19.09.2015 Views

Advances in Ship Helicopter Support Systems Enhancing Mission ...

Advances in Ship Helicopter Support Systems Enhancing Mission ...

Advances in Ship Helicopter Support Systems Enhancing Mission ...

SHOW MORE
SHOW LESS
  • No tags were found...

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Advances</strong> <strong>in</strong> <strong>Ship</strong> <strong>Helicopter</strong> <strong>Support</strong><br />

<strong>Systems</strong> Enhanc<strong>in</strong>g <strong>Mission</strong><br />

Operability and Reduced Crew<strong>in</strong>g<br />

Mr. Howard Fireman<br />

Director of Surface <strong>Ship</strong> and <strong>Ship</strong> Concepts<br />

Naval Sea <strong>Systems</strong> Command Code 05d


Outl<strong>in</strong>e<br />

• Certification Process – From the <strong>Ship</strong><br />

Design Manager’s Perspective<br />

• R&D Efforts <strong>in</strong> HSI


Certification<br />

• Approval versus certification<br />

– NAVAIR Bullet<strong>in</strong> H1<br />

• Specified facilities and equipment<br />

– Approval<br />

• NAVSEA Technical Warrant Holder for Aviation<br />

Integration (NAVSEA PAX River)


AIR CAPABLE SHIP AVIATION<br />

FACILITIES BULLETIN NO. 1H<br />

1. PURPOSE: This Bullet<strong>in</strong> is promulgated<br />

to establish standard certification<br />

requirements and <strong>in</strong>-spection procedures<br />

for the aviation facilities aboard Air<br />

Capable <strong>Ship</strong>s. THE STANDARDS<br />

CONTAINED HEREIN ARE<br />

CONSIDERED MINIMUM AND ARE NOT<br />

INTENDED TO BE USED AS DESIGN<br />

CRITERIA OR SPECIFICATIONS.


AIR CAPABLE SHIP AVIATION<br />

FACILITIES BULLETIN NO. 1H<br />

Level I: Day and night operations, Instrument Meteorologica l Conditions (IMC).<br />

Level II: Day and night operations, Visual Meteorological C onditions (VMC).<br />

Level III: Day only operations, VMC.<br />

Class 1: Land<strong>in</strong>g area with support (service and ma<strong>in</strong>tenance) facilities.<br />

Class 2: Land<strong>in</strong>g area with service facilities.<br />

Class 2A: Land<strong>in</strong>g area with limited service facilities.<br />

Class 3: Land<strong>in</strong>g area without support facilities.<br />

Class 4: Vertical Replenishment (VERTREP)/external lift area (hover <strong>in</strong><br />

excess of 5 feet).<br />

Class 5: VERTREP/external lift area (hover <strong>in</strong> excess of 15 feet).<br />

Class 6: <strong>Helicopter</strong> In-Flight Refuel<strong>in</strong>g (HIFR) facility c apable of deliver<strong>in</strong>g<br />

a m<strong>in</strong>imum of 50 gallons of fuel per m<strong>in</strong>ute, at a m <strong>in</strong>imum pressure of 20<br />

psi, to a height of 40 feet above the water.<br />

Class 6R: HIFR facility capable of deliver<strong>in</strong>g only 25 to 49 gallons of fuel per<br />

m<strong>in</strong>ute, at a m<strong>in</strong>imum pressure of 20 psi, to a height of 40 feet above the<br />

water.


1H: Scope of Application<br />

1. PURPOSE<br />

2. CANCELLATION<br />

3. BACKGROUND<br />

4. SCOPE<br />

5. PRECEDENCE<br />

6. DESIGN COORDINATION<br />

7. INSPECTION<br />

8. FACILITY CERTIFICATION<br />

9. WORD USAGE<br />

10. REVISIONS/AMENDMENTS<br />

11. MATERIAL ALLOWANCES SUPPORTING CERTIFICATION<br />

12. VISUAL LANDING AIDS (VLA) AND AIRCRAFT OPERATING CLEARANCES<br />

12.1 LANDING AREA MARKING AND CLEARANCES<br />

12.2 VERTREP/EXTERNAL LIFT AREA MARKING AND CLEARANC ES<br />

12.3 HIFR AREA MARKING AND CLEARANCES<br />

12.4 SPECIAL FLIGHT DECK AREA MARKING REQUIREMENTS A ND OPTIONS<br />

12.5 LIGHTING AND VISUAL APPROACH EQUIPMENT ACCESSOR Y VISUAL AIDS VLA STOWAGE SPACE<br />

13. DECK STRENGTH<br />

14. AIRCRAFT SECURING<br />

14.1 MOORING AIDS<br />

14.2 DECK/BULKHEAD FITTINGS<br />

15. COMMAND/CONTROL FACILITIES<br />

15.1 HELICOPTER CONTROL STATION (HCS)<br />

15.2 PRIMARY UHF RADIO<br />

15.3 SOUND-POWERED TELEPHONES<br />

15.4 SUPPLEMENTAL FACILITIES<br />

16. WIND MEASURING AND INDICATING SYSTEM (WMIS)<br />

17. NAVIGATIONAL AIDS


1H Scope of Application<br />

TABLE OF CONTENTS (CONT'D)<br />

SUBJECT PAGE<br />

18. FIRE PROTECTION<br />

18.1 DECK DRAINAGE, CONTAINMENT, AND SEALING<br />

18.2 AQUEOUS FILM FORMING FOAM (AFFF) OR PROTEIN FOA M FACILITIES<br />

18.3 PORTABLE FIRE EXTINGUISHERS<br />

SMOKE CONTROL<br />

WEAPON JETTISON RAMPS<br />

19. PERSONNEL SAFETY<br />

19.1 DECK EDGE PROTECTION<br />

19.2 ESCAPE ROUTES<br />

19.3 WARNING DEVICES<br />

19.4 MISCELLANEOUS SAFETY EQUIPMENT<br />

19.5 HELICOPTER OPERATIONS BILL<br />

20. EXPLOSIVE SAFETY<br />

21. SERVICING FACILITIES<br />

21.1 FUEL STORAGE AND REFUELING<br />

21.2 ELECTRICAL POWER (28-VOLT DC)<br />

21.3 ELECTRICAL POWER (400-HZ)<br />

21.4 NITROGEN/COMPRESSED AIR SERVICE<br />

21.5 WASHDOWN PROVISIONS<br />

21.6 SERVICING FLUID STOWAGE<br />

21.7 HYDRAULIC SERVICING CART STOWAGE/SUPPORT<br />

22. MAINTENANCE FACILITIES<br />

22.1 HANGAR<br />

22.2 WORK AREA<br />

22.3 OFFICE<br />

22.4 MAJOR COMPONENT STOWAGE<br />

22.5 SPARE PARTS STOWAGE<br />

DEFUELING<br />

ALKALINE BATTERY FACILITIES<br />

23. RECOVERY ASSIST, SECURING, AND TRAVERSING (RAST) SYSTEM<br />

23.1 RAPID SECURING DEVICE<br />

23.2 RAST CONTROL STATION<br />

23.3 FLIGHT/HANGAR DECK EQUIPMENT<br />

23.4 RAST MACHINERY ROOM<br />

23.5 DECK DRAINAGE, CONTAINMENT, AND SEALING<br />

23.6 BULK STOWAGE<br />

24. MISCELLANEOUS STOWAGE FOR LAMPS MK III SUPPORT<br />

24.1 MISSION EXPENDABLES FLIGHT GEAR TECHNICAL DOCUM ENT STOWAGE


THE STANDARDS CONTAINED HEREIN<br />

ARE CONSIDERED MINIMUM…<br />

• LIGHTING AND VISUAL LANDING AID SUITE UTILIZING NEW<br />

TECHNOLOGIES<br />

– Address assurance of NAVAIR requirements for certificatio n at Level III<br />

Class 3 for Aug 04 ship delivery<br />

– Execution of a comprehensive VLA system test to achieve L evel II Class 2A<br />

certification <strong>in</strong> Aug 05<br />

– Provide a Level III, Class 3 Aviation Facility Guida nce Plan<br />

– Provide a comprehensive POA&M for post delivery VLA<br />

requirements/test<strong>in</strong>g for migration to a Level II, Class2 A NVD Compatible<br />

Facility<br />

– Evaluate light<strong>in</strong>g technologies<br />

– Design VLA Suite<br />

– Purchase VLA equipment<br />

– Install VLA suite<br />

– Develop Test Plan<br />

– Conduct dynamic <strong>in</strong>terface test<strong>in</strong>g<br />

– Provide VLA Equipment Requirements List<br />

– Update Aviation Facilities Resume<br />

– Provide <strong>in</strong> service support


Safety Case Example


Speed-Weight<br />

Weight-Intended Service<br />

• Regulatory body structural design guidel<strong>in</strong>es<br />

– DNV – Open Ocean operation is restricted for high<br />

speed craft<br />

• Time from sheltered waters<br />

• M<strong>in</strong>imal high load<strong>in</strong>gs assumed<br />

• Limited attention to fatigue issues<br />

• Limited attention to extreme loads relative to spe cial material<br />

properties – relationship between yield and ultimate<br />

– Heat treated materials<br />

– Materials not lend<strong>in</strong>g themselves to non-destructive test<br />

<strong>in</strong>spection<br />

– ABS – Current determ<strong>in</strong>istic rules are similar to DNV<br />

– Direct Loads Analysis Application – ABS-NSWCCD<br />

Team


Environment<br />

• Regulatory body guidel<strong>in</strong>es :<br />

Probability<br />

Wave Period<br />

of<br />

Versus<br />

Wave Height<br />

Region<br />

for<br />

- Sea<br />

Sea<br />

State<br />

State 4<br />

– L<strong>in</strong>ear behavior (small amplitude responses)<br />

Northern Arabian Seas Summer<br />

0.40<br />

Gulf of Mexico<br />

– Implicit - seaway restrictions<br />

N. North Arabian Atlantic W<strong>in</strong>ter<br />

0.35 – Restricted water operation reflects the “peakedness” an d “bandedness” North Sea W<strong>in</strong>ter of benign<br />

environments<br />

N. Atlantic<br />

North Sea<br />

0.30<br />

Gulf Of Mexico<br />

• 0.3500 Open ocean-greater spread<strong>in</strong>g of amplitudes and perio ds<br />

• Littoral environments wave energy concentrated close t o ship dynamics<br />

0.3000<br />

resonant 0.25 conditions<br />

• Achiev<strong>in</strong>g reliability <strong>in</strong> structural design and ship stability:<br />

Probability<br />

Probabiltiy<br />

of Occurrence SS4<br />

0.4500<br />

0.4000<br />

0.20<br />

– design process consider probability of occurrence of o vermatch<strong>in</strong>g events <strong>in</strong> the<br />

specified environment<br />

0.15<br />

0.2500<br />

0.2000<br />

0.1500<br />

0.10<br />

0.1000<br />

0.05<br />

0.0500<br />

0.00<br />

0.0000<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28<br />

4-5 ft 5-6 ft 6-7 ft 7-8 ft<br />

Modal Wave Period (seconds)<br />

Wave Height


Certification<br />

• Relies on the development of a scaleable risk manag ement<br />

approach that provides the ability to prioritize th e<br />

consequences of safety and suitability risk events.<br />

• Information needed to assess performance<br />

– Model<strong>in</strong>g<br />

• Numeric model<strong>in</strong>g<br />

• Sub-scale test<strong>in</strong>g<br />

• Time doma<strong>in</strong> simulations<br />

– Trials<br />

• Quantity and locations of <strong>in</strong>strumentation<br />

• Trial Conditions evaluated<br />

• Correlation of stochastic and determ<strong>in</strong>istic data is the basis of<br />

certification<br />

• Ensures the safety and suitability


Risk Events Evaluated<br />

P-Spec Def<strong>in</strong>ed Requirements<br />

•Will not make speed<br />

•Will not make hump speed<br />

•Excessive Cavitation<br />

•Primary Structural Failure<br />

•Secondary and Tertiary Structural Failure<br />

•Unable to Ma<strong>in</strong>ta<strong>in</strong> Station<br />

•Broach<strong>in</strong>g<br />

•Inadequate Course Keep<strong>in</strong>g<br />

•Inadequate Track Keep<strong>in</strong>g<br />

•Capsize<br />

•Inadequate <strong>Helicopter</strong> Operational<br />

Capability<br />

•Endurance Requirements Not met<br />

•S<strong>in</strong>k<strong>in</strong>g<br />

•High Speed Yaw Event<br />

•Insufficient Service Life<br />

•Inadequate Boat and Underwater Vehicle<br />

Launch and Recovery Capability<br />

•Exceed<strong>in</strong>g Physiological and Cognitive<br />

Limitations<br />

•Inabiltiy to perform Underway Replenishment<br />

Operations<br />

•Ground<strong>in</strong>g<br />

•Collision<br />

•Failure to meet NATO Maneuver<strong>in</strong>g<br />

Requirements<br />

•Failure to meet NATO Seakeep<strong>in</strong>g STANAG<br />

Requirements<br />

•Not able to be towed


Risk Reduction Process<br />

Risk Event<br />

• Risk Element 1<br />

•Element 1 Data<br />

•Sensor 1<br />

•Sensor N<br />

•Element 1 Info<br />

• Risk Element N<br />

•Element N Data<br />

•Sensor 1<br />

•Sensor N<br />

•Element N Info<br />

Data<br />

Risk Element 1<br />

Risk Element 2<br />

•Risk Event<br />

Risk Element N<br />

Sensor 1<br />

Sensor 2<br />

Sensor N<br />

Exist<strong>in</strong>g<br />

Information


• Impact<br />

Value of Improved Information<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

Risk CDF<br />

0.6<br />

0.5<br />

PDF<br />

0.4<br />

0.3 Envelope<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10<br />

1<br />

0.9<br />

CDF<br />

0.8<br />

0.7<br />

PDF<br />

CDF<br />

0.6<br />

0.5<br />

PDF<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10<br />

Improved Initial Information<br />

– Reduced Extreme Value of<br />

– Increased Operational<br />

• Achieved By<br />

– Improve knowledge of<br />

consequence<br />

– Reduce uncerta<strong>in</strong>ty of the<br />

probability of occurrence<br />

Process<br />

Probability<br />

Variance<br />

Initial Improved Information<br />

Consequence Consequence


X-Craft System<br />

•ABS Approved Basel<strong>in</strong>e<br />

•Performance Specification<br />

•<strong>Mission</strong> CONOPS<br />

•<strong>Mission</strong> Evolutions<br />

•Area of operation<br />

Criteria<br />

•IMO 2000 HSC Human<br />

Factors<br />

•NAVAIR <strong>Helicopter</strong><br />

Interface<br />

•Boat Launch and Recovery<br />

•ABS HSC NC OE<br />

X-Craft Safety & Suitability Assessment<br />

Physical Models<br />

•Tests<br />

λ=25<br />

• Hull Form<br />

Certified Seaway Models<br />

Trials Region<br />

•Full scale Geosym<br />

•Laser measured<br />

•Propulsors<br />

•Stock jets<br />

•Calibrated with bollard test<br />

Performance Specification<br />

•Ride Control System<br />

•Geosym •SS 5 T-Foils – Cape Hatteras<br />

•Trim<br />

•SS<br />

Tab<br />

4<br />

models<br />

– Cape<br />

for<br />

Hatteras<br />

<strong>in</strong>terceptors<br />

•Fixed skeg models w/active skeg<br />

performance<br />

•20 DTMB knots Carriage 2<br />

• λ=15 •40 knots model<br />

•Active<br />

•0-40<br />

control<br />

knots<br />

system Froude<br />

scaled<br />

•0 & 180 degrees<br />

•<strong>Ship</strong> Control System<br />

•P-Spec & Trials Seaway<br />

•Manually controlled<br />

Environment<br />

•Performance Specification<br />

<strong>Ship</strong> Sub-Scale Models<br />

•Trials<br />

•SS 6 – Cape Elizabeth<br />

•SS 5 – Cape Elizabeth<br />

•SS 4 – Cape Elizabeth<br />

•SS 6 – Cape Hatteras<br />

λ=15<br />

• Hull DTMB Form Tridelphia Reservoir<br />

• λ=15 •Geosymmetric model scale model<br />

•0-60 •Laser knots measured<br />

•Propulsors •Remote Control & Data<br />

•Geosym. measured jets and<br />

Telemetry<br />

nozzles<br />

•Calm •Calibrated water with no bollard w<strong>in</strong>dtest<br />

•Ride Control System<br />

•Geosym T-Foils<br />

•Trim Tab models for <strong>in</strong>terceptors<br />

DTMB MASK<br />

•Active flap fixed-skeg geosym<br />

•Active control system Froude<br />

scaled<br />

• λ=25 model<br />

•0-40 knots<br />

•<strong>Ship</strong> •0-180 Control degrees System<br />

•30•Scale degree<br />

ship autopilot<br />

<strong>in</strong>crements<br />

/ manual<br />

•P-Spec & Trials Seaway


X-Craft Maneuver<strong>in</strong>g Requirements<br />

X-Craft<br />

P-Spec.<br />

Operational Context<br />

(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />

IMO Res.<br />

A751(18)<br />

NATO<br />

ANEP 70<br />

ITTC 22nd<br />

Conference<br />

IMO 2000<br />

HSC<br />

X-Craft Maneuver<strong>in</strong>g Performance<br />

Compliance Tree


X-Craft Maneuver<strong>in</strong>g Safety & Suitability Assessment<br />

Cont. Offered<br />

X-Craft<br />

Evaluate<br />

Maneuver<strong>in</strong>g<br />

Performance<br />

Course<br />

Keep<strong>in</strong>g<br />

YES<br />

Yaw<br />

Check<strong>in</strong>g<br />

YES<br />

Establish<br />

Directional<br />

Stability<br />

YES<br />

NO<br />

Track<br />

Keep<strong>in</strong>g<br />

YES<br />

Quantify<br />

Force-Time<br />

Profiles<br />

NO<br />

Course<br />

Keep<strong>in</strong>g<br />

Modify System<br />

Acceleration<br />

YES<br />

Turn<strong>in</strong>g<br />

Ability<br />

YES<br />

YES<br />

Establish Safe<br />

Operational<br />

Envelope<br />

X-Craft Maneuver<strong>in</strong>g Safety Performance Assessment Process


Directional Stability/Maneuver<strong>in</strong>g Certification<br />

λ=25 Test Plan<br />

Graduated Certification Process<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

λ=25<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=25 ISOE<br />

λ=15 Test Plan<br />

•Initial Speed based on ISOE<br />

Modify<br />

•Increment Vk + Turn<strong>in</strong>g Rate if criteria System compliance<br />

supported by: λ=25<br />

•Measured Maneuver<strong>in</strong>g performance<br />

•Strength<br />

Assessment<br />

of correlation<br />

λ=15 Maneuver<strong>in</strong>g<br />

Data<br />

λ=25 Maneuver<strong>in</strong>g<br />

Data<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

λ=15<br />

Maneuver<strong>in</strong>g<br />

Assessment<br />

λ=15<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

Correlation<br />

Strength<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=15 ISOE<br />

Modify<br />

System<br />

λ=1 Trials Plan<br />

Full Scale<br />

Maneuver<strong>in</strong>g<br />

Assessment<br />

λ=1 (Full Scale)<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

Correlation<br />

Strength<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=1 SOE


X-Craft Seakeep<strong>in</strong>g Requirements<br />

X-Craft<br />

P-Spec.<br />

Operational Context<br />

(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />

NAVAIR<br />

Helo. Cert.<br />

NATO<br />

STANAG 4154<br />

ITTC 22nd<br />

Conference<br />

IMO 2000<br />

HSC<br />

Test<strong>in</strong>g / Trials<br />

Procedures<br />

X-Craft <strong>Ship</strong> Motions Performance<br />

Compliance Tree


<strong>Ship</strong> Motions Certification<br />

λ=25 Test Plan<br />

λ=25<br />

6 DOF Motions<br />

Trials Seaway<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

λ=25<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=25 ISOE<br />

λ=25 Maneuver<strong>in</strong>g<br />

Data<br />

λ=15 Test Plan<br />

Graduated Certification Process<br />

•Initial Seaway based on ISOE<br />

λ=25<br />

λ=15<br />

•Initial Speed 6 DOF based Motions on ISOE<br />

4 DOF Motions<br />

P-Spec Seaway<br />

P-Spec Seaway<br />

•Increment Vk + SS if criteria compliance supported by:<br />

•Measured performance<br />

•Strength of correlation<br />

λ=15 Maneuver<strong>in</strong>g<br />

Data<br />

λ=15<br />

4 DOF Motions<br />

Trials Seaway<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

λ=15<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

Correlation<br />

Strength<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=15 ISOE λ=15 ISOE<br />

λ=1 Trials Plan<br />

Full Scale<br />

6 DOF Motions<br />

Trials Seaway<br />

λ=1 (Full Scale)<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

Correlation<br />

Strength<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=1 SOE


X-Craft Structural Requirements<br />

Motions Induced Primary and Seaway Induced Secondary Loads<br />

X-Craft<br />

P-Spec.<br />

Operational Context<br />

(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />

NAVAIR<br />

Helo. Cert.<br />

ITTC 22nd<br />

Conference<br />

ABS HSC NC<br />

Test<strong>in</strong>g / Trials<br />

Procedures<br />

X-Craft <strong>Ship</strong> Motions Performance<br />

Compliance Tree


<strong>Ship</strong> Structural Certification<br />

STRENGTH<br />

LOADS<br />

Contract Design<br />

Detail Design<br />

ISOE Assignment<br />

SOE Assignment<br />

FE Model (STRAND)<br />

FE Model (STRAND)<br />

FE Model<br />

NASTRAN<br />

FE Model<br />

NASTRAN<br />

+<br />

Calibrated Hull Girder<br />

DNV Determ<strong>in</strong>istic<br />

Geosymmetric Hull Form<br />

Models Tests<br />

Numerical Simulation<br />

(LAMP)<br />

λ=15 Model Tests<br />

λ= 25 Model Tests<br />

Full Scale Trials<br />

Graduated Correlation<br />

With ISOE Motions Data<br />

SEA 05P<br />

ABS<br />

SEA 05H


Human Factors<br />

Organic Vehicle<br />

Criteria<br />

LAMP<br />

Computations<br />

Loads & Strength Determ<strong>in</strong>ation<br />

λ=25 Test Plan<br />

λ=25<br />

6 DOF Motions<br />

P-Spec Seaway<br />

λ=25<br />

6 DOF Motions<br />

Trials Seaway<br />

< M<strong>in</strong>imal<br />

Acceptable<br />

λ=25<br />

Data Analysis<br />

•Performance<br />

•Uncerta<strong>in</strong>ty<br />

Determ<strong>in</strong>e Wave Spectra<br />

(Trials & Performance Spec.)<br />

λ=15 Test Plan<br />

λ=15<br />

6 DOF Motions<br />

P-Spec Seaway<br />

λ=15<br />

6 DOF Motions<br />

Trials Seaway<br />

λ=15<br />

Weibull Analysis<br />

Performance<br />

Uncerta<strong>in</strong>ty<br />

Calibrate<br />

Full Scale <strong>Ship</strong><br />

Stra<strong>in</strong> Gages<br />

Full Scale<br />

Trials Plan<br />

λ=15 ISOE<br />

Full Scale<br />

6 DOF<br />

Motions & Loads<br />

Trials Seaway<br />

λ=1 (Full Scale)<br />

Data Analysis<br />

Performance<br />

Uncerta<strong>in</strong>ty<br />

Correlation<br />

Strength<br />

Loads<br />

Performance<br />

Compliance<br />

> M<strong>in</strong>imal<br />

Acceptable<br />

λ=25 ISOE<br />

Correlation<br />

Loads<br />

Exercise/Evaluate<br />

FE Model<br />

Full Scale<br />

(λ=1) SOE


X-Craft Control Requirements<br />

X-Craft<br />

P-Spec.<br />

Operational Context<br />

(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />

NAVAIR<br />

Helo. Cert.<br />

NATO<br />

ANEP 70<br />

ITTC 22nd<br />

Conference<br />

IMO 2000<br />

HSC<br />

Test<strong>in</strong>g / Trials<br />

Procedures<br />

X-Craft <strong>Ship</strong> Control Performance<br />

Compliance Tree


<strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g Technical<br />

Authority Programmed Efforts<br />

High Speed <strong>Ship</strong>s: High Speed <strong>Ship</strong>s Technical Authority Fund<strong>in</strong>g L<strong>in</strong>e s upported hydrodynamics, dynamic loads,<br />

directional stability/controllability and maneuver<strong>in</strong>g, and ship propulsion test<strong>in</strong>g. <strong>Ship</strong> dynamics and maneuver<strong>in</strong>g trials data will<br />

be compared and correlated with sub-scale test data to tra<strong>in</strong> numeric models. Predictions <strong>in</strong> non-tra<strong>in</strong> ed areas will be<br />

correlated with test and trials data. Risk based m odel<strong>in</strong>g approaches will compare human biodynamics d ata with observed<br />

behaviors. Analysis will determ<strong>in</strong>e where additiona l trials data is needed. NVR guidel<strong>in</strong>es and NATO S TANAG updates will be<br />

provided as <strong>in</strong>terim outputs from this task. The pr ocess, numeric models and data will permit assignme nt of human<br />

biodynamics safe operational envelopes to be assign ed to high speed ships.<br />

5.1 Material Test<strong>in</strong>g and Evaluation - provide material to universities (coord with Paul Hess ONR)<br />

5.2 Warfight<strong>in</strong>g Loads<br />

5.3 Rules and Guidel<strong>in</strong>es (ABS/NATO)<br />

5.3.1 Operat<strong>in</strong>g Profile Procedure for Natural and Warfigh t<strong>in</strong>g Environments<br />

5.4 Human <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

5.4.1 Trials/Guidel<strong>in</strong>es<br />

5.4.2 Motions<br />

5.4.3 Manpower Estimation Impacts<br />

5.4.4 <strong>Ship</strong> Dynamics - Controls for HSI<br />

5.5 Motions and Loads<br />

5.5.1 Full Scale Trials<br />

5.5.2 Loads Predictions<br />

5.5.3 Hydrodynamic Loads Criteria<br />

5.5.4 Loads Model Tests<br />

5.5.5 Fatigue Test<strong>in</strong>g<br />

5.5.6 Structural Response<br />

5.5.7 Structural Reliability<br />

5.5.8 Environmental Model<strong>in</strong>g<br />

5.6 Launch and Recovery of Organic Vehicles - Risk Bas ed Design/Certification


Human Performance<br />

• Evaluate exist<strong>in</strong>g predictive models <strong>in</strong>clud<strong>in</strong>g ISO 2 631 part 1 (MSI) and Graham<br />

Tipp<strong>in</strong>g Equations (MII), and develop new methods of p redict<strong>in</strong>g performance<br />

degradation (i.e. modifed-PSD). Evaluate the ability o f select motion and human<br />

factor codes to predict human performance degradation w ith respect to exist<strong>in</strong>g<br />

criteria. Results from this evaluation will be used t o provide guidance <strong>in</strong> the<br />

application of exist<strong>in</strong>g human performance degradation algorithms and criteria for<br />

high speed ships.<br />

• Performance Degradation Assessment. Evaluate existi ng motions datasets for high<br />

speed vessels aga<strong>in</strong>st current standards and establishe d human performance<br />

degradation threshold criteria. Determ<strong>in</strong>e with other organ izations to advance the<br />

collection of human performance degradation data.<br />

• Enhance planned hydrodynamic loads model test of hi gh speed ships to <strong>in</strong>clude<br />

human factors. Utilize motion results to identify t rends <strong>in</strong> human performance<br />

limitations onboard high speed ships. Supplement ex ist<strong>in</strong>g database to <strong>in</strong>clude<br />

severe conditions not acquired <strong>in</strong> full scale trials.<br />

• Incorporate empirical data and <strong>in</strong>jury models <strong>in</strong>to man power estimation models (Total<br />

Crew Model and Early Manpower Assessment Tool) to improv e the accuracy of<br />

manpower estimates on high speed vessels. Utilize h igh speed data as a test case<br />

for the EMAT development. Exam<strong>in</strong>e policy changes/ope rational tempo/crew day<br />

changes to account for high speed impacts on manpowe r.<br />

Human Performance – <strong>Ship</strong> Performance – <strong>Ship</strong> Control


Reduced Aviation Crew<strong>in</strong>g<br />

Requirements


Fire Scout System Hardware<br />

(<strong>Ship</strong>board Developmental Installation)<br />

• Up to 3 Air Vehicles with Modular <strong>Mission</strong><br />

Payloads<br />

• 1 Ground Control Station (S-280 Shelter)<br />

• TCDL Antenna (on Pedestal) and Cables<br />

• UHF/VHF Antennas and Cables<br />

• 1 UCARS-V2 <strong>Ship</strong> Launch/Recovery System<br />

• Harpoon Grid<br />

• Telemetry Shelter (Test Equipment)<br />

• Mobile Ma<strong>in</strong>tenance Facility (Optional)


RQ-8A Fire Scout<br />

<strong>Ship</strong>board Approach And Recovery<br />

GPS & UCARS Provide Automatic Approach and Land<strong>in</strong>g


RQ-8A Air Vehicle<br />

Physical Characteristics<br />

RQ-8A Air Vehicle Characteristics<br />

Rotor Disk Area<br />

394.5 ft2<br />

Empty Weight<br />

1700 lbs<br />

<strong>Mission</strong> Fuel<br />

750 lbs<br />

Payload Weight<br />

200 lbs<br />

Max Takeoff Weight 2650 lbs<br />

Horizontal Tail Area<br />

301 ft2<br />

Vertical Tail Area<br />

4.7 ft2<br />

Anti-Torque Disk Area 14.2 ft2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!