31.08.2015 Views

The vanna-volga method for implied volatilities

The vanna-volga method for implied volatilities - Risk.net

The vanna-volga method for implied volatilities - Risk.net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

σ is the constant BS <strong>implied</strong> volatility. 4 In real financial markets,<br />

however, volatility is stochastic and traders hedge the associated<br />

risk by constructing portfolios that are vega-neutral in a BS (flatsmile)<br />

world.<br />

Maintaining the assumption of flat but stochastic <strong>implied</strong> <strong>volatilities</strong>,<br />

the presence of three basic options in the market makes it<br />

possible to build a portfolio that zeros out partial derivatives up<br />

to the second order. In fact, denoting respectively by Δ t<br />

and x i<br />

the<br />

units of the underlying asset and options with strikes K i<br />

held at<br />

time t and setting C i<br />

BS<br />

(t) = C BS (t; K i<br />

), under diffusion dynamics<br />

<strong>for</strong> both S t<br />

and σ = σ t<br />

, we have by Itô’s lemma:<br />

dC BS<br />

( t; K ) − ∆ t dS t − x i dC BS i t<br />

( )<br />

⎡<br />

= ∂C BS 3<br />

t; K ∂C BS<br />

− x i t ⎤<br />

⎢ ∑ i ⎥ dt<br />

⎣ ∂t i=1 ∂t ⎦<br />

⎡<br />

+ ∂C BS 3<br />

( t; K )<br />

∂C BS<br />

− ∆ t − x i ( t ) ⎤<br />

⎢<br />

∑ i ⎥ dS t<br />

⎣ ∂S<br />

i=1 ∂S ⎦<br />

⎡<br />

+ ∂C BS 3<br />

( t; K ) ∂C BS<br />

− x i ( t ) ⎤<br />

⎢ ∑ i ⎥ dσ t<br />

(2)<br />

⎣ ∂σ i=1 ∂σ ⎦<br />

+ 1 ⎡ ∂ 2 C BS<br />

3<br />

( t; K ) ∂ 2 C BS<br />

− x i ( t ) ⎤<br />

⎢ ∑<br />

2 ∂S 2 i<br />

⎣<br />

∂S 2 ⎥( dS t ) 2<br />

i=1<br />

⎦<br />

+ 1 ⎡ ∂ 2 C BS<br />

3<br />

( t; K ) ∂ 2 C BS<br />

− x i ( t ) ⎤<br />

⎢ ∑<br />

2 ∂σ 2 i<br />

⎣<br />

∂σ 2 ⎥( dσ t ) 2<br />

i=1<br />

⎦<br />

⎡<br />

+ ∂2 C BS 3<br />

( t; K ) ∂ 2 C BS<br />

− x i ( t ) ⎤<br />

⎢ ∑ i ⎥ dS t dσ t<br />

⎣ ∂S∂σ i=1 ∂S∂σ ⎦<br />

Choosing Δ t<br />

and x i<br />

so as to zero out the coefficients of dS t<br />

, dσ t<br />

,<br />

(dσ t<br />

) 2 and dS t<br />

dσ t<br />

, 5 the portfolio comprises a long position in<br />

the call with strike K, and short positions in x i<br />

calls with strike<br />

K i<br />

and short the amount Δ t<br />

of the underlying, and is locally<br />

risk-free at time t, in that no stochastic terms are involved in<br />

its differential 6 :<br />

dC BS<br />

= r d ⎡<br />

⎢C BS t; K<br />

⎣<br />

3<br />

∑<br />

i=1<br />

( )<br />

( )<br />

( t; K ) − ∆ t dS t − x i dC BS i t<br />

3<br />

∑<br />

i=1<br />

3<br />

( )<br />

( ) − ∆ t S t − ∑ x i C BS i ( t )<br />

i=1<br />

(3)<br />

⎤<br />

⎥ dt ⎦<br />

<strong>The</strong>re<strong>for</strong>e, when volatility is stochastic and options are valued<br />

with the BS <strong>for</strong>mula, we can still have a (locally) perfect hedge,<br />

provided that we hold suitable amounts of three more options to<br />

rule out the model risk. (<strong>The</strong> hedging strategy is irrespective of<br />

the true asset and volatility dynamics, under the assumption of<br />

no jumps.)<br />

■ Remark 1. <strong>The</strong> validity of the previous replication argument<br />

may be questioned because no stochastic-volatility model can<br />

produce <strong>implied</strong> <strong>volatilities</strong> that are flat and stochastic at the same<br />

time. <strong>The</strong> simultaneous presence of these features, though inconsistent<br />

from a theoretical point of view, can however be justified<br />

on empirical grounds. In fact, the practical advantages of the BS<br />

paradigm are so clear that many <strong>for</strong>ex option traders run their<br />

books by revaluing and hedging according to a BS flat-smile<br />

model, with the ATM volatility being continuously updated to<br />

the actual market level. 7<br />

<strong>The</strong> first step in the VV procedure is the construction of the<br />

above hedging portfolio, whose weights x i<br />

are explicitly calculated<br />

in the following section.<br />

Calculating the VV weights<br />

We assume hereafter that the constant BS volatility is the ATM<br />

one, thus setting σ = σ 2<br />

(= σ ATM<br />

). We also assume that t = 0, dropping<br />

accordingly the argument t in the call prices. From equation<br />

(2), we see that the weights x 1<br />

= x 1<br />

(K), x 2<br />

= x 2<br />

(K) and x 3<br />

= x 3<br />

(K),<br />

<strong>for</strong> which the resulting portfolio of European-style calls with<br />

maturity T and strikes K 1<br />

, K 2<br />

and K 3<br />

has the same vega, ∂Vega/<br />

∂Vol and ∂Vega/∂Spot as the call with strike K, 8 can be found by<br />

solving the following system:<br />

∂C BS<br />

∂σ<br />

3<br />

( K ) = x i K<br />

∑<br />

i=1<br />

3<br />

i=1<br />

3<br />

( )<br />

∂C BS<br />

∂σ<br />

∂ 2 C BS<br />

∂<br />

( K ) = ∑ x<br />

∂σ 2<br />

i ( K )<br />

2 C BS<br />

∂σ 2<br />

∂ 2 C BS<br />

∂<br />

( K ) = ∑ x i ( K )<br />

2 C BS<br />

∂σ∂S 0 i=1 ∂σ∂S 0<br />

( K i )<br />

( K i )<br />

( K i )<br />

Denoting by V(K) the vega of a European-style option with<br />

maturity T and strike K:<br />

BS<br />

∂C<br />

V ( K ) = ( ∂σ<br />

K ) = S 0 e− r f T<br />

d 2<br />

( )<br />

T ϕ d 1 ( K )<br />

(5)<br />

d 1 ( K ) = ln S 0<br />

+ r d − r f + 1 σ 2<br />

K ( 2 )T<br />

σ T<br />

where ϕ(x) = Φʹ(x) is the normal density function, and calculating<br />

the second-order derivatives:<br />

∂ 2 C BS<br />

( K ) = V ( K )<br />

∂σ 2 σ d ( 1 K )d ( 2 K )<br />

∂ 2 C BS<br />

( K ) = − V ( K )<br />

∂σ∂S 0 S 0 σ T d ( 2 K )<br />

( K ) = d 1 ( K ) − σ T<br />

we can prove the following.<br />

■ Proposition 1. <strong>The</strong> system (4) admits a unique solution, which<br />

is given by:<br />

x 1<br />

x 2<br />

x 3<br />

( )<br />

( )<br />

( K ) = V K<br />

V K 1<br />

( )<br />

( )<br />

( K ) = V K<br />

V K 2<br />

( )<br />

( )<br />

( K ) = V K<br />

V K 3<br />

ln K 2<br />

ln K 3<br />

K K<br />

ln K 2<br />

K 1<br />

ln K 3<br />

K 1<br />

ln K K 1<br />

ln K 3<br />

K<br />

ln K 2<br />

ln K 3<br />

K 1 K 2<br />

ln K ln K K 1 K 2<br />

ln K 3<br />

K 1<br />

ln K 3<br />

K 2<br />

In particular, if K = K j<br />

then x i<br />

(K) = 1 <strong>for</strong> i = j and zero otherwise.<br />

<strong>The</strong> VV option price<br />

We can now proceed to the definition of an option price that is<br />

consistent with the market prices of the basic options.<br />

5<br />

<strong>The</strong> coefficient of (dS t<br />

) 2 will be zeroed accordingly, due to the relation linking an option’s gamma and<br />

vega in the BS world<br />

6<br />

We also use the BS partial differential equation<br />

7<br />

‘Continuously’ typically means a daily or slightly more frequent update<br />

8<br />

This explains the name assigned to the smile-construction procedure, given the meaning of the terms<br />

<strong>vanna</strong> and <strong>volga</strong><br />

(4)<br />

(6)<br />

risk.net 107

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!