26.09.2015 Views

Secondary CMB Anisotropy

Secondary CMB Anisotropy III - BCCP — Berkeley Center for ...

Secondary CMB Anisotropy III - BCCP — Berkeley Center for ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Secondary</strong> <strong>CMB</strong> <strong>Anisotropy</strong><br />

III: Cosmic Acceleration<br />

Wayne Hu<br />

Cabo, January 2009


<strong>Secondary</strong> <strong>CMB</strong> <strong>Anisotropy</strong><br />

III: Cosmic Acceleration<br />

Wayne Hu<br />

Cabo, January 2009


Physics of <strong>Secondary</strong> Anisotropies<br />

Primary Anisotropies<br />

recombination<br />

z~1000<br />

Doppler<br />

Vishniac<br />

Lensing<br />

Patchy rei.<br />

reionization<br />

z~10<br />

SZ<br />

ISW<br />

acceleration<br />

z~1


Scattering Secondaries<br />

100<br />

∆T (µK)<br />

10<br />

1<br />

Doppler<br />

suppression<br />

density–mod<br />

linear<br />

ion-mod<br />

SZ<br />

0.1<br />

10 100 1000<br />

l


Gravitational Secondaries<br />

100<br />

∆T (µK)<br />

10<br />

1<br />

0.1<br />

ISW<br />

lensing<br />

Moving Halo<br />

10 100 1000<br />

l<br />

un–<br />

lensed


Integrated Sachs-Wolfe<br />

Effect


ISW Effect<br />

• Gravitational blueshift on infall does not cancel redshift<br />

on climbing out<br />

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ<br />

• Effect from potential hills and wells cancel on small scales


ISW Effect<br />

• Gravitational blueshift on infall does not cancel redshift<br />

on climbing out<br />

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ<br />

• Effect from potential hills and wells cancel on small scales


Smooth Energy Density & Potential Decay<br />

• Regardless of the equation of state an energy component<br />

that clusters preserves an approximately constant<br />

gravitational potential (formally Bardeen curvature ζ)


Smooth Energy Density & Potential Decay<br />

• Regardless of the equation of state an energy component<br />

that clusters preserves an approximately constant<br />

gravitational potential (formally Bardeen curvature ζ)<br />

• A smooth component contributes<br />

density ρ to the expansion<br />

but not<br />

density fluctuation δρ to the Poisson equation<br />

• Imbalance causes potential to decay once smooth<br />

component dominates the expansion


ISW Spatial Modes<br />

• ISW effect comes from nearby acceleration regime<br />

• Shorter wavelengths project onto same angle<br />

• Broad source kernel: Limber cancellation out to quadrupole


Quadrupole Origins<br />

• Transfer function for the quadrupole<br />

0.2<br />

total<br />

T E 2<br />

T Θ 2<br />

0<br />

-0.2<br />

0.002<br />

0<br />

ISW<br />

SW<br />

total<br />

10<br />

3<br />

z


Smooth Energy Density & Potential Decay<br />

• Regardless of the equation of state an energy component<br />

that clusters preserves an approximately constant<br />

gravitational potential (formally Bardeen curvature ζ)<br />

• A smooth component contributes<br />

density ρ to the expansion<br />

but not<br />

density fluctuation δρ to the Poisson equation<br />

• Imbalance causes potential to decay once smooth<br />

component dominates the expansion<br />

• Scalar field dark energy (quintessence) is smooth out to<br />

the horizon scale (sound speed c s =1)<br />

• Potential decay measures the clustering properties and<br />

hence the particle properties of the dark energy


ISW & Dark Energy


Dark Energy<br />

• Peaks measure distance to recombination<br />

• ISW effect constrains dynamics of acceleration<br />

[ l(l+1)C l /2π ] 1/2 (µK)<br />

100<br />

80<br />

60<br />

40<br />

Dark Energy Density<br />

Equation of<br />

State<br />

20<br />

Ω DE<br />

0.2 0.4 0.6 0.8<br />

10 100 1000<br />

l<br />

w DE<br />

-0.8 -0.6 -0.4 -0.2 0<br />

10 100 1000<br />

l


Dark Energy Sound Speed<br />

• Smooth and clustered regimes separated by sound horizon<br />

• Covariant definition: c e 2 =δp/δρ where momentum flux vanishes<br />

• For scalar field dark energy uniquely defined by kinetic term<br />

0.10<br />

c e =10 1<br />

(Φ−Φ s )/Φ s<br />

0.05<br />

10 0.5<br />

1<br />

10 -0.5 10 -1 10 -1.5<br />

0<br />

w DE =-0.8<br />

Hu (1998)<br />

10 -4 10 -3 10 -2<br />

Garriga & Mukhanov (1999) k (Mpc -1 )<br />

[plot: Hu & Scranton (2004)]


Dark Energy Clustering<br />

• ISW effect intrinsically sensitive to dark energy smoothness<br />

• Large angle contributions reduced if clustered<br />

10 -9<br />

ΘΘ<br />

l(l+1)C l /2π<br />

10 -10<br />

10 -11<br />

ISW<br />

total<br />

c e =1<br />

c e =0.1<br />

10 -12<br />

w=-0.8<br />

Hu (1998); [plot: Hu & Scranton (2004)]<br />

10 100<br />

l


ISW-Galaxy Correlation<br />

• Decaying potential: galaxy positions correlated with <strong>CMB</strong><br />

• Growing potential: galaxy positions anticorrelated with <strong>CMB</strong><br />

• Observations indicate correlation


ISW-Galaxy Correlation<br />

• ~4σ joint detection of ISW correlation with large scale structure<br />

(galaxies)<br />

• ~2σ high compared with ΛCDM<br />

Ho et al (2007) [Giannantonio et al 2008]<br />

ΛCDM


Ultra-Deep Wide Survey<br />

• Ultimate limit: deep wide-field survey with photometric redshift<br />

errors of σ(z)=0.03(1+z), median redshift z=1.5, 70 gal/arcmin 2<br />

3<br />

2<br />

b g tot(0;z)<br />

bias<br />

1<br />

redshift<br />

distributions<br />

n g i(z)<br />

n g tot(z)<br />

Afshordi (2004); Hu & Scranton (2004)<br />

1 2 3<br />

z


Galaxy Cross Correlation<br />

• Cross correlation highly sensitive to the dark energy smoothness<br />

(parameterized by sound speed)<br />

10 -7<br />

z i =0.15<br />

Θg<br />

l(l+1)C l /2π<br />

10 -8<br />

3<br />

10 -9<br />

w DE<br />

=-0.8; c e =1<br />

c e =0.1 / c e =1<br />

1<br />

0.8<br />

0.6<br />

0.15<br />

3<br />

Hu & Scranton (2004)<br />

10 100<br />

l


Galaxy Cross Correlation<br />

• Significance of the separation between quintessence and a more<br />

clustered dark energy with sound speed c e<br />

100<br />

sound speed (S/N) 2<br />

10<br />

1<br />

total<br />

l >10<br />

z


Dark Energy Smoothness<br />

• More robust way of quoting constraints: how smooth is the<br />

dark energy out to a given physical scale:<br />

f sky =1<br />

0.10<br />

(Φ−Φ s )/Φ s<br />

0.03<br />

0.01<br />

Hu & Scranton (2004)<br />

z10<br />

total<br />

1 10<br />

c e η 0 (Gpc)


Isocurvature DE Perturbations<br />

• Anti-correlated DE perturbations: ISW cancel SW effect<br />

0.2<br />

total<br />

A&I<br />

T E 2<br />

T Θ 2<br />

0<br />

-0.2<br />

0.002<br />

0<br />

A&I<br />

total<br />

SW<br />

(a) Temperature<br />

-0.002<br />

(b) Polarization<br />

0.0001<br />

0.001<br />

k (Mpc -1 )<br />

0.01<br />

Moroi & Takahashi (2004); Gordon & Hu (2004)


Low Quadrupole Models<br />

• Required isocurvature perturbation can be generated by<br />

variable decay reheating mechanism but overpredicts grav w.<br />

6000<br />

adiabatic<br />

isocurvature<br />

ΘΘ<br />

l(l+1)C l /2π (µK 2 )<br />

4000<br />

2000<br />

10<br />

l<br />

Gordon & Hu (2004) [Dvali, Gruzinov, Zaldarriaga (2004) reheating]<br />

100


Polarization Rejects ISW<br />

• Polarization unchanged; cross correlation lowered<br />

ΘE<br />

l(l+1)C l /2π (µK 2 )<br />

5<br />

0<br />

-5<br />

adiabatic<br />

(adiabatic+) isocurvature<br />

EE<br />

l(l+1)C l /2π (µK 2 )<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Gordon & Hu (2004)<br />

10<br />

l<br />

100


ISW & Modified Gravity


Parameterizing Acceleration<br />

• Cosmic acceleration, like the cosmological constant, can either be<br />

viewed as arising from<br />

Missing, or dark energy, with w ≡ ¯p/¯ρ < −1/3<br />

Modification of gravity on large scales<br />

G µν = 8πG ( )<br />

Tµν M + Tµν<br />

DE<br />

F (g µν ) + G µν = 8πGT M µν<br />

• Proof of principle models for both exist: quintessence, k-essence;<br />

DGP braneworld acceleration, f(R) modified action<br />

• Compelling models for either explanation lacking<br />

• Study models as illustrative toy models whose features can be<br />

generalized


DGP Braneworld Acceleration<br />

• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)<br />

∫<br />

S = d 5 x √ [ (5)<br />

(<br />

R<br />

(4)<br />

)]<br />

−g<br />

2κ + δ(χ) R<br />

2 2µ + L 2 m<br />

with crossover scale r c = κ 2 /2µ 2<br />

• Influence of bulk through Weyl tensor anisotropy - solve master<br />

equation in bulk (Deffayet 2001)<br />

• Matter still minimally coupled and conserved<br />

• Exhibits the 3 regimes of modified gravity<br />

• Weyl tensor anisotropy dominated conserved curvature regime<br />

r > r c (Sawicki, Song, Hu 2006; Cardoso et al 2007)<br />

• Brane bending scalar tensor regime r ∗ < r < r c (Lue, Soccimarro,<br />

Starkman 2004; Koyama & Maartens 2006)<br />

• Strong coupling General Relativistic regime r < r ∗ = (r 2 cr g ) 1/3<br />

where r g = 2GM (Dvali 2006)


DGP Horizon Scales<br />

• Metric and matter evolution well-matched by PPF description<br />

• Standard GR tools apply (CAMB), self-consistent, gauge invar.<br />

1.0<br />

Φ− /Φ i<br />

0.9<br />

100<br />

0.8<br />

DGP<br />

PPF<br />

k/H 0 =1<br />

10<br />

Hu, Hu Huterer & Sawicki & Smith (2007); (2006) Hu (2008)<br />

0.1 0.01 1<br />

a


DGP <strong>CMB</strong> Large-Angle Excess<br />

• Extra dimension modify gravity on large scales<br />

• 4D universe bending into extra dimension alters gravitational<br />

redshifts in cosmic microwave background<br />

6000<br />

fluctuation power<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

10<br />

angular frequency<br />

100 1000


<strong>CMB</strong> in DGP<br />

• Adding cut off as an epicycle can fix distances, ISW problem<br />

• Suppresses polarization in violation of EE data - cannot save DGP!<br />

Hu, Fang Huterer et al (2008) & Smith (2006)


<strong>CMB</strong> in DGP<br />

• Adding cut off as an epicycle can fix distances, ISW problem<br />

• Suppresses polarization in violation of EE data - cannot save DGP!<br />

Hu, Fang Huterer et al (2008) & Smith (2006)


Modified Action f(R) Model<br />

• R: Ricci scalar or “curvature”<br />

• f(R): modified action (Starobinsky 1980; Carroll et al 2004)<br />

∫<br />

S = d 4 x √ [ ]<br />

R + f(R)<br />

−g<br />

16πG<br />

+ L m<br />

• f R ≡ df/dR: additional propagating scalar degree of freedom<br />

(metric variation)<br />

• f RR ≡ d 2 f/dR 2 : Compton wavelength of f R squared, inverse<br />

mass squared<br />

• B: Compton wavelength of f R squared in units of the Hubble<br />

length<br />

B ≡<br />

f RR<br />

1 + f R<br />

R ′ H H ′<br />

• ′ ≡ d/d ln a: scale factor as time coordinate<br />

see Tristan Smith's talk


PPF f(R) Description<br />

• Metric and matter evolution well-matched by PPF description<br />

• Standard GR tools apply (CAMB), self-consistent, gauge invar.<br />

1.1<br />

100<br />

Φ− /Φ i<br />

1.0<br />

0.9<br />

k/H 0 =0.1<br />

30<br />

0.8<br />

f(R)<br />

PPF<br />

Hu, Hu Huterer & Sawicki & Smith (2007); (2006) Hu (2008)<br />

0.1 1<br />

a


ISW Quadrupole<br />

• Reduction of large angle anisotropy for B 0 ~1 for same expansion<br />

history and distances as ΛCDM<br />

• Well-tested small scale anisotropy unchanged<br />

l(l+1)C l /2π (µK 2 )<br />

TT<br />

3000<br />

1000<br />

B 0<br />

0 (ΛCDM)<br />

1/2<br />

3/2<br />

Song, Hu & Sawicki (2006)<br />

10<br />

100 1000<br />

multipole l


PPF f(R) Description<br />

• Metric and matter evolution well-matched by PPF description<br />

• Standard GR tools apply (CAMB), self-consistent, gauge invar.<br />

1.1<br />

100<br />

Φ− /Φ i<br />

1.0<br />

0.9<br />

k/H 0 =0.1<br />

30<br />

0.8<br />

f(R)<br />

PPF<br />

Hu, Hu Huterer & Sawicki & Smith (2007); (2006) Hu (2008)<br />

0.1 1<br />

a


Galaxy-ISW Anti-Correlation<br />

• Large Compton wavelength B 1/2 creates potential growth which can<br />

anti-correlate galaxies and the <strong>CMB</strong><br />

• In tension with detections of positive correlations across a range<br />

of redshifts<br />

B 0 =0<br />

B 0 =5<br />

Hu, Song, Huterer Peiris & Smith Hu (2007) (2006)


Parameterized Post-Friedmann<br />

• Parameterizing the degrees of freedom associated with metric<br />

modification of gravity that explain cosmic acceleration<br />

• Simple models that add in only one extra scale to explain<br />

acceleration tend to predict substantial changes near horizon<br />

and hence ISW<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Hu (2008)<br />

-1 -0.5<br />

0 0.5<br />

deviation from GR g 0


Non-linear ISW Effect


Moving Halo Effect


Moving Halo Effect<br />

• Change in potential due to halo moving across the line<br />

of sight<br />

100<br />

DT (mK)<br />

10<br />

1<br />

Moving Halo<br />

a.k.a. Rees-Sciama<br />

0.1<br />

10 100 1000<br />

l


SZ Effect


Modulated Doppler Effect<br />

Reionization Surface<br />

e—velocity unscattered γ<br />

overdensity,<br />

ionization patch,<br />

cluster...<br />

blueshifted<br />

γ<br />

Observer


Thermal SZ Effect<br />

Large Scale Structure<br />

e– velocity unscattered γ<br />

overdensity,<br />

ionization patch,<br />

cluster...<br />

upscattered γ<br />

Observer


Scattering Secondaries<br />

100<br />

∆T (µK)<br />

10<br />

1<br />

Doppler<br />

suppression<br />

density–mod<br />

linear<br />

ion-mod<br />

SZ<br />

0.1<br />

10 100 1000<br />

l


Beyond Thomson Limit<br />

• Thomson scattering e i + γ i → e f + γ f in rest frame where the<br />

frequencies ω i = ω f (elastic scattering) cannot strictly be true<br />

• Photons carry off E/c momentum and so to conserve momentum<br />

the electron must recoil<br />

• Doppler shift from transformation from rest frame contains second<br />

order terms<br />

• General case (arbitrary electron velocity)<br />

photon<br />

P i<br />

P f<br />

n i<br />

n f<br />

electron<br />

Q i<br />

Q f<br />

v i<br />

v f<br />

directional<br />

vectors


Energy-Momentum Conservation<br />

• From energy-momentum conservation, the energy change is<br />

E f<br />

E i<br />

=<br />

1 − β i cos α i<br />

1 − β i cos α f + E i<br />

(1 − cos θ)<br />

γmc 2<br />

where ˆn f · v i = v i cos α f and ˆn i · v i = v i cos α i<br />

• Two ways of changing the energy: Doppler boost β i from<br />

incoming electron velocity and E i non-negligible compared to<br />

γmc 2<br />

• Isolate recoil in incoming electron rest frame β i = 0 and γ = 1<br />

E f<br />

E i<br />

∣<br />

∣∣rest<br />

=<br />

1<br />

1 + E i<br />

mc 2 (1 − cos θ)


Recoil Effect<br />

• Since −1 ≤ cos θ ≤ 1, E f ≤ E i , energy is lost from the recoil<br />

except for purely forward scattering<br />

• The backwards scattering limit is easy to see<br />

|q f | = m|v f | = 2 E i<br />

c ,<br />

∆E = 1 2 mv2 f = 1 2 m ( 2Ei<br />

mc<br />

) 2<br />

= 2 E i<br />

mc 2 E i<br />

E f = E i − ∆E = (1 − 2 E i<br />

mc 2 )E i ≈<br />

E i<br />

1 + 2 E i<br />

mc 2


Second Order Doppler Shift<br />

• Doppler effect: consider the limit of β i ≪ 1 then expand to first<br />

order<br />

E f<br />

E i<br />

= 1 − β i cos α i + β i cos α f − E i<br />

(1 − cos θ)<br />

mc2 however averaging over angles the Doppler shifts don’t change the<br />

energies<br />

• To second order in the velocities, the Doppler shift transfers energy<br />

from the electron to the photon in opposition to the recoil<br />

E f<br />

E i<br />

= 1 − β i cos α i + β i cos α f + β 2 i cos 2 α f − E i<br />

mc 2<br />

〈 E f<br />

E i<br />

〉 ≈ 1 + 1 3 β2 i − E i<br />

mc 2


Thermalization<br />

• For a thermal distribution of velocities<br />

1<br />

2 m〈v2 〉 = 3kT<br />

2<br />

βi 2 ≈ 3kT<br />

mc → 〈E f<br />

− 1〉 ∼ kT − E i<br />

2 E i mc 2<br />

so that if E i ≪ kT the photon gains energy and E i ≫ kT it loses<br />

energy → this is a thermalization process


Kompaneets Equation<br />

• Radiative transfer or Boltzmann equation<br />

∂f<br />

∂t = 1<br />

2E(p f )<br />

∫<br />

d 3 p i 1<br />

(2π) 3 2E(p i )<br />

∫<br />

d 3 q f 1<br />

(2π) 3 2E(q f )<br />

∫<br />

d 3 q i 1<br />

(2π) 3 2E(q i )<br />

× (2π) 4 δ(p f + q f − p i − q i )|M| 2<br />

× {f e (q i )f(p i )[1 + f(p f )] − f e (q f )f(p f )[1 + f(p i )]}<br />

• Matrix element is calculated in field theory and is Lorentz<br />

invariant. In terms of the rest frame α = e 2 /¯hc (Klein Nishina<br />

Cross Section)<br />

[<br />

|M| 2 = 2(4π) 2 α 2 E(pi )<br />

E(p f ) + E(p ]<br />

f)<br />

E(p i ) − sin2 β<br />

with β as the rest frame scattering angle


Kompaneets Equation<br />

• The Kompaneets equation (¯h = c = 1)<br />

( ) [ ( )]<br />

∂f<br />

∂t = n kTe 1 ∂ ∂f<br />

eσ T c<br />

x 4<br />

mc 2 x 2 ∂x ∂x + f(1 + f)<br />

takes electrons as thermal<br />

f e = e −(m−µ)/T e<br />

e −q2 /2mT e<br />

[n e = e −(m−µ)/T e<br />

=<br />

( 2π<br />

mT e<br />

) 3/2<br />

n e e −q2 /2mT e<br />

x = ¯hω/kT e<br />

( ) ] 3/2 mTe<br />

and assumes that the energy transfer is small (non-relativistic<br />

electrons, E i ≪ m<br />

E f − E i<br />

E i<br />

≪ 1 [O(T e /m, E i /m)]<br />


Kompaneets Equation<br />

• Equilibrium solution must be a Bose-Einstein distribution since<br />

Compton scattering does not change photon number<br />

• Rate of energy exchange obtained from integrating the energy ×<br />

Kompeneets equation over momentum states<br />

∂u<br />

∂t = 4n eσ T c kT [<br />

e<br />

1 − T ]<br />

γ<br />

u<br />

mc 2 T e<br />

1 ∂u<br />

u ∂t = 4n eσ T c k(T e − T γ )<br />

mc 2<br />

• The analogue to the optical depth for energy transfer is the<br />

Compton y parameter<br />

dτ = n e σ T ds = n e σ t cdt<br />

dy = k(T e − T γ )<br />

dτ<br />

mc 2


Spectral Distortion<br />

• Compton upscattering: y–distortion<br />

• Redistribution: µ-distortion<br />

0.1<br />

∆T / Tinit<br />

0<br />

–0.1<br />

–0.2<br />

y–distortion<br />

µ-distortion<br />

10 –3 10 –2 10 –1 1 10 1 10 2<br />

p/T init


Thermal SZ Effect<br />

• Second order Doppler effect escapes cancellation<br />

• Velocities: thermal velocities in a hot cluster (1-10keV)<br />

• Dominant source of arcminute anisotropies – turns over<br />

as clusters are resolved<br />

100<br />

DT (mK)<br />

10<br />

1<br />

SZ<br />

0.1<br />

10 100 1000<br />

l


Amplitude of Fluctuations


Clusters in Power Spectrum?<br />

• Excess in arcminute scale <strong>CMB</strong> anisotropy from CBI<br />

100<br />

IAB<br />

Sask<br />

∆T (µK)<br />

80<br />

60<br />

40<br />

20<br />

FIRS<br />

COBE<br />

Viper<br />

BAM<br />

QMAP<br />

SP<br />

Ten<br />

ARGO IAC<br />

BOOM Pyth<br />

TOCO<br />

BOOM<br />

RING<br />

CAT<br />

MAX MSAM<br />

DASI<br />

BOOM<br />

WD<br />

VSA<br />

Maxima<br />

OVRO<br />

CBI ATCA<br />

SuZIE<br />

BIMA<br />

W. Hu 5/02<br />

10 100 1000<br />

l


Power Spectrum Present


Counting Halos for Dark Energy<br />

• Number density of massive halos extremely sensitive to the<br />

growth of structure and hence the dark energy<br />

• Massive halos can be identified by the hot gas they contain<br />

see Jack Sayers' talk<br />

Carlstrom et al. (2001)


SPT Discovered Clusters<br />

• Previously unknown clusters<br />

150 GHz<br />

Unfiltered<br />

150 GHz<br />

Filtered<br />

95 GHz<br />

Filtered<br />

0517−5430 0547−5345 0509−5342 0528−5300<br />

1.2′ beam<br />

200<br />

0<br />

−200<br />

8<br />

0<br />

−8<br />

6<br />

0<br />

225 GHz<br />

Filtered<br />

−6<br />

6<br />

0<br />

−6<br />

Staniszewski et al (2008)


Mass-Observable Degeneracy<br />

• Uncertainties in bias and scatter cause degeneracies with<br />

dark energy<br />

see talks of<br />

Carlos Cunha<br />

Alexie Leauthaud<br />

0.1<br />

M 0<br />

ρ m<br />

dn<br />

d lnM<br />

0.01<br />

0.001<br />

w=-1<br />

w=-2/3<br />

selection<br />

(x 0.01)<br />

M bias<br />

ln M<br />

10 13<br />

10 14<br />

M (h -1 M )<br />

10 15


Fully Calibrated<br />

• Given a completely known observable-mass distribution dark energy<br />

constraints are quite tight (4000 sq deg, z


Un-Calibrated<br />

• Marginalizing scatter (linear z evolution) and bias (power law<br />

evolution) destroys all dark energy information<br />

2<br />

1<br />

w<br />

0<br />

0.5 0.6 0.7 0.8 0.9<br />

Ω Λ


Joint Self-Calibration<br />

• Both counts and their variance as a function of binned observable<br />

• Many observables allows for a joint solution of a mass independent<br />

bias and scatter with cosmology<br />

b 2 σ2<br />

50<br />

0.1<br />

M 0<br />

ρ m<br />

dn<br />

d lnM<br />

0.01<br />

selection<br />

(x 0.01)<br />

0.001<br />

w=-1<br />

w=-2/3<br />

10 13<br />

10 14<br />

M (h -1 M )<br />

10 15


Joint Self Calibration<br />

• Power law evolution of bias and cubic evolution of scatter in z<br />

-0.7<br />

-0.8<br />

w<br />

-0.9<br />

0.7<br />

0.72 0.74<br />

Ω Λ


Modified Gravity f(R) Simulations<br />

• For large background field, compared with potential depth,<br />

enhanced forces and structure<br />

Oyaizu, Hu, Lima, Huterer Hu &(2008)<br />

Smith (2006)


Mass Function<br />

• Enhanced abundance of rare dark matter halos (clusters) with<br />

extra force<br />

Rel. deviation dn/dlogM<br />

Schmidt, Hu, Lima, L, Huterer Oyaizu, & Smith Hu (2008) (2006)<br />

M 300<br />

(h -1 M )


Summary: Lecture III<br />

• Differential gravitational redshifts from evolving structure causes<br />

integrated Sachs-Wolfe (ISW) effect<br />

• Appears on large angles and contributes to quadrupole comparably<br />

to primary<br />

• Tests the microphysics of acceleration: clustering of dark energy,<br />

modified gravity, dark matter interactions<br />

• Compton scattering leads to energy transfer and thermal SZ effect<br />

to second order in velocity<br />

• Unresolved gas clumps generate excess arcminute power<br />

• Resolved clusters provide sensitive test of microphysics of<br />

acceleration through counts if masses calibrated


Thanks to the Organizers<br />

...setting sail for Cancun...

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!