04.09.2015 Views

pKa values and gas-phase acidities of superacid molecul

pKa values and gas-phase acidities of superacid molecul

pKa values and gas-phase acidities of superacid molecul

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

What is a <strong>superacid</strong>?<br />

• Superacidic medium:<br />

A Brønsted <strong>superacid</strong> is a medium, in<br />

which the chemical potential <strong>of</strong> the proton<br />

is higher than in pure sulfuric acid<br />

D. Himmel et al, Angew. Chem. Int. Ed. 2010, 49, 6885<br />

7<br />

What is a <strong>superacid</strong>?<br />

• Superacidic <strong>molecul</strong>e:<br />

Superacidic <strong>molecul</strong>e in a given medium is<br />

one that is more acidic than H 2 SO 4 in that<br />

medium<br />

8<br />

4


Whydoweneed aciditydata?<br />

• Acidity is a core parameter <strong>of</strong> an acidic<br />

<strong>molecul</strong>e<br />

• Rationalization <strong>and</strong> prediction <strong>of</strong><br />

mechanisms <strong>of</strong> chemical <strong>and</strong> industrial<br />

processes<br />

• Design <strong>of</strong> novel acids <strong>and</strong> bases<br />

• Development <strong>of</strong> theoretical calculation<br />

methods<br />

9<br />

How to measure solution <strong>acidities</strong> <strong>of</strong><br />

highly acidic <strong>molecul</strong>es?<br />

• H 0 scale<br />

• The classical approach<br />

• Different H 0<br />

refer to different media<br />

• H 0<br />

is rather a characteristic <strong>of</strong> a medium than <strong>of</strong> a<br />

<strong>molecul</strong>e<br />

• X-H vibrational frequencies<br />

• Indirect: characterizes<br />

hydrogen bond rather than acidity<br />

Stoyanov, et al JACS, 2006, 128, 8500<br />

• Equilibrium measurement (pK a ) in a low<br />

basicity solvent<br />

• Obvious, butalmostunusedappraoch!<br />

10<br />

5


Solvent<br />

• As low basicity as possible<br />

• As high ε as possible<br />

• As high pK auto as possible<br />

• Easy to purify, reasonably inert, electrochemically<br />

stable, transparent in UV, readily available, widely<br />

used<br />

• There is no ideal solvent<br />

• Wth increasing ε as a rule basicity also increases<br />

• Water cannot be used<br />

11<br />

Non-aqueous pK a <strong>values</strong>: not trivial<br />

• Processes are <strong>of</strong>ten more complex than<br />

simple ionic dissociation<br />

• Ion-pairing, homoconjugation, …<br />

• Measurement <strong>of</strong> a(SH + ) is not trivial<br />

• Traces <strong>of</strong> moisture can significantly affect<br />

results<br />

K. Kaupmees et al, J. Phys. Chem. A<br />

2010, 114, 11788<br />

• Working in an inert <strong>gas</strong> atmosphere (glovebox) is<br />

necessary<br />

12<br />

6


Acid-base reaction in a non-aqueous<br />

solvent<br />

K 1 K 2 K 3<br />

(AH) S + (:B) S (AH⋅⋅⋅:B) S (A¯:⋅⋅⋅HB + ) S or (A¯: HB + ) S <br />

HB complex HB complex contact ion pair<br />

K 3 K 4<br />

(A¯: // HB + ) S (A¯:) S + (HB + ) S<br />

solvent-separated ion pair free ions<br />

13<br />

Approach: Relative measurement<br />

• Measurement <strong>of</strong> pK a differences<br />

• ΔpK a<br />

<strong>values</strong><br />

• No need to measure a(SH + ) in solution<br />

• Many <strong>of</strong> the error sources cancel out,<br />

either partially or fully<br />

• Traces <strong>of</strong> moisture<br />

• Impurities in compounds<br />

• Baseline shifts <strong>and</strong> drifts<br />

• Technique: UV-Vis spectrometry<br />

14<br />

7


UV-Vis ΔpK a measurement<br />

Compound 1 Compound 2<br />

Absorbance (AU)<br />

Absorbance (AU)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

anion<br />

neutral<br />

190 240 290 340 390<br />

wavelength (nm)<br />

Mixture<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

anion<br />

NC<br />

NC<br />

CN<br />

CN<br />

CN<br />

OH<br />

CF 2 SO 2<br />

CN SO 2 CF 3<br />

0.2<br />

neutral<br />

0<br />

190 240 290 340 390<br />

wavelength (nm)<br />

SO 2 CF 3<br />

Absorbance (AU)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

neutral<br />

190 240 290 340 390<br />

wavelength (nm)<br />

0<br />

ΔpK<br />

a<br />

= 0.87<br />

= pK<br />

a<br />

anion<br />

(HA ) − pK<br />

(HA )<br />

-<br />

[A1]<br />

⋅[HA2]<br />

= − log K = log<br />

-<br />

[HA ] ⋅[A<br />

]<br />

2<br />

CF 2 SO 2<br />

SO 2 CF 3<br />

1<br />

a<br />

OH<br />

2<br />

SO 2 CF 3<br />

1<br />

15<br />

Acetonitrile (MeCN)<br />

• Advantages <strong>of</strong> MeCN:<br />

• Low basicity (B' = 160), low anion-solvating ability →<br />

quite strong acids measurable<br />

• High polarity (ε = 36)<br />

• High pK auto<br />

(≥ 33)<br />

• Transparent in UV, easy to purify, reasonably inert,<br />

electrochemically stable, readily available, widely used<br />

• Limitations:<br />

• Very strong bases decompose MeCN<br />

• Already Et-P2(pyrr) slowly decomposes MeCN<br />

• Impossible to study the strongest <strong>superacid</strong>s<br />

16<br />

8


Self-consistent acidity<br />

scale in MeCN<br />

Acid pK a (AN) a Directly measured ΔpK a b<br />

1 9-C 6F 5-Fluorene 28.11<br />

2 (4-Me-C 6F 4)(C 6H 5)CHCN 26.96<br />

3 (4-NC 5F 4)(C 6H 5)NH 26.34<br />

4 (C 6H 5)(C 6F 5)CHCN 26.14<br />

5 (4-Me 2N-C 6F 4)(C 6F 5)NH 25.12<br />

6 (4-Me-C 6F 4)(C 6F 5)NH 24.94<br />

7 Octafluor<strong>of</strong>luorene 24.49<br />

8 Fluoradene 23.90<br />

9 9-COOMe-Fluorene 23.53<br />

10 Acetic acid 23.51<br />

11 (C 6F 5)CH(COOEt) 2 22.85<br />

12 2-NO 2-Phenol 22.85<br />

13 (4-Me-C 6F 4) 2CHCN 22.80<br />

14 (4-Me-C 6F 4)(C 6F 5)CHCN 21.94<br />

15 Benzoic acid 21.51<br />

16 9-CN-Fluorene 21.36<br />

17 (4-H-C 6F 4)(C 6F 5)CHCN 21.11<br />

18 (C 6F 5) 2CHCN 21.10<br />

19 (CF 3) 3COH 20.55<br />

20 (4-Cl-C 6F 4)(C 6F 5)CHCN 20.36<br />

21 2,4,6-Br 3-Phenol 20.35<br />

22 (2,4,6-Cl 3-C 6F 2)(C 6F 5)CHCN 20.13<br />

23 2,3,5,6-F 4-Phenol 20.12<br />

24 2,3,4,5,6-F 5-Phenol 20.11<br />

25 (2-C 10F 7)(C 6F 5)CHCN 20.08<br />

26 1-C 10F 7OH 19.72<br />

27 2,4,6-(SO 2F) 3-Aniline 19.66<br />

28 (2-C 10F 7) 2CHCN 19.32<br />

29 9-C 6F 5-Octafluor<strong>of</strong>luorene 18.88<br />

30 2-C 10F 7OH 18.50<br />

31 (4-CF 3-C 6F 4)(C 6F 5)CHCN 18.14<br />

32 4-C 6F 5-2,3,5,6-F 4-Phenol 18.11<br />

33 (4-H-C 6F 4)CH(CN)COOEt 18.08<br />

34 2,3,4,5,6-Cl 5-Phenol 18.02<br />

35 2,3,4,5,6-Br 5-Phenol 17.83<br />

36 (C 6F 5)CH(CN)COOEt 17.75<br />

37 4-Me-C 6H 4CH(CN) 2 17.59<br />

38 (2-C 10F 7)CH(CN)COOEt 17.50<br />

39 (4-Cl-C 6F 4)CH(CN)COOEt 17.39<br />

40 2,4-(NO 2) 2-Phenol 16.66<br />

41 4-CF 3-2,3,5,6-F 4-Phenol 16.62<br />

42 (4-NC 5F 4)(C 6F 5)CHCN 16.40<br />

43 (4-CF 3-C 6F 4) 2CHCN 16.13<br />

44 (4-CF 3-C 6F 4)CH(CN)COOEt 16.08<br />

45 (4-NC 5F 4)(2-C 10F 7)CHCN 16.02<br />

46 4-NC 5F 4-OH 15.40<br />

47 (4-NC 5F 4)CH(CN)COOEt 14.90<br />

1.15<br />

0.63<br />

0.20<br />

1.03<br />

0.64<br />

0.96<br />

0.67<br />

0.90<br />

0.60<br />

1.01<br />

0.21<br />

0.42<br />

0.40<br />

0.44<br />

0.38<br />

0.36<br />

0.06<br />

0.59<br />

1.49<br />

1.32<br />

1.96<br />

1.20<br />

0.45<br />

0.58<br />

1.05<br />

0.92<br />

0.42<br />

0.39<br />

1.02<br />

0.01<br />

0.43<br />

0.34<br />

1.19<br />

0.75<br />

0.77<br />

0.22<br />

0.32<br />

0.06<br />

1.12<br />

019<br />

1.78<br />

0.17<br />

-0.01<br />

1.49<br />

0.25<br />

0.76<br />

0.81<br />

0.79<br />

0.46<br />

0.19<br />

0.08<br />

1.10<br />

0.60<br />

1.35<br />

0.82<br />

0.68<br />

0.04<br />

0.26<br />

0.53<br />

0.26<br />

0.03<br />

0.03<br />

0.85<br />

0.73<br />

0.04<br />

1.15<br />

0.54<br />

1.43<br />

0.73<br />

0.75<br />

0.71<br />

0.48 1.02<br />

0.41<br />

0.92<br />

1.92<br />

1.59<br />

0.10<br />

0.27<br />

0.27<br />

0.05<br />

0.70<br />

0.69<br />

1.75<br />

1.70<br />

1.51<br />

1.21<br />

0.63<br />

0.88<br />

0.37<br />

-0.01<br />

0.82<br />

1.46<br />

0.72<br />

1.03<br />

0.26<br />

1.02<br />

0.28<br />

0.29<br />

0.25<br />

0.00<br />

0.80<br />

0.06<br />

1.32<br />

47 (4-NC 5F 4)CH(CN)COOEt 14.90<br />

0.69<br />

0.19<br />

48 3-CF 3-C 6H 4CH(CN) 2 14.72<br />

0.15<br />

49 Saccharin 14.57 0.84<br />

0.71<br />

1.89<br />

50 4-Me-C 6F 4CH(CN) 2 13.87<br />

0.40<br />

51 (4-NC 5F 4) 2CHCN 13.46<br />

0.87<br />

0.45 0.89<br />

52 C 6F 5CH(CN) 2 13.01<br />

0.48<br />

0.03 0.04<br />

53 4-H-C 6F 4CH(CN) 2 12.98<br />

0.79<br />

0.74<br />

54 2-C 10F 7CH(CN) 2 12.23<br />

1.38 0.26<br />

55 Tos 2NH c 11.97 0.62<br />

56 4-NO 2-C 6H 4CH(CN) 2 11.61<br />

0.03<br />

57 4-MeO-C 6H 4C(=O)NHTf d 11.60<br />

0.28<br />

0.19 0.14<br />

58 4-Me-C 6H 4C(=O)NHTf 11.46<br />

1.21<br />

0.98<br />

59 (C 6H 5SO 2) 2NH 11.34 0.60<br />

0.60<br />

0.57<br />

60 4-Cl-C 6H 4SO 2NHTos 11.10<br />

0.49<br />

0.36<br />

61 C 6H 5C(=O)NHTf 11.06<br />

1.43<br />

0.10<br />

0.07<br />

62 Picric acid 11.00<br />

63 4-F-C 6H 4C(=O)NHTf 10.65<br />

0.91<br />

0.79<br />

0.87<br />

64 4-Cl-C 6H 4C(=O)NHTf 10.36 0.82<br />

0.54<br />

65 (4-Cl-C 6H 4SO 2) 2NH 10.20<br />

0.15<br />

0.56<br />

-0.01<br />

66 4-CF 3-C 6F 4CH(CN) 2 10.19<br />

0.13<br />

1.15<br />

0.14<br />

67 4-NO 2-C 6H 4SO 2NHTos 10.04 0.52<br />

1.20<br />

1.06<br />

0.73<br />

68 4-Cl-3-NO 2-C 6H 3SO 2NHTos 9.71 1.05 0.46<br />

69 4-NO 2-C 6H 4C(=O)NHTf 9.49 0.53<br />

0.23<br />

70 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl 9.17<br />

2.3<br />

0.56 1.73<br />

71 TosOH 8.6<br />

1.21 0.23<br />

72 (4-NO 2-C 6H 4SO 2) 2NH 8.32<br />

1.3<br />

0.25<br />

73 1-C 10H 7SO 3H 8.02<br />

0.50<br />

0.19 1.04<br />

74 C 6H 5CHTf 2 7.85<br />

0.54 1.25<br />

75 4-Cl-C 6H 4SO 3H 7.3<br />

0.53<br />

76 3-NO 2-C 6H 4SO 3H 6.78 0.51<br />

77 4-NO 2-C 6H 4SO 3H 6.73<br />

78 4-MeO-C 6H 4C(=NTf)NHTf 6.54 0.51<br />

0.44 1.28 0.23<br />

79 4-Me-C 6H 4C(=NTf)NHTf 6.32<br />

0.75 0.23<br />

0.05<br />

0.62<br />

80 TosNHTf 6.30<br />

0.5<br />

0.16 0.35<br />

81 C 6H 5C(=NTf)NHTf 6.17 0.36<br />

1.11 0.47<br />

82 C 6H 5SO 2NHTf 6.02<br />

0.59<br />

0.26<br />

83 4-F-C 6H 4C(=NTf)NHTf 5.79 0.83<br />

1.64<br />

84 4-Cl-C 6H 4C(=NTf)NHTf 5.69<br />

0.77<br />

1.37<br />

85 2,4,6-(SO 2F) 3-Phenol 5.66<br />

1.25<br />

0.64<br />

86 4-Cl-C 6H 4SO 2NHTf 5.47<br />

0.42<br />

0.59<br />

0.71<br />

87 4-Cl-C 6H 4SO(=NTf)NHTos 5.27<br />

0.53<br />

88 4-NO 2-C 6H 4C(=NTf)NHTf 5.13 0.38<br />

1.20<br />

89 2,4,6-Tf 3-Phenol 4.93<br />

0.41<br />

1.1<br />

90 4-NO 2-C 6H 4SO 2NHTf 4.52<br />

0.05<br />

0.87<br />

91 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl 4.47 1.10 1.15<br />

0.31<br />

92 2,3,5-tricyanocyclopentadiene 4.16<br />

0.74<br />

0.50<br />

93 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-NO 2 3.75<br />

A. Kütt et al, J. Org. Chem. 2006, 71, 2829<br />

17<br />

A. Kütt et al, J. Org. Chem. 2011, 76, 391<br />

Properties <strong>of</strong> the MeCN acidity scale<br />

• Consistency, checked by circular<br />

validation measurements:<br />

• 93 acids, 203 relative acidity measurements<br />

• Consistency st<strong>and</strong>ard deviation: 0.03 pK a<br />

units<br />

• Anchored to Picric acid (pK a = 11.0)<br />

• pK a range: 3.7 .. 28.1<br />

• Useful tool for further studies<br />

• Acids in the lower part are <strong>superacid</strong>s<br />

• pK a<br />

(H 2<br />

SO 4<br />

) ≈ 8 in MeCN<br />

18<br />

9


67 4NO 2 C 6 H 4 SO 2 NHTos 10.04<br />

68 4-Cl-3-NO 2 -C 6 H 3 SO 2 NHTos 9.71<br />

69 4-NO 2 -C 6 H 4 C(=O)NHTf 9.49<br />

70 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl 9.17<br />

71 TosOH 8.6<br />

72 (4-NO 2-C 6H 4SO 2) 2NH 8.32<br />

73 1-C 10 H 7 SO 3 H 8.02<br />

74 C 6H 5CHTf 2 7.85<br />

75 4-Cl-C 6 H 4 SO 3 H 7.3<br />

76 3-NO 2-C 6H 4SO 3H 6.78<br />

77 4-NO 2 -C 6 H 4 SO 3 H 6.73<br />

78 4-MeO-C 6 H 4 C(=NTf)NHTf 6.54<br />

79 4-Me-C 6H 4C(=NTf)NHTf 6.32<br />

80 TosNHTf 6.30<br />

81 C 6 H 5 C(=NTf)NHTf 6.17<br />

82 C 6 H 5 SO 2 NHTf 6.02<br />

83 4-F-C 6 H 4 C(=NTf)NHTf 5.79<br />

84 4-Cl-C 6 H 4 C(=NTf)NHTf 5.69<br />

85 2,4,6-(SO 2 F) 3 -Phenol 5.66<br />

86 4-Cl-C 6 H 4 SO 2 NHTf 5.47<br />

87 4-Cl-C 6H 4SO(=NTf)NHTos 5.27<br />

88 4-NO 2-C 6H 4C(=NTf)NHTf 5.13<br />

89 2,4,6-Tf 3-Phenol 4.93<br />

90 4-NO 2 -C 6 H 4 SO 2 NHTf 4.52<br />

91 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl 4.47<br />

92 2,3,5-tricyanocyclopentadiene 4.16<br />

93 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-NO 2 3.75<br />

1.06 0.73<br />

1.05 0.46<br />

0.53<br />

0.23<br />

2.3<br />

0.56 1.73<br />

1.21 0.23<br />

0.19 1.04<br />

0.54<br />

0.53<br />

0.51<br />

0.51<br />

0.44 1.28<br />

0.75<br />

0.36<br />

0.77<br />

0.53<br />

0.38<br />

0.41<br />

1.25<br />

1.3<br />

0.25<br />

0.50<br />

0.59<br />

0.26<br />

0.83<br />

1.64<br />

0.64<br />

0.71<br />

0.05<br />

0.87<br />

1.10 1.15<br />

0.31<br />

0.74<br />

0.50<br />

0.23<br />

0.23<br />

0.05<br />

0.62<br />

0.5<br />

0.16 0.35<br />

1.11 0.47<br />

1.37<br />

1.25<br />

0.42<br />

0.59<br />

1.20<br />

1.1<br />

H 2 SO 4 pK a ca 8<br />

19<br />

1,2-Dichloroethane<br />

• Advantages <strong>of</strong> 1,2-DCE:<br />

• Very low basicity (B' = 40), low anion-solvating ability<br />

→ strong <strong>superacid</strong>s are measurable<br />

• pK auto<br />

unmeasurably high<br />

• Reasonably inert <strong>and</strong> stable, readily available, widely<br />

used, dissolves also many ionic compounds well<br />

• Transparent in UV down to 230 nm<br />

• Limitations:<br />

• ~Low polarity (ε = 10)<br />

• Ion-pair <strong>acidities</strong><br />

20<br />

10


1,2-DCE acidity<br />

scale<br />

• The most acidic<br />

equilibrium acidity<br />

scale in a constantcomposition<br />

medium<br />

• Relative <strong>acidities</strong><br />

• Not easy to anchor<br />

• Some <strong>values</strong><br />

available in<br />

literature, but<br />

are doubtful<br />

A. Kütt et al J. Org. Chem.<br />

2011, 76, 391<br />

No Acid pK a(DCE) Directly measured ΔpK ip <strong>values</strong> in DCE a pK<br />

1 Picric acid 0.0<br />

2 HCl -0.4 0.73 0.71<br />

1.48 0.36<br />

3 2,3,4,6-(CF 3) 5-C 6H-CH(CN) 2 -0.7<br />

1.09<br />

0.77 0.74<br />

4 4-NO 2-C 6H 4SO 2NHTos c -1.5<br />

2.08 1.00<br />

0.28 1.78<br />

5 HNO 3 -1.7<br />

1.01<br />

6 4-NO 2-C 6H 4SO 2NHSO 2C 6H 4-4-Cl -2.4 1.13<br />

0.88 0.08<br />

7 H 2SO 4 -2.5<br />

0.24<br />

0.12 1.26<br />

8 C 6(CF 3) 5CH(CN) 2 -2.6<br />

1.02 1.02 1.05<br />

9 (4-NO 2-C 6H 4-SO 2) 2NH -3.7 1.48<br />

0.47<br />

10 3-NO 2-4-Cl-C 6H 3SO 2NHSO 2C 6H 4-4-NO 2 -4.1<br />

0.80<br />

0.36<br />

11 (3-NO 2-4-Cl-C 6H 3SO 2) 2NH -4.5 1.35<br />

0.93<br />

0.39<br />

12 HBr -4.9<br />

0.62<br />

0.19<br />

13 4-NO 2-C 6H 4SO 2CH(CN) 2 -5.1 1.03<br />

0.80<br />

14 2,4,6-(SO 2F) 3-Phenol -5.9 1.33<br />

15 2,4,6-Tf 3-Phenol d -6.4 0.64<br />

16 CH(CN) 3 -6.5 0.94<br />

0.42 1.14 1.12<br />

17 4-Cl-C 6H 4SO(=NTf)NHTos -6.8 0.33 0.65<br />

0.51 0.05<br />

18 NH 2-TCNP e -6.8<br />

0.24<br />

0.20<br />

19 2,3,5-tricyanocyclopentadiene -7.0<br />

20 Pentacyanophenol -7.6 0.67 0.84<br />

21 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-4-Cl -7.6 1.77<br />

1.56<br />

22 HI -7.7<br />

1.64<br />

1.00<br />

0.98 1.13<br />

23 4-NO 2-C 6H 4SO 2NHTf -7.8 1.10 0.93<br />

1.04 1.01<br />

0.81<br />

24 Me-TCNP -8.6<br />

0.96<br />

0.90<br />

0.09<br />

25 3,4-(MeO) 2-C 6H 3-TCNP -8.7 0.13 1.42<br />

-0.02<br />

26 4-MeO-C 6H 4-TCNP -8.7<br />

0.12<br />

0.12<br />

27 C(CN) 2=C(CN)OH -8.8<br />

0.46 0.24<br />

0.28 1.61<br />

28 4-Cl-C 6H 4SO(=NTf)NHSO 2C 6H 4-NO 2 -8.9 0.22<br />

0.59<br />

0.74<br />

29 2,4-(NO 2) 2-C 6H 3SO 2OH -8.9 0.67<br />

0.06<br />

0.59<br />

30 C 6F 5CH(Tf) 2 -9.0<br />

0.60<br />

0.52<br />

31 HB(CN)(CF 3) 3 -9.3 0.47 0.44<br />

1.33 0.13<br />

32 Ph-TCNP -9.4 1.56 1.62<br />

0.83 1.57<br />

33 HBF 4 -10.3<br />

1.23<br />

1.06<br />

34 FSO 2OH -10.5 0.26 1.34<br />

001<br />

21<br />

1,2-DCE acidity<br />

scale<br />

2,4-(NO 2) 2-C 6H 3SO 2OH<br />

H N<br />

45 [C(CN) 2=C(CN)] 2NH -11.8<br />

46 3,5-(CF 3) 5-C 6H 3-TCNP -11.8<br />

29 -8.9<br />

30 C 6F 5CH(Tf) 2 -9.0<br />

31 HB(CN)(CF 3) 3 -9.3<br />

32 Ph-TCNP -9.4<br />

33 HBF 4 -10.3<br />

34 FSO 2OH -10.5<br />

35 3-CF 3-C 6H 4-TCNP -10.5<br />

36 H-TCNP -10.7<br />

37 [C 6H 5SO(=NTf)] 2NH -11.1<br />

38 [(C 2F 5)2PO] 2NH -11.3<br />

39 2,4,6-(NO 2) 3-C 6H 2SO 2OH -11.3<br />

40 [C(CN) 2=C(CN)] 2CH 2 -11.4<br />

41 TfOH -11.4<br />

42 C 6H 5SO(=NTf)NHTf -11.5<br />

43 TfCH(CN) 2 -11.6<br />

44 Br-TCNP -11.8<br />

+<br />

N P N<br />

48 4-Cl-C 6H 4SO(=NTf)NHTf -12.1<br />

47 Tf 2NH -11.9<br />

N<br />

49 Cl-TCNP -12.1<br />

• Ion pair <strong>acidities</strong><br />

• Counter-ion:<br />

• Aqueous pK a<br />

(H 0<br />

)<br />

<strong>values</strong> down to<br />

-10 .. -15<br />

50 (C 3F 7SO 2) 2NH -12.2<br />

51 (C 4F 9SO 2) 2NH -12.2<br />

52 CN-CH 2-TCNP -12.3<br />

53 (C 2F 5SO 2) 2NH -12.3<br />

54 CF 3-TCNP -12.7<br />

55 HClO 4 -13.0<br />

56 CF 2(CF 2SO 2) 2NH -13.1<br />

57 4-NO 2-C 6H 4SO(=NTf)NHTf -13.1<br />

58 HB(CN) 4 -13.3<br />

59 (FSO 2) 3CH -13.6<br />

60 Tf 2CH(CN) -14.9<br />

61 2,3,4,5-tetracyanocyclopentadiene -15.1<br />

62 CN-TCNP -15.3<br />

63 Tf 3CH f -16.4<br />

64 CF 3SO(=NTf)NHTf f -18<br />

0.67 0.06<br />

0.59<br />

0.60<br />

0.52<br />

0.47 0.44<br />

1.33 0.13<br />

1.56 1.62<br />

0.83 1.57<br />

1.23<br />

1.06<br />

0.26 1.34<br />

0.01<br />

0.21<br />

0.60 0.22<br />

0.58<br />

0.73 0.78 0.46<br />

0.84<br />

0.84<br />

0.89 0.91<br />

0.29<br />

0.28<br />

0.44 0.21<br />

0.10<br />

0.12<br />

0.47<br />

0.04<br />

0.07 0.09 0.49<br />

0.40 0.32 0.47<br />

0.36<br />

0.21 0.45<br />

0.19<br />

0.30 0.31<br />

1.06<br />

0.06<br />

0.69<br />

0.20 0.25<br />

0.01<br />

0.10<br />

0.10<br />

0.19<br />

0.15<br />

0.13<br />

0.27<br />

0.10<br />

0.02<br />

1.05 1.06<br />

0.72<br />

0.19<br />

0.19<br />

0.44<br />

1.76<br />

1.92<br />

2.16<br />

1.46<br />

1.73 0.22<br />

0.40<br />

0.21 0.23<br />

0.36<br />

0.47<br />

0.67<br />

0.40<br />

0.21<br />

0.44<br />

0.46<br />

0.80<br />

0.80 1.04<br />

0.40<br />

0.11<br />

0.56<br />

0.89 0.86<br />

1.29<br />

0.63<br />

1.04<br />

0.07<br />

0.42<br />

0.77<br />

0.73 0.75<br />

0.93<br />

0.93<br />

0.96<br />

0.43<br />

22<br />

0.29<br />

11


Important aspects for <strong>superacid</strong>s<br />

• Brønsted acidity<br />

• As strong as possible<br />

• "Clean" protonation desirable<br />

• Lewis acidity is usually not desirable<br />

• Stability under <strong>superacid</strong>ic conditions<br />

• Weak coordinating properties <strong>of</strong> the<br />

anions<br />

23<br />

Design <strong>of</strong> <strong>superacid</strong>ic <strong>molecul</strong>es<br />

• "Acid-based" approach:<br />

• Pick a parent acid<br />

• Introduce substituents<br />

• electronegative, strong electron<br />

acceptors, highly polarizable<br />

CN CN<br />

O O<br />

H<br />

NC P CN<br />

NC<br />

O CN ΔΔG acid =<br />

47 kcal/mol<br />

ΔG acid = 303 256 kcal/mol<br />

(DFT B3LYP/6-311+G**)<br />

O CF 3<br />

S O<br />

ON<br />

F 3 C<br />

S<br />

OH<br />

ON<br />

S O<br />

ΔΔG acid =<br />

O CF 3 40 kcal/mol<br />

ΔG acid = 299.5 260 kcal/mol<br />

(DFT B3LYP/6-311+G**)<br />

Leito et al J. Mol. Stru.<br />

Theochem, 2007, 815, 43<br />

Koppel, Yagupolskii et al<br />

to be submitted<br />

24<br />

12


Basicity Centers on Substituents<br />

NC<br />

:<br />

CN<br />

NC<br />

:<br />

P<br />

CN<br />

H<br />

CN:<br />

N H<br />

. .<br />

CN<br />

:<br />

: :<br />

. .<br />

:<br />

O<br />

CF 3<br />

H<br />

S<br />

:<br />

N<br />

. O<br />

.:<br />

. .<br />

F 3 C<br />

S . OHO<br />

.<br />

:<br />

N<br />

. .<br />

S<br />

O<br />

:<br />

:<br />

CF . O<br />

.<br />

3<br />

It is not only about the acceptor<br />

power but also about basicity!<br />

25<br />

Design: Anion-based approach<br />

• Design an anion, which<br />

• Has delocalized charge<br />

• Is as stable as possible<br />

• Has as few as possible protonation sites <strong>and</strong><br />

those are <strong>of</strong> low basicity<br />

Not looking at any particular acidity<br />

center<br />

26<br />

13


Fluorine<br />

• Highly electronegative element<br />

• Decreases the basicity <strong>of</strong> nearby basicity centers<br />

• Has very low basicity itself<br />

• Many X-F bonds are extremely strong<br />

• C-F bond: 484 kJ/mol<br />

• High stability <strong>of</strong> fluorinated compounds<br />

• Small size<br />

• Polyfluorinated compounds have low steric strain<br />

Fluorination is intrinsically suitable<br />

for <strong>superacid</strong> design<br />

27<br />

Substituent properties<br />

Substituent<br />

σ F<br />

σ R σ α<br />

0.13<br />

-F<br />

0.57<br />

-0.33<br />

-CF 3<br />

0.46<br />

0.09<br />

-0.25<br />

-SO 2 CF 3<br />

0.18<br />

0.83<br />

0.26<br />

-0.58<br />

-CN<br />

0.54<br />

-0.46<br />

• Neither –F nor –CF 3 seem particularly<br />

impressive<br />

28<br />

14


-F <strong>and</strong> -CF 3 vs -CN<br />

Acid<br />

X OH<br />

(DFT B3LYP/6-311+G**)<br />

Gas-<strong>phase</strong> acidity (kcal/mol)<br />

-CN -F -CF 3<br />

325 340 330<br />

X<br />

X<br />

X<br />

-<br />

B X H +<br />

250<br />

277<br />

X<br />

X<br />

259<br />

290<br />

244<br />

X<br />

HBX 4<br />

213<br />

X<br />

X<br />

C X<br />

X<br />

-<br />

X<br />

X<br />

X X X<br />

X H +<br />

X<br />

225<br />


250<br />

256<br />

255.5 HSbF 6<br />

250.8 HAuF 6<br />

250<br />

243<br />

240<br />

HB(CF3 ) 4<br />

NC<br />

NC<br />

H<br />

NC CN<br />

C<br />

H<br />

H<br />

H<br />

H H<br />

Cl<br />

Cl<br />

Cl<br />

CN CN<br />

- H +<br />

CN NC P CN<br />

- B CN H + NC CN<br />

-<br />

Cl<br />

Cl<br />

H +<br />

Cl<br />

Cl Cl<br />

Acidity in the<br />

<strong>gas</strong> <strong>phase</strong><br />

Cl<br />

CCl<br />

Cl<br />

Cl<br />

225<br />

200<br />

225<br />

213<br />

C CN<br />

NC CN<br />

NC CN<br />

-<br />

F NC NC CN CN<br />

NC<br />

C<br />

F<br />

F<br />

H +<br />

F CN<br />

F F<br />

F<br />

F<br />

< 175<br />

F<br />

-<br />

F<br />

CN<br />

F F CF<br />

H +<br />

3<br />

C<br />

F 3 C<br />

CF 3<br />

CF F3 C CF 3 3<br />

-<br />

F<br />

F 3 C 3 C CF 3 CF 3<br />

F 3 C H +<br />

CF 3<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

Cl<br />

H +<br />

Cl<br />

GA = 241 ± 29 kcal/mol<br />

- Meyer et al, JACS, 2009, 131, 18050<br />

-Kütt et alChem Phys Chem,<br />

2008<br />

- Kütt et al, JOC, 2008, 73, 2607<br />

- Leito et al, J Mol Stru Theochem.<br />

2007, 815, 41<br />

- Leito et al, JPC A, 2009, 113, 8421<br />

- Koppel et al, JACS, 2000,<br />

31<br />

122, 5114<br />

Thanks<br />

to all these<br />

people!<br />

32<br />

16


Collaboration<br />

• Y.L. Yagupolskii<br />

(IOC, Ukrainian Academy <strong>of</strong> Sciences, Kiev)<br />

• I. Krossing, D. Himmel<br />

(Freiburg University)<br />

• A.A. Kolomeitsev, G.-V. Röschenthaler<br />

(IIPC, University <strong>of</strong> Bremen)<br />

• M. Rueping (Aachen University)<br />

• V.M. Vlasov (IOC, Russian Academy o Sciences,<br />

Novosibirsk)<br />

• M. Mishima (IMCE, Kyushu University)<br />

33<br />

Overview:<br />

http://tera.chem.ut.ee/~ivo/HA_UT/<br />

34<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!