported<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

<strong>Network</strong> organisation<br />

0 10 20 30 40 50 60 70


Ascendency / overhead<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

farm types ­><br />

P M W P M M W P M W<br />

5000<br />

Current systems 4000<br />

Without lives<strong>to</strong>ck<br />

3000<br />

2000<br />

1000<br />

0<br />

P M W P M M W P M W<br />

Tigray Murewa Kakamega Tigray Murewa Kakamega


Ascendency / overhead<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

30%<br />

10%<br />

5000<br />

Current systems 4000<br />

Without lives<strong>to</strong>ck<br />

44%<br />

3000<br />

2000<br />

~10%<br />

1000<br />

P M W P M M W P M W<br />

0<br />

Self­<br />

insurance<br />

P M W P M M W P M W<br />

Tigray Murewa Kakamega Tigray Murewa Kakamega


From the <strong>analysis</strong>:<br />

� The household and the lives<strong>to</strong>ck are the most<br />

important sinks for N (key nodes)<br />

� Lives<strong>to</strong>ck represent a ‘non­productive cost’<br />

…but also self­insurance<br />

…and a driver for nutrient cycling<br />

� Agro­ecosystems are refined networks


Conclusions<br />

� NA is useful <strong>to</strong> <strong>analyse</strong> agro­ecosystems properties:<br />

e.g. allowed <strong>to</strong> identify elements of productivity, stability and<br />

resilience<br />

� Results can contribute <strong>to</strong> discussions on livelihoods<br />

because NA includes:<br />

� The rural family and their primary goals<br />

� The natural resources (constraints and opportunities)<br />

� And shows the effects of human agency (adaptive management)


Thanks<br />

and the contribution of:<br />

Huib Hengsdijk, Jan Verhagen, Shamie Zingore and Luke Latham<br />

© Wageningen UR

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!