13.07.2015 Views

The Rotary-Vane Attenuator as an Intel-laboratory Standard

The Rotary-Vane Attenuator as an Intel-laboratory Standard

The Rotary-Vane Attenuator as an Intel-laboratory Standard

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ScienceDocs.U.S. DEPARTMENT OF COMMERCE/Nationai Bureau of St<strong>an</strong>dards<strong>The</strong> <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong><strong>an</strong> <strong>Intel</strong>-<strong>laboratory</strong> St<strong>an</strong>dard


NTU


<strong>The</strong> <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong><strong>an</strong> Inter<strong>laboratory</strong> St<strong>an</strong>dardWilbur LarsonInstitute for B<strong>as</strong>ic St<strong>an</strong>dardsNational Bureau of St<strong>an</strong>dardsBoulder, Colorado 80302U.S. DEPARTMENT OF COMMERCE, Rogers C B. Morton, SecretaryJames A. Baker, III, Under SecretaryDr. Betsy Ancker-Johnson, Ass/sf<strong>an</strong>f Secrefary for Science <strong>an</strong>d Techno/ogyNATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting DirectorIssued November 1975


Library of Congress Cataloging in Publication DataLarson, Wilbur.<strong>The</strong> <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong> <strong>an</strong> Inter<strong>laboratory</strong> St<strong>an</strong>dard.(National Bureau of St<strong>an</strong>dards Monograph; 144)Bibliography: p.1. <strong>Attenuator</strong>s, <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong>. 2. Microwave Me<strong>as</strong>urements. I.Title. II. Series: United States. National Bureau of St<strong>an</strong>dards.Monograph; 144.QC100.U556 No. 144 [TK7871.65] 389\08s [621.381*37175-619099National Bureau of St<strong>an</strong>dards Monograph 144Nat. Bur. St<strong>an</strong>d. (U.S.), Monogr. 144, 70 pages (Nov. 1975)CODEN: NBSMA6U.S. GOVERNMENT PRINTING OFFICEWASHINGTON: 1975For sale by the Superintendent of Documents, U.S. Government Printing Office, W<strong>as</strong>hington, D.C. 20402(Order by SD Catalog No. C13.44:149). Price $5.05. (Add 25 percent additional for other th<strong>an</strong> U.S. mailing)Stock Number 003-003-01416-8


ContentsPage1. Introduction..................................... 12. <strong>The</strong>ory of operation............................ 12.1. Zero setting............................. 22.2. Stator alignment....................... 22.3. Tr<strong>an</strong>smission error or insufficientattenuation in the rotor............... 43. Dial readout of rotary-v<strong>an</strong>e attenuator..... 54. <strong>The</strong> me<strong>as</strong>urement of the rotary-v<strong>an</strong>e attenuator by different methods ............... 84.1. NBS developed attenuationsystems.................................. 84.2. Comparison of modulated subcarrier<strong>an</strong>d dc substitutionmethods................................. 104.3. Comparison of modulated subcarrier<strong>an</strong>d i-f substitutionmethods................................. 104.4. Simult<strong>an</strong>eous me<strong>as</strong>urement bymodulated sub-carrier <strong>an</strong>d dc substitution methods...................... 114.5. Me<strong>as</strong>urement of precision opticalrotary-v<strong>an</strong>e attenuator by dc <strong>an</strong>di-/substitution methods.............. 114.6. Power ratio (dc) versus off-nullme<strong>as</strong>urements......................... 115. Procedures for evaluating the rotary-v<strong>an</strong>eattenuator........................................5.1. Determination of average v<strong>an</strong>e14<strong>an</strong>gle error <strong>an</strong>d eccentricity fromcalibration data........................ 155.1.1. Analysis of calibrationdata........................... 155.1.2. Cyclic pattern of <strong>an</strong>gulardisplacement............... 155.2. Gearing errors related to rotaryv<strong>an</strong>eattenuator........................5.2.1. Effects of a on ey .........16175.2.2. Effects of pitch diameteron error of attenuation... 196. Compensation for tr<strong>an</strong>smission error ofrotary-v<strong>an</strong>e attenuator......................... 216.1. Tr<strong>an</strong>smission error versus dialsetting in decibels .................... 216.2. Stator realignment.................... 216.3. Illustration of tr<strong>an</strong>smission error<strong>an</strong>d compensation for 110-dBmaximum............................... 226.4. Mech<strong>an</strong>ical compensation <strong>an</strong>dme<strong>as</strong>ured results...................... 247. Me<strong>as</strong>urement of precision rotary-v<strong>an</strong>eattenuators with high resolution readouts. 247.1. Me<strong>as</strong>urement of rotary-v<strong>an</strong>e attenuator with a gear drivenreadout.................................. 247.1.1. Me<strong>as</strong>urements of precision gear driven rotaryv<strong>an</strong>eattenuator............. 25in7.1.2. Angular resettability ofattenuator...................7.2. Mounting the gear drive..............7.3. Optical rotary-v<strong>an</strong>e attenuator .....7.3.1. Me<strong>as</strong>urements on optical rotary-v<strong>an</strong>e attenuator............................7.3.2. Me<strong>as</strong>urement after rotorrepair.........................8. Resolution <strong>an</strong>d resettability..................9. Resolution of rotary-v<strong>an</strong>e attenuator inpercent of dial setting.........................10. Frequency sensitivity of the rotary-v<strong>an</strong>eattenuator........................................10.1. Spectrum of microwave attenuation calibration systems 2.6 to40 GHz.................................10.2. Statistical <strong>an</strong>alysis of the frequency sensitivity from calibration data at 30,40, <strong>an</strong>d 50 dB......10.3. Frequency sensitivity of rotaryv<strong>an</strong>eattenuators for eight waveguide frequency r<strong>an</strong>ges.............11. Evaluation of the rotary-v<strong>an</strong>e attenuatorby "bootstrapping" <strong>an</strong>d check st<strong>an</strong>dards ................................:...............11.1. Errors in attenuation for theinitial <strong>an</strong>d the final setting of therotary-v<strong>an</strong>e attenuator for <strong>an</strong> attenuation difference me<strong>as</strong>urement ....................................11.2. Graphical presentation.............11.2.1. Deviations in attenuation due to rotor-v<strong>an</strong>ealignment error..........11.2.2. Attenuation versus 0in degrees.................11.2.3. (j <strong>an</strong>d e/ versus dialsetting (in degrees <strong>an</strong>ddecibels)...................11.2.4. Minimal value of ©.....12. Evaluation of precision rotary-v<strong>an</strong>e attenuator with waveguide fixed-stepattenuator........................................13. Attenuation me<strong>as</strong>urement with therotary-v<strong>an</strong>e attenuator <strong>as</strong> the st<strong>an</strong>dard .................................................13.1. Introduction...........................13.2. <strong>The</strong> Me<strong>as</strong>urement system.........13.3. Errors of microwave me<strong>as</strong>urement system..........................13.3.1. Systematic <strong>an</strong>d r<strong>an</strong>dom errors................13.3.2. Insertion point of thedevice under test........Page25252626272728282933353536363636383840404040424242


13.3.3. Mismatch error m attenuationme<strong>as</strong>urement.......13.4. External leakage.....14. Conclusion.......................Page15. References.......................................16. Appendices42 A. Definitions <strong>an</strong>d Terms.................44 B. Machine Drawings for Optical50 <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong>s..............rage505151List of FiguresFigure 1. Pictorial diagram of the rotaryv<strong>an</strong>eattenuator __________ ___Figure 2. Illustration of the determinationof b© with me<strong>as</strong>ured dist<strong>an</strong>ces 61<strong>an</strong>d & 2 from the reference pl<strong>an</strong>e<strong>as</strong> viewed from the rect<strong>an</strong>gularwaveguide input fl<strong>an</strong>ge _______Figure 3. Rotor index or zero coincidentwith first (or second) stator ___._Figure 4. Rotor index or zero coincidentwith average position of stators _ _Figure 5. Type B alignment: first attenuation maximum, MI, at 9© /2 priorto 90 ; saddle minimum, M s , at90 ; <strong>an</strong>d second maximum, M%,at 19/2 beyond 90 ______________Figure 6. Type A alignment, rotor adv<strong>an</strong>ced to 9©72: first attenuationmaximum, MI, at 90 0©; saddleminimum, Ms , at 90 -072; <strong>an</strong>dthe second maximum, M2 , at90 _.________________________Figure 7. Type A alignment, rotor retarded:first attenuation maximum, MI,at 90 ; saddle minimum, Ms , at90 -f 072; <strong>an</strong>d the second maximum at 90 +0© ______________Figure 8. <strong>Rotary</strong>-v<strong>an</strong>e attenuator dial readout in decibels spiral 3 cycle. _Figure 9. <strong>Rotary</strong>-v<strong>an</strong>e attenuator dial readout in decibels cylindrical 6cycle ________________________Figure 10. <strong>Rotary</strong>-v<strong>an</strong>e attenuator dial readout in decibels cylindrical 9cycle ________________________Figure 11. Graph of the deviation in attenuation from nominal versus dialsetting in degrees which corresponds to a linear deviation of0.020" for three rotary-v<strong>an</strong>eattentuators __________________Figure 12. Dial readout in units, tenths,hundredths <strong>an</strong>d thous<strong>an</strong>dthsof degrees for rotary-v<strong>an</strong>eattenuator _________________Figure 13. Pictorial view of drive unit forrotary-v<strong>an</strong>e attenuator________Figure 14. Machine drawing of driveunit gearing for rotary-v<strong>an</strong>eattenuator __________________333Figure 15. Illustrated deviation of therotor v<strong>an</strong>e of <strong>an</strong> attenuator calibrated by different methods:power ratio (1960), off-null, <strong>an</strong>dpower ratio (1968) ____________Figure 16. Apparent deviation of rotor v<strong>an</strong>ein degrees from nominal at eachdial setting in degrees. <strong>The</strong>indicated v<strong>an</strong>e <strong>an</strong>gle correctionh<strong>as</strong> been applied to each resultFigure 17. Graphs of deviations in attenuation from nominal versus dialsetting in decibels <strong>an</strong>d degrees,a. Me<strong>as</strong>ured deviation (circles)<strong>an</strong>d computed deviation for+ 0.064 v<strong>an</strong>e-<strong>an</strong>gle error __b. Me<strong>as</strong>ured values after applying 0.064 v<strong>an</strong>e <strong>an</strong>gle correction -_-___-___-_______4 Figure 18. Graphs of the cyclic pattern of<strong>an</strong>gular displacement curve,Or, with average v<strong>an</strong>e-<strong>an</strong>gle errorof +0.064 <strong>an</strong>d O©r with -0.064correction ____________________4 Figure 19. Variations ingear eccentricityerror ________________________5 Figure 20. Attenuation <strong>as</strong> a function of v<strong>an</strong>e<strong>an</strong>gle, variation in the indexingerror for the three cycles, <strong>an</strong>d the6error in attenuation from nominalfor the dial settings of 0 to 9(f _Figure 21. Errors in attenuation at the dial6setting of 10 dB versus the <strong>an</strong>glea. for different pitch diameters _ _Figure 22. Errors in attenuation at the dialsetting of 20 dB versus the <strong>an</strong>glea for different pitch diameters _ _Figure 23. Errors in attenuation at the dial6setting of 30 dB versus the <strong>an</strong>glea for different pitch diameters _ _Figure 24. Errors in attenuation at the dialsetting of 40 dB versus the <strong>an</strong>gle7a for different pitch diameters _ _Figure 25. Errors in attenuation at the dial8setting of 50 dB versus the <strong>an</strong>glea for different pitch diameters _ _Figure 26. Errors in attenuation at the dialsetting of 10 dB versus pitch131316161617171818181819IV


Page Pagediameter for the <strong>an</strong>gular displacement error ____________________Figure 27. Errors in attenuation at the dialsetting of 20 dB versus pitchdiameter for the <strong>an</strong>gular displacement error __________________Figure 28. Errors in attenuation at the dialsetting of 30 dB versus pitchdiameter for the <strong>an</strong>gular displacement error_ __________________Figure 29. Errors in attenuation at the dialsetting of 40 dB versus pitchdiameter for the <strong>an</strong>gular displacement error ____________________Figure 30. Errors in attenuation at the dialsetting of 50 dB versus pitchdiameter for the <strong>an</strong>gular displacement error ____________________Figure 31. Estimate of the tr<strong>an</strong>smission errorversus dial setting in decibels formaximum attenuation values of60 to 160 dB _________________Figure 32. Illustration of stator rotation <strong>an</strong>drotor alignment to induce the typeB error ______________________Figure 33. Estimated <strong>an</strong>gular displacementof stators in degrees versus themaximum attenuation value ofrotor v<strong>an</strong>e in decibels for thecompensation required to approach theoretical cos 2 #law____Figure 34. Deviation in attenuation causedby misalignment of the stators,O f equals 0.2 , <strong>an</strong>d insufficientmaximum attenuation of 110 dBfor the dial setting of 20 to 70dB __________________________Figure 35. Deviation of attenuation fromnominal versus dial setting indecibels for rotary-v<strong>an</strong>e attenuator with 72-dB maximum: (a)Curve of calibration points, (b)Curve of correction induced bymisaligning the stator 0.87 , <strong>an</strong>d(c) Plot of calibrated values afterstator misalignment ____________Figure 36. Angular error, O©r , in degrees fromnominal (theory) versus the dialsetting, 0, in degrees, determinedfrom me<strong>as</strong>urements by the powerratio, modulated subcarrier, <strong>an</strong>di-f substitution methods ________Figure 37. Angular error caused by bindingeffect between the drive gear <strong>an</strong>dthe driven gear (concentric to therotor section) __________________Figure 38. Angular error, #©, in degreesversus dial setting in degrees, 0,after precise machining w<strong>as</strong>19 applied ______________________ 26Figure 39. Deviation in decibels <strong>an</strong>d degreesversus dial setting in degrees _ _ _ _ 26Figure 40. Deviation in decibels <strong>an</strong>d degrees20 versus dial setting in degrees,after repair of the rotor section __ 27Figure 41. (a) Deviation of me<strong>as</strong>ured attenuation <strong>an</strong>d equivalent <strong>an</strong>gular20 deviation from theoretical valuesfor a v<strong>an</strong>e <strong>an</strong>gle correction of-0.033 versus dial setting of 0to 45 ________________________ 2720 (b) Deviation of me<strong>as</strong>ured attenuation <strong>an</strong>d equivalent <strong>an</strong>gulardeviation from theoretical valuesfor a v<strong>an</strong>e <strong>an</strong>gle correction of20 0.033 versus dial setting of45 to 87.5 0__________ 27Figure 42. Resolution error in decibels versus dial setting in decibels______ 2821 Figure 43. Resolution of the dial in percentof attenuation versus dial settingin decibels for <strong>an</strong> attenuator with21 <strong>an</strong>gular resolution of 0.01 ______ 28Figure 44. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.098,0.080, <strong>an</strong>d 0.036 versus dial setting in decibels at 9.0, 9.8, <strong>an</strong>d11.2 GHz___________________ 2922 Figure 45. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.032,-0.042 <strong>an</strong>d -0.054 versus dialsetting in decibels at 9.0, 9.8,<strong>an</strong>d 11.2 GHz__ ______________ 30Figure 46. Deviation of attenuation for aver-23 age v<strong>an</strong>e-<strong>an</strong>gle errors of 0.024,0.035 <strong>an</strong>d 0.049 versus dial setting in decibels at 29, 33, <strong>an</strong>d 37GHz ______ _________________ 30Figure 47. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.008,-0.014, <strong>an</strong>d -0.042 versus dialsetting in decibels at 29, 33, <strong>an</strong>d37 GHz_________________ 3124 Figure 48. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.031,-0.010, <strong>an</strong>d 0.013 versus dialsetting in decibels at 2.85, 3.25,3.55 GHz ___________________ 3125Figure 49. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.128,0.105, <strong>an</strong>d 0.120 versus dial setting in decibels at 2.85, 3.25, <strong>an</strong>d263.55 GHz_______ ________ Figure 50. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.070,32


Page Page0.067, <strong>an</strong>d -0.032 versus dialsetting in decibels at 2.85, 3.25,<strong>an</strong>d 3.55 GHz_ _________Figure 51. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for twentyWR284 rotary-v<strong>an</strong>e attenuatorsat 30, 40, <strong>an</strong>d 50-dB dial settings _________________Figure 52. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for twenty-oneWR187 rotary-v<strong>an</strong>e attenuatorsat 30, 40, <strong>an</strong>d 50-dB dial settings ________________Figure 53. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for eighteenWR137 rotary-v<strong>an</strong>e attenuators at30, 40, <strong>an</strong>d 50-dB dial settings _Figure 54. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for twentythreeWR112 rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings ______________________Figure 55. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for fifty-oneWR90 rotary-v<strong>an</strong>e attenuators at30, 40, <strong>an</strong>d 50-dB dial settings _Figure 56. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for seven WR62rotary-v<strong>an</strong>e attenuators at 30, 40,<strong>an</strong>d 50-dB dial settings ________Figure 57. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for seven WR42rotarv-v<strong>an</strong>e attenuators at 30, 40,<strong>an</strong>d >0-dB dial settings ________Figure 58. Limits of magnitude of onesigmaerror in attenuation versusfrequency in GHz for seven WR28rotary-v<strong>an</strong>e attenuators at 30, 40,<strong>an</strong>d 50-dB dial settings ________Figure 59. (a) e© error from nominal (10 dB)increments versus dial setting indecibels for rotor misalignment,0; equal to 0.100, 0.200, <strong>an</strong>d0.300 _ ______________________(b) Attenuation in decibels versus0 in degrees, <strong>an</strong>d <strong>an</strong>gular limitsin degrees for attenuation difference of 10 dB ________________Figure 60. e f error in decibels versus 0/from 0 to 0.300 for 10-dBincrements <strong>as</strong> follows: 0 to 10dB, 3 to 13 dB, 6 to 16 dB, 10 to20 dB, <strong>an</strong>dl5to25dB______32 Figure 61. (a) e© error from nominal (6 dB)increments versus dial setting indecibels for rotor misalignment,0;, equal to 0.100, 0.200, <strong>an</strong>d0.300 _ _______________________(b) Attenuation in decibels versus336 in degrees, <strong>an</strong>d <strong>an</strong>gular limitsin degrees for attenuation difference of 6 dB______________ __Figure 62. €* error in decibels versus Ojfrom 0 to +0.300 for 6-dB increments <strong>as</strong> follows: 0 to 6 dB, 3 to339 dB, 6 to 12 dB, 9 to 15 dB, 12 to18 dB, 15 to 21 dB, <strong>an</strong>d 18 to24 dB ______________________Figure 63. (a) e© error from nominal (3 dB)increments versus dial setting in33decibels for rotor misalignment,0;, equal to 0.100, 0.200, <strong>an</strong>d0.300 _____________(b) Attenuation in decibels versus6 in degrees, <strong>an</strong>d <strong>an</strong>gular limitsin degrees for attenuation differ-33erence of 3 dB _______________Figure 64. e© error in decibels versus 0/from 0 to + 0.300 for 3-dB increments <strong>as</strong> follows: 0 to 3 dB, 2 to5 dB, 3 to 6 dB, 6 to 9 dB, 9 to 1234dB, 15 to 18 dB, 18 to 21 dB, <strong>an</strong>d21 to 24 dB _________________Figure 65. (a) e© error from nominal (1 dB)increments versus dial setting indecibels for rotor misalignment3407, equal to 0.100, 0.200, <strong>an</strong>d34353737(b) Attenuation in decibels versus0 in degrees, <strong>an</strong>d <strong>an</strong>gular limitsin degrees for attenuation difference of IdB __________________Figure 66. e© error in decibels versus 0/from 0 to + 0.300 for 1-dB increments <strong>as</strong> follows: 0 to 1 dB, 5 to6 dB, 9 to 10 dB, 29 to 30 dB, <strong>an</strong>d39 to 40 dB _________________Figure 67. e© error from nominal (0.1 dB)increments versus dial setting indecibels for rotor misalignment,0/, equal to 0.100, 0.200, <strong>an</strong>d0.300 _______ __________(b) Attenuation in decibels versus0 in degrees, <strong>an</strong>d <strong>an</strong>gular limitsin degrees for attenuation difference of 0.1 dB ______________Figure 68. e© error in decibels versus 0/from 0 to +0.300 for 0.1-dBincrements <strong>as</strong> follows: 0 to 0.1383939404141424343444545VI


<strong>The</strong> <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong> <strong>an</strong>Inter<strong>laboratory</strong> St<strong>an</strong>dardWilbur LarsonThis paper presents a comprehensive report on the me<strong>as</strong>urement <strong>an</strong>d the use of the rotary-v<strong>an</strong>eattenuator <strong>as</strong> <strong>an</strong> inter<strong>laboratory</strong> st<strong>an</strong>dard.Methods of attenuation me<strong>as</strong>urement developed at NBS are used to supply data for the evaluation of the deviations from theoretical cos 2 law due to rotor misalignment, gear eccentricity, resettability,resolution, <strong>an</strong>d insufficient maximum attenuation.A precision rotary-v<strong>an</strong>e attenuator with <strong>an</strong> optical readout capable of 1 second of arc <strong>an</strong>gularresolution h<strong>as</strong> <strong>an</strong> effective attenuation resolution of 0.00005 dB at a 3-dB dial setting, <strong>an</strong>d 0.0005 dB at a30-dB dial setting. This type of precision attenuator is <strong>an</strong> effective st<strong>an</strong>dard for use in the dual detectionmicrowave bridge me<strong>as</strong>urement system.Key words: Attenuation; inter<strong>laboratory</strong> st<strong>an</strong>dard; me<strong>as</strong>urement; rotary-v<strong>an</strong>e attenuator.1. IntroductionIn the p<strong>as</strong>t decade a considerable amount ofmaterial h<strong>as</strong> been published on use of the rotaryv<strong>an</strong>eattenuator for attenuation me<strong>as</strong>urements inthe microwave region. During this period <strong>an</strong> efforth<strong>as</strong> been made to establish <strong>an</strong> improved st<strong>an</strong>dard forattenuation that would be useful <strong>an</strong>d adaptable tocalibration of commercial attenuators over the entiremicrowave frequency r<strong>an</strong>ge.<strong>The</strong> dial readout of the rotary-v<strong>an</strong>e attenuatorindicates either the <strong>an</strong>gular displacement in degreesor the corresponding value of attenuation in decibels.<strong>The</strong> purpose of this report is to discuss the work<strong>an</strong>d experiments employed in the development <strong>an</strong>devaluation of the rotary-v<strong>an</strong>e attenuator <strong>as</strong> <strong>an</strong> inter<strong>laboratory</strong> st<strong>an</strong>dard.2. <strong>The</strong>ory of Operation<strong>The</strong> rotary-v<strong>an</strong>e attenuator h<strong>as</strong> the propertiesessential for a st<strong>an</strong>dard attenuator. This type ofattenuator is a device that h<strong>as</strong> a dissipative resistivev<strong>an</strong>e which c<strong>an</strong> be rotated in a circular section ofwaveguide. <strong>The</strong> attenuation produced follows verynearly the cosine squared 0 law where 6 is the <strong>an</strong>gular displacement of the v<strong>an</strong>e from the polarizationof the TEi t i mode of the waveguide.Intrinsically, the rotary-v<strong>an</strong>e attenuator consistsof three sections of waveguide, two ends which arerect<strong>an</strong>gular/circular tr<strong>an</strong>sitions <strong>an</strong>d the circularcenter section. <strong>The</strong>se three sections are placed int<strong>an</strong>dem on the longitudinal axis <strong>as</strong> shown in figure 1.A resistive v<strong>an</strong>e is mounted across the center ofeach circular section of waveguide. In the minimumROTARY VANE ATTENUATORESIN0ECOS0 ©ECOS0ECOS0S!N0JECOS2 0ATTENUATION = »20 LOG(0COS 20 =-40 LOG(0COS0FIGURE 1. Pictorial diagram of the rotary-v<strong>an</strong>e attenuator.i


attenuation position, the v<strong>an</strong>es in the three sectionsare parallel to each other <strong>an</strong>d the wide side of therect<strong>an</strong>gular waveguide (i.e., perpendicular to theelectric E field). <strong>The</strong> entire center section, the rotor,c<strong>an</strong> be rotated about the longitudinal axis of thewaveguide, thus putting the v<strong>an</strong>e parallel to a portion (E sin 6) of the E field. <strong>The</strong> resistive filmabsorbs the component E sin 6, while the componentE cos 0, normal to the center v<strong>an</strong>e, p<strong>as</strong>ses throughunattenuated to the v<strong>an</strong>e in the second stator. <strong>The</strong>E cos 6 component upon entering the second statorsplits into two components. <strong>The</strong> resistive filmabsorbs the E cos 6 component, <strong>an</strong>d the E cos 02component emerges in a pl<strong>an</strong>e normal to the original.Thus, the attenuation, A, stipulated from thisrelationship c<strong>an</strong> be written <strong>as</strong>^=-201og 10 cos 2 0 + C (1)where 0 is the <strong>an</strong>gle of the rotating v<strong>an</strong>e relative tothe stator v<strong>an</strong>e of the input section, C is the residualattenuation, <strong>an</strong>d A is the corresponding attenuationin decibels [I]. 1<strong>The</strong> center section is mounted concentricallywith either a driven gear mech<strong>an</strong>ism, <strong>an</strong> opticaldevice [3], or <strong>an</strong> electrical tr<strong>an</strong>sducer [4] for tr<strong>an</strong>slation of <strong>an</strong>gular rotation to a suitable display.Each of the above methods of displaying the <strong>an</strong>gularrotation will be discussed later in detail, which willinclude their respective desirable features ordisadv<strong>an</strong>tages.2.1. Zero Setting<strong>The</strong> variable attenuator c<strong>an</strong> be used for attenuation difference with a known reference level.Usually, this reference is zero dial setting, corresponding to minimum insertion loss. <strong>The</strong> value ofminimum insertion loss appears to be the mostlogical position to align the rotor <strong>an</strong>d the statorv<strong>an</strong>es to correspond to zero dial setting. However,if achieved electrically, the <strong>an</strong>gular displacementof the rotor section from 0 requires more th<strong>an</strong> 0.6to correspond to a 0.001 dB in attenuation. But,when the rotor v<strong>an</strong>e approaches a right <strong>an</strong>gle withthe stator v<strong>an</strong>e, the same 0.6 of <strong>an</strong>gular rotationcorresponds theoretically to a ch<strong>an</strong>ge greater th<strong>an</strong>100 dB. Although the maximum attenuation is muchless th<strong>an</strong> the theoretical value (approaches a limitof 110 to 120 dB) the loss of sensitivity in me<strong>as</strong>uringsuch large values of attenuation more th<strong>an</strong> offsetsthe adv<strong>an</strong>tage of high <strong>an</strong>gular resettability for agiven value of attenuation. <strong>The</strong>refore, <strong>an</strong> equal <strong>an</strong>gletechnique of approximately 10 either side of 90appears to be a good compromise. Using this technique, the attenuator is set to <strong>an</strong> <strong>an</strong>gle of approximately 100 so that its output is equal to the output1 Figures in brackets indicate the literature references on pageat 80 . <strong>The</strong> midpoint of these two <strong>an</strong>gles representsthe true electrical pl<strong>an</strong>e of the attenuation v<strong>an</strong>e.This technique is only valid for direct driven dialmech<strong>an</strong>isms, where the <strong>an</strong>gular displacement dueto gear eccentric or run out is not present [5], <strong>The</strong>misalignment encountered by eccentric gearingh<strong>as</strong> been evaluated at NBS [6].Some commercially available attenuators havestops to prevent <strong>an</strong>gular rotation beyond zero,<strong>an</strong>d/or 90 the theoretical maximum for attenuation. This type of mech<strong>an</strong>ical stop makes it impossible to align the rotor v<strong>an</strong>e by the equal <strong>an</strong>gletechnique. In addition, striking the stop a severeblow during rotation at either end could reorientthe center rotor v<strong>an</strong>e due to gear or shaft slippage<strong>an</strong>d cause undesirable deviation from the cos 2 lawat the high <strong>an</strong>gle setting.2.2. Stator AlignmentIn the fabrication of a precision rotary-v<strong>an</strong>eattenuator it is not only essential that the zero ofthe dial readout be oriented with the referencepl<strong>an</strong>e of the v<strong>an</strong>e in the rotor section, but the v<strong>an</strong>esof the end sections or stators should lie in the samepl<strong>an</strong>e. If the end v<strong>an</strong>es are not parallel the insertionloss will incre<strong>as</strong>e slightly, but more import<strong>an</strong>t, therotor to stator alignment will be impaired, <strong>an</strong>d cause<strong>an</strong> <strong>an</strong>gular misalignment about the longitudinal axis,<strong>as</strong> shown in figure 2. Here, the dist<strong>an</strong>ces to the statorv<strong>an</strong>es from the reference pl<strong>an</strong>e are indicated <strong>as</strong>bi <strong>an</strong>d 62, <strong>an</strong>d the difference <strong>as</strong> 6©.Figures 3 <strong>an</strong>d 4 illustrate two methods of initiallyaligning the rotor v<strong>an</strong>e with reference to the statorv<strong>an</strong>es. Two types (Type A <strong>an</strong>d Type B) of errors arepossible for rotary-v<strong>an</strong>e attenuator with rotationallymisaligned stators [6]. <strong>The</strong> Type A occurs when therotating section index or zero is coincident to thefirst (or second) stator v<strong>an</strong>e, <strong>an</strong>d the Type B occurswhen the rotating section index or zero is coincidentto the average position (or bisection) of the statorv<strong>an</strong>es.<strong>The</strong> error, in decibels, for Type A misalignment iscos (0+0©)SlO©cos 0<strong>an</strong>d the error, in decibels, for the Type B misalignment is(2)cos(0+|-)cos(0-|-)e 6 = -201oglo £-rr . (3)cos 2 0With the use of trigonometric identities the TypeB error c<strong>an</strong> be written [7] <strong>as</strong>6 = -20 log cos2 -- t<strong>an</strong> 2 6> sin 2 - dB (4)


RECTANGULARWAVEGUIDEFLANGEAVERAGE POSITION(or BISECTOR) fcOF STATORSFIGURE 2. Illustration of the determination ofb' with me<strong>as</strong>ured dist<strong>an</strong>cesfrom the reference pl<strong>an</strong>e <strong>as</strong> viewed from the rect<strong>an</strong>gular waveguide inputfl<strong>an</strong>ge.TYPE "A" ERRORROTOR-TYPE "B" ERRORSTATORROTORSTATORZERO OF ROTOR (INDEX)-ZERO OF ROTOR (INDEX)FIGURE 3. Rotor index or zero coincident with first (or second)sector.FIGURE 4. Rotor index or zero coincident with average positionof stators.Regardless of the type of alignment with referenceto the dial zero, the entire r<strong>an</strong>ge of attenuation isaffected by <strong>an</strong>y misalignment of the stators. Forexample, in a Type B alignment, a 90° rotation of therotor v<strong>an</strong>e will coincide with the saddle portion of adouble hump maximum attenuation, figure 5. Figure5 shows that the first maximum attenuation will bereached to coincide with 8'12 prior to 90° on the dial,while the second maximum will occur at 0*12 beyond90° on the dial.-However, the Type A alignment givesrise to two possible situations, <strong>an</strong> adv<strong>an</strong>ced rotorv<strong>an</strong>e or a retarded rotor v<strong>an</strong>e with reference to eitherstator v<strong>an</strong>e. In figure 6, the rotor v<strong>an</strong>e is <strong>as</strong>sumed tobe adv<strong>an</strong>ced 0'/2. <strong>The</strong> first maximum attenuationoccurs at 90°- 0', the saddle minimum at 90° — 072,<strong>an</strong>d the second maximum attenuation at 90° of the


7T/2DIAL 9, (DEGREES)ZERO OF ROTOR J(INDEX)STATOR#2FIGURE 5. Type B alignment: first attenuation maximum, MI,at 0' 12 prior to 90°; saddle minimum, M s , at 90°;<strong>an</strong>d second maximum, MZ, at 6/2 beyond 90°.FIGURE 7.rSTATOR#2Type A alignment, rotor retarded: first attenuationmaximum, MI, at 90°; saddle minimum, Ms, at90°+0'/2; <strong>an</strong>d the second maximum at 90° + 8'.dial setting. To observe the conditions for a retardedrotor v<strong>an</strong>e of 6'/2 refer to figure 7. In this c<strong>as</strong>e thefirst maximum attenuation occurs at 90°, the saddleminimum at 90° + 0'/2, <strong>an</strong>d the second maximumattenuation at 90°+ 6' of the dial setting.<strong>The</strong> double-humped attenuation curves shown infigure 5, 6, <strong>an</strong>d 7 only occur when end v<strong>an</strong>e misalignment <strong>an</strong>d insufficient attenuation are simult<strong>an</strong>eously present. With perfect v<strong>an</strong>es, attenuationwould tend to infinity at two <strong>an</strong>gles.DIAL 0, (DEGREES)STATOR#2FIGURE 6. Type A alignment, rotor adv<strong>an</strong>ced to 6 f /2: firstattenuation maximum, MI, at 90° —0'; saddleminimum, Mg, at 90° — 0'/2; <strong>an</strong>d the second maximum,M2 , at 90°.2.3. Tr<strong>an</strong>smission Error or InsufficientAttenuation in the Rotor<strong>The</strong> ideal characteristics of the cos 2 law is notobtainable with the rotary-v<strong>an</strong>e attenuator at thehigh setting of 6 due to the tr<strong>an</strong>smission error. Although one may argue that <strong>an</strong>y error occurring during tr<strong>an</strong>smission of a wave through a rotary-v<strong>an</strong>eattenuator could be called tr<strong>an</strong>smission error, theauthor here follows the common practice of m<strong>an</strong>ywriters on the subject <strong>an</strong>d <strong>as</strong>signs the tr<strong>an</strong>smissionerror entirely to the error resulting from insufficientmaximum attenuation in the center v<strong>an</strong>e. Of course,the theoretical cos 2 6 law <strong>as</strong>sumes infinite attenuation in the center v<strong>an</strong>e. In addition to large tr<strong>an</strong>smission error, the lack of sufficient maximum attenuation shows incre<strong>as</strong>ed ph<strong>as</strong>e shift <strong>an</strong>d frequencysensitivity at the higher setting of 9.


<strong>The</strong> error related to the tr<strong>an</strong>smission error <strong>an</strong>dph<strong>as</strong>e shift of the rotary-v<strong>an</strong>e attenuator h<strong>as</strong> beentreated by James [8], Otoshi [7], <strong>an</strong>d Mariner [5].<strong>The</strong> tr<strong>an</strong>smission error is given by, = -20 log -*'t<strong>an</strong> 2 0)dB (5)where the term e~al c<strong>an</strong> be determined experimentally by setting 6 to 9(F <strong>an</strong>d then me<strong>as</strong>uring A(maximum attenuation)1A' (6)Where / is the dist<strong>an</strong>ce the wave travels in therotor section of the attenuator <strong>an</strong>d a is equal to thedifference between the attenuation const<strong>an</strong>ts ofthe t<strong>an</strong>gential <strong>an</strong>d normal electric field componentsin the rotor.<strong>The</strong> calculated error from eq (5) <strong>an</strong>d a me<strong>as</strong>uredvalue of 90 dB for 0=7r/2, shows that e, = 0.086dB at a dial setting of 50 dB.<strong>The</strong> ph<strong>as</strong>e shift of the tr<strong>an</strong>smitted signal <strong>as</strong> afunction of 6 is given bycos 2 0 + e-« l sin 2 0 cos piwhere j8 = /3o —)8i. <strong>The</strong> qu<strong>an</strong>tity pi c<strong>an</strong> be foundexperimentally. Where /3 is equal to the differencebetween the ph<strong>as</strong>e shift const<strong>an</strong>ts of the t<strong>an</strong>gential<strong>an</strong>d normal electric field components in the rotor.If pi equals 90°, the ph<strong>as</strong>e shift will be less th<strong>an</strong>0.2° between 0 to 40 dB.For use in the deep space project a compactrotary-v<strong>an</strong>e attenuator w<strong>as</strong> developed. Any compactness, especially in the rotor section of theattenuator would affect its cos 2 response in relationto maximum attenuation, ph<strong>as</strong>e shift <strong>an</strong>d frequencysensitivity. However, at a fixed frequency <strong>an</strong>d lowvalues of attenuation, this device c<strong>an</strong> be a st<strong>an</strong>dard.A shorter rotor section provides less maximumattenuation, thus incre<strong>as</strong>ing tr<strong>an</strong>smission error.A modified law derived by Otoshi [9] corrects forthis effect of tr<strong>an</strong>smission error. His treatment ofthe tr<strong>an</strong>smission error is similar to James [8] butdoes not <strong>as</strong>sume that the tr<strong>an</strong>smission error signaleffect is of a known magnitude or ph<strong>as</strong>e.<strong>The</strong> attenuator's physical length need not be long<strong>as</strong> the modified law does not require a zero tr<strong>an</strong>smission error. This permits a marked decre<strong>as</strong>e inphysical length where this is a physical factor.In addition, the modified law c<strong>an</strong> be used forcorrections, that are necessary to extend thedynamic attenuation r<strong>an</strong>ge of the present precisionrotary-v<strong>an</strong>e attenuator. A mech<strong>an</strong>ical technique forcompensating for insufficient attenuation will bediscussed in a later section of the text.(7)3. Dial Readout of <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong><strong>Attenuator</strong><strong>The</strong> readout scale indicates the value of attenuation in decibels for most rotary-v<strong>an</strong>e attenuators.Let us consider several of the methods that c<strong>an</strong> beused for presenting a decibel scale of the attenuation, such <strong>as</strong> the 3 cycle spiral, <strong>an</strong>d 6 <strong>an</strong>d 9 cyclecylindrical readouts <strong>as</strong> illustrated in figures 8,9, <strong>an</strong>d10 respectively.X-b<strong>an</strong>d (WR90) rotary-v<strong>an</strong>e attenuators wereused in the evaluation of 3 <strong>an</strong>d 6 cycle readouts <strong>an</strong>d<strong>an</strong> S-b<strong>an</strong>d (WR284) attenuator w<strong>as</strong> used to evaluatea 9 cycle readout. It is estimated that setting theindicator line of the readout on either edge of a givenmark on the scale corresponds to a linear deviationof about 0.020". <strong>The</strong> <strong>an</strong>gular displacement of therotor section, that is equivalent to 0.020" linear displacement on the dial, w<strong>as</strong> calculated for each ofthree types of scales. <strong>The</strong> results of these calculations are summarized in table 1. Column five in thetable shows the calculated <strong>an</strong>gular displacement ofthe rotor in degrees which corresponds to a lineardeviation of 0.020" (the nominal width of a scaleline) on the scale readout. Note that the value of<strong>an</strong>gular displacement of the rotor ch<strong>an</strong>ges with eachspiral in the 3 cycle readout for a given linear deviation, but remains const<strong>an</strong>t for all parts of the cylindrical readouts. Graphs of the deviation of attenuation from nominal in decibles versus the dial settingin degrees, 0 to 86.5 (0 to 50 dB), are shown for eachof the three types of readouts in figure 11. <strong>The</strong> devia-MAXFIGURE 8. <strong>Rotary</strong>-v<strong>an</strong>e attenuator dial readout in decibelsspiral—3 cycle.


Fu;i : HE 9. Kotary-i><strong>an</strong>e attenuator dial readout in decibels —Cylindrical — 6 cycle.Fn.l RE 10. <strong>Rotary</strong>-v<strong>an</strong>e attenuator dial readout in decibelscylindrical—9 cycle.tion of attenuation from nominal in decibels is verynearly the same for the 3 cycle spiral, <strong>an</strong>d the 6cycle cylindrical readout, in WR90 waveguide. However, the deviations are considerable less for the9 cycle cylindrical readout in WR284 waveguide.NBS h<strong>as</strong> designed a drive unit for a commercialrotary-v<strong>an</strong>e attenuators that have a gear mech<strong>an</strong>ismratio of 12. <strong>The</strong> use of the drive unit modifies theattenuator to give the <strong>an</strong>gular rotation of the rotorsection in decimal parts of a degree. Figure 12 showsTABLE 1. Angular displacement of rotor corresponding to a linear displacement of0.020 inches on the readout scale for .{, 6, <strong>an</strong>d V cycle readoutsType of scale3 cycle(spiral)6 cycle(cylindrical)9 cycle(cylindrical)(rearrat in12:124:136:1Diameter ofscale readout1,75" {0-2. 5 dB)2.75" (2.5-12 dB)3.80"(12-max)1.27"2.25"Diameterof drivenrotor gear1.59"1.59"1.59"2.17"4.5"Rotor <strong>an</strong>gulardisplacementdejjree0.021°.014°.009°.010°.002°1TYPE OF READOUT__ 2 —— 6 CrCLE SPIRAL3WAVEGUIDESIZEMR 90the three dial readout of the rotor in units, tenths,hundredths <strong>an</strong>d thous<strong>an</strong>dths of a degree. <strong>The</strong> useof a three dial readout is <strong>an</strong> appropriate method toincre<strong>as</strong>e the resolution of the <strong>an</strong>gular displacementdial to thous<strong>an</strong>dths of a degree. In order to convert<strong>an</strong> <strong>an</strong>gular displacement to decibels for incrementsof 0.001° refer to NBS Technical Note 229. Figure13 <strong>an</strong>d 14 show the machine drawings of the drivemech<strong>an</strong>ism <strong>an</strong>d scale used to display the <strong>an</strong>gulardisplacement of the gear driven rotor (ratio of 12)6FIGURE 11. Graph of the deviation in attenuation from nominal versus dial setting in degrees which correspondsto a linear deviation of 0.020" for three rotaryv<strong>an</strong>eattenuators.


in 0.001° increments from 0 to 90°. A simplifiedgear drive for rotary-v<strong>an</strong>e attenuators w<strong>as</strong> developedrecently at NBS in WR15 waveguide size [10]. Thisone-step drive consists of a 180:1 precision spiroidgear set which provides <strong>an</strong> accurate <strong>an</strong>d repeatablereadout <strong>an</strong> order of magnitude better th<strong>an</strong> commercial attenuators. This drive mech<strong>an</strong>ism permitsreadout of 0.01° increments of v<strong>an</strong>e <strong>an</strong>gle displacement. To convert this readout to decibels, refer toNBS Technical Note 229.A rotary-v<strong>an</strong>e attenuator with <strong>an</strong> optical readout[3] w<strong>as</strong> designed at NBS, Boulder, that provides <strong>an</strong><strong>an</strong>gular displacement <strong>an</strong>d readout with a resolutionof ± 1 second of arc. A table is very useful fordetermining the attenuation in decibels for <strong>an</strong>gulardisplacements in degrees, minutes, <strong>an</strong>d seconds <strong>as</strong>would be obtained from the above attenuatorreadout. Three computer tapes have been run offfor the function (A = — 40 logio cos 6) versus degrees,minutes, seconds <strong>as</strong> follows:Tape(1)(2)(3)Attenuation(0.000000-2.498726 dB)(2.498775-12.041054 dB)(12.041200-212.577005 dB)e(0°0'Q"to29°59'59")(30°0'0"to59°59'59")(60°0'0"to89°59'59")<strong>The</strong> computer tapes provide 324,000 values ofattenuation to six decimal -places from 0 to212.577005 dB for every second of arc from 0 to89°59'59".HUNDREDTHSANDTHOUSANDTHSTENTHSFIGURE 12. Dial readout in units, tenths, hundredth^ <strong>an</strong>dthous<strong>an</strong>dths of degrees for rotary-v<strong>an</strong>e attenuator.


FIGURE 13. Pictorial view of drive unit for rotary-v<strong>an</strong>e attenuator.4. <strong>The</strong> Me<strong>as</strong>urement of the <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> by DifferentMethodsIn most of the microwave st<strong>an</strong>dards laboratoriesseveral methods are available for the me<strong>as</strong>urementof waveguide attenuation devices. At NBS severalexcellent methods were developed to calibraterotary-v<strong>an</strong>e attenuators. <strong>The</strong> inherent propertiesof the rotary-v<strong>an</strong>e attenuator make this device <strong>an</strong>excellent st<strong>an</strong>dard for intercomparison of calibration systems. In order to obtain the best results from<strong>an</strong>y me<strong>as</strong>urement data, it is essential that the inter<strong>laboratory</strong>st<strong>an</strong>dard used meets the criteria of adesirable st<strong>an</strong>dard [11].<strong>The</strong> purpose of this section of the report will showthat the calibration data of the rotary-v<strong>an</strong>e attenuatorused in several systems enables one to evaluate boththe systems <strong>an</strong>d the inter<strong>laboratory</strong> st<strong>an</strong>dard,simult<strong>an</strong>eously.4.1. NBS Developed Attenuation Systems<strong>The</strong> power ratio method w<strong>as</strong> developed in 1959 atNBS/Boulder for microwave attenuation me<strong>as</strong>urements <strong>an</strong>d the error affiliated with this techniqueh<strong>as</strong> been carefully evaluated [12]. <strong>The</strong> application ofthis method resulted in a signific<strong>an</strong>t improvement inthe resolution <strong>an</strong>d stability of attenuation differenceme<strong>as</strong>urements, especially for small attenuationvalues, over a broad frequency r<strong>an</strong>ge. Other systemswere developed at NBS in the microwave attenuation me<strong>as</strong>urement area, namely, the modulated subcarrier[13] <strong>an</strong>d off-null [14] methods. In addition tothese highly accurate <strong>an</strong>d precise me<strong>as</strong>urementsystems, the i-f substitution method for attenuationme<strong>as</strong>urement h<strong>as</strong> been developed to a high degree ofexcellence [15, 16]. <strong>The</strong> i-f substitution method isthe most commonly used in both waveguide <strong>an</strong>dcoaxial systems at NBS. At present the i-f substitution waveguide systems are used over the frequency8


sneer f orFIGURE 14. Machine drawing of drive unit gearing for rotaryv<strong>an</strong>eattenuator.r<strong>an</strong>ge from 1.7 to 65 GHz in the waveguide sizesfrom WR430 to WR15. <strong>The</strong> other systems mentionedabove were developed predomin<strong>an</strong>tly in the X-b<strong>an</strong>dregion.During the p<strong>as</strong>t 15 years NBS/Boulder h<strong>as</strong> calibrated m<strong>an</strong>y rotary-v<strong>an</strong>e attenuators in ninedifferent waveguide sizes. Most of these attenuatorshave been commercially purch<strong>as</strong>ed for use <strong>as</strong> inter<strong>laboratory</strong>st<strong>an</strong>dards in public, military, <strong>an</strong>d government agencies.A commercially available X-b<strong>an</strong>d rotary-v<strong>an</strong>eattenuator 2 w<strong>as</strong> calibrated by the NBS powerratio method [12], This work revealed the limitations of commercial rotary-v<strong>an</strong>e attenuators forvalues greater th<strong>an</strong> 1 dB; it w<strong>as</strong> shown that the resolution <strong>an</strong>d repeatability deteriorate rapidly at thehigher values of attenuation. In other words, thepower ratio calibration system challenged the pre-2 Certain commercial equipment <strong>an</strong>d materials are identified in this paper in orderto adequately specify the experimental procedure. In no c<strong>as</strong>e does such identificationimply recommendation or endorsement by the National Bureau of St<strong>an</strong>dards, nordoes it simply that the material or equipment identified is necessarily the best availalbefor the purpose.9cision <strong>an</strong>d resolution that could be obtained with thepresent available rotary-v<strong>an</strong>e attenuator.A short time later <strong>an</strong>other method of me<strong>as</strong>uringmicrowave attenuation w<strong>as</strong> developed at NBS.This new method known <strong>as</strong> the modulated subcarriertechnique [13] utilized commercially available components to provide resolution <strong>an</strong>d accuracycomparable to the power ratio method.In the evaluation of this new method, attenuationme<strong>as</strong>urements were compared with those obtainedby the power ratio or (de-substitution) <strong>an</strong>d thei-f substitution (30 MHz st<strong>an</strong>dard) techniques. <strong>The</strong>same commercial rotary-v<strong>an</strong>e attenuator of WR90waveguide size w<strong>as</strong> calibrated at specific dialsettings by each of the above methods at about 9.4GHz. Although the me<strong>as</strong>urement data w<strong>as</strong> takensome years ago, recent additional evaluations havebeen made regarding the properties of the rotaryv<strong>an</strong>eattenuator. Also, a recently discovered defectin the fabrication of the inter<strong>laboratory</strong> st<strong>an</strong>dardused in the above me<strong>as</strong>urements sheds new lighton this calibration data.573-735 OL - 75 - 2


4.2* Comparison of Modulated Subcarrier<strong>an</strong>d dc Substitution MethodsTable 2 shows a comparison of the modulatedsubcarrier with those of the dc substitution method(power ratio). <strong>The</strong> dial setting of the attenuatorin decibels is given in column one. In columns two<strong>an</strong>d three the me<strong>as</strong>ured values for each dial settingby the modulated subcarrier <strong>an</strong>d dc methods arelisted, respectively. Column four gives the discrep<strong>an</strong>cy between the dc <strong>an</strong>d subcarrier methods.This discrep<strong>an</strong>cy between the two methods is shownto be less th<strong>an</strong> 0.0020 dB from 0.01 to 1-dB values,while the discrep<strong>an</strong>cy incre<strong>as</strong>es to 0.03 dB at the30-dB value. A large portion of these discrep<strong>an</strong>ciesare due to attenuation resettability <strong>an</strong>d operatorperform<strong>an</strong>ce.caused a deviation of about 0.5 dB between the twodifferent subcarrier me<strong>as</strong>urements at the 50 dBdial setting.<strong>The</strong> discrep<strong>an</strong>cy between the subcarrier <strong>an</strong>d i-fmethods w<strong>as</strong> about 0.004 dB at 1-dB dial setting(greater th<strong>an</strong> for the subcarrier <strong>an</strong>d dc methods),while the discrep<strong>an</strong>cy w<strong>as</strong> 0.02 dB at the 30-dBdial setting (less th<strong>an</strong> for the dc <strong>an</strong>d subcarriermethods). In addition, table 2 shows the me<strong>as</strong>uredvalues of attenuation to be less th<strong>an</strong> in table 3 fordial settings of 40 <strong>an</strong>d 50 dB. This ch<strong>an</strong>ge could becaused by the vertical <strong>an</strong>d/or the horizontal positionsof the attenuator under calibration [13], <strong>as</strong> indicatedin table 2 <strong>an</strong>d table 3.TABLE 3. Comparison of me<strong>as</strong>urements obtained by modulatedsubcarrier <strong>an</strong>d i-f substitution methodsTABLE 2. Comparison of me<strong>as</strong>urements obtained by modulatedsubcarrier <strong>an</strong>d dc substitution methods<strong>Attenuator</strong>dial readingdB0.01.02.03.04.05.06.07.08.09.10.12.14.16.18.20.25.50123510152025304050Me<strong>as</strong>ured attenuation (with attenuator vertical)ModulatedsubcarriermethoddB0.0111.0218.0308.0413.0532.0626.0718.0814.0918.1037.1206.1388.1590.1796.2023.2482.49941.0041.9993.0004.9919.97115.0119.9725.0030.1040.4452.39dc methoddB0.0107.0214.0303.0407.0521.0609.0700.0802.0909.1021.1191.1375.1573.1783.2007.2471.49791.0041.9962.9984.9909.96514.9919.9525.0130.0740.3352.24Discrep<strong>an</strong>cybetween dc<strong>an</strong>d subcarriermethodsdB+ 0.0004+ .0004+ .0005+ .0006+ .0011+ .0017+ .0018+ .0012+ .0009+ .0016+ .0015+ .0013+ .0017+ .0013+ .0016+ .0011+ .0015.0000+ .003+ .002+ .001+ .006+ .02+ .02-.01+ .03+ .11+ .154.3. Comparison of Modulated Subcarrier<strong>an</strong>d {-/Substitution MethodsTable 3 shows the similar comparison betweenthe modulated subcarrier <strong>an</strong>d i-f methods with thesame rotary-v<strong>an</strong>e attenuator <strong>as</strong> the inter<strong>laboratory</strong>st<strong>an</strong>dard. A ch<strong>an</strong>ge of position of the attenuator10<strong>Attenuator</strong>dial readingdB0.1.2.5123510152025304050Me<strong>as</strong>ured attenuation (with attenuatorhorizontal)ModulatedsubcarriermethoddB0.1026.2010.49781.0021.9972.9984.9899.95814.9819.9424.9530.0240.2451.70i-f methoddB0.101.199.498.9981.9992.9974.9809.96514.9919.9524.9530.0040.1551.66Discrep<strong>an</strong>cybetween i-f<strong>an</strong>d subcarriermethodsdB+ 0.0016+ .002-.0002-K004-.002+ .001+ .009-.007-.01-.01.00+ .02+ .09+ .04<strong>The</strong> data from each comparison shows that thedial of the attenuator agrees rather closely with theme<strong>as</strong>ured values for the r<strong>an</strong>ge from 0.01 to 30 dB.However, this is not true for the dial settings of 40<strong>an</strong>d 50 dB. At 50dB the deviation is greater th<strong>an</strong>2 dB <strong>as</strong> shown in table 2. An incre<strong>as</strong>e in attenuationof this magnitude is not a normal characteristic of arotary-v<strong>an</strong>e attenuator, especially since it h<strong>as</strong> goodagreement to 30 dB. <strong>The</strong> usual indication is adecre<strong>as</strong>e in attenuation from nominal at the highervalues. This older type rotary-v<strong>an</strong>e attenuator h<strong>as</strong> alow maximum attenuation value of about 80 dB. <strong>The</strong>deviation in attenuation below nominal caused bythis low value of maximum attenuation is about0.3 dB at 50 dB.Concentric Rotor Gear SectorAt a later date, the drive mech<strong>an</strong>ism of thisattenuator w<strong>as</strong> dis<strong>as</strong>sembled. This revealed that thegear concentric to the rotor w<strong>as</strong> a sector of about120°. This gear sector w<strong>as</strong> welded to the outer c<strong>as</strong>e


of the rotor section. A slight tilt of the gear sectorduring the welding process would cause <strong>an</strong> <strong>an</strong>gulardisplacement. It h<strong>as</strong> been shown that <strong>an</strong> error in thedriven gear of 0.36° will produce a deviation inattenuation of more th<strong>an</strong> 2 dB at the 50-dB dialsetting [17].<strong>The</strong> physical orientation of the attenuator undertest c<strong>an</strong> cause deviations in me<strong>as</strong>urements <strong>as</strong> shownin tables 2 <strong>an</strong>d 3. <strong>The</strong> me<strong>as</strong>ured values at the 50-dBsetting deviate by about 0.7 dB between vertical <strong>an</strong>dhorizontal positions of the attenuator. End play inthe bearings of the rotor section, <strong>an</strong>d backl<strong>as</strong>h in thegearing c<strong>an</strong> cause <strong>an</strong>gular displacement in thecylindrical dial readout. A ch<strong>an</strong>ge of <strong>an</strong>gular displacement equal to 0.13° causes a ch<strong>an</strong>ge of 0.7 dBatSOdB [17].4.4. Simult<strong>an</strong>eous Me<strong>as</strong>urement by Modulated Subcarrier <strong>an</strong>d dc SubstitutionMethodsIn order to more truly compare the subcarrier <strong>an</strong>ddc substitution methods, the rotary-v<strong>an</strong>e attenuatorw<strong>as</strong> me<strong>as</strong>ured in a special situation. A three ch<strong>an</strong>nel [13] system w<strong>as</strong> devised so that simult<strong>an</strong>eousme<strong>as</strong>urements could be made by the dc <strong>an</strong>d subcarriermethods for a given dial setting. <strong>The</strong> resultsof these me<strong>as</strong>urements are shown in table 4. <strong>The</strong>deviations between the two methods are 0.0005 dBup to 0.5-dB me<strong>as</strong>urements, <strong>an</strong>d slightly over0.001 dB up to 10 dB. While the deviation incre<strong>as</strong>edto 0.006 dB at 20 dB, this confirms that the largerdeviations shown in tables 2 <strong>an</strong>d 3 are due to mismatch error, resettability, <strong>an</strong>d operator perform<strong>an</strong>ce.TABLE 4. Differences between me<strong>as</strong>urements made simult<strong>an</strong>eouslyby modulated subcarrier <strong>an</strong>d dc substitution methods<strong>Attenuator</strong>dial readingdB0.01.02.05.10.501.02.05.010.020.0Difference(with attenuator vertical)dB+0.0002-.0002-.0001+.0005+.0001-.0012-.0003-.0011+.0012+.00664.5. Me<strong>as</strong>urement of Precision Optical<strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> by dc <strong>an</strong>d i-fSubstitution Methods<strong>The</strong> X-b<strong>an</strong>d optical rotary-v<strong>an</strong>e attenuator [3]developed at NBS/Boulder incre<strong>as</strong>ed the resolution<strong>an</strong>d resettability of the RVA to 2 seconds of arc. Inaddition, the optical readout feature eliminates<strong>an</strong>gular displacement errors due to gear eccentricity. This precision attenuator w<strong>as</strong> me<strong>as</strong>ured over adial r<strong>an</strong>ge of 0 to 87.5° in 2,5° increments. <strong>The</strong>me<strong>as</strong>urements were made using the power ratiomethod for attenuator dial readings of 0 to 60° <strong>an</strong>dusing the ^/substitution method for dial settings of62.5 to 87.5°. In table 5, the calibration of theoptical attenuator is shown for the frequency of 9.0GHz. Column one lists the dial setting in degrees(0). Column two gives the theoretical value ofattenuation in decibels corresponding to the <strong>an</strong>glesof column one. Column three shows the calibratedvalue of attenuation at each dial setting. From thisdata the average apparent v<strong>an</strong>e <strong>an</strong>gle deviation w<strong>as</strong>determined [18] to correspond to a retardment ofthe rotor v<strong>an</strong>e of 2 minutes of arc or 0.033°.<strong>The</strong> attenuator w<strong>as</strong> recalibrated with a correctionof 2' applied to each dial setting. <strong>The</strong> results arerecorded in column four. <strong>The</strong> application of thecorrection to the dial reading enabled the me<strong>as</strong>uredattenuation values to follow the cos 2 law moreclosely. <strong>The</strong> deviation of these me<strong>as</strong>urements fromthe corresponding theoretical values of attenuationin decibels are listed in column five. <strong>The</strong> deviationsfrom the theoretical value are shown to be less th<strong>an</strong>0.001 dB for me<strong>as</strong>urements up to 60° (12 dB), <strong>an</strong>dvary from 0.001 to 0.012 dB; from 62.5 to 87.5°(13 to 54 dB). <strong>The</strong> values of the discrep<strong>an</strong>cy of theme<strong>as</strong>urements that were made simult<strong>an</strong>eouslybetween the subcarrier <strong>an</strong>d the dc methods are inclose agreement with those made with the highresolution optical attenuator (see tables 4 <strong>an</strong>d 5).This illustrates the excellent^agreement of attenuation me<strong>as</strong>urements between systems <strong>an</strong>d that a highresolution attenuator eliminates the need forsimult<strong>an</strong>eous me<strong>as</strong>urement to obtain precise datafor intercomparison of systems.4.6. Power Ratio (dc) Versus Off-NullMe<strong>as</strong>urementsA two-ch<strong>an</strong>nel off-null technique for me<strong>as</strong>uringsmall values of attenuation w<strong>as</strong> developed at NBS[14]. <strong>The</strong> inter<strong>laboratory</strong> st<strong>an</strong>dard chosen forintercomparisons of this me<strong>as</strong>urement system w<strong>as</strong>the X-b<strong>an</strong>d rotary-v<strong>an</strong>e attenuator that w<strong>as</strong> calibrated by the power ratio (dc) method eight yearspreviously [12].<strong>The</strong> rotary-v<strong>an</strong>e attenuator exhibits very littleph<strong>as</strong>e shift <strong>an</strong>d provides high resolution at smallvalues of attenuation; thus these inherent characteristics make the attenuator <strong>an</strong> excellent device forthis intercomparison. <strong>The</strong> attenuation r<strong>an</strong>ge for theintercomparison w<strong>as</strong> 0.01 to 0.1 at 0.01-dB intervals.It is estimated that the resettability of this type ofrotary-v<strong>an</strong>e attenuator corresponds to <strong>an</strong> <strong>an</strong>gulardisplacement of the rotor of about 0.006°. <strong>The</strong>n thelimits of error of resettability for the attenuationfrom 0.01 to 0.10 dB are about 0.00006 to 0.00020 dB,respectively.11


TABLE 5.Calibration data of optical rotary-v<strong>an</strong>e attenuator in power ratio <strong>an</strong>di-f substitutionsystems at 9.0 GHzDial settingin degrees<strong>The</strong>oreticalvalue ofattenuationin decibelsCalibratedvalueof attenuationin decibelsCalibratedvalueof attenuationwith 2'correctionDeviationfromtheoreticalvaluein decibels2.55.07.510.012.515.017.520.022.525.027.530.032.535.037.540.042.545.047.550.052.555.057.560.062.565.067.570.072.575.077.580.082.585.087.50.0165.0662.1493.2659.4167.6022.82321.08051.37541.70892.08282.49872.95883.46544.02134.63005.294S6.02066.81277.67738.62219.656310.791312.041213.42414.96216.68618.63820.87423.48026.58630.41335.37242.38854.4130.0161.0653.1478.2640.4145.5996.82031.07721.37151.70462.07792.49312.95263.45864.01364.62185.28586.01086.80187.66538.60949.641910.775012.022613.40614.94216.66218.61120.84323.44326.54330.35735.29642.26654.1780.0166.0662.1491.2658.4166.6022.82331.08061.37551.70912.08302.49892.95873.46574.02144.63035.29576.02036.81357.67718.62319.656910.790812.041413.42514.96716.69218.64020.87623.47926.58730.41335.36742.37954,401+0.0001+.0000-.0002-.0001-.0001-.0000+.0001+.0001+.0001+.0002+.0002+.0002-.0001+.0003+.0001+.0003+.0009-.0003+.0008-.0002+.0010+.0006-.0005+.0002+.001+.005+.006+.002+.002-.001+.001.000-.005-.009-.012TABLE 6. Comparison of calibration data for the same attenuator at 9.39 GHz using two independent methods (powerratio 1960 versus off-null)TABLE 7. Comparison of calibration for the same attenuator at9.39 GHz using two independent methods (power ratio 1968versus off-null)Dialsetting(dB)0.01.02.03.04.05.06.07.08.09.10Me<strong>as</strong>ured attenuationdifference (dB)1968Off-nullmethod [1]0.0103.0208.0294.0397.0513.0598.0695.0792.08%.10081960Power ratiomethod [2]0.0107.0214.0303.0407.0521.0609.0700.0802.0909.1021Discrep<strong>an</strong>cy between1960 power ratio<strong>an</strong>d 1968 off-nullmethods (percent)-3.7-2.9-3.0-2.2-1.5-1.8-.7-1.2-1.4-1.3Dialsetting(dB)0.01.02.03.04.05.06.07.08.09.10Me<strong>as</strong>ured attenuationdifference (dB)1968off-nullmethod [1]0.0103.0208.0294.0397.0513.0598.0695.0792.08%.10081968power ratiomethod0.0101.0205.0290.0394.0507.0595.0687.0786.0890.1003Discrep<strong>an</strong>cy between1%8 power ratio<strong>an</strong>d off-nullmethods (percent)Average. 2.0 Average. 1.0+ 2.0+ 1.5+ 1.3+ .8+ 1.2+ .5+ 1.2+ .8+ .7+ .512


<strong>The</strong> results of the me<strong>as</strong>urements made by thepower ratio methods in 1960 <strong>an</strong>d the off-null methodin 1960 are compared in table 6. Column four showsthe discrep<strong>an</strong>cy between the two methods in percent of the me<strong>as</strong>ured value. <strong>The</strong> greatest percentdiscrep<strong>an</strong>cy, 3.7, occurs at the 0.01 dB-dial setting;however the largest deviation in attenuation is0.0013 dB <strong>an</strong>d occurs at the dial setting of 0.10 dB.But more signific<strong>an</strong>t is the negative sign common toall values in column four. Two factors suggest <strong>as</strong>ystematic error, the common minus sign in thediscrep<strong>an</strong>cy column, <strong>an</strong>d the 0.0013-dB differenceat the 0.10-dB me<strong>as</strong>urement. Table 4 shows that thegreatest deviation in me<strong>as</strong>urement for the r<strong>an</strong>ge of0.01 to 0.10 dB between the subcarrier <strong>an</strong>d dc substitution method w<strong>as</strong> 0.0005 dB at a dial setting of0.10 dB. <strong>The</strong>se above factors led us to furtherme<strong>as</strong>urement <strong>an</strong>d evaluation.<strong>The</strong> rotary-v<strong>an</strong>e attenuator w<strong>as</strong> calibrated laterin 1968 by the power ratio method. <strong>The</strong> results ofthese me<strong>as</strong>urements were compared with thosetaken with the off-null method, <strong>an</strong>d are shown intable 7. <strong>The</strong> discrep<strong>an</strong>cy between the 1968 powerratios <strong>an</strong>d off-null methods are listed in columnfour. <strong>The</strong> greatest percent discrep<strong>an</strong>cy, 2, occurs atthe 0.01 dB-dial setting, <strong>as</strong> w<strong>as</strong> the c<strong>as</strong>e in table 6,but the value of the percent of discrep<strong>an</strong>cy w<strong>as</strong>reduced almost one half. Also, the average valueof the percent of discrep<strong>an</strong>cy for all me<strong>as</strong>urementsof the latter me<strong>as</strong>urements w<strong>as</strong> decre<strong>as</strong>ed by onehalf.<strong>The</strong> me<strong>as</strong>ured values of attenuation difference forboth the power ratio <strong>an</strong>d the off-null methods were<strong>an</strong>alyzed for apparent <strong>an</strong>gular deviations [18, 19].<strong>The</strong> dial setting of the attenuator w<strong>as</strong> <strong>as</strong>sumed to bethe true value for this <strong>an</strong>alysis. Figure 15 illustratesthe apparent deviation of the rotor from nominal dialsetting in degrees, which correspond to attenuationvalues of 0.01 to 0.10 dB. <strong>The</strong> average v<strong>an</strong>e <strong>an</strong>gleerror representative of each me<strong>as</strong>urement is shown<strong>as</strong> a straight line with the <strong>an</strong>gular deviation indegrees indicated <strong>as</strong> follows: the power ratio methodof 1960, +0.044°; the off-null method of 1968,+ 0.008°; <strong>an</strong>d the power ratio method of 1968,—0.012°. Note, the average v<strong>an</strong>e <strong>an</strong>gle error lineshows a dece<strong>as</strong>e from +0.044° in 1960 to a -0.012°in 1968 for the power ratio method. This shift in theaverage v<strong>an</strong>e <strong>an</strong>gle error line indicates that the rotorv<strong>an</strong>ech<strong>an</strong>ged 0.056° during the eight year period.Angular slippage is very possible when the zeroreference of the dial readout is on the shaft of thedrive mech<strong>an</strong>ism geared to the rotor section. Thisis not uncommon if either end stop is struck sharply.When a correction equal to the slippage for eachmethod is applied, the average v<strong>an</strong>e <strong>an</strong>gle error lieson the zero deviation line, <strong>as</strong> shown in figure 16. Thisfigure more clearly illustrates the r<strong>an</strong>dom point topoint deviation which indicates the r<strong>an</strong>dom error inthe me<strong>as</strong>urement process. Table 8 shows the deviation in decibels from nominal after the correctionw<strong>as</strong> applied to the <strong>an</strong>gular deviation. In addition,Dial Setting in DegreesPowtr Rotio i960— Off Null 1968— Power Rotto I968FIGURE 15. Illustrated deviation of the rotor v<strong>an</strong>e of <strong>an</strong> attenuator calibrated by different methods: powerratio (I960), off-null, <strong>an</strong>d power ratio (1968),2345DIAL SETTING IN DEGREES-POWER RATIO 1960— OFF NULL 1968_ POWER RATIO 19680.044 POWER RATIO 19600.008 OFF NULL 19680.012 POWER RATIO 1968FIGURE 16. Apparent deviation of rotor v<strong>an</strong>e in degrees fromnominal at each dial setting in degrees.<strong>The</strong> indicated v<strong>an</strong>e <strong>an</strong>gle correction h<strong>as</strong> been applied to each result.the application of the correction reduced the discrep<strong>an</strong>cy between each comparison. <strong>The</strong> averagediscrep<strong>an</strong>cy is improved from 2 to 0.17 percent <strong>an</strong>dfrom 1 to 0.08 percent, respectively, <strong>as</strong> shown intable 9, columns five <strong>an</strong>d six.In figure 16 the large apparent <strong>an</strong>gular deviationsare caused by internal reflections <strong>an</strong>d irregularitieswithin the rotary-v<strong>an</strong>e attenuator. <strong>The</strong> phenomenawill be noted in evaluating the low values of attenuation in the optical rotary-v<strong>an</strong>e attenuator. <strong>The</strong>re is <strong>as</strong>light indication of a half cycle of eccentricity present, but the 2 degree cycling shown is not caused byeccentricity.13


TABLE 8. Comparison of deviation from the average values with v<strong>an</strong>e-<strong>an</strong>gle correction appliedDialsetting(dB)0.01.02.03.04,05Average deviation fromnominal after correctionfor rotor slippage0.00024.00073.00066.00020.00011Spread ofme<strong>as</strong>ured valuesafter correction0.00003.00007.00021.00008.000101960Power ratio+0.00001+.00001-00012-.00001.00000Deviation from average value1968Off-null-0.00002-.00004+.00011-.00006+.000011968Power ratio+0.00001+.00003+.00008+.00007-.000040.06.07.08.09.100.00025.000%.00104.00054.000660.00020.00047.00009.00021.00022-0.00001-K00025+.00004-.00008-00001+0.00015-.00022+.00001.00011-00010-0.00010-.00004-.00005+.00005+.00012TABLE 9. Comparison of calibration data with average v<strong>an</strong>e-<strong>an</strong>gle error correction appliedDialsetting(dB)I960Power ratioDeviation (in decibels) from nominal aftercorrection for rotor slippage1968Off-null1968Power ratioDiscrep<strong>an</strong>cy betweenoff-null <strong>an</strong>d each powerratio method (in percent) withcorrection applied1960Power ratio1968Power ratio0.01.02.03.04.05.06.07.08.09.10-0.00024-.00074+.00048+.00019-.00109+.00020+.00121+.00108+.00046-00065-0.00022-.00069+.00077+.00014-.00114+.00040+.00074+.00105+.00065-.00056-0.00025-.00076+.00074+.00027-.00104+.00015+.00092+.00099+.00059-00078-0.2-.25+ 1.0-.1+.1+.3+.7-03+.2_ i-0.3-.35+.1-.3+.2+.4-3+.07-.07-.2Average 0.17 0.085. Procedures for Evaluating the<strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong>One of the factors affecting the closeness withwhich the rotary-v<strong>an</strong>e attenuator follows the cos 2law is the alignment of the rotor <strong>an</strong>d stator v<strong>an</strong>es.<strong>The</strong> ideal properties of this device c<strong>an</strong> be approached when the zero of the dial coincides withthe alignment of these v<strong>an</strong>es. (<strong>The</strong> limit of idealismis also affected by the maximum attenuation of therotor section, which will be discussed later.)Several methods are available for the adjustmentof the v<strong>an</strong>es in the rotary-v<strong>an</strong>e attenuator. Opticalequipment may be used for a mech<strong>an</strong>ical alignment of the v<strong>an</strong>es. <strong>The</strong> electrical method utilizesa waveguide me<strong>as</strong>urement system, where the sameenergy level is maintained at the detector duringthe positioning of scale at equal <strong>an</strong>gular markseither side of the 90° position of the rotor v<strong>an</strong>e [5].Any incorrect alignment of the rotor v<strong>an</strong>e withreference to the scale readout (degrees or decibals)causes a systematic error that is inherent[6] to the rotary-v<strong>an</strong>e attenuator. During the cali14bration of <strong>an</strong> attenuator, the operator induces ar<strong>an</strong>dom error in setting the dial readout on a mark.In making <strong>an</strong> attenuation difference me<strong>as</strong>urementof a rotary-v<strong>an</strong>e attenuator, the errors at thefinal setting may be written <strong>as</strong>€/o + e// = — 40 log10coscos Ofwhere 6f is the v<strong>an</strong>e <strong>an</strong>gle at the final setting toobtain the calculated attenuation, 0/o is the v<strong>an</strong>e<strong>an</strong>gleerror made by the operator at the final setting,<strong>an</strong>d Ofj the inherent v<strong>an</strong>e-<strong>an</strong>gle error caused bymisalignment.A table of attenuation error <strong>as</strong> a function of v<strong>an</strong>e<strong>an</strong>gleerror for rotary-v<strong>an</strong>e attenuators is given inNBS Technical Note 177. <strong>The</strong> table gives the error,e, for a given value of attenuation (^= — 40 logiccos 0) according to the relationship= -40 log 10cos (0+0')cos 0(8)(9)


where 6 is the true v<strong>an</strong>e <strong>an</strong>gle <strong>an</strong>d 6 f is the <strong>an</strong>gle ofv<strong>an</strong>e misalignment. Thus, the <strong>an</strong>gle 6' is the difference between the indicated v<strong>an</strong>e <strong>an</strong>gle <strong>an</strong>d the correct v<strong>an</strong>e <strong>an</strong>gle. <strong>The</strong> table is divided into the following intervals of attenuation value increments:0.01 to 0.1 dB in 0.01-dB increments; 0.1 to 1.0 dBin 0.1-dB increments; 1 to 20 dB in 1-dB increments; <strong>an</strong>d 20 to 70 dB in 5-dB increments. <strong>The</strong>attenuation errors corresponding to v<strong>an</strong>e-<strong>an</strong>gleerror r<strong>an</strong>ging from 0 to ±0.499°, in increments of0.001°, are presented for each value of attenuation given above.5.1. Determination of Average <strong>V<strong>an</strong>e</strong>-AngleError <strong>an</strong>d Eccentricity from CalibrationDataWith the aid of the table of Technical Note 177,the calibration data of the rotary-v<strong>an</strong>e attenuator c<strong>an</strong>be <strong>an</strong>alyzed for numerous characteristics, such <strong>as</strong>misalignment of the scale readout with referenceto the rotor <strong>an</strong>d stator v<strong>an</strong>es, gear-eccentricityrelated runout <strong>an</strong>d backl<strong>as</strong>h, realignment techniques, <strong>an</strong>d resettability.<strong>The</strong> equal <strong>an</strong>gle technique of rotor v<strong>an</strong>e alignmentw<strong>as</strong> <strong>as</strong>sumed to be without error, but NBS h<strong>as</strong>reported that eccentricity in the gear mech<strong>an</strong>isminduces <strong>an</strong> error of alignment when the above technique is <strong>an</strong>alyzed [6],5.1.1. Analysis of Calibration DataLet us evaluate the calibration data at specificdial settings of the rotary-v<strong>an</strong>e attenuator for thepresence of <strong>an</strong> alignment error <strong>an</strong>d eccentricity.A r<strong>an</strong>ge of attenuation from 10 to 50 dB requires alittle more th<strong>an</strong> one cycle of the 3-cycle gear drive<strong>an</strong>d scale readout. Table 10, columns one <strong>an</strong>d two,show the dial settings <strong>an</strong>d me<strong>as</strong>ured values ofattenuation in decibels. <strong>The</strong> dial error or the deviation of the me<strong>as</strong>ured values in decibels fromnominal are shown in column three. <strong>The</strong> estimatedv<strong>an</strong>e <strong>an</strong>gle for each dial setting is determined byuse of NBS Technical Note 177 <strong>an</strong>d is recorded incolumn four. (An example of the use of Note 177:on page 90, for a nominal setting of 10 decibels, theme<strong>as</strong>ured dial error of 0.038 dB is found in rownine, column six, to correspond to a v<strong>an</strong>e-<strong>an</strong>gleerror of 0.085°.) Column five shows the attenuationerror corresponding to the average v<strong>an</strong>e-<strong>an</strong>gleerror of 0.064° for each dial setting. <strong>The</strong> estimatedv<strong>an</strong>e-<strong>an</strong>gle error (column four) minus the averagev<strong>an</strong>e-<strong>an</strong>gle error (0.064°) yields the values in columnsix. Column seven shows the error in decibels aftercorrecting for the average v<strong>an</strong>e-<strong>an</strong>gle error. Infigure 17a the circles are a plot of column three <strong>an</strong>dthe solid curve represents the values from columnfive. In figure 17b, the circles are a plot of columnseven. <strong>The</strong> deviations around the zero reference lineindicate the appropriateness of applying <strong>an</strong> averagev<strong>an</strong>e-<strong>an</strong>gle correction to all the readings.5.1*2. Cyclic Pattern of Angular DisplacementIn order to illustrate the magnitude of the apparent<strong>an</strong>gular displacement in degrees, the values ofcolumn four <strong>an</strong>d six (table 10) are plotted in figure 18.<strong>The</strong> curve Q'c is a plot of column four with the average v<strong>an</strong>e-<strong>an</strong>gle error value, 0.064°, <strong>as</strong> a reference.<strong>The</strong> cyclic pattern of the <strong>an</strong>gular displacementindicates the presence of <strong>an</strong> indexing error [6], <strong>The</strong>curve Qy is a plot of column six, <strong>an</strong>d indicates thereference line shift when the 0.064° correction isapplied to the rotor alignment.TABLE 10. Summary of data for determining average v<strong>an</strong>e-<strong>an</strong>gle error of a rotary-v<strong>an</strong>e attenuatorDial settingin decibelsMe<strong>as</strong>uredvalue indecibelsDial errorin decibelsEstimatedv<strong>an</strong>e-<strong>an</strong>gleerrorAttenuationerror indecibels forthe average ofthe estimatedv<strong>an</strong>e-<strong>an</strong>gleerror indegreesDeviationfrom averageestimatedv<strong>an</strong>e-<strong>an</strong>gleerrors indegreesError indecibels withcorrectionfor averageestimatedv<strong>an</strong>e-<strong>an</strong>gleapplied101214172025303550Average.....10.03812.05014.04817.04620.02625.03430.07235.16050.4750.038.050.048.046.026.034.072.160.475+ 0.085+ .096+ .079+ .061+ .029+ .027+ .043+ .071+ .087+ 0.0640.028.034.039.048.058.080.107.145.348+ 0.021+ .032+ .015-.003-.035-.037-.021+ .007+ .023+ 0.009+ .017+ .009-.002-.032-.046-.035+ .016+ .12715


- (o)attenuator [6]. <strong>The</strong> <strong>an</strong>gular rotation of the drivengear concentric about the rotor section of the attenuator is represented <strong>as</strong> the <strong>an</strong>gle 6. With a gearratio of 12 to 1, the <strong>an</strong>gle of the drive gear 8' equals126. Let a be the <strong>an</strong>gular difference between thezero point of the drive gear eccentricity <strong>an</strong>d thezero point of the scale on the dial in degrees.<strong>The</strong> <strong>an</strong>gular displacement of the rotor v<strong>an</strong>e indegrees caused by the indexing error is written <strong>as</strong>0.10VANE ANGLE6 ' = + 0.064°180 TCE sin(120+a) (10)£ 0.0060°25 30 35I I, Iwhere D is the pitch diameter <strong>an</strong>d TCE is the totalcomposite error.<strong>The</strong> <strong>an</strong>gular displacement of the rotor v<strong>an</strong>e indegrees caused by backl<strong>as</strong>h error is written <strong>as</strong>360 TCE [l-cos(120+a)] t<strong>an</strong>


DRIVE GEAR ROTATIONIN DEGREESFIGURE 19. Variations in gear eccentricity error.cos(0+0y)r' cosTCE = 0.00!"D{ PITCH DIAMETER} =1.5912 0=8'( DEGREES)(b) is a plot of eq (10) displaying the indexing errorfrom maximum to minimum for the 3 cycles ofthe drive gear (8'), or <strong>as</strong> 6 incre<strong>as</strong>es from 0 to 90°.<strong>The</strong> curve (c) is a plot of eq (9) representing the errorin attenuation in decibels for the values of 6 from 0to about 90°. <strong>The</strong> curve of the error in attenuationshows the cyclic pattern similar to the indexingerror but the magnitude of the attenuation errorincre<strong>as</strong>es at the larger values of 0. For example, theattenuation error is less th<strong>an</strong> 0.005 dB during thefirst cycle of the gear drive, 0 = 0 to 30°; incre<strong>as</strong>es toabout 0.015 dB in the second cycle, 0=30 to 60°;<strong>an</strong>d reaches a maximum of 0.140 dB in the l<strong>as</strong>t cycle,0 = 60 to 90°. In figure 20 the insert (d) shows thatthe maximum error occurs at about 88° for the v<strong>an</strong>e<strong>an</strong>gle 0, which is about 5| degrees from the maximumindexing error during the third cycle.5.2.1. Effects of a on cr<strong>The</strong> zero point on the scale of the readout doesnot usually coincide with the zero point of drivegear eccentricity. Nor does the m<strong>an</strong>ufacture attemptto control this phenomenon. <strong>The</strong>refore the value ofthe <strong>an</strong>gle a may vary from 0 to ±180°. Table 11shows the values of the <strong>an</strong>gle a where the maximum<strong>an</strong>d minimum deviations in attenuation, €y , occursfor the dial settings of 10, 20, 30, 40, <strong>an</strong>d 50 dB. Itc<strong>an</strong> be seen that the difference between the twovalues of a at <strong>an</strong>y setting of 0 is always 90°.TABLE 11. Angular values of a for maximum <strong>an</strong>d minimum€y at 10,20,30, 40, <strong>an</strong>d 50 dB dial settingsDialsettingin decibelsVmax€yamin €y30 45 60 75VANE ANGLE IN DEGREES, 9FIGURE 20. Attenuation <strong>as</strong> a function of v<strong>an</strong>e <strong>an</strong>gle, variation in the indexing error for the three cycles, <strong>an</strong>dthe error in attenuation from nominal for the dialsettings ofO to 90°.<strong>The</strong> curve of <strong>an</strong>gular displacement for G'y (fig. 18)shows the maximum value to be ± 0.040° betweendial setting of 10 to 50 dB (55° to about 85°). Let us<strong>as</strong>sume that the pitch diameter of the driven gear(rotor section) is about 1.59" <strong>an</strong>d a equals zero.Using eq (10) the TCE is calculated to be about 0.001"for this attenuator.We c<strong>an</strong> best illustrate the effect of the indexingerror relative to the error in attenuation by plottingthe values obtained in eqs (1), (10), <strong>an</strong>d (9) versus thev<strong>an</strong>e <strong>an</strong>gle rotation, 6, in degrees, <strong>as</strong> shown in figure20. <strong>The</strong> curve (a) is a plot of eq (1) showing theincre<strong>as</strong>e of attenuation from 0 to greater th<strong>an</strong>80 dB <strong>as</strong> 0 incre<strong>as</strong>es from 0 to about 90°. <strong>The</strong> curve102030405055.7821°71.5650°79.7567°84.2608°86.7763°-39.3852°-48.7800°+ 32.9196°-21.12%°-51.3156°+ 50.6148°+ 41.2200°-57.0804°4-68.8704°+ 38.6844°<strong>The</strong> graphs in figures 21, 22, 23, 24, <strong>an</strong>d 25 showthe error in attenuation for different pitch diametersof the driven gear for dial settings 10, 20, 30,40, <strong>an</strong>d50 dB, respectively. <strong>The</strong>se errors were determinedby calculating 0'y for the ch<strong>an</strong>ges in a. In figure 21,at a dial setting of 10 dB, the ch<strong>an</strong>ges in a vary from-39.3852 to +50.6140°. <strong>The</strong> dotted line indicatesthe values of the error in attenuation when a equalszero, <strong>an</strong>d 8' indicates the number of degrees rotationof the drive gear to obtain a dial setting of 10 dB.In order to ch<strong>an</strong>ge the value of attenuation from10 to 50 dB, the drive gear h<strong>as</strong> <strong>an</strong> <strong>an</strong>gular rotation(669.352 to 1041.3156°) of about 372°, or a few degrees beyond one cycle of the possible 3 cyclesr<strong>an</strong>ge of the attenuator. <strong>The</strong> driven gear h<strong>as</strong> a<strong>an</strong>gular rotation (55.7821 to 86.7763°) of about 31° or17


a IN DEGREES+50.6148° -57.0804*032.91960.0125 -ODOo^_< D20.025 —0.03T5 —DIAL SETTING0:55.7821°= O.OOt"PRESSURE ANGLE = 20°. 5852° to+50.6148*).eg§0.050 -o:oo:DC0.050 —PITCH DIAMETER^ 0.6386B = 0.9583C = 1.2777D= i-5972E = 2.2222F = 3.1805FIGURE 21. Errors in attenuation at the dial setting of 10 dBversus the <strong>an</strong>gle a for different pitch diameters.o:occtrUJ0.100 —0.150 —DIAL SETTING 30 db9 -- 79.7567°TCE =0.001"PRESSURE ANGLE - 20°a f-57.0804 0 to+32.9196)PITCH DIAMETERA = 0.638B = 0.956C = 1.276D - 1.590E =2.228F =3.180FIGURE 23.Errors in attenuation at the dial setting of 30 dBversus the <strong>an</strong>gle a for different pitch diameters.a IN DEGREES•68.8704°PITCH DIAMETERA - 0.6388B - 0.9583C = 1.2777D = i.5972E ~- 2,2222F = 3.18050.050 -QD(JLJOZzro0.100 —0.150 —-48.78 -41.22°cro(TCC0,200 —0.250 —0.300 —DIAL SETTING 40 db9 - 84.2608°TCE^O.OOl"PRESSURE ANGLE = 20°af2l.l296° to+68.8704°)PITCH DIAMETERA = 0,6388 = 0,956C = 1.2760 = 1.590E ^ 2.228F = 3.180a IN DEGREESFIGURE 22. Errors in attenuation at the dial setting of 20 dBversus the <strong>an</strong>gle a for different pitch diameters.18FIGURE 24. Errors in attenuation at the dial setting of 40 dBversus the <strong>an</strong>gle a for different pitch diameters.


-51.3156'OjOSO —0.1000.150 —0.200 —0.250 —0,300 —0.350 —+38.S844*5.2.2. Effects of Pitch Diameter on Error of Attenuation<strong>The</strong> pitch diameter of the driven gear affects the<strong>an</strong>gular displacement errors <strong>as</strong> indicated by eqs (10),(11), <strong>an</strong>d (12). <strong>The</strong> waveguide size usually is thedetermining factor for the value of the pitch diameter used <strong>as</strong> the driven gear. <strong>The</strong> rotary-v<strong>an</strong>e attenuators in the millimeter r<strong>an</strong>ge require smallerwaveguide components <strong>an</strong>d normally a driven gearhaving a smaller pitch diameter is mounted on therotor section. <strong>The</strong> graphs of figures 26, 27, 28, 29,<strong>an</strong>d 30 indicate the maximum error in attenuationfor the displacement <strong>an</strong>gles Qy, 8p <strong>an</strong>d 9'T forch<strong>an</strong>ges in pitch diameter at 10, 20, 30, 40, <strong>an</strong>d 50-dB dial settings, respectively. <strong>The</strong> pressure <strong>an</strong>gle (f>appears in eqs (11) <strong>an</strong>d (12) <strong>an</strong>d curves are plottedfor 20° <strong>an</strong>d 14.5° pressure <strong>an</strong>gles to illustrate thech<strong>an</strong>ge in attenuation error for d'T > <strong>an</strong>d Op . <strong>The</strong>indexing error is not ch<strong>an</strong>ged by the pressure <strong>an</strong>gleof the gears; thus, only one curve is needed to showthis error at each dial setting. All graphs show that<strong>an</strong> incre<strong>as</strong>e in pitch diameter of the driven geardecre<strong>as</strong>es the error in attenuation caused by <strong>an</strong>yone of the displacement errors.0.400 —DIAL SETTING 50 db= 86.7763°TCE-O.OOl"PRESSURE ANGLE= 20Of (-51.3156° to+38.68440.6000.450 —0.500FIGURE 25. Errors in attenuation at the dial setting of 50 dBversus the <strong>an</strong>gle a for different pitch diameters.DIAL SETTING 10 db0TA = TOTAL ANGULAR ERRORB{ =• INDEX ERROR9'B = BACKLASH ERRORTCE= 0,001"one third of the 0 to 90° possible displacement ofthe rotor section. As shown in figure 20, the indexingerror goes through three positive <strong>an</strong>d three negativemaximums from 0 to 1080° rotation, 8', of the drivegear. <strong>The</strong> maximum positive <strong>an</strong>d negative indexingerrors occur at fixed <strong>an</strong>gular displacements of 6.Table 12 shows the <strong>an</strong>gular values of 6 where thesemaximums occur <strong>an</strong>d their respective theoreticalvalues of attenuation in decibels.TABLE 12. Angular values of 6 where maximum (+ or —) deviations of attenuation occur due to indexing error in 3-cycledrive <strong>an</strong>d the corresponding theoretical attenuation valuese7.5°22.5°37.5°52.5°67.5°82.5°Max+ —+ —+ —Decibels0.1492571.3753864.0213348.62211516.68641435.3720930,2 0.4 ae 0.8 1,0 1.2 1.4 i,e 1.8 2.0 2.2PITCH DIAMETER IN INCHESFIGURE 26. Errors in attenuation at the dial setting of 10 dBversus pitch diameter for the <strong>an</strong>gular displacementerror.19


0.7000.900ID2LU0.6000,5000.4000.300DIAL SETTING 20 db£ TA = TOTAL ANGULAR ERROR0f - INDEX ERROR8'B = BACKLASH ERRORTCE= O.OOl"PRESSURE ANGLES(1) =20°(2) - 14.5°0.8000.700 -0.600DIAL SETTING 40 db#TA = TOTAL ANGULAR ERROR&i = INDEX ERROR&Q = BACKLASH ERRORTCE= 0.001"PRESSURE ANGLES111 =20°(2) = 14.5°(TaCLCL0.2000.400I 0,300O.!000.2000 0,2 0,4 0,6 0.8 1,0 1,2 1.4 1,6 1,6 2,0 2.20,100PITCH DIAMETER IN INCHES0 0.2 0,4 0.6 0.8 1,0 1.2 1,4 1.6 1.8 2,0 2.2FIGURE 27. Errors in attenuation at the dial setting of 20 dBversus pitch diameter for the <strong>an</strong>gular displacement error.PITCH DIAMETER IN INCHESFIGURE 29. Errors in attenuation at the dial setting of 40 dBversus pitch diameter for the <strong>an</strong>gular displacement error.0.9000.800 -C.9000,8000,700DiA! SETTING 50 d b, = TOTAL ANGULAR ERROR= INDEXING ERROR•- BACKLASH ERRORTCE- O.OOl"PRESSURE ANGLES(! ) =20°(2) -- 14,5°0.700 -0.6000.500 -DIAL SETTING 30 d D= TOTAL ANGULAR ERROR= INDEX ERROR= BACKLASH ERRORTCE- 0.001"gC.600§ 0,5000.400 -0,300 -trocrLUcc0,4000,3000,200 -0,2000100 -0,1000 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6 1.8 2.0 2.2PITCH DIAMETER IN INCHESFIGURE 28, Errors in attenuation at the dial setting of 30 dBversus pitch diameter for the <strong>an</strong>gular displacement error.200,2 0,4 0.6 0,8 1.0 1,2 1.4 1,6 2,0 2,2PITCH DIAMETER IN INCHESFIGURE 30. Errors in attenuation at the dial setting of 50 dBversus pitch diameter for the <strong>an</strong>gular displacement error.


6. Compensation for Tr<strong>an</strong>smissionError of <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong><strong>The</strong> tr<strong>an</strong>smission error becomes less <strong>as</strong> the magnitude of the maximum attenuation is incre<strong>as</strong>ed inthe rotor section of the attenuator. Otoshi [9] h<strong>as</strong>presented a modified law that provides a tool forextending the useful dynamic r<strong>an</strong>ge of the rotaryv<strong>an</strong>eattenuator with low values of maximum attenuation. A mech<strong>an</strong>ical technique of incre<strong>as</strong>ingthe dynamic r<strong>an</strong>ge may be achieved by adjusting theinput stators of the attenuator.6.1. Tr<strong>an</strong>smission Error versus Dial Settingin DecibelsWith a known maximum attenuation value at 0equals 90°, the tr<strong>an</strong>smission error c<strong>an</strong> be determinedfrom eq (5). In order to make quick estimates of thetr<strong>an</strong>smission error, eq (5) w<strong>as</strong> used to obtain figure31. <strong>The</strong> graphs show that the tr<strong>an</strong>smission error isabout 0.03 dB at the dial setting of 50 dB for <strong>an</strong> attenuator with a 100-dB maximum. <strong>The</strong> error incre<strong>as</strong>es to a value of 0.3 dB for a maximum attenuation of 80 dB at the same dial setting. However,the error decre<strong>as</strong>es to about 30 microbels if a 160-dBmaximum attenuation c<strong>an</strong> be achieved in the centersection of the attenuator.i .06.2. Stator Realignment<strong>The</strong> mounting holes of each stator are enlarged toenable <strong>an</strong>gular rotation around the longitudinalaxis of the waveguide sections of the rotary-v<strong>an</strong>eattenuator. <strong>The</strong> stators may be rotated either direction writh reference to the input port of the attenuator,<strong>as</strong> shown in figure 32. <strong>The</strong> Type B error in part (A)indicates that stator SI w<strong>as</strong> rotated 1/2° clockwise<strong>an</strong>d stator S2 w<strong>as</strong> rotated 1/2° counterclockwise;<strong>an</strong>d in part (B) indicates that the stators were rotatedconversely. From eq (3) the calculated deviationw<strong>as</strong> determined to be 0.066 dB for the dial setting of40 dB. <strong>The</strong> me<strong>as</strong>ured attenuation differencedeviated from calculated attenuation by 0.009 <strong>an</strong>d0,015 dB for the conditions A <strong>an</strong>d B, respectively,at the dial setting of 40 dB. However, the 1/2° rotation of the stators induced <strong>an</strong> incre<strong>as</strong>e in the attenuation difference of about 0.08 dB in both c<strong>as</strong>es atthe 40-dB setting. In other words the Type B errorof misalignment incre<strong>as</strong>es the value of attenuationfor nominal dial settings. As will be shown later,intentional misalignment of the stators c<strong>an</strong> effectively compensate for insufficient maximumattenuation.-TYPE "B" ERROR -ROTOR ZERO POSITION ALIGNED TO AVERAGE POSITION OF STATORSc.c.w.-ROTORROT° RDIAL SETTING40.075 db - - - - — — 40 db - - - —— - - -40.081 dbMEASURED VALUEMEASURED VALUEFIGURE 32.Illustration of stator rotation <strong>an</strong>d rotor alignment to induce the Type B error.0.00010.00001FIGURE 31.10 20 30 40 50DIAL SETTING IN dBEstimate of the tr<strong>an</strong>smission error versus dialsetting in decibels for maximum attenuation valuesof 60 to 160 dB.60Angular Displacements versus Maximum AttenuationIn figure 33 the smooth curve provides <strong>an</strong> estimate of the <strong>an</strong>gular displacement, 0'/2, which thestators require to compensate for the values ofmaximum attenuation. <strong>The</strong> <strong>an</strong>gular displacementequals about 1.05° for 70 dB <strong>an</strong>d decre<strong>as</strong>es to <strong>an</strong><strong>an</strong>gle of 0.018° for 140-dB maximum attenuation.For example, the graph shows that the stators mustbe rotated about 0.18° to compensate for the tr<strong>an</strong>smission error when maximum attenuation equals100 dB. In order to determine the value of compensation in decibels, refer to NBS Technical Note 177.Page 139 gives the attenuation deviation versus21


<strong>an</strong>gular deviation for the nominal value of 50 dB,0 = 86.7763°. For example, column 1 <strong>an</strong>d line 2 givevalues of +0.997123 dB <strong>an</strong>d -0.942820 dB corresponding to the <strong>an</strong>gular deviation of 0.18°. <strong>The</strong> valueof compensation, e'h , equals 0.027515 dB, which isone-half of the algebraic sum of the attenuationdeviation in decibels. This result c<strong>an</strong> be computedfrom eq (3). Figure 31 shows that the deviation fromi .00nominal attenuation in decibels equals about 0.027dB for a dial setting of 50 dB <strong>an</strong>d the maximumattenuation line of 100 dB.Realignment of the stators causes the end ports ofthe rotary-v<strong>an</strong>e attenuator to be out of alignmentwith the ports at the insertion point of the me<strong>as</strong>urement system. <strong>The</strong>refore, a waveguide adapter with<strong>an</strong> <strong>an</strong>gular twist equal to d'/2 should be placed at theends of each stator. <strong>The</strong> twists becomes a part of theattenuator after the <strong>an</strong>gular displacement is determined by the maximum attenuation of each attenuator. Table 13 shows the <strong>an</strong>gular correction, 072,required for maximum attenuation values of 90 to160 dB in 10-dB intervals. <strong>The</strong> dist<strong>an</strong>ce b f necessaryto produce the <strong>an</strong>gular correction is given for elevenwaveguide sizes from WR15 to WR650. <strong>The</strong> <strong>an</strong>gulardisplacement h<strong>as</strong> been converted to length in inchesor dist<strong>an</strong>ce b' from a reference pl<strong>an</strong>e, <strong>as</strong> shown infigure 2.6.3. Illustration of Tr<strong>an</strong>smission Error <strong>an</strong>dCompensation for 110-dB Maximum70 80 90 TOO 110 120 130 140MAXIMUM VALUE OF ROTOR VANE ATTENUATION IN dBFIGURE 33. Estimated <strong>an</strong>gular displacement of stators indegrees versus the maximum attenuation valueof rotor v<strong>an</strong>e in decibels for the compensation required to approach theoretical cos 2 6 law.Figure 34 illustrates the deviations in attenuationfrom nominal by giving both the incre<strong>as</strong>e in attenuation caused by misaligning the stators <strong>an</strong>d the decre<strong>as</strong>e caused by insufficient maximum attenuation,respectively. <strong>The</strong> deviations are plotted for dial settings from 20 to 70 dB. <strong>The</strong> solid curve indicates thecalculated (eq (5)) deviations in attenuation for <strong>an</strong>attenuator of 110-dB maximum. (Fig. 31 c<strong>an</strong> be usedfor rapid estimates.) <strong>The</strong> d<strong>as</strong>hed curve indicatesthe calculated (eq (3)) deviation in attenuation for <strong>an</strong>attenuator with 0.1° (0'/2) stator misalignment. Inother words the misalignment of the stator by 0.1°induces <strong>an</strong> incre<strong>as</strong>e in the attenuation which closelycompensates for the decre<strong>as</strong>e in the attenuationcaused by <strong>an</strong> insufficient maximum value of 110 dB.TABLE 13. <strong>The</strong> <strong>an</strong>gular correction required for different values of maximum attenuation <strong>an</strong>d the dist<strong>an</strong>ce b' necessary to producethe <strong>an</strong>gular correction for various waveguide sizesWReka90 dB0.320°100 dB0.180°HOdB0.100°120dB0.057°b'130 dB0.032°140 dB0.018°150 dB0.010°160 dB0.008°1528426290112137187284430650(0.148)(.280)(-42)(.622)(.900)(1.122)(1.372)(1.872)(2.840)(4.300)(6.500)0.000800.001500.002270.003370.004880.006080.007450.010150.015410.02330.035270.000460.000880.001320.001950.002830.003520.004310.005880.008920.013510.020420.000260.000490.000730.001090.001570.001%0.002390.003270.004%0.007500.011340.000170.000310.000470.000700.001010.001260.001540.002110.003190.004840.007310.000080.000160.000230.000350.000500.000630.000760.001040.001580.002400.003620.000040.000090.000130.000200.000280.000350.000430.000590.000890.001350.002950.000030.000050.000070.000110.000160.000190.000240.000330.000500.000750.001130.0000200.0000380.0000570.0000840.000120.000150.000190.000250.000380.000580.00088b' = a t<strong>an</strong> 07222


.080--MAX * 110 dBo*2 ~~ - 100 *0' * .2-.084T.050-- MISALIGNEDSTATORCD•o.020--o


6,4. Mech<strong>an</strong>ical Compensation <strong>an</strong>dMe<strong>as</strong>ured ResultsIn order to experimentally evaluate the compensation technique of stator realignment, a commerciallyavailable rotary-v<strong>an</strong>e attenuator w<strong>as</strong> modified.<strong>The</strong> stator fl<strong>an</strong>ge bolt holes were enlarged to permitrotation of the stators <strong>an</strong>d the v<strong>an</strong>e in the rotor section w<strong>as</strong> decre<strong>as</strong>ed in length. <strong>The</strong> me<strong>as</strong>ured maximum attenuation (at 0 equals 90°) dropped from aprevious 90 to 72 dB after the rotor section modification. In figure 35, the calibrated values of themodified attenuator are plotted <strong>as</strong> X points on thesolid line curve at dial settings of 20,30,40,50,60, at70 dB. <strong>The</strong> solid line curve indicates the calculateddeviation in attenuation for <strong>an</strong> attenuator with 72-dBmaximum attenuation. Referring to figure 33, the<strong>an</strong>gular displacement required for 72-dB maximumis estimated to be about 0.87°. In figure 35, the calculated deviation in attenuation induced by misaligning the stators 0.87° is plotted <strong>as</strong> the d<strong>as</strong>hed line.<strong>The</strong> calibration points plotted <strong>as</strong> indicate thatthe compensation caused the values of 10 to 40dB to fall in a r<strong>an</strong>dom m<strong>an</strong>ner about the zero deviation line. However, the larger deviation shown at 50dB is within the limits of the system error <strong>an</strong>d theresettability of the commercial attenuator.0.700.600.500,400.300.200.100(c)1 - CALIBRATED VALUESAFTER STATORSMISALIGNMENT(0)- DEVIATION OFCALIBRATED VALUESWITHOUT REALIGNINGTHE STATORS(b) /- CORRECTION /INDUCED BY /MISALIGNING /THE STATORS 0,87° / (b)7. Me<strong>as</strong>urements of Precision <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong>s With HighResolution ReadoutsA calibrated high precision rotary-v<strong>an</strong>e attenuatorc<strong>an</strong> be regarded <strong>as</strong> <strong>an</strong> ideal working or tr<strong>an</strong>sferst<strong>an</strong>dard for making precise me<strong>as</strong>urements in amicrowave st<strong>an</strong>dards <strong>laboratory</strong>. Regardless of thegreat care taken in the fabrication of the attenuator,or the high resolution of the dial readout, the deviceshould be evaluated before it is used <strong>as</strong> a st<strong>an</strong>dard.Though several attenuators may be built of identicaldesign <strong>an</strong>d precise fabrication each h<strong>as</strong> distinctinherent characteristics [3,18].At present the commercially available rotary-v<strong>an</strong>eattenuators have a dyn<strong>an</strong>ic maximum r<strong>an</strong>ge of 90 to100 dB. This value of maximum attenuation providesonly one-half of the theoretical value attainable at 1arc second less th<strong>an</strong> 90° rotation of the rotor. <strong>The</strong>usable scale of these attenuators are marked from0 to 50 dB. Thus, about one-fourth of the total r<strong>an</strong>geof attenuation is at present being used for calibratedinter<strong>laboratory</strong> st<strong>an</strong>dards. Usually this type ofrotary-v<strong>an</strong>e attenuator utilizes a spiral scale for thedial readout of attenuation in decibels. <strong>The</strong> attenuator must be calibrated at nominal values, but eventhen the resolution <strong>an</strong>d scale readout usually aretoo coarse for precise interpolation between pointsof calibration.At present several <strong>an</strong>gular displacement readouts have been designed for use with precisionrotary-v<strong>an</strong>e attenuators. A gear mech<strong>an</strong>ism designed by NBS c<strong>an</strong> be installed onto commercialrotary-v<strong>an</strong>e attenuators to give dial readings of<strong>an</strong>gular displacement of 0.001° from 0 to 90°. <strong>The</strong>NBS optical rotary-v<strong>an</strong>e attenuator provides <strong>an</strong><strong>an</strong>gular displacement with a resolution of ± 1 second of arc. <strong>The</strong> Royal Radar Establishment of Engl<strong>an</strong>d h<strong>as</strong> developed a digital <strong>an</strong>gular readout forrotary-v<strong>an</strong>e attenuators. It utilizes a row of numerical indicator tubes <strong>an</strong>d h<strong>as</strong> a resolution of 0.001°.7.1* Me<strong>as</strong>urement of <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> With a Gear Driven Readout-0.60 --0.70!0 20 30 40DIAL SETTING IN DECIBELSFIGURE 35. Deviation of attenuation from nominal versus dialsetting in decibels for rotary-v<strong>an</strong>e attenuator with72-dB maximum:(a) Curve of calibration points,(b) Curve of correction induced by misaligningthe stator 0.87°, <strong>an</strong>d (c) Plot of calibrated valuesafter stator misalignment.50<strong>The</strong> gear mech<strong>an</strong>ism illustrated by the drawingsin figures 13 <strong>an</strong>d 14 h<strong>as</strong> been used successfullywith commercial rotary-v<strong>an</strong>e attenuators in WR62,WR90, <strong>an</strong>d WR112 waveguide sizes, <strong>an</strong>d adaptsto rotary-v<strong>an</strong>e attenuators in waveguide sizesWR137 <strong>an</strong>d WR187 with minor modifications.<strong>The</strong> modified attenuator, which now reads in<strong>an</strong>gular displacement of the rotor section, mustbe calibrated in <strong>an</strong> attenuation me<strong>as</strong>urement system for use <strong>as</strong> <strong>an</strong> attenuation device. <strong>The</strong> v<strong>an</strong>e<strong>an</strong>gleerror <strong>an</strong>d gear eccentricity c<strong>an</strong> be determinedfrom the calibration data <strong>as</strong> shown in 5.2. Inorder to obtain the best possible evaluation of themodified gear driven readout, three me<strong>as</strong>urementsystems were used in the calibration of the at-24


:.060.050.040.030.020(O.WdB)(Q ( Q3dB>|(0.05dB).010.000-.010-.020O.OldB l.OdB- POWER-6.0dB lOdB 12dBDIAL SETTING IN DEGREES AMD DECIBELS———————— SUB-CARRIER—————————————4-~T30dB 40dB5GdB lOOdB60dB ,I,F,-SUBSTITUTIONFIGURE 36. Angular error, 0'T , in degrees from nominal (theory) versus the dial setting, 0, in degrees, determined from me<strong>as</strong>urements bythe power ratio, modulated subcarrier, <strong>an</strong>d i-f substitution methods.tenuator over a large r<strong>an</strong>ge. Each me<strong>as</strong>urementsystem w<strong>as</strong> used to cover a different r<strong>an</strong>ge of about30° of <strong>an</strong>gular rotation of the center v<strong>an</strong>e.7.1.1. Me<strong>as</strong>urements of Precision Gear Driven <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong><strong>The</strong> me<strong>as</strong>ured results were obtained <strong>as</strong> follows:the power ratio method, 0 to 30°; the modulatedsubcarrier method, 30 to 60°; <strong>an</strong>d the i-f substitution method, 60 to 87.5°. <strong>The</strong> interval of me<strong>as</strong>urement taken w<strong>as</strong> every 2.5° within the 30° section.<strong>The</strong> me<strong>as</strong>ured attenuation at each dial setting w<strong>as</strong>compared with the theoretical value [19] to determine the average v<strong>an</strong>e-<strong>an</strong>gle error in degrees. Infigure 36, the curve shows the <strong>an</strong>gular error,6'r,, in degrees from nominal (theory) versus the dialsetting, 6, in degrees. Each me<strong>as</strong>ured value isshown by <strong>an</strong> X at the 2.5° dial settings of 0. <strong>The</strong>cyclic indexing error is caused by eccentricity(eq (10)) <strong>an</strong>d shows a variation from 0.050 to — 0.010°.<strong>The</strong> d<strong>as</strong>hed straight line is drawn <strong>as</strong> the axis ofthe ±0.030° cyclic indexing error, <strong>an</strong>d represents<strong>an</strong> average v<strong>an</strong>e-<strong>an</strong>gle error of about 0.020°. Inaddition to a dial setting scale in degrees, the corresponding values of attenuation in decibels are indicated on the lower part of the horizontal axisof the graph. In other words the r<strong>an</strong>ge of attenuation difference me<strong>as</strong>urements that were taken bythe three different methods were <strong>as</strong> follows:0.02 to 2.5 dB, 2.5 to 12 dB, <strong>an</strong>d 12 to 55 dB, bythe power ratio, modulated subcarrier, <strong>an</strong>d i-fsubstitution methods, respectively.7.1.2. Angular Resettability of <strong>Attenuator</strong><strong>The</strong> two d<strong>as</strong>hed lines drawn ±0.010° about thecyclic indexing error curve (fig. 36) approximate the25<strong>an</strong>gular resettability of the attenuator. <strong>The</strong> b<strong>as</strong>icpart of the error of resettability is caused by gearingin the commercial attenuator. In addition to the errorof resettability the relation of center dist<strong>an</strong>cesbetween these gears is the principal cause of theeccentricity or indexing error. <strong>The</strong> drive gear shouldbe replaced if the runout error is large <strong>an</strong>d the springloading converted to positive loading of the gear.<strong>The</strong> arrows shown on the upper part of the graphgive the value of resolution which is indicated withinthe parenthesis. <strong>The</strong> resolution in decibels corresponds to the resettability of 0.020° at the variousvalues of 6. All values of <strong>an</strong>gular deviation fellwithin the r<strong>an</strong>ge of 0.020°, but the deviation inattenuation vary greatly. For example, the deviations in attenuation vary from 10 /xbels at 0.02-dBdial setting, to about 1 dB at 100-dB dial setting.When the me<strong>as</strong>ured <strong>an</strong>gular deviations wereconverted to decibels, all the deviations in attenuation were within the systematic <strong>an</strong>d r<strong>an</strong>dom errorsof the corresponding me<strong>as</strong>urement system. Thisclose agreement in following the indexing error ofthe attenuator shows that <strong>an</strong>y one of the me<strong>as</strong>urement systems could be used to calibrate theattenuator over <strong>an</strong> <strong>as</strong>signed part of its r<strong>an</strong>ge.<strong>The</strong>refore extrapolation of the cyclic error over<strong>an</strong>y other part of the r<strong>an</strong>ge could be used to setlimits of error for the entire attenuator.7.2. Mounting the Gear DriveWe recommend that the drive gear be selectedwith care <strong>an</strong>d spring loading be removed, beforeapplying a precision gear mech<strong>an</strong>ism to the attenuator. Figure 37 illustrates the <strong>an</strong>gular error ofthe attenuator when a gear box w<strong>as</strong> mounted on therotary-v<strong>an</strong>e attenuator without modifying the drivegear. <strong>The</strong> curve illustrates the <strong>an</strong>gular error over573-735 OL - 75 - 3


a r<strong>an</strong>ge of about 70° rotation of the center v<strong>an</strong>e(about two <strong>an</strong>d one-third revolutions of the drivegear for a 12 to 1 ratio). <strong>The</strong> large half-cycle errorw<strong>as</strong> caused by a binding effect between the drivegear <strong>an</strong>d the driven gear (concentric to the rotorsection). When more precise machining techniqueswere applied to the mounting of the precisionreadout, the cyclic indexing error became a cyclicpattern <strong>as</strong> shown in figure 38. Note that the average<strong>an</strong>gular displacement error w<strong>as</strong> reduced from about0.450 to 0.040°.30 40 50 60 70 80 900(Dial Setting in Degrees)FIGURE 37. Angular error caused by binding effect between thedrive gear <strong>an</strong>d the driver gear (concentric to therotor section).7.3.1. Me<strong>as</strong>urements on Optical <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong><strong>Attenuator</strong>In order to evaluate the attenuator over a widedynamic r<strong>an</strong>ge, it w<strong>as</strong> calibrated by three differentmethods in the same m<strong>an</strong>ner <strong>as</strong> w<strong>as</strong> the precisiongear driven attenuator. <strong>The</strong> attenuation deviationsin decibels <strong>an</strong>d the <strong>an</strong>gular deviations in degreesare plotted versus dial setting in degrees (refer tofig. 39). <strong>The</strong> portion of the curves corresponding tothe first 30° of dial setting shows the deviations inattenuation <strong>an</strong>d <strong>an</strong>gular displacement <strong>as</strong> determinedby the power ratio me<strong>as</strong>urement system. Thisportion of the curve shows deviations in attentuationfrom —0.0025 to 0.0045 dB or in <strong>an</strong>gular displacement from —0.046 to 0.024°. Neither the powerme<strong>as</strong>urement system nor a precision attenuatorcause such large mech<strong>an</strong>ical or electrical deviations.<strong>The</strong> calibration data for 30 to 60° <strong>an</strong>d 60 to 87.5°portions of the dial settings were obtained by themodulated subcarrier, <strong>an</strong>d i-f substitution methods,respectively. Again the electrical deviations werelarge for each specific method: 0.004 dB in the subcarriersystem <strong>an</strong>d 0.026 dB in the i-f system. Inaddition to large electrical <strong>an</strong>d mech<strong>an</strong>ical equivalent <strong>an</strong>gular deviations, the apparent average v<strong>an</strong>e<strong>an</strong>gleerror falls off from a +0.010° to a -0.005°.This error falls off more rapidly at the higher valuesof attenuation. All of these deviations in me<strong>as</strong>urement of attenuation <strong>an</strong>d decre<strong>as</strong>e in the <strong>an</strong>gularerrors show that the center v<strong>an</strong>e h<strong>as</strong> insufficientmaximum attenuation (below the required amountfor a precision rotary-v<strong>an</strong>e attenuator). <strong>The</strong> evidenceof 0.015° decre<strong>as</strong>e in the average v<strong>an</strong>e-<strong>an</strong>gle errorindicates that the maximum attenuation is less th<strong>an</strong>90 dB..100^Average <strong>V<strong>an</strong>e</strong> Angle Error — 0 10 20 30 40 50 60 70 80 909 (Dial Setting in Degrees).015 r*/ MODIFIED OPTICAL REA88UT/ ROTARY VANE ATTENUATOR7.0045 it.005 IBFIGURE 38. Angular error, 6', in degrees versus dial setting indegrees, 6, after precise machining w<strong>as</strong> applied.*.003 riB001 dB zis~ £7.3. Optical <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong><strong>The</strong> optical rotary-v<strong>an</strong>e attenuator designed atNBS virtually eliminates gear eccentricity errors.<strong>The</strong> readout scale of the attenuator gives <strong>an</strong> opticaldisplay of the <strong>an</strong>gular rotation of the rotor sectionin degrees, minutes, <strong>an</strong>d seconds of arc from 0 to360°. However, the attenuator is used in its normalfunction from 0 to 90°. <strong>The</strong> final version of the opticalrotary-v<strong>an</strong>e attenuator followed the cos squared lawmore closely th<strong>an</strong> <strong>an</strong>y attenuator previously calibrated at NBS. Notwithst<strong>an</strong>ding, earlier fabricationsof the attenuator had problems other th<strong>an</strong> gearingto solve..82(11.803 IB £1.805 dB


.005 r.003-.0012 -.001-.003-.005 LFIGURE 40. Deviation in decibels <strong>an</strong>d degrees versus dial setting in degrees, afterrepair of the rotor section.7.3.2. Me<strong>as</strong>urements after Rotor Repair<strong>The</strong> center v<strong>an</strong>e w<strong>as</strong> replaced <strong>an</strong>d care taken toproperly cement it to the rotor section. After repairing the rotor section, the attenuator w<strong>as</strong> recalibrated using the same systems <strong>as</strong> before. In figure40 the plot of these me<strong>as</strong>ured deviations shows thatthe average v<strong>an</strong>e-<strong>an</strong>gle error is now 0.033°. <strong>The</strong>deviation in attenuation difference is about ±0.001dB with reference to the average v<strong>an</strong>e-<strong>an</strong>gle errorline from 0 to 60° of 0, about ±0.002 dB from 60 to80°, <strong>an</strong>d ±0.005 dB at 87.5° of 6. <strong>The</strong> curve with themark X shows the attenuation deviations convertedto <strong>an</strong>gular deviations. <strong>The</strong>se deviations have decre<strong>as</strong>ed greatly from those shown in figure 39.More import<strong>an</strong>t is that the fall off at the highervalues of 6 decre<strong>as</strong>ed to about 0.003°; this corresponds to about 105-dB maximum attenuation inthe center v<strong>an</strong>e.<strong>The</strong> attenuation deviations from a curve corresponding to a v<strong>an</strong>e-<strong>an</strong>gle misalignment of— 0.033°<strong>an</strong>d to <strong>an</strong>gular deviation from the —0.033° line wereplotted. Figure 41(a) shows the value for a dialsetting of 0 to 45° while figure 41(b) shows the valuesfor a setting of 45 to 87.5°. <strong>The</strong> deviations of attenuation from the curve corresponding to the —0.033°v<strong>an</strong>e misalignment were quite small <strong>an</strong>d indicatethat such would be a very good compensation fortr<strong>an</strong>smission error over the dial r<strong>an</strong>ge of 0 to 87.5°.10 15 20 25 30 35 40 45Dial Setting in Degrees 845 50 5510 65 70 758. Resolution <strong>an</strong>d Resettability<strong>The</strong>re are two possible readouts that c<strong>an</strong> be usedfor rotary-v<strong>an</strong>e attenuators: (1) direct reading ofattenuation in decibels; <strong>an</strong>d (2) <strong>an</strong>gular reading ofrotor v<strong>an</strong>e rotation in degrees. <strong>The</strong> use of a readoutwith <strong>an</strong>gular notation offers the adv<strong>an</strong>tage in thatthe scale is linear, while a direct reading decibel27FIGURE 41. (a) Deviation of me<strong>as</strong>ured attenuation <strong>an</strong>d equivalent <strong>an</strong>gular deviation from theoretical values fora v<strong>an</strong>e <strong>an</strong>gle correction of —0.033° versus dialsetting of 0 to 45°.(b) Deviation of me<strong>as</strong>ured attenuation <strong>an</strong>d equivalent <strong>an</strong>gular deviation from theoretical values fora v<strong>an</strong>e <strong>an</strong>gle correction of —0.033° versus dialsetting of 45 to 87.5°.


scale decre<strong>as</strong>es rapidly in resolution at the highvalues. In addition, interpolation becomes moredifficult to estimate <strong>as</strong> the attenuation rate incre<strong>as</strong>eson the decibel scale.<strong>The</strong>re are occ<strong>as</strong>ions when it is import<strong>an</strong>t to knowto what accuracy a rotary-v<strong>an</strong>e attenuator c<strong>an</strong> beset over its usable r<strong>an</strong>ge. In order to demonstratethe accuracy of resettability we have elected to use<strong>an</strong>gular notation. Figure 42 shows the resolutionerror, €#, in attenuation in decibels versus the dialsetting, A dB, in decibels for several values of Q'R ,the <strong>an</strong>gular resettability of the rotor v<strong>an</strong>e in degrees. <strong>The</strong> curves show the magnitude of the resolution error, e#, for values from 0.1 /ubel to 100decibels at dial settings of 0.001 to 200 dB for<strong>an</strong>gular resettability of 1 second <strong>an</strong>d 0.001 to 1.0°of arc.<strong>The</strong> curves (A to H) provide a quick <strong>an</strong>d convenient me<strong>an</strong>s of determining the accuracy indecibels one c<strong>an</strong> expect for a known <strong>an</strong>gular resolution. Also, if the deviation in attenuation fromnominal is known, the required <strong>an</strong>gular correctionc<strong>an</strong> be determined from the graph. For example,for a rotary-v<strong>an</strong>e attenuator with a deviation ofabout 0.013 dB at a 10-dB dial setting, curve (E)shows that a correction of 0.03° would be requiredto give the nominal value of attenuation.9. Resolution of <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong><strong>Attenuator</strong> in Percent of DialSetting<strong>The</strong> question may arise <strong>as</strong> to the optimum valueof attenuation to me<strong>as</strong>ure for intercomparison of<strong>laboratory</strong> st<strong>an</strong>dards, or to determine the characteristics of a variable attenuator st<strong>an</strong>dard. In figure43, the resolution of the dial in percent of dial settingis plotted versus dial setting in decibels for a rotaryv<strong>an</strong>eattenuator with <strong>an</strong> <strong>an</strong>gular resolution of 0.01°.At each end of the curve the resolution of dial inpercent of attenuation value rises very rapidly.For example, at the dial settings of 0.01 <strong>an</strong>d 100 dB,the resolution of dial is about 1 percent <strong>an</strong>d appearsto have the lower percent values from 6 to 20-dBdial settings, with the lowest occurring at about 12dB. If <strong>an</strong> attenuator h<strong>as</strong> finer resolution, such <strong>as</strong>0.001° or 1 second of arc, then the resolution ofdial in percent of attenuation will be correspondinglylower. From figure 42 it c<strong>an</strong> be determined that forattenuation values of 1, 12, <strong>an</strong>d 40 dB, the resolutionof dial in percent are 0.011, 0.0045, <strong>an</strong>d 0.0075percent, respectively, for 0.001° dial resolution, <strong>an</strong>dthe corresponding values are about 0.003, 0.0013,<strong>an</strong>d 0.002 percent for one second dial resolution.Again in both c<strong>as</strong>es, the 12-dB dial setting h<strong>as</strong> thelower resolution of dial in percent of attenuation.10'0.01 3.0 6.0 12Dial Setting in Decibels20 30 50 10010"FIGURE 43. Resolution of the dial in percent of attenuationversus dial setting in decibels for <strong>an</strong> attenuatorwith <strong>an</strong>gular resolution of 0.01 °.10"10. Frequency Sensitivity of the<strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong>10" 10©(A dB ) DIAL SETTING IN DECIBELSFIGURE 42. Resolution error in decibels versus dial setting indecibels.28Although the rotary-v<strong>an</strong>e attenuator h<strong>as</strong> someexcellent properties, such <strong>as</strong> stability, resolution<strong>an</strong>d low reflection at the input <strong>an</strong>d output ports,all of which are necessary criteria for good tr<strong>an</strong>sferst<strong>an</strong>dards, it also exhibits <strong>an</strong> undesirable characteristic, frequency sensitivity. <strong>The</strong> frequency sensitivity


ecomes more pronounced at high values of attenuation; thus calibration of the attenuator atthe operating frequency is essential for preciseme<strong>as</strong>urement with this device over large r<strong>an</strong>gesof attenuation.10.1. Spectrum of Microwave AttenuationCalibration Systems 2.6 to 40 GHzFor a period of more th<strong>an</strong> 15 years, the microwaveattenuation calibration system [16] h<strong>as</strong> been used atNBS to calibrate rotary-v<strong>an</strong>e attenuators over themicrowave spectrum of 2.6 to 40 GHz. This includedthe following waveguide sizes: WR284, WR187,WR137, WR112, WR90, WR62, WR42, <strong>an</strong>d WR28.Three frequencies for microwave calibrations weresuggested for each waveguide size. <strong>The</strong>se threefrequencies were approximately <strong>as</strong> follows: thelower frequency limit incre<strong>as</strong>ed 10 percent, themiddle of the waveguide b<strong>an</strong>d, <strong>an</strong>d the upper frequency limit decre<strong>as</strong>ed 10 percent. For example, thefrequency b<strong>an</strong>d for WR90 waveguide is 8.2 to 12.4GHz, <strong>an</strong>d the suggested frequencies for calibrationwere 9, 9.8, <strong>an</strong>d 11.2 GHz.3 Selected Frequencies Each in WR284, WR90, <strong>an</strong>dWR28 Waveguide SizesIt is helpful to use the data of calibrated rotaryv<strong>an</strong>eattenuators in several waveguide sizes toevaluate their frequency sensitivity. For example,the waveguide sizes WR284, WR90, <strong>an</strong>d WR28cover the lower, middle, <strong>an</strong>d upper portion of themicrowave frequency r<strong>an</strong>ge used in this sample ofrotary-v<strong>an</strong>e attenuators. <strong>The</strong> deviations of attenuation from nominal in decibels versus dial settingsof 10 to 50 dB at three NBS selected frequencies ineach of the above waveguide sizes are shown infigures 44 to 50. In each figure the points plotted foreach dial setting are coded <strong>as</strong> follows: the square,D, at the lower frequency; the tri<strong>an</strong>gle. A, at themiddle frequency; <strong>an</strong>d the circle, O, at the higherfrequency. <strong>The</strong> smooth curves indicate the averagedeviation in attenuation <strong>an</strong>d the corresponding v<strong>an</strong>e<strong>an</strong>gleerror is shown in degrees [17]. <strong>The</strong> spreadbetween the curves indicates the magnitude of theerror caused by frequency sensitivity. Correctionsc<strong>an</strong> be applied to minimize the frequency sensitivity.Figures 44 <strong>an</strong>d 45 show the deviations of attenuation for two attenuators in WR90 waveguide. Infigure 44 the average v<strong>an</strong>e-<strong>an</strong>gle error is positive<strong>an</strong>d yields values of attenuation greater th<strong>an</strong>nominal, while in figure 45 the average v<strong>an</strong>e-<strong>an</strong>gleerror is negative <strong>an</strong>d gives values of attenuation lessth<strong>an</strong> nominal. <strong>The</strong> r<strong>an</strong>dom variation of the calibratedpoints at each dial setting are due to gearing runout,resettability, mismatch, <strong>an</strong>d system drift.An example will now be given to show how thedeviation in frequency sensitivity across a givenwaveguide size c<strong>an</strong> be minimized. If a v<strong>an</strong>e <strong>an</strong>glecorrection of —0.067° is applied to the data plottedin figure 44, then the average v<strong>an</strong>e-<strong>an</strong>gle error at9.0, 9.8, <strong>an</strong>d 11.2 GHz will be +0.031, +0.013, <strong>an</strong>d— 0.031° respectively.DIAL SETTING IN dBFIGURE 44. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gleerrors of 0.098, 0.080, <strong>an</strong>d 0.036° versus dial settingin decibels at 9.0, 9.8 <strong>an</strong>d 11.2 GHz.29


20 30IAL SETTING IN dEFIGURE 45. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of —0,032,- 0.042, <strong>an</strong>d - 0.054° versus dial setting in decibels at 9.0, 9.8, <strong>an</strong>d 11.2GHz.Figures 46 <strong>an</strong>d 47 show the deviations in attenuation for two rotary-v<strong>an</strong>e attenuators in WR28.<strong>The</strong> r<strong>an</strong>dom scatter of the point-by-point valuesare larger in the smaller waveguide size becausegearing runout c<strong>an</strong> produce greater <strong>an</strong>gular displacement error [6], which correspondingly induceslarger deviations in attenuation. <strong>The</strong> deviations inattenuation from nominal are illustrated for threeWR284 rotary-v<strong>an</strong>e attenuators in figures 48, 49,<strong>an</strong>d 50. <strong>The</strong>se curves show that two attenuatorshave a negative average v<strong>an</strong>e-<strong>an</strong>gle error while thethird h<strong>as</strong> a positive <strong>an</strong>gular error. In addition, infigures 48 <strong>an</strong>d 49, the curve showing the higherfrequency error falls between the middle <strong>an</strong>d lowerfrequency errors. This could be caused by thewarping or curling of the tapered v<strong>an</strong>es in the endsections, which is characteristic of this model ofrotary-v<strong>an</strong>e attenuator. However, the curve for thehigher frequency did not fall between the other two<strong>an</strong>d the spread of the deviation in attenuationappears to be less for the data obtained with <strong>an</strong>othermodel of WR 284 attenuator, shown in figure 48.0.80 Or0.600WR 28R . V . A T T E N .0.400O 37 GHZA 33 GHzD 29 GHz0. 2000.000,-0.20020 3050DIAL SETTING IN dBFIGURE 46. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.024, 0.035,<strong>an</strong>d 0.049° versus dial setting in decibels at 29,33, <strong>an</strong>d 37 GHz.30


0.6002 0.400WR 28R.V. ATTEN.O 37 GHzA 33 GHzD 29 GHz~ 0.2000.008°0.00010 20 30DIAL SUITING IN dB4050FIGURE 47. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of 0.008,<strong>an</strong>d — 0.042 ° versus dial setting in decibels at 29, 33, <strong>an</strong>d 37 GHz.-0.014,0.0200.000-0.020-0.040-0.060-0.080-0.100-0.120-0.140-0.160-0.180-0.20020 30DIAL SETTING IN d&40FIGURE 48. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of —0.031,-0.010, <strong>an</strong>d 0.013° versus dial setting in decibels at 2.85, 3.25 <strong>an</strong>d3.55GHz.31


WR 284R.V. ATTEN.20 30DIAL SETTING IN dBFIGURE 49. Deviation of attenuation for agerage v<strong>an</strong>e-<strong>an</strong>gle errors of 0.128, 0.-705,<strong>an</strong>d 0.120° versus dial setting in decibels at 2.85, 3.25, <strong>an</strong>d 3.55 GHz.o. 100,00-0.10-0.20-0.30-0.40-0.50-0.60WR 234R.Y. ATTEN.O 3.55 GHzA 3.25 GHzO 2.85 GHz-0.70-0.80-0.9020 30DIAL SETTING IN dBFIGURE 50. Deviation of attenuation for average v<strong>an</strong>e-<strong>an</strong>gle errors of —0.070,— 0.067, <strong>an</strong>d —0.032° versus dial setting in decibels at 2.85, 3.25, <strong>an</strong>d3.55 GHz.32


10.2. Statistical Analysis of the FrequencySensitivity from Calibration Data at 30, 40,<strong>an</strong>d 50 dBIn order to obtain a statistical <strong>an</strong>alysis of thefrequency sensitivity, data were selected fromcalibrations performed on 154 attenuators at theestablished frequency limits. <strong>The</strong> <strong>an</strong>alysis utilizedthe calibration data of the higher dial settings of30, 40, <strong>an</strong>d 50 dB of each rotary-v<strong>an</strong>e attenuator.Since these dial settings were common to all calibrations, these values were used in computing thest<strong>an</strong>dard deviation for each waveguide size. Infigures 51 to 58 each graph shows the limits ofone-sigma error in attenuation in decibels versusfrequency in GHz for the rotary-v<strong>an</strong>e attenuator ineach specific waveguide size at 30, 40, <strong>an</strong>d 50-dBdial settings. In each figure the vertical lines f\ <strong>an</strong>d/2 are the limits of the selected frequencies. However, the frequency of each graph w<strong>as</strong> extended toinclude the total frequency r<strong>an</strong>ge of that specificwaveguide size. <strong>The</strong> greatest ch<strong>an</strong>ge in attenuationin decibels occurs at the dial setting of 50 dB inWR62 waveguide <strong>an</strong>d is about 0.75 dB for a frequency r<strong>an</strong>ge of 12.4 to 18.0 GHz, <strong>as</strong> shown infigure 56. <strong>The</strong> le<strong>as</strong>t ch<strong>an</strong>ge in attenuation for the50-dB dial setting w<strong>as</strong> about 0.3 dB in WR284 <strong>an</strong>dWR42 waveguide sizes (figs. 51 <strong>an</strong>d 57).7.01 FREQUENCY IN GHzFIGURE 51. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for twenty WR284rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings.FIGURE 53. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for eighteen WR137rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings.~ 0.30-0.20 -0.20 -0.15 -0.10 -1 FREQUENCY IN GHz 2FREQUENT IN GHzFIGURE 52. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for twenty-one VFR187rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dBdial settings.33FIGURE 54. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for twenty-three WR112rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings.


WR62WAVEGUIDE12.4 - IS.OGHzFREQUENCY IN GHz12.416.0FREQUENCY IN GHz18.0FIGURE 55. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for fifty-one WR90rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings.FIGURE 56. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for seven WR62 rotaryv<strong>an</strong>eattenuators at 30, 40, <strong>an</strong>d 50-dB dial settings.0 .30,-0.25WR42WAVEGUIDE13.0 - 26.5 GHz0.200.1520.0 22.0 24.CFREQUENCY IN GHz26.0 | 28.026.5FIGURE 57. Limits of magnitude of one-sigma error in attenuation versus frequency in GHz for seven WR42 rotaryv<strong>an</strong>eattenuators at 30, 40, <strong>an</strong>d 50-dB dial settings.34


0.70 r0.50HR28WAVEGUIDE26.5 - 40GHz0.400.1026,0 26.5FREQUENCY IN GHzFIGURE 58. Limits of magnitude ofone-sigma error in attenuation versus frequency inCHz for seven WR28 rotary-v<strong>an</strong>e attenuators at 30, 40, <strong>an</strong>d 50-dB dialsettings.10.3. Frequency Sensitivity of <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong><strong>Attenuator</strong>s for Eight Waveguide FrequencyR<strong>an</strong>gesTable 14 summarizes the frequency sensitivityof the rotary-v<strong>an</strong>e attenuators for eight waveguidedesignations. <strong>The</strong> term dB/GHz indicates thedeviation from nominal attenuation adjusted so thatthe deviation is zero at .! e bottom frequencies ofthe waveguide r<strong>an</strong>ge. <strong>The</strong> values of dB/GHz weredetermined from 072 minus cr/i divided by f% minus/i (upper <strong>an</strong>d lower selected frequencies, respectively) where


11.1. Errors in Attenuation for the Initial<strong>an</strong>d the Final Setting of the <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong><strong>Attenuator</strong> for <strong>an</strong> Attenuation DifferenceMe<strong>as</strong>urement<strong>The</strong> initial setting of <strong>an</strong> attenuation differenceme<strong>as</strong>urement of a rotary-v<strong>an</strong>e attenuator c<strong>an</strong> bewritten <strong>as</strong>where A\, is the theoretical value of attenuation atthe initial setting; e^o <strong>an</strong>d €,-/ are the errors due tothe operator <strong>an</strong>d inherent error, respectively, at theinitial setting.<strong>The</strong> error in attenuation at the initial setting maybe expressed <strong>as</strong>,•/ = —40 logiCOS ( ft ± ftpCOS ftwhere the <strong>an</strong>gular values at the initial setting are:ft, the v<strong>an</strong>e <strong>an</strong>gle to obtain the theoretical attenuation; 0,0, the v<strong>an</strong>e-<strong>an</strong>gle error due to the operator;<strong>an</strong>d ft/, the inherent v<strong>an</strong>e-<strong>an</strong>gle error.In a like m<strong>an</strong>ner, the final setting of <strong>an</strong> attenuation difference me<strong>as</strong>urement may be expressed <strong>as</strong>where Af is the theoretical value of attenuation atthe final setting, €/o <strong>an</strong>d e// are the errors due to theoperator <strong>an</strong>d the inherent error, respectively, at thefinal setting.<strong>The</strong> error in attenuation at the final setting maybe expressed <strong>as</strong>€/o + €// = — 40 log 10COS (6f±Bjy+8fl)cos 6fwhere the <strong>an</strong>gular values at the final setting are:0/, the v<strong>an</strong>e <strong>an</strong>gle to obtain the theoretical attenuation; 0/o, the v<strong>an</strong>e-<strong>an</strong>gle error due to the operator;<strong>an</strong>d 0//, the inherent v<strong>an</strong>e-<strong>an</strong>gle error [18].Any deviation from ideal alignment of the rotorv<strong>an</strong>e with reference to the scale readout causes <strong>as</strong>ystematic error in the attenuation rate of the entirer<strong>an</strong>ge of the rotary-v<strong>an</strong>e attenuator. Though thismech<strong>an</strong>ical error c<strong>an</strong> be const<strong>an</strong>t <strong>an</strong>gular displacement, it produces <strong>an</strong> incre<strong>as</strong>ingly greater error inattenuation <strong>as</strong> the value of 0 incre<strong>as</strong>es. Also, theerror in attenuation caused by <strong>an</strong>gular limits ofresettability becomes greater with incre<strong>as</strong>es of 0.Since bootstrapping action usually results in highervalue of attenuation, the smallest errors of alignment <strong>an</strong>d resettability are essential to keep the limitsof uncertainty minimal.11.2. Graphical PresentationIn order to illustrate the deviation in attenuationdue to rotor-v<strong>an</strong>e alignment error, graphs are usedto display these deviations from nominal attenuations. This deviation from nominal in a determination of attenuation difference occurs at both theinitial <strong>an</strong>d final dial settings of the rotary-v<strong>an</strong>eattenuator.11.2.1. Deviations in Attenuation Due to Rotor-<strong>V<strong>an</strong>e</strong>Alignment ErrorFigure 59(a) is a graph of error, e', in decibels forattenuation in 10-dB increments with <strong>as</strong>sumedrotor-v<strong>an</strong>e alignment error, 0,, equal to 0.100, 0.200,<strong>an</strong>d 0.300°. <strong>The</strong> value of e', the error from nominal,is determined from e b minus e o when<strong>an</strong>d;—4oiogl5lO~COS (flq+fl/)COSCOS O aCOS6 a is the initial rotor v<strong>an</strong>e <strong>an</strong>gle, 0& is the final rotorv<strong>an</strong>e <strong>an</strong>gle, <strong>an</strong>d 0^ is defined above.<strong>The</strong> magnitude variations of e' are illustrated bythree different straight lines: the solid line for0;-0.300°, the dot line for 0)-0.200°, <strong>an</strong>d the d<strong>as</strong>hdot-d<strong>as</strong>hline for 0) = 0.100°. (This legend alsoapplies to the figs. 61, 63, 65, <strong>an</strong>d 67.) Five differentincrements of 10 dB each were me<strong>as</strong>ured <strong>as</strong>follows: 0 to 10 dB, 3 to 13 dB, 6 to 16 dB, 10 to20 dB, 15 to 25 dB. <strong>The</strong> values of e' at the same10-dB increments are smaller when 0/ is equal to0.200 <strong>an</strong>d 0.100° <strong>as</strong> indicated by the dot, <strong>an</strong>d thed<strong>as</strong>h-dot lines. For a given 0), the value of e' is thele<strong>as</strong>t at the dial settings of 3 to 13 dB.11.2.2. Attenuation Versus 9 in DegreesFigure 59(b) is the curve of attenuation versus0 in degrees of rotor <strong>an</strong>gular displacement. <strong>The</strong>segments of the curve, numbered (1), (2), (3), (4),<strong>an</strong>d (5), are equal to 10-dB increments of attenuation.<strong>The</strong> chart shows three positions of the rotor v<strong>an</strong>e indegrees; the initial, 0{; the final, 0/; <strong>an</strong>d theirdifference, A0.Although the increments of attenuation are equal,the <strong>an</strong>gular increments, A0, become less at highervalues of 0. For example, the <strong>an</strong>gular displacementfor the 15 to 25-dB increment is approximatelyone-fifth of the value for the 0 to 10-dB increment.36


.20 -.15 -.10 -.05 -ATTENUA' [ION IN 10 dB INCREMENT300°(ROTOR VANE MISALIG NMENT)?00°(15 TO 25dB)00°- —— ej = o.:——. ej = o.;———— 9j = 0.1a 31f. __ 1 __a 2 ,(10 TO1(0 TO It2^ ——— 4(6 TO 16dB)!3 TO 13 dB)-.;-!—11r- —111 1b 2 L ____ L-- __ ___ -EL-1-——* ' —1- b]J—i-—-;—-" "i " ii i10 15s20dB)F—— -DIAL SETTING IN dB. —————————20 25••E< = e b - e a-40 log cos(6 a +6j)-40 log cos(e.+e')^ ' cos,(a)25A925dB20(1)(2)(3)(4)(5)032.71°44.93°55.78°65.06°55.78°61 .76°66.54°71 .57°76.28°55.7829.0521 .611 5.7911 .22~ 151032 40 486 IN DEGREES56 64 72 80FIGURE 59. (a] e' error from nominal (10 dB} increments versus dial setting in decibels for rotormisalignment, 0[ equal to 0.100,0.200, <strong>an</strong>d 0.300°.(b) Attenuation in decibel versus 8 in degrees, <strong>an</strong>d <strong>an</strong>gular limits in degrees for attenuation difference of 10 dB.37


a.150o, 100-0.100-0.150(1) 0 TO lOdB(2) 3 TO 13dB(3) 6 TO 16dB(4) 10 TO 20dB(5) 15 TO 25dBFIGURE 60. e' error in decibels versus 6j from 0 to ±0.300° for10-dB increments <strong>as</strong> follows: 0 to 10 dB, 3 to 13dB, 6 to 16 dB, 10 to 20 dB, <strong>an</strong>d 15 to 25 dB.<strong>The</strong> ch<strong>an</strong>ge in the e' error in decibels versusO'i is plotted for both the positive <strong>an</strong>d negative valuesof v<strong>an</strong>e misalignment in figure 60. <strong>The</strong> lower portionof the graph shows the limits of the 10-dB incrementswhich are numbered to correspond with the specificcurve. <strong>The</strong> error e' in this sample of 10-dB increments is a minimum for 3 to 13 dB <strong>an</strong>d a maximumfor 15 to 25-dB dial settings.In figures 61(a, b), 63(a, b), 65(a, b), <strong>an</strong>d 67(a, b)are plots of the error, e ', in decibels for 6, 3, 1, <strong>an</strong>d0.1-dB increments with <strong>as</strong>sumed rotor v<strong>an</strong>e misalignment, 0'/, of 0.100, 0.200 <strong>an</strong>d 0.300°. <strong>The</strong> plotsof each of the different decibel increments illustratethat the minimum value of the error, e', occurswhen the <strong>an</strong>gular displacement limits of the rotorv<strong>an</strong>e are centered near 45°.<strong>The</strong> ch<strong>an</strong>ge in the e' error versus 0, is plottedfor the positive values 0' only in figures 62, 64, 66,<strong>an</strong>d 68. <strong>The</strong> negative values of B'{ would plot <strong>as</strong> <strong>an</strong>ear mirror image with a slight decre<strong>as</strong>e in error(see fig. 60).<strong>The</strong> difference in the error, e', does incre<strong>as</strong>e athigher values of attenuation. For example, the difference between the positive <strong>an</strong>d negative value of e'for 0; equals 0.300° is about 0.0015 dB at the 10-dBdial setting, <strong>an</strong>d about 0.152 dB at the 50-dB dialsetting.11.2.3. €Q <strong>an</strong>d c' Versus Dial Setting (in Degrees<strong>an</strong>d decibels)In order to illustrate the relationship of theinherent misalignment error, e'r to the resettabilityerror, e'Q , we have plotted their deviations inattenuation from nominal in figure 69. <strong>The</strong> values of0'n , 0;2 , <strong>an</strong>d 0;3 are shown <strong>as</strong> 0.100, 0.200, <strong>an</strong>d0.300°, respectively, <strong>an</strong>d 0; equal to ±0.010°. <strong>The</strong>three curves are a plot of the deviations in attenuation from nominal versus dial setting (degrees <strong>an</strong>ddecibels) from 1 to 10 dB. <strong>The</strong> center lines are thedeviations in attenuation caused by d'r <strong>an</strong>d thelines on each side of the center lines are the limitsof deviation caused by 0^. <strong>The</strong> curves show thateach subsequent 1-dB increment requires less<strong>an</strong>gular rotation of the rotor <strong>as</strong> 0 incre<strong>as</strong>es. However,the errors in attenuation caused by 0^ <strong>an</strong>d 0^ aregreater <strong>as</strong> 0 incre<strong>as</strong>es.11.2.4. Minimal Value of e'Since the error, e', is minimal at the mid-region ofthe <strong>an</strong>gular displacement of the rotor, the attenuation increment of 1 dB between the 5 <strong>an</strong>d 6-dB dialsettings of the rotary-v<strong>an</strong>e attenuator w<strong>as</strong> selected forfurther investigation. Let us examine in detail this1-dB nominal value of attenuation with limits of0; equal ±0.010°, <strong>an</strong>d 0'7 equal ±0.100, ±0.200,<strong>an</strong>d ±0.300°. Figure 70 shows the deviations inattenuation versus dial setting (degrees <strong>an</strong>d decibels)for the above conditions, where 0 are the rotor <strong>an</strong>glescorresponding to 5 <strong>an</strong>d 6-dB dial settings. <strong>The</strong>nominal values of 5 <strong>an</strong>d 6 dB are given at the endsegment of each curve, <strong>an</strong>d the vertical segmentsindicate the limits of resettability.38


ATTENUATION IN 6 dB INCREMENTS0.05—— ej = 0.200°0.10 -,—— .ftj = o.inn 0 15 TO 21dB0 TO 6dB~ 3 3 b 3| 12 TCti, 9 TO 15dB| 6 TO 12dB3 TO! 9dB ja 2 b 2'1 I1 ii. ____'__ —— ^I 1I 1____ _ i j ||a ! b ! i i"-" "1•—!8dBr~""^"^~ "e ' =G' =£ b =-40 log cos(e a + ej)cos 0-40 log cos(6 b + ej)l ii if ii ii io ——————————————————————————————————i it iii t j i i ti0 5 10 15 20 25(a)DIAL SETTING IN dB250320= 1 5(1) 0 44.93° 44.93°(2) 32.71° 53.44° 20.73°(3) 44.93° 59.92° 14.99°(4) 53.44° 65.06° 11.62°(5) 59.92° 69.22° 9.30°(6) 65.06° 72.63° 7.57°(7) 69.22° 75.45° 6.23° ^18dB>r !5dBf 21dB9dB(1]3dB24 32 40 486 IN DEGREES56 64FIGURE 61. (a) e' error from nominal (6 dB) increments versus dial setting in decibels for rotor misalignment, 0;, equal to 0.100, 0200, <strong>an</strong>d 0.300°.(b) Attenuation in decibels versus 0 in degrees, <strong>an</strong>d <strong>an</strong>gular limits in degrees for attenuation difference of 6 dB.39


.100(1) 0 TO 6 dB(2) 3 TO 9 dB(3) 6 TO 12 dB(4) 9 TO 15 dB(5) 12 TO 18 dB(6) 15 TO 21 dB(7) 18 TO 24 dBof 50 to 60 dB. Column four gives the deviationsfrom average before applying the rotor v<strong>an</strong>e <strong>an</strong>glecorrection to the readings. It will be noted thatthese are all positive <strong>an</strong>d incre<strong>as</strong>e <strong>as</strong> the initial dialsetting incre<strong>as</strong>es.Note that the deviations were minimal at the mid<strong>an</strong>gularregions of the rotary-v<strong>an</strong>e attenuator. Thisw<strong>as</strong> true regardless of the correction of #/; however,for the most accurate results, the correction mustbe applied.(2)(3)13. Attenuation Me<strong>as</strong>urement Withthe <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong> theSt<strong>an</strong>dard.0250.100 0.200 0.300°IN DEGREESFIGURE 62. € error in decibels versus B{ from 0 to +0.300° for6-dB increments <strong>as</strong> follows: 0 to 6 dB, 3 to 9 dB, 6to 12 dB, 9 to 15 dB, 12 to 18 dB, 15 to 21 dB, <strong>an</strong>d18 to 24 dB.12. Evaluation of Precision <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> With WaveguideFixed-Step <strong>Attenuator</strong>Evaluation of a precision rotary-v<strong>an</strong>e attenuatorby using a repeatable step attenuator requires <strong>as</strong>table high-resolution me<strong>as</strong>urement system. Anominal 7-dB waveguide step attenuator <strong>an</strong>d themicrowave attenuation me<strong>as</strong>urement system (seriessubstitution) were used with the optical rotaryv<strong>an</strong>eattenuator <strong>as</strong> the st<strong>an</strong>dard to obtain determinations of attenuation difference.A summary of these me<strong>as</strong>urements is shown intable 16. <strong>The</strong> attenuation difference of the stepattenuator w<strong>as</strong> me<strong>as</strong>ured by using several differentinitial dial settings from 0 to 60 dB on the rotaryv<strong>an</strong>eattenuator. Column one lists the initial dialsettings of the st<strong>an</strong>dard rotary-v<strong>an</strong>e attenuator foreach determination. <strong>The</strong> me<strong>as</strong>ured values of thewaveguide-step attenuator are recorded in columntwo, with the average value of 7.6544 dB listed atthe bottom of the column. <strong>The</strong>se results were obtained by applying a negative rotor v<strong>an</strong>e <strong>an</strong>glecorrection, 0}, of 1'18" or 0.0217° (previouslydetermined) to all readings. In column three isgiven the deviation from the average attenuationdifference. <strong>The</strong> r<strong>an</strong>dom deviation from the averageis about ±0.005 dB for initial dial settings of 0 to45 dB, <strong>an</strong>d incre<strong>as</strong>es to about 0.02 dB for settings13.1. IntroductionIn order to fully utilize the attenuation propertiesof the precision optical-rotary-v<strong>an</strong>e attenuator <strong>as</strong>the st<strong>an</strong>dard, a dual detection microwave bridgesystem w<strong>as</strong> incorporated in a series substitutionsystem, providing <strong>an</strong> ingenious technique formicrowave attenuation me<strong>as</strong>urements [22]. <strong>The</strong>stability <strong>an</strong>d resolution of this microwave attenuation me<strong>as</strong>urement system is consistent with therotary-v<strong>an</strong>e attenuator st<strong>an</strong>dard's resolution of0.00005 dB at 1-dB dial setting. <strong>The</strong> system maintains this stability <strong>an</strong>d resolution up to a 30-dBme<strong>as</strong>urement of attenuation difference or insertionloss.<strong>The</strong> frequency b<strong>an</strong>d covered with this WR90waveguide system is 8.2 to 12.4 GHz, <strong>an</strong>d the attenuation me<strong>as</strong>urement of fixed <strong>an</strong>d/or variable devicesr<strong>an</strong>ges from 0 to 70 dB. <strong>The</strong> following discussion ofthe me<strong>as</strong>urement system is adapted from NBSTech. Note 647.13.2. <strong>The</strong> Me<strong>as</strong>urement SystemA simplified block diagram of the microwaveattenuation calibration system is shown in figure71. <strong>The</strong> attenuator under test is located in the samewaveguide section <strong>as</strong> the st<strong>an</strong>dard attenuator,between the st<strong>an</strong>dard <strong>an</strong>d the waveguide detector.A ch<strong>an</strong>ge in the attenuator under test is equal tothe ch<strong>an</strong>ge required in the st<strong>an</strong>dard attenuator torebal<strong>an</strong>ce the bridge. An attenuation me<strong>as</strong>urementis made in the following m<strong>an</strong>ner: (1) at the start setst<strong>an</strong>dard <strong>an</strong>d attenuator under test to their respective initial setting <strong>an</strong>d bal<strong>an</strong>ce the bridge fora null using the level-set attenuator, (2) make thedesired ch<strong>an</strong>ge in the attenuator under test, <strong>an</strong>d(3) rebal<strong>an</strong>ce the bridge with the final setting of thest<strong>an</strong>dard attenuator.Figure 72 shows a more detailed block diagramof the system <strong>an</strong>d illustrates the interconnection ofthe waveguide components, st<strong>an</strong>dard attenuator,<strong>an</strong>d <strong>as</strong>sociated electronic equipment. <strong>The</strong> b<strong>as</strong>icwaveguide components <strong>an</strong>d instrumentation equipment of the system were developed with commer-40


.CQz-,0.060.05£T 0.04-oCO-Jacac 0.03o2s:0QC


0,04( 1 ) 0 TO 3 dB(2) 2 TC 5 dB(3) 3 TO 6 dB(4) 6 TO 9 d8(5) 9 TO 12 db(6) 12 TO 15 dB{7} 15 TO 18 dB(8) IB TO 21 dB(9) 21 TO 24 dB0.02(3)0.100 0.2000.300°FIGURE 64.e' error in decibels versus 0J from 0 to +0.300° for3-dB increments <strong>as</strong> follows: 0 to 3 dB, 2 to 5 dB, 3to 6 dB, 6 to 9 dB, 9 to 12 dB, 15 to 18 dB, 18 to 21dB, <strong>an</strong>d 21 to 24 dB.0: IN DEGREEScially available components. In addition, thisme<strong>as</strong>urement system h<strong>as</strong> the favorable feature thatattenuation me<strong>as</strong>urements are obtained to a highdegree of precision without power stabilization ofthe RF signal source, <strong>an</strong>d employs a single RFsource. <strong>The</strong> null amplifier w<strong>as</strong> designed at NBS <strong>an</strong>da detailed schematic diagram is given in NBSTech Note 647.In figure 73, a recording chart of the stability ofme<strong>as</strong>urement indicates that for a 30-dB value ofattenuation maximum variations are in the orderof ± 10 /x/3 at the output detection system.13.3. Errors of the Microwave Me<strong>as</strong>urementSystem13.3.1. Systematic <strong>an</strong>d R<strong>an</strong>dom ErrorsWith the application of the correction requiredfor rotor-v<strong>an</strong>e misalignment of the rotary-v<strong>an</strong>eattenuator st<strong>an</strong>dard, <strong>an</strong>d precise matching technique, the estimated systematic error, at the twoinsertion points of the waveguide system, is reduced to about ±0.002 dB for values of attenuationme<strong>as</strong>urement from 0 to 30 dB.<strong>The</strong> me<strong>as</strong>urement of attenuation difference <strong>an</strong>dinsertion loss of five precision inter<strong>laboratory</strong>tr<strong>an</strong>sfer st<strong>an</strong>dards gave a preliminary estimate ofthe st<strong>an</strong>dard deviation, sigma (cr), equal to 0.0010dB for over one hundred determinations.13.3.2. Insertion Point of the Device Under TestTwo tuned insertion points are required in themicrowave attenuation me<strong>as</strong>urement system (seriessubstitution), one for the working st<strong>an</strong>dard (precision rotary-v<strong>an</strong>e attenuator), the other for thedevice under test. Refer to the block diagram infigure 72.42Only the insertion point for the device under testis opened during <strong>an</strong> insertion loss me<strong>as</strong>urement.Also, this point is located in the system in such away that the le<strong>as</strong>t possible movement of waveguidecomponents is required. An opened insertion pointof rect<strong>an</strong>gular waveguide <strong>an</strong>d <strong>an</strong> inserted fixedrect<strong>an</strong>gular waveguide attenuator under test areshown in figures 74 <strong>an</strong>d 75, respectively. Thisinsertion point c<strong>an</strong> be adapted very e<strong>as</strong>ily for use<strong>as</strong> a coaxial insertion point. In figure 76 the photoshows the insertion point converted to admit coaxial devices by using waveguide J?-pl<strong>an</strong>e bends,coax to waveguide adapters, <strong>an</strong>d a double (male)coaxial adapter <strong>as</strong> added components to the waveguide line. <strong>The</strong> addition of these componentsdoes not incre<strong>as</strong>e greatly the length of the movablesection or hinder the e<strong>as</strong>e of inserting coaxialdevices into the line of the system (fig. 77).<strong>The</strong> waveguide multistub tuners adjacent toeach side of the insertion point are used to matchthe line to either rect<strong>an</strong>gular waveguide or coaxialinsertion point. <strong>The</strong> waveguide insertion point c<strong>an</strong>be tuned by using a portable reflectometer [23], orthe built-in reflectometer that is located in thewaveguide section of the system. Tuning the coaxial insertion point requires the use of a coaxialslotted section.13.3.3. Mismatch Error in Attenuation Me<strong>as</strong>urementMismatch is a signific<strong>an</strong>t source of error thatshould be considered in the calibration of microwave fixed or variable attenuators. In the me<strong>as</strong>urement process of <strong>an</strong>y attenuation device, a largeamount of degrading of the accuracy will dependupon the matching of the insertion point of thecalibration system. <strong>The</strong> match of the insertion pointbecomes more critical for low values of attenuation[24, 25, 26].


.050 -ATTENUATION IN 1 dB INCREMENTS———— 6J = 0.300° (ROTOR VANE MISALIGNMENT)———— 6J = 0.200°——— ej = 0.100°(39 TO 40dB)x:o.040 -(0 TO.030 -a b.020 -z E b " e a-40 log (cos 6 3 + 0})„. ^ a idB) ^ cos 9 a(2-40 log (cos 6. + 91}cos 6. b9 TO 30dB)_„-«—...010o— —(5 TO 6dB) (9 TO lOdB)I i 1 —————— 11 II 1f— . — 4 p-- — 1iii i— .15 69 10 29 30 39 4(a)DIAL SETTING IN dB18 -12 -6 -40 486 (DEGREES)FIGURE 65. (a) e' error from nominal (1 dB) increments versus dial setting in decibels for rotor misalignment, 6{, equal to 0.100, 0.200, <strong>an</strong>d 0.300°.(b) Attenuation in decibels versus 6 in degrees, <strong>an</strong>d <strong>an</strong>gular limits in degrees for attenuation difference of I dB.43


.0500.0375(!) 0 TO 1 dB(2) 5 TO 6 dB{3} 9 TO 10 dB(4) 29 TO 30 dB(5) 39 TO 40 dBf .0250.0125 -0.100 0.2006 IN DEGREES0.300°FIGURE 66. e' error in decibels versus 0,' from 0 to +0.300° for1-dB increments <strong>as</strong> follows: 0 to 1 dB, 5 to 6 dB, 9to 10 dB, 29 to 30 dB, <strong>an</strong>d 39 to 40 dB.In a microwave me<strong>as</strong>urement system, attenuationdifference of a variable or rotary-v<strong>an</strong>e attenuatorc<strong>an</strong> be me<strong>as</strong>ured by using the zero setting <strong>as</strong> areference <strong>an</strong>gular position, then moving to theattenuation or the v<strong>an</strong>e <strong>an</strong>gle desired to establishthe value of attenuation difference to be me<strong>as</strong>ured.For <strong>an</strong> attenuation difference me<strong>as</strong>urement of avariable attenuator the mismatch error c<strong>an</strong> beexpressed <strong>as</strong>e r (dB) = 201og 10 -where the frontscripts (i) <strong>an</strong>d (/) pertain to the initial<strong>an</strong>d final values, respectively, <strong>an</strong>d Ft is the inputvoltage reflection coefficient of the variable attenuator that is terminated with a load of reflectioncoefficient, FL. <strong>The</strong> reflection coefficient of thegenerator is F^, <strong>an</strong>d £22 is the reflection coefficientat the output port when the input port is terminatedwith a nonreflecting load. Engen <strong>an</strong>d Beatty showthat the mismatch error becomes very low whensmall incremental attenuation me<strong>as</strong>urements aremade on a rotary-v<strong>an</strong>e attenuator [12].<strong>The</strong> mismatch error for insertion loss me<strong>as</strong>urement of a fixed attenuator c<strong>an</strong> be expressed <strong>as</strong>€/(dB) = 201og 10(i -44where Sn is the attenuator input reflection coefficient when the output is terminated in a nonreflectingload, <strong>an</strong>d Si 2 <strong>an</strong>d £21 are the attenuatortr<strong>an</strong>smission coefficients.In addition to the mismatch error caused by thereflections at the input <strong>an</strong>d output ports of theattenuator, internal reflections c<strong>an</strong> occur betweenthe stator <strong>an</strong>d rotor which must be added to the totalreflection error. Mariner [5] indicates that there areeight main places where reflections c<strong>an</strong> occur,namely, each end of the three v<strong>an</strong>es, <strong>an</strong>d the twowaveguide tr<strong>an</strong>sitions. Mariner concludes that usually these internal reflections will not contributesignific<strong>an</strong>tly to the total error.13.4. External Leakage<strong>The</strong> effects of RF leakage from microwave components upon the perform<strong>an</strong>ce of a microwaveme<strong>as</strong>urement system are often subtle <strong>an</strong>d difficultto identify. Thus leakage from a good st<strong>an</strong>dard mustbe kept to <strong>an</strong> absolute minimum. In the NBSoptical A^-b<strong>an</strong>d rotary-v<strong>an</strong>e attenuator [3], the leakage w<strong>as</strong> reduced more th<strong>an</strong> 120 dB below theincident power. This w<strong>as</strong> achieved by the use ofchokes <strong>an</strong>d liberal amounts of microwave absorbing material around the rotary-joints of the attenuator, <strong>as</strong> shown in figure 78 <strong>an</strong>d figure 86.Figure 88 shows how microwave absorbing material w<strong>as</strong> used to reduce external leakage from themodified WR15 rotary-v<strong>an</strong>e attenuator.


ATTENUATION IN 0.1 dB INCREMENTS.01000 TO 0.1"3"— ej = 0.300° (ROTOR VANE MISALIGNMENT)— ej = 0.200°—- ej = 0.100°50 TO 50.1.0050,3 2-40 log cos(6 a + 61 )cos e-40 log cos(e b + 6jicos(a)fi i TO * n 10 ° T030 TO 30.1, ,.00000.16.0 6.1 10.0 10.1 30.030.150.0 50.1DIAL SETTING IN dB5040- 302OI—5 201020 30 40 506 IN DEGREES60 70 80 90FIGURE 67. (a) €' error from nominal (0.1 dB) increments versus dial setting in decibels for rotormisalignment, 0;, equal to 0.100, 0.200, <strong>an</strong>d 0.300°.(b) Attenuation in decibels versus 0 in degrees, <strong>an</strong>d <strong>an</strong>gular limits in degrees for attenuation difference of 0.1 dB.45


,010(1 ) 0 TO 0.1 dB(2) 6.0 TO 6.1 dB(3) 10.0 TO 10.1 dB(4) 30.0 TO 30.1 dB(5) 50.0 TO 50.1 dB.004,002FIGURE 68. €' error in decibels versus 0; from 0 to + 0.300° fo0.1-dB increments <strong>as</strong> follows: 0 to OJ dB, 6.0 to 6.dB, 10 to 10.1 dB, 30 to 30.1 dB, <strong>an</strong>d 50 to 50.1 dl0.100 0.2000.130dB16 24 32 4048 56°1 2 3456789 3 4lOdBDIAL SETTING (DEGREES 8 dB}FIGURE 69. Deviations in attenuation from nominal in decibels versus dial settingin degrees <strong>an</strong>d decibels for Q[ equal 0.100, 0.200, <strong>an</strong>d 0.500°, <strong>an</strong>d 0'0 equal±0.010.46


5dB( C M+) 0.0030-} I'. 00305.9097FIGURE 70. Deviations in attenuation from nominal in decibelsversus dial setting in degrees <strong>an</strong>d decibels (for 5 to6 dB) when 0J equal ± 0.100, ± 0.200, <strong>an</strong>d ± 0.300°,O'o equal ±0.010°.41 I424344145"I I5dB 6dBDIAL SETTING (DEGREES « dB)TABLE 16. Attenuation difference me<strong>as</strong>urements of a waveguidestep attenuator at 10 GHz with initial dial settings of thest<strong>an</strong>dard RVA from 0 to 60 dB.TABLE 15 Deviations from nominal 1-dB increment of attenuation (dial setting ch<strong>an</strong>ged from 5 to 6 dB) for 0J> = ± 0.010° <strong>an</strong>d0 7 = 0,± 0.100, ±0.200, <strong>an</strong>d±0.300°.0'0= ±0.010°0/6dB 5dB6/5+ ++—— —+ —+ ++ —_— + —+ ++ _— +——+ ++—— —+ —+ ++—— —+ —+ ++—— —+ —+ ++—— —+ —+ 0.300°+ .300°+ .300°+ .300°+ .200°+ .200°+ .200°+ .200°+ .100°+ .100°+ .100°+ .100°.000.000.000.000- .100- .100- .100- .100- .200- .200- .200- .200- .300- .300- .300- .300Actual attenuationincrement1.01081.01621.00481.01021.00731.01271.00131.00671.00391.00930.99791.00331.00031.00570.9943.9997.99681.00220.9908.9962.9933.9987.9873.9927.9898.9952.9838.9892Initialsetting ofst<strong>an</strong>dardin decibels012345678910111213141516171819202224262830323436384045505560Me<strong>as</strong>uredattenuationdifference indecibels withO'i correction7.65907.654S7.65367.65337.65497.65497.65587.65537.65597.65627.65227.65307.65507.65527.65387.65407.65337.65367.65487.65397.65457.65227.65407.65457.65497.65157.65467.64907.65867.65007.65907.65397.63747.63607.63527.6544AverageDeviationfrom average+ 0.0046+ .0004- .0008- .0011+ .0005+ .0005+ .0014+ .0009+ .0015+ .0018- .0022- .0014+ .0006+ .0008- .0006- .0004- .0011- .0008+ .0004- .0005+ .0001- .0022- .0004+ .0001+ .0005- .0029+ .0002- .0054+ .0042+ .0044+ .0046- .0005- .0170- .0180- .0192Deviation fromaverage without6'i correction(all positive)0.0139.0075.0052.0050.0065.0066.0076.0073.0083.0087.0051.0062.0085.0092.0082.0087.0085.0079.0102.0108.0120.0110.0144.0176.0190.0173.0236.0211.0342.0356.0396.0412.0426.0650.08540; = -l f 18" =-0.0217°47


1'MICROWAVESIGNAL,.MODULATOR1 kHzLEVEL- SETSTANDARDATTENUATOR ' ATTENUATORiREF.,."INSERTIONPOINT" — Sl/jJ.ATTENUATORUNDER TESTCRYSTAL . NULL CRYSTALDETECTOR DETECTOR DETECTORFIGURE 71.Block diagram of microwave attenuation me<strong>as</strong>urement system.ISOLCRYSTALDETECTORNULLAMPLIFIER *CRYSTftL ^ | ro .DETECTOR ^ | ljt)L ATORMICROWAVE 1 Fnurc I !SIGNAL -*—— Jn Y AUDIOSOURCE ' ' OSCILLATORVVLEVEL-SETATTENUATOR•MJLAIUK 'SQLATORMODULATOR DRIV£R ISOLATOR


12 MINUTESFIGURE 73. A recording showing the system stability at a .W-dB me<strong>as</strong>urement lei>el.FlGl'RK 74. Photo of the open rect<strong>an</strong>gular waveguide at theinsertion point for devices under test.FlGL'RE 75. Photo of a fixed waveguide attenuator under testbeing inserted into the rect<strong>an</strong>gular waveguide atthe insertion point.49


Fl(.l KK 76. Photo of the rect<strong>an</strong>gular waveguide with adapter:to admit coaxial devices at the insertion point.attenuator c<strong>an</strong> be improved <strong>an</strong> order of magnitudeby applying correction of v<strong>an</strong>e alignment equal tothe average v<strong>an</strong>e-<strong>an</strong>gle error. <strong>The</strong> Type A error isthe larger error caused by misaligned stators. Toreduce the Type A error, the zero or index c<strong>an</strong> becorrected by one-half the <strong>an</strong>gle between the misaligned stators. <strong>The</strong> deviations from nominal settingthen become the Type B error provided geareccentricity is not present. However, if the zero orindex is not exactly coincident with the averageposition of the stators, the Type A error c<strong>an</strong> be thepredomin<strong>an</strong>t factor in the deviations from nominal.<strong>The</strong> compact rotary-v<strong>an</strong>e attenuator is a usefuldevice where large dynamic attenuation r<strong>an</strong>ge isnot required or where length of the device is at apremium. <strong>The</strong> modified law for rotary-v<strong>an</strong>e attenuators gives <strong>an</strong> accurate result of the attenuationdifference that is obtainable with the device.<strong>The</strong> precision optical rotary-v<strong>an</strong>e attenuator is avery excellent working st<strong>an</strong>dard for attenuationdifference employed with the microwave attenuationme<strong>as</strong>urement system (series substitution). <strong>The</strong> useof the precision optical attenuator with the aboveRF system yielded the resolution <strong>an</strong>d stability thatprovided a very accurate international intercomparisonof attenuation difference; the spread between the me<strong>an</strong> values of five different inter<strong>laboratory</strong>st<strong>an</strong>dards w<strong>as</strong> about 0.001 dB.Fl


[7] Larson, Wilbur, Analysis of rotationally misaligned statorsin the rotary-v<strong>an</strong>e attenuator, IEEE Tr<strong>an</strong>s. Instr. <strong>an</strong>dMe<strong>as</strong>. IM-16, No. 3 (Sept. 1967).[8] James, All<strong>an</strong> V., A high-accuracy microwave attenuationst<strong>an</strong>dard for use in primary calibration laboratories, IRETr<strong>an</strong>s. on Instrumentation I-11,285-290 (Dec. 1962).[9] Otoshi, Tom Y., <strong>an</strong>d Stelzried, Charles T., A precisioncompact rotary-v<strong>an</strong>e attenuator, IEEE Tr<strong>an</strong>s. on Microwave <strong>The</strong>ory <strong>an</strong>d Tech. MTT-19, No. 11, 843-854(Nov. 1971).[10] Foote, W. J., <strong>an</strong>d Hunter, R. D., Improved gearing for rotaryv<strong>an</strong>eattenuators, Rev. Sci. Inst. 43, 1042-1043 (July1972).[11] Beatty, R. W., Microwave attenuation me<strong>as</strong>urements <strong>an</strong>dst<strong>an</strong>dards, Nat. Bur. St<strong>an</strong>d. (U.S.), Monogr. 97, 49 pages(Apr. 1967).[12] Engen, G. F., <strong>an</strong>d Beatty, R. W., Microwave attenuationme<strong>as</strong>urements with accuracies from 0.0001 to 0.06 decibelover a r<strong>an</strong>ge of 0.01 to 50 decibels, J. Res. Nat. Bur.St<strong>an</strong>d. (U.S.), 64C (Eng. <strong>an</strong>d Instr.), No. 3, 139-145(Apr.-June 1960)[13] Schafer, G. E., <strong>an</strong>d Bowm<strong>an</strong>, R. R., A modulated subcarriertechnique of me<strong>as</strong>uring microwave attenuation, Proc.IEE (London) 109, Pt. B, Suppl. No. 23, 783-786 (May1962).[14] Nemoto, T., Beatty, R. W., <strong>an</strong>d Fentress, G. H., A twoch<strong>an</strong>nel off-null technique for me<strong>as</strong>uring small ch<strong>an</strong>ges inattenuation, IEEE Tr<strong>an</strong>s. Microwave <strong>The</strong>ory <strong>an</strong>d Tech.(correspondence), MTT-17, 396-397 (July 1969).[15] Gr<strong>an</strong>tham, R. E., <strong>an</strong>d Freem<strong>an</strong>, J. J., A st<strong>an</strong>dard of attenuation for microwave me<strong>as</strong>urements, Tr<strong>an</strong>s. AIEE 67,329-335 (June 1948).[16] Larson, R. E., Microwave me<strong>as</strong>urements in the NBSelectronic calibration center, Proc. IEE (London), 109,Pt. B. Suppl. 23, 644-650 (May 1962).[17] Larson, W., Table of attenuation error <strong>as</strong> a function of v<strong>an</strong>e<strong>an</strong>gleerror for rotary-v<strong>an</strong>e attenuators, Nat. Bur. St<strong>an</strong>d.(U.S.), Tech. Note 177, 154 pages (May 1963).[18] Larson, W., Analysis of rotation errors of a waveguiderotary-v<strong>an</strong>e attenuator, IRE International ConventionRecord, Pt. 3, pp. 213-219 (1962).[19] Larson, W., Table of attenuation <strong>as</strong> a function of v<strong>an</strong>e <strong>an</strong>glefor rotary-v<strong>an</strong>e attenuators (A^ — 40 logjo cos 9], Nat.Bur. St<strong>an</strong>d. (U.S.), Tech. Note 229, 186 pages (J<strong>an</strong>. 1965).[20] Nielsen, T. C., Angular errors in gears, Product Engineering,pp. 56-61 (Aug. 15, 1960).[21] Michales, G. W., Gear position error control (Americ<strong>an</strong>Society of Mech<strong>an</strong>ical Engineers, New York, N.Y.),Paper No. 59A-21 (Dec. 1959).[22] Larson, W., <strong>an</strong>d Campbell, Eugene, Microwave attenuationme<strong>as</strong>urement' system (series substitution), Nat. Bur.St<strong>an</strong>d. (U.S.), Tech Note. 647, 24 pages (Feb. 1974).[23] Anson, W. J., A guide to the use of the modified reflectometertechnique of VSWR me<strong>as</strong>urement, J. Res. NBS,65C, No. 4, 217-223 (Oct.-Dec. 1961).[24] Beatty, R. W., Mismatch errors in the me<strong>as</strong>urement ofultrahigh-frequency <strong>an</strong>d microwave variable attenuators,J. Res. Nat. Bur. St<strong>an</strong>d. (U.S.), 52, No. 1, 7-9 (J<strong>an</strong>. 1954)RP 2465.[25] Rahm<strong>an</strong>, M. H., <strong>an</strong>d Gunn, M. W., Waveguide reflectionsfrom rotary-v<strong>an</strong>e attenuator (correspondence), IEEETr<strong>an</strong>s. on Microwave <strong>The</strong>ory <strong>an</strong>d Tech., pp. 402—403(July 1969).[26] Holm, J. D., Johnson, D. L., <strong>an</strong>d Champlin, K. S., Reflectionsfrom rotary-v<strong>an</strong>e precision attenuator, (correspondence)IEEE Tr<strong>an</strong>s. on Microwave <strong>The</strong>ory <strong>an</strong>d Tech., pp. 123-124(Feb. 1967).16. Appendix A. Definitions <strong>an</strong>dTerms~ Total composite error.r' — Total <strong>an</strong>gular displacement (/3' -h y f ) ndegrees.8 = Angle of drive gear rotation in radi<strong>an</strong>s.8' = Angle of drive gear rotation in degrees.6 = Angular rotation of center section v<strong>an</strong>e(rotor) relative to the stationary end sectionv<strong>an</strong>e stator in degrees.0'= Misalignment <strong>an</strong>gle of center v<strong>an</strong>e (difference between the indicated v<strong>an</strong>e <strong>an</strong>gle <strong>an</strong>dthe true v<strong>an</strong>e <strong>an</strong>gle) in degrees.e = Error in attenuation caused by incorrectv<strong>an</strong>e rotation in decibels.6'e = Estimated average v<strong>an</strong>e-<strong>an</strong>gle error indegrees.0p> — Angular displacement of the v<strong>an</strong>e causedby backl<strong>as</strong>h error in degrees.0y> = Angular displacement of the v<strong>an</strong>e caused byindexing error in degrees.0'T ' = Angular displacement of the v<strong>an</strong>e caused bytotal <strong>an</strong>gular error in degrees.R = Pitch radius in inches.D = Pitch diameter in inches, = B<strong>as</strong>ic pressure <strong>an</strong>gle in degrees.a— Angular difference between the zero pointof the drive gear eccentricity <strong>an</strong>d the zeropoint of the scale on the dial in degrees.ty= Error in attenuation caused by the indexingerror in decibels.€a = <strong>The</strong> error, in decibels, for Type A misalignment.e& = <strong>The</strong> error, in decibels, for Type B misalignment.€ —<strong>The</strong> error from nominal in decibels, € rb minus€r = Tr<strong>an</strong>smission error due to insufficient attenuation in the rotor.


CntoFIGURES 78-87. Machine drawings for optical rotary-v<strong>an</strong>e attenuator.


.... ,. „.JJTO AWf.- saute. sotKzJ? T ST gen fflff Of Jpto00' 3 « we-1 - S a* *K '?• „


•iiT'T^$ *•* *ns- C*KgS trax>r~—CwtftostK1,I'll IMi •59


MICROWAVE ABSORBING MATERIAL-STATORSPIROID GEARFIGURE 88. Exploded view of a rotary-v<strong>an</strong>e attenuator utilizing a Spiroid gear setin WRI5 waveguide.62U.S. GOVERNMENT PRINTING OFFICE : 1975 OL-573-735


NBS-114A (REV. 7-73)U.S. DEPT, OF COMM.BIBLIOGRAPHIC DATASHEET1. PUBLICATION OR REPORT NO.NBS-MN 1442. Gov't AccessionNo.4. TITLE AND SUBTITLE<strong>The</strong> <strong>Rotary</strong>-<strong>V<strong>an</strong>e</strong> <strong>Attenuator</strong> <strong>as</strong> <strong>an</strong> Inter<strong>laboratory</strong> St<strong>an</strong>dard3. Recipient's Accession No.5. Publication DateOctober 19756. Performing Org<strong>an</strong>ization Code7. AUTHOR(S)Wilbur Larson9. PERFORMING ORGANIZATION NAME AND ADDRESSNATIONAL BUREAU OF STANDARDSDEPARTMENT OF COMMERCEWASHINGTON, D.C. 2023412. Sponsoring Org<strong>an</strong>ization Name <strong>an</strong>d Complete Address (Street, City, State, ZIP)Same <strong>as</strong> Item 9.8. Performing Org<strong>an</strong>. Report No.10. Project/T<strong>as</strong>k/Work Unit No.276446011. Contract/Gr<strong>an</strong>t No.13. Type of Report & PeriodCoveredFinal14. Sponsoring Agency Code15. SUPPLEMENTARY NOTESLibrary of Congress Catalogue Card Number: 75-61909916. ABSTRACT (A 200-word or less factual summary of most signific<strong>an</strong>t information. If document includes a signific<strong>an</strong>tbibliography or literature survey, mention it here.)This paper presents a comprehensive report on the me<strong>as</strong>urement <strong>an</strong>d the use of therotary-v<strong>an</strong>e attenuator <strong>as</strong> <strong>an</strong> inter<strong>laboratory</strong> st<strong>an</strong>dard.Methods of attenuation me<strong>as</strong>urement developed at NBS are used to supply data for theevaluation of the deviations from theoretical cos 2 law due to rotor misalignment, geareccentricity, resettability, resolution, <strong>an</strong>d insufficient maximum attenuation.A precision rotary-v<strong>an</strong>e attenuator with <strong>an</strong> optical readout capable of 1 second of arc<strong>an</strong>gular resolution h<strong>as</strong> <strong>an</strong> effective attenuation resolution of 0.00005 dB at a 3-dB dialsetting, <strong>an</strong>d 0.0005 dB at a 30-dB dial setting. This type of precision attenuator is<strong>an</strong> effective st<strong>an</strong>dard for use in the dual detection microwave bridge me<strong>as</strong>urement system,17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a propername; separated by semicolons)Attenuation* inter<strong>laboratory</strong> st<strong>an</strong>dard; me<strong>as</strong>urement; rotary-v<strong>an</strong>e attenuator.18. AVAILABILITY [^ Unlimited| ' For Official Distribution. Do Not Rele<strong>as</strong>e to NTIS| -XOrder From Sup. of Doc., U.S. Government Printing OfficeW<strong>as</strong>hington, D.C. 20402, SD Cat. No. C13« 44:144| J Order From National Technical Information Service (NTIS)Springfield, Virginia 2215119. SECURITY CLASS(THIS REPORT)UNCLASSIFIED20. SECURITY CLASS(THIS PAGE)UNCLASSIFIED21. NO. OF PAGES7022, Price$5.05USCOMM-DC 29042-P74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!