31.08.2015 Views

GLoBES

GLoBES and its application to neutrino physics - Epiphany 2014 ...

GLoBES and its application to neutrino physics - Epiphany 2014 ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>GLoBES</strong><br />

and its application to neutrino physics<br />

Mark Rolinec on behalf of the <strong>GLoBES</strong> Team<br />

Technische Universität München<br />

Cracow Epiphany Conference on Neutrinos and Dark Matter<br />

5-8 January 2006<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.1/28


Outline<br />

Part I - <strong>GLoBES</strong> - General Features<br />

• Features<br />

• Basic Structure<br />

Part II - Experiment description in AEDL<br />

• Features<br />

• AEDL-File Example<br />

Part III - Basics and Applications<br />

• Simulation of event rates<br />

• Calculation of χ 2<br />

• χ 2 -Projections<br />

• Examples of a variety of applications<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.2/28


Part I<br />

<strong>GLoBES</strong> - General Features<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.3/28


<strong>GLoBES</strong> - Purpose<br />

The General Long Baseline Experiment Simulator<br />

<strong>GLoBES</strong> is a software package designed for<br />

• Simulation<br />

• Analysis<br />

• Comparison<br />

of neutrino oscillation long baseline experiments<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.4/28


<strong>GLoBES</strong> - Availability<br />

<strong>GLoBES</strong> can be downloaded as tar-ball together with a detailed<br />

manual from<br />

http://www.ph.tum.de/ ∼ globes/<br />

since August 2004.<br />

The software is developed, documented, maintained and<br />

supported by the <strong>GLoBES</strong>-Team:<br />

• Patrick Huber (UW)<br />

• Joachim Kopp (TUM)<br />

• Manfred Lindner (TUM)<br />

• MR (TUM)<br />

• Walter Winter (IAS)<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.5/28


<strong>GLoBES</strong> - Features<br />

• Accurate treatment of systematical errors<br />

• Arbitrary matter density profile & uncertainties<br />

• Arbitrary energy resolution function<br />

• Single and multiple experiment simulation<br />

• Output of oscillation probabilities<br />

• Output of event rates<br />

• Simple χ 2 calculation<br />

• Inclusion of external input<br />

• Projection of χ 2 (minimization)<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.6/28


<strong>GLoBES</strong> - Experiments<br />

<strong>GLoBES</strong> has been used for simulating:<br />

• MINOS, ICARUS and OPERA<br />

• Reactor experiments, Double-CHOOZ, R2D2<br />

• T2K<br />

• NOνA<br />

• SPL CERN-Fréjus<br />

• JHF-HK (T2K upgrade)<br />

• Neutrino factories<br />

• β-beams<br />

• BNL neutrino beam<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.7/28


<strong>GLoBES</strong> - Basic Structure<br />

<strong>GLoBES</strong><br />

AEDL<br />

Abstract Experiment<br />

Definition Language<br />

Defines Experiments<br />

and modifies them<br />

AEDL−<br />

file(s)<br />

<strong>GLoBES</strong> User Interface<br />

C−library which loads<br />

AEDL−file(s) and<br />

provides functions to<br />

simulate experiment(s)<br />

Application software to compute<br />

high−level sensitivities, precision etc.<br />

Figure taken from P. Huber, M. Lindner and W. Winter, Comput. Phys. Commun. 167 (2005) 195<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.8/28


Part II<br />

Experiment Description in<br />

AEDL<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.9/28


AEDL - Features<br />

The experiment is described within one file: Name.glb<br />

Energy−<br />

Resolution<br />

function<br />

Cross<br />

Section<br />

Initial / final<br />

flavor, polarity<br />

Signal<br />

Background<br />

Channel 1<br />

Channel 2<br />

. . .<br />

. . .<br />

Flux<br />

Channel<br />

Energy<br />

dependent<br />

efficiencies<br />

Rule<br />

Signal + Backgrounds<br />

with systematics<br />

Event rates<br />

∆χ 2<br />

Figures taken from P. Huber, M. Lindner and W. Winter, Comput. Phys. Commun. 167 (2005) 195<br />

• Experiments can contain an arbitrary number of rules<br />

• <strong>GLoBES</strong> can handle any number of experiments<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.10/28


AEDL-File - Example<br />

Flux and cross sections can be loaded from external files:<br />

flux(#user flux)<<br />

cross(#CC)<<br />

@flux file = "user flux file.dat" @cross file = "XCC.dat"<br />

@time = 5.0 /* years */<br />

><br />

@power = 4.0 /* MW */<br />

cross(#NC)<<br />

@norm = 1.0<br />

@cross file = "XNC.dat"<br />

><br />

><br />

For the case of a neutrino factory <strong>GLoBES</strong> provides a builtin flux:<br />

flux(#nf flux mu plus)<<br />

@builtin = 1<br />

@parent energy = 50.0 /* GeV */<br />

@stored muons = 5.33e+20<br />

@time = 8.0 /* years */<br />

><br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.11/28


AEDL-File - Example continued<br />

Basic characteristics of Experiment:<br />

$target mass = 50.0 /* kt */<br />

Mass of Detector (fiducial volume)<br />

$profiletype = 1<br />

$baseline = 3000.0 /* km */<br />

$density = 2.7 /* g cm ˆ -3 */<br />

Baseline and<br />

Density Profile<br />

(average density, PREM or manually defined)<br />

$bins = 20<br />

$emin = 4.0 /* GeV */<br />

$emax = 50.0 /* GeV */<br />

Energy window:<br />

Reconstructed neutrino energy<br />

Analysis level (after energy smearing)<br />

$sampling points = 20<br />

$sampling min = 4.0<br />

$sampling max = 50.0<br />

Energy window:<br />

True neutrino energy<br />

Integral Evaluation (before energy smearing)<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.12/28


AEDL-File - Example continued<br />

Descripion of energy resolution:<br />

energy(#ERES)<<br />

@type = 1<br />

@sigma e = (alpha,beta,gamma)<br />

><br />

energy(#manual smearing matrix)<<br />

@energy =<br />

{0,2,0.863,0.182,0.00267}:<br />

{0,3,0.151,0.697,0.151,0.00101}:<br />

...<br />

{16,19,0.00936,0.278,0.483,0.136};<br />

><br />

Gaussian energy resolution function<br />

with width σ:<br />

σ(E) = α × E + β × √ E + γ<br />

Manual energy smearing:<br />

energy smearing matrix M ij<br />

• number of rows:<br />

$bins<br />

• number of columns:<br />

$sampling points<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.13/28


AEDL-File - Example<br />

Defining different channels:<br />

channel(#nu mu dissappearance)<<br />

@channel = #user flux : +: m: m: #CC: #ERES<br />

@pre smearing efficiencies = {0.333,0.666,0.999,1.,1., ... ,1.,1.}<br />

><br />

channel(#nu mu NC bckg)<<br />

@channel = #user flux : +: NOSC m: NOSC m: #NC:<br />

#manual smearing matrix<br />

><br />

Additional features:<br />

• @post smearing efficiencies<br />

• @pre smearing background<br />

• @post smearing background<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.14/28


AEDL-File - Example continued<br />

Defining the Rules:<br />

>rule(#Nu Mu DIS)<<br />

@signal = 0.86@#nu mu dissappearance<br />

@signalerror = 0.04 : 0.0001<br />

@background = 0.11@#nu mu NC bckg : 0.11@#nu e NC bckg : 0.05@#BCKG 3<br />

@backgrounderror = 0.05 : 0.0001<br />

@errordim sys on = 2<br />

@errordim sys off = 0<br />

@energy window = 4.0 : 50.0<br />

><br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.15/28


Part III<br />

<strong>GLoBES</strong> - Basics and Applications<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.16/28


<strong>GLoBES</strong> - Basics<br />

Alays to be done:<br />

glbInit(argv[0]);<br />

Initialize the <strong>GLoBES</strong> Library<br />

glbClearExperimentList();<br />

Delete earlier loaded AEDL-Files<br />

glbDefineAEDLVariable("Variable",<br />

double value);<br />

Define Variables within the AEDL-File<br />

(has to be set in Name.glb)<br />

glbInitExperiment("Name.glb",<br />

&glb experiment list[0],<br />

&glb num of exps);<br />

Load the experiment described in<br />

Name.glb to the experiment list<br />

(arbitrary number possible)<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.17/28


<strong>GLoBES</strong> - Reference Rates<br />

Set the simulated "Data" - Event Rates:<br />

glb params true values = glbAllocParams();<br />

Initialize a parameter vector<br />

glbDefineParams(true values,th12,th13,<br />

th23,delta,sdm,ldm);<br />

Assign parameter values for the<br />

parameter vector true values<br />

(θ 12 , θ 13 , θ 23 , δ, ∆m 2 21 ,∆m2 31 )<br />

glbSetOscillationParameters(true values);<br />

Set true values to be the "True Values"<br />

glbSetRates();<br />

...<br />

glbFreeParams(true values);<br />

Let <strong>GLoBES</strong> calculate the<br />

reference event rate vector<br />

Free the parameter vector<br />

true values at the end<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.18/28


<strong>GLoBES</strong> - χ 2 Calculation<br />

Simple χ 2 including systematics<br />

glb params fit values = glbAllocParams();<br />

Initialize another parameter vector<br />

glbDefineParams(fit values,th12’,th13’,<br />

th23’,delta’,sdm’,ldm’);<br />

glbSwitchSystematics(GLB ALL,<br />

GLB ALL,GLB ON);<br />

Assign parameter values for the<br />

parameter vector fit values<br />

(θ 12 ‘, θ 13 ‘, θ 23 ‘, δ‘,∆m 2 21 ‘,∆m2 31 ‘)<br />

Switch on systematical errors<br />

double chi =<br />

glbChiSys(fit values,GLB ALL,GLB ALL);<br />

Calculate the χ 2 at the parameter<br />

vector fit values<br />

glbFreeParams(fit values);<br />

Free the parameter vector<br />

fit values at the end<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.19/28


<strong>GLoBES</strong> - Projection of χ 2<br />

Projection of two-parameter correlations (Here δ - sin 2 2θ 13 )<br />

10 2<br />

Sectionother osc. parameters fixed<br />

3Σ1 d.o.f.<br />

2Σ1 d.o.f.<br />

1Σ1 d.o.f.<br />

20<br />

Projection onto∆ CP axisonly sin 2 2Θ 13 <br />

15<br />

sin 2 2Θ13<br />

10 3<br />

Χ 2<br />

10<br />

3Σ<br />

5<br />

2Σ<br />

10 4<br />

0 50 100 150 200<br />

∆ CP Degrees<br />

glbChiSys<br />

0<br />

1Σ<br />

0 50 100 150 200<br />

∆ CP Degrees<br />

glbChiDelta<br />

Figures taken from P. Huber, M. Lindner and W. Winter, Comput. Phys. Commun. 167 (2005) 195<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.20/28


<strong>GLoBES</strong> - Projection of χ 2<br />

Including parameter correlations by projection of χ 2<br />

glbDefineParams(in error,d th12,d th13,<br />

d th23,d delta,d sdm,d ldm);<br />

Define the errors on oscillation<br />

parameters (external input)<br />

glbSetDensityParams(in error,<br />

d rho,GLB ALL);<br />

Give the error on the<br />

matter density ρ<br />

glbSetStartingValues(start);<br />

Set center values for defined errors<br />

glbSetInputErrors(in error);<br />

Set all errors as defined before<br />

double chiProj = glbChiTheta(fit values,<br />

minimum,GLB ALL);<br />

Calculate a projection with<br />

respect to sin 2 2θ 13<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.21/28


<strong>GLoBES</strong> - Applications I<br />

Atmospheric oscillation parameters ∆m 2 31 and sin2 θ 23<br />

sin 2 θ 23<br />

-precision<br />

0.4<br />

Relative error at 2σ<br />

0.2<br />

0<br />

-0.2<br />

MINOS<br />

NOνA<br />

T2K<br />

CNGS<br />

SK+K2K exluded at 3σ<br />

SK+K2K<br />

T2K<br />

∆m 2 31 -precision 1 2 3 4<br />

CNGS<br />

MINOS<br />

NOνA<br />

SK+K2K current data<br />

-0.4<br />

1 2 3 4<br />

True value of ∆m 2 31 [10-3 eV 2 ]<br />

1 2 3 4<br />

True value of ∆m 2 31 [10-3 eV 2 ]<br />

Figure taken from T. Schwetz, P. Huber, M. Lindner, MR, W. Winter, hep-ph/0412133<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.23/28


<strong>GLoBES</strong> - Applications II<br />

Deviation from maximal mixing sin 2 θ 23 = 0.5<br />

5<br />

Conventional Beams<br />

5<br />

JPARCSK<br />

5<br />

NuMI offaxis<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

5<br />

After ten years<br />

5<br />

JPARCHK<br />

5<br />

NuFactII<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

10 3 eV 2 <br />

True value ofm 31<br />

2<br />

4<br />

3<br />

2<br />

1<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

0.3 0.4 0.5 0.6 0.7<br />

True value of sin 2 Θ 23<br />

Figure taken from S. Antusch, P. Huber, J. Kersten, T. Schwetz, W. Winter, Phys. Rev. D70 (2004) 097302<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.24/28


<strong>GLoBES</strong> - Applications III<br />

Sensitivity to sin 2 2θ 13 (true value sin 2 2θ 13 = 0)<br />

150<br />

6<br />

5<br />

right sign<br />

wrong sign<br />

Normal hierarchy<br />

∆CPDegrees<br />

100<br />

50<br />

0<br />

50<br />

sin 2 2Θ13eff sens.<br />

Χ 2<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 0.01 0.02 0.03<br />

sin 2 2Θ 13 sensitivity limit<br />

6<br />

5<br />

right sign<br />

wrong sign<br />

Inverted hierarchy<br />

final limit<br />

Χ 2 ⩵2.71<br />

100<br />

150<br />

Section, Statistics only<br />

Section, Stat.Syst.<br />

Projection, Bestfit<br />

Projection, Degeneracy<br />

Χ 2<br />

4<br />

3<br />

2<br />

1<br />

final limit<br />

Χ 2 ⩵2.71<br />

0 0.005 0.01 0.015 0.02 0.025<br />

sin 2 2Θ 13<br />

glbChiSys<br />

0<br />

0 0.01 0.02 0.03<br />

sin 2 2Θ 13 sensitivity limit<br />

glbChiTheta<br />

Figures taken from P. Huber, M. Lindner, MR, T. Schwetz and W. Winter, Phys. Rev. D 70 (2004) 073014<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.25/28


<strong>GLoBES</strong> - Applications IV<br />

Change AEDL variables within calculations<br />

sin 2 2Θ13 sensitivity limit<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

Setup 1Γ⩵200, WC<br />

Systematics<br />

Correlations<br />

Degeneracies<br />

sin 2 2Θ13 sensitivity limit<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

Setup 2Γ⩵500, TASD<br />

Systematics<br />

Correlations<br />

Degeneracies<br />

sin 2 2Θ13 sensitivity limit<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

Setup 3Γ⩵1000, TASD<br />

Systematics<br />

Correlations<br />

Degeneracies<br />

10 5<br />

0.5 1 1.5 2 2.5 3<br />

LΓ<br />

10 5<br />

0.5 1 1.5 2 2.5 3<br />

LΓ<br />

10 5<br />

0.5 1 1.5 2 2.5 3<br />

LΓ<br />

glbDefineAEDLVariable("baseline",value);<br />

Figure taken from P. Huber, M. Lindner, MR, W. Winter, hep-ph/0506237<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.26/28


<strong>GLoBES</strong> - Applications V<br />

Assume large true value sin 2 2θ 13 = 0.1<br />

∆CPDegrees<br />

∆CPDegrees<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

JPARCSK: Section<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

JPARCSK: Projection<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

0<br />

0<br />

∆CPDegrees<br />

∆CPDegrees<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

NuMI: Section<br />

0<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

NuMI: Projection<br />

0<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

∆CPDegrees<br />

∆CPDegrees<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

ReactorII: Section<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

ReactorII: Projection<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

Figure taken from P.Huber, M.Lindner, MR, T.Schwetz, W.Winter, Phys. Rev. D 70 (2004) 073014<br />

∆CPDegrees<br />

∆CPDegrees<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

150<br />

Combined: Section<br />

3.1<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

Combined: Projection<br />

3.1<br />

0 0.05 0.1 0.15 0.2<br />

sin 2 2Θ 13<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.27/28


Conclusions<br />

<strong>GLoBES</strong> is a<br />

• well tested<br />

• powerful<br />

• flexible<br />

software package for the<br />

• Simulation<br />

• Analysis<br />

• Comparison<br />

of neutrino oscillation<br />

experiments<br />

So remember:<br />

www.ph.tum.de/ ∼ globes/<br />

<strong>GLoBES</strong> - M. Rolinec - Cracow Epiphany Conference on Neutrinos and Dark Matter - 5-8 January 2006 – p.28/28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!