Advances in Ship Helicopter Support Systems Enhancing Mission ...
Advances in Ship Helicopter Support Systems Enhancing Mission ...
Advances in Ship Helicopter Support Systems Enhancing Mission ...
- No tags were found...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Advances</strong> <strong>in</strong> <strong>Ship</strong> <strong>Helicopter</strong> <strong>Support</strong><br />
<strong>Systems</strong> Enhanc<strong>in</strong>g <strong>Mission</strong><br />
Operability and Reduced Crew<strong>in</strong>g<br />
Mr. Howard Fireman<br />
Director of Surface <strong>Ship</strong> and <strong>Ship</strong> Concepts<br />
Naval Sea <strong>Systems</strong> Command Code 05d
Outl<strong>in</strong>e<br />
• Certification Process – From the <strong>Ship</strong><br />
Design Manager’s Perspective<br />
• R&D Efforts <strong>in</strong> HSI
Certification<br />
• Approval versus certification<br />
– NAVAIR Bullet<strong>in</strong> H1<br />
• Specified facilities and equipment<br />
– Approval<br />
• NAVSEA Technical Warrant Holder for Aviation<br />
Integration (NAVSEA PAX River)
AIR CAPABLE SHIP AVIATION<br />
FACILITIES BULLETIN NO. 1H<br />
1. PURPOSE: This Bullet<strong>in</strong> is promulgated<br />
to establish standard certification<br />
requirements and <strong>in</strong>-spection procedures<br />
for the aviation facilities aboard Air<br />
Capable <strong>Ship</strong>s. THE STANDARDS<br />
CONTAINED HEREIN ARE<br />
CONSIDERED MINIMUM AND ARE NOT<br />
INTENDED TO BE USED AS DESIGN<br />
CRITERIA OR SPECIFICATIONS.
AIR CAPABLE SHIP AVIATION<br />
FACILITIES BULLETIN NO. 1H<br />
Level I: Day and night operations, Instrument Meteorologica l Conditions (IMC).<br />
Level II: Day and night operations, Visual Meteorological C onditions (VMC).<br />
Level III: Day only operations, VMC.<br />
Class 1: Land<strong>in</strong>g area with support (service and ma<strong>in</strong>tenance) facilities.<br />
Class 2: Land<strong>in</strong>g area with service facilities.<br />
Class 2A: Land<strong>in</strong>g area with limited service facilities.<br />
Class 3: Land<strong>in</strong>g area without support facilities.<br />
Class 4: Vertical Replenishment (VERTREP)/external lift area (hover <strong>in</strong><br />
excess of 5 feet).<br />
Class 5: VERTREP/external lift area (hover <strong>in</strong> excess of 15 feet).<br />
Class 6: <strong>Helicopter</strong> In-Flight Refuel<strong>in</strong>g (HIFR) facility c apable of deliver<strong>in</strong>g<br />
a m<strong>in</strong>imum of 50 gallons of fuel per m<strong>in</strong>ute, at a m <strong>in</strong>imum pressure of 20<br />
psi, to a height of 40 feet above the water.<br />
Class 6R: HIFR facility capable of deliver<strong>in</strong>g only 25 to 49 gallons of fuel per<br />
m<strong>in</strong>ute, at a m<strong>in</strong>imum pressure of 20 psi, to a height of 40 feet above the<br />
water.
1H: Scope of Application<br />
1. PURPOSE<br />
2. CANCELLATION<br />
3. BACKGROUND<br />
4. SCOPE<br />
5. PRECEDENCE<br />
6. DESIGN COORDINATION<br />
7. INSPECTION<br />
8. FACILITY CERTIFICATION<br />
9. WORD USAGE<br />
10. REVISIONS/AMENDMENTS<br />
11. MATERIAL ALLOWANCES SUPPORTING CERTIFICATION<br />
12. VISUAL LANDING AIDS (VLA) AND AIRCRAFT OPERATING CLEARANCES<br />
12.1 LANDING AREA MARKING AND CLEARANCES<br />
12.2 VERTREP/EXTERNAL LIFT AREA MARKING AND CLEARANC ES<br />
12.3 HIFR AREA MARKING AND CLEARANCES<br />
12.4 SPECIAL FLIGHT DECK AREA MARKING REQUIREMENTS A ND OPTIONS<br />
12.5 LIGHTING AND VISUAL APPROACH EQUIPMENT ACCESSOR Y VISUAL AIDS VLA STOWAGE SPACE<br />
13. DECK STRENGTH<br />
14. AIRCRAFT SECURING<br />
14.1 MOORING AIDS<br />
14.2 DECK/BULKHEAD FITTINGS<br />
15. COMMAND/CONTROL FACILITIES<br />
15.1 HELICOPTER CONTROL STATION (HCS)<br />
15.2 PRIMARY UHF RADIO<br />
15.3 SOUND-POWERED TELEPHONES<br />
15.4 SUPPLEMENTAL FACILITIES<br />
16. WIND MEASURING AND INDICATING SYSTEM (WMIS)<br />
17. NAVIGATIONAL AIDS
1H Scope of Application<br />
TABLE OF CONTENTS (CONT'D)<br />
SUBJECT PAGE<br />
18. FIRE PROTECTION<br />
18.1 DECK DRAINAGE, CONTAINMENT, AND SEALING<br />
18.2 AQUEOUS FILM FORMING FOAM (AFFF) OR PROTEIN FOA M FACILITIES<br />
18.3 PORTABLE FIRE EXTINGUISHERS<br />
SMOKE CONTROL<br />
WEAPON JETTISON RAMPS<br />
19. PERSONNEL SAFETY<br />
19.1 DECK EDGE PROTECTION<br />
19.2 ESCAPE ROUTES<br />
19.3 WARNING DEVICES<br />
19.4 MISCELLANEOUS SAFETY EQUIPMENT<br />
19.5 HELICOPTER OPERATIONS BILL<br />
20. EXPLOSIVE SAFETY<br />
21. SERVICING FACILITIES<br />
21.1 FUEL STORAGE AND REFUELING<br />
21.2 ELECTRICAL POWER (28-VOLT DC)<br />
21.3 ELECTRICAL POWER (400-HZ)<br />
21.4 NITROGEN/COMPRESSED AIR SERVICE<br />
21.5 WASHDOWN PROVISIONS<br />
21.6 SERVICING FLUID STOWAGE<br />
21.7 HYDRAULIC SERVICING CART STOWAGE/SUPPORT<br />
22. MAINTENANCE FACILITIES<br />
22.1 HANGAR<br />
22.2 WORK AREA<br />
22.3 OFFICE<br />
22.4 MAJOR COMPONENT STOWAGE<br />
22.5 SPARE PARTS STOWAGE<br />
DEFUELING<br />
ALKALINE BATTERY FACILITIES<br />
23. RECOVERY ASSIST, SECURING, AND TRAVERSING (RAST) SYSTEM<br />
23.1 RAPID SECURING DEVICE<br />
23.2 RAST CONTROL STATION<br />
23.3 FLIGHT/HANGAR DECK EQUIPMENT<br />
23.4 RAST MACHINERY ROOM<br />
23.5 DECK DRAINAGE, CONTAINMENT, AND SEALING<br />
23.6 BULK STOWAGE<br />
24. MISCELLANEOUS STOWAGE FOR LAMPS MK III SUPPORT<br />
24.1 MISSION EXPENDABLES FLIGHT GEAR TECHNICAL DOCUM ENT STOWAGE
THE STANDARDS CONTAINED HEREIN<br />
ARE CONSIDERED MINIMUM…<br />
• LIGHTING AND VISUAL LANDING AID SUITE UTILIZING NEW<br />
TECHNOLOGIES<br />
– Address assurance of NAVAIR requirements for certificatio n at Level III<br />
Class 3 for Aug 04 ship delivery<br />
– Execution of a comprehensive VLA system test to achieve L evel II Class 2A<br />
certification <strong>in</strong> Aug 05<br />
– Provide a Level III, Class 3 Aviation Facility Guida nce Plan<br />
– Provide a comprehensive POA&M for post delivery VLA<br />
requirements/test<strong>in</strong>g for migration to a Level II, Class2 A NVD Compatible<br />
Facility<br />
– Evaluate light<strong>in</strong>g technologies<br />
– Design VLA Suite<br />
– Purchase VLA equipment<br />
– Install VLA suite<br />
– Develop Test Plan<br />
– Conduct dynamic <strong>in</strong>terface test<strong>in</strong>g<br />
– Provide VLA Equipment Requirements List<br />
– Update Aviation Facilities Resume<br />
– Provide <strong>in</strong> service support
Safety Case Example
Speed-Weight<br />
Weight-Intended Service<br />
• Regulatory body structural design guidel<strong>in</strong>es<br />
– DNV – Open Ocean operation is restricted for high<br />
speed craft<br />
• Time from sheltered waters<br />
• M<strong>in</strong>imal high load<strong>in</strong>gs assumed<br />
• Limited attention to fatigue issues<br />
• Limited attention to extreme loads relative to spe cial material<br />
properties – relationship between yield and ultimate<br />
– Heat treated materials<br />
– Materials not lend<strong>in</strong>g themselves to non-destructive test<br />
<strong>in</strong>spection<br />
– ABS – Current determ<strong>in</strong>istic rules are similar to DNV<br />
– Direct Loads Analysis Application – ABS-NSWCCD<br />
Team
Environment<br />
• Regulatory body guidel<strong>in</strong>es :<br />
Probability<br />
Wave Period<br />
of<br />
Versus<br />
Wave Height<br />
Region<br />
for<br />
- Sea<br />
Sea<br />
State<br />
State 4<br />
– L<strong>in</strong>ear behavior (small amplitude responses)<br />
Northern Arabian Seas Summer<br />
0.40<br />
Gulf of Mexico<br />
– Implicit - seaway restrictions<br />
N. North Arabian Atlantic W<strong>in</strong>ter<br />
0.35 – Restricted water operation reflects the “peakedness” an d “bandedness” North Sea W<strong>in</strong>ter of benign<br />
environments<br />
N. Atlantic<br />
North Sea<br />
0.30<br />
Gulf Of Mexico<br />
• 0.3500 Open ocean-greater spread<strong>in</strong>g of amplitudes and perio ds<br />
• Littoral environments wave energy concentrated close t o ship dynamics<br />
0.3000<br />
resonant 0.25 conditions<br />
• Achiev<strong>in</strong>g reliability <strong>in</strong> structural design and ship stability:<br />
Probability<br />
Probabiltiy<br />
of Occurrence SS4<br />
0.4500<br />
0.4000<br />
0.20<br />
– design process consider probability of occurrence of o vermatch<strong>in</strong>g events <strong>in</strong> the<br />
specified environment<br />
0.15<br />
0.2500<br />
0.2000<br />
0.1500<br />
0.10<br />
0.1000<br />
0.05<br />
0.0500<br />
0.00<br />
0.0000<br />
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28<br />
4-5 ft 5-6 ft 6-7 ft 7-8 ft<br />
Modal Wave Period (seconds)<br />
Wave Height
Certification<br />
• Relies on the development of a scaleable risk manag ement<br />
approach that provides the ability to prioritize th e<br />
consequences of safety and suitability risk events.<br />
• Information needed to assess performance<br />
– Model<strong>in</strong>g<br />
• Numeric model<strong>in</strong>g<br />
• Sub-scale test<strong>in</strong>g<br />
• Time doma<strong>in</strong> simulations<br />
– Trials<br />
• Quantity and locations of <strong>in</strong>strumentation<br />
• Trial Conditions evaluated<br />
• Correlation of stochastic and determ<strong>in</strong>istic data is the basis of<br />
certification<br />
• Ensures the safety and suitability
Risk Events Evaluated<br />
P-Spec Def<strong>in</strong>ed Requirements<br />
•Will not make speed<br />
•Will not make hump speed<br />
•Excessive Cavitation<br />
•Primary Structural Failure<br />
•Secondary and Tertiary Structural Failure<br />
•Unable to Ma<strong>in</strong>ta<strong>in</strong> Station<br />
•Broach<strong>in</strong>g<br />
•Inadequate Course Keep<strong>in</strong>g<br />
•Inadequate Track Keep<strong>in</strong>g<br />
•Capsize<br />
•Inadequate <strong>Helicopter</strong> Operational<br />
Capability<br />
•Endurance Requirements Not met<br />
•S<strong>in</strong>k<strong>in</strong>g<br />
•High Speed Yaw Event<br />
•Insufficient Service Life<br />
•Inadequate Boat and Underwater Vehicle<br />
Launch and Recovery Capability<br />
•Exceed<strong>in</strong>g Physiological and Cognitive<br />
Limitations<br />
•Inabiltiy to perform Underway Replenishment<br />
Operations<br />
•Ground<strong>in</strong>g<br />
•Collision<br />
•Failure to meet NATO Maneuver<strong>in</strong>g<br />
Requirements<br />
•Failure to meet NATO Seakeep<strong>in</strong>g STANAG<br />
Requirements<br />
•Not able to be towed
Risk Reduction Process<br />
Risk Event<br />
• Risk Element 1<br />
•Element 1 Data<br />
•Sensor 1<br />
•Sensor N<br />
•Element 1 Info<br />
• Risk Element N<br />
•Element N Data<br />
•Sensor 1<br />
•Sensor N<br />
•Element N Info<br />
Data<br />
Risk Element 1<br />
Risk Element 2<br />
•Risk Event<br />
Risk Element N<br />
Sensor 1<br />
Sensor 2<br />
Sensor N<br />
Exist<strong>in</strong>g<br />
Information
• Impact<br />
Value of Improved Information<br />
1<br />
0.9<br />
0.8<br />
0.7<br />
Risk CDF<br />
0.6<br />
0.5<br />
PDF<br />
0.4<br />
0.3 Envelope<br />
0.2<br />
0.1<br />
0<br />
0 2 4 6 8 10<br />
1<br />
0.9<br />
CDF<br />
0.8<br />
0.7<br />
PDF<br />
CDF<br />
0.6<br />
0.5<br />
PDF<br />
0.4<br />
0.3<br />
0.2<br />
0.1<br />
0<br />
0 2 4 6 8 10<br />
Improved Initial Information<br />
– Reduced Extreme Value of<br />
– Increased Operational<br />
• Achieved By<br />
– Improve knowledge of<br />
consequence<br />
– Reduce uncerta<strong>in</strong>ty of the<br />
probability of occurrence<br />
Process<br />
Probability<br />
Variance<br />
Initial Improved Information<br />
Consequence Consequence
X-Craft System<br />
•ABS Approved Basel<strong>in</strong>e<br />
•Performance Specification<br />
•<strong>Mission</strong> CONOPS<br />
•<strong>Mission</strong> Evolutions<br />
•Area of operation<br />
Criteria<br />
•IMO 2000 HSC Human<br />
Factors<br />
•NAVAIR <strong>Helicopter</strong><br />
Interface<br />
•Boat Launch and Recovery<br />
•ABS HSC NC OE<br />
X-Craft Safety & Suitability Assessment<br />
Physical Models<br />
•Tests<br />
λ=25<br />
• Hull Form<br />
Certified Seaway Models<br />
Trials Region<br />
•Full scale Geosym<br />
•Laser measured<br />
•Propulsors<br />
•Stock jets<br />
•Calibrated with bollard test<br />
Performance Specification<br />
•Ride Control System<br />
•Geosym •SS 5 T-Foils – Cape Hatteras<br />
•Trim<br />
•SS<br />
Tab<br />
4<br />
models<br />
– Cape<br />
for<br />
Hatteras<br />
<strong>in</strong>terceptors<br />
•Fixed skeg models w/active skeg<br />
performance<br />
•20 DTMB knots Carriage 2<br />
• λ=15 •40 knots model<br />
•Active<br />
•0-40<br />
control<br />
knots<br />
system Froude<br />
scaled<br />
•0 & 180 degrees<br />
•<strong>Ship</strong> Control System<br />
•P-Spec & Trials Seaway<br />
•Manually controlled<br />
Environment<br />
•Performance Specification<br />
<strong>Ship</strong> Sub-Scale Models<br />
•Trials<br />
•SS 6 – Cape Elizabeth<br />
•SS 5 – Cape Elizabeth<br />
•SS 4 – Cape Elizabeth<br />
•SS 6 – Cape Hatteras<br />
λ=15<br />
• Hull DTMB Form Tridelphia Reservoir<br />
• λ=15 •Geosymmetric model scale model<br />
•0-60 •Laser knots measured<br />
•Propulsors •Remote Control & Data<br />
•Geosym. measured jets and<br />
Telemetry<br />
nozzles<br />
•Calm •Calibrated water with no bollard w<strong>in</strong>dtest<br />
•Ride Control System<br />
•Geosym T-Foils<br />
•Trim Tab models for <strong>in</strong>terceptors<br />
DTMB MASK<br />
•Active flap fixed-skeg geosym<br />
•Active control system Froude<br />
scaled<br />
• λ=25 model<br />
•0-40 knots<br />
•<strong>Ship</strong> •0-180 Control degrees System<br />
•30•Scale degree<br />
ship autopilot<br />
<strong>in</strong>crements<br />
/ manual<br />
•P-Spec & Trials Seaway
X-Craft Maneuver<strong>in</strong>g Requirements<br />
X-Craft<br />
P-Spec.<br />
Operational Context<br />
(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />
IMO Res.<br />
A751(18)<br />
NATO<br />
ANEP 70<br />
ITTC 22nd<br />
Conference<br />
IMO 2000<br />
HSC<br />
X-Craft Maneuver<strong>in</strong>g Performance<br />
Compliance Tree
X-Craft Maneuver<strong>in</strong>g Safety & Suitability Assessment<br />
Cont. Offered<br />
X-Craft<br />
Evaluate<br />
Maneuver<strong>in</strong>g<br />
Performance<br />
Course<br />
Keep<strong>in</strong>g<br />
YES<br />
Yaw<br />
Check<strong>in</strong>g<br />
YES<br />
Establish<br />
Directional<br />
Stability<br />
YES<br />
NO<br />
Track<br />
Keep<strong>in</strong>g<br />
YES<br />
Quantify<br />
Force-Time<br />
Profiles<br />
NO<br />
Course<br />
Keep<strong>in</strong>g<br />
Modify System<br />
Acceleration<br />
YES<br />
Turn<strong>in</strong>g<br />
Ability<br />
YES<br />
YES<br />
Establish Safe<br />
Operational<br />
Envelope<br />
X-Craft Maneuver<strong>in</strong>g Safety Performance Assessment Process
Directional Stability/Maneuver<strong>in</strong>g Certification<br />
λ=25 Test Plan<br />
Graduated Certification Process<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
λ=25<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=25 ISOE<br />
λ=15 Test Plan<br />
•Initial Speed based on ISOE<br />
Modify<br />
•Increment Vk + Turn<strong>in</strong>g Rate if criteria System compliance<br />
supported by: λ=25<br />
•Measured Maneuver<strong>in</strong>g performance<br />
•Strength<br />
Assessment<br />
of correlation<br />
λ=15 Maneuver<strong>in</strong>g<br />
Data<br />
λ=25 Maneuver<strong>in</strong>g<br />
Data<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
λ=15<br />
Maneuver<strong>in</strong>g<br />
Assessment<br />
λ=15<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
Correlation<br />
Strength<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=15 ISOE<br />
Modify<br />
System<br />
λ=1 Trials Plan<br />
Full Scale<br />
Maneuver<strong>in</strong>g<br />
Assessment<br />
λ=1 (Full Scale)<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
Correlation<br />
Strength<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=1 SOE
X-Craft Seakeep<strong>in</strong>g Requirements<br />
X-Craft<br />
P-Spec.<br />
Operational Context<br />
(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />
NAVAIR<br />
Helo. Cert.<br />
NATO<br />
STANAG 4154<br />
ITTC 22nd<br />
Conference<br />
IMO 2000<br />
HSC<br />
Test<strong>in</strong>g / Trials<br />
Procedures<br />
X-Craft <strong>Ship</strong> Motions Performance<br />
Compliance Tree
<strong>Ship</strong> Motions Certification<br />
λ=25 Test Plan<br />
λ=25<br />
6 DOF Motions<br />
Trials Seaway<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
λ=25<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=25 ISOE<br />
λ=25 Maneuver<strong>in</strong>g<br />
Data<br />
λ=15 Test Plan<br />
Graduated Certification Process<br />
•Initial Seaway based on ISOE<br />
λ=25<br />
λ=15<br />
•Initial Speed 6 DOF based Motions on ISOE<br />
4 DOF Motions<br />
P-Spec Seaway<br />
P-Spec Seaway<br />
•Increment Vk + SS if criteria compliance supported by:<br />
•Measured performance<br />
•Strength of correlation<br />
λ=15 Maneuver<strong>in</strong>g<br />
Data<br />
λ=15<br />
4 DOF Motions<br />
Trials Seaway<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
λ=15<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
Correlation<br />
Strength<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=15 ISOE λ=15 ISOE<br />
λ=1 Trials Plan<br />
Full Scale<br />
6 DOF Motions<br />
Trials Seaway<br />
λ=1 (Full Scale)<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
Correlation<br />
Strength<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=1 SOE
X-Craft Structural Requirements<br />
Motions Induced Primary and Seaway Induced Secondary Loads<br />
X-Craft<br />
P-Spec.<br />
Operational Context<br />
(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />
NAVAIR<br />
Helo. Cert.<br />
ITTC 22nd<br />
Conference<br />
ABS HSC NC<br />
Test<strong>in</strong>g / Trials<br />
Procedures<br />
X-Craft <strong>Ship</strong> Motions Performance<br />
Compliance Tree
<strong>Ship</strong> Structural Certification<br />
STRENGTH<br />
LOADS<br />
Contract Design<br />
Detail Design<br />
ISOE Assignment<br />
SOE Assignment<br />
FE Model (STRAND)<br />
FE Model (STRAND)<br />
FE Model<br />
NASTRAN<br />
FE Model<br />
NASTRAN<br />
+<br />
Calibrated Hull Girder<br />
DNV Determ<strong>in</strong>istic<br />
Geosymmetric Hull Form<br />
Models Tests<br />
Numerical Simulation<br />
(LAMP)<br />
λ=15 Model Tests<br />
λ= 25 Model Tests<br />
Full Scale Trials<br />
Graduated Correlation<br />
With ISOE Motions Data<br />
SEA 05P<br />
ABS<br />
SEA 05H
Human Factors<br />
Organic Vehicle<br />
Criteria<br />
LAMP<br />
Computations<br />
Loads & Strength Determ<strong>in</strong>ation<br />
λ=25 Test Plan<br />
λ=25<br />
6 DOF Motions<br />
P-Spec Seaway<br />
λ=25<br />
6 DOF Motions<br />
Trials Seaway<br />
< M<strong>in</strong>imal<br />
Acceptable<br />
λ=25<br />
Data Analysis<br />
•Performance<br />
•Uncerta<strong>in</strong>ty<br />
Determ<strong>in</strong>e Wave Spectra<br />
(Trials & Performance Spec.)<br />
λ=15 Test Plan<br />
λ=15<br />
6 DOF Motions<br />
P-Spec Seaway<br />
λ=15<br />
6 DOF Motions<br />
Trials Seaway<br />
λ=15<br />
Weibull Analysis<br />
Performance<br />
Uncerta<strong>in</strong>ty<br />
Calibrate<br />
Full Scale <strong>Ship</strong><br />
Stra<strong>in</strong> Gages<br />
Full Scale<br />
Trials Plan<br />
λ=15 ISOE<br />
Full Scale<br />
6 DOF<br />
Motions & Loads<br />
Trials Seaway<br />
λ=1 (Full Scale)<br />
Data Analysis<br />
Performance<br />
Uncerta<strong>in</strong>ty<br />
Correlation<br />
Strength<br />
Loads<br />
Performance<br />
Compliance<br />
> M<strong>in</strong>imal<br />
Acceptable<br />
λ=25 ISOE<br />
Correlation<br />
Loads<br />
Exercise/Evaluate<br />
FE Model<br />
Full Scale<br />
(λ=1) SOE
X-Craft Control Requirements<br />
X-Craft<br />
P-Spec.<br />
Operational Context<br />
(sea state, speed, head<strong>in</strong>g, load<strong>in</strong>g condition)<br />
NAVAIR<br />
Helo. Cert.<br />
NATO<br />
ANEP 70<br />
ITTC 22nd<br />
Conference<br />
IMO 2000<br />
HSC<br />
Test<strong>in</strong>g / Trials<br />
Procedures<br />
X-Craft <strong>Ship</strong> Control Performance<br />
Compliance Tree
<strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g Technical<br />
Authority Programmed Efforts<br />
High Speed <strong>Ship</strong>s: High Speed <strong>Ship</strong>s Technical Authority Fund<strong>in</strong>g L<strong>in</strong>e s upported hydrodynamics, dynamic loads,<br />
directional stability/controllability and maneuver<strong>in</strong>g, and ship propulsion test<strong>in</strong>g. <strong>Ship</strong> dynamics and maneuver<strong>in</strong>g trials data will<br />
be compared and correlated with sub-scale test data to tra<strong>in</strong> numeric models. Predictions <strong>in</strong> non-tra<strong>in</strong> ed areas will be<br />
correlated with test and trials data. Risk based m odel<strong>in</strong>g approaches will compare human biodynamics d ata with observed<br />
behaviors. Analysis will determ<strong>in</strong>e where additiona l trials data is needed. NVR guidel<strong>in</strong>es and NATO S TANAG updates will be<br />
provided as <strong>in</strong>terim outputs from this task. The pr ocess, numeric models and data will permit assignme nt of human<br />
biodynamics safe operational envelopes to be assign ed to high speed ships.<br />
5.1 Material Test<strong>in</strong>g and Evaluation - provide material to universities (coord with Paul Hess ONR)<br />
5.2 Warfight<strong>in</strong>g Loads<br />
5.3 Rules and Guidel<strong>in</strong>es (ABS/NATO)<br />
5.3.1 Operat<strong>in</strong>g Profile Procedure for Natural and Warfigh t<strong>in</strong>g Environments<br />
5.4 Human <strong>Systems</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />
5.4.1 Trials/Guidel<strong>in</strong>es<br />
5.4.2 Motions<br />
5.4.3 Manpower Estimation Impacts<br />
5.4.4 <strong>Ship</strong> Dynamics - Controls for HSI<br />
5.5 Motions and Loads<br />
5.5.1 Full Scale Trials<br />
5.5.2 Loads Predictions<br />
5.5.3 Hydrodynamic Loads Criteria<br />
5.5.4 Loads Model Tests<br />
5.5.5 Fatigue Test<strong>in</strong>g<br />
5.5.6 Structural Response<br />
5.5.7 Structural Reliability<br />
5.5.8 Environmental Model<strong>in</strong>g<br />
5.6 Launch and Recovery of Organic Vehicles - Risk Bas ed Design/Certification
Human Performance<br />
• Evaluate exist<strong>in</strong>g predictive models <strong>in</strong>clud<strong>in</strong>g ISO 2 631 part 1 (MSI) and Graham<br />
Tipp<strong>in</strong>g Equations (MII), and develop new methods of p redict<strong>in</strong>g performance<br />
degradation (i.e. modifed-PSD). Evaluate the ability o f select motion and human<br />
factor codes to predict human performance degradation w ith respect to exist<strong>in</strong>g<br />
criteria. Results from this evaluation will be used t o provide guidance <strong>in</strong> the<br />
application of exist<strong>in</strong>g human performance degradation algorithms and criteria for<br />
high speed ships.<br />
• Performance Degradation Assessment. Evaluate existi ng motions datasets for high<br />
speed vessels aga<strong>in</strong>st current standards and establishe d human performance<br />
degradation threshold criteria. Determ<strong>in</strong>e with other organ izations to advance the<br />
collection of human performance degradation data.<br />
• Enhance planned hydrodynamic loads model test of hi gh speed ships to <strong>in</strong>clude<br />
human factors. Utilize motion results to identify t rends <strong>in</strong> human performance<br />
limitations onboard high speed ships. Supplement ex ist<strong>in</strong>g database to <strong>in</strong>clude<br />
severe conditions not acquired <strong>in</strong> full scale trials.<br />
• Incorporate empirical data and <strong>in</strong>jury models <strong>in</strong>to man power estimation models (Total<br />
Crew Model and Early Manpower Assessment Tool) to improv e the accuracy of<br />
manpower estimates on high speed vessels. Utilize h igh speed data as a test case<br />
for the EMAT development. Exam<strong>in</strong>e policy changes/ope rational tempo/crew day<br />
changes to account for high speed impacts on manpowe r.<br />
Human Performance – <strong>Ship</strong> Performance – <strong>Ship</strong> Control
Reduced Aviation Crew<strong>in</strong>g<br />
Requirements
Fire Scout System Hardware<br />
(<strong>Ship</strong>board Developmental Installation)<br />
• Up to 3 Air Vehicles with Modular <strong>Mission</strong><br />
Payloads<br />
• 1 Ground Control Station (S-280 Shelter)<br />
• TCDL Antenna (on Pedestal) and Cables<br />
• UHF/VHF Antennas and Cables<br />
• 1 UCARS-V2 <strong>Ship</strong> Launch/Recovery System<br />
• Harpoon Grid<br />
• Telemetry Shelter (Test Equipment)<br />
• Mobile Ma<strong>in</strong>tenance Facility (Optional)
RQ-8A Fire Scout<br />
<strong>Ship</strong>board Approach And Recovery<br />
GPS & UCARS Provide Automatic Approach and Land<strong>in</strong>g
RQ-8A Air Vehicle<br />
Physical Characteristics<br />
RQ-8A Air Vehicle Characteristics<br />
Rotor Disk Area<br />
394.5 ft2<br />
Empty Weight<br />
1700 lbs<br />
<strong>Mission</strong> Fuel<br />
750 lbs<br />
Payload Weight<br />
200 lbs<br />
Max Takeoff Weight 2650 lbs<br />
Horizontal Tail Area<br />
301 ft2<br />
Vertical Tail Area<br />
4.7 ft2<br />
Anti-Torque Disk Area 14.2 ft2