First Report of Postharvest Gray Mold Rot on Carrot Caused by Botrytis cinerea in Korea
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
식물병연구 Res. Plant Dis. 20(2) : 129-131(2014)<br />
Note Open Access<br />
http://dx.doi.org/10.5423/RPD.2014.20.2.129<br />
<str<strong>on</strong>g>First</str<strong>on</strong>g> <str<strong>on</strong>g>Report</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Postharvest</str<strong>on</strong>g> <str<strong>on</strong>g>Gray</str<strong>on</strong>g> <str<strong>on</strong>g>Mold</str<strong>on</strong>g> <str<strong>on</strong>g>Rot</str<strong>on</strong>g> <strong>on</strong> <strong>Carrot</strong> <strong>Caused</strong> <strong>by</strong><br />
<strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong> <strong>in</strong> <strong>Korea</strong><br />
*Corresp<strong>on</strong>d<strong>in</strong>g author<br />
Tel : +82-33-640-2353<br />
Fax: +82-33-640-2909<br />
E-mail: bskim@gwnu.ac.kr<br />
Md. Aktaruzzaman, Jo<strong>on</strong>-Young Kim, Sheng-Jun Xu and Byung-Sup Kim*<br />
Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Science, Gangneung-W<strong>on</strong>ju Nati<strong>on</strong>al University, Gangneung 210-702, <strong>Korea</strong><br />
Received April 28, 2014<br />
Revised June 20, 2014<br />
Accepted June 21, 2014<br />
In February 2014, gray mold rott<strong>in</strong>g symptoms were observed <strong>in</strong> carrots <strong>in</strong> cold storage at Gangneung, Gangw<strong>on</strong><br />
prov<strong>in</strong>ce, <strong>Korea</strong>. The typical symptom <str<strong>on</strong>g>of</str<strong>on</strong>g> gray mold rot showed abundant blackish gray mycelia and c<strong>on</strong>idia<br />
was observed <strong>on</strong> the <strong>in</strong>fected root. The pathogen was isolated from <strong>in</strong>fected root and cultured <strong>on</strong> PDA for<br />
further fungal morphological observati<strong>on</strong> and c<strong>on</strong>firm<strong>in</strong>g its pathogenicity accord<strong>in</strong>g to Koch’s postulates.<br />
Results <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological data, pathogenicity test and rDNA <strong>in</strong>ternal transcribed spacer (ITS 1 and 4) sequence<br />
showed that the postharvest gray mold rot <str<strong>on</strong>g>of</str<strong>on</strong>g> carrot was caused <strong>by</strong> Botyrtis <strong>c<strong>in</strong>erea</strong>. This is the first report <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
postharvest gray mold rot <strong>on</strong> carrot <strong>in</strong> <strong>Korea</strong>.<br />
Keywords : <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong>, <strong>Carrot</strong>, Pathogenicity, <str<strong>on</strong>g>Postharvest</str<strong>on</strong>g> gray mold rot<br />
<strong>Carrot</strong>s (Daucus carota var. sativa DC.) are biannual crop under<br />
the Apiaceae (Umbelliferae) family. The edible porti<strong>on</strong> is the<br />
storage taproot, which c<strong>on</strong>ta<strong>in</strong>s high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates<br />
(sugars) and b-carotene (pre-vitam<strong>in</strong> A). In 2011, carrot was<br />
grown <strong>in</strong> <strong>Korea</strong> <strong>on</strong> 2,849 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> land to yield a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 93,694 Mt<br />
with productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> 32.88 t ha -1 (An<strong>on</strong>ymous, 2012).<br />
<strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong> (teleomorph Botryot<strong>in</strong>ia fuckeliana) also<br />
known as gray mold fungus is a ubiquitous filamentous fungal<br />
pathogen and may cause enormous damage both dur<strong>in</strong>g plant<br />
growth and postharvest (Jarvis, 1977). The pathogen is a necrotroph,<br />
<strong>in</strong>duc<strong>in</strong>g host cell death result<strong>in</strong>g <strong>in</strong> serious damage to<br />
plant tissues culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> rot <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant or the harvested<br />
product (Govr<strong>in</strong> and Lev<strong>in</strong>e, 2000; Staats et al., 2005). <strong>Botrytis</strong><br />
spp. are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>sidered a cool weather pathogen with best<br />
growth, sporulati<strong>on</strong>, spore release, germ<strong>in</strong>ati<strong>on</strong>, and establishment<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>fecti<strong>on</strong> occurr<strong>in</strong>g at an optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 to 23ºC.<br />
However, it is also active at low temperatures and can cause<br />
c<strong>on</strong>siderable loss <str<strong>on</strong>g>of</str<strong>on</strong>g> plant material ma<strong>in</strong>ta<strong>in</strong>ed at 0 to 10ºC. This<br />
fungus has been reported <strong>on</strong> the leaves and petioles <str<strong>on</strong>g>of</str<strong>on</strong>g> carrots<br />
<strong>in</strong>fected at field c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> <strong>Korea</strong> (Park et al., 2011) and postharvest<br />
carrot disease <strong>in</strong> the USA (Davis and Raid, 2002) but<br />
not reported <strong>in</strong> <strong>Korea</strong> as a postharvest carrot disease.<br />
Research <strong>in</strong> Plant Disease<br />
©The <strong>Korea</strong>n Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Pathology<br />
pISSN 1598-2262, eISSN 2233-9191<br />
Isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungi and pathogenicity test. In February<br />
2014, rott<strong>in</strong>g symptoms were observed <strong>in</strong> carrots <strong>in</strong> cold<br />
storage at Gangneung, Gangw<strong>on</strong> prov<strong>in</strong>ce, <strong>Korea</strong> (Fig. 1A).<br />
The symptoms observed were abundant blackish gray mycelia<br />
and c<strong>on</strong>idia <strong>on</strong> the <strong>in</strong>fected root. For pathogen isolati<strong>on</strong>, small<br />
pieces from <strong>in</strong>fected root were sterilized <strong>by</strong> immersi<strong>on</strong> <strong>in</strong> 0.1%<br />
sodium hypochlorite (NaOCl) for 1 m<strong>in</strong>, r<strong>in</strong>sed with sterile distilled<br />
water three times and cultivated <strong>on</strong> potato dextrose agar<br />
(PDA, Difco, USA) and <strong>in</strong>cubated at 20 ± 2°C for 7 days.<br />
To determ<strong>in</strong>e the pathogenicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the fungus, 10 ml c<strong>on</strong>idial<br />
suspensi<strong>on</strong> (2 × 10 4 spores per ml) was sprayed <strong>on</strong>to carrot<br />
sliced roots <strong>in</strong> plastic box l<strong>in</strong>ed with moist filter papers. The<br />
c<strong>on</strong>trol was sprayed with sterile distilled water served as c<strong>on</strong>trols.<br />
The plastic box with sliced roots was <strong>in</strong>cubated at 20 ± 2ºC<br />
under laboratory c<strong>on</strong>diti<strong>on</strong>. After 5 days, blackish gray mycelia<br />
were developed <strong>on</strong> sliced roots. The fungal pathogen was reisolated<br />
from the disease lesi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>oculated roots and<br />
the re-isolated pathogen exhibited the same morphological<br />
characteristics as those <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong>al isolates (Fig. 1B). Thus, the<br />
fungal pathogen fulfilled the criteria stipulated <strong>by</strong> the Koch’s<br />
postulates and was identified as the causal agent <str<strong>on</strong>g>of</str<strong>on</strong>g> the postharvest<br />
gray mold rot <str<strong>on</strong>g>of</str<strong>on</strong>g> carrot.<br />
DNA extracti<strong>on</strong>, polymerase cha<strong>in</strong> reacti<strong>on</strong> (PCR) amplificati<strong>on</strong>,<br />
and sequence analysis. For DNA extracti<strong>on</strong>, the mycelia<br />
This is an open access article distributed under the terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Creative Comm<strong>on</strong>s Attributi<strong>on</strong> License (http://creativecomm<strong>on</strong>s.org/licenses/<strong>by</strong>/2.0),<br />
which permits unrestricted use, distributi<strong>on</strong>, and reproducti<strong>on</strong> <strong>in</strong> any medium, provided the orig<strong>in</strong>al work is properly cited.
130<br />
Research <strong>in</strong> Plant Disease Vol. 20 No. 2<br />
To c<strong>on</strong>firm identity <str<strong>on</strong>g>of</str<strong>on</strong>g> the causal fungus, the complete ITS<br />
rDNA <str<strong>on</strong>g>of</str<strong>on</strong>g> the representative fungal pathogen was amplified<br />
and sequenced us<strong>in</strong>g <strong>by</strong> universal primers for <strong>in</strong>ternal transcribed<br />
spacer (ITS) 1 (5’-TCCGTAGGTGAACCTGCGG-3’) and<br />
ITS 4 (5’-TCCTCCGCTTATTGATATGC-3’) (White et al.,1990).<br />
The amplificati<strong>on</strong> was performed <strong>in</strong> a 25 ml reacti<strong>on</strong> mixture<br />
c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> each primer, 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Taq DNA polymerase<br />
(Bi<strong>on</strong>eer, <strong>Korea</strong>), 0.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> each dNTP, 2.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 10× PCR reacti<strong>on</strong><br />
buffer, 18.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water, and 2.0 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> template DNA. The<br />
reacti<strong>on</strong> was performed <strong>in</strong> Mastercycler Gradient (Eppendorf,<br />
Germany) under the follow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s: pre-denaturati<strong>on</strong> at<br />
94°C for 5 m<strong>in</strong>, followed <strong>by</strong> 35 cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> denaturati<strong>on</strong> at 94°C<br />
for 35 s, anneal<strong>in</strong>g at 52°C for 55 s, and el<strong>on</strong>gati<strong>on</strong> at 72°C<br />
for 1 m<strong>in</strong> and then post el<strong>on</strong>gati<strong>on</strong> at 72°C for 10 m<strong>in</strong>.<br />
The obta<strong>in</strong>ed nucleotide sequences were searched through<br />
BLASTn at the GenBank database (http://www.ncbi.nlm.nih.<br />
gov/BLAST/). Phylogenetic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> B. <strong>c<strong>in</strong>erea</strong> was performed<br />
<strong>by</strong> us<strong>in</strong>g the MEGA5 program with the neighbor-jo<strong>in</strong><strong>in</strong>g<br />
method (Tamura et al., 2011). Sequence data were deposited <strong>in</strong><br />
GenBank (accessi<strong>on</strong> number KJ685806).<br />
Fig. 1. <str<strong>on</strong>g>Gray</str<strong>on</strong>g> mold rot <strong>on</strong> carrot caused <strong>by</strong> <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong>. A: Disease<br />
<strong>in</strong>fected carrot root show<strong>in</strong>g blackish gray mycelia and c<strong>on</strong>idia, B: In<br />
pathogenicity test, produced similar symptoms <strong>on</strong> carrot sliced <strong>by</strong><br />
artificial <strong>in</strong>oculati<strong>on</strong>, C and D: One and three-wk-old col<strong>on</strong>y show<strong>in</strong>g<br />
black sclerotia grow<strong>in</strong>g <strong>on</strong> potato dextrose agar (PDA) medium, E:<br />
C<strong>on</strong>idia under light microscope, F: C<strong>on</strong>idiophore and c<strong>on</strong>idia <strong>by</strong> SEM.<br />
Scale bar: E = 20 mm and F = 50 mm.<br />
isolated from diseased lesi<strong>on</strong> were grown <strong>in</strong> 250 ml flasks c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />
100 ml potato dextrose broth, which were <strong>in</strong>cubated for<br />
4 days at 20°C <strong>on</strong> a rotary shaker at 125 rpm. Mycelia were harvested<br />
<strong>by</strong> vacuum filtrati<strong>on</strong> through Whatman No. 1 filter paper<br />
and then lyophilized for 24 h before gr<strong>in</strong>d<strong>in</strong>g them to a f<strong>in</strong>e<br />
powder. Next, 100 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground powder was transferred to<br />
a 1.5 ml Eppendorf tube and DNA was extracted <strong>by</strong> us<strong>in</strong>g the<br />
CTAB extracti<strong>on</strong> method (Moller et al., 1992).<br />
Identificati<strong>on</strong> and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong>.<br />
Total 6 fungal stra<strong>in</strong>s were obta<strong>in</strong>ed from the gray mold rot <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
stor<strong>in</strong>g carrots, and stra<strong>in</strong> GM4 am<strong>on</strong>g 6 stra<strong>in</strong>s was exam<strong>in</strong>ed<br />
for identificati<strong>on</strong>. Stra<strong>in</strong> GM4 was identified as B. <strong>c<strong>in</strong>erea</strong> <strong>by</strong><br />
analyz<strong>in</strong>g the morphological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the isolated fungus<br />
and <strong>by</strong> perform<strong>in</strong>g rDNA sequenc<strong>in</strong>g analysis. The fungus<br />
produced gray to dark col<strong>on</strong>ies with dark mycelium and produced<br />
abundant c<strong>on</strong>idia <strong>on</strong> potato dextrose agar at 20 ± 2ºC for<br />
7 days (Fig. 1C ). The c<strong>on</strong>idia were <strong>on</strong>e-celled, ellipsoid or ovoid<br />
<strong>in</strong> shape, dark brown, and 6.3~11.8 × 5.2~8.0 mm <strong>in</strong> size (Fig. 1E).<br />
C<strong>on</strong>idiophores solitary, cyl<strong>in</strong>drical, term<strong>in</strong>ally branched, 15 to<br />
28 mm wide, grayish to olivaceous gray, and smooth (Fig. 1F).<br />
After 3 weeks, the fungus formed several black sclerotia as survival<br />
structures near the PDA plate edge <str<strong>on</strong>g>of</str<strong>on</strong>g> petri dish (Fig. 1D).<br />
The morphological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the identified species are<br />
summarized <strong>in</strong> Table 1. The ITS sequence was compared to the<br />
GenBank database sequences <strong>by</strong> us<strong>in</strong>g the NCBI BLAST search<br />
Table 1. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> gray mold<br />
fungus isolated from carrot<br />
Characteristics Present isolate <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong> a<br />
Col<strong>on</strong>y color greyish brown greyish brown<br />
C<strong>on</strong>idia shape ellipsoidal or ovoid ellipsoidal or ovoid<br />
size (mm) 6.3-11.8 × 5.2-8.0 6.0-18.0 × 4.0-11.0<br />
color dark brown pale brown<br />
C<strong>on</strong>idiophore size (mm) 15-28 16-32<br />
Sclerotia shape flat or irregular flat or irregular<br />
color black black<br />
a<br />
Described <strong>by</strong> Ellis and Waller (1974).
Research <strong>in</strong> Plant Disease Vol. 20 No. 2 131<br />
Fig. 2. Neighbor-jo<strong>in</strong><strong>in</strong>g phylogenetic tree <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong> stra<strong>in</strong> GM4 and related species identified from GenBank based <strong>on</strong> <strong>in</strong>ternal transcribed<br />
spacer gene sequences. Numbers at the nodes <strong>in</strong>dicate bootstrap values from a test <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 replicati<strong>on</strong>s. The scale bar <strong>in</strong>dicates the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />
nucleotide substituti<strong>on</strong>s.<br />
tool (Fig. 2). The sequences identified based <strong>on</strong> ITS <str<strong>on</strong>g>of</str<strong>on</strong>g> rRNA<br />
gene alignment were 100% similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> several B. <strong>c<strong>in</strong>erea</strong><br />
species (accessi<strong>on</strong> nos. HM989942.1, KC172064.1, EF207415.1,<br />
HQ171053.1, and KC683713.1). Thus, B. <strong>c<strong>in</strong>erea</strong> was identified<br />
as the causal agent <str<strong>on</strong>g>of</str<strong>on</strong>g> gray mold rot <strong>on</strong> carrot dur<strong>in</strong>g storage <strong>in</strong><br />
<strong>Korea</strong>. To our knowledge, this is the first report <str<strong>on</strong>g>of</str<strong>on</strong>g> postharvest<br />
gray mold rot <strong>on</strong> carrot <strong>in</strong> <strong>Korea</strong>.<br />
References<br />
An<strong>on</strong>ymous. 2012. Food, Agriculture, Forestry and Fisheries Statistical<br />
Year Book 2012. <strong>Korea</strong>n M<strong>in</strong>istry for Food, Agriculture, Forestry<br />
and Fisheries. 115 pp.<br />
Davis, R. M. and Raid, R. N. 2002. Compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> Umbelliferous<br />
crop diseases. American Phytopathological Society. USA. 75 pp.<br />
Ellis, M. B. and Waller, J. M. 1974. Sclerot<strong>in</strong>ia fuckeliana (c<strong>on</strong>idial<br />
state: <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong>). CMI descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pathogenic Fungi<br />
and Bacteria, No. 431. Comm<strong>on</strong>wealth Mycological Institute,<br />
Kew, Surrey, England.<br />
Govr<strong>in</strong>, E. and Lev<strong>in</strong>e, A. 2000. The hypersensitive resp<strong>on</strong>se facilitates<br />
plant <strong>in</strong>fecti<strong>on</strong> <strong>by</strong> the necrotrophic pathogen <strong>Botrytis</strong> <strong>c<strong>in</strong>erea</strong>.<br />
Current Biol.10: 751-757.<br />
Jarvis, W. R. 1977. Botryot<strong>in</strong>ia and <strong>Botrytis</strong> species - Tax<strong>on</strong>omy, physiology<br />
and pathogenicity. A guide to the literature, M<strong>on</strong>ograph<br />
no. 15, Canada Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Ottawa, 195 pp.<br />
Moller, E. M., Bahnweg, G., Sandermann, H. and Geiger H. H. 1992.<br />
A simple and efficient protocol for isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high molecular<br />
weight DNA from filamentous fungi, fruit bodies, and <strong>in</strong>fected<br />
plant tissues. Nucleic Acids Res. 20: 6115-6116.<br />
Park, K. H., Ryu, K. Y., Yun, H. J., Yun, J. C., Kim, B. S., Je<strong>on</strong>g, K. S., Kw<strong>on</strong>,<br />
Y. S. and Cha, B. 2011. <str<strong>on</strong>g>Gray</str<strong>on</strong>g> <str<strong>on</strong>g>Mold</str<strong>on</strong>g> <strong>on</strong> <strong>Carrot</strong> <strong>Caused</strong> <strong>by</strong> <strong>Botrytis</strong><br />
<strong>c<strong>in</strong>erea</strong> <strong>in</strong> <strong>Korea</strong>. Res. Plant Dis. 17: 364-368.<br />
Staats, M., van Baarlen, P. and van Kan, J. A. L. 2005. Molecular phylogeny<br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> the plant pathogenic genus <strong>Botrytis</strong> and the evoluti<strong>on</strong><br />
<str<strong>on</strong>g>of</str<strong>on</strong>g> host specificity. Mol. Biol. Evol. 22: 333-346.<br />
Tamura, K., Peters<strong>on</strong>, D., Peters<strong>on</strong>, N., Stecher, G., Nei, M. and Kumar,<br />
S. 2011. MEGA5: Molecular evoluti<strong>on</strong>ary genetics analysis us<strong>in</strong>g<br />
maximum likelihood, evoluti<strong>on</strong>ary distance, and maximum<br />
parsim<strong>on</strong>y methods. Mol. Biol. Evol. 28: 2731-2739.<br />
White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplificati<strong>on</strong> and<br />
direct sequenc<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal ribosomal RNA genes for phylogenetics.<br />
In: PCR protocols: A guide to methods and applicati<strong>on</strong>s,<br />
eds. <strong>by</strong> M. A. Innis, D. H. Gelfand, J. J. Sn<strong>in</strong>sky, and T. J. White, pp.<br />
315-322. Academic Press Inc., New York, USA.