06.12.2012 Views

2 Workshop on Fats and Oils as Renewable Feedstock for ... - abiosus

2 Workshop on Fats and Oils as Renewable Feedstock for ... - abiosus

2 Workshop on Fats and Oils as Renewable Feedstock for ... - abiosus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>abiosus</strong> e.V.<br />

N<strong>on</strong>-Profit Associati<strong>on</strong> <strong>for</strong> the Advancement of Research <strong>on</strong> <strong>Renewable</strong> Raw Materials<br />

2 nd <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Fats</strong> <strong>and</strong> <strong>Oils</strong> <strong>as</strong> <strong>Renewable</strong> <strong>Feedstock</strong><br />

<strong>for</strong> the Chemical Industry<br />

Program<br />

Abstracts<br />

List of Participants<br />

22. - 24. March 2009<br />

Emden, Germany<br />

in Cooperati<strong>on</strong> with:<br />

University of Applied Sciences OOW<br />

German Society <strong>for</strong> Fat Science (DGF)<br />

Agency of <strong>Renewable</strong> Resources (FNR)


Scientific <strong>and</strong> Organizing Committee<br />

Jürgen O. Metzger, <strong>abiosus</strong> e.V., <strong>and</strong> University of Oldenburg<br />

Michael A. R. Meier, University of Applied Sciences OOW<br />

Acknowledgement<br />

Financial Support by the German Federal Ministry of Nutriti<strong>on</strong>, Agriculture <strong>and</strong> C<strong>on</strong>sumer<br />

Protecti<strong>on</strong> (BMELV) is gratefully acknowledged.<br />

2


C<strong>on</strong>tent<br />

Program 5<br />

Poster sessi<strong>on</strong> 10<br />

Abstracts of lectures 13<br />

Abstracts of posters 42<br />

List of participants 76<br />

3


Program<br />

Lectures <strong>and</strong> Posters<br />

5


Sunday, 22. March 2009<br />

Registrati<strong>on</strong><br />

Registrati<strong>on</strong> will be opened from 13:00 - 19:00<br />

15:30<br />

Welcome <strong>and</strong> Opening<br />

Jürgen O. Metzger, <strong>abiosus</strong><br />

Uwe Bornscheuer, President of German Society <strong>for</strong> Fat Science<br />

Manfred Weisensee, Vicepresident of University of Applied Sciences OOW<br />

Norbert Holst, Agency <strong>for</strong> <strong>Renewable</strong> Resources (FNR)<br />

Use of renewable raw materials in industry <strong>and</strong> funding of research <strong>and</strong><br />

development in this field<br />

16:00 – 18:00<br />

1. Sessi<strong>on</strong>: Joel Barrault, Chair<br />

16:00 Vegetable oils <strong>as</strong> raw materials <strong>for</strong> industrial applicati<strong>on</strong>s<br />

L1 Karlheinz Hill, Cognis, Germany<br />

16:30 Carb<strong>on</strong>ylati<strong>on</strong> <strong>as</strong> a route to chemicals from biom<strong>as</strong>s<br />

L2 David Cole-Hamilt<strong>on</strong>, Cristina Jimenez-Rodriguez, W. Roy Jacks<strong>on</strong>, Yulei Zhu,<br />

University of St. Andrews, School of Chemistry, St Andrews, UK<br />

17:00 Metathesis with oleochemicals: a sustainable match to obtain m<strong>on</strong>omers<br />

<strong>and</strong> polymers from renewable resources<br />

L3 Michael A. R. Meier, University of Applied Sciences OOW, Emden, Germany<br />

17:30 Biocatalysis in the modificati<strong>on</strong> of fats <strong>and</strong> oils <strong>for</strong> oleochemistry<br />

L4 Uwe Bornscheuer, Institute of Biochemistry, Greifswald University, Greifswald,<br />

Germany<br />

18.00 - 20.00<br />

Poster sessi<strong>on</strong> <strong>and</strong> opening mixer<br />

Posters will be displayed until the end of the workshop.<br />

6


M<strong>on</strong>day, 23. March 2009<br />

9:00 – 10:30<br />

First Morning Sessi<strong>on</strong>: George John, Chair<br />

09:00 Catalytic functi<strong>on</strong>alisati<strong>on</strong> of fatty compounds<br />

L5 Jessica Pérez Gomes, <strong>and</strong> Arno Behr, University of Dortmund, Germany<br />

09:30 Oxidati<strong>on</strong> of tensidic alcohols to their corresp<strong>on</strong>ding carboxylic acids via<br />

Au- <strong>and</strong> AuPt-catalysts<br />

L6 Ulf Prüße, Katharina Heidkamp, Nadine Decker, Kerstin Martens, Klaus-Dieter<br />

Vorlop, Oliver Franke, <strong>and</strong> Achim Stankowiak, Johann Heinrich v<strong>on</strong> Thünen-<br />

Institut (vTI), Braunschweig, Germany<br />

09:50 Plant oils <strong>as</strong> precursors of N-c<strong>on</strong>taining compounds via alkene metathesis<br />

L7 Christian Bruneau, Pierre H. Dixneuf, Raluca Malacea, Cédric Fischmeister,<br />

Xiaowei Miao, Institut Sciences Chimiques de Rennes, University of Rennes 1,<br />

Rennes, France<br />

10:10 Phytomining of plant enzymes <strong>for</strong> biotechnological use of fats <strong>and</strong> oils<br />

L8 Andre<strong>as</strong> Müller, <strong>and</strong> Guido Jach, Phytowelt GreenTechnologies GmbH, Nettetal,<br />

Germany<br />

10:30 – 11:00 Coffee break<br />

11:00 -12:20<br />

Sec<strong>on</strong>d morning sessi<strong>on</strong>: Zoran Petrovic, Chair<br />

11:00 Rati<strong>on</strong>al design of solid catalysts <strong>for</strong> selective glycerol activati<strong>on</strong>s<br />

L9 François Jerome, <strong>and</strong> Joel Barrault, CNRS/LACCO, Poitiers, France<br />

11:30 Acid-catalysed rearrangement of fatty epoxides: perspectives in applicati<strong>on</strong><br />

of acid sap<strong>on</strong>ites<br />

L10 Matteo Guidotti, Nicoletta Rav<strong>as</strong>io, Rinaldo Psaro, Maila Sgobba, Chiara Bisio,<br />

Fabio Carniato, <strong>and</strong> Le<strong>on</strong>ardo Marchese, CNR-ISTM, Milan, Italy<br />

11:50 Fatty acids: safe <strong>and</strong> versatile building blocks <strong>for</strong> the chemical industry<br />

L11 Peter Tollingt<strong>on</strong>, Croda, Gouda, The Netherl<strong>and</strong>s<br />

12:20 – 13:30 Lunch break<br />

7


13:30 – 14:50<br />

First afterno<strong>on</strong> sessi<strong>on</strong>: Selim Küsefoglu, Chair<br />

13:30 Lipids <strong>and</strong> Lip<strong>as</strong>es - Combinati<strong>on</strong> Products From <strong>Renewable</strong>s<br />

L12 Manfred P. Schneider, Matthi<strong>as</strong> Berger, Kurt E. Laumen, Guido Machmüller,<br />

Stefan Müller, <strong>and</strong> Claudia Waldinger, University of Wuppertal, Wuppertal,<br />

Germany<br />

14:00 O-Acylated Hydroxy carboxylic acid anhydrides: Novel Building Blocks <strong>for</strong><br />

Surfactants <strong>and</strong> Emulsifiers<br />

L13 Bernd Jakob, Hans-Josef Altenbach, Manfred Schneider, Karsten Lange, Rachid<br />

Ihizane, Zeynep Ylmaz, <strong>and</strong> Sukhendu N<strong>and</strong>i, University of Wuppertal, Wuppertal,<br />

Germany<br />

14:20 Biocompatible surfactants from renewable hydrophiles<br />

L14 Maria Rosa Infante, Lourdes Perez, MCarmen Moran, Ram<strong>on</strong> P<strong>on</strong>s, <strong>and</strong> Aurora<br />

Pinazo, IQAC - CSIC, Barcel<strong>on</strong>a, Spain<br />

14:50 – 15:20 Coffee break<br />

15:20 – 17:30<br />

Sec<strong>on</strong>d afterno<strong>on</strong> sessi<strong>on</strong>: Marina Galià, Chair<br />

15:20 Gemini-Tensides <strong>and</strong> I<strong>on</strong> Channels from Fatty acids<br />

L15 M. Dierker, <strong>and</strong> Hans J. Schäfer, University of Münster, Münster,<br />

Germany<br />

15:50 Aliphatic ß-Chlorovinylaldehydes <strong>as</strong> versatile building blocks in syntheses<br />

of heterocycles<br />

L16 Annett Fuchs, Dieter Greif, <strong>and</strong> Melanie Kellermann, University of Applied<br />

Sciences, Zittau, Germany<br />

16:10 Calendula Oil <strong>as</strong> Paint Additive<br />

L17 Ursula Biermann (a), Werner Butte (a), Ralf Holtgrefe (b), Willi Feder (b), <strong>and</strong><br />

Jürgen O. Metzger (a), (a) University of Oldenburg, Oldenburg, Germany, (b) bio<br />

pin, Jever, Germany<br />

16:30 Crops: A Green Approach toward Self-Assembled Soft Materials<br />

L18 George John, City College of City University of New York, New York, USA<br />

17:00 Exploiting vegetable oils <strong>for</strong> the delivery of hydrophilic drugs<br />

L19 Sarina Grinberg, Charles Linder, <strong>and</strong> Eliahu Heldman, Ben-Guri<strong>on</strong> University of<br />

the Negev, Beer-Sheva, Israel<br />

19:30 C<strong>on</strong>ference dinner Upstalsboom Parkhotel<br />

8


Tuesday, 24. March 2009<br />

09:00 – 10:30<br />

First morning sessi<strong>on</strong>: Maria Rosa Infante, Chair<br />

09:00 The role of renewable resources <strong>for</strong> Bayer Material Science<br />

L20 Ralf Weberskirch, Bayer Materials Science, Leverkusen, Germany<br />

09:30 Vegetable oil-b<strong>as</strong>ed triols from hydro<strong>for</strong>mylated fatty acids <strong>and</strong><br />

polyurethane el<strong>as</strong>tomers<br />

L21 Zoran Petrovic, Ivana Cvetkovic, DooPyo H<strong>on</strong>g, Xianmei Wan, Wei Zhang,<br />

Timothy Abraham, <strong>and</strong> Jeffrey Malsam, Pittsburg State University, Kans<strong>as</strong><br />

Polymer Research Center, Pittsburg, Kans<strong>as</strong>, USA<br />

10:00 New approaches to polymers <strong>and</strong> composites from plant oils<br />

L22 Selim Küsefoglu, Bogazici University Chemistry Department, Istanbul, Turkey<br />

10:30 – 11:00 Coffee break<br />

11:00 -13:15<br />

Sec<strong>on</strong>d morning sessi<strong>on</strong>: Michael A.R. Meier, Chair<br />

11:00 Vegetable-oil b<strong>as</strong>ed thermosetting polymers<br />

L23 Marina Galià, Joan Carles R<strong>on</strong>da, Gerard Lligad<strong>as</strong>, Virginia Cádiz, University<br />

Rovira i Virgili Tarrag<strong>on</strong>a, Spain<br />

11:30 Chemo-enzymatic synthesis of oil polyols <strong>and</strong> polyurethanes of them<br />

L24 Tom<strong>as</strong> Vlcek, SYNPO, Pardubice, Czech Republic<br />

11:50 Study of ASA (alkenyl succinic anhydrides) from fatty acid esters of<br />

vegetable oils <strong>as</strong> paper sizing agents<br />

L25 Laure C<strong>and</strong>y, Carlos Vaca-Garcia, Elisabeth Borred<strong>on</strong>, Laboratoire de Chimie<br />

AgroIndustrielle; ENSIACET, Toulouse, France<br />

12:10 Use of vegetable oil b<strong>as</strong>ed thermosetting resins in compound st<strong>on</strong>e<br />

technology<br />

L26 Stefano Zeggio, Fabio B<strong>as</strong>setto, Bret<strong>on</strong> Research Centre, C<strong>as</strong>tello di Godego,<br />

Italy<br />

12:30 Life cycle <strong>as</strong>sessment of high per<strong>for</strong>mance polyamides<br />

L27 Georg Oenbrink, Martin Roos, Franz-Erich Baumann, Harald Häger, Ev<strong>on</strong>ik<br />

Degussa GmbH, Marl, Germany<br />

13:00 - 13:15 Best poster award<br />

Uwe Bornscheuer, European Journal of Lipid Science <strong>and</strong> Technology, Editor-in-Chief<br />

Closing remarks, Michael A. R. Meier, University of Applied Sciences OOW<br />

9


Poster<br />

P1 Catalytic cleavage of methyl oleate or oleic acid<br />

A. Köckritz 1 , M. Blumenstein 2 , A. Martin 1<br />

1 Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Berlin, Germany<br />

2 Hobum Oleochemicals GmbH, Hamburg, Germany<br />

P2 Heterogeneously catalyzed hydrogen-free deoxygenati<strong>on</strong> of saturated C8,<br />

C12 <strong>and</strong> C18 carboxylic acids<br />

S. Mohite, U. Armbruster, M. Richter, D.L. Hoang, <strong>and</strong> Andre<strong>as</strong> Martin, Leibniz-<br />

Institut für Katalyse e.V. an der Universitaet Rostock, Berlin, Germany<br />

P3 Flame retardant polyesters from renewable resources via ADMET<br />

Luc<strong>as</strong> M<strong>on</strong>tero de Espinosa, Joan Carles R<strong>on</strong>da, Virginia Cádiz, Universitat<br />

Rovira i Virgili, Tarrag<strong>on</strong>a, Spain, <strong>and</strong> Michael A. R. Meier, University of Applied<br />

Sciences OOW, Emden, Germany<br />

P4 Catalytic access to bifuncti<strong>on</strong>al products from plant oil derivatives<br />

Xiaowei Miao, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Institut Sciences<br />

Chimiques de Rennes, Rennes, France<br />

P5 Synthesis <strong>and</strong> Characterizati<strong>on</strong> of Surfactants from <strong>Renewable</strong> Resources<br />

Rachid Ihizane, Bernd Jakob, Karsten Lange, Zeyneb Yilmaz, Sukhendu N<strong>and</strong>i,<br />

Manfred P. Schneider <strong>and</strong> Hans. J. Altenbach, Fachbereich C – Mathematik und<br />

Naturwissenschaft, Fachgruppe Chemie, Bergische Universität Wuppertal,<br />

Wuppertal, Germany<br />

P6 Synthesis of bifuncti<strong>on</strong>al m<strong>on</strong>omers via homometathesis of fatty acid<br />

derivatives<br />

Jürgen Pettrak, Herbert Riepl, Martin Faulstich, <strong>and</strong> Wolfgang A. Herrmann, TU<br />

München, Lehrstuhl für Rohstoff und Energietechnologie, Straubing, Germany<br />

P7 Synthesis <strong>and</strong> evaluati<strong>on</strong> of value added products from Glycerol<br />

Avin<strong>as</strong>h Bhadani, <strong>and</strong> Sukhprit Singh, Guru Nanak Dev University, Department of<br />

Chemistry, Amritsar, India<br />

P8 New Polymers from Plant Oil Derivatives <strong>and</strong> Styrene-Maleic Anhydride<br />

Copolymers<br />

Cem Öztürk, <strong>and</strong> Selim Küsefoğlu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey<br />

P9 Chain Extensi<strong>on</strong> Reacti<strong>on</strong>s of Unsaturated Polyesters with Epoxidized<br />

Soybean Oil<br />

Ediz Taylan, <strong>and</strong> Selim Küsefoglu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey<br />

P10 Soybean Oil B<strong>as</strong>ed Isocyanates: Synthesis, Characterizati<strong>on</strong>s <strong>and</strong><br />

Polymerizati<strong>on</strong>s<br />

Gökhan Çaylı, <strong>and</strong> Selim Küsefoğlu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey<br />

10


P11 Aliphatic ß-chlorovinylaldehydes <strong>as</strong> versatile building blocks in syntheses<br />

of heterocycles<br />

Annett Fuchs, Dieter Greif, <strong>and</strong> Melanie Kellermann, University of Applied<br />

Siences, Zittau, Germany<br />

P12 Syntheses <strong>and</strong> reacti<strong>on</strong> behavior of l<strong>on</strong>g-chained alkyl methyl ket<strong>on</strong>es<br />

starting from fatty acids, fatty alcohols <strong>and</strong> fatty nitriles<br />

Melanie Kellermann, Annett Fuchs, Dieter Greif, University of Applied Sciences,<br />

Zittau, Germany<br />

P13 Hydrophobic modificati<strong>on</strong> of Inulin in aqueous media using alkyl epoxides<br />

<strong>and</strong> b<strong>as</strong>ic catalysis<br />

Jordi Morros, Bart Levecke, <strong>and</strong> Mª Rosa Infante, IQAC - CSIC, Barcel<strong>on</strong>a, Spain<br />

P14 Short Chain Sugar Amphiphiles: Alternative Oil Structuring Agents<br />

Swapnil R Jadhav, Praveen Kumar Vemula, <strong>and</strong> George John, City College of<br />

City, University of New York, New York, USA<br />

P15 Novel enzymes <strong>for</strong> lipid modificati<strong>on</strong><br />

H. Brundiek, R. Kourist, M. Bertram, <strong>and</strong> U. Bornscheuer, University of<br />

Greifswald, Germany<br />

P16 Producti<strong>on</strong> of fine <strong>and</strong> bulk chemicals using silage <strong>as</strong> a renewable resource<br />

Tim Sieker, <strong>and</strong> Rol<strong>and</strong> Ulber, University of Kaiserslautern, Kaiserslautern,<br />

Germany<br />

P17 Enzymatic degradati<strong>on</strong> of pre-treated wood<br />

Seb<strong>as</strong>tian Poth, Magaly M<strong>on</strong>z<strong>on</strong>, Nils Tippkötter, <strong>and</strong> Rol<strong>and</strong> Ulber, University of<br />

Kaiserslautern, Germany<br />

P18 PA X,20 from renewable resources via metathesis <strong>and</strong> catalytic amidati<strong>on</strong><br />

Hatice Mutlu,<strong>and</strong> Michael A.R. Meier, University of Applied Sciences OOW,<br />

Emden, Germany<br />

P19 DERIVATIVES OF VEGETABLE OILS AS COMPONENTS OF HYDRAULIC<br />

FLUIDS<br />

Talis Paeglis, Aleksejs Smirnovs, R<strong>as</strong>ma Serzane, Maija Strele, Mara Jure, Riga<br />

Technical University, Riga, Latvia<br />

P20 ULTRASOUND PROMOTED ETHANOLYSIS OF RAPESEED OIL<br />

Pavels Karabesko, Maija Strele, R<strong>as</strong>ma Serzane, Mara Jure, Riga Technical<br />

University, Riga, Latvia<br />

P21 From Glycerine via Acetals to new Amphiphils<br />

J. Baumgard (a,b) , E. Paetzold (a), <strong>and</strong> U. Kragl (a,b), (a) Leibniz-Institut für<br />

Katalyse an der Universität Rostock e.V., Rostock, b) Institut für Chemie,<br />

Universität Rostock e. V., Rostock<br />

P22 BIOBASED SEGMENTED POLYURETHANES FROM METHYL OLEATE<br />

BASED POLYETHER POLYOLS<br />

Enrique del Río, Virginia Cádiz, Marina Galià, Gerard Lligad<strong>as</strong>, Joan Carles<br />

R<strong>on</strong>da, Universitat Rovira i Virgili, Tarrag<strong>on</strong>a, Spain<br />

11


P23 DETAILED STUDIES OF SELF- AND CROSS-METATHESIS REACTIONS OF<br />

FATTY ACID METHYL ESTERS<br />

Guy B. Djigoue, <strong>and</strong> Michael A. R. Meier, University of Applied Sciences OOW,<br />

Emden, Germany<br />

P24 Temperature dependant double b<strong>on</strong>d isomerizati<strong>on</strong> side reacti<strong>on</strong>s during<br />

ADMET polymerizati<strong>on</strong>s studied with a m<strong>on</strong>omer from renewable resources<br />

Patrice Aimé Fokou, <strong>and</strong> Michael A. R. Meier, University of Applied Sciences<br />

OOW, Emden, Germany<br />

P25 Reducing the Envir<strong>on</strong>mental Impact of Olefin Metathesis Reacti<strong>on</strong>s<br />

Manuela Kniese, Michael A. R. Meier, University of Applied Sciences OOW,<br />

Emden, Germany<br />

P26 An approach to renewable Nyl<strong>on</strong>-11 <strong>and</strong> Nyl<strong>on</strong>-12 via olefin crossmetathesis<br />

Tina Jacobs, Michael A. R. Meier, University of Applied Sciences OOW, Emden,<br />

Germany<br />

P27 Ultr<strong>as</strong><strong>on</strong>ic <strong>as</strong>sisted finishing of cellulose fiber by fatty acid amide<br />

derivatives<br />

Mazeyar Parvinzadeh, Mohammad Shaver, <strong>and</strong> B<strong>as</strong>hir Katozian, Islamic Azad<br />

University, Shahre rey branch, Tehran, Islamic Republic of Iran<br />

P28 Hydrolysis of nyl<strong>on</strong> 6 with proteolytic enzyme<br />

Mazeyar Parvinzadeh, Islamic Azad University, Shahre rey branch, Tehran,<br />

Islamic Republic of Iran<br />

P29 Comparing finishing of polyester fibers with micro <strong>and</strong> nano emulsi<strong>on</strong><br />

silic<strong>on</strong>es<br />

Mazeyar Parvinzadeh, Islamic Azad University, Shahre rey branch, Tehran,<br />

Islamic Republic of Iran<br />

P30 PIBOLEO project: Eco Innovative process <strong>for</strong> multi-functi<strong>on</strong>al bi-<br />

oleothermal teatment <strong>for</strong> wood preservati<strong>on</strong> <strong>and</strong> fire proofing<br />

S<strong>and</strong>ra Warren, Carine Alfos, <strong>and</strong> Frédéric Sim<strong>on</strong>, ITERG, Pessac, France<br />

P31 Cellul<strong>as</strong>es in bi-ph<strong>as</strong>ic media<br />

Nathalie Berezina, Joel Nys, <strong>and</strong> Laurent Paternostre, Natiss - Materia Nova,<br />

7822 Ghislenghien, Belgium<br />

12


Abstracts<br />

Part 1: Lectures<br />

13


L1 Vegetable oils <strong>as</strong> raw materials <strong>for</strong> industrial applicati<strong>on</strong>s<br />

14<br />

Karlheinz Hill, Cognis, Germany<br />

Karlheinz.Hill@cognis.com<br />

Natural fats <strong>and</strong> oils, carbohydrates <strong>and</strong> proteins are key raw materials <strong>for</strong> the chemical<br />

industry using renewable resources. Although in general, biom<strong>as</strong>s is available in large<br />

amounts (e.g. cellulose), the annual producti<strong>on</strong> volumes of selected biob<strong>as</strong>ed commodities<br />

are still small compared to coal or crude oil.<br />

Annual producti<strong>on</strong> of commodities worldwide (2004, milli<strong>on</strong> t<strong>on</strong>s) a<br />

Wheat Rice Starch Sugar b <strong>Fats</strong>&<strong>Oils</strong>c Crude Oil Coal d<br />

610 610 40 145 131 3600 3800<br />

a) sources: OilWorld, USDA, Industrieverb<strong>and</strong> Agrar, Wikipedia; b) from beet <strong>and</strong> cane;<br />

c) vegetable <strong>and</strong> animal b<strong>as</strong>ed; d) <strong>as</strong> SKE (1 kg SKE = 0,984 kg bituminous coal)<br />

Until now, availability <strong>and</strong> use w<strong>as</strong> quite balanced <strong>and</strong> the quantities could be adjusted<br />

according to different dem<strong>and</strong>s. For example, in the c<strong>as</strong>e of natural oils <strong>and</strong> fats, the<br />

producti<strong>on</strong> volume w<strong>as</strong> steadily incre<strong>as</strong>ed from 30 milli<strong>on</strong> t<strong>on</strong>s in 1960 to 131 milli<strong>on</strong> t<strong>on</strong>s<br />

in 2004. Most of it w<strong>as</strong> used <strong>for</strong> food (81% in 2004), a minor amount <strong>for</strong> animal feed (6% in<br />

2004) <strong>and</strong> chemistry (10% in 2004). However, what we have observed <strong>for</strong> some time is a<br />

shift towards an incre<strong>as</strong>ing use of renewable raw materials <strong>for</strong> bioenergy <strong>and</strong> biofuels. In<br />

the c<strong>as</strong>e of natural vegetable oils, the expected share <strong>for</strong> energy is estimated to grow to<br />

15% (!) of the total annual capacity in 2012 compared to 3% in 2004. This is <strong>on</strong>e<br />

c<strong>on</strong>sequence of political me<strong>as</strong>ures such <strong>as</strong> the European Biofuel Directive 2003/30/EC.<br />

Biodiesel producti<strong>on</strong> volumes were exp<strong>and</strong>ed significantly in the recent p<strong>as</strong>t <strong>and</strong> this trend<br />

is expected to c<strong>on</strong>tinue in Europe <strong>and</strong> other regi<strong>on</strong>s such <strong>as</strong> South E<strong>as</strong>t Asia, South<br />

America <strong>and</strong> India, with a further incre<strong>as</strong>e in producti<strong>on</strong> capacities <strong>for</strong>ec<strong>as</strong>ted at le<strong>as</strong>t <strong>for</strong><br />

the next 5-10 years.<br />

When the so-called 2nd generati<strong>on</strong> products, such <strong>as</strong> sundiesel or biom<strong>as</strong>s-to-liquid fuels,<br />

are ready to be launched <strong>on</strong> the market, the dem<strong>and</strong> <strong>on</strong> fats <strong>and</strong> oils <strong>for</strong> biofuels might<br />

decre<strong>as</strong>e again. These new technologies are definitely needed <strong>as</strong>suming that even with<br />

incre<strong>as</strong>ing producti<strong>on</strong> volumes <strong>for</strong> fats <strong>and</strong> oils, the future bioenergy <strong>and</strong> biofuel dem<strong>and</strong><br />

cannot be satisfied by this source al<strong>on</strong>e.<br />

In the meantime, the high dem<strong>and</strong>s <strong>for</strong> biodiesel, still further stimulated by subsidies, will<br />

create str<strong>on</strong>g competiti<strong>on</strong> with the established uses <strong>for</strong> vegetable oils <strong>for</strong> nutriti<strong>on</strong> <strong>and</strong> also<br />

<strong>for</strong> the chemical industry (oleochemistry). A very similar situati<strong>on</strong> is being observed in the<br />

c<strong>as</strong>e of bioethanol from carbohydrates <strong>and</strong>/or sugar. The competiti<strong>on</strong> between the use of<br />

agricultural products <strong>for</strong> nutriti<strong>on</strong> <strong>and</strong> energy is <strong>on</strong>e of the re<strong>as</strong><strong>on</strong>s why market prices of<br />

such agricultural commodities are recently subject of extremely high volatility. Other<br />

re<strong>as</strong><strong>on</strong>s are the incre<strong>as</strong>ing dem<strong>and</strong> <strong>for</strong> food in various regi<strong>on</strong>s of the earth, crop yield, <strong>and</strong><br />

financial speculati<strong>on</strong>s by investment funds.<br />

The use of renewable resources is <strong>on</strong>ly <strong>on</strong>e important part of the future "green" strategy in<br />

industry. What must also be c<strong>on</strong>sidered are sustainability practices across the entire value<br />

chain. This strategy is already applied to palm oil. It is the first time an expert group (The<br />

Round Table of Sustainable Palm Oil, RSPO) involving all participants in the industrial<br />

agricultural commodity value chain h<strong>as</strong> defined what sustainable agriculture really should<br />

mean. The challenging goal to develop, implement <strong>and</strong> verify credible global st<strong>and</strong>ards <strong>for</strong><br />

sustainable palm oil products h<strong>as</strong> finally been achieved. The principles <strong>and</strong> criteria <strong>for</strong><br />

sustainable palm oil are in the implementati<strong>on</strong> process <strong>and</strong> this year the first products are<br />

available according to the st<strong>and</strong>ards. Cognis w<strong>as</strong> the first chemical supplier in membership<br />

<strong>and</strong> is until today <strong>on</strong>e of the few. Its expertise in natural raw materials enables Cognis to<br />

develop c<strong>on</strong>cepts with its customers <strong>on</strong> how to make renewable raw materials sustainable<br />

<strong>as</strong> almost all of its raw materials from the palm tree are being sourced from RSPO<br />

members.


L2<br />

Carb<strong>on</strong>ylati<strong>on</strong> <strong>as</strong> a route to chemicals from biom<strong>as</strong>s<br />

David Cole-Hamilt<strong>on</strong>, Cristina Jimenez-Rodriguez, W. Roy Jacks<strong>on</strong>, <strong>and</strong> Yulei Zhu,<br />

University of St. Andrews, School of Chemistry, St Andrews, UK<br />

djc@st-<strong>and</strong>.ac.uk<br />

As oil stocks dwindle <strong>and</strong> become incre<strong>as</strong>ingly expensive, it will become essential to<br />

develop routes to chemicals starting from feedstocks that can be derived from plant<br />

sources. One interesting group of chemicals is the diesters. Especially desirable are the<br />

alpha-omega diesters since they are used in a wide variety of polyesters <strong>for</strong> use in pl<strong>as</strong>tic<br />

bottles, synthetic carpets <strong>and</strong> speciality pl<strong>as</strong>tics. We have been developing a range of<br />

palladium b<strong>as</strong>ed catalysts that can <strong>for</strong>m alpha-omega diesters from unsaturated esters by<br />

methoxycarb<strong>on</strong>ylati<strong>on</strong> reacti<strong>on</strong>s. When these catalysts are applied to methyl oleate,<br />

dimethyl 1,19-n<strong>on</strong>adecanedioate is <strong>for</strong>med in high selectivity. This remarkable reacti<strong>on</strong><br />

involves isomerisati<strong>on</strong> of the double b<strong>on</strong>d to the end of the chain <strong>and</strong>, <strong>on</strong>ly when it is there,<br />

is it carb<strong>on</strong>ylated. The same product is <strong>for</strong>med from methyl linoleate <strong>and</strong> methyl linolenate.<br />

Since shorter chain length diesters are often required, the group of W. R. Jacks<strong>on</strong> in<br />

M<strong>on</strong><strong>as</strong>h Australia h<strong>as</strong> coupled this isomerisati<strong>on</strong> carb<strong>on</strong>ylati<strong>on</strong> reacti<strong>on</strong> with metathesis of<br />

the original oil with butene. The metathesis shortens the chain to give an unsaturated ester<br />

which can be isomerised <strong>and</strong> carb<strong>on</strong>lyated to give shorter alpha-omega diesters. We shall<br />

discuss the nature of the catalysts <strong>and</strong> the re<strong>as</strong><strong>on</strong>s <strong>for</strong> their very specific acti<strong>on</strong>s.<br />

15


L3<br />

16<br />

Metathesis with oleochemicals: a sustainable match to obtain<br />

m<strong>on</strong>omers <strong>and</strong> polymers from renewable resources<br />

Michael A. R. Meier, University of Applied Sciences OOW, Emden, Germany<br />

michael.meier@fh-oow.de<br />

In ages of depleting fossil reserves <strong>and</strong> incre<strong>as</strong>ing emissi<strong>on</strong> of green house g<strong>as</strong>es it is<br />

obvious that the utilizati<strong>on</strong> of renewable feedstocks is <strong>on</strong>e necessary step towards a<br />

sustainable development of our future. Especially plant derived oils bear a large potential<br />

<strong>for</strong> the substituti<strong>on</strong> of currently used petrochemicals, since a variety of value added<br />

chemical intermediates can be derived from these resources in a straight<strong>for</strong>ward f<strong>as</strong>hi<strong>on</strong><br />

taking full advantage of nature's synthetic potential. Here, new approaches <strong>for</strong> the<br />

synthesis of m<strong>on</strong>omers <strong>as</strong> well <strong>as</strong> polymers from plant oils <strong>as</strong> renewable resources[1] via<br />

olefin metathesis[2,3] will be discussed. As an example, we recently showed that different<br />

chain length α,ω-diester m<strong>on</strong>omers can be obtained from plant oil derived fatty acid esters<br />

via olefin cross-metathesis[4] with methyl acrylate taking advantage of natures "synthetic<br />

pool" of fatty acids with different chain lengths <strong>and</strong> positi<strong>on</strong>s of double b<strong>on</strong>ds.[5]<br />

Similarly, we could show that the cross-metathesis with allyl chloride <strong>and</strong> other functi<strong>on</strong>al<br />

olefins allows <strong>for</strong> the synthesis of α,ω-difuncti<strong>on</strong>al compounds.[6,7] There<strong>for</strong>e, this strategy<br />

offers the possibility to introduce a variety of different functi<strong>on</strong>al groups to the ω -positi<strong>on</strong><br />

of fatty acid derivatives, thus providing valuable starting materials <strong>for</strong> a variety of<br />

polyesters <strong>and</strong> polyamides.<br />

Moreover, acyclic diene metathesis (ADMET), can be used to directly obtain<br />

macromolecules from such starting materials. The ADMET polymerizati<strong>on</strong> [8] of undecyl<br />

undecenoate, <strong>for</strong> instance, led to high molecular weight polyesters.[9] It w<strong>as</strong> possible to<br />

effciently c<strong>on</strong>trol the molecular weight of these materials <strong>and</strong> to prepare telechelics via the<br />

applicati<strong>on</strong> of m<strong>on</strong>o-functi<strong>on</strong>al chain-stoppers.[9] More interestingly, this approach can<br />

also be used to prepare ABA triblock copolymers with c<strong>on</strong>trol of the degree of<br />

polymerizati<strong>on</strong> (DP) of the B block in a single reacti<strong>on</strong> step.[9] Furthermore, if tri-functi<strong>on</strong>al<br />

m<strong>on</strong>omers in combinati<strong>on</strong> with chain stoppers are investigated the synthesis of<br />

hyperbranched polymer architectures with functi<strong>on</strong>al groups in their periphery can be<br />

achieved in a single reacti<strong>on</strong> step.[10]<br />

Acknowledgement. Financial support from the Fachagentur Nachwachsende Rohstoffe<br />

(FKZ 22026905) is kindly acknowledged.<br />

References<br />

[1] M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788.<br />

[2] R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760-3765.<br />

[3] A. Rybak, P. A. Fokou, M. A. R. Meier, Eur. J. Lipid Sci. Technol. 2008, 110, 797.<br />

[4] S. J. C<strong>on</strong>n<strong>on</strong>, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900.<br />

[5] A. Rybak, M. A. R. Meier, Green Chem. 2007, 9, 1356.<br />

[6] A. Rybak, M. A. R. Meier, Green Chem. 2008, 10, 1099.<br />

[7] T. Jacobs, A. Rybak, M. A. R. Meier, Appl. Catal., A 2009, 353, 32.<br />

[8] T. W. Baughman, K. B. Wagener, Adv. Polym. Sci. 2005, 176, 1.<br />

[9] A. Rybak, M. A. R. Meier, ChemSusChem 2008, 1, 542.<br />

[10] P. A. Fokou, M. A. R. Meier, Macromol. Rapid Commun. 2008, 29, 1620.


L4<br />

Biocatalysis in the modificati<strong>on</strong> of fats <strong>and</strong> oils <strong>for</strong> oleochemistry<br />

Uwe Bornscheuer, Institute of Biochemistry, Greifswald University, Greifswald, Germany<br />

uwe.bornscheuer@uni-greifswald.de<br />

Lip<strong>as</strong>es <strong>and</strong> related enzymes (ester<strong>as</strong>e, different phospholip<strong>as</strong>es) are currently used <strong>as</strong><br />

biocatalysts in a broad range of lipid modificati<strong>on</strong>s [1]. In this lecture, the identificati<strong>on</strong> of<br />

novel ester<strong>as</strong>es/lip<strong>as</strong>es from the metagenome will be shown highlighting the discovery of<br />

biocatalysts with certain fatty acid chain-length profiles [2]. Furthermore, methods <strong>for</strong> the<br />

identificati<strong>on</strong> <strong>and</strong> immobilizati<strong>on</strong> of desired enzymes using a microtiterplate (MTP) b<strong>as</strong>ed<br />

method [3, 4] will be presented. An example <strong>for</strong> protein engineering deals with a lip<strong>as</strong>e<br />

from Rhizopus oryzae (ROL), which w<strong>as</strong> engineered to incre<strong>as</strong>e its stability toward lipid<br />

oxidati<strong>on</strong> products such <strong>as</strong> aldehydes with the aim of improving its per<strong>for</strong>mance in<br />

oleochemical industries. Key to success w<strong>as</strong> the saturati<strong>on</strong> mutagenesis of selected Lys<br />

<strong>and</strong> His residues combined with a MTP-b<strong>as</strong>ed high-throughput screening of stable variants<br />

[5]. Furthermore, the use of i<strong>on</strong>ic liquids <strong>as</strong> media <strong>for</strong> the synthesis of sugar fatty acid<br />

esters will be covered [6].<br />

[1] Bornscheuer U.T. (Ed.) Enzymes in Lipid Modificati<strong>on</strong>, Wiley-VCH, Weinheim; Metzger,<br />

J.O., Bornscheuer, U.T. (2006), Appl. Microbiol. Biotechnol., 71, 13-22.<br />

[2] Bertram, M. Hildebr<strong>and</strong>t, P., Weiner, D.W., Patel, J. S., Bartnek, F., Hitchman, T.,<br />

Bornscheuer, U.T. (2008), J. Am. Oil Chem. Soc., 85, 47-53<br />

[3] Bertram. M., Manschot-Lawrence, C., Flöter, E., Bornscheuer, U.T. (2007) Eur. J. Lipid<br />

Sci. Technol., 109, 180-185<br />

[4] Br<strong>and</strong>t, B., Hidalgo, A., Bornscheuer, U.T. (2006), Biotech. J., 1, 582-587.<br />

[5] DiLorenzo, M., Hidalgo, A., Molina, R., Hermoso, J.A., Pirozzi, D., Bornscheuer, U.T.<br />

(2007), Appl. Envir<strong>on</strong>m. Microbiol. 73, 7291-7299.<br />

[6] Ganske, F., Bornscheuer, U.T. (2005), J. Mol. Catal. B: Enzym., 36, 40-42; Ganske, F.,<br />

Bornscheuer, U.T. (2005), Org. Lett., 7, 3097-3098.<br />

17


L5<br />

18<br />

Catalytic Functi<strong>on</strong>alisati<strong>on</strong> of Fatty Compounds<br />

Jessica Pérez Gomes, <strong>and</strong> Arno Behr, Chair of Technical Chemistry A, Technical<br />

University Dortmund, Dortmund, Germany<br />

Arno.Behr@bci.tu-dortmund.de<br />

Every year the chemical industry uses about 250 milli<strong>on</strong> t<strong>on</strong>s of resources <strong>for</strong> the<br />

producti<strong>on</strong> of organic chemicals. Only 20 milli<strong>on</strong>s t<strong>on</strong>s, that means <strong>on</strong>ly 8-10 %, are b<strong>as</strong>ed<br />

<strong>on</strong> renewable resources, especially <strong>on</strong> fat <strong>and</strong> oils. This c<strong>on</strong>tributi<strong>on</strong> gives a short<br />

overview about the numerous possibilities to functi<strong>on</strong>alise fatty compounds via<br />

homogeneous transiti<strong>on</strong> metal catalysis.<br />

Unsaturated fatty compounds c<strong>on</strong>tain <strong>on</strong>e or more C=C-double b<strong>on</strong>ds which can be<br />

e<strong>as</strong>ily functi<strong>on</strong>alised via coordinati<strong>on</strong> to transiti<strong>on</strong> metal complexes [1]. Some important<br />

examples of these functi<strong>on</strong>alisati<strong>on</strong>s are epoxidati<strong>on</strong>s, dihydroxylati<strong>on</strong>s, oxidative<br />

cleavage reacti<strong>on</strong>s, hydrosilylati<strong>on</strong>s [2-3], hydro<strong>for</strong>mylati<strong>on</strong>s [4] <strong>and</strong><br />

hydroaminomethylati<strong>on</strong>s [5]. Thus new carb<strong>on</strong>-oxygen-, carb<strong>on</strong>-silic<strong>on</strong>-, carb<strong>on</strong>-carb<strong>on</strong>-<br />

<strong>and</strong> carb<strong>on</strong>-nitrogen-b<strong>on</strong>ds can be <strong>for</strong>med yielding a broad spectrum of chemical<br />

compounds with new properties <strong>and</strong> new applicati<strong>on</strong>s. Further important examples are the<br />

rhodium-catalysed cooligomerisati<strong>on</strong>s [6-7] or the ruthenium-catalysed metathesis of fatty<br />

compounds with alkenes.<br />

If fats <strong>and</strong> oils are transesterified with methanol glycerol is <strong>for</strong>med <strong>as</strong> an important byproduct<br />

in oleochemistry. A great number of applicati<strong>on</strong>s of glycerol are well known, however,<br />

the raising amounts of glycerol because of the enormous producti<strong>on</strong> of biodiesel can<br />

not be put into the market. There<strong>for</strong>e new reacti<strong>on</strong>s are needed to trans<strong>for</strong>m glycerol into<br />

new products with new markets. Once again, homogeneous catalysis offers interesting<br />

possibilities [8-9]: Via catalytic oxidati<strong>on</strong>s glycerol acid or dihydroxyacet<strong>on</strong>e can be <strong>for</strong>med.<br />

Dehydratisati<strong>on</strong> yields acrolein which is further oxidised to acrylic acid. Further follow-up<br />

products of glycerol are <strong>for</strong> instance propanediols, epichlorohydrine, glycerol dimers or<br />

trimers, glycerol carb<strong>on</strong>ate, glycerol acetals or ketals. Another important group of<br />

chemicals are the glycerol ethers, <strong>for</strong> instance the glycerol tertiary butyl ethers [10] or the<br />

telomers of glycerol [11-14].<br />

____________<br />

References<br />

1. Behr, A.; Westfechtel, A.; Perez Gomes, J; Chemical Engineering <strong>and</strong> Technology, 2008, 31, 700.<br />

2. Behr, A.; Naendrup, F.; Obst, D.; Eur. J. Lipid Sci. Technol., 2002, 104, 161.<br />

3. Behr, A.; Naendrup, F.; Obst, D.; Adv. Synth. Catal., 2002, 344, 1142<br />

4. Behr, A.; Obst, D.; Westfechtel, A.: Eur. J. Lipid Sci. Technol., 2005, 107, 213.<br />

5. Behr, A. et al.; Eur. J. Lipid Sci. Technol., 2000, 102, 467<br />

6. Behr, A.; Fängewisch, C.; J. Mol. Catal A: Chem, 2003, 197, 115<br />

7. Behr, A.; Miao, Q.; J. Mol. Catal A: Chem, 2004, 222, 127<br />

8. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F.; Green Chem., 2008, 10, 13.<br />

9. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F.; Chemistry Today, 2008, 26, 32<br />

10. Behr, A.; Obendorf, L.; Eng. Life Sci., 2003, 2, 185<br />

11. Behr, A.; Urschey, M.; Adv. Synth. Catal., 2003, 345, 1242<br />

12. Behr, A.; Leschinski, J.; Green Chem., 2009, in print<br />

13. Behr, A.: Leschinski, J.; Awungacha, C.; Simic, S.; Knoth, T.; ChemSusChem, 2009,<br />

DOI:10.1002/cssc.200800197<br />

14. Behr, A.; Leschinski, J.; Prinz, A.; Stoffers, M.; Chem. Eng. Proc., submitted


L6<br />

Oxidati<strong>on</strong> of tensidic alcohols to their corresp<strong>on</strong>ding carboxylic<br />

acids via Au- <strong>and</strong> AuPt-catalysts<br />

Ulf Prüße, Katharina Heidkamp, Nadine Decker, Kerstin Martens, Klaus-Dieter Vorlop<br />

Johann Heirich v<strong>on</strong> Thünen-Institut (vTI), Oliver Franke, Achim Stankowiak, Clariant<br />

Deutschl<strong>and</strong>; ulf.pruesse@vti.bund.de<br />

Reducing the use of envir<strong>on</strong>mentally hazardous chemicals in industrial processes plays a<br />

key role in the science of catalysis. Particularly the liquid-ph<strong>as</strong>e oxidati<strong>on</strong> of tensidic<br />

alcohols to the corresp<strong>on</strong>ding carboxylic acids holds a great potential <strong>for</strong> improvement<br />

towards a “greener” process. Currently ether carboxylic acids are either synthesized via<br />

Williams<strong>on</strong>’s ether-synthesis using chloroacetic acid derivatives. Incomplete c<strong>on</strong>versi<strong>on</strong><br />

<strong>and</strong> c<strong>on</strong>sequential excess use of chloroacetic acid lead to impurities (e.g. educt residues<br />

<strong>and</strong> by-products) which accelerate the deteriorati<strong>on</strong> of the acid <strong>and</strong> impair its solubility. Or<br />

they can be produced by oxidising the corresp<strong>on</strong>ding alcohol with dioxygen using<br />

supported Pt- or Pd- catalysts. However, difficulties such <strong>as</strong> metal leaching <strong>and</strong> incomplete<br />

c<strong>on</strong>versi<strong>on</strong> may occur during this process. Our research group is first to develop <strong>and</strong><br />

employ m<strong>on</strong>o- <strong>and</strong> bimetallic Au-catalysts <strong>for</strong> the liquid-ph<strong>as</strong>e oxidati<strong>on</strong> of fatty alcohol<br />

ethoxylates <strong>and</strong> related model compounds, i.e. alkyl ethoxylates <strong>and</strong> ethoxylates, to their<br />

corresp<strong>on</strong>ding carboxylic acid.<br />

Several preparati<strong>on</strong> methods, catalyst supports <strong>and</strong> Au-Pt-ratios (<strong>for</strong> bimetallic catalysts)<br />

were screened. For all model compounds m<strong>on</strong>ometallic Au-catalysts featured a selectivity<br />

of 100 % to the carboxylic acid. Maintaining total selectivity, the activity could be incre<strong>as</strong>ed<br />

significantly by using a bimetallic Au-Pt-catalyst with a gold: platinum ratio of 90:10. Thus,<br />

<strong>for</strong> comparable reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s our catalyst w<strong>as</strong> ten times <strong>as</strong> active <strong>as</strong> a Pt-catalyst.<br />

The experiments were carried out at elevated pressures (5-30 bar) in thermostatted<br />

stainless steel autoclaves at c<strong>on</strong>stant pH (9 -11). Variati<strong>on</strong> of reacti<strong>on</strong> parameters <strong>and</strong><br />

kinetic studies revealed a dependency of the activity <strong>on</strong> temperature (80 – 130 °C), oxygen<br />

pressure, pH-value <strong>and</strong> educt c<strong>on</strong>centrati<strong>on</strong> (5 – 80 %) – all of which do not affect the<br />

selectivity.<br />

The reacti<strong>on</strong> mechanism should be identical <strong>for</strong> all model compounds. However, during<br />

the oxidati<strong>on</strong> of certain fatty alcohol ethoxylates with m<strong>on</strong>ometallic Au-catalysts<br />

intermediate metal leaching occurs. This phenomen<strong>on</strong> does not arise with the other two<br />

model compounds. Preliminary results suggest that metal leaching can be reduced<br />

c<strong>on</strong>siderably by employing bimetallic catalysts with a proper Au-Pt-ratio.<br />

19


L7<br />

20<br />

Plant oils <strong>as</strong> precursors of N-c<strong>on</strong>taining compounds<br />

via alkene metathesis<br />

Christian Bruneau, Pierre H. Dixneuf, Raluca Malacea Cédric Fischmeister, <strong>and</strong> Xiaowei<br />

Miao<br />

Institut Sciences Chimiques de Rennes - Catalyse et Organométalliques,<br />

UMR 6226 CNRS-Université de Rennes 1, 35042 Rennes cedex. France<br />

pierre.dixneuf@univ-rennes1.fr<br />

Plant oils, the known precursors of a variety of unsaturated acid derivatives have also the<br />

potential to produce, by acti<strong>on</strong> of alkene metathesis catalysis, new intermediates useful <strong>for</strong><br />

chemical industry, from renewable materials.<br />

The cross-metathesis, promoted by selected ruthenium catalysts, of unsaturated esters,<br />

acids <strong>and</strong> other oil derivatives with acryl<strong>on</strong>itrile <strong>and</strong> fumar<strong>on</strong>itrile will be presented [1]<br />

Z or Z Z<br />

CN<br />

+<br />

or NC<br />

CN<br />

Ru Cat<br />

The <strong>for</strong>med bifuncti<strong>on</strong>al compounds are thus the precursors of linear aminoacids <strong>and</strong> thus<br />

polyamides.<br />

[1] R. Malacea et al, Green Chem., 2009, in press<br />

Z<br />

CN


L8<br />

Phytomining of plant enzymes <strong>for</strong> biotechnological use of fats <strong>and</strong> oils<br />

Andre<strong>as</strong> Müller, <strong>and</strong> Guido Jach, Phytowelt GreenTechnologies GmbH, Nettetal, Germany<br />

a.mueller@phytowelt.com<br />

Human history is closely linked to the use of plants <strong>as</strong> valuable sources <strong>for</strong> nutriti<strong>on</strong>,<br />

commodities <strong>and</strong> energy <strong>as</strong> well <strong>as</strong> a multitude of raw materials, such <strong>as</strong> fats, oils <strong>and</strong><br />

natural polymers like cellulose or starch. However, <strong>on</strong>ly recently have we come to see<br />

plants <strong>as</strong> a cornerst<strong>on</strong>e of sustainable industry by exploiting lead structures <strong>and</strong><br />

biosynthetic pathways <strong>for</strong> the modificati<strong>on</strong> of plant derived, renewable resources.<br />

Plant derived fats <strong>and</strong> oils are already used by the Chemical Industry <strong>as</strong> renewable<br />

feedstock <strong>and</strong> unsaturated fatty acids, often found in plant oils, represent well suited raw<br />

materials <strong>for</strong> the producti<strong>on</strong> of polymers, pl<strong>as</strong>ticizer <strong>and</strong> lubricants. Doubtlessly, the wealth<br />

of plant biosynthetic pathways makes plants an attractive source <strong>for</strong> f<strong>as</strong>cinating new<br />

enzymes <strong>for</strong> fat <strong>and</strong> oil modificati<strong>on</strong> <strong>and</strong> biotechnological applicati<strong>on</strong>s. Use of plant<br />

enzyme <strong>and</strong> compounds in industrial biotechnology offers new means to address/reach<br />

energy savings <strong>and</strong> incre<strong>as</strong>es of efficiency <strong>and</strong> sustainability by reducing the number of<br />

steps in processing chains, <strong>for</strong> example.<br />

Phytowelt GreenTechnologies GmbH excels enzyme discovery via phytomining, a<br />

combinatory high c<strong>on</strong>tent approach. Our four step integrative approach aims to incre<strong>as</strong>e<br />

the efficiency of current producti<strong>on</strong> processes, e.g. by complementing microbial producti<strong>on</strong><br />

lines with a suitable gene, or implementing completely new <strong>and</strong> innovative fermentati<strong>on</strong><br />

processes. Phytowelt’s approach unlocks the huge potential of plant biodiversity.<br />

Phytowelt’s presentati<strong>on</strong> will introduce its phytomining plat<strong>for</strong>m <strong>and</strong> the power of (plant)<br />

enzymes. Examples <strong>for</strong> the applicati<strong>on</strong> of plant enzymes will be given.<br />

21


L9<br />

22<br />

Rati<strong>on</strong>al design of solid catalysts <strong>for</strong> selective glycerol activati<strong>on</strong>s<br />

François Jerome, <strong>and</strong> Joel Barrault, CNRS/LACCO, Poitiers, France<br />

joel.barrault@univ-poitiers.fr<br />

With the aim of finding soluti<strong>on</strong>s to the disappearance of fossil raw materials,<br />

scientists focused their attenti<strong>on</strong> towards the use of natural products. However, these<br />

products are in most c<strong>as</strong>es polyfuncti<strong>on</strong>al <strong>and</strong> their trans<strong>for</strong>mati<strong>on</strong>s require the close<br />

c<strong>on</strong>trol of the chemio- <strong>and</strong>/or regio- <strong>and</strong>/or enantioselectivity of processes. To overcome<br />

these problems, catalysis w<strong>as</strong> expected to play a pivotal role by offering to chemists useful<br />

tools <strong>for</strong> per<strong>for</strong>ming selective trans<strong>for</strong>mati<strong>on</strong>s of renewables to high added value<br />

chemicals. Recent studies clearly showed that inorganic solid supports can directly <strong>and</strong><br />

positively impact <strong>on</strong> the reacti<strong>on</strong> selectivity.<br />

Development of new catalysts with c<strong>on</strong>trolled distributi<strong>on</strong> of active sites is probably<br />

<strong>on</strong>e of the most f<strong>as</strong>cinating examples. But a c<strong>on</strong>trol of the hydrophilicity of catalytic<br />

surfaces is also an important parameter. Playing with the hydrophilic properties of the<br />

catalyst surface, we found that it w<strong>as</strong> possible to limit a lot of sec<strong>on</strong>dary reacti<strong>on</strong>s allowing<br />

us to trans<strong>for</strong>m glycerol with yields <strong>and</strong> selectivities higher than those obtained with<br />

homogeneous <strong>and</strong> usual solid acid or b<strong>as</strong>ic catalysts.


L10<br />

Acid-catalysed rearrangement of fatty epoxides: perspectives in<br />

applicati<strong>on</strong> of acid sap<strong>on</strong>ites<br />

Matteo Guidotti, Nicoletta Rav<strong>as</strong>io, Rinaldo Psaro, Maila Sgobba, Chiara Bisio, Fabio<br />

Carniato, <strong>and</strong> Le<strong>on</strong>ardo Marchese, CNR-ISTM, Milan, Italy<br />

m.guidotti@istm.cnr.it<br />

The ring opening of epoxidized fatty acid derivatives is a valuable trans<strong>for</strong>mati<strong>on</strong> <strong>for</strong> the<br />

producti<strong>on</strong> of compounds functi<strong>on</strong>alized <strong>on</strong> the alkyl chain. Rearranged epoxides could<br />

find applicati<strong>on</strong>s <strong>as</strong> precursors of biopolymers, lubricants, polyurethane foams <strong>and</strong> c<strong>as</strong>ting<br />

resins.<br />

A two-step process, starting from fatty acid methyl esters <strong>and</strong> b<strong>as</strong>ed uniquely <strong>on</strong><br />

heterogeneous <strong>and</strong> e<strong>as</strong>ily recoverable catalysts, is here proposed. The FAME methyl<br />

oleate is epoxidized in liquid ph<strong>as</strong>e with tert-butylhydroperoxide in batch reactor over Tigrafted<br />

MCM-41. The trans<strong>for</strong>mati<strong>on</strong> is optimized <strong>and</strong> the c<strong>on</strong>versi<strong>on</strong> attains >90% after<br />

24 h, with selectivity >95% to methyl 9,10-epoxystearate. After separati<strong>on</strong> of the organic<br />

product from the solid Ti-catalyst, the ring opening of the epoxidized fatty ester is<br />

per<strong>for</strong>med in the presence of a prot<strong>on</strong>ic acidic sap<strong>on</strong>ite clay, obtained by exchanging a<br />

synthetic Na+ sap<strong>on</strong>ite in aqueous HCl soluti<strong>on</strong>s at different c<strong>on</strong>centrati<strong>on</strong>s. The catalytic<br />

results <strong>for</strong> the nucleophilic additi<strong>on</strong> of methanol to methyl epoxystearate show the good<br />

per<strong>for</strong>mance of different acid sap<strong>on</strong>ites in terms of activity. The sap<strong>on</strong>ite catalysts were<br />

also compared with other widely used heterogeneous systems, such <strong>as</strong> mesoporous<br />

ordered aluminosilicate Al-SBA-15 <strong>and</strong> a prot<strong>on</strong>ic Beta zeolite (H-BEA). Prot<strong>on</strong>ic sap<strong>on</strong>ites<br />

showed better results than H2SO4 too (0.45 mmol g -1 ), the typical industrial catalyst <strong>for</strong> this<br />

reacti<strong>on</strong>.<br />

The best result is obtained over the prot<strong>on</strong>ic sap<strong>on</strong>ite prepared with a mild pretreatment<br />

(i<strong>on</strong> exchange in aq. 0.01 M HCl): with methanol, after 5 min, 90% of the epoxide is readily<br />

c<strong>on</strong>verted into Me-methoxyhydroxystearate <strong>and</strong> Me-oxostearate.<br />

23


L11<br />

Fatty acids: safe <strong>and</strong> versatile building blocks <strong>for</strong> the chemical industry<br />

24<br />

Peter Tollingt<strong>on</strong>, Croda, Gouda, The Netherl<strong>and</strong>s<br />

peter.tollingt<strong>on</strong>@croda.com<br />

Fatty acids are b<strong>as</strong>is ingredients <strong>for</strong> a wide range of c<strong>on</strong>sumer <strong>and</strong> technical products, <strong>for</strong><br />

which they provide properties <strong>and</strong> benefits not readily or ec<strong>on</strong>omically achieved using<br />

mineral-derived sources.<br />

They can c<strong>on</strong>tribute to the development of a more sustainable, biob<strong>as</strong>ed ec<strong>on</strong>omy –not<br />

<strong>on</strong>ly through their inherent natural b<strong>as</strong>is, but also through the ability of the fatty acid<br />

producers to h<strong>and</strong>le a wide range of technical/n<strong>on</strong>-edible oil <strong>and</strong> fat sources <strong>and</strong> to make<br />

from them high quality, well-defined materials <strong>for</strong> value-added <strong>on</strong>ward applicati<strong>on</strong>.<br />

Furthermore, the natural mixtures can be readily purified <strong>and</strong> separated to yield end<br />

products with precise functi<strong>on</strong>ality <strong>and</strong> properties, distinct from those of the parent<br />

triglyceride compositi<strong>on</strong>s.<br />

This talk will outline the processing <strong>and</strong> chemistry of fatty acids, <strong>and</strong> illustrate their<br />

versatility <strong>as</strong> b<strong>as</strong>ic building blocks with two c<strong>on</strong>temporary examples ; development of a<br />

synthetic oleochemical wax, <strong>and</strong> (the properties <strong>and</strong> benefits provided by) polymerised<br />

fatty acids in a solvent-free coating.


L12<br />

Lipids <strong>and</strong> Lip<strong>as</strong>es - Combinati<strong>on</strong> Products From <strong>Renewable</strong>s<br />

Manfred P. Schneider, Matthi<strong>as</strong> Berger, Kurt E. Laumen, Guido Machmüller, Stefan<br />

Müller, <strong>and</strong> Claudia Waldinger, University of Wuppertal, Wuppertal, Germany<br />

schneid@uni-wuppertal.de<br />

Agricultural crops represent a c<strong>on</strong>siderable reservoir of useful <strong>and</strong> low cost raw materials<br />

like fats <strong>and</strong> oils, plant proteins <strong>and</strong> carbohydrates. By selective combinati<strong>on</strong> of their<br />

molecular c<strong>on</strong>stituents (e.g. fatty acids, glycerol, amino acids, m<strong>on</strong>o- <strong>and</strong> disaccharides,<br />

amino sugars etc.) a wide variety of surface active materials can be prepared, all of them -<br />

due to their molecular structures - being potentially highly biodegradable.<br />

Lip<strong>as</strong>es are well established biocatalysts <strong>for</strong> the selective <strong>for</strong>mati<strong>on</strong> of ester <strong>and</strong> amide<br />

b<strong>on</strong>ds <strong>and</strong> thus ideally suited <strong>for</strong> the preparati<strong>on</strong> of combinati<strong>on</strong> products with surface<br />

active properties such <strong>as</strong> partial glycerides, N-acylated amino acids <strong>and</strong> sugar esters. A<br />

comm<strong>on</strong> problem <strong>as</strong>sociated with enzymatic acylati<strong>on</strong>s of hydrophilic materials in<br />

hydrophobic aprotic organic solvents is the low solubility of the above substrates in such<br />

media. C<strong>on</strong>sequently, practical soluti<strong>on</strong>s had to be developed in order to obtain acceptable<br />

yields. Using a) immobilizati<strong>on</strong>s <strong>on</strong> solid supports, b) supersaturated soluti<strong>on</strong>s <strong>and</strong> c)<br />

temporary protecti<strong>on</strong> groups acceptable results were achieved in most c<strong>as</strong>es. In the<br />

lecture examples <strong>for</strong> the preparati<strong>on</strong> of the above product lines will be discussed, this also<br />

in c<strong>on</strong>text with similar activities in other research groups.<br />

25


L13<br />

O-Acylated Hydroxy carboxylic acid anhydrides: Novel Building Blocks<br />

<strong>for</strong> Surfactants <strong>and</strong> Emulsifiers<br />

Bernd Jakob, Hans-Josef Altenbach, Manfred Schneider, Karsten Lange, Rachid Ihizane,<br />

Zeynep Ylmaz, <strong>and</strong> Sukhendu N<strong>and</strong>i, University of Wuppertal, Wuppertal, Germany<br />

bjakob@uni-wuppertal.de<br />

We recently discovered that hydroxy carboxylic acids like malic, tartaric <strong>and</strong> citric acid can<br />

be c<strong>on</strong>verted in <strong>on</strong>e step <strong>and</strong> quantitatively into the title compounds by reacting them with<br />

fatty acid chlorides. The title compounds are excellent electrophiles <strong>for</strong> ring opening<br />

reacti<strong>on</strong>s with a broad variety of nucleophiles – also frequently from renewable resources -<br />

such <strong>as</strong> alcohols, carbohydrates, amines, amino acids <strong>and</strong> amino sugars. This way a wide<br />

variety of novel surface active compounds are obtained, many of which turned out to be<br />

interesting (useful) surfactants <strong>and</strong>/or emulsifiers <strong>for</strong> applicati<strong>on</strong>s in cosmetics, <strong>as</strong> food<br />

additives <strong>and</strong> <strong>for</strong> a variety of industrial processes. In the lecture we describe a) the<br />

preparati<strong>on</strong> of these materials, b) their surface active properties c) antimicrobial activities.<br />

26


L14<br />

Biocompatible surfactants from renewable hydrophiles<br />

Maria Rosa Infante, Lourdes Perez, MCarmen Moran, Ram<strong>on</strong> P<strong>on</strong>s, <strong>and</strong> Aurora Pinazo,<br />

IQAC - CSIC, Barcel<strong>on</strong>a, Spain<br />

rimste@cid.csic.es<br />

There is today a str<strong>on</strong>g trend to replace c<strong>on</strong>venti<strong>on</strong>al surfactants with more<br />

envir<strong>on</strong>mentally benign compounds. Manufacturers <strong>and</strong> c<strong>on</strong>sumers dem<strong>and</strong> <strong>for</strong> novel<br />

envir<strong>on</strong>mentally friendly surfactants from renewable resources produced by clean <strong>and</strong><br />

sustainable technologies (bio-b<strong>as</strong>ed surfactants). The challenge is to find molecules which<br />

meet mild, biodegradability, <strong>as</strong> well <strong>as</strong> per<strong>for</strong>mance <strong>and</strong> cost benefit requirements. The<br />

use of hydrophilic renewable raw materials to prepare novel “natural” surfactants is an<br />

exciting <strong>and</strong> attractive research activity to c<strong>on</strong>ciliate the sustainable issues with the<br />

industrial development. In this talk we will describe significant advances have been made<br />

in the field of surfactants derived from hydrophilic sources: lysine <strong>and</strong> arginine.<br />

27


L15<br />

28<br />

Gemini-Tensides <strong>and</strong> I<strong>on</strong> Channels from Fatty acids<br />

Markus Dierker <strong>and</strong> Hans J. Schäfer, Organisch-Chemisches Institut der Universität<br />

Münster, Münster, Germany<br />

schafeh@uni-muenster.de<br />

Nature provides in fatty acids a raw material of high synthetic value. Fatty acids are even<br />

numbered carboxylic acids with 12 to 24 carb<strong>on</strong> atoms <strong>and</strong> an unbranched alkyl chain that<br />

bears <strong>on</strong>e to several - mostly Z-c<strong>on</strong>figurated - double b<strong>on</strong>ds <strong>and</strong> hydroxy groups in<br />

distinct positi<strong>on</strong>s.<br />

A variety of efficient synthetic c<strong>on</strong>versi<strong>on</strong>s h<strong>as</strong> been reported <strong>for</strong> fatty acids [1]. These<br />

comprise C,C-b<strong>on</strong>d <strong>for</strong>mati<strong>on</strong>s <strong>and</strong> functi<strong>on</strong>al group interc<strong>on</strong>versi<strong>on</strong>s. There are<br />

substituti<strong>on</strong>s of CH-b<strong>on</strong>ds in ω- <strong>and</strong> ω-1-positi<strong>on</strong>, in allylic positi<strong>on</strong> or adjacent to a<br />

carb<strong>on</strong>yl group. Described are furthermore electrophilic, radical, nucleophilic additi<strong>on</strong>s,<br />

cycloadditi<strong>on</strong>s, metathesis, <strong>for</strong>mati<strong>on</strong> of triple b<strong>on</strong>ds <strong>and</strong> their c<strong>on</strong>versi<strong>on</strong>. Carb<strong>on</strong> atoms<br />

adjacent to the carboxyl group can be subjected to radical coupling <strong>and</strong> additi<strong>on</strong> by way of<br />

electrochemical decarboxylati<strong>on</strong>.<br />

Higher value products have been obtained by us by combining the amphiphilic nature of<br />

the fatty acid with bioactive groups [2], carbohydrates [3], dyes [4], corrosi<strong>on</strong> inhibitors [4],<br />

antioxidants [5] <strong>and</strong> <strong>as</strong> organogels [6] or i<strong>on</strong> channels [7].<br />

Tensides are surface active compounds <strong>for</strong> which the amphiphilic nature of fatty acids<br />

provides excellent prec<strong>on</strong>diti<strong>on</strong>s. For applicati<strong>on</strong>s of domestic oils <strong>as</strong> tensides the<br />

hydrophilic properties of C18 to C22 fatty acids have to be incre<strong>as</strong>ed. We report here <strong>on</strong><br />

Gemini-tensides obtained by attaching two polar groups to the double b<strong>on</strong>d of oleic acid,<br />

erucic acid <strong>and</strong> petroselinic acid [8]. Polar groups are ethoxylates, carbohydrates, sulfates<br />

<strong>and</strong> phosphates.<br />

The tensidic properties of the compounds <strong>as</strong> water solubility, decre<strong>as</strong>e of the surface<br />

tensi<strong>on</strong>, critical micelle c<strong>on</strong>centrati<strong>on</strong>, interfacial tensi<strong>on</strong> <strong>and</strong> foaming behaviour are<br />

reported <strong>and</strong> compared with these from lauric oils.<br />

The 9,10-bis(methylethyleneglycol) adduct to methyl oleate turned out to be an artificial i<strong>on</strong><br />

channel. The activity w<strong>as</strong> determined by me<strong>as</strong>urements of the acid induced fluorescence<br />

decay in vesicles <strong>and</strong> i<strong>on</strong> c<strong>on</strong>ductance of single channels in lipid membranes. The i<strong>on</strong><br />

c<strong>on</strong>ductivity is comparable to this of the natural i<strong>on</strong> channel <strong>for</strong>ming compound:<br />

gramicidine. As gramicidine the synthetic channels exhibit an antibiotic acitivtity against<br />

Gram-positive <strong>and</strong> Gram-negative microorganisms.<br />

[1] U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller, J. O. Metzger, M. Rüsch<br />

gen. Kla<strong>as</strong>, H.J. Schäfer, M.P. Schneider, Angew. Chem. 2000, 29, 2206.<br />

[2] C. Kalk, Dissertati<strong>on</strong>, Universität Münster 2001.<br />

[3] A. Weiper, H.J. Schäfer, Angew. Chem. 1990, 29, 195<br />

[4] G. Feldmann, H. J. Schäfer, Oleagineux Corps gr<strong>as</strong> Lipides 2001, 8, 60.<br />

[5] C. Kalk, H. J. Schäfer, Oleagineux Corps gr<strong>as</strong> Lipides 2001, 8, 89.<br />

[6] K. Dreger, Dissertati<strong>on</strong>, Universität Münster, 2004.<br />

[7] T. Renkes, H. J. Schäfer, P. M. Siemens, E. Neumann, Angew. Chem. 2000, 39, 2512.<br />

[8] M. Dierker, Dissertati<strong>on</strong>, Universität Münster 2000.


L16<br />

Aliphatic ß-Chlorovinylaldehydes <strong>as</strong> versatile building blocks in<br />

syntheses of heterocycles<br />

Annett Fuchs, Dieter Greif, <strong>and</strong> Melanie Kellermann, University of Applied Sciences,<br />

Zittau, Germany<br />

a.fuchs@hs-zigr.de<br />

Aliphatic ß-chlorovinylaldehydes are readily prepared from alkyl methyl ket<strong>on</strong>es using<br />

Vilsmeier-Haack-Arnold reacti<strong>on</strong>.<br />

Alkyl<br />

O<br />

CH 3<br />

DMF/POCl 3<br />

A survey of the literature often shows complex reacti<strong>on</strong>s by great expending time <strong>and</strong><br />

resources <strong>for</strong> getting aliphatic substituted heterocycles. On the other h<strong>and</strong> such<br />

compounds can e<strong>as</strong>ily synthesize from ß-chlorovinylaldehydes by reacti<strong>on</strong> with O-, N- <strong>and</strong><br />

S-nucleophiles. So we synthesized a variety of heterocyclic systems like isothiazoles,<br />

pyrazoles, quinolines, isoxazoles, thiophenes <strong>and</strong> pyrimidines.<br />

H 3C<br />

Alkyl<br />

S<br />

N<br />

N<br />

EtO<br />

O<br />

Alkyl<br />

CH 3<br />

S<br />

Alkyl<br />

CH 3<br />

Alkyl<br />

H 3C<br />

N<br />

Alkyl<br />

H2N N CH3 A survey of the literature let us expect that these compounds have a broad spectrum of<br />

useful biologically activity. With this research we look <strong>for</strong> new applicati<strong>on</strong>s of fatty<br />

renewable materials in the matter of fine chemicals. It is also of interest that aliphatic ß<br />

chlorovinylaldehydes show a different reacti<strong>on</strong> behavior compared with those described in<br />

the literature.<br />

CHO<br />

Cl<br />

Alkyl<br />

Cl<br />

CHO<br />

Alkyl<br />

CH 3<br />

H 3C<br />

Alkyl<br />

H 3C<br />

H 3C<br />

Alkyl<br />

Alkyl<br />

O<br />

N<br />

N<br />

N<br />

Ph<br />

N<br />

H<br />

O<br />

CH 3<br />

N<br />

N<br />

29


L17<br />

30<br />

Calendula Oil <strong>as</strong> Paint Additive<br />

Ursula Biermann (a), Werner Butte (a), Ralf Holtgrefe (b), Willi Feder (b), <strong>and</strong> Jürgen O.<br />

Metzger (a), (a) University of Oldenburg, Oldenburg, Germany, (b) bio pin, Jever,<br />

Germany; ursula.biermann@uni-oldenburg.de<br />

During the l<strong>as</strong>t few years modern synthetic methods have been applied extensively to fatty<br />

compounds <strong>for</strong> the selective functi<strong>on</strong>alizati<strong>on</strong> of the C,C-double b<strong>on</strong>d of unsaturated fatty<br />

compounds <strong>and</strong> gave a large number of novel fatty compounds from which interesting<br />

properties are expected.[1] Presently our interest is focused to plant oils c<strong>on</strong>taining<br />

unsaturated fatty acids with a highly reactive hexatriene system such <strong>as</strong> calendula oil <strong>and</strong><br />

tung oil. The latter – obtained from the nuts of the tung oil tree - is a drying oil <strong>and</strong> is used<br />

<strong>for</strong> a number of products including varnish, resins, inks, paints <strong>and</strong> coatings. Similar<br />

properties are expected from calendula oil. Octadec-8,10-trans-12-cis-trienoic acid<br />

(calendic acid) is the main fatty acid (ca. 60%) in the seed oil of calendula officinalis. We<br />

obtained calendic acid esters from the native oil by a simple transesterificati<strong>on</strong> method<br />

using alcohols, i.e. methanol, ethanol or isopropanol <strong>and</strong> sodium methoxide <strong>as</strong> catalyst.<br />

The solvent-free Diels-Alder reacti<strong>on</strong> of methyl calendulate <strong>and</strong> maleic anhydride gave<br />

exclusively <strong>on</strong>e highly functi<strong>on</strong>alized cycloadditi<strong>on</strong> product in 78% yield. The endo-8,12cycloadditi<strong>on</strong><br />

product w<strong>as</strong> <strong>for</strong>med with high regio- <strong>and</strong> stereoselectivity.[2] The reacti<strong>on</strong><br />

can be applied to the native oil <strong>as</strong> well.<br />

In a patent by DSM methyl calendulate is described <strong>as</strong> a very efficient reactive diluent.[3]<br />

In additi<strong>on</strong> to this we obtained even better results <strong>for</strong> ethyl <strong>and</strong> isopropyl calendulate <strong>as</strong><br />

reactive diluent showing low viscosity <strong>and</strong> good drying properties.<br />

In special applicati<strong>on</strong>s e.g. in coating material used in the outskirt area the substituti<strong>on</strong> of<br />

tung oil should be possible by calendula oil.<br />

[1] U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller, J.O. Metzger, M. Rüsch gen.<br />

Kla<strong>as</strong>, H.J. Schäfer, M.P. Schneider, Angew. Chem., 2000, 112, 2292-2310, Angew.<br />

Chem. Int. Ed. 2000, 39, 2206-2224.<br />

[2] U. Biermann, W. Butte, T. Eren, D. Ha<strong>as</strong>e, J. O. Metzger, "Diels–Alder Reacti<strong>on</strong>s with<br />

C<strong>on</strong>jugated Triene Fatty Acid Esters", Eur. J. Org. Chem., 2007, 3859–3862.<br />

[3] Z. Theodorus, DSM NV (NL): EP0685543, 1995.


L18<br />

Crops: A Green Approach toward Self-Assembled Soft Materials<br />

George John, City College of City University of New York,<br />

New York, USA<br />

john@sci.ccny.cuny.edu<br />

This talk presents novel <strong>and</strong> emerging c<strong>on</strong>cept of generating various <strong>for</strong>ms of soft<br />

materials from renewable resources. In future research, developing soft nanomaterials<br />

from renewable resources (an alternative feedstock) would be f<strong>as</strong>cinating yet dem<strong>and</strong>ing<br />

practice, which will have direct impact <strong>on</strong> industrial applicati<strong>on</strong>s, <strong>and</strong> ec<strong>on</strong>omically viable<br />

alternatives. Our c<strong>on</strong>tinuous ef<strong>for</strong>ts in this area led us to develop new glycolipids from<br />

industrial byproducts such <strong>as</strong> c<strong>as</strong>hew-nut-shell-liquid, which up<strong>on</strong> self-<strong>as</strong>sembly produced<br />

soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecularweight<br />

gels <strong>and</strong> liquid crystals. More recently, we have developed multiple systems b<strong>as</strong>ed<br />

<strong>on</strong> biob<strong>as</strong>ed organic synthesis by chemical/biocatalytic methods <strong>for</strong> functi<strong>on</strong>al<br />

applicati<strong>on</strong>s. We used the ‘chiral pool’ of carbohydrates using the selectivity of enzyme<br />

catalysis yield amphiphilic products from biob<strong>as</strong>ed feedstock including amygdalin,<br />

trehalose <strong>and</strong> vitamin-C. Amygdalin amphiphiles showed unique gelati<strong>on</strong> behaviour in a<br />

broad range of solvents such <strong>as</strong> n<strong>on</strong>-polar hexanes to polar aqueous soluti<strong>on</strong>s.<br />

Importantly, an enzyme triggered drug-delivery model <strong>for</strong> hydrophobic drugs w<strong>as</strong><br />

dem<strong>on</strong>strated by using these supramolecularly <strong>as</strong>sembled hydrogels. Intriguingly, by<br />

combining biocatalysis, with principles of green <strong>and</strong> supramolecular chemistry, we<br />

developed building blocks-to-<strong>as</strong>sembled materials. Also address the advances that have<br />

led to the underst<strong>and</strong>ing of chiral behaviour <strong>and</strong> the subsequent ability to c<strong>on</strong>trol the<br />

structure of glycolipid nanostructures, <strong>and</strong> the resulting impact of this <strong>on</strong> future material<br />

applicati<strong>on</strong>s. These results will lead to efficient molecular design of supramolecular<br />

architectures <strong>and</strong> nanomaterials from underutilized plant/crop-b<strong>as</strong>ed renewable<br />

feedstocks.<br />

Related References:<br />

1. Vemula, P., John. G. Crops: A Green Approach toward Self-Assembled Soft Materials. Accounts of<br />

Chemical Research 41, 769-782, (2008).<br />

2. Vemula, P., Dougl<strong>as</strong>, K., Ach<strong>on</strong>g, C., Kumar, A., Ajayan, P., John. G. Autoxidati<strong>on</strong> Induced Metal<br />

Nanoparticles Synthesis in Biob<strong>as</strong>ed Polymeric Systems: A Sustainable Approach in Hybrid Materials<br />

Development. Journal of Biob<strong>as</strong>ed Materials <strong>and</strong> Bioenergy 2, 218-222 (2008).<br />

3. Kumar, A., Vemula, P., Ajayan, P. M., John, G. Silver Nanoparticles Embedded Anti-microbial Paints<br />

B<strong>as</strong>ed <strong>on</strong> Vegetable Oil. Nature Materials 7, 236-241 (2008).<br />

4. John, G., Vemula, P. Design <strong>and</strong> Development of Soft nanomaterials from Biob<strong>as</strong>ed Amphiphiles. Soft<br />

Matter 2, 909-914 (2006). Fr<strong>on</strong>t cover page feature.<br />

5. Vemula, P., Li, J, John, G. Enzyme Catalysis: Tool to Make <strong>and</strong> Break Amygdalin Hydrogelators from<br />

<strong>Renewable</strong> Resources - A Delivery Model <strong>for</strong> Hydrophobic Drugs. Journal of American Chemical Society<br />

128, 8932-8938 (2006). Highlighted in Green Chemistry 8, 675 (2006).<br />

6. John, G., Zhu, G., Li, J., Dordick J. S. Enzymatically-Derived Sugar C<strong>on</strong>taining Self-Assembled<br />

Organogels with Nanostructured Morphologies. Angew<strong>and</strong>te Chemie Internati<strong>on</strong>al Editi<strong>on</strong> 45, 4772-4775<br />

(2006). Fr<strong>on</strong>t cover page feature. Angew<strong>and</strong>te Chemie 118, 4890-4893 (2006).<br />

7. John, G.; M<strong>as</strong>uda, M.; Jung, J., H; Yoshida, K.; Shimizu, T. “Unsaturati<strong>on</strong> Influenced Gelati<strong>on</strong> of Aryl<br />

Glycolipids” Langmuir, 2004, 20, 2060-2065.<br />

8. John, G., Minamikawa, H., M<strong>as</strong>uda, M. <strong>and</strong> Shimizu, T. “Liquid Crystalline Cardanyl Glucopyranosides”<br />

Liquid Crystals, 2003, 30, 747.<br />

9. John, G.; Jung, J. H.; Shimizu, T. “Morphological C<strong>on</strong>trol of Helical Solid Bilayers in High-Axial-Ratio<br />

Nanostructures through Binary Self-<strong>as</strong>sembly”. Chem. Eur. J. 2002, 8(23), 5494-5500.<br />

10. John, G.; M<strong>as</strong>uda, M.; Shimizu, T. “Nanotube Formati<strong>on</strong> from <strong>Renewable</strong> Resources via Coiled<br />

Nanofibers” Adv. Mater. 2001. 13 (10), 715-718.<br />

31


L19<br />

32<br />

Exploiting vegetable oils <strong>for</strong> the delivery of hydrophilic drugs<br />

Sarina Grinberg, Charles Linder, <strong>and</strong> Eliahu Heldman, Ben-Guri<strong>on</strong> University of the<br />

Negev, Beer-Sheva, Israel<br />

sarina@bgu.ac.il<br />

The use of oils <strong>and</strong> fats <strong>as</strong> pharmaceuticals dates back to biblical times. Through the ages,<br />

the science <strong>and</strong> technology of fats <strong>and</strong> oils <strong>and</strong> their chemical derivatives h<strong>as</strong> progressed<br />

from traditi<strong>on</strong>al products to high-value applicati<strong>on</strong>s, including lipid-b<strong>as</strong>ed drug delivery<br />

systems. Lipid-b<strong>as</strong>ed drug delivery is c<strong>on</strong>sidered a viable strategy <strong>for</strong> incre<strong>as</strong>ing drug<br />

efficacy <strong>and</strong> reducing drug toxicity. Liposomes are am<strong>on</strong>g the lipid-b<strong>as</strong>ed delivery systems<br />

which are extensively studied but targeting them to specific tissues, is still problematic.<br />

Toward overcoming the limitati<strong>on</strong>s of the cl<strong>as</strong>sical liposomes (made of phospholipids that<br />

<strong>for</strong>m bilayer membrane), we are developing lipid-b<strong>as</strong>ed m<strong>on</strong>olayer cati<strong>on</strong>ic vesicles made<br />

of bolaamphiphilic compounds c<strong>on</strong>taining two hydrophilic head groups at each end of an<br />

alkyl chain. The c<strong>on</strong>cept is to mimic the high chemical <strong>and</strong> physical stability of<br />

archaebacteria membranes, which is made from bolaamphiphiles. Since it is hard to<br />

isolate bolaamphiphiles from araebacteria <strong>and</strong> their synthesis is also difficult, we took a<br />

different approach - synthesizing novel bolaamphiphiles designed to <strong>for</strong>m stable nano<br />

vesicles from functi<strong>on</strong>al vegetable oils that are excellent renewable resources <strong>for</strong> the<br />

chemical industry. Vern<strong>on</strong>ia oil, a naturally epoxidized triglyceride obtained from the seeds<br />

of Vern<strong>on</strong>ia galamensis, is probably the most promising of these functi<strong>on</strong>al oils with<br />

respect of a facile synthesis of functi<strong>on</strong>alized bolaamphiphiles. Yet, other natural fatty<br />

acids, or oleochemicals derived from them, can also serve <strong>as</strong> a starting material <strong>for</strong> the<br />

synthesis of such bolaamphiphiles.<br />

Here we describe the synthesis of a series of symmetrical <strong>and</strong> <strong>as</strong>ymmetrical<br />

bola¬amphiphilic compounds that <strong>for</strong>m vesicles with unique properties needed <strong>for</strong> targeted<br />

drug delivery. When the head groups are substrates <strong>for</strong> an enzyme with high activity at the<br />

target tissue, the vesicular structure will be disrupted <strong>and</strong> the vesicles will rele<strong>as</strong>e the<br />

encapsulated drug primarily there. C<strong>on</strong>jugates between vern<strong>on</strong>ia moiety <strong>and</strong> polyethylene<br />

glycol (PEG) or chitosan, were also prepared <strong>and</strong> incorporated into the membrane of the<br />

cati<strong>on</strong>ic vesicles in order to prol<strong>on</strong>ged the circulatory survival of the vesicles <strong>and</strong> to<br />

incre<strong>as</strong>e penetrability through the blood-brain barrier (BBB) <strong>and</strong> the intestinal wall.<br />

Efficacy of these vesicles <strong>as</strong> a drug delivery system w<strong>as</strong> dem<strong>on</strong>strated with encapsulated<br />

enkephalin (ENK) that w<strong>as</strong> shown to induce analgesia where<strong>as</strong> n<strong>on</strong>-encapsulated ENK did<br />

not cause any analgesic effect.<br />

In summary, we have dem<strong>on</strong>strated that cati<strong>on</strong>ic vesicles with m<strong>on</strong>olayer membrane<br />

made from novel bolaamphiphiles with head groups that are hydrolyzed by specific<br />

enzyme with high activity at the target tissue c<strong>on</strong>stitute an efficient targeted drug delivery<br />

system.


L20<br />

The role of renewable resources <strong>for</strong> Bayer Material Science<br />

Ralf Weberskirch, Bayer Materials Science, Leverkusen, Germany<br />

ralf.weberskirch@bayerbms.com<br />

The usage of renewable resources h<strong>as</strong> a l<strong>on</strong>g traditi<strong>on</strong> in chemical industry. Depleti<strong>on</strong> of<br />

fossil resources, climate change <strong>and</strong> CO2 footprint discussi<strong>on</strong>s al<strong>on</strong>g with technical<br />

breakthroughs in the p<strong>as</strong>t decade to c<strong>on</strong>vert renewable resources more efficiently have led<br />

to many initiatives in industry <strong>and</strong> academia <strong>as</strong> well <strong>as</strong> to further explore opportunities of<br />

renewable resources. [1]<br />

In this presentati<strong>on</strong> an overview will be given how BayerMaterialScience approaches the<br />

area of renewable resources <strong>and</strong> two examples will be discussed in more detail relating to<br />

the polyurethane industry: (1) The use of vegetable oils <strong>for</strong> the manufacture of polyetherpolyols<br />

with a renewable c<strong>on</strong>tent ranging from 40-70 % by weight <strong>and</strong> (2) the use of<br />

succinic acid in polyester-polyols <strong>and</strong> <strong>as</strong> a C4 plat<strong>for</strong>m chemical. [2]<br />

References:<br />

[1] http://www.nachwachsende-rohstoffe.de/<br />

[2] Bayer research, Ausgabe 20, p.16 – 20; „Gründe Kunststoffe“ als Ersatz für die<br />

Erdölchemie.<br />

33


L21<br />

34<br />

VEGETABLE OIL-BASED TRIOLS FROM HYDROFORMYLATED FATTY<br />

ACIDS AND POLYURETHANE ELASTOMERS<br />

Zoran S. Petrović, Ivana Cvetković, DooPyo H<strong>on</strong>g, Xianmei Wan<br />

Kans<strong>as</strong> Polymer Research Center, Pittsburg State University, Pittsburg, KS 66762<br />

<strong>and</strong><br />

Wei Zhang, Timothy Abraham, Jeffrey Malsam<br />

Cargill Inc, Minnet<strong>on</strong>ka, MN 55391<br />

zpetrovi@pittstate.edu<br />

Novel bio-b<strong>as</strong>ed polyols were prepared from hydro<strong>for</strong>mylated oleic acid (9-hydroxymethyloctadecanoic<br />

acid) methyl esters <strong>and</strong> trimethylol propane by transesterificati<strong>on</strong>.<br />

Hydro<strong>for</strong>mylati<strong>on</strong> produces primary hydroxyls, which allow relatively lower<br />

transesterificati<strong>on</strong> temperatures <strong>and</strong> better yields than hydroxyfatty acids with sec<strong>on</strong>dary<br />

OH groups. These n<strong>on</strong>-crystallizing polyols (HFME) have no double b<strong>on</strong>ds <strong>and</strong> their<br />

viscosities are acceptable. Polyurethane el<strong>as</strong>tomers prepared by reacting these polyols<br />

with diphenylmethane diisocyanate (MDI) had gl<strong>as</strong>s transiti<strong>on</strong>s temperatures from -33 to -<br />

56 o C, depending <strong>on</strong> the molecular weight of the triols. Tensile strength <strong>and</strong> Shore A<br />

hardness were higher <strong>and</strong> el<strong>on</strong>gati<strong>on</strong>, swelling <strong>and</strong> sol fracti<strong>on</strong> lower than those of<br />

corresp<strong>on</strong>ding networks from polyricinoleic polyols. The pl<strong>as</strong>ticizing effect of l<strong>on</strong>ger<br />

dangling chains in HFME-b<strong>as</strong>ed polyurethanes were matched to a certain degree by the<br />

presence of double b<strong>on</strong>ds in the polyricinoleic polyols, effectively resulting in similar gl<strong>as</strong>s<br />

transiti<strong>on</strong>s.


L22<br />

New approaches to polymers <strong>and</strong> composites from plant oils<br />

Selim Küsefoglu, Bogazici University Chemistry Department, Istanbul, Turkey<br />

kusef@boun.edu.tr<br />

Almost all commercially successful polymers <strong>and</strong> pl<strong>as</strong>tics are now synthesized from<br />

petroleum b<strong>as</strong>ed raw materials. Manufacture of useful polymers from plant oils would<br />

present a number of advantages such <strong>as</strong> the renewability of the raw materials, f<strong>as</strong>t<br />

biodegradability of the polymers <strong>and</strong> cheaper prices. Synthesis of polymers from plant oils<br />

is not new: ancient Egyptians used flax oil to protect the wood in their ships. However<br />

synthesis of rigid, load bearing polymers that are suitable <strong>for</strong> fiber rein<strong>for</strong>cement is a new<br />

<strong>and</strong> very active research field.<br />

When an organic chemist looks at a triglyceride the double b<strong>on</strong>ds, the allylic<br />

positi<strong>on</strong>s, the carb<strong>on</strong>yl group <strong>and</strong> the alfa positi<strong>on</strong> to the carb<strong>on</strong>yl group are noticed <strong>as</strong> the<br />

<strong>on</strong>ly useful positi<strong>on</strong>s <strong>for</strong> derivatizati<strong>on</strong>. So the t<strong>as</strong>k of the polymer chemist is to synthesize<br />

new m<strong>on</strong>omers from plant oils using these functi<strong>on</strong>al groups. The following are some<br />

examples from our ef<strong>for</strong>ts in this field.<br />

Epoxidati<strong>on</strong> of the soybean oil double b<strong>on</strong>ds followed by opening of the epoxy ring<br />

with acrylic acid gave acrylated epoxidized soybean oil (AESO) which is a plant oil b<strong>as</strong>ed<br />

analog of vinyl ester resins. When this m<strong>on</strong>omer is mixed with styrene reactive diluent, a<br />

liquid molding resin is obtained which can be rein<strong>for</strong>ced with gl<strong>as</strong>s fiber <strong>and</strong> can be cured<br />

free radically to give laminates with a tensile strength of 450Mpa (1)<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

ESO<br />

AESO<br />

COOH<br />

O<br />

O<br />

OH<br />

O<br />

Plant oils can be brominated at the allylic positi<strong>on</strong>s e<strong>as</strong>ily . Reacti<strong>on</strong> of allylic bromide with<br />

silver isocyanate gives the isocyanate substituted triglyceride. This molecule can be e<strong>as</strong>ily<br />

c<strong>on</strong>verted to polyurethanes with various diols <strong>and</strong> polyols <strong>and</strong> particularly, with hydroxyl<br />

bearing oils such <strong>as</strong> c<strong>as</strong>tor oil. Thus the first example of a polyurethane where both of the<br />

m<strong>on</strong>omers are plant oil b<strong>as</strong>ed are obtained. The polymer is suitable <strong>for</strong> the producti<strong>on</strong> of<br />

flexible foams. (2)<br />

Acrylated epoxidized soybean oil can be reacted with furylamine in a Michael reacti<strong>on</strong>.<br />

When the amine is the limiting reagent a desired fracti<strong>on</strong> of the acrylate groups can be<br />

preserved <strong>for</strong> future manipulati<strong>on</strong>s. The resulting amine can be e<strong>as</strong>ily quaternized with<br />

methyl iodide <strong>and</strong> the product turns out to be an excellent exfoliating agent <strong>for</strong><br />

m<strong>on</strong>tmorill<strong>on</strong>ite clay. XRD analysis indicated an incre<strong>as</strong>e in intergallery distance from 12<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Br<br />

Alilik Bromine SO<br />

AgNCO in THF<br />

R.T.<br />

NCO<br />

Isosiyanatlanmis SO<br />

35


A to 26 A. When a sample of exfoliated clay is mixed with AESO <strong>and</strong> free radically cured<br />

<strong>on</strong>e observes a 30 % incre<strong>as</strong>e in modulus with a 2 % clay loading. This c<strong>on</strong>stitutes the first<br />

nanoclay rein<strong>for</strong>ced material whose matrix polymer <strong>and</strong> exfoliating agent are plant oil<br />

b<strong>as</strong>ed. (3)<br />

Our work in this exciting field h<strong>as</strong> so far produced approximately 140 new plant oil b<strong>as</strong>ed<br />

polymers am<strong>on</strong>g which 12 are promising in terms of mechanical properties <strong>and</strong> e<strong>as</strong>e of<br />

synthesis. Newer strategies wherby the oil b<strong>as</strong>ed m<strong>on</strong>omer is grafted <strong>on</strong>to an existing high<br />

molecular weight polymer are now being persued with the hope of incre<strong>as</strong>ing fracture<br />

toughness of the products.<br />

References:<br />

1. US Pat. 6.121.398 S.Kusefoglu, R.Wool<br />

2. S.Kusefoglu, G.Caylı, J.Applied Pol. Sci., 109, 2948 (2008)<br />

3. E.Altunt<strong>as</strong>, G.Çaylı, N.Nugay, S.Kusefoglu, Designed M<strong>on</strong>.<strong>and</strong> Poly. ,11, 371 (2008)<br />

36<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

AESO<br />

1-)<br />

H2N O<br />

furfuryl amine<br />

FQAESO<br />

O<br />

2-) CH 3I / K2CO3<br />

O<br />

OH<br />

OH<br />

O<br />

O<br />

I + N<br />

O


L23<br />

Vegetable-oil b<strong>as</strong>ed thermosetting polymers<br />

Marina Galià, Joan Carles R<strong>on</strong>da, Gerard Lligad<strong>as</strong>, Virginia Cádiz, University<br />

Rovira i Virgili Tarrag<strong>on</strong>a, Spain<br />

marina.galia@urv.cat<br />

In the search <strong>for</strong> sustainable chemistry, there are incre<strong>as</strong>ing dem<strong>and</strong>s <strong>for</strong> replacing<br />

petroleum derived raw materials with renewable raw materials in the producti<strong>on</strong> of<br />

polymers. The importance of natural products <strong>for</strong> industrial applicati<strong>on</strong>s becomes very<br />

clear from a social, envir<strong>on</strong>mental <strong>and</strong> energy st<strong>and</strong>point, with the incre<strong>as</strong>ing emph<strong>as</strong>is <strong>on</strong><br />

issues c<strong>on</strong>cerning w<strong>as</strong>te disposal <strong>and</strong> depleti<strong>on</strong> of n<strong>on</strong> renewable resources. Vegetable<br />

oils are <strong>on</strong>e of the cheapest <strong>and</strong> most abundant, annually renewable natural resources<br />

available in large quantities from various oilseeds <strong>and</strong> are now being used in an incre<strong>as</strong>ing<br />

number of industrial applicati<strong>on</strong>s. In recent years, extensive work h<strong>as</strong> been d<strong>on</strong>e to<br />

develop polymers from triglycerides of fatty acids <strong>as</strong> the main comp<strong>on</strong>ent.<br />

The purpose of our research is to develop new biob<strong>as</strong>ed thermosetting polymers from<br />

vegetable oils <strong>as</strong> renewable resources. Vegetable oils are triglycerides of different fatty<br />

acids with varying degrees of unsaturati<strong>on</strong>. Although they possess double b<strong>on</strong>ds, it is<br />

generally c<strong>on</strong>sidered difficult to polymerise vegetable oils themselves due to its low<br />

reactivity. Our research focuses <strong>on</strong> improving the physical properties of triglyceride b<strong>as</strong>ed<br />

materials, because they dem<strong>on</strong>strated low molecular weights <strong>and</strong> light crosslinking,<br />

incapable of displaying the necessary rigidity <strong>and</strong> strength required <strong>for</strong> structural<br />

applicati<strong>on</strong>s by themselves. In this way, polymers ranging from soft rubbers to hard<br />

pl<strong>as</strong>tics can be obtained by cati<strong>on</strong>ic copolymerisati<strong>on</strong> with styrene <strong>and</strong> divinylbenzene.<br />

Like other organic polymeric materials, the flammability of vegetable oil b<strong>as</strong>ed materials is<br />

a shortcoming in some applicati<strong>on</strong>s. The c<strong>on</strong>cept of sustainable development requires fire<br />

retardant technologies to be developed which have minimum impact <strong>on</strong> health <strong>and</strong> the<br />

envir<strong>on</strong>ment through the life cycle of the fire-retardant material; that is to say, its synthesis,<br />

fabricati<strong>on</strong>, use, recycling <strong>and</strong> disposal. To further extend the applicati<strong>on</strong> of renewable<br />

resources <strong>and</strong> to obtain flame retardant polymers, we synthesized polymers from<br />

vegetable oils, styrene, divinylbenzene <strong>and</strong> silic<strong>on</strong>, phosphorus or bor<strong>on</strong>-c<strong>on</strong>taining<br />

reactive modifiers.<br />

The presence of double b<strong>on</strong>ds makes possible to attach some functi<strong>on</strong>al groups through<br />

chemical modificati<strong>on</strong> <strong>and</strong> we described various chemical pathways <strong>for</strong> functi<strong>on</strong>alising<br />

triglycerides <strong>and</strong> fatty acids. An en<strong>on</strong>e-c<strong>on</strong>taining triglyceride w<strong>as</strong> obtained by an<br />

envir<strong>on</strong>mentally friendly chemical procedure from high oleic sunflower oil that could be an<br />

interesting alternative to epoxidized vegetable oils to produce thermosets by crosslinking<br />

with c<strong>on</strong>venti<strong>on</strong>al aromatic diamines. In a similar way, triglycerides c<strong>on</strong>taining sec<strong>on</strong>dary<br />

allylic alcohols can be obtained, that can be further functi<strong>on</strong>alised with acrylate or<br />

phosphorus-c<strong>on</strong>taining derivatives to obtain flame retardant themosets. We also obtained<br />

organic-inorganic hybrid materials with promising properties <strong>for</strong> optical applicati<strong>on</strong>s by the<br />

hydrosilylati<strong>on</strong> of alkenyl-terminated fatty acid derivatives <strong>and</strong> biob<strong>as</strong>ed polyhedral<br />

oligomeric silsesquioxanes-nanocomposites. Moreover, we described the preparati<strong>on</strong> of a<br />

new family of epoxidized methyl oleate-b<strong>as</strong>ed polyether polyols which were used in the<br />

synthesis of polyurethanes with specific applicati<strong>on</strong>s: silic<strong>on</strong>-c<strong>on</strong>taining polyurethanes with<br />

enhanced flame-retardant properties <strong>and</strong> polyurethane networks with potential applicati<strong>on</strong>s<br />

in biomedicine.<br />

37


L24<br />

38<br />

Chemo-enzymatic synthesis of oil polyols <strong>and</strong> polyurethanes of them<br />

Tom<strong>as</strong> Vlcek, SYNPO, Pardubice, Czech Republic<br />

tom<strong>as</strong>.vlcek@synpo.cz<br />

In this work we have studied possibility to apply chemo-enzymatic catalysis <strong>for</strong> preparati<strong>on</strong><br />

of new types of oil polyols. Starting raw materials were methylesters of<br />

hydroxyfuncti<strong>on</strong>alized fatty acids derived from c<strong>as</strong>tor oil, hydro<strong>for</strong>mylated soybean oil, <strong>and</strong><br />

epoxidized soybean oil ring opened with low molecular weight (poly)alcohols. Reacting<br />

these fatty acids with green growing centers such <strong>as</strong> 1.3-propanediol or glycerol we were<br />

able to synthesize 100 % renewable c<strong>on</strong>tent polyols differing in molecular weight, <strong>and</strong><br />

hydroxyl group’s functi<strong>on</strong>ality. We catalyzed the c<strong>on</strong>densati<strong>on</strong> reacti<strong>on</strong>s with up to 5 wt. %<br />

of immobilized C<strong>and</strong>ida antarctica lip<strong>as</strong>e B (Novozym 435). Setting up the reacti<strong>on</strong><br />

temperature to 70 °C <strong>and</strong> applying low pressure we allowed e<strong>as</strong>y removal of a side<br />

product, methanol. Curing the synthesized oil polyols with aliphatic <strong>and</strong> aromatic type of<br />

isocyanate we prepared model polyurethane c<strong>as</strong>t resins <strong>and</strong> evaluated physicalmechanical<br />

properties of these materials. We will discuss results of our work in our<br />

presentati<strong>on</strong>.


L25<br />

Study of ASA (alkenyl succinic anhydrides) from fatty acid esters of<br />

vegetable oils <strong>as</strong> paper sizing agents<br />

Laure C<strong>and</strong>y, Carlos Vaca-Garcia, Elisabeth Borred<strong>on</strong>, Laboratoire de Chimie<br />

AgroIndustrielle; ENSIACET, Toulouse, France<br />

laure.c<strong>and</strong>y@ensiacet.fr<br />

New sizing agents from natural origin were obtained by reacti<strong>on</strong> between maleic anhydride<br />

<strong>and</strong> esters from vegetable oils <strong>and</strong> mainly alkyl oleates. They bel<strong>on</strong>g to the alkenyl<br />

succinic anhydrides family (ASA).<br />

Paper hydrophobati<strong>on</strong>, which limits water penetrati<strong>on</strong>, relies up<strong>on</strong> the reacti<strong>on</strong> between<br />

the hydroxyl f<strong>on</strong>cti<strong>on</strong>s of cellulose <strong>and</strong> the anhydride moiety of ASA.<br />

Our vegetable ASA (oleo-ASA) are characterized by a maximum compositi<strong>on</strong> in C18:1 <strong>and</strong><br />

a varying terminal ester moiety. More than thirty oleo-ASA were tested <strong>as</strong> paper sizing<br />

agents at laboratory scale. Am<strong>on</strong>g them, three oleo-ASA presented a sizing <strong>and</strong> an<br />

emulsi<strong>on</strong> behaviour equivalent to the <strong>on</strong>e obtained with petrochemical ASA, comm<strong>on</strong>ly<br />

used in industry. Moreover, their hydrolysis in diacid is two-fold slower <strong>and</strong> their resistance<br />

to stripping phenomen<strong>on</strong> is ten-fold higher. Their use would then allow l<strong>on</strong>ger emulsi<strong>on</strong><br />

storage <strong>and</strong> fewer deposits in air ducts.<br />

These advantages make them excellent c<strong>and</strong>idates to the substituti<strong>on</strong> of ASA from fossil<br />

origin. Once the synthesis <strong>and</strong> purificati<strong>on</strong> of the three preceding molecules optimized, <strong>on</strong>e<br />

am<strong>on</strong>g them h<strong>as</strong> been successfully tested <strong>as</strong> sizing agent at a 100 kg paper machine pilot<br />

scale.<br />

Acknowledgements: Authors wish to thank ONIDOL <strong>and</strong> ADEME <strong>for</strong> their financial<br />

support.<br />

39


L26<br />

40<br />

Use of vegetable oil b<strong>as</strong>ed thermosetting resins in compound st<strong>on</strong>e<br />

Technology<br />

Stefano Zeggio, <strong>and</strong> Fabio B<strong>as</strong>setto, Bret<strong>on</strong> Research Centre, C<strong>as</strong>tello di Godego, Italy<br />

zeggio.stefano@bret<strong>on</strong>.it<br />

Unsaturated orthopthalic polyester resins (hereafter indicated <strong>as</strong> UP resins), dissolved in<br />

styrene, are widely used <strong>as</strong> binders to aggregate st<strong>on</strong>e <strong>and</strong> other inorganic raw materials<br />

in the producti<strong>on</strong> of compound st<strong>on</strong>e slabs using vibratory compacti<strong>on</strong> in a vacuum<br />

envir<strong>on</strong>ment, patented worldwide <strong>as</strong> Bret<strong>on</strong>st<strong>on</strong>e Technology.<br />

The use of UP resins involves some technical inc<strong>on</strong>veniences: both resin <strong>and</strong> styrene<br />

m<strong>on</strong>omer are oil-b<strong>as</strong>ed, hence they come from n<strong>on</strong>-renewable sources <strong>and</strong> their cost<br />

mainly depends <strong>on</strong> the value of crude oil; due to its high volatility rate, styrene is a<br />

dangerous chemical, which involves the designing of complex <strong>and</strong> expensive intake <strong>and</strong><br />

burning plants.<br />

Many ef<strong>for</strong>ts are dedicated to the development of a new organic binder, having similar<br />

properties to those of UP resins, which may solve these difficulties.<br />

We have found that chemically modified vegetable oil could be used <strong>as</strong> new renewable<br />

raw material: the epoxidati<strong>on</strong> of vegetable oils with a high iodine number (such <strong>as</strong> soybean<br />

<strong>and</strong> linseed oil) <strong>for</strong>ms epoxidated oils which are cured with aliphatic dicarboxilic anhydride,<br />

preferably in liquid state. The curing process must be accelerated using a b<strong>as</strong>ic catalyst.<br />

The new resin c<strong>on</strong>tains more than 50% by weight of renewable raw materials <strong>and</strong> c<strong>on</strong>tains<br />

no volatile organic comp<strong>on</strong>ents.<br />

The properties of both new thermosetting resin <strong>and</strong> compound st<strong>on</strong>es produced in this<br />

way are even better than traditi<strong>on</strong>al <strong>on</strong>es. In fact, the mechanical properties (such <strong>as</strong> the<br />

flexural strength <strong>and</strong> the water absorpti<strong>on</strong>) <strong>and</strong> the aesthetic effect (valuated technically by<br />

the gloss value) of the industrial slab remain c<strong>on</strong>stant, but the resistance to weather<br />

c<strong>on</strong>diti<strong>on</strong>s (evaluated by QUV panel) is incre<strong>as</strong>ed. The latter feature permits the use of<br />

compound st<strong>on</strong>e in many outdoor applicati<strong>on</strong>s.


L27<br />

Life cycle <strong>as</strong>sessment of high per<strong>for</strong>mance polyamides<br />

Georg Oenbrink, Martin Roos, Franz-Erich Baumann, Harald Häger, Ev<strong>on</strong>ik Degussa<br />

GmbH, Marl, Germany, harald.haeger@ev<strong>on</strong>ik.com<br />

Introducti<strong>on</strong><br />

Although fossil carb<strong>on</strong> sources make up less than 10% of all materials utilised, there is<br />

currently intensive discussi<strong>on</strong> in the chemical industry <strong>on</strong> the use of renewable raw<br />

materials to produce fine chemicals <strong>and</strong> also m<strong>on</strong>omers <strong>for</strong> polymer producti<strong>on</strong>.<br />

In Brazil, <strong>for</strong> instance, Br<strong>as</strong>kem <strong>and</strong> DOW are planning to produce ethylene <strong>and</strong> then<br />

polyethylene from sugarcane-b<strong>as</strong>ed ethanol. This is just <strong>on</strong>e example of recent attempts to<br />

produce known b<strong>as</strong>ic petrochemical materials from renewable raw materials.<br />

The approach is somewhat c<strong>on</strong>troversial, however, because the starting compound,<br />

sucrose, h<strong>as</strong> a carb<strong>on</strong> to oxygen ratio of 1:1, while the target polyethylene molecule is a<br />

pure hydrocarb<strong>on</strong>. Even <strong>as</strong>suming maximum theoretical yields, more than three metric<br />

t<strong>on</strong>s of sugar are required to produce <strong>on</strong>e metric t<strong>on</strong> of polyethylene.<br />

On the other h<strong>and</strong>, synthetic routes b<strong>as</strong>ed <strong>on</strong> renewable raw materials to produce b<strong>as</strong>ic<br />

chemicals had been used industrially <strong>for</strong> many years, until such plants became<br />

unec<strong>on</strong>omical with the advent of highly cost-effective cracked products from fossil carb<strong>on</strong><br />

sources. The research ef<strong>for</strong>t required <strong>for</strong> a return to the earlier approach would there<strong>for</strong>e<br />

be fairly small. The slight technological risk exists, however, that it might not be possible to<br />

build up the relevant patent portfolio.<br />

In another approach, “new” m<strong>on</strong>omers are produced from renewable raw materials. An<br />

example is provided by DuP<strong>on</strong>t's biotechnologically produced 1,3-propanediol. In<br />

polyesters such <strong>as</strong> Sor<strong>on</strong>a <strong>and</strong> Hytrel, this diol produces materials with new properties.<br />

Patent protecti<strong>on</strong> <strong>for</strong> substances <strong>and</strong> applicati<strong>on</strong>s is undoubtedly possible here. However,<br />

new materials must be entered in the relevant registers of chemicals <strong>and</strong> launched <strong>on</strong> the<br />

market.<br />

Applicati<strong>on</strong>-oriented characterisati<strong>on</strong> <strong>and</strong> market launch of new materials cannot be<br />

delayed until the new biotechnological producti<strong>on</strong> methods <strong>for</strong> the relevant m<strong>on</strong>omers<br />

become available. A producti<strong>on</strong> plant <strong>for</strong> these m<strong>on</strong>omers must there<strong>for</strong>e be built, at le<strong>as</strong>t<br />

<strong>on</strong> a pilot scale, which allows their synthesis by "cl<strong>as</strong>sical" chemical methods.<br />

41


Polyamides from <strong>Renewable</strong> Raw Materials<br />

Polyamides are a cl<strong>as</strong>s of materials of which representatives b<strong>as</strong>ed <strong>on</strong> renewable raw<br />

materials have been known <strong>for</strong> at le<strong>as</strong>t 50 years. Most of these are b<strong>as</strong>ed <strong>on</strong> c<strong>as</strong>tor oil <strong>and</strong><br />

its cracked product ricinoleic acid methyl ester.<br />

Boiling with NaOH produces sebacic acid. According to Arnold <strong>and</strong> Smolinsky 1) , pyrolytic<br />

cracking at temperatures above 500°C produces 10-undecylenic acid, which is c<strong>on</strong>verted<br />

in further reacti<strong>on</strong> steps to 11-amino carboxylic acid <strong>and</strong> PA11. Other representatives of<br />

the cl<strong>as</strong>s of polyamides b<strong>as</strong>ed <strong>on</strong> renewable raw materials are PA610 <strong>and</strong> PA1010, both<br />

of which are b<strong>as</strong>ed <strong>on</strong> sebacic acid.<br />

In the above processes, significant amounts of by-products <strong>and</strong> w<strong>as</strong>te are unavoidably<br />

produced.<br />

This is why, in the 1970s, polyamides were developed from petrochemical raw materials,<br />

which process generates significantly less w<strong>as</strong>te. PA12 is a typical example of such<br />

compounds.<br />

Polyamides from <strong>Renewable</strong> Raw Materials—Back to the Future?<br />

Following the rapid growth of petrochemical-b<strong>as</strong>ed polyamides during the final decades of<br />

the l<strong>as</strong>t century, there h<strong>as</strong> been incre<strong>as</strong>ed interest over the l<strong>as</strong>t few years in sustainable<br />

products, resulting in intensified marketing of fatty-acid b<strong>as</strong>ed polyamides <strong>as</strong><br />

biopolyamides.<br />

At the K’2007, BASF announced the re-introducti<strong>on</strong> of PA610 <strong>and</strong> DuP<strong>on</strong>t of PA1010. For<br />

the l<strong>as</strong>t couple of years, Arkema h<strong>as</strong> been advertising its own PA11 <strong>as</strong> a biopolyamide.<br />

It must be pointed out, however, that the underlying synthetic methods will c<strong>on</strong>tinue to be<br />

b<strong>as</strong>ed <strong>on</strong> the above menti<strong>on</strong>ed chemistry, with high proporti<strong>on</strong>s of by-products <strong>and</strong> w<strong>as</strong>te.<br />

Polyamides from renewable raw materials there<strong>for</strong>e c<strong>on</strong>tinue to offer promise <strong>for</strong> the<br />

future: The t<strong>as</strong>k that lies ahead is to combine the sustainability of renewable raw materials<br />

with the sustainability <strong>and</strong> selectivity of petrochemical producti<strong>on</strong> methods.<br />

In this talk we will discuss <strong>and</strong> compare the various producti<strong>on</strong> methods <strong>for</strong> polyamides.<br />

Property profiles of polyamides from renewable raw materials <strong>and</strong> of their petrochemical<br />

analogues will be discussed. First results from a life cycle <strong>as</strong>sessment of different<br />

polyamides will be discussed <strong>as</strong> well. Finally, suggesti<strong>on</strong>s will be proposed <strong>as</strong> to how the<br />

sustainability of the resources can be combined with “green” chemistry.<br />

1) R.T. Arnold, G. Smolinsky J. A. C. S. 81, 6443, 1959, J. Org. Chem. 25, 129, 1960<br />

42


Abstracts<br />

Part 2: Posters<br />

43


P1<br />

Catalytic cleavage of methyl oleate or oleic acid<br />

A. Köckritz 1 , M. Blumenstein 2 , A. Martin 1<br />

1<br />

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Branch Berlin, 12489 Berlin<br />

2<br />

Hobum Oleochemicals GmbH, 21047 Hamburg; angela.koeckritz@catalysis.de<br />

Introducti<strong>on</strong><br />

The cleavage of oleic acid via oz<strong>on</strong>olysis is the industrially applied process <strong>for</strong> the<br />

synthesis of azelaic acid from renewables. Alternatives are in dem<strong>and</strong> due to safety<br />

c<strong>on</strong>cerns of oz<strong>on</strong>e h<strong>and</strong>ling. Recently the authors reported <strong>on</strong> the epoxidati<strong>on</strong> of methyl<br />

oleate with molecular oxygen in the presence of aldehydes. 1 Now the cleavage of oleic<br />

acid or methyl oleate using this system <strong>and</strong> additi<strong>on</strong>ally OsO4 or pot<strong>as</strong>sium osmate <strong>as</strong><br />

catalysts is presented.<br />

Experimental<br />

In a typical experiment, 2 mmol substrate, 7.5 mmol aldehyde, 0.04 mmol OsO4 or<br />

K2OsO4�2H2O <strong>and</strong> 50 mg azobisisobutyr<strong>on</strong>itrile were placed in a 100 ml Buechi gl<strong>as</strong>s<br />

autoclave <strong>and</strong> were dissolved in 20 ml of the appropriate solvent. Then the autoclave w<strong>as</strong><br />

pressurized with 4 bar O2 <strong>and</strong> stirred at 70-90°C <strong>for</strong> 1-4 hours. The progress of the<br />

reacti<strong>on</strong> w<strong>as</strong> c<strong>on</strong>trolled by GC-MS.<br />

Results<br />

M<strong>on</strong>omethyl azelate 4 (R=CH3) <strong>and</strong> pelarg<strong>on</strong>ic acid 5 were the main products in the Oscatalyzed<br />

oxidati<strong>on</strong> of methyl oleate 1 (R=CH3) with O2/aldehyde besides varying amounts<br />

of the epoxide 2 <strong>and</strong> the diol 3, where<strong>as</strong> azelaic acid (4, R=H) w<strong>as</strong> solely obtained from<br />

oleic acid (1, R=H). However, a comparative applicati<strong>on</strong> of RuO4 or RuO2 instead of Oscatalysts<br />

did not lead to cleavage products.<br />

The simultaneous <strong>for</strong>mati<strong>on</strong> of the cleavage products 4 <strong>and</strong> 5 <strong>as</strong> well <strong>as</strong> of the epoxide 2<br />

<strong>and</strong> the diol 3 is interpreted mechanistically <strong>as</strong> parallel reacti<strong>on</strong>s (route A-C), this<br />

<strong>as</strong>sumpti<strong>on</strong> w<strong>as</strong> supported by m<strong>on</strong>itoring the course of reacti<strong>on</strong>. Epoxide 2 seems to be<br />

evolved according both to a radicalic <strong>and</strong> n<strong>on</strong>-radicalic pathway. The <strong>for</strong>mati<strong>on</strong> of 2 in 42%<br />

yield by oxidati<strong>on</strong> of methyl oleate in the presence of 2,6-di-tert.-butyl-4-methyl-phenol<br />

argues <strong>for</strong> a n<strong>on</strong>-radicalic mechanism, probably peracid is generated from the aldehyde<br />

via Os-catalysis. A further c<strong>on</strong>versi<strong>on</strong> of 2 under these c<strong>on</strong>diti<strong>on</strong>s did not lead to 3 but <strong>on</strong>ly<br />

to a minor degree to 9- or 10-keto derivatives.<br />

44


A<br />

H3C (CH2) 7 CH CH<br />

1<br />

(CH2) 7 COOR<br />

O<br />

H3C (CH2) 7 CH<br />

2<br />

CH (CH2) 7 COOCH3 H3C(CH2) 7 COOH + HOOC (CH2) 7 COOR<br />

B<br />

4 5<br />

OH<br />

H3C (CH2) 7 CH CH (CH2) 7 COOCH3 OH<br />

3<br />

C<br />

R=CH 3,H<br />

Fig. 1. C=C cleavage of oleic acid or methyl oleate<br />

The diol 3 originated supposably by direct Os-catalyzed dihydroxylati<strong>on</strong> of 1 using in situ<strong>for</strong>med<br />

peracid. This guess w<strong>as</strong> drawn <strong>on</strong> the incre<strong>as</strong>e in yield of 3, if the reacti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s were adapted to known optimal dihydroxylati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s (e.g. additi<strong>on</strong> of<br />

diazabicyclooctane, solvent DMF or MeCN/H2O/ethyl acetate). A possible acid-catalyzed<br />

cleavage of 2 to 3 or of 3 to 4 <strong>and</strong> 5 w<strong>as</strong> found to a minor degree. The direct cleavage of<br />

the double b<strong>on</strong>d of 1 to 4 <strong>and</strong> 5, most likely via a glycolate complex, w<strong>as</strong> also presumed to<br />

be n<strong>on</strong>-radicalic due to significant amounts of products, even under applicati<strong>on</strong> of a radical<br />

scavenger. Also in that c<strong>as</strong>e, the reacti<strong>on</strong> of O2 with the aldehyde to peracid is likely. On<br />

the b<strong>as</strong>is of the experimental results, the reacti<strong>on</strong> pathways B <strong>and</strong> C to 4 <strong>and</strong> 5, discussed<br />

in Figure 1, seem not to be the preferred routes at le<strong>as</strong>t. In summary, the obtained yields<br />

of 5 (R=CH3) amounted to 50-70%. Suitable solvents were acet<strong>on</strong>e or dichloromethane,<br />

more polar or aqueous-organic mixtures decre<strong>as</strong>ed the yield.<br />

If oleic acid w<strong>as</strong> used <strong>as</strong> substrate under equal reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, surprisingly <strong>on</strong>ly the<br />

<strong>for</strong>mati<strong>on</strong> of 4 <strong>and</strong> 5 in about 50 % yield (n<strong>on</strong>-optimized) w<strong>as</strong> observed.<br />

The authors gratefully acknowledge the Federal Ministry of Educati<strong>on</strong> <strong>and</strong> Research<br />

(BMBF) <strong>for</strong> financial support (FKZ 22003704).<br />

1 A. Köckritz, M. Blumenstein, A. Martin, Eur. J. Lipid Sci. Technol. 110, 581-586 (2008)<br />

45


P2<br />

46<br />

Heterogeneously catalyzed hydrogen-free deoxygenati<strong>on</strong><br />

of saturated C8, C12 <strong>and</strong> C18 carboxylic acids<br />

S. Mohite, U. Armbruster, M. Richter, D.L. Hoang, A. Martin<br />

Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Außenstelle Berlin,<br />

Richard-Willstätter-Str. 12, 12489 Berlin; <strong>and</strong>re<strong>as</strong>.martin@catalysis.de<br />

Biodiesel comprises fatty acid methyl esters with various chain lengths. It h<strong>as</strong> clear<br />

envir<strong>on</strong>mental advantages compared to fossil fuels, nevertheless, some drawbacks rise<br />

from its limited shelf life, corrosi<strong>on</strong> in vehicle engines, <strong>and</strong> lower energy value. These are<br />

mainly related to oxygen c<strong>on</strong>tent of biodiesel, which should be removed. Possible ways <strong>for</strong><br />

upgrading are pyrolysis [1] or hydrogenati<strong>on</strong> [2,3]. In presence of H2 <strong>and</strong> noble metal<br />

catalysts (Pd, Ru, Ni) the latter route selectively <strong>for</strong>ms hydrocarb<strong>on</strong>s. Though H2 additi<strong>on</strong><br />

leads to high yields of desired paraffins, the use of external H2 sources lowers process<br />

ec<strong>on</strong>omy. A hydrogen-free route may benefit from decompositi<strong>on</strong> of by-product glycerol<br />

that generates H2 in situ. This work focused <strong>on</strong> model studies to investigate the hydrogenfree<br />

deoxygenati<strong>on</strong> of C8, C12, <strong>and</strong> C18 acids exclusively.<br />

Supported Ni <strong>and</strong> Pd catalysts (1-10 wt-%) were prepared by impregnati<strong>on</strong> of ZrO2, active<br />

carb<strong>on</strong>, zeolites, <strong>and</strong> hydrotalcites. Autoclaves (25 ml) served <strong>for</strong> catalytic tests. Catalysts<br />

were reduced in situ with H2 (300 °C, 2 h) <strong>and</strong> the vessel w<strong>as</strong> flushed with N2. Then,<br />

soluti<strong>on</strong>s of carboxylic acids in dodecane or tetralin were added <strong>and</strong> the reacti<strong>on</strong> w<strong>as</strong><br />

started.<br />

Initial catalyst survey w<strong>as</strong> d<strong>on</strong>e with lauric acid (C12) at 300 °C. With supported Ni<br />

catalysts, highest c<strong>on</strong>versi<strong>on</strong> w<strong>as</strong> found <strong>on</strong> 10%Ni/ZrO2 (59 %) <strong>and</strong> 5%Ni/ZrO2 (57 %), but<br />

alkane selectivity w<strong>as</strong> little. In a sec<strong>on</strong>d series, Pd catalysts supported <strong>on</strong> active carb<strong>on</strong><br />

were tested. The best per<strong>for</strong>ming catalyst w<strong>as</strong> 10%Pd/C with 37 % undecane yield at 68<br />

% c<strong>on</strong>versi<strong>on</strong> of lauric acid. Such Pd catalysts then were used <strong>for</strong> deoxygenati<strong>on</strong> of<br />

caprylic acid (C8) <strong>and</strong> stearic acid (C18). At similar reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s (300 °C, 6 h), chain<br />

length of carboxylic acid h<strong>as</strong> a str<strong>on</strong>g impact <strong>on</strong> c<strong>on</strong>versi<strong>on</strong> <strong>as</strong> well <strong>as</strong> alkane selectivity<br />

(caprylic acid: X = 35 %, S = 54 %; lauric acid: X = 55 %, S = 68 %, stearic acid: X = 93 %,<br />

S = 13 %). The observed maximum in selectivity may be due to incre<strong>as</strong>ed cracking <strong>as</strong> a<br />

side reacti<strong>on</strong>, the probability of which incre<strong>as</strong>es with number of carb<strong>on</strong> atoms <strong>and</strong> b<strong>on</strong>ds.<br />

At 300 °C, c<strong>on</strong>versi<strong>on</strong> without H2 additi<strong>on</strong> may not be favorable <strong>for</strong> l<strong>on</strong>g chain carboxylic<br />

acids anymore.<br />

Further work aimed at optimizati<strong>on</strong> of reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s with 10%Pd/C catalyst. Raising<br />

temperature also w<strong>as</strong> found to have a str<strong>on</strong>g promoti<strong>on</strong>al effect <strong>on</strong> carboxylic acid<br />

c<strong>on</strong>versi<strong>on</strong> <strong>as</strong> well <strong>as</strong> alkane selectivity. Incre<strong>as</strong>ing pressure lowered c<strong>on</strong>versi<strong>on</strong>, but<br />

improved selectivity towards alkane. Characterizati<strong>on</strong> of spent catalyst 10%Pd/C showed a<br />

slight loss in Pd c<strong>on</strong>tent due to leaching, but no agglomerati<strong>on</strong> of metal particles.<br />

[1] D.G. Lima et al., J. Anal. Appl. Pyrolysis 71 (2004) 987.<br />

[2] I. Kubickova et al., Catal. Today 106 (2005) 197.<br />

[3] http://www.nesteoil.com/default.<strong>as</strong>p?path=1,41,539,7516,7522


P3<br />

Flame retardant polyesters from renewable resources via ADMET<br />

Luc<strong>as</strong> M<strong>on</strong>tero de Espinosa, Joan Carles R<strong>on</strong>da, Virginia Cádiz, Universitat Rovira i<br />

Virgili, Tarrag<strong>on</strong>a, Spain, <strong>and</strong> Michael A. R. Meier, University of Applied Sciences<br />

OOW, Emden, Germany; luc<strong>as</strong>.m<strong>on</strong>tero@urv.cat<br />

Polyesters are widely used <strong>for</strong> textile fibers, technical fibers, films, bottles or <strong>as</strong> a finish <strong>on</strong><br />

high-quality wood products. The dem<strong>and</strong> of polyesters in 2006 is an estimated 35 milli<strong>on</strong><br />

t<strong>on</strong>s <strong>and</strong> will grow annually by 9%.[1] Due to envir<strong>on</strong>mental c<strong>on</strong>cerns much work is<br />

devoted to the industrial use of products from renewable resources, <strong>and</strong> <strong>for</strong> this re<strong>as</strong><strong>on</strong> the<br />

development of polymeric materials, such <strong>as</strong> polyesters, from renewable resources h<strong>as</strong><br />

attracted much attenti<strong>on</strong>.[2] On the other h<strong>and</strong>, many kinds of flame retardants (FRs) have<br />

been tested to improve the flame retardancy of polyesters <strong>and</strong> have been applied to<br />

commercial products. Am<strong>on</strong>g these, phosphorous FR <strong>and</strong> halogenated FR are the most<br />

comm<strong>on</strong>. However, many kinds of halogenated FR, especially brominated FR, are<br />

restricted in many countries due to the <strong>for</strong>mati<strong>on</strong> of dioxin under combusti<strong>on</strong>. There<strong>for</strong>e<br />

most of the inherent FR polyesters are now produced using phosphorous FR by blending<br />

<strong>and</strong>/or copolymerizing with flame retardants. However, to obtain efficient flame retardancy<br />

by blending, high amounts of the flame retardant agent must be added <strong>and</strong> usually the<br />

polymer properties are affected. Also, when a blended fiber is w<strong>as</strong>hed, the blended flame<br />

retardants migrate to the fiber surface, leading to decre<strong>as</strong>ed flame retardancy <strong>and</strong><br />

incre<strong>as</strong>ed danger <strong>for</strong> the customers. Because of these problems, the copolymerizing<br />

method is becoming more comm<strong>on</strong>.<br />

Acyclic diene metathesis polymerizati<strong>on</strong> (ADMET) h<strong>as</strong> been shown to be an efficient tool<br />

<strong>for</strong> the synthesis of a wide variety of polymers <strong>and</strong> polymer architectures that are not<br />

available using other polymerizati<strong>on</strong> methods.[3] Am<strong>on</strong>g them, polyesters can be prepared<br />

with molecular weights that range between 20.000 <strong>and</strong> 70.000. In the present work, a<br />

renewable phosphorus c<strong>on</strong>taining m<strong>on</strong>omer bearing two 10-undecenoic acid moieties h<strong>as</strong><br />

been homopolymerized <strong>and</strong> copolymerized with a 10-undecenoic acid derived m<strong>on</strong>omer[4]<br />

via ADMET using the Grubbs sec<strong>on</strong>d generati<strong>on</strong> metathesis catalyst. Polymers with Mn up<br />

to 65.000 were obtained in absence of solvent. This procedure allowed us to synthesize a<br />

variety of polyesters with c<strong>on</strong>trolled phosphorus c<strong>on</strong>tents which are promising c<strong>and</strong>idates<br />

<strong>for</strong> flame retardant materials.<br />

1. Yang, S. C.; Kim, J. P. J App Polym Sci, 2007, 106, 2870–2874<br />

2. Meier, M. A. R.; Metzger, J. O.; Schubert, U. S. Chem Soc Rev, 2007, 36, 1788–1802<br />

3. Schwendeman, J. E.; Church, A. C.; Wagener, K. B. Adv Synth Catal, 2002, 344, 597-<br />

613<br />

4. Rybak, A; Meier, M. A. R. ChemSusChem 2008, 1, 542-547<br />

47


P4<br />

48<br />

Catalytic access to bifuncti<strong>on</strong>al products from plant oil derivatives<br />

Xiaowei Miao, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Institut Sciences<br />

Chimiques de Rennes, Rennes, France; mxw331@yahoo.com<br />

Plant oils c<strong>on</strong>stitute a cl<strong>as</strong>s of renewable raw materials which can produce a large variety<br />

of chemicals useful <strong>for</strong> industry. The cross-metathesis of unsaturated fatty esters, derived<br />

from seed oils, with functi<strong>on</strong>alized olefins h<strong>as</strong> potential to generate bifuncti<strong>on</strong>al<br />

compounds, <strong>as</strong> it h<strong>as</strong> been shown by reacti<strong>on</strong>s with acrylates[1]. The objective of our<br />

presentati<strong>on</strong> will be to describe, with some practical <strong>as</strong>pects, the cross-metathesis<br />

reacti<strong>on</strong>s of both terminal <strong>and</strong> internal double b<strong>on</strong>d c<strong>on</strong>taining esters, arising from seed<br />

oils, with acryl<strong>on</strong>itrile. This metathesis w<strong>as</strong> per<strong>for</strong>med using ruthenium catalysts <strong>and</strong> led to<br />

bifuncti<strong>on</strong>al nitrile-esters with high c<strong>on</strong>versi<strong>on</strong>s [2]. TON improvement w<strong>as</strong> achieved by<br />

slow additi<strong>on</strong> of catalyst.<br />

It will be shown that the metathesis catalyst residue can be used <strong>as</strong> a hydrogenati<strong>on</strong><br />

catalyst in a sequential cross-metathesis/hydrogenati<strong>on</strong> process leading to saturated<br />

nitrile-esters.<br />

The prepared bifuncti<strong>on</strong>al nitrile-esters are precursors of amino acid m<strong>on</strong>omers <strong>for</strong> the<br />

producti<strong>on</strong> of polyamides from renewable resources.<br />

[1] A. Rybak, M. A. R. Meier, Green Chem., 2007, 9, 1356; Green Chem., 2008, 10, 1099.<br />

[2] For initial study see: R. Malacea, C. Fischmeister, C. Bruneau, J-L. Dubois, J-L.<br />

Couturier, P. H. Dixneuf, Green Chem., 2009, in press.


P5<br />

Synthesis <strong>and</strong> Characterizati<strong>on</strong> of Surfactants from <strong>Renewable</strong> Resources<br />

Rachid Ihizane, Bernd Jakob, Karsten Lange, Zeyneb Yilmaz, Sukhendu N<strong>and</strong>i,<br />

Manfred P. Schneider <strong>and</strong> Hans. J. Altenbach , Fachbereich C – Mathematik und<br />

Naturwissenschaft, Fachgruppe Chemie, Bergische Universität Wuppertal,<br />

Wuppertal, Germany; Email: ihizane@uni-wuppertal.de<br />

The c<strong>on</strong>versi<strong>on</strong> of fatty acid with natural hydroxycarboxylic acids, especially malic-,<br />

tartaric- <strong>and</strong> citric acid resulted in the e<strong>as</strong>y <strong>for</strong>mati<strong>on</strong> of acylated hydroxycarboxylic<br />

anhydrides. We have shown that this cl<strong>as</strong>s of anhydrides provides c<strong>on</strong>venient entry into a<br />

variety of products. They readily react with natural or synthetic nucleophiles like alcohols,<br />

carbohydrates, amines <strong>and</strong> amino acids. A series of compounds were synthesized <strong>and</strong><br />

characterized, their surface <strong>and</strong> antibacterial properties have been me<strong>as</strong>ured.<br />

49


P6<br />

Synthesis of bifuncti<strong>on</strong>al m<strong>on</strong>omers via homometathesis of fatty acid Derivatives<br />

50<br />

Jürgen Pettrak, Herbert Riepl, Martin Faulstich, <strong>and</strong> Wolfgang A. Herrmann, TU<br />

München, Lehrstuhl für Rohstoff und Energietechnologie, Straubing, Germany;<br />

juergen.pettrak@wzw.tum.de<br />

Thermopl<strong>as</strong>tic el<strong>as</strong>tomers c<strong>on</strong>sist of two molecular regi<strong>on</strong>s, an amorphous regi<strong>on</strong> <strong>for</strong><br />

el<strong>as</strong>tic <strong>and</strong> a harder crystalline secti<strong>on</strong> <strong>for</strong> thermopl<strong>as</strong>tic properties. L<strong>on</strong>g-chained<br />

bifuncti<strong>on</strong>al compounds, products of the c<strong>on</strong>versi<strong>on</strong> of fatty acids, can serve <strong>as</strong> “soft”,<br />

amorphous m<strong>on</strong>omer. The synthesis of bifuncti<strong>on</strong>al m<strong>on</strong>omers from oleic acid <strong>and</strong> their<br />

derivatives <strong>for</strong> the producti<strong>on</strong> of polymers b<strong>as</strong>ed <strong>on</strong> renewable resources is thus useful in<br />

the field of thermopl<strong>as</strong>tic el<strong>as</strong>tomers.<br />

Organo-metal-catalyzed metathesis [1] of C18-compounds, b<strong>as</strong>ed <strong>on</strong> oleic acid [2], oleic<br />

acid esters [3, 4] <strong>and</strong> other readily available educts from the tenside industry such <strong>as</strong> oleyl<br />

alcohol [5], oleic amide <strong>and</strong> amines <strong>as</strong> feedstock can supply the necessary bifuncti<strong>on</strong>al<br />

m<strong>on</strong>omers <strong>for</strong> polyc<strong>on</strong>densati<strong>on</strong>. The metathesis of oleic acid provides two olefins,<br />

octadec-9-ene <strong>and</strong> octadec-9-ene-1,18-dicarboxylic acid, both C18 compounds. The<br />

homometathesis of oleic acid <strong>and</strong> derivatives -functi<strong>on</strong>alized fatty�,�there<strong>for</strong>e is an<br />

interesting way to synthesize acid compounds.<br />

To be applied later in industry, the producti<strong>on</strong> of these m<strong>on</strong>omers must be scaled up now.<br />

Ruthenium compounds <strong>for</strong> metathesis bel<strong>on</strong>g to a cl<strong>as</strong>s of extremely efficient catalysts,<br />

tolerant to many functi<strong>on</strong>al groups. Technical grade educts may provide catalyst pois<strong>on</strong>ing<br />

effects. Especially nitrogen-c<strong>on</strong>taining compounds present many problems due to their<br />

b<strong>as</strong>icity. We report the metathetic synthesis of bifuncti<strong>on</strong>al products, b<strong>as</strong>ed <strong>on</strong> nitrogen<br />

b<strong>as</strong>ed derivatives. Ruthenium-b<strong>as</strong>ed homometathesis of oleic acid esters, oleyl alcohol,<br />

oleic acid amides <strong>and</strong> oleyl amines have been c<strong>on</strong>ducted. For esters <strong>and</strong> oleyl alcohol,<br />

maximum c<strong>on</strong>versi<strong>on</strong> could be achieved, even with technical grade educts without further<br />

pretreatment. Even solvent-free synthesis at low catalyst loadings w<strong>as</strong> possible. The C18diester<br />

w<strong>as</strong> obtained via thin film evaporati<strong>on</strong>, the diol w<strong>as</strong> obtained via precipitati<strong>on</strong> <strong>and</strong><br />

recrystallizati<strong>on</strong>.<br />

Oleyl amine itself could not be c<strong>on</strong>verted, but protected amines, like oleyl amides or oleyl<br />

n-alkyl-amines can be c<strong>on</strong>verted. The metathetical c<strong>on</strong>versi<strong>on</strong> of amides provide a lower<br />

yield in bifuncti<strong>on</strong>al compounds compared to diester <strong>and</strong> diol, but is nevertheless<br />

interesting, because the diamide precipitates during reacti<strong>on</strong> <strong>and</strong> is e<strong>as</strong>ily isolized via<br />

centrifugati<strong>on</strong> <strong>and</strong> recrystallizati<strong>on</strong>.<br />

References:<br />

1. Grubbs, R.H., H<strong>and</strong>book of Metathesis, ed. R.H. Grubbs. Vol. 1-3. 2003, Weinheim: Wiley-CH. 204.<br />

2. Foglia, T.A., H.L. Ngo, <strong>and</strong> K. J<strong>on</strong>es, Metathesis of unsaturated fatty acids: Synthesis of l<strong>on</strong>g-chain<br />

unsaturated-alpha,omega-dicarboxylic acids. Journal of the American Oil Chemists Society, 2006. 83(7): p.<br />

629-634.<br />

3. Boelhouwer, C. <strong>and</strong> J.C. Mol, Metathesis Reacti<strong>on</strong>s of Fatty-Acid Esters. Progress in Lipid Research,<br />

1985. 24(3): p. 243-267.<br />

4. Van Dam, P.B., C. Boelhouwer, <strong>and</strong> M.C. Mittelmeijer, Metathesis of Unsaturated Fatty-Acid Esters by a<br />

Homogeneous Tungsten Hexachloride-Tetramethyltin Catalyst. Journal of the Chemical Society-Chemical<br />

Communicati<strong>on</strong>s, 1972(22): p. 1221-1222.<br />

5. Brändli, C. <strong>and</strong> T.R. Ward, Libraries via Metathesis of Internal Olefins. Helvetica Chimica Acta, 1998.<br />

81(9): p. 1616-1621.


P7<br />

Synthesis <strong>and</strong> evaluati<strong>on</strong> of value added products from Glycerol<br />

Avin<strong>as</strong>h Bhadani, <strong>and</strong> Sukhprit Singh, Guru Nanak Dev University, Department of<br />

Chemistry, Amritsar, India; avin<strong>as</strong>hbhadani2003@yahoo.co.in<br />

The use of renewable feedstock like Glycerol <strong>for</strong> producing important industrial chemicals<br />

having bulk dem<strong>and</strong> is the priority of 21st century. Glycerol is an important by product of<br />

biodiesel manufacturing which is produced by transesterficati<strong>on</strong> during the producti<strong>on</strong> of<br />

biodiesel fuel. Approximatly 10 kg of glycerol is produced <strong>for</strong> every 100 kg of oil taken <strong>for</strong><br />

producti<strong>on</strong> of biodiesel. With the total producti<strong>on</strong> of biodiesel in thous<strong>and</strong>s of t<strong>on</strong>s, huge<br />

amount of glycerol is also produced <strong>as</strong> a by product. 1 It h<strong>as</strong> been estimated that by 2010<br />

the overall producti<strong>on</strong> of glycerol will touch 1.2 milli<strong>on</strong> t<strong>on</strong>s. The cost of B100 type<br />

biodiesel can be reduced from US$ 0.63 to US$ 0.35 provided the use of glycerol is<br />

enhanced <strong>for</strong> the producti<strong>on</strong> of value added products.2 In spite of green origin <strong>and</strong> over<br />

producti<strong>on</strong> the scientific community had not been able to fully explore potential usefulness<br />

of this naturally occurring molecule <strong>for</strong> making value added products.<br />

Recently our research group reported synthesis of β-Bromo Glycerol M<strong>on</strong>oethers directly<br />

from α-Olefins by cohalogenati<strong>on</strong> protocol.3 With the c<strong>on</strong>tinuati<strong>on</strong> of our work we have<br />

developed glycerol b<strong>as</strong>ed pyridinium surfactants <strong>and</strong> compared its properties with some<br />

commercially available surfactants. We found better surface <strong>and</strong> biological properties such<br />

<strong>as</strong> low cytotoxicity towards animal cell line <strong>and</strong> better DNA binding capability of new<br />

glycerol b<strong>as</strong>ed cati<strong>on</strong>ic surfactants. As the producti<strong>on</strong> of cati<strong>on</strong>ic surfactants amounts to<br />

350000-500000 t<strong>on</strong>es per annum.4 The replacement of commercially available cati<strong>on</strong>ic<br />

surfactants with new glycerol b<strong>as</strong>ed surfactants will check loss of energy <strong>and</strong> resources<br />

due to over producti<strong>on</strong> of glycerol.<br />

Literature<br />

1. Pagliaro, M.; Rossi, M. The Future of Glycerol. RSC Green Chemistry Book Series.<br />

2008.<br />

2. Zhou, Chun-Hui.; Beltramini, J. N.; Fan, Y<strong>on</strong>g-Xian <strong>and</strong> Lu, G. Q. Chemoselective<br />

catalytic c<strong>on</strong>versi<strong>on</strong> of glycerol <strong>as</strong> a biorenewable source to value commodity chemicals.<br />

Chem. Soc. Rev. 2008, 37, 527-549.<br />

3. Singh, S.; Bhadani, A.; Kamboj, R. Synthesis of β-Bromo glycerol m<strong>on</strong>oethers from αolefins.<br />

Ind. Eng. Chem. Res. 2008, 47, 8090-8094.<br />

4. Gunst<strong>on</strong>e, F.D.; Padley, F. B. Lipid Technologies <strong>and</strong> Applicati<strong>on</strong>. CRC Press Book,<br />

1997.<br />

51


P8<br />

New Polymers from Plant Oil Derivatives <strong>and</strong> Styrene-Maleic Anhydride Copolymers<br />

52<br />

Cem Öztürk, <strong>and</strong> Selim Küsefoğlu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey ozturkce@boun.edu.tr<br />

*<br />

O O O<br />

X=2 Y=1<br />

*<br />

n=8<br />

Styrene-Maleic Anhydride Copolymer<br />

SMA2000<br />

(Ratio Styrene-MaleicAnhydride 2:1 )<br />

+<br />

+<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H 3CO<br />

O<br />

EMO (Epoksidized Methyl Oleate)<br />

O<br />

O<br />

O<br />

O<br />

O<br />

ESO (Epoxidized Soy Oil )<br />

*<br />

*<br />

H 3CO<br />

HO<br />

O<br />

OH<br />

X=2<br />

O<br />

HO<br />

O<br />

X=2<br />

O<br />

SMA-EMO<br />

OH<br />

*<br />

Y=1<br />

O<br />

OH<br />

-O Y=1<br />

O<br />

O<br />

HO<br />

X=2<br />

O<br />

O -<br />

SMA-ESO<br />

O<br />

Y=1<br />

*<br />

O O<br />

O O<br />

O<br />

O<br />

*<br />

Y=1<br />

O<br />

n=8<br />

Polymerizati<strong>on</strong> of triglycerides is usually carried out by attaching a polymerizable group to<br />

the triglyceride [1]. Polymers derived from such m<strong>on</strong>omers have low c<strong>on</strong>nectivity <strong>and</strong> low<br />

mechanical properties due to the bulky structure of the m<strong>on</strong>omer. This manifests itself in<br />

low fracture toughness of the polymers obtained. In this work we changed our strategy by<br />

starting first with a suitably substituted polymer having a re<strong>as</strong><strong>on</strong>able molecular weight <strong>and</strong><br />

attaching the triglyceride derivative to it. This strategy is bound to provide molecular<br />

weights that are higher <strong>and</strong> provide the entanglement lengths needed <strong>for</strong> higher fracture<br />

toughness.<br />

In this study, styrene maleic anhydride copolymer (SMA2000, Styrene:Maleic Anhydride<br />

2:1) is grafted <strong>and</strong>/or crosslinked with epoxidized methyl oleate, epoxidized soybean oil,<br />

methyl ricinoleate, c<strong>as</strong>tor oil <strong>and</strong> soybean oil diglyceride. B<strong>as</strong>e catalyzed epoxy-anhydride<br />

<strong>and</strong> alcohol-anhydride reacti<strong>on</strong>s were carried out by using the anhydride <strong>on</strong> SMA, the<br />

epoxy or sec<strong>on</strong>dary alcohol groups <strong>on</strong> the triglyceride b<strong>as</strong>ed m<strong>on</strong>omers. The<br />

characterizati<strong>on</strong>s of the products were d<strong>on</strong>e by DMA, TGA <strong>and</strong> IR spectroscopy. SMAepoxidized<br />

soy oil <strong>and</strong> SMA-c<strong>as</strong>tor oil polymers are crosslinked rigid infusible polymers.<br />

SMA-epoxidized soy oil <strong>and</strong> SMA2000-c<strong>as</strong>tor oil showed Tg’s at 70 <strong>and</strong> 66 ºC<br />

respectively. Dynamic moduli of the two polymers were 11.73 <strong>and</strong> 3.34 Mpa respectively.<br />

SMA-epoxidized methyl oleate, SMA-methyl ricinoleate <strong>and</strong> SMA-soy oil diglyceride<br />

polymers were soluble <strong>and</strong> thermopl<strong>as</strong>tic polymers <strong>and</strong> were characterized by TGA, GPC,<br />

DSC, NMR <strong>and</strong> IR spectroscopy.<br />

References:<br />

[1]. Rios, L. A., Ph.D. Thesis, Rheinisch-Westfälischen Technischen Hochschule, Aachen,<br />

2003.<br />

*<br />

X=2


P9<br />

Chain Extensi<strong>on</strong> Reacti<strong>on</strong>s of Unsaturated Polyesters with Epoxidized Soybean Oil<br />

Ediz Taylan, <strong>and</strong> Selim Küsefoglu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey; etaylan@boun.edu.tr<br />

Unsaturated polyesters were chain extended with epoxidized soybean oil. The molecular<br />

weight incre<strong>as</strong>e w<strong>as</strong> m<strong>on</strong>itored using Gel Permeati<strong>on</strong> Chromatography. The obtained<br />

polymer w<strong>as</strong> characterized by FTIR <strong>and</strong> 1H-NMR, styrene solubility <strong>and</strong> gel time. The<br />

chain extended polyester w<strong>as</strong> then diluted with styrene <strong>and</strong> cured with a radical initiator<br />

<strong>and</strong> compared to a commercial reference polyester. Thermal <strong>and</strong> mechanical properties of<br />

the cured polyester were characterized by DMA <strong>and</strong> TGA. The results show that<br />

unsaturated polyesters can be chain extended with epoxidized soybean oil which<br />

substantially shortens the c<strong>on</strong>densati<strong>on</strong> polymerizati<strong>on</strong> during manufacture, without<br />

compromising their thermal <strong>and</strong> mechanical properties.<br />

53


P10<br />

Soybean Oil B<strong>as</strong>ed Isocyanates: Synthesis, Characterizati<strong>on</strong>s <strong>and</strong> Polymerizati<strong>on</strong>s<br />

54<br />

Gökhan Çaylı, <strong>and</strong> Selim Küsefoğlu, Bogazici University, Chemistry Department,<br />

Istanbul, Turkey; gcayli@ku.edu.tr<br />

Isocyanates are valuable compounds that are used widely in many applicati<strong>on</strong> are<strong>as</strong> of<br />

polymer industry. The most important area of use of isocyanates is to synthesize<br />

polyurethanes <strong>and</strong> polyure<strong>as</strong>. Important isocyanates, used in the polyurethane<br />

manufacturing, are 2, 4-toluene diisocyanate (2,4TDI), 2, 6-toluene diisocyanate (2,6TDI),<br />

4, 4’-diphenyl methane diisocyanate (MDI), 1, 6 hexamethyl diisocyanate (HMDI), xylene<br />

diisocyanate (XDI), <strong>and</strong> isophor<strong>on</strong>e diisocyanate (IPDI), all of which are petroleum derived<br />

[1-3].<br />

Isocyanates can be synthesized in many ways. The Curtius, Hoffman <strong>and</strong> Lossen<br />

rearrangements, which may involve nitrene <strong>as</strong> an intermediate, are not succesful <strong>for</strong> large<br />

scale operati<strong>on</strong>s [4].<br />

Literature search reveals a number of bio-b<strong>as</strong>ed polyurethanes. In almost all of them,<br />

c<strong>as</strong>tor oil w<strong>as</strong> used <strong>as</strong> a polyol source <strong>and</strong> petroleum b<strong>as</strong>ed isocyanates were used <strong>as</strong> the<br />

isocyanate [5-12]. There are no examples where the isocyanate is bio-b<strong>as</strong>ed. With the<br />

simple synthesis described in this work it is possible to obtain polyurethanes where both<br />

the isocyanate <strong>and</strong> polyol are bio-b<strong>as</strong>ed.<br />

In the first strategy, soybean oil isocyanates were obtained by substituti<strong>on</strong> reacti<strong>on</strong><br />

between allylically brominated soybean oil <strong>and</strong> AgNCO [13]. In the sec<strong>on</strong>d strategy,<br />

soybean oil w<strong>as</strong> reacted with iodine isocyanate reagent [14-15]. Additi<strong>on</strong> of iodo<br />

isocyanate to plant oils gives valuable intermediates. Similar to thiocyanogen additi<strong>on</strong>, just<br />

<strong>on</strong>e mole iodo isocyanate can be added to <strong>on</strong>e mol of polyunsaturated fatty acids. This<br />

means that <strong>on</strong>e mole unsaturated plant oil triglyceride can bind around three mol iodo<br />

isocyanate e<strong>as</strong>ily. Many positi<strong>on</strong>al isomers are obtained at the end of the both reacti<strong>on</strong>.<br />

The products are valuable intermediates to synthesize poly-urethanes <strong>and</strong> poly ure<strong>as</strong>.<br />

Synthesized soybean oil isocyanate <strong>and</strong> iodo isocyanate were polymerized with c<strong>as</strong>tor oil<br />

<strong>and</strong> glycerol. C<strong>as</strong>tor oil <strong>and</strong> glycerol polyurethane of soybean oil iodo isocyanate showed<br />

tensile strength of 140 KPa <strong>and</strong> 270 KPa respectively. On the other side, polyurethanes of<br />

soybean oil isocyanate with same triols showed tensile strength of 100 <strong>and</strong> 125 KPa<br />

respectively<br />

References<br />

1. Dwan’isa, J.-P. L.; Mohanty, A. K.; Misra, M.; Drzal, L. T. In Natural Fibers, Biopolymers <strong>and</strong><br />

Biocomposites; Mohanty, A.K.; Misra, M.; Drzal, L. T., Eds.; CRC: Boca Rat<strong>on</strong>, FL, 2005; Chapter 25.<br />

2. Dhimiter Bello, D.; Woskie, S. R.; Streicher, R. P.; YouchengLiu, Y.; Stowe, M. H.; Eisen, E. A.;<br />

Ellenbecker, M. J.; Sparer,J.; Youngs, F.; Cullen, M. R.; Redlich, C. A. Am J Ind Med 2004, 46, 480.<br />

3. Schmelzer, H. G.; Mafoti, R. M.; S<strong>and</strong>ers, J.; Slack, W. E. J Prakt Chem 1994, 336, 483. 4. Hepburn, C.<br />

Polyurethane El<strong>as</strong>tomers; Elsevier Applied Science: L<strong>on</strong>d<strong>on</strong>, 1992.<br />

5. Traˆn, N. B.; Jean Vialle, J.; Pham, Q. T. Polymer 1997, 38, 2467.<br />

6. Lligad<strong>as</strong>, G.; R<strong>on</strong>da, J. C.; Galia`, M.; Ca´diz, V. Biomacromolecules 2006, 7, 2420.<br />

7. Barikani, M.; Mohammadi, M. Carbohydr Polym 2007, 68, 773.<br />

8. Dwan’isa, J.-P. L.; Mohanty, A. K.; Misra, M.; Drzal, L. T.; Kazemizedah, M. J Mater Sci 2004, 39, 1887.<br />

9. Lligad<strong>as</strong>, G.; R<strong>on</strong>da, J. C.; Galia´ , M.; Biermann, U.; Metzger, J. O. J Polym Sci Part A: Polym Chem<br />

2006, 44, 634.<br />

10. Hatakeyemaa, H.; Tanamachi, N.; Matsumura, H.; Hirose, S.; Hatakeyamab, T. Thermochim Acta 2005,<br />

431, 155.<br />

11. Rheineck, A. E.; Shulman, S. Fett/Lipid 70, 239.<br />

12. Marwan, R. K.; D<strong>on</strong>, E. F. U.S. Pat. 3,481,774 (1968).<br />

13. Cayli, G.; Kusefoğlu, S; J. App. Pol. Sci. 2008, 109, 2948.<br />

14. H<strong>as</strong>sner, A.; Heathcock, C.C.; Tetrahedr<strong>on</strong> Letters, 1964, 19/20, 1125.<br />

15. Metzger, J.O.; Fuermeier, S., European Journal of Organic Chemistry, 1999, 3,661.


P11<br />

Aliphatic ß-chlorovinylaldehydes <strong>as</strong> versatile building blocks in syntheses of<br />

Heterocycles<br />

Annett Fuchs, Dieter Greif, <strong>and</strong> Melanie Kellermann, University of Applied Siences,<br />

Zittau, Germany; a.fuchs@hs-zigr.de<br />

Aliphatic ß-chlorovinylaldehydes are readily prepared from alkyl methyl ket<strong>on</strong>es using<br />

Vilsmeier-Haack-Arnold reacti<strong>on</strong>.<br />

Alkyl<br />

O<br />

CH 3<br />

DMF/POCl 3<br />

Alkyl<br />

Cl<br />

CHO<br />

A survey of the literature often shows complex reacti<strong>on</strong>s by great expending time <strong>and</strong><br />

resources <strong>for</strong> getting aliphatic substituted heterocycles. On the other h<strong>and</strong> such<br />

compounds can e<strong>as</strong>ily synthesize from ß-chlorovinylaldehydes by reacti<strong>on</strong> with O-, N- <strong>and</strong><br />

S-nucleophiles. So we synthesized a variety of heterocyclic systems like isothiazoles,<br />

pyrazoles, quinolines, isoxazoles, thiophenes <strong>and</strong> pyrimidines.<br />

H 3C<br />

Alkyl<br />

S<br />

N<br />

N<br />

EtO<br />

O<br />

Alkyl<br />

CH 3<br />

S<br />

Alkyl<br />

CH 3<br />

Alkyl<br />

H 3C<br />

N<br />

H2N N CH3 A survey of the literature let us expect that these compounds have a broad spectrum of<br />

useful biologically activity. It is of interest that aliphatic ß-chlorovinylaldehydes show a<br />

different reacti<strong>on</strong> behavior compared with those described in the literature. In this poster<br />

we will report experimental details <strong>on</strong> syntheses <strong>and</strong> spectroscopic studies of the<br />

described compounds.<br />

CHO<br />

Cl<br />

Alkyl<br />

Alkyl<br />

H 3C<br />

Alkyl<br />

H 3C<br />

H 3C<br />

Alkyl<br />

Alkyl<br />

O<br />

CH 3<br />

N<br />

N<br />

N<br />

Ph<br />

O<br />

N<br />

H<br />

CH 3<br />

N<br />

N<br />

55


P12<br />

Syntheses <strong>and</strong> reacti<strong>on</strong> behavior of l<strong>on</strong>g-chained alkyl methyl ket<strong>on</strong>es starting from<br />

fatty acids, fatty alcohols <strong>and</strong> fatty nitriles<br />

56<br />

M. Kellermann, A. Fuchs, D. Greif, University of Applied Sciences, Zittau, Germany<br />

m.kellermann@hs-zigr.de<br />

There are well known a lot of methods <strong>for</strong> preparati<strong>on</strong> of fatty ket<strong>on</strong>es. L<strong>on</strong>g-chained alkyl<br />

methyl ket<strong>on</strong>es can also prepared from different fatty compounds using the following<br />

reacti<strong>on</strong>s.<br />

H 3C<br />

O<br />

R COOH<br />

COOEt<br />

CH 3Li<br />

H3C COOH + R Li<br />

R<br />

O<br />

R CN<br />

OLi<br />

+<br />

+<br />

+<br />

R CH 2Br<br />

H 3C MgX R<br />

OMgX<br />

CH 3<br />

OLi<br />

H 3C<br />

H 3C R<br />

O<br />

H3C MgI<br />

CH3CN route A R CH3route B<br />

O<br />

O<br />

O<br />

H 3C R<br />

H 2O/H +<br />

O<br />

R<br />

R CH 3<br />

MgBr<br />

We investigated the synthesis of l<strong>on</strong>g-chained alkyl methyl ket<strong>on</strong>es systematically in order<br />

to optimize reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, yields <strong>and</strong> purity of the products.<br />

We also report in this poster about new applicati<strong>on</strong>s of the microwave technology to<br />

trans<strong>for</strong>m fatty acids derivatives <strong>and</strong> fatty alcohols into l<strong>on</strong>g-chained alkyl methyl ket<strong>on</strong>es.<br />

These compounds are versatile building blocks to synthesize l<strong>on</strong>g-chained substituted ßchlorocrot<strong>on</strong>aldehydes.<br />

R<br />

O<br />

CH 3<br />

DMF/POCl 3<br />

R<br />

Cl<br />

CHO<br />

CH 3<br />

R<br />

(A)<br />

(B)<br />

(C)<br />

(D)<br />

(E)


P13<br />

Hydrophobic modificati<strong>on</strong> of Inulin in aqueous media using alkyl epoxides <strong>and</strong><br />

b<strong>as</strong>ic catalysis<br />

Jordi Morros, Bart Levecke, <strong>and</strong> Mª Rosa Infante, IQAC - CSIC, Barcel<strong>on</strong>a, Spain<br />

jmcste@cid.csic.es<br />

Inulin, the polydisperse reserve polysaccharide from chicory, h<strong>as</strong> been modified with fatty<br />

epoxy derivatives of different chain length in high alkaline aqueous media. Etherificati<strong>on</strong> of<br />

inulin h<strong>as</strong> been carried out with high efficiency. The influence of several reacti<strong>on</strong><br />

parameters such <strong>as</strong> amount of organic co-solvent, catalysts, reacti<strong>on</strong> time <strong>and</strong><br />

temperature h<strong>as</strong> been studied. After purificati<strong>on</strong>, emulsi<strong>on</strong> power of the final products w<strong>as</strong><br />

tested, c<strong>on</strong>sidering these products <strong>as</strong> promising green polymeric surfactants.<br />

57


P14<br />

58<br />

Short Chain Sugar Amphiphiles: Alternative Oil Structuring Agents<br />

Swapnil R Jadhav, Praveen Kumar Vemula, <strong>and</strong> George John, City College of City<br />

University of New York, New York, USA; Jadhav sjadhav@gc.cuny.edu<br />

Owing to the need of developing envir<strong>on</strong>mentally benign functi<strong>on</strong>al materials by adopting<br />

green chemistry methods, usage of biorefinery c<strong>on</strong>cept <strong>for</strong> the development of biob<strong>as</strong>ed<br />

molecular building blocks of such materials h<strong>as</strong> emerged <strong>as</strong> a prime focus of the current<br />

research. The present study focus of developing sugar b<strong>as</strong>ed low molecular weight gels (a<br />

type of functi<strong>on</strong>al soft materials) by enzyme catalysis exemplifies the above approach. The<br />

underexplored open chain sugars (sugar alcohols) were chosen <strong>as</strong> hydrophilic moieties to<br />

develop low molecular weight gelators (LMWGs). Mannitol, sorbitol <strong>and</strong> xylitol were<br />

selected <strong>as</strong> representative sugar alcohols (headgroups) <strong>and</strong> series of amphiphiles were<br />

synthesized by attaching hydrophobic carboxylic acids at <strong>on</strong>e-end of the sugar using an<br />

enzyme-mediated regioselective transesterificati<strong>on</strong> reacti<strong>on</strong>. For c<strong>on</strong>trol tuning of<br />

hydrophobicity various carboxylic acids different chain length were attached (typically<br />

(CH2)4-14). The resulting amphiphiles were studied <strong>for</strong> their self-<strong>as</strong>sembling behavior in<br />

organic liquids. Only the amphiphiles with short chains {(CH2)4-8} were found to be<br />

efficient organogelators; immobilizing various solvents ranging from crude oil fracti<strong>on</strong>s to<br />

vegetable oils. In additi<strong>on</strong>, Effect of chiral <strong>and</strong> structural variati<strong>on</strong>s in sugar amphiphiles <strong>on</strong><br />

microstructure <strong>for</strong>mati<strong>on</strong> (resp<strong>on</strong>sible <strong>for</strong> immobilizati<strong>on</strong> of organic liquid) w<strong>as</strong> also<br />

investigated in detail. Furthermore, the efficiency of the short chain sugar amphiphiles <strong>as</strong> a<br />

healthy alternative structuring agents <strong>for</strong> vegetable oils compared to existing oil structuring<br />

agents w<strong>as</strong> studied <strong>and</strong> h<strong>as</strong> been dem<strong>on</strong>strated in this report.


P15<br />

Novel enzymes <strong>for</strong> lipid modificati<strong>on</strong><br />

H. Brundiek, R. Kourist, M. Bertram, <strong>and</strong> U. Bornscheuer, University of Greifswald,<br />

Greifswald, Germany; henrike.brundiek@uni-greifswald.de<br />

Enzymes have received c<strong>on</strong>siderable <strong>and</strong> incre<strong>as</strong>ing attenti<strong>on</strong> in lipid modificati<strong>on</strong> over the<br />

l<strong>as</strong>t few years. In particular, hydrol<strong>as</strong>es have a high potential <strong>for</strong> applicati<strong>on</strong>s such <strong>as</strong> the<br />

lip<strong>as</strong>es-catalyzed interestificati<strong>on</strong> [1, 2] <strong>as</strong> an alternative <strong>for</strong> the hydrogenati<strong>on</strong> of fats or<br />

the preparati<strong>on</strong> of designer-fats [3].<br />

Many enzymes, however, do not fulfill all dem<strong>and</strong>s of a technical process. Properties such<br />

<strong>as</strong> stability under process c<strong>on</strong>diti<strong>on</strong>s or the chemical selectivity leave often much to<br />

improve. Together with this growing dem<strong>and</strong> <strong>for</strong> tailor-made lip<strong>as</strong>es goes the incre<strong>as</strong>ing<br />

knowledge about the molecular structures. C<strong>on</strong>siderable progress in molecular biology<br />

techniques h<strong>as</strong> made the cl<strong>on</strong>ing <strong>and</strong> expressi<strong>on</strong> of lip<strong>as</strong>es in bacteria <strong>and</strong> the subsequent<br />

improvement by techniques of state-of-the art protein design [4] possible.<br />

An alternative <strong>for</strong> the improvement of enzymes by protein design represents the screening<br />

<strong>for</strong> novel enzymes. The limited number of commercially available lip<strong>as</strong>es can be extended<br />

by high-throughput screening in enzyme collecti<strong>on</strong>s. Enzymes from metagenome<br />

represent a rich source <strong>for</strong> this purpose.<br />

Herein we present an outline <strong>and</strong> the scope of both techniques that can provide novel<br />

biocatalysts <strong>for</strong> new applicati<strong>on</strong>s in lipid-modificati<strong>on</strong>.<br />

______________________________________<br />

[1] Bornscheuer U. und Kazlausk<strong>as</strong> R., 2005: Hydrol<strong>as</strong>es in Organic Synthesis, Regio-<br />

<strong>and</strong> Stereoselective Biotrans<strong>for</strong>mati<strong>on</strong>s. M<strong>on</strong>ographie, Wiley-VCH, Weinheim. ISBN-10: 3-<br />

527-31029-0,ISBN-13: 978-3-527-31029-6<br />

[2] Bornscheuer U., Adamczak M, Soumanou M. M., 2002: Lip<strong>as</strong>e-catalyzed synthesis of<br />

modified lipids. In: Lipids <strong>as</strong> c<strong>on</strong>stituents of functi<strong>on</strong>al foods . Bridgwater, 149-182<br />

[3] Soumanou M., 1997: Lip<strong>as</strong>e-catalyzed synthesis of structured triglycerides c<strong>on</strong>taining<br />

medium-chain fatty acids in sn1 <strong>and</strong> sn3-positi<strong>on</strong> <strong>and</strong> a l<strong>on</strong>g-chain fatty acid in sn2positi<strong>on</strong>.<br />

Stuttgart, Univ., Diss.<br />

[4] Bornscheuer U., Lutz, S. (Eds.), 2008: Protein Engineering H<strong>and</strong>book. Wiley-VCH,<br />

Weinheim. ISBN-10: 352731850X, ISBN-13: 9783527318506<br />

59


P16<br />

Producti<strong>on</strong> of fine <strong>and</strong> bulk chemicals using silage <strong>as</strong> a renewable resource<br />

60<br />

Tim Sieker, <strong>and</strong> Rol<strong>and</strong> Ulber, University of Kaiserslautern, Kaiserslautern,<br />

Germany; tim.sieker@mv.uni-kl.de<br />

The presented work aims <strong>for</strong> the use of silage <strong>as</strong> a renewable resource <strong>for</strong> the<br />

fermentative producti<strong>on</strong> of bulk- <strong>and</strong> fine chemicals <strong>and</strong> is a cooperati<strong>on</strong> with the Institute<br />

of Thermal Process Engineering at the University of Kaiserslautern <strong>and</strong> the Institute of<br />

Biochemical Engineering at the Saarl<strong>and</strong> University.<br />

In 2006 321,300 ha of farml<strong>and</strong> were used <strong>for</strong> the producti<strong>on</strong> of gr<strong>as</strong>s <strong>and</strong> clover, yielding<br />

36,268,000 t of harvested gr<strong>as</strong>s clip. Thus, gr<strong>as</strong>s clip provides an enormous potential <strong>as</strong><br />

renewable resource in Germany. Since fresh gr<strong>as</strong>s clip is available <strong>on</strong>ly during summer<br />

<strong>and</strong> it decays if stored inappropriately, it is c<strong>on</strong>served by ensiling.<br />

In the ensiling process, the water-soluble carbohydrates are fermented to lactic acid,<br />

resulting in a pH-shift <strong>and</strong> thus the c<strong>on</strong>servati<strong>on</strong> of the silage. The processes in<br />

development are to use the remaining carbohydrates, including cellulose <strong>and</strong><br />

hemicellulose, <strong>as</strong> well <strong>as</strong> the lactic acid produced during ensiling. Aspired products are<br />

ethanol, 1,2-propanediole, itac<strong>on</strong>ic <strong>and</strong> succinic acid. Remnants <strong>and</strong> w<strong>as</strong>tes of the<br />

processes should be reuseable <strong>as</strong> animal food or in biog<strong>as</strong> producti<strong>on</strong>, resulting in a<br />

complete substantial <strong>and</strong> energetic utilisati<strong>on</strong> of the silage.<br />

In the presented work two strategies <strong>for</strong> the utilizati<strong>on</strong> of silage are pursued:<br />

First, a silage juice c<strong>on</strong>taining the water-soluble carbohydrates <strong>and</strong> the lactic acid is w<strong>on</strong><br />

directly from the silage by pressing. This silage juice can either be used directly <strong>as</strong> a<br />

cultivati<strong>on</strong> medium or by the isolati<strong>on</strong> of the c<strong>on</strong>tained lactic acid, the main product of<br />

ensiling, <strong>and</strong> its further use.<br />

Sec<strong>on</strong>dly, the hydrolysis of the celluloses <strong>and</strong> hemicelluloses c<strong>on</strong>tained in the silage is<br />

<strong>as</strong>pired. After the separati<strong>on</strong> of solid <strong>and</strong> liquid ph<strong>as</strong>es the latter, a mixture of organic<br />

acids produced during ensiling <strong>and</strong> pentoses <strong>and</strong> hexoses rele<strong>as</strong>ed during hydrolysis, is<br />

fermented.<br />

Taken together the described work is able to offer an all-se<strong>as</strong><strong>on</strong> renewable resource <strong>for</strong><br />

the producti<strong>on</strong> of b<strong>as</strong>e <strong>and</strong> fine chemicals <strong>and</strong> to incre<strong>as</strong>e the value of an agricultural<br />

product respectively to improve the ec<strong>on</strong>omics of biog<strong>as</strong> producti<strong>on</strong>.<br />

The Project is funded by the Fachagentur für Nachwachsende Rohstoffe (22025407<br />

(07NR254)).


P17<br />

Enzymatic degradati<strong>on</strong> of pre-treated wood<br />

Seb<strong>as</strong>tian Poth, Magaly M<strong>on</strong>z<strong>on</strong>, Nils Tippkötter, <strong>and</strong> Rol<strong>and</strong> Ulber, University of<br />

Kaiserslautern, Germany; poth@mv.uni-kl.de<br />

The ec<strong>on</strong>omic dependency <strong>on</strong> fossil fuels <strong>and</strong> the changes of climate due to them h<strong>as</strong> led<br />

to an intensive search <strong>for</strong> renewable resources <strong>for</strong> the producti<strong>on</strong> of chemicals <strong>and</strong> fuels.<br />

At present there are several processes established which use sugar cane <strong>and</strong> corn <strong>for</strong> the<br />

producti<strong>on</strong> of bioethanol. As these crops are comm<strong>on</strong>ly used <strong>as</strong> food there is an ethical<br />

drive to use alternative resources <strong>for</strong> industrial processes. Promising feedstock <strong>for</strong> the<br />

chemical <strong>and</strong> fuel producti<strong>on</strong> are in this c<strong>on</strong>text the fermentable sugars derived from<br />

wooden celluloses <strong>and</strong> hemicelluloses by enzymatic hydrolysis. The great challenge in this<br />

regard is to design new simple <strong>and</strong> beneficial processes that can compete against<br />

c<strong>on</strong>venti<strong>on</strong>al petrochemical producti<strong>on</strong> processes.<br />

The most important step in these processes is the hydrolysis of the lignocellulosic material<br />

into the corresp<strong>on</strong>ding sugar m<strong>on</strong>omers, which can be fermented to ethanol <strong>for</strong> example.<br />

The aim of the presented work is to optimize the enzymatic hydrolysis with regard to the<br />

used substrates <strong>and</strong> the usage of hydrolysates <strong>for</strong> the fermentati<strong>on</strong> of alcohol. The<br />

substrates are cellulose <strong>and</strong> hemicellulose fracti<strong>on</strong>s obtained by thermo-chemical pretreatment<br />

of beech wood. This pre-treatment is carried out by our project partner at the<br />

Johann Heinrich v<strong>on</strong> Thünen Institute, Hamburg, Germany.<br />

Several commercially available enzymes, even thermo stable <strong>on</strong>es were tested <strong>on</strong> their<br />

ability to degrade these fracti<strong>on</strong>s. In first experiments it could be shown, that the enzymes<br />

can hydrolyse up to 40 % of the cellulosic fracti<strong>on</strong> into fermentable sugars within 24 h. The<br />

hemicellulosic fracti<strong>on</strong> already c<strong>on</strong>tains some m<strong>on</strong>omeric sugars which can be fermented.<br />

For this fracti<strong>on</strong> the use of hemicellul<strong>as</strong>es is investigated. All sugar c<strong>on</strong>taining<br />

hydrolysates <strong>and</strong> fracti<strong>on</strong>s were tested <strong>for</strong> their suitability <strong>as</strong> carb<strong>on</strong> source <strong>for</strong> a cofermentati<strong>on</strong><br />

of two different ye<strong>as</strong>ts to produce ethanol. The results showed that the<br />

additi<strong>on</strong> of a nitrogen source, vitamins <strong>and</strong> trace-elements is the <strong>on</strong>ly necessary<br />

preliminary step <strong>for</strong> the fermentati<strong>on</strong>. To incre<strong>as</strong>e the yield of sugars in the hydrolysates<br />

further optimizati<strong>on</strong>s were made, e.g. the incre<strong>as</strong>e of substrate c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong> the<br />

amount of added enzymes w<strong>as</strong> investigated.<br />

61


P18<br />

62<br />

PA X,20 from renewable resources via metathesis <strong>and</strong> catalytic amidati<strong>on</strong><br />

Hatice Mutlu,<strong>and</strong> Michael A.R. Meier, University of Applied Sciences OOW, Emden,<br />

Germany; hatice.mutlu@fh-oow.de<br />

Polyamides (PA) are engineering pl<strong>as</strong>tics with various commercial applicati<strong>on</strong>s due to their<br />

outst<strong>and</strong>ing properties such <strong>as</strong> high durability, high hardness <strong>and</strong> rigidity [1]. Methods <strong>for</strong><br />

the producti<strong>on</strong> of polyamides by polyc<strong>on</strong>densati<strong>on</strong> of aliphatic diamines <strong>and</strong> dicarboxylic<br />

acids or the polyadditi<strong>on</strong> of lactams are often described in the literature. These articles are<br />

mostly dedicated to st<strong>and</strong>ard polyamides b<strong>as</strong>ed <strong>on</strong> depleting fossil resources. However,<br />

bio-b<strong>as</strong>ed polyamides are not yet well developed. The unique example of industrially<br />

produced 100% bio-b<strong>as</strong>ed polyamide is the AB-type polyamide-11 [2]. Synthesis of 100%<br />

bio-b<strong>as</strong>ed AABB type polyamides are not expected because of the n<strong>on</strong>-availability of biob<strong>as</strong>ed<br />

diamines. Meanwhile, research <strong>on</strong> routes to obtain diacids from glucose (adipic<br />

acid) or vegetable oils (azelaic acid, sebacic acid) <strong>for</strong> the producti<strong>on</strong> of partially biob<strong>as</strong>ed<br />

polyamides-6,6, -6,9, <strong>and</strong> -6,10 are under investigati<strong>on</strong> [3].<br />

Am<strong>on</strong>g various polyc<strong>on</strong>densati<strong>on</strong> methods, acyclic diene metathesis (ADMET)<br />

polyc<strong>on</strong>densati<strong>on</strong> is useful in the synthesis of a veriety of polymer architecures that would<br />

otherwise be difficult to obtain [4]. The main goal of this study is to describe the synthesis<br />

of unsaturated polyamides that can be obtained from plant oil derivatives via two different<br />

approaches. First, l<strong>on</strong>g chain aliphatic α,ω dienes with two symmetrically spaced amide<br />

segments were polymerized via ADMET polymerizati<strong>on</strong>. Sec<strong>on</strong>dly, E-dimethyl-eicos-10enedioate,<br />

a bio-b<strong>as</strong>ed unsaturated m<strong>on</strong>omer that w<strong>as</strong> obtained via metathesis <strong>and</strong> other<br />

reacti<strong>on</strong>s from c<strong>as</strong>tor oil, w<strong>as</strong> polymerized with different aliphatic diamines using str<strong>on</strong>g<br />

organic b<strong>as</strong>es, such <strong>as</strong> TBD, <strong>as</strong> catalysts. Both reacti<strong>on</strong> pathways led to PA X,20 <strong>and</strong> the<br />

two different routes were investigated, optimized <strong>and</strong> comapred to <strong>on</strong>e another. Moreover,<br />

the properties of the resulting polyamides were investigated revealing that these l<strong>on</strong>gchain<br />

polyamides are well applicable <strong>as</strong> engeneering pl<strong>as</strong>tics <strong>and</strong> that their properties<br />

depended <strong>on</strong> the structure of the applied m<strong>on</strong>omers, <strong>as</strong> expected. L<strong>as</strong>t, but not le<strong>as</strong>t our<br />

investigati<strong>on</strong>s led to new synthetic approaches that allow <strong>for</strong> the synthesis of ABA type<br />

polyamide block-copolymer with interesting applicati<strong>on</strong> possibilities.<br />

References:<br />

1. M. I. Kohan (editor), Nyl<strong>on</strong> pl<strong>as</strong>tics h<strong>and</strong>book. New York: Hanser, 1995.<br />

2. M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788.<br />

3. M. Crank, M. Patel, F. Marscheider-Weidemann, J. Schleich, B. Hüsing, G. Angerer,<br />

Techno-Ec<strong>on</strong>omic Fe<strong>as</strong>ibility of Large-Scale Producti<strong>on</strong> of Bio-B<strong>as</strong>ed Polymers in Europe,<br />

O. Wolf, Technical Report EUR 22103 EN, European Communities 2005.<br />

4. T. W. Baughman, K. B. Wagener, Adv. Polym. Sci. 2005, 176, 1.


P19<br />

DERIVATIVES OF VEGETABLE OILS AS COMPONENTS OF HYDRAULIC FLUIDS<br />

Talis Paeglis, Aleksejs Smirnovs, R<strong>as</strong>ma Serzane, Maija Strele, Mara Jure, Riga<br />

Technical University, Riga, Latvia; aleksejs86@inbox.lv<br />

Though not total loss lubricants, hydraulic fluids have been cl<strong>as</strong>sified <strong>as</strong> “high risk loss”<br />

lubricants - they are used in large volumes in equipment that is susceptible to spills. The<br />

hydraulic fluids currently used in Latvia in wood harvesting <strong>and</strong> other envir<strong>on</strong>mentally<br />

sensitive are<strong>as</strong> still are mainly b<strong>as</strong>ed <strong>on</strong> mineral oils. Completely different is situati<strong>on</strong> in<br />

other EU countries, e.g., in Sweden, where the Swedish st<strong>and</strong>ard SS 155434 <strong>for</strong><br />

biodegradable hydraulic fluids is a legal requirement. There is an obvious need <strong>for</strong><br />

elaborati<strong>on</strong> of <strong>for</strong>mulati<strong>on</strong>s of hydraulic fluids b<strong>as</strong>ed <strong>on</strong> renewable natural resources in<br />

order to initiate <strong>and</strong> to promote producti<strong>on</strong> of such products in Latvia.<br />

Hydraulic fluids of harvesters should operate at temperature C <strong>and</strong> under high pressure<br />

(180-200 atm) till�C up to 70-100�range -25 change-over after 800-1200 operating hours.<br />

The main problems of biodegradable hydraulic fluids b<strong>as</strong>ed <strong>on</strong> vegetable oils are their low<br />

hydrolytic, thermal <strong>and</strong> oxidative stability, <strong>as</strong> well <strong>as</strong> bad low-temperature fluidity <strong>and</strong> shear<br />

stability.<br />

The biodegradable hydraulic fluids of harvesters available nowadays <strong>on</strong> market are much<br />

more expensive than their mineral oil b<strong>as</strong>ed analogues <strong>and</strong> often can not fulfill technical<br />

requirements set; due to this, new <strong>and</strong> cheaper technologies are developed using<br />

renewable b<strong>as</strong>e stocks. Investigati<strong>on</strong>s regarding new b<strong>as</strong>e fluids <strong>as</strong> well <strong>as</strong> new additives<br />

are very topical.<br />

We used rapeseed oil, its methyl- <strong>and</strong> ethylesters (RME <strong>and</strong> REE, corresp<strong>on</strong>dingly), byproducts<br />

of biodiesel producti<strong>on</strong> - mixture of free fatty acids, m<strong>on</strong>o- <strong>and</strong> diglycerides - <strong>as</strong><br />

raw materials <strong>for</strong> creati<strong>on</strong> of biodegradable hydraulic fluids. Following b<strong>as</strong>ic comp<strong>on</strong>ents<br />

<strong>for</strong> hydraulic fluids were synthesized:<br />

• Esters of fatty acids of rapeseed oil <strong>and</strong> polyols:<br />

o NPE - esters of neopentyl alcohol,<br />

o TMPE - esters of trimethylolpropane,<br />

o PEE - esters of pentaerythritol.<br />

• Estolides of rapeseed oil <strong>and</strong> their ethylhexylesters.<br />

Several derivatives of glycerol <strong>and</strong> fatty acids were prepared <strong>as</strong> potential additives <strong>for</strong><br />

improvement of technical parameters of new compositi<strong>on</strong>s:<br />

• Ethers of glycerol, obtained from:<br />

o glycerol <strong>and</strong> epoxydized rapeseed oil,<br />

o glycerol <strong>and</strong> mixture of epoxydized rapeseed oil fatty acids <strong>and</strong> m<strong>on</strong>o-, diglycerides<br />

(<strong>for</strong>med <strong>as</strong> a by-product in biodiesel producti<strong>on</strong>).<br />

• Polyhydroxycompounds, obtained from epoxydized RME.<br />

C, <strong>as</strong> well <strong>as</strong>�C <strong>and</strong> 100�We determined kinematic viscosity at 40 viscosity index, oxidative<br />

stability, cold-flow properties, acid value, foaming, air rele<strong>as</strong>e, fl<strong>as</strong>h point of elaborated<br />

compositi<strong>on</strong>s. The most of tested parameters corresp<strong>on</strong>ded to requirements, but low<br />

temperature fluidity after 7 days were unsatisfactory – additi<strong>on</strong> of temperature depressants<br />

(e.g., Lubrizol 7671A) improved this parameter. We used TBHQ <strong>as</strong> oxidati<strong>on</strong> inhibitor,<br />

Lubrizol 7671A <strong>as</strong> pour point depressor <strong>and</strong> polymethylsiloxane <strong>as</strong> antifoam agent in<br />

rapeseed oil b<strong>as</strong>ed <strong>for</strong>mulati<strong>on</strong>s.<br />

63


P20<br />

64<br />

ULTRASOUND PROMOTED ETHANOLYSIS OF RAPESEED OIL<br />

Pavels Karabesko, Maija Strele, R<strong>as</strong>ma Serzane, Mara Jure, Riga Technical University,<br />

Riga, Latvia; pave23@inbox.lv<br />

Biodiesel usually is produced by transesterificati<strong>on</strong> of various vegetable oils or animal fats<br />

with methanol. Un<strong>for</strong>tunately, methanol is highly toxic <strong>and</strong> harmful to human health.<br />

Applicati<strong>on</strong> of bioethanol instead of methanol would lead to more envir<strong>on</strong>mentally friendly<br />

producti<strong>on</strong> technology which almost completely would be b<strong>as</strong>ed <strong>on</strong> renewable resources.<br />

Currently in Europe there are no biodiesel producers using ethanol <strong>as</strong> a raw material,<br />

nevertheless FAEE (Fatty Acid Ethyl Esters) is used <strong>as</strong> biodiesel in Brazil. M<strong>and</strong>ate to<br />

CEN <strong>for</strong> st<strong>and</strong>ards <strong>for</strong> FAEE <strong>for</strong> use in diesel engines <strong>and</strong> heating fuels (M/393) w<strong>as</strong> set in<br />

2006.<br />

Previously we explored optimizati<strong>on</strong> of the synthesis of rapeseed oil ethyl esters (REE)<br />

using anhydrous ethanol <strong>and</strong> dehydrated ester-aldehyde fracti<strong>on</strong>s of ethanol rectificati<strong>on</strong><br />

[1]. We were interested to study possibilities of biodiesel preparati<strong>on</strong> from locally produced<br />

bioethanol. There<strong>for</strong>e our aim w<strong>as</strong> to establish optimal c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> synthesis of<br />

rapeseed oil ethyl esters (REE) by transesterificati<strong>on</strong> of oil with bioethanol produced by<br />

distillery “Jaunpag<strong>as</strong>ts Plus” from the local wheat. Experiments were carried out at room or<br />

higher (75-80oC) temperature; durati<strong>on</strong> of reacti<strong>on</strong> <strong>and</strong> amount of catalyst were varied.<br />

The best results were obtained when reacti<strong>on</strong> w<strong>as</strong> run 1 h at room temperature in the<br />

presence of 1.3-1.7% KOH catalyst (from oil m<strong>as</strong>s). When reacti<strong>on</strong> w<strong>as</strong> run at room<br />

temperature, yield of biodiesel reached just 71-82%. There<strong>for</strong>e we repeated the reacti<strong>on</strong>,<br />

adding catalyst-alcohol soluti<strong>on</strong> in two steps. The best result (yield of reacti<strong>on</strong> 97%) w<strong>as</strong><br />

reached, when total amount of added pot<strong>as</strong>sium hydroxide w<strong>as</strong> 1.5%.<br />

Sec<strong>on</strong>dly, we have established optimal c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> producti<strong>on</strong> of REE using<br />

ultr<strong>as</strong><strong>on</strong>icati<strong>on</strong>, <strong>as</strong> it is well known that ultr<strong>as</strong>ound <strong>as</strong>sisted transesterificati<strong>on</strong> of fatty acids<br />

proceed more quickly [2] allowing replacement of batch processing with c<strong>on</strong>tinuous flow<br />

processing <strong>and</strong> reducti<strong>on</strong> of investment <strong>and</strong> operati<strong>on</strong>al costs. Results of our experiments<br />

showed that durati<strong>on</strong> of reacti<strong>on</strong> can be reduced to 0.5 h - twice in comparis<strong>on</strong> with<br />

cl<strong>as</strong>sical method.<br />

Traditi<strong>on</strong>al workup process of REE with orthophosphoric acid <strong>and</strong> water lead to hardly<br />

separable emulsi<strong>on</strong>. There<strong>for</strong>e we applied Magnesol <strong>for</strong> purificati<strong>on</strong> of REE. Biodiesel<br />

treated with Magnesol corresp<strong>on</strong>ds to requirements of st<strong>and</strong>ard LVS EN 14214 <strong>and</strong> this<br />

method is simpler than workup with acid <strong>and</strong> water.<br />

We managed to prepare REE with 97% yield in two steps reacti<strong>on</strong> of rapeseed oil with<br />

bioethanol of local origin. Also we succeeded to reduce a durati<strong>on</strong> of reacti<strong>on</strong> by<br />

ultr<strong>as</strong><strong>on</strong>icati<strong>on</strong> (24 kHz) from 1 h to 0.5 h. Simplificati<strong>on</strong> of REE purificati<strong>on</strong> w<strong>as</strong> reached<br />

by applicati<strong>on</strong> of Magnesol. The technical parameters of our REE corresp<strong>on</strong>ded to<br />

requirements of LVS EN14214 set <strong>for</strong> biodiesel.<br />

[1] M. Strele, R. Serzane, G. Bremers, E. Gudriniece. Investigati<strong>on</strong>s of oils <strong>and</strong> fats. 6.<br />

Transesterificati<strong>on</strong> of rapeseed oil with ethanol. Chemistry Journal of Latvia, 1999, 4, 67-<br />

70 (in Latvian).<br />

[2] C. Stavarache, M. Vintoru, R. Nishimura, Y. Maeda. Fatty acids methyl esters from<br />

vegetable oil by means of ultr<strong>as</strong><strong>on</strong>ic energy. Ultr<strong>as</strong><strong>on</strong>ic S<strong>on</strong>ochem., 2005, 12, 367-372.


P21<br />

From Glycerine via Acetals to new Amphiphils<br />

J. Baumgard (a,b) , E. Paetzold (a), <strong>and</strong> U. Kragl (a,b), (a) Leibniz-Institut für Katalyse an<br />

der Universität Rostock e.V., Rostock, b) Institut für Chemie, Universität Rostock e. V.,<br />

Rostock; jens.baumgard@catalysis.de<br />

Bis 2010 wird die Herstellung v<strong>on</strong> Biokraftstoffen aus nachwachsenden Rohstoffen<br />

weltweit kräftig gesteigert. Natürliche Ole und Fette werden zu Biodiesel umgeestert und<br />

bis zu 6 Milli<strong>on</strong>en t Glycerin werden auf dem Weltmarkt zusätzlich erwartet [1]. Die<br />

gegenwärtigen Anwendungsgebiete für Glycerin können diese Produktmengen nicht<br />

aufnehmen, deshalb werden weltweit neue marktfähige Produkte auf Glycerinb<strong>as</strong>is<br />

gesucht.[2-4]<br />

ZIEL :<br />

Glycerin als ein billiges M<strong>as</strong>senprodukt muss mittels chemischer Stoffw<strong>and</strong>lung in<br />

verkaufsfähige Produkte gew<strong>and</strong>elt und auf dem Weltmarkt abgesetzt werden [2 – 4].<br />

Ergebnisse :<br />

Die Hydro<strong>for</strong>mylierung v<strong>on</strong> Olefinen führt zu Aldehyden, Aldehyde reagieren mit Glycrerin<br />

zu Acetalen [5] (Gl. 1). Die Acetale enthalten Hydroxylgruppe, die für eine Umsetzung z.<br />

B. mit Säure und -derivaten zur Bildung v<strong>on</strong> neuartigen Amphihilen genutzt wird.<br />

Glycerine<br />

Gl. 1<br />

[H + ]<br />

Literatur:<br />

R CO/H 2<br />

HO<br />

O<br />

O<br />

[Rh]<br />

[1] M. Plagliaro et al Angew. Chem., 2007, 119, 45<br />

[2] A. Behr et al. Chem. Ing. Techn., 2007, 79, 621 – 636<br />

[3] R. Westendorf et al., Eur. Pat. Appl., 1996, 1996:501411)<br />

[4] EP 11560242, 23.2.2006, CAO Corp.<br />

[5] M. Beller, U. Kragl, E. Paetzold, L. Neubert, P. Kollmorgen, 2008, DE 10 2008<br />

009 103.0<br />

R<br />

R<br />

+<br />

HO<br />

CHO<br />

O<br />

O<br />

R<br />

65


P22<br />

BIOBASED SEGMENTED POLYURETHANES FROM METHYL OLEATE BASED<br />

POLYETHER POLYOLS<br />

66<br />

Enrique del Río, Virginia Cádiz, Marina Galià, Gerard Lligad<strong>as</strong>, Joan Carles R<strong>on</strong>da,<br />

Universitat Rovira i Virgili, Tarrag<strong>on</strong>a, Spain; enrique.delrio@urv.cat<br />

In the polyurethane industry, c<strong>on</strong>venti<strong>on</strong>al polyether polyols are mostly produced from<br />

petroleum-b<strong>as</strong>ed alkylene oxides. Due to uncertainty about the future cost of petroleum, <strong>as</strong><br />

well <strong>as</strong> the desire to move toward more envir<strong>on</strong>mentally friendly feedstocks, many recent<br />

ef<strong>for</strong>ts have focused <strong>on</strong> replacing all or part of the c<strong>on</strong>venti<strong>on</strong>al petroleum-b<strong>as</strong>ed polyols<br />

with those made from renewable resources such <strong>as</strong> vegetable oils. In additi<strong>on</strong>, it is a<br />

challenge to use diisocyanates derived from aminoacids, making possible to produce<br />

polyurethanes completely from renewable resources. 1-3<br />

In this work we report the synthesis <strong>and</strong> characterizati<strong>on</strong> of polyether polyols from methyl<br />

oleate. The coordinative ring opening polymerisati<strong>on</strong> of epoxidized methyl oleate yields a<br />

linear polyether with Mn= 6.500 Da. The c<strong>on</strong>trolled reducti<strong>on</strong> of the carboxylate groups<br />

allows to obtain a set of polyether polyols with different primary hydroxyl c<strong>on</strong>tents.<br />

Depending <strong>on</strong> the degree of reducti<strong>on</strong> the polyols can have different properties <strong>and</strong>, when<br />

c<strong>on</strong>verted to polyurethanes, may impart different properties to the final product.<br />

These renewable polyols react with 4,4’-methylenebis(phenyl isocyanate) (MDI) or L-lysine<br />

diisocyante (LDI) to yield polyurethanes with different crosslinking density. Moreover, we<br />

carried out the reacti<strong>on</strong> of the polyetherpolyol with the isocyanates <strong>and</strong> 1,3-propanediol <strong>as</strong><br />

chain extender to obtain segmented polyurethanes with different hard segment c<strong>on</strong>tains.<br />

These materials were characterized by infrared spectroscopy (FTIR/ATR), differential<br />

scanning calorimetry (DSC), termogravimetric analysis (TGA) thermodynamomechanical<br />

analysis (DMTA), scanning electr<strong>on</strong> microscope (SEM) <strong>and</strong> X-Ray difracti<strong>on</strong>.<br />

1 M.A.R. Meier, J.O. Metzger <strong>and</strong> U.S. Schubert, Chem. Soc. Rev., 2007, 36, 1788–1802<br />

2 F. S. Günera, Y.Yagci, A.T. Erciyes, Prog. Polym. Sci. 31 (2006) 633–670<br />

3 G. Lligad<strong>as</strong>, J.C. R<strong>on</strong>da, M. Galià, V. Cádiz, Biomacromolecules, 2007, 8, 686-692


P23<br />

DETAILED STUDIES OF SELF- AND CROSS-METATHESIS REACTIONS OF<br />

FATTY ACID METHYL ESTERS<br />

Guy B. Djigoue, <strong>and</strong> Michael A. R. Meier, University of Applied Sciences OOW, Emden,<br />

Germany; djigoue@yahoo.fr<br />

Self- <strong>and</strong> cross-metathesis[1] reacti<strong>on</strong>s with oleochemicals offer the potential to obtain<br />

value added chemical intermediates from plant oil renewable resources.[2,3] Here, the<br />

self-metathesis (SM) of methyl undec-10-enoate (1) <strong>as</strong> well <strong>as</strong> its cross-metathesis (CM)<br />

with methyl acrylate (MA) w<strong>as</strong> investigated in detail by systematically varying the applied<br />

reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. The thus resulting unsaturated α,ω-diesters with a chainlength of 20<br />

<strong>and</strong> 11 carb<strong>on</strong> atoms, respectively, have a large potential from the synthesis of polyesters<br />

<strong>as</strong> well <strong>as</strong> polyamides from plant oil renewable resources.[4] Hence, four different<br />

metathesis catalysts were investigated under solvent-free c<strong>on</strong>diti<strong>on</strong>s at catalyst loadings<br />

ranging from 0.1 to 1 mol % <strong>and</strong> at temperatures ranging from 30 to 70 °C. All reacti<strong>on</strong>s<br />

were followed by GC <strong>and</strong>/or GC-MS in order to evaluate the c<strong>on</strong>versi<strong>on</strong> <strong>as</strong> well <strong>as</strong> the<br />

selectivity of the reacti<strong>on</strong>s. In the c<strong>as</strong>e of the SM reacti<strong>on</strong>s good to excellent c<strong>on</strong>versi<strong>on</strong>s<br />

were obtained with all catalysts, but the sec<strong>on</strong>d generati<strong>on</strong> metathesis catalysts revealed<br />

high amounts of olefin isomerisati<strong>on</strong> side-reacti<strong>on</strong>s.[5] In general, these SM reacti<strong>on</strong>s were<br />

highly reproducible, but at low catalyst loadings <strong>and</strong> low temperatures sometimes large<br />

variati<strong>on</strong>s in the observed c<strong>on</strong>versi<strong>on</strong>s were obtained. This w<strong>as</strong> not the c<strong>as</strong>e <strong>for</strong> the<br />

investigated CM reacti<strong>on</strong>s. Here, also good c<strong>on</strong>versi<strong>on</strong>s <strong>and</strong> CM yields were observed, if<br />

sec<strong>on</strong>d generati<strong>on</strong> metathesis catalysts were applied. Quite interestingly, these reacti<strong>on</strong>s<br />

showed a better reproducibility <strong>and</strong> the olefin isomerisati<strong>on</strong> of the also observed SM<br />

products w<strong>as</strong> almost completely suppressed. Moreover, due to these optimizati<strong>on</strong>s we<br />

were able to run these CM reacti<strong>on</strong>s with a 1:1 ratio of the reactants <strong>and</strong> low catalysts<br />

loadings, which is an improvement over described literature procedures.[3]<br />

Thus, in summary, we report <strong>on</strong> the detailed investigati<strong>on</strong> of the described SM <strong>as</strong> well <strong>as</strong><br />

CM reacti<strong>on</strong>s leading to new <strong>and</strong> optimized reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> the producti<strong>on</strong>s of<br />

unsaturated α,ω-diester m<strong>on</strong>omers from renewable raw materials.<br />

References:<br />

[1] R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760.<br />

[2] A. Rybak, P. A. Fokou, M. A. R. Meier, Eur. J. Lipid Sci. Technol. 2008, 110, 797.<br />

[3] A. Rybak, M. A. R. Meier, Green Chem. 2007, 9, 1356.<br />

[4] M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788.<br />

[5] M. Arisawa, Y. Terada, K. Takah<strong>as</strong>hi, M. Nakagawa, A. Nishida, Chem. Rec. 2007, 7,<br />

238.<br />

67


P24<br />

Temperature dependant double b<strong>on</strong>d isomerizati<strong>on</strong> side reacti<strong>on</strong>s during ADMET<br />

polymerizati<strong>on</strong>s studied with a m<strong>on</strong>omer from renewable resources<br />

68<br />

Patrice Aimé Fokou, <strong>and</strong> Michael A. R. Meier, University of Applied Sciences OOW,<br />

Emden, Germany; atrice.fokou@fh-oow.de<br />

Acyclic diene metathesis (ADMET) polymerizati<strong>on</strong> h<strong>as</strong> developed into a very versatile<br />

technique <strong>for</strong> the preparati<strong>on</strong> of a variety of macromolecular architectures, including linear<br />

polymers [1,2], polymers with a defined degree of branching [3], telechelics <strong>as</strong> well <strong>as</strong><br />

block-copolymers [4,5]. Recently, the technique w<strong>as</strong> also applied to m<strong>on</strong>omers with a<br />

functi<strong>on</strong>ality > 2, thus resulting in hyperbranched macromolecules from AB2, AB3, <strong>and</strong> A3<br />

m<strong>on</strong>omers with B1 chainstoppers, respectively [6,7]. Applying this efficient catalytic<br />

process to m<strong>on</strong>omers from renewable resources will lead to the development of materials<br />

with interesting properties that have the potential to replace existing fossil oil b<strong>as</strong>ed<br />

materials [8].<br />

Within this c<strong>on</strong>tributi<strong>on</strong>, the utilizati<strong>on</strong> of plant oils <strong>as</strong> renewable raw materials <strong>for</strong><br />

m<strong>on</strong>omers <strong>and</strong> polymers will be discussed. There<strong>for</strong>e, the synthesis of a novel <strong>and</strong><br />

degradable m<strong>on</strong>omer from fatty acid derivatives will be described <strong>and</strong> its subsequent<br />

ADMET polymerizati<strong>on</strong> discussed in detail. We will focus our discussi<strong>on</strong>s <strong>on</strong> the<br />

investigati<strong>on</strong> of double-b<strong>on</strong>d isomerizati<strong>on</strong> side-reacti<strong>on</strong>s occurring during these ADMET<br />

polymerizati<strong>on</strong>s. There<strong>for</strong>e, the resulting polyesters were transesterified with methanol in<br />

order to investigate the nature <strong>and</strong> the amount of isomerizati<strong>on</strong> side-reacti<strong>on</strong>s that<br />

occurred during the polymerizati<strong>on</strong>s by GC-MS. These investigati<strong>on</strong>s revealed that the<br />

Grubbs first generati<strong>on</strong> catalyst does hardly show any side reacti<strong>on</strong>s up to a<br />

polymerizati<strong>on</strong> temperature of 90 °C, where<strong>as</strong> the sec<strong>on</strong>d generati<strong>on</strong> catalyst from Grubbs<br />

showed up to 75% isomerisati<strong>on</strong> side reacti<strong>on</strong>s depending <strong>on</strong> temperature <strong>as</strong> well <strong>as</strong> other<br />

polymerizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. This study represents the first quantitative study of<br />

isomerisati<strong>on</strong> side reacti<strong>on</strong>s during ADMET polymerizati<strong>on</strong>s <strong>and</strong> will there<strong>for</strong>e help to tailor<br />

polymeric architectures prepared via this technique.<br />

References:<br />

[1] P. M. O’D<strong>on</strong>nell, K. Brzezinska, D. Powell, K. B. Wagener, Macromolecules 2001, 34,<br />

6845.<br />

[2] T. E. Hopkins, K. B. Wagener, Macromolecules 2004, 37, 1180.<br />

[3] J. C. Sworen, J. A. Smith, J. M. Berg, K. B. Wagener, J. Am. Chem. Soc. 2004, 126,<br />

11238.<br />

[4] K. R. Brzezinkska, T. J. Deming, Macromolecules 2001, 34, 4348.<br />

[5] A. Rybak, M. A. R. Meier, ChemSusChem 2008, 1, 542.<br />

[6] I. A. Gorodetskaya, T.-L. Choi, R. H. Grubbs, J. Am. Chem. Soc. 2007, 129, 12672.<br />

[7] P. A. Fokou, M. A. R. Meier, Macromol. Rapid Commun. 2008, 29, 1620.<br />

[8] M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788.


P25<br />

Reducing the Envir<strong>on</strong>mental Impact of Olefin Metathesis Reacti<strong>on</strong>s<br />

Manuela Kniese, Michael A. R. Meier, University of Applied Sciences OOW, Emden,<br />

Germany; manuela.kniese@gmx.de<br />

As with most catalytic processes, olefin metathesis w<strong>as</strong> discovered by accident <strong>as</strong> a result<br />

of the study of Ziegler polymerizati<strong>on</strong>s with alternate metal systems.[1] The recent<br />

development of ruthenium olefin metathesis catalysts with high activity <strong>and</strong> functi<strong>on</strong>al<br />

group tolerance h<strong>as</strong> exp<strong>and</strong>ed the scope of this reacti<strong>on</strong> to synthesize organic compounds<br />

<strong>and</strong> to <strong>for</strong>m new C-C b<strong>on</strong>ds.[2,3] Many variants of this very useful <strong>and</strong> versatile reacti<strong>on</strong><br />

have been developed in the meantime including self-metathesis (SM), cross-metathesis<br />

(CM), ring-closing metathesis (RCM), ring-opening metathesis (ROM), ROM<br />

polymerizati<strong>on</strong> (ROMP) <strong>as</strong> well <strong>as</strong> acyclic diene metathesis polymerizati<strong>on</strong> (ADMET).[2,3]<br />

Within this project three reacti<strong>on</strong>s were investigated, which were suggested by the Nobel<br />

Prize laureate R. H. Grubbs <strong>as</strong> a useful, general <strong>and</strong> e<strong>as</strong>ily applicable plat<strong>for</strong>m <strong>for</strong> catalyst<br />

evaluati<strong>on</strong>: CM of allyl benzene with excess cis-1,4-diacetoxy-2-butene, CM of methyl<br />

acrylate with 5 hexenyl acetate <strong>and</strong> RCM of diethyldiallyl mal<strong>on</strong>ate.[4] As also typically<br />

described <strong>for</strong> other olefin metathesis reacti<strong>on</strong>s, these reacti<strong>on</strong>s were per<strong>for</strong>med in the<br />

organic solvent dichloromethane, which is toxic <strong>and</strong> envir<strong>on</strong>mentally unfriendly. Since the<br />

aim of this project is to optimize the reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> these reacti<strong>on</strong>s <strong>and</strong> to avoid the<br />

use of toxic solvents, we studied these reacti<strong>on</strong>s in detail at different c<strong>on</strong>centrati<strong>on</strong>s in two<br />

solvents <strong>as</strong> well <strong>as</strong> in bulk. Dichloromethane <strong>and</strong> an envir<strong>on</strong>mentally friendly fatty acid<br />

derived solvent were used <strong>for</strong> comparis<strong>on</strong>. Our studies clearly showed that the menti<strong>on</strong>ed<br />

reacti<strong>on</strong>s can be per<strong>for</strong>med in bulk, thus completely avoiding organic solvents <strong>and</strong> thus<br />

highly reducing the envir<strong>on</strong>mental impact of such reacti<strong>on</strong>s. As a very positive side effect,<br />

the reacti<strong>on</strong>s in bulk usually required less catalyst <strong>and</strong> often provided better c<strong>on</strong>versi<strong>on</strong>s<br />

than their counterparts in organic solvent, most likely due to the higher c<strong>on</strong>centrati<strong>on</strong> of the<br />

reactants. Moreover, our studies also revealed that methyl esters of capric <strong>and</strong> lauric acid<br />

are suitable n<strong>on</strong>-toxic <strong>and</strong> thus envir<strong>on</strong>mentally friendly solvents <strong>for</strong> the investigated olefin<br />

metathesis reacti<strong>on</strong>s.<br />

References:<br />

[1] R. H. Grubbs, Tetrahedr<strong>on</strong>, 2004, 60, 7117.<br />

[2] S. H. H<strong>on</strong>g, R. H. Grubbs, Org Lett., 2007, 9 (10), 1955.<br />

[3] R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760.<br />

[4] R. H. Grubbs et al, Organometallics, 2006, 25, 5740.<br />

69


P26<br />

An approach to renewable Nyl<strong>on</strong>-11 <strong>and</strong> Nyl<strong>on</strong>-12 via olefin cross-metathesis<br />

70<br />

Tina Jacobs, Michael A. R. Meier, University of Applied Sciences OOW, Emden,<br />

Germany; tina.jacobs@fho-emden.de<br />

In ages of depleting fossil reserves <strong>and</strong> incre<strong>as</strong>ing emissi<strong>on</strong> of green house g<strong>as</strong>es it is<br />

obvious that the utilizati<strong>on</strong> of renewable feedstocks is <strong>on</strong>e necessary step towards a<br />

sustainable development of our future. Especially plant derived oils bear a large potential<br />

<strong>for</strong> the substituti<strong>on</strong> of currently used petrochemicals, since a variety of value added<br />

chemical intermediates can be derived from these resources in a straight<strong>for</strong>ward f<strong>as</strong>hi<strong>on</strong><br />

taking full advantage of nature’s synthetic potential.<br />

Here, new approaches <strong>for</strong> the synthesis of m<strong>on</strong>omers from plant oils <strong>as</strong> renewable<br />

resources[1] via olefin metathesis[2,3] will be discussed. In particular, the synthesis of α,ωdifuncti<strong>on</strong>al<br />

chemical intermediates from renewable resources via the cross-metathesis<br />

reacti<strong>on</strong> of fatty acid methyl esters with allyl chloride is described.[4] Different ruthenium<br />

metathesis catalysts were investigated <strong>and</strong> the reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s were optimized <strong>for</strong> high<br />

c<strong>on</strong>versi<strong>on</strong>s in combinati<strong>on</strong> with high cross-metathesis selectivity. New building blocks <strong>and</strong><br />

chemical intermediates from fatty acid derivates were thus obtained in catalytic reacti<strong>on</strong>s<br />

with low catalyst loadings under bulk c<strong>on</strong>diti<strong>on</strong>s. There<strong>for</strong>e, a new potential use of<br />

renewable raw materials <strong>for</strong> the synthesis of intermediates <strong>for</strong> Nyl<strong>on</strong>-11 <strong>and</strong> Nyl<strong>on</strong>-12 w<strong>as</strong><br />

dem<strong>on</strong>strated.<br />

References:<br />

[1] M. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788.<br />

[2] R. H. Grubbs, Angew. Chem. Int. Ed. 2006, 45, 3760.<br />

[3] A. Rybak, P. A. Fokou, M. A. R. Meier, Eur. J. Lipid Sci. Technol. 2008, 110, 797.<br />

[4] T. Jacobs, A. Rybak, M. A. R. Meier, Appl. Catal., A 2009, 353 32.


P27<br />

Ultr<strong>as</strong><strong>on</strong>ic <strong>as</strong>sisted finishing of cellulose fiber by fatty acid amide derivatives<br />

Mazeyar Parvinzadeh, Mohammad Shaver, <strong>and</strong> B<strong>as</strong>hir Katozian, Islamic Azad University,<br />

Shahre rey branch, Tehran, Islamic Republic of Iran mpgc<strong>on</strong>f@gmail.com<br />

The processing of textiles to achieve a particular h<strong>and</strong>le is <strong>on</strong>e of the most important<br />

<strong>as</strong>pects of finishing technology. Softeners <strong>and</strong> fatty acids improve soft h<strong>and</strong>le,<br />

smoothness, el<strong>as</strong>ticity, hydrophilic, antistatic <strong>and</strong> soil rele<strong>as</strong>e properties <strong>on</strong> textiles. Fatty<br />

acid amide derivatives are commercial textile softeners used to improve softness of fibers<br />

surface.<br />

In this research, cott<strong>on</strong> fabric w<strong>as</strong> used <strong>as</strong> substrate <strong>and</strong> it w<strong>as</strong> first scoured with n<strong>on</strong>i<strong>on</strong>ic<br />

detergent to remove any impurities. The fabric w<strong>as</strong> then treated with ani<strong>on</strong>ic, n<strong>on</strong>i<strong>on</strong>ic <strong>and</strong><br />

cati<strong>on</strong>ic fatty acid amide derivative softeners in water including 15 g/l at 30ºC <strong>for</strong> 30<br />

minutes using ultr<strong>as</strong><strong>on</strong>ic energy during treatment. The treated fabrics were then<br />

dried/cured at 130ºC <strong>for</strong> 40 sec<strong>on</strong>ds. Some of the physical properties of the fabrics treated<br />

under ultr<strong>as</strong>ound <strong>and</strong> those treated without ultr<strong>as</strong><strong>on</strong>ic energy, were compared <strong>and</strong><br />

discussed.<br />

As the results show, treatment of fabrics with softeners under ultr<strong>as</strong>ound is more effective<br />

compared to c<strong>on</strong>venti<strong>on</strong>al method.<br />

71


P28<br />

72<br />

Hydrolysis of nyl<strong>on</strong> 6 with proteolytic enzyme<br />

Mazeyar Parvinzadeh, Islamic Azad University, Shahre rey branch, Tehran, Islamic<br />

Republic of Iran; mpgc<strong>on</strong>f@gmail.com<br />

Nowadays, textile processing b<strong>as</strong>ed <strong>on</strong> biotechnology h<strong>as</strong> gained importance in view of<br />

stringent envir<strong>on</strong>mental <strong>and</strong> industrial safety c<strong>on</strong>diti<strong>on</strong>s. The best established applicati<strong>on</strong><br />

of biotechnology to textiles is the use of enzymes. These vital parts of all living organisms<br />

are organic catalysts with specific in the reacti<strong>on</strong> catalyzed <strong>and</strong> substrates selectivity.<br />

Traditi<strong>on</strong>al chemical treatments are replaced by enzymes because of their lower product<br />

quality, higher manufacturing cost, affecting some favorable bulk properties of textiles, not<br />

e<strong>as</strong>ily c<strong>on</strong>trolling, creating harsh c<strong>on</strong>diti<strong>on</strong>s, undesirable side effects <strong>and</strong>/or w<strong>as</strong>te disposal<br />

problems, more w<strong>as</strong>te, high odor process <strong>for</strong> workers <strong>and</strong> added energy c<strong>on</strong>sumpti<strong>on</strong> in<br />

textile industry. The main enzymes used in textile processing are amyl<strong>as</strong>es, cellul<strong>as</strong>es,<br />

prote<strong>as</strong>es, ester<strong>as</strong>es, nitril<strong>as</strong>es, catal<strong>as</strong>es, peroxid<strong>as</strong>es, lacc<strong>as</strong>es <strong>and</strong> pectin-degrading<br />

enzymes.<br />

Nyl<strong>on</strong> 6 fabrics were first treated with different c<strong>on</strong>centrati<strong>on</strong>s of subtilisin enzyme in<br />

aqueous soluti<strong>on</strong>s c<strong>on</strong>taining 1, 2, 4 <strong>and</strong> 6% <strong>for</strong> 80 min at 30ºC. The dyeing process w<strong>as</strong><br />

then carried out <strong>on</strong> the treated fabrics with disperse dye. A UV–Vis. spectrophotometer<br />

w<strong>as</strong> used <strong>for</strong> determinati<strong>on</strong> of dyebath exhausti<strong>on</strong>. Disperse dye showed higher<br />

exhausti<strong>on</strong> <strong>on</strong> the enzyme treated samples. The intensity of major peaks in FTIR spectra<br />

of prote<strong>as</strong>e treated samples are in favor of chemical changes of the polypeptide fabric.<br />

The results of color me<strong>as</strong>urement in the CIELAB system showed that the darkness of the<br />

samples incre<strong>as</strong>ed with an incre<strong>as</strong>e in the enzyme percentage in the soluti<strong>on</strong>. The w<strong>as</strong>h<br />

<strong>and</strong> light f<strong>as</strong>tness properties of samples were me<strong>as</strong>ured according to ISO 105-CO5 <strong>and</strong><br />

Daylight ISO 105-BO1 <strong>and</strong> discussed.


P29<br />

Comparing finishing of polyester fibers with micro <strong>and</strong> nano emulsi<strong>on</strong> silic<strong>on</strong>es<br />

Mazeyar Parvinzadeh, Islamic Azad University, Shahre rey branch, Tehran, Islamic<br />

Republic of Iran; mpgc<strong>on</strong>f@gmail.com<br />

The processing of textiles to achieve a particular h<strong>and</strong>le is <strong>on</strong>e of the most important<br />

<strong>as</strong>pects of finishing technology. Softeners are <strong>on</strong>e of the main compounds in finishing<br />

process <strong>and</strong> can improve some properties of textiles, depending <strong>on</strong> the chemical nature,<br />

including soft h<strong>and</strong>le, smoothness, el<strong>as</strong>ticity, hydrophilic, antistatic <strong>and</strong> soil rele<strong>as</strong>e<br />

properties. They are cl<strong>as</strong>sified according to their i<strong>on</strong>ic character <strong>and</strong> the main cl<strong>as</strong>ses are:<br />

ani<strong>on</strong>ic, cati<strong>on</strong>ic, n<strong>on</strong>i<strong>on</strong>ic, amphoteric, reactive <strong>and</strong> silic<strong>on</strong>e. Macro- <strong>and</strong> micro-emulsi<strong>on</strong><br />

silic<strong>on</strong>e softeners are commercial cl<strong>as</strong>ses of softeners but nano-emulsi<strong>on</strong>s are new cl<strong>as</strong>s<br />

of softeners in textile industry. The purpose of this research w<strong>as</strong> to study the effect of<br />

micro <strong>and</strong> nano-silic<strong>on</strong>e softeners <strong>on</strong> different properties of polyester fiber.<br />

Polyester fabrics were first scoured with n<strong>on</strong>i<strong>on</strong>ic detergent <strong>and</strong> were then treated with<br />

three c<strong>on</strong>centrati<strong>on</strong>s (10, 20 <strong>and</strong> 30 gr/lit) of micro <strong>and</strong> nano-emulsi<strong>on</strong>s of silic<strong>on</strong>es. The<br />

drape length of treated samples with 10 gr/lit of soluti<strong>on</strong> w<strong>as</strong> decre<strong>as</strong>ed <strong>and</strong> more<br />

decre<strong>as</strong>e w<strong>as</strong> observed with incre<strong>as</strong>e in silic<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>. Colorimetric properties of<br />

softener treated fabrics were evaluated with a reflectance spectrophotometer. Nanoemulsi<strong>on</strong><br />

silic<strong>on</strong>es changed a little the surface reflectance of fibers compared to microsilic<strong>on</strong>e<br />

softener. Incre<strong>as</strong>e in weight of all samples w<strong>as</strong> observed which shows the coating<br />

of silic<strong>on</strong>es <strong>on</strong> fiber surface. Nano-emulsi<strong>on</strong> silic<strong>on</strong>es showed better results <strong>on</strong> samples<br />

treated compared to micro-emulsi<strong>on</strong> silic<strong>on</strong>es.<br />

73


P30<br />

PIBOLEO project: Eco Innovative process <strong>for</strong> multi-functi<strong>on</strong>al bi-oleothermal<br />

treatment <strong>for</strong> wood preservati<strong>on</strong> <strong>and</strong> fire proofing<br />

74<br />

S<strong>and</strong>ra Warren, Carine Alfos, <strong>and</strong> Frédéric Sim<strong>on</strong>, ITERG, Pessac, France<br />

s.warren@iterg.com<br />

Although they are usually quite effective, typical wood treatments are not necessarily very<br />

envir<strong>on</strong>ment-friendly, in terms of the treatment itself <strong>and</strong> of the active substances used<br />

(flame retardants, biocides). In this day <strong>and</strong> age, <strong>as</strong> the ecological <strong>as</strong>pects are becoming<br />

more <strong>and</strong> more important, many research projects aim at improving wood treatment in an<br />

envir<strong>on</strong>ment-friendly manner.<br />

In France a simple bi-oleothermal© process h<strong>as</strong> been developed by CIRAD <strong>and</strong> FCBA in<br />

order to make the treated wood more stable <strong>and</strong> less sensitive when used outdoors. The<br />

interest of this now well m<strong>as</strong>tered alternative method <strong>for</strong> wood protecti<strong>on</strong> is to allow wood<br />

drying <strong>as</strong> well <strong>as</strong> wood treatment in a single process. This two stage process operates at<br />

atmospheric pressure <strong>and</strong> uses two hot oil baths. Nevertheless, the <strong>for</strong>mulati<strong>on</strong> of the oils<br />

used needs major improvement in order to adapt the per<strong>for</strong>mances of the treated wooden<br />

material (durability towards wood destroying organisms, fireproofing, etc...) to its end-use.<br />

The improvement of this bi-oleothermal wood treatment is the subject of the PIBOLEO<br />

project, which is supported by the French Nati<strong>on</strong>al Agency <strong>for</strong> Research (ANR - ADEME).<br />

This project is currently in its early stages <strong>and</strong> focuses <strong>for</strong> now <strong>on</strong> the optimizati<strong>on</strong> of the<br />

compositi<strong>on</strong> of the sec<strong>on</strong>d bath, which is the <strong>on</strong>e c<strong>on</strong>taining the active substances.<br />

The nature of the sec<strong>on</strong>d bath depends a lot <strong>on</strong> the active substances used <strong>for</strong> improving<br />

the fire, fungus or insect resistance of the treated wood. If these substances are not<br />

miscible with oil but soluble in water, it is then necessary to develop an emulsi<strong>on</strong><br />

c<strong>on</strong>taining enough of each of the substances to impart the desired properties to the treated<br />

wood. In that c<strong>as</strong>e, the use of surfactants is required. There<strong>for</strong>e, a major axis of the<br />

PIBOLEO h<strong>as</strong> been to optimize the surfactant systems in these water-in-oil (W/O)<br />

emulsi<strong>on</strong>s. It is quite challenging to design emulsi<strong>on</strong>s that can withst<strong>and</strong> the thermal<br />

shocks <strong>and</strong> the additi<strong>on</strong> of impurities coming from the wood (water, sap, etc.) <strong>as</strong>sociated<br />

with the treatment without deph<strong>as</strong>ing.<br />

In the c<strong>as</strong>e of active substances that are not soluble in oil, chemical modificati<strong>on</strong> <strong>and</strong><br />

grafting of those substances <strong>on</strong>to oil can be an alternative opti<strong>on</strong>. They can then become<br />

soluble in oil without losing their properties <strong>as</strong> fire retardants or biocides. Several synthesis<br />

routes are currently under investigati<strong>on</strong> in the PIBOLEO project. In that c<strong>as</strong>e or if the<br />

active substances are naturally soluble in oil, there is no need to add water in the sec<strong>on</strong>d<br />

bath <strong>and</strong> a simple <strong>for</strong>mulati<strong>on</strong> of the oil is sufficient. The stability of the bath is then<br />

improved (the <strong>on</strong>ly c<strong>on</strong>cern is the oxidative stability of the oil <strong>and</strong> the active substances<br />

since deph<strong>as</strong>ing is not a possibility).


P31<br />

Cellul<strong>as</strong>es in bi-ph<strong>as</strong>ic media<br />

Nathalie Berezina, Joel Nys, <strong>and</strong> Laurent Paternostre, Natiss - Materia Nova, 7822<br />

Ghislenghien, Belgium; nathalie.berezina@materianova.be<br />

Nowadays, cellul<strong>as</strong>es are c<strong>on</strong>sidered with great interest by White Biotechnology industry<br />

[1]. Indeed, these enzymes are e<strong>as</strong>y to produce at industrial scale, e<strong>as</strong>y to use <strong>and</strong><br />

present promising route <strong>for</strong> sec<strong>on</strong>d generati<strong>on</strong> biofuels. The catalytic activity of comm<strong>on</strong><br />

cellul<strong>as</strong>es is well known i.e. optimal pH, temperature, etc [2]. Many possible substrates<br />

were also already tested [3]. However, <strong>on</strong>ly little work, at our knowledge, w<strong>as</strong> d<strong>on</strong>e <strong>on</strong><br />

cellul<strong>as</strong>es activity in n<strong>on</strong>-aqueous media [4].<br />

We present here a study of enzymatic activity of three different commercial cellul<strong>as</strong>es from<br />

A. niger, Aspergillus sp. <strong>and</strong> Trichoderma virens in various biph<strong>as</strong>ic, organic solvent /<br />

buffer, c<strong>on</strong>diti<strong>on</strong>s.<br />

We found that the A. niger cellul<strong>as</strong>es had the best catalytic activity in a biph<strong>as</strong>ic media<br />

c<strong>on</strong>taining up to 75 % of chloro<strong>for</strong>m ph<strong>as</strong>e. In this c<strong>as</strong>e up to 40 g/L cellulose c<strong>on</strong>tained in<br />

buffer ph<strong>as</strong>e can be trans<strong>for</strong>med in 4 hours by 10 g/L overall enzyme.<br />

-------<br />

1. a) Lin Y., Tanaka S., Appl. Microbiol. Biotechnol., 2006, 69-6, 627; b) Percival Zhang<br />

Y.H., Himmel M.E., Mielenz J.R., Biotechnol. Adv., 2006, 24-5, 452<br />

2. a) C<strong>as</strong>tellanos O.F., Sinitsyn A.P., Vl<strong>as</strong>enko E.Yu., Bioressource Technology, 1995, 52,<br />

119; b) Duff S.J.B., Cooper D.G., Fuller O.M., Enzyme Microb. Technol., 1986, 8, 305<br />

3. a) Claeyssens M., Aerts G., Bioressource Technology, 1992, 39, 143; b) Walker L.P.,<br />

Wils<strong>on</strong> D.B., Irwin D.C., Enzyme Microb. Technol., 1990, 12, 378; c) C<strong>as</strong>tellanos O.F.,<br />

Sinitsyn A.P., Vl<strong>as</strong>enko E.Yu., Bioressource Technology, 1995, 52, 109;<br />

4. a) Chen N., Fan J.B., Xiang J., Chen J., Liang Y., Biochim. Biophys. Acta, 2006, 1764-6,<br />

1029; b) Woodward C.A., Kaufman E.N., Biotechnol. Bioeng., 1996, 52-3, 423; c)<br />

Kilpeläinen I., Xie H., King A., Granstrom M., Heikkinen S., Argyropoulos D.S., J. Agric.<br />

Food Chem., 2007, 55-22, 9142<br />

75


List of participants<br />

Prof. Dr. Joel Barrault<br />

CNRS/LACCO<br />

avenue du recteur pineau 40<br />

86022 Poitiers, France<br />

joel.barrault@univ-poitiers.fr<br />

Mr. Fabio B<strong>as</strong>setto<br />

Bret<strong>on</strong> SPA<br />

via Garibaldi 27<br />

31030 C<strong>as</strong>tello di Godego, Italy<br />

b<strong>as</strong>setto.fabio@bret<strong>on</strong>.it<br />

Dr. Franz-Erich Baumann<br />

Ev<strong>on</strong>ik-Degussa GmbH<br />

Paul-Baumann-Str. 1<br />

45764 Marl Germany<br />

margret.bueckers@ev<strong>on</strong>ik.com<br />

Mr. Jens Baumgard<br />

LIKAT Rostock<br />

Albert- Einstein Straße 29a<br />

18059 Rostock, Germany<br />

jens.baumgard@catalysis.de<br />

Dr. Nathalie Berezina<br />

Natiss - Materia Nova<br />

rue des Foudriers 1<br />

7822 Ghislenghien, Belgium<br />

nathalie.berezina@materianova.be<br />

Mrs. Tanja Van Bergen-Brenkman<br />

Croda<br />

Buurtje 1<br />

2802BE Gouda, Netherl<strong>and</strong>s<br />

tanja.van.bergen@croda.com<br />

Mr. Avin<strong>as</strong>h Bhadani<br />

Guru Nanak Dev University<br />

143005 Amritsar, India<br />

avin<strong>as</strong>hbhadani2003@yahoo.co.in<br />

Dr. Ursula Biermann<br />

University of Oldenburg<br />

Carl-v<strong>on</strong>-Ossietzky-Str. 9-11<br />

26111 Oldenburg, Germany<br />

ursula.biermann@uni-oldenburg.de<br />

76<br />

Dr. Michael Blumenstein<br />

HOBUM Oleochemicals GmbH<br />

Seehafenstraße 20<br />

21079 Hamburg, Germany<br />

pknolle@hobum.de<br />

Dr. Christian Bruneau<br />

Sciences Chimiques<br />

Avenue du General Leclerc 263<br />

35042 Rennes, France<br />

christian.bruneau@univ-rennes1.fr<br />

Dr. Laure C<strong>and</strong>y<br />

Laboratoire de Chimie AgroIndustrielle;<br />

ENSIACET<br />

Route de Narb<strong>on</strong>ne 118<br />

31077 Toulouse, France<br />

laure.c<strong>and</strong>y@ensiacet.fr<br />

Dr. Gökhan Çaylı<br />

Koç University<br />

Rumelifeneri yolu 0<br />

34450 Istanbul, Turkey<br />

gcayli@ku.edu.tr<br />

Prof. Dr. David J. Cole-Hamilt<strong>on</strong><br />

University of St. Andrews, School of<br />

Chemistry<br />

North Haugh KY169ST<br />

St. Andrews, United Kingdom<br />

djc@st-<strong>and</strong>.ac.uk<br />

Dr. Ralf Collenburg<br />

Thywissen GmbH<br />

Industriestr. 34<br />

41460 Neuss, Germany<br />

ralf.collenburg@cthywissenoel.de<br />

Dr. Manfred Diedering<br />

Alberdingk Boley GmbH<br />

Düsseldorfer Str<strong>as</strong>se 39<br />

47829 Krefeld, Germany<br />

m.diedering@alberdingk-boley.de<br />

Mr. Guy B. Djigoue<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

djigoue@yahoo.fr


Mr. Luc<strong>as</strong> M<strong>on</strong>tero de Espinosa<br />

Universitat Rovira i Virgili<br />

Marcel.li Domingo<br />

43007 Tarrag<strong>on</strong>a, Spain<br />

luc<strong>as</strong>.m<strong>on</strong>tero@urv.cat<br />

Dr. Patrice A. Fokou<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

patrice.fokou@fh-oow.de<br />

Dr. Thom<strong>as</strong> Früh<br />

Lanxess Deutschl<strong>and</strong> GmbH<br />

Chempark Leverkusen, Q 18 Raum 1755<br />

51369 Leverkusen, Germany<br />

thom<strong>as</strong>.frueh@lanxess.com<br />

Prof. Dr. Annett Fuchs<br />

Hochschule Zittau/Görlitz<br />

Theodor-Körner-Allee 16<br />

02763 Zittau, Germany<br />

a.fuchs@hs-zigr.de<br />

Dr. Marina Galià<br />

University Rovira i Virgili<br />

Marcel.li Domingo<br />

43007 Tarrag<strong>on</strong>a, Spain<br />

marina.galia@urv.cat<br />

Mr. Dominik Geisker<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

dominik.geisker@fh-oow.de<br />

Dr. Torsten Germer<br />

Robert Kraemer<br />

Zum Roten Hahn 9<br />

26180 R<strong>as</strong>tede, Germany<br />

sekretariat@rokra.com<br />

Dr. Allan Green<br />

CSIRO Plant Industry<br />

PO Box 1600<br />

2601 Canberra, Australia<br />

allan.green@csiro.au<br />

Prof. Dr. Dieter Greif<br />

Hochschule Zittau/Görlitz<br />

Theodor-Körner-Allee 16<br />

02763 Zittau, Germany<br />

d.greif@hs-zigr.de<br />

Dr. Sarina Grinberg<br />

Ben-Guri<strong>on</strong> University<br />

H<strong>as</strong>halom 1<br />

84105 Beer-Sheva, Israel<br />

sarina@bgu.ac.il<br />

Dr. Matteo Guidotti<br />

CNR-ISTM<br />

via Venezian 21<br />

20133 Milano, Italy<br />

m.guidotti@istm.cnr.it<br />

Dr. Harald Haeger<br />

Ev<strong>on</strong>ik Degussa GmbH<br />

Paul-Baumann-Str. 1<br />

45764 Marl Germany<br />

margret.bueckers@ev<strong>on</strong>ik.com<br />

Dr. Peter Hannen<br />

Ev<strong>on</strong>ik Degussa GmbH<br />

Paul-Baumann-Str. 1<br />

45764 Marl Germany<br />

margret.bueckers@ev<strong>on</strong>ik.com<br />

Mrs. Katharina Heidkamp<br />

Johann Heinrich v<strong>on</strong> Thünen-Institut (vTI)<br />

Bundesallee 50<br />

38116 Braunschweig, Germany<br />

katharina.heidkamp@vti.bund.de<br />

Dr. Karlheinz Hill<br />

Cognis GmbH<br />

Rheinpromenade 1<br />

40789 M<strong>on</strong>heim, Germany<br />

Karlheinz.Hill@cognis.com<br />

Dr. Norbert Holst<br />

Fachagentur Nachwachsende Rohstoffe<br />

Hofplatz 1<br />

18276 Gülzow, Germany<br />

n.holst@fnr.de<br />

77


Mr. Rachid Ihizane<br />

Universität Wuppertal<br />

Gaußstr. 20<br />

42119 Wuppertal, Germany<br />

ihizane@uni-wuppertal.de<br />

Prof. Dr. Rosa Infante<br />

CSIC<br />

Jordi Gir<strong>on</strong>a 18<br />

08034 Barcel<strong>on</strong>a, Spain<br />

rimste@cid.csic.es<br />

Dr. Guido Jach<br />

Phytowelt GreenTechnologies GmbH<br />

Kölsumer Weg 33<br />

41334 Nettetal, Germany<br />

c<strong>on</strong>tact@phytowelt.com<br />

Mrs. Tina Jacobs<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

tina.jacobs@fho-emden.de<br />

Mr. Swapnil R. Jadhav<br />

City College of City University of New<br />

York<br />

160 C<strong>on</strong>vent Avenue 137 St<br />

10031 New York, United States<br />

sjadhav@gc.cuny.edu<br />

Dr. Bernd Jakob<br />

Universität Wupeprtal<br />

Gausstr. 20<br />

42097 Wuppertal, Germany<br />

bjakob@uni-wuppertal.de<br />

Dr. François Jérôme<br />

CNRS/LACCO<br />

avenue du recteur Pineau 40<br />

86022 Poitiers, France<br />

francois.jerome@univ-poitiers.fr<br />

Prof. Dr. George John<br />

The City College of CUNY<br />

1237 Marshak Hall, 160 C<strong>on</strong>vent Avenue<br />

138 Street<br />

10031 New York, United States<br />

john@sci.ccny.cuny.edu<br />

78<br />

Mr. Pavels Karabesko<br />

Riga Technical University<br />

Azenes 22a-422b<br />

LV-1048 Riga, Latvia<br />

pave23@inbox.lv<br />

Mrs. Melanie Kellermann<br />

Hochschule Zittau/Görlitz<br />

Theodor-Körner-Allee 16<br />

02763 Zittau, Germany<br />

m.kellermann@hs-zigr.de<br />

Mrs. Manuela Kniese<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

manuela.kniese@gmx.de<br />

Mr. Kristian Kowollik<br />

Fraunhofer Institut für Chemische<br />

Technologie<br />

Joseph-v<strong>on</strong>-Fraunhoferstr<strong>as</strong>se 7<br />

76327 Pfinztal, Germany<br />

kristian.kowollik@ict.fraunhofer.de<br />

Mr. Dieter Kundrun<br />

American Soybean Associati<strong>on</strong><br />

Cuxhavener Str. 454c<br />

21149 Hamburg, Germany<br />

dkundrun@aol.com<br />

Dr. Andre<strong>as</strong> Kunst<br />

BASF SE<br />

Carl-Bosch-Str. 38<br />

67056 Ludwigshafen, Germany<br />

<strong>and</strong>re<strong>as</strong>.kunst@b<strong>as</strong>f.com<br />

Prof. Dr. Selim H. Kusefoglu<br />

Bogazici University<br />

Etiler 0000<br />

34342 Istanbul, Turkey<br />

kusef@boun.edu.tr<br />

Dr. Andre<strong>as</strong> Martin<br />

Leibniz-Institut für Katalyse<br />

R.-Willstätter-Str. 12<br />

12489 Berlin Germany<br />

<strong>and</strong>re<strong>as</strong>.martin@catalysis.de


Dr. Michael A. R. Meier<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

michael.meier@fh-oow.de<br />

Prof. Dr. Jürgen O. Metzger<br />

<strong>abiosus</strong> e.V.<br />

Bloherfelder Str. 239<br />

26129 Oldenburg, Germany<br />

metzger@<strong>abiosus</strong>.org<br />

Mrs. Xiaowei Miao<br />

Institut Sciences Chimiques de Rennes<br />

avenue du Général Leclerc 263<br />

35042 Rennes, France<br />

mxw331@yahoo.com<br />

Mr. Jordi Morros<br />

IQAC - CSIC<br />

Jordi Gir<strong>on</strong>a 18-26<br />

08034 Barcel<strong>on</strong>a, Spain<br />

jmcste@cid.csic.es<br />

Mrs. Hatice Mutlu<br />

FH-OOW<br />

C<strong>on</strong>stantiaplatz 4<br />

26723 Emden, Germany<br />

hatice.mutlu@fh-oow.de<br />

Mr. Cem Öztürk<br />

Bogazici University, Chemistry<br />

Department<br />

Kare Blok Kuzey Kampus Bebek<br />

34342 Istanbul, Turkey<br />

cem34@yahoo.com<br />

Mr. Dirk Packet<br />

Ole<strong>on</strong><br />

Vaartstraat 130<br />

B-2520 Oelegem, Belgium<br />

dirk.packet@ole<strong>on</strong>.com<br />

Mr. Mazeyar Parvinzadeh<br />

Islamic Azad University, Shahre rey<br />

branch<br />

P<strong>as</strong>daran street No.5<br />

Tehran, Islamic Republic of Iran<br />

mpgc<strong>on</strong>f@gmail.com<br />

Mrs. Jessica Pérez Gomes<br />

Technische Universität Dortmund<br />

Emil-Figge-Str<strong>as</strong>se 66<br />

44227 Dortmund, Germany<br />

jessica.perez-gomes@bci.unidortmund.de<br />

Prof. Dr. Zoran S. Petrovic<br />

Pittsburg State University, Kans<strong>as</strong><br />

Polymer Research Center<br />

S. Broadway 1701<br />

66762 Pittsburg, KS, United States<br />

zpetrovi@pittstate.edu<br />

Mr. Jürgen Pettrak<br />

TU München<br />

Schulg<strong>as</strong>se 16<br />

94315 Straubing, Germany<br />

juergen.pettrak@wzw.tum.de<br />

Dr. H.J.F.(Erik) Philipse<br />

Croda<br />

PO Box 2<br />

2800 AA Gouda, Netherl<strong>and</strong>s<br />

erik.philipse@croda.com<br />

Mrs. Renate Polster<br />

HOBUM Oleochemicals GmbH<br />

Seehafenstraße 20<br />

21079 Hamburg, Germany<br />

pknolle@hobum.de<br />

Dr. Ulf Prüße<br />

Johann Heinrich v<strong>on</strong> Thünen-Institut (vTI)<br />

Bundesallee 50 38116<br />

Braunschweig, Germany<br />

ulf.pruesse@vti.bund.de<br />

Dr. Yann M. Raoul<br />

SIA<br />

Avenue George V 12<br />

75008 Paris, France<br />

y.raoul@prolea.com<br />

Mr. Enrique del Rio<br />

University Rovira i Virgili<br />

marcelli domingo<br />

43007 Tarrag<strong>on</strong>a, Spain<br />

enrique.delrio@urv.cat<br />

79


Dr. Rita Rosenbaum<br />

HOBUM Oleochemicals GmbH<br />

Seehafenstraße 20<br />

21079 Hamburg, Germany<br />

pknolle@hobum.de<br />

Mr. Jesus Santamaria<br />

MERQUINSA<br />

GRAN VIAL 17<br />

08160 MONTMELO BARCELONA,<br />

Spain<br />

AHALL@MERQUINSA.COM<br />

Prof. Dr. Hans J. Schäfer<br />

Universität Münster-Organisch-<br />

Chemisches Institut<br />

Correns-Str. 40<br />

48149 Münster, Germany<br />

schafeh@uni-muenster.de<br />

Prof. Dr. Manfred P. Schneider<br />

Bergische Universität<br />

Gauss-Str<strong>as</strong>se 20<br />

42097 Wuppertal, Germany<br />

schneid@uni-wuppertal.de<br />

Mr. Tim Sieker<br />

University of Kaiserslautern<br />

Gottlieb-Daimler-Straße 44<br />

67663 Kaiserslautern, Germany<br />

tim.sieker@mv.uni-kl.de<br />

Mr. Aleksejs Smirnovs<br />

Riga Technical University<br />

azenes street 22a - 811a<br />

Lv-1048 Riga, Latvia<br />

aleksejs86@inbox.lv<br />

Prof. Andrzej Sobkowiak<br />

Rzeszow University of Technology<br />

W. Pola 2<br />

35-959 Rzeszow, Pol<strong>and</strong><br />

<strong>as</strong>obkow@prz.edu.pl<br />

Dr. Kirstin Suck<br />

Süd-Chemie AG<br />

Ostenrieder Str. 15<br />

85368 Moosburg, Germany<br />

kirstin.suck@sud-chemie.com<br />

80<br />

Mrs. Ediz Taylan<br />

Bogazici University Bebek<br />

34342 Istanbul, Turkey<br />

etaylan@boun.edu.tr<br />

Mrs. Maike Tober<br />

Universität Hamburg, Institut für<br />

Organische Chemie<br />

Martin-Luther-King-Platz 6<br />

20146 Hamburg Germany<br />

tober@chemie.uni-hamburg.de<br />

Dr. Peter J. Tollingt<strong>on</strong><br />

CRODA<br />

BUURTJE 1<br />

2802BE GOUDA, Netherl<strong>and</strong>s<br />

peter.tollingt<strong>on</strong>@croda.com<br />

Prof. Dr. Wilfried Umbach<br />

Bockumer Str. 143<br />

40489 Düsseldorf, Germany<br />

wilfried.umbach@t-<strong>on</strong>line.de<br />

Dr. Tom<strong>as</strong> Vlcek<br />

SYNPO, a.s.<br />

S. K. Neumanna 1316<br />

532 07 Pardubice, Czech Republic<br />

tom<strong>as</strong>.vlcek@synpo.cz<br />

Dr. Paul Wagner<br />

Lanxess Deutschl<strong>and</strong> GmbH<br />

Chempark Leverkusen, Q18<br />

51369 Leverkusen, Germany<br />

paul.wagner@lanxess.com<br />

Dr. S<strong>and</strong>ra Warren<br />

ITERG<br />

Rue G<strong>as</strong>parg M<strong>on</strong>ge 11<br />

33600 Pessac, France<br />

s.warren@iterg.com<br />

Dr. Ralf Weberskirch<br />

BayerMaterialScience AG<br />

Kaiser-Wilhlem Allee 1<br />

51368 Leverkusen, Germany<br />

ralf.weberskirch@bayerbms.com


Dr. Alfred Westfechtel<br />

Cognis Oleochemicals GmbH<br />

Henkelstr. 67<br />

40551 Düsseldorf, Germany<br />

liane.momm@cognis-oleochemicals.com<br />

Mr. Stefano Zeggio<br />

Bret<strong>on</strong> SPA<br />

via Garibaldi 27<br />

31030 C<strong>as</strong>tello di Godego, Italy<br />

zeggio.stefano@bret<strong>on</strong>.it<br />

Mrs. Tamara Zietek<br />

Phytowelt GreenTechnologies GmbH<br />

Kölsumer Weg 33<br />

41334 Nettetal, Germany<br />

c<strong>on</strong>tact@phytowelt.com<br />

Dr. Fern<strong>and</strong>o Zuniga<br />

Cognis Oleochemicals GmbH<br />

Henkelstr. 67<br />

40551 Düsseldorf, Germany<br />

liane.momm@cognis-oleochemicals.com<br />

81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!