The First Report of Postharvest Stem Rot of kohrabi Caused by Sclerotinia sclerotiorum in Korea
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
Mycobiology<br />
Research Note<br />
<strong>The</strong> <strong>First</strong> <strong>Report</strong> <strong>of</strong> <strong>Postharvest</strong> <strong>Stem</strong> <strong>Rot</strong> <strong>of</strong><br />
Kohlrabi <strong>Caused</strong> <strong>by</strong> <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong> <strong>in</strong><br />
<strong>Korea</strong><br />
Joon-Young Kim 1 , Md. Aktaruzzaman 1 , Tania Afroz 1 , Young-Il Hahm 2 and Byung-Sup Kim 1, *<br />
Department <strong>of</strong> Plant Science, Gangneung-Wonju National University, Gangneung 210-702, <strong>Korea</strong><br />
Daegwallyong Horticultural Cooperative, Pyeongchang 232-950, <strong>Korea</strong><br />
1<br />
2<br />
Abstract In March 2014, a kohlrabi stem rot sample was collected from the cold storage room <strong>of</strong> Daegwallyong Horticultural<br />
Cooperative, <strong>Korea</strong>. White and fuzzy mycelial growth was observed on the stem, symptomatic <strong>of</strong> stem rot disease. <strong>The</strong> pathogen<br />
was isolated from the <strong>in</strong>fected stem and cultured on potato dextrose agar for further fungal morphological observation and to<br />
confirm its pathogenicity, accord<strong>in</strong>g to Koch’s postulates. Morphological data, pathogenicity test results, and rDNA sequences <strong>of</strong><br />
<strong>in</strong>ternal transcribed spacer regions (ITS 1 and 4) showed that the postharvest stem rot <strong>of</strong> kohlrabi was caused <strong>by</strong> <strong>Sclerot<strong>in</strong>ia</strong><br />
<strong>sclerotiorum</strong>. This is the first report <strong>of</strong> postharvest stem rot <strong>of</strong> kohlrabi <strong>in</strong> <strong>Korea</strong>.<br />
Keywords<br />
Kohlrabi, Pathogenicity, <strong>Postharvest</strong> disease, <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong>, <strong>Sclerot<strong>in</strong>ia</strong> stem rot<br />
Kohlrabi (Brassica oleracea var. gongylodes) is a low, stout<br />
cultivar <strong>of</strong> the cabbage that will grow almost anywhere. It<br />
develops a thickened stem just above the soil l<strong>in</strong>e. Although<br />
this vegetable is <strong>of</strong>ten called a “turnip-rooted cabbage,” the<br />
edible portion is an enlarged stem rather than root tissue.<br />
Kohlrabi orig<strong>in</strong>ated <strong>in</strong> northern Europe <strong>in</strong> the 16th century.<br />
<strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong> (Lib.) de Bary is among the<br />
world’s most successful and omnivorous fungal pathogens,<br />
affect<strong>in</strong>g a wide range <strong>of</strong> vegetable and field crops <strong>in</strong> many<br />
countries. Diseases caused <strong>by</strong> S. <strong>sclerotiorum</strong> occur <strong>in</strong> all<br />
stages <strong>of</strong> plant growth, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> seedl<strong>in</strong>gs and mature<br />
plants, and <strong>in</strong> post-harvest products [1, 2]. It has been<br />
reported that the fungus attacks more than 400 different<br />
species <strong>of</strong> plants [3, 4], and <strong>in</strong> <strong>Korea</strong> alone, more than 59<br />
plant species have been reported as be<strong>in</strong>g hosts for S.<br />
<strong>sclerotiorum</strong> [5]. Cool and humid conditions favor the<br />
Mycobiology 2014 December, 42(4): 409-411<br />
http://dx.doi.org/10.5941/MYCO.2014.42.4.409<br />
pISSN 1229-8093 • eISSN 2092-9323<br />
© <strong>The</strong> <strong>Korea</strong>n Society <strong>of</strong> Mycology<br />
*Correspond<strong>in</strong>g author<br />
E-mail: bskim@gwnu.ac.kr<br />
Received September 10, 2014<br />
Revised October 13, 2014<br />
Accepted October 13, 2014<br />
This is an Open Access article distributed under the terms <strong>of</strong> the<br />
Creative Commons Attribution Non-Commercial License (http://<br />
creativecommons.org/licenses/<strong>by</strong>-nc/3.0/) which permits unrestricted<br />
non-commercial use, distribution, and reproduction <strong>in</strong> any medium,<br />
provided the orig<strong>in</strong>al work is properly cited.<br />
occurrence <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> rot <strong>in</strong> the field, dur<strong>in</strong>g transit and<br />
<strong>in</strong> storage, and the optimal temperatures for fungal growth<br />
range from 15 o C to 21 o C [6]. In <strong>Korea</strong>, this fungus has<br />
been associated with <strong>Sclerot<strong>in</strong>ia</strong> rot <strong>in</strong> various vegetable<br />
crops <strong>in</strong> the field, but has not been reported as a postharvest<br />
disease [7]. <strong>The</strong> objective <strong>of</strong> this study was to identify the<br />
causal agent associated with postharvest <strong>Sclerot<strong>in</strong>ia</strong> stem<br />
rot disease <strong>in</strong> kohlrabi, based on culture characteristics,<br />
molecular phylogenetics, and pathogenicity.<br />
Isolation <strong>of</strong> fungi and pathogenicity test. In March<br />
2014, symptoms <strong>of</strong> rot were observed on kohlrabi <strong>in</strong> the cold<br />
storage room <strong>of</strong> Daegwallyong Horticultural Cooperative,<br />
Pyeongchang, Gangwon Prov<strong>in</strong>ce, <strong>Korea</strong> (Fig. 1A). Specifically,<br />
white and fuzzy mycelial growth was seen on the stems.<br />
Infected stems were collected <strong>in</strong> sterilized plastic polythene<br />
bags and transported to the laboratory for pathogen isolation.<br />
<strong>The</strong>y were then cut <strong>in</strong>to small pieces, approximately 0.5 to<br />
1 cm <strong>in</strong> size. <strong>The</strong> pieces were then surface-sterilized with<br />
1% (v/v) sodium hypochlorite (NaOCl) for 1 m<strong>in</strong>, washed<br />
3 times with sterile distilled water, and then dried with<br />
sterilized filter paper. Next, the pieces were placed <strong>in</strong> Petri<br />
plates conta<strong>in</strong><strong>in</strong>g potato dextrose agar (PDA) medium<br />
(Difco, Detroit, MI, USA) and <strong>in</strong>cubated at 20 ± 2 o C for 5<br />
days. For pure culture isolation, the mycelia grown on the<br />
PDA plates were used to <strong>in</strong>oculate fresh PDA plates.<br />
To determ<strong>in</strong>e the pathogenicity <strong>of</strong> the fungus, 1 mycelial<br />
disc (7 days old, 6.5 mm) was placed <strong>in</strong>to a small cut <strong>of</strong><br />
kohlrabi stem and put <strong>in</strong> to a plastic box l<strong>in</strong>ed with moist<br />
filter papers. This was then <strong>in</strong>cubated at 20 ± 2 o C, under<br />
laboratory conditions. After 5 days, white mycelia were<br />
409
410 Kim et al.<br />
morphological characteristics as those <strong>of</strong> the orig<strong>in</strong>al isolates<br />
(Fig. 1B). Thus, the fungal pathogen fulfilled the criteria<br />
stipulated <strong>by</strong> Koch’s postulates and was identified as the<br />
causal agent <strong>of</strong> postharvest <strong>Sclerot<strong>in</strong>ia</strong> stem rot <strong>of</strong> kohlrabi.<br />
Sclerotia germ<strong>in</strong>ation and sexual structure. For<br />
sclerotia germ<strong>in</strong>ation, sandy loam soil was placed <strong>in</strong> a Petri<br />
dish, and 30-day-old 10~15 sclerotia were washed, dried,<br />
and pressed down to a depth <strong>of</strong> approximately 2 mm from<br />
the top <strong>of</strong> the Petri dish. <strong>The</strong> Petri dish was then kept<br />
shaded from sunlight, at 20 ± 2 o C, and watered 3 times a<br />
week with sterilized water. <strong>The</strong> plate was exposed to natural<br />
sunlight after the appearance <strong>of</strong> the first stipe <strong>in</strong>itial [8, 9].<br />
Fully developed apothecia were removed for further study.<br />
<strong>The</strong> asci and ascospores were exam<strong>in</strong>ed microscopically<br />
and were photographed at 40× magnification.<br />
Fig. 1. A, Diseased kohlrabi show<strong>in</strong>g fuzzy growths <strong>of</strong><br />
mycelium on the stem; B, Kohlrabi <strong>in</strong>oculated with <strong>Sclerot<strong>in</strong>ia</strong><br />
<strong>sclerotiorum</strong> developed <strong>Sclerot<strong>in</strong>ia</strong> stem rot symptoms after 5<br />
days <strong>of</strong> <strong>in</strong>cubation; C, Three-week-old colony and black<br />
sclerotia <strong>of</strong> S. <strong>sclerotiorum</strong> grow<strong>in</strong>g on potato dextrose agar<br />
medium; D, Apothecia; E, Ascus conta<strong>in</strong><strong>in</strong>g 8 ascospores; F,<br />
Ascospores (scale bars: E, F = 20 µm).<br />
seen on the stem, along with symptoms <strong>of</strong> rot. <strong>The</strong> fungal<br />
pathogen was re-isolated from the disease lesions on the<br />
<strong>in</strong>oculated stem; this re-isolated pathogen exhibited the same<br />
DNA extraction, polymerase cha<strong>in</strong> reaction (PCR),<br />
and sequence analysis. For DNA extraction, mycelia<br />
were grown <strong>in</strong> 250-mL flasks conta<strong>in</strong><strong>in</strong>g 100mL <strong>of</strong> potato<br />
dextrose broth, which were <strong>in</strong>cubated for 6 days at 25 o C on<br />
a rotary shaker at 135 rpm. Mycelia were harvested <strong>by</strong><br />
vacuum filtration through Whatman grade 1 filter paper<br />
and then lyophilized for 24 hr before gr<strong>in</strong>d<strong>in</strong>g them to a<br />
f<strong>in</strong>e powder. Next, 100 mg <strong>of</strong> the ground powder was<br />
transferred to a 1.5-mL Eppendorf tube, and DNA was<br />
extracted us<strong>in</strong>g the CTAB extraction method [10].<br />
<strong>The</strong> extracted DNA was used for PCR sequenc<strong>in</strong>g <strong>of</strong><br />
rDNA genes <strong>by</strong> us<strong>in</strong>g universal primers for <strong>in</strong>ternal<br />
transcribed spacer (ITS) 1 (5'-TCCGTAGGTGAACCTGCGG-<br />
3') and ITS 4 (5'-TCCTCCGCTTATTGATATGC-3') [11].<br />
<strong>The</strong> amplification was performed <strong>in</strong> a 25 µL reaction<br />
mixture conta<strong>in</strong><strong>in</strong>g 0.5 µL <strong>of</strong> each primer, 0.5 µL <strong>of</strong> Taq<br />
DNA polymerase (Bioneer, Daejeon, <strong>Korea</strong>), 0.5 µL <strong>of</strong> each<br />
dNTP, 2.5 µL <strong>of</strong> 10× PCR reaction buffer, 18.5 µL <strong>of</strong><br />
distilled water, and 2.0 µL <strong>of</strong> template DNA. <strong>The</strong> reaction<br />
was performed <strong>in</strong> an Eppendorf Mastercycler (Eppendorf,<br />
Hamburg, Germany) under the follow<strong>in</strong>g conditions: predenaturation<br />
at 94 o C for 5 m<strong>in</strong>, followed <strong>by</strong> 35 cycles <strong>of</strong><br />
denaturation at 94 o C for 35 sec, anneal<strong>in</strong>g at 52 o C for<br />
Table 1. Morphological and culture characteristics <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong> isolated from kohlrabi<br />
Characteristics Study isolate S. <strong>sclerotiorum</strong> a<br />
Colony Color White to gray White to gray<br />
Sclerotium Shape Initially cushion-like or globularor irregular,<br />
dark brown, f<strong>in</strong>ally black<br />
Initially cushion-like or short-cyl<strong>in</strong>drical<br />
and white, f<strong>in</strong>ally black<br />
Apothecium Shape Cup-shaped with yellowish brown color Cup-shaped with yellowish brown color<br />
Size (cm) 0.8~1.4 0.5~2.0<br />
Ascus Shape Cyl<strong>in</strong>drical, hyal<strong>in</strong>e, 8-spored Cyl<strong>in</strong>drical, hyal<strong>in</strong>e, 8-spored<br />
Length (µm) 103.5~142.7 110~160.0<br />
Width (µm) 5.7~7.7 6.0~10.0<br />
Ascospore Shape Hyal<strong>in</strong>e, ellipsoid to ovoid Hyal<strong>in</strong>e, ellipsoid to ovoid<br />
Length (µm) 8.9~11.2 9.0~14.0<br />
Width (µm) 4.4~5.3 4.0~6.0<br />
a<br />
Described <strong>by</strong> Kohn [12].
<strong>Postharvest</strong> <strong>Stem</strong> <strong>Rot</strong> <strong>of</strong> Kohlrabi 411<br />
Fig. 2. Neighbor-jo<strong>in</strong><strong>in</strong>g phylogenetic tree <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong> stra<strong>in</strong> SS3 and related species identified <strong>by</strong> the <strong>in</strong>ternal<br />
transcribed spacer gene sequences from the GenBank database. Numbers at the nodes <strong>in</strong>dicate bootstrap values from a test <strong>of</strong><br />
1,000 replicates. <strong>The</strong> scale bar <strong>in</strong>dicates the number <strong>of</strong> nucleotide substitutions. Evolutionary analyses were conducted us<strong>in</strong>g the<br />
MEGA5 program [13].<br />
55 sec, and elongation at 72 o C for 1 m<strong>in</strong>, followed <strong>by</strong> a f<strong>in</strong>al<br />
extension at 72 o C for 10 m<strong>in</strong> [14]. <strong>The</strong> obta<strong>in</strong>ed nucleotide<br />
sequences were used <strong>in</strong> a BLASTN search <strong>of</strong> the GenBank<br />
database (http://www.ncbi.nlm.nih.gov/BLAST/). Phylogenetic<br />
analysis <strong>of</strong> S. <strong>sclerotiorum</strong> was performed us<strong>in</strong>g the MEGA5<br />
program, with the neighbor-jo<strong>in</strong><strong>in</strong>g method [13]. Sequence<br />
data were deposited <strong>in</strong> GenBank (accession No. KM656466).<br />
Identification and characterization <strong>of</strong> S. <strong>sclerotiorum</strong>.<br />
In total, 7 fungal stra<strong>in</strong>s were obta<strong>in</strong>ed from the kohlrabi<br />
with <strong>Sclerot<strong>in</strong>ia</strong> rot, and <strong>of</strong> these, stra<strong>in</strong> SS3 was exam<strong>in</strong>ed<br />
for identification. Stra<strong>in</strong> SS3 was identified as S. <strong>sclerotiorum</strong><br />
<strong>by</strong> analyz<strong>in</strong>g the morphological characteristics <strong>of</strong> the isolated<br />
fungus and perform<strong>in</strong>g rDNA sequenc<strong>in</strong>g analysis. <strong>The</strong><br />
fungus produced white to gray colonies on PDA medium<br />
<strong>in</strong>cubated at 20 ± 2 o C for 7 days, which after 3 wk showed<br />
small sclerotia that were produced on the peripheries <strong>of</strong> the<br />
plates (Fig. 1C). <strong>The</strong>se sclerotia were black <strong>in</strong> color and<br />
globose, cyl<strong>in</strong>drical, or irregular <strong>in</strong> shape. Apothecia were<br />
obta<strong>in</strong>ed from germ<strong>in</strong>at<strong>in</strong>g sclerotia on sand medium after<br />
5~6 wk <strong>in</strong>cubation at 20 ± 2 o C (Fig. 1D). Eight elliptical<br />
ascospores <strong>of</strong> uniform size were observed <strong>in</strong> each ascus<br />
under the microscope (Fig. 1E and 1F), which is a typical<br />
characteristic <strong>of</strong> S. <strong>sclerotiorum</strong> [15]. <strong>The</strong> morphological<br />
characteristics <strong>of</strong> the identified species are summarized <strong>in</strong><br />
Table 1. <strong>The</strong> ITS sequences obta<strong>in</strong>ed <strong>in</strong> this study were<br />
compared to GenBank database sequences <strong>by</strong> us<strong>in</strong>g the<br />
NCBI BLAST search tool. <strong>The</strong> sequences identified based on<br />
rRNA-ITS alignment were 100% similar to those <strong>of</strong> several S.<br />
<strong>sclerotiorum</strong> species (accession Nos. KJ817041.1, KF148605.1,<br />
JQ618848.1, and HM769811.1). Thus, S. <strong>sclerotiorum</strong> was<br />
identified as the causative agent <strong>of</strong> postharvest <strong>Sclerot<strong>in</strong>ia</strong><br />
stem rot <strong>of</strong> kohlrabi <strong>in</strong> this study (Fig. 2), which constitutes<br />
the first report <strong>of</strong> this disease <strong>in</strong> kohlrabi <strong>in</strong> <strong>Korea</strong>.<br />
REFERENCES<br />
1. Agrios GN. Plant pathology. 5th ed. San Francisco: Elsevier<br />
Academic Press; 2005. p. 546-50.<br />
2. Coley-Smith JR, Cooke RC. Survival and germ<strong>in</strong>ation <strong>of</strong><br />
fungal sclerotia. Annu Rev Phytopathol 1971;9:65-92.<br />
3. Purdy LH. <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong>: history, diseases and<br />
symptomatology, host range, geographic distribution, and<br />
impact. Phytopathology 1979;69:875-80.<br />
4. Boland GJ, Hall R. Index <strong>of</strong> plant hosts <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong><br />
<strong>sclerotiorum</strong>. Can J Plant Pathol 1994;16:93-108.<br />
5. <strong>Korea</strong>n Society <strong>of</strong> Plant Pathology. List <strong>of</strong> plant diseases <strong>in</strong><br />
<strong>Korea</strong>. 5th ed. Seoul: <strong>Korea</strong>n Society <strong>of</strong> Plant Pathology;<br />
2009. p. 7-667.<br />
6. Willetts HJ, Wong JAL. <strong>The</strong> biology <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong>,<br />
S. trifoliorum, and S. m<strong>in</strong>or with emphasis on specific<br />
nomenclature. Bot Rev 1980;46:101-65.<br />
7. Chang SW, Kim SK. <strong>First</strong> report <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> rot caused <strong>by</strong><br />
<strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong> on some vegetable crops <strong>in</strong> <strong>Korea</strong>.<br />
Plant Pathol J 2003;19:79-84.<br />
8. Huang HC, Kozub GC. A simple method for production <strong>of</strong><br />
apothecia from sclerotia <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong> <strong>sclerotiorum</strong>. Plant Prot<br />
Bull Taiwan 1989;31:333-45.<br />
9. Hao JJ, Subbarao KV, Duniway JM. Germ<strong>in</strong>ation <strong>of</strong> <strong>Sclerot<strong>in</strong>ia</strong><br />
m<strong>in</strong>or and S. <strong>sclerotiorum</strong> sclerotia under various soil moisture<br />
and temperature comb<strong>in</strong>ations. Phytopathology 2003;93:443-50.<br />
10. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A<br />
simple and efficient protocol for isolation <strong>of</strong> high molecular<br />
weight DNA from filamentous fungi, fruit bodies, and<br />
<strong>in</strong>fected plant tissues. Nucleic Acids Res 1992;20:6115-6.<br />
11. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct<br />
sequenc<strong>in</strong>g <strong>of</strong> fungal ribosomal RNA genes for phylogenetics.<br />
In: Innis MA, Gelfand DH, Sn<strong>in</strong>sky JJ, White TJ, editors.<br />
PCR protocols: a guide to methods and applications. San<br />
Diego: Academic Press; 1990. p. 315-22.<br />
12. Kohn LM. A monographic revision <strong>of</strong> the genus <strong>Sclerot<strong>in</strong>ia</strong>.<br />
Mycotaxon 1979;9:365-444.<br />
13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar<br />
S. MEGA5: molecular evolutionary genetics analysis us<strong>in</strong>g<br />
maximum likelihood, evolutionary distance, and maximum<br />
parsimony methods. Mol Biol Evol 2011;28:2731-9.<br />
14. Nishizawa T, Zhaorigetu, Komatsuzaki M, Sato Y, Kaneko N,<br />
Ohta H. Molecular characterization <strong>of</strong> fungal communities <strong>in</strong><br />
non-tilled, cover-cropped upland rice field soils. Microbes<br />
Environ 2010;25:204-10.<br />
15. Whetzel HH. A synopsis <strong>of</strong> the genera and species <strong>of</strong> the<br />
<strong>Sclerot<strong>in</strong>ia</strong>ceae, a family <strong>of</strong> stromatic <strong>in</strong>operculate discomycetes.<br />
Mycologia 1945;37:648-714.