26.09.2015 Views

Lecture 21 Hyperbolic Functions

Lecture 21: Hyperbolic Functions - Furman University

Lecture 21: Hyperbolic Functions - Furman University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lecture</strong> <strong>21</strong>:<br />

<strong>Hyperbolic</strong> <strong>Functions</strong><br />

Dan Sloughter<br />

Furman University<br />

Mathematics 39<br />

April 8, 2004<br />

<strong>21</strong>.1 <strong>Hyperbolic</strong> sine and cosine<br />

Definition <strong>21</strong>.1. For any z ∈ C, we define the hyperbolic sine function by<br />

and the hyperbolic cosine function by<br />

Proposition <strong>21</strong>.1. For any z ∈ C,<br />

sinh(z) = ez − e −z<br />

2<br />

cosh(z) = ez + e −z<br />

.<br />

2<br />

d<br />

sinh(z) = cosh(z)<br />

dz<br />

and<br />

d<br />

cosh(z) = sinh(z).<br />

dz<br />

Proof. We have<br />

d<br />

dz sinh(z) = d ( ) e z − e −z<br />

= ez + e −z<br />

= cosh(z)<br />

dz 2<br />

2<br />

and<br />

d<br />

dz cosh(z) = d ( ) e z + e −z<br />

= ez − e −z<br />

= sinh(z).<br />

dz 2<br />

2<br />

1


Note that<br />

cos(z) = cosh(iz) and sin(z) = −i sinh(iz)<br />

and<br />

It follows that<br />

cosh(z) = cos(iz) and sinh(z) = −i sin(iz).<br />

and<br />

sinh(−z) = −i sin(−iz) = i sin(iz) = − sinh(z),<br />

cosh(−z) = cos(−iz) = cos(iz) = cosh(z),<br />

cosh 2 (z) − sinh 2 (z) = cos 2 (iz) − (−i sin(iz)) 2 = cos 2 (iz) + sin 2 (iz) = 1,<br />

sinh(z 1 + z 2 ) = −i sin(i(z 1 + z 2 )<br />

= −i sin(iz 1 ) cos(iz 2 ) − i cos(iz 1 ) sin(iz 2 )<br />

= sinh(z 1 ) cosh(z 2 ) + cosh(z 1 ) sinh(z 2 ),<br />

cosh(z 1 + z 2 ) = cos(i(z 1 + z 2 ))<br />

= cos(iz 1 ) cos(iz 2 ) − sin(iz 1 ) sin(iz 2 )<br />

= cosh(z 1 ) cosh(z 2 ) + sinh(z 1 ) sinh(z 2 ).<br />

Moreover, if z = x + iy, then iz = −y + ix, and we have<br />

and<br />

sinh(z) = −i sin(iz)<br />

= −i(sin(−y) cos(ix) + cos(−y) sin(ix)<br />

= sinh(x) cos(y) + cosh(x) sin(y),<br />

cosh(z) = cos(iz)<br />

= cos(−y) cos(ix) − sin(−y) sin(ix)<br />

= cosh(x) cos(y) + i sinh(x) sin(y),<br />

| sinh(z)| 2 = | − i sin(iz)| 2 = sin 2 (−y) + sinh 2 (x) = sinh 2 (x) + sin 2 (y)<br />

| cosh(z)| 2 = | cosh(iz)| 2 = cos 2 (−y) + sinh 2 (x) = sinh 2 (x) + cos 2 (y).<br />

Also note that it follows that both sinh(z) and cosh(z) are periodic with<br />

period 2πi, that sinh(z) = 0 if and only if z = nπi, n = 0, ±1, ±2, . . ., and<br />

cosh(z) = 0 if and only if z = i ( π<br />

2 + nπ) , n = 0, ±1, ±2, . . ..<br />

2


<strong>21</strong>.2 The other hyperbolic functions<br />

In analogy with the the circular trigonometric functions, we also define<br />

and<br />

tanh(z) = sinh(z)<br />

cosh(z) ,<br />

coth(z) = cosh(z)<br />

sinh(z) ,<br />

sech(z) =<br />

csch(z) =<br />

1<br />

cosh(z) ,<br />

1<br />

sech(z) .<br />

These are all analytic in their domains of definition. One may show, as in<br />

the real-variable case, that<br />

and<br />

d<br />

dz tanh(z) = sech2 (z),<br />

d<br />

dz coth(z) = − csch2 (z),<br />

d<br />

sech(z) = − sech(z) tanh(z),<br />

dz<br />

d<br />

csch(z) = − csch(z) coth(z).<br />

dz<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!