04.06.2016 Views

Ramasamy et al. - 1997 - Yield formation in rice in response to drainage an

Ramasamy et al. - 1997 - Yield formation in rice in response to drainage an

Ramasamy et al. - 1997 - Yield formation in rice in response to drainage an

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ELSEVIER<br />

Field Crops Research 51 (<strong>1997</strong>) 65-82<br />

Field<br />

Crops<br />

Research<br />

<strong>Yield</strong> <strong>formation</strong> <strong>in</strong> <strong>rice</strong> <strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age <strong>an</strong>d nitrogen<br />

application<br />

S. <strong>Ramasamy</strong> ‘, H.F.M. ten Berge b- * , S. Purushotham<strong>an</strong> a<br />

a Tamil Nadu Agricultur<strong>al</strong> Unievxity. Co<strong>in</strong>zha<strong>to</strong>re 641003. India<br />

b DLO Research Institute for Agrobiolog! <strong>an</strong>d Soil Fertility CAB-DLOJ, P.O. Box 14, 6700 AA Wagen<strong>in</strong>gen, The N<strong>et</strong>herl<strong>an</strong>ds<br />

Abstract<br />

Four field experiments were carried out <strong>in</strong> Tamil Nadu, India. <strong>to</strong> d<strong>et</strong>erm<strong>in</strong>e effects of <strong>in</strong>tern<strong>al</strong> dra<strong>in</strong>age (percolation rate)<br />

on growth <strong>an</strong>d yield <strong>formation</strong> <strong>in</strong> <strong>rice</strong>, <strong>in</strong> <strong>in</strong>teraction with nitrogen (N) m<strong>an</strong>agement. Gra<strong>in</strong> yield <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age was<br />

positive at <strong>al</strong>l N levels <strong>in</strong> <strong>al</strong>l experiments. <strong>Yield</strong>s (averaged over N treatments) <strong>in</strong>creased by 14% (Expt. 1). 10% (Expt. 21,<br />

25% (Expt. 3) <strong>an</strong>d 22% (Expt. 4) <strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age. Higher yield <strong>response</strong>s <strong>to</strong> N application were found under well<br />

dra<strong>in</strong>ed th<strong>an</strong> poorly dra<strong>in</strong>ed soil conditions. In late-season crops under poor dra<strong>in</strong>age, gra<strong>in</strong> yields decreased <strong>in</strong> <strong>response</strong> <strong>to</strong><br />

high doses of N. The positive yield <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age was <strong>al</strong>ways associated with <strong>in</strong>creased number of filled gra<strong>in</strong>s per<br />

p<strong>an</strong>icle (+ 13 <strong>to</strong> + 17%). <strong>in</strong>creased tr<strong>an</strong>slocation of s<strong>to</strong>red reserves, <strong>in</strong>creased root biomass at harvest (+20 <strong>to</strong> +36%0),<br />

<strong>in</strong>creased N concentration <strong>in</strong> roots <strong>an</strong>d <strong>in</strong>creased root activity (as measured by a-naphthylam<strong>in</strong>e oxidation). Of the yield<br />

<strong>in</strong>crement result<strong>in</strong>g from dra<strong>in</strong>age, 25 <strong>to</strong> 35% could be accounted for by <strong>in</strong>creased tr<strong>an</strong>slocation of stem reserves <strong>in</strong> Expt. 1,<br />

5 <strong>to</strong> 25% <strong>in</strong> Expt. 2 <strong>an</strong>d 30 <strong>to</strong> 40% <strong>in</strong> Expt. 3. <strong>Yield</strong> <strong>in</strong>crease <strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age was not <strong>al</strong>ways associated with more<br />

green leaf area, leaf longevity. leaf N content, crop N uptake, nor with a larger dry matter production at given levels of the<br />

leaf N pool <strong>an</strong>d glob<strong>al</strong> radiation, as qu<strong>an</strong>tified with the help of a c<strong>al</strong>ibration fac<strong>to</strong>r f,,. A literature review is presented<br />

lead<strong>in</strong>g <strong>to</strong> two hypotheses <strong>to</strong> expla<strong>in</strong> the effect of dra<strong>in</strong>age on yield: (I ) a possible potassium deficiency is expressed more <strong>in</strong><br />

reduced (low-redox) soil due <strong>to</strong> a lower<strong>in</strong>g of K availability per se; or <strong>to</strong> <strong>in</strong>creased K dem<strong>an</strong>d associated with ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the root’s ‘oxidiz<strong>in</strong>g power’; (2) improved root condition result<strong>in</strong>g from <strong>an</strong> <strong>in</strong>crease <strong>in</strong> soil redox potenti<strong>al</strong> <strong>in</strong>duces a<br />

prolonged synthesis <strong>an</strong>d tr<strong>an</strong>sport of cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s <strong>in</strong> roots. result<strong>in</strong>g <strong>in</strong> <strong>an</strong> extended pho<strong>to</strong>synth<strong>et</strong>ic activity, enh<strong>an</strong>ced s<strong>in</strong>k<br />

strength of gra<strong>in</strong>s <strong>an</strong>d more tr<strong>an</strong>slocation <strong>an</strong>d deposition of carbohydrates <strong>in</strong> the gra<strong>in</strong>s. These hypotheses are not mutu<strong>al</strong>ly<br />

exclusive. They were not explicitly tested <strong>in</strong> this study. 0 Elsevier Sciene B.V. All rights reserved.<br />

Kqwords: 0~~ safii.a: Rice: Dramage; Root condition: Redox: Nitrogen: <strong>Yield</strong> <strong>formation</strong>; Tr<strong>an</strong>slocation: Cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s; Senescence<br />

1. Introduction uptake. crop N utilization <strong>an</strong>d <strong>rice</strong> yield are not well<br />

unders<strong>to</strong>od. Periods of f<strong>al</strong>low (i.e. non-flooded) con-<br />

Water <strong>an</strong>d nitrogen (N) m<strong>an</strong>agement are cruci<strong>al</strong> <strong>to</strong><br />

dition b<strong>et</strong>ween successive <strong>rice</strong> crops seem <strong>to</strong> have a<br />

high yields. The numerous studies on <strong>in</strong>teraction<br />

consistently positive effect on yield (Li<strong>an</strong>, 1977;<br />

b<strong>et</strong>ween the two fac<strong>to</strong>rs have often reve<strong>al</strong>ed contra-<br />

Will<strong>et</strong>t <strong>an</strong>d Muirhead. 1984). Dra<strong>in</strong>age dur<strong>in</strong>g the<br />

dic<strong>to</strong>ry results. Notably, the effects of dra<strong>in</strong>age on N<br />

cropp<strong>in</strong>g season. however, <strong>in</strong>creased gra<strong>in</strong> yields <strong>in</strong><br />

m<strong>an</strong>y (e.g., Miyasaka, 1970; Nho <strong>et</strong> <strong>al</strong>., 1975;<br />

* Correspond<strong>in</strong>g author.<br />

Onikura. 1976; Shirakura <strong>et</strong> <strong>al</strong>., 1977; Kh<strong>in</strong>d <strong>an</strong>d<br />

037%4290/97/$17,00 Copyright 0 <strong>1997</strong> Elsevier Science B.V. All rights reserved<br />

PII SO378-4290(96)01039-8


66 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. / Field Crops Research 51 (<strong>1997</strong>) 65-82<br />

Kazibwe, 1983; Doi <strong>et</strong> <strong>al</strong>., 1988) but not <strong>al</strong>l cases<br />

(e.g. Wat<strong>an</strong>abe <strong>et</strong> <strong>al</strong>.. 1974; Snitwongse <strong>an</strong>d Jirath<strong>an</strong>a,<br />

1981; S<strong>in</strong>g<strong>an</strong>dhupe <strong>an</strong>d Rajput, 1987;<br />

Kog<strong>an</strong>o <strong>et</strong> <strong>al</strong>., 1991).<br />

One expl<strong>an</strong>ation for this apparent <strong>in</strong>consistency of<br />

crop <strong>response</strong> may be the m<strong>et</strong>hod applied <strong>to</strong> impose<br />

dra<strong>in</strong>age conditions experiment<strong>al</strong>ly. M<strong>an</strong>ipulation of<br />

extern<strong>al</strong> dra<strong>in</strong>age is via the depth of the flood water<br />

level or the duration of flood<strong>in</strong>g (Upadhya <strong>et</strong> <strong>al</strong>.,<br />

1973; Veltkamp <strong>an</strong>d M<strong>an</strong>nies<strong>in</strong>g, 1974; Onikura,<br />

1976; Snitwongse <strong>an</strong>d Jirath<strong>an</strong>a, 1981; Pate1 <strong>et</strong> <strong>al</strong>..<br />

1984; Kog<strong>an</strong>o <strong>et</strong> <strong>al</strong>., 1991). Intern<strong>al</strong> dra<strong>in</strong>age is<br />

governed by remov<strong>al</strong> of subsurface water via mole<br />

dra<strong>in</strong>s, tube dra<strong>in</strong>s, or open dra<strong>in</strong>age ch<strong>an</strong>nels, <strong>an</strong>d<br />

affects the rate of percolation via a lower<strong>in</strong>g of the<br />

subsurface water table (Wat<strong>an</strong>abe <strong>et</strong> <strong>al</strong>., 1974; Shirakura<br />

<strong>et</strong> <strong>al</strong>., 1977; Habibullah <strong>et</strong> <strong>al</strong>., 1977; Lee <strong>et</strong><br />

<strong>al</strong>., 1979; Kh<strong>in</strong>d <strong>an</strong>d Kazibwe. 1983). In addition,<br />

the crop development stage at which ch<strong>an</strong>ges <strong>in</strong><br />

water m<strong>an</strong>agement are imposed may d<strong>et</strong>erm<strong>in</strong>e crop<br />

<strong>response</strong>.<br />

Depend<strong>in</strong>g on soil characteristics, crop development<br />

stage <strong>an</strong>d the type of dra<strong>in</strong>age measures taken,<br />

the physico-chemic<strong>al</strong> conditions of the root zone are<br />

affected differently by water m<strong>an</strong>agement practices.<br />

Various studies <strong>in</strong>dicate a benefici<strong>al</strong> effect of relatively<br />

high percolation rates of 10 <strong>to</strong> 25 mm/day.<br />

especi<strong>al</strong>ly for heavy clay soils rich <strong>in</strong> org<strong>an</strong>ic matter<br />

(e.g., De Datta, 1981 <strong>an</strong>d Hasehawa <strong>et</strong> <strong>al</strong>., 1985).<br />

Whereas leach<strong>in</strong>g as a result of <strong>in</strong>creased flood<strong>in</strong>g<br />

duration is benefici<strong>al</strong> <strong>in</strong> s<strong>al</strong>t-affected soils<br />

(S<strong>in</strong>g<strong>an</strong>dhupe <strong>an</strong>d Rajput, 1987), leach<strong>in</strong>g may <strong>in</strong>crease<br />

N losses <strong>in</strong> well-dra<strong>in</strong>ed soils (Kudeyarov <strong>et</strong><br />

<strong>al</strong>., 1989) <strong>an</strong>d thereby reduce yield. Y<strong>et</strong>, some welldra<strong>in</strong>ed<br />

soils provided greater N uptake under high<br />

th<strong>an</strong> under low percolation (Kh<strong>in</strong>d <strong>an</strong>d Kazibwe.<br />

1983). Yamamuro (1983) reported that flood<strong>in</strong>g <strong>in</strong>creased<br />

N uptake <strong>in</strong> soils with good <strong>in</strong>tern<strong>al</strong> dra<strong>in</strong>age.<br />

but decreased uptake <strong>in</strong> poorly dra<strong>in</strong>ed soil. Nonflooded<br />

conditions dur<strong>in</strong>g the entire gra<strong>in</strong>-fill<strong>in</strong>g period<br />

<strong>in</strong>creased both N uptake <strong>an</strong>d yield <strong>in</strong> the study<br />

by Miyasaka (1970), whereas negative effects of<br />

early dra<strong>in</strong>age on <strong>rice</strong> growth observed by Kog<strong>an</strong>o <strong>et</strong><br />

<strong>al</strong>. (1991) were attributed <strong>to</strong> enh<strong>an</strong>ced N losses<br />

through nitrification-denitrification. High N availability<br />

itself may have positive or negative effects on<br />

gra<strong>in</strong> yield, depend<strong>in</strong>g on cultivar <strong>an</strong>d surface<br />

dra<strong>in</strong>age (Rai <strong>an</strong>d Murty, 1979).<br />

When the soil surface rema<strong>in</strong>s non-flooded for<br />

sever<strong>al</strong> days, the effects of drought stress might<br />

overrule the potenti<strong>al</strong> benefits of dra<strong>in</strong>age (Snitwongse<br />

<strong>an</strong>d Jirath<strong>an</strong>a, 1981; S<strong>in</strong>g<strong>an</strong>dhupe <strong>an</strong>d Rajput,<br />

1987). Alternatively, dra<strong>in</strong><strong>in</strong>g <strong>al</strong>l surface water<br />

<strong>to</strong> h<strong>al</strong>t tiller<strong>in</strong>g, as practiced <strong>in</strong> Ch<strong>in</strong>a (Doi <strong>et</strong> <strong>al</strong>.,<br />

19881, may be benefici<strong>al</strong> for yield <strong>formation</strong>. Other<br />

more d<strong>et</strong>ailed <strong>an</strong><strong>al</strong>yses (Nho <strong>et</strong> <strong>al</strong>., 1975; Trolldenier,<br />

1977; Pate1 <strong>et</strong> <strong>al</strong>., 1984; Cheng, 1983; Iida <strong>et</strong><br />

<strong>al</strong>., 1990) l<strong>in</strong>ked dra<strong>in</strong>age <strong>an</strong>d soil redox condition<br />

with root activity <strong>an</strong>d with the uptake of various<br />

micro-nutrients (Lee <strong>et</strong> <strong>al</strong>., 1979; Pate1 <strong>et</strong> <strong>al</strong>., 1979).<br />

To develop a ration<strong>al</strong> basis for improv<strong>in</strong>g water<br />

<strong>an</strong>d N m<strong>an</strong>agement, b<strong>et</strong>ter underst<strong>an</strong>d<strong>in</strong>g is required<br />

of the mech<strong>an</strong>isms by which dra<strong>in</strong>age <strong>in</strong>teracts with<br />

crop growth <strong>an</strong>d N utilization. We conducted a series<br />

of field experiments <strong>an</strong>d studied yield <strong>formation</strong><br />

processes as affected by <strong>in</strong>tern<strong>al</strong> dra<strong>in</strong>age: N uptake;<br />

growth; the utilization of radiation <strong>an</strong>d leaf nitrogen<br />

<strong>to</strong> produce dry matter; s<strong>in</strong>k <strong>formation</strong>; gra<strong>in</strong> fill<strong>in</strong>g;<br />

<strong>an</strong>d tr<strong>an</strong>slocation of s<strong>to</strong>red non-structur<strong>al</strong> carbohydrates.<br />

Root characteristics were <strong>al</strong>so studied <strong>in</strong><br />

d<strong>et</strong>ail <strong>an</strong>d are related <strong>to</strong> crop perform<strong>an</strong>ce.<br />

2. Materi<strong>al</strong>s <strong>an</strong>d m<strong>et</strong>hods<br />

Four field experiments were conducted at Tamil<br />

Nadu Agricultur<strong>al</strong> University, Coimba<strong>to</strong>re (11” N,<br />

77” E), India, <strong>in</strong> 1990 <strong>to</strong> 1992. The soils were of<br />

loamy clay texture (40% clay, 22% silt, 22% f<strong>in</strong>e<br />

s<strong>an</strong>d, 16% coarse s<strong>an</strong>d) with low available N <strong>an</strong>d<br />

high P <strong>an</strong>d K contents. The field was under paddy<br />

cultivation <strong>al</strong>ready for m<strong>an</strong>y years prior <strong>to</strong> the experiment.<br />

Experiments 1, 2 <strong>an</strong>d 3 focused on the <strong>in</strong>teraction<br />

b<strong>et</strong>ween <strong>in</strong>tern<strong>al</strong> dra<strong>in</strong>age (groundwater table; percolation<br />

rate) <strong>an</strong>d nitrogen application level. The<br />

dra<strong>in</strong>age treatments were ‘non-dra<strong>in</strong>ed’ (0,) -<br />

where no provisions were made <strong>to</strong> ch<strong>an</strong>ge the exist<strong>in</strong>g<br />

percolation rate of 3.0 mm day-‘; <strong>an</strong>d ‘dra<strong>in</strong>ed’<br />

(0,) - where open trenches (width <strong>an</strong>d depth 0.60<br />

m) were dug <strong>to</strong> lower the groundwater level <strong>an</strong>d<br />

<strong>in</strong>crease the me<strong>an</strong> field percolation rate <strong>to</strong> 12 <strong>to</strong> 14<br />

mm day-‘. Water was removed from the trenches by<br />

pump<strong>in</strong>g.<br />

The N levels were 100, 150 <strong>an</strong>d 200 kg N ha-‘.<br />

N was applied as prilled urea <strong>in</strong> three splits with


S. Rarnrrsamy <strong>et</strong> <strong>al</strong>. /Field Crops Resrarch 51 (<strong>1997</strong>1 65-82 67<br />

50% at tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g (bas<strong>al</strong>). 25% <strong>to</strong>pdressed 15 or<br />

20 days after tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g (DAT), <strong>an</strong>d 25% <strong>to</strong>pdressed<br />

30 or 40 DAT, depend<strong>in</strong>g on the cultivar.<br />

Other nutrients applied were 22 kg P (as Pz05), 40<br />

kg K (as K 20), 10 kg Zn <strong>an</strong>d 5 kg S (as ZnSO,) per<br />

ha. Green m<strong>an</strong>ure (Sesb<strong>an</strong>ia rosrruta) was applied<br />

uniformly <strong>an</strong>d <strong>in</strong>corporated before tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g at<br />

12.5 t ha-’ (fresh weight, correspond<strong>in</strong>g <strong>to</strong> 75 kg N<br />

ha- ’ >.<br />

Seedl<strong>in</strong>gs of the short-stature, short-duration <strong>rice</strong><br />

cv. IR50, 25 d old, were tr<strong>an</strong>spl<strong>an</strong>ted at 15 X 10 cm<br />

spac<strong>in</strong>g on 13 July 1990 <strong>in</strong> Expt. 1; <strong>an</strong>d 19 June<br />

1991 <strong>in</strong> Expt. 3. In Expt. 2 (late season), the<br />

medium-duration, medium-stature cv. IR20 was<br />

tr<strong>an</strong>spl<strong>an</strong>ted on 3 November 1990. with 20 X 10 cm<br />

spac<strong>in</strong>g. The field rema<strong>in</strong>ed f<strong>al</strong>low for 15 days after<br />

the harvest of the first crop, was then flooded for 10<br />

days (field preparation) <strong>an</strong>d was pl<strong>an</strong>ted <strong>to</strong> the second<br />

crop.<br />

A d<strong>et</strong>ailed root study (Expt. 4) was conducted <strong>to</strong><br />

collect <strong>in</strong><strong>formation</strong> on roots under the two dra<strong>in</strong>age<br />

treatments as imposed <strong>in</strong> Expts. 1 <strong>to</strong> 3. The treatments<br />

comprised dra<strong>in</strong>ed <strong>an</strong>d undra<strong>in</strong>ed plots <strong>in</strong><br />

comb<strong>in</strong>ation with 120 kg N ha- ’ (60 kg bas<strong>al</strong> at<br />

tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g; 30 kg at 20 DAT <strong>an</strong>d 30 kg at 40<br />

DAT) or 150 kg N ha- ’ (60 kg bas<strong>al</strong> at tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g,<br />

30 kg at 20 DAT, 30 kg at 40 DAT <strong>an</strong>d 30 kg N<br />

ha-’ at head<strong>in</strong>g). Nutrients other th<strong>an</strong> N <strong>an</strong>d green<br />

m<strong>an</strong>ure were applied as <strong>in</strong> Expts. l-3. Seedl<strong>in</strong>gs of<br />

<strong>rice</strong> cv. IR20, 24 d old, were tr<strong>an</strong>spl<strong>an</strong>ted on December<br />

24 at 20 X 10 cm spac<strong>in</strong>g.<br />

A fac<strong>to</strong>ri<strong>al</strong> split-plot design with four replications<br />

(blocks) was used <strong>in</strong> Expts. 1-3. Plots were strips of<br />

20 X 5 m. Each block consisted of one D,. <strong>an</strong>d one<br />

D, plot, r<strong>an</strong>domly chosen, separated by one buffer<br />

plot with plastered w<strong>al</strong>ls <strong>to</strong> m<strong>in</strong>imize border effects<br />

aris<strong>in</strong>g from the trenches surround<strong>in</strong>g D, plots.<br />

Each plot was subdivided <strong>in</strong><strong>to</strong> two subplots (20 X 2.5<br />

m) for pl<strong>an</strong>t<strong>in</strong>g density, each with three sub-subplots<br />

(6 X 2.5 m) for N levels. The results of only one<br />

pl<strong>an</strong>t<strong>in</strong>g density are presented <strong>in</strong> this paper, as no<br />

major differences were found b<strong>et</strong>ween the two density<br />

treatments. A r<strong>an</strong>domized compl<strong>et</strong>e block design<br />

with five replications was used <strong>in</strong> Expt. 4. Adequate<br />

pl<strong>an</strong>t protection measures were taken <strong>in</strong> <strong>al</strong>l experiments<br />

<strong>an</strong>d irrigation was provided daily <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong><br />

a pond<strong>in</strong>g depth of approximately 5 cm until 7 days<br />

before harvest.<br />

In Experiments 1-3, observations of biomass of<br />

green leaves, senescent leaves, stems, roots <strong>an</strong>d p<strong>an</strong>icles<br />

were made at 10 d <strong>in</strong>terv<strong>al</strong>s, from the tiller<strong>in</strong>g<br />

stage onward. Five pl<strong>an</strong>ts from sample rows were<br />

removed carefully <strong>al</strong>ong with the roots <strong>an</strong>d pl<strong>an</strong>t<br />

parts were separated (green leaves, ‘dead’ leaves,<br />

stems plus leaf sheaths, roots, p<strong>an</strong>icles) <strong>an</strong>d ovendried<br />

at 80 C for 72 h. Dry weight of the biomass of<br />

<strong>al</strong>l org<strong>an</strong>s was d<strong>et</strong>erm<strong>in</strong>ed <strong>an</strong>d N contents were<br />

measured by the micro-Kjeldahl m<strong>et</strong>hod (Humphries,<br />

1956). The amount of N tr<strong>an</strong>slocated (N,) from<br />

leaves <strong>an</strong>d stems was assessed as the difference<br />

b<strong>et</strong>ween the highest v<strong>al</strong>ue (A!,,,,,) of N accumulation<br />

recorded <strong>in</strong> those org<strong>an</strong>s at <strong>an</strong>y time <strong>an</strong>d the amount<br />

of N r<strong>et</strong>a<strong>in</strong>ed at harvest. Gra<strong>in</strong> yield was d<strong>et</strong>erm<strong>in</strong>ed<br />

from entire plots, exclud<strong>in</strong>g border rows <strong>an</strong>d rows<br />

used for periodic<strong>al</strong> sampl<strong>in</strong>g. In record<strong>in</strong>g gra<strong>in</strong><br />

yields, p<strong>an</strong>icles were threshed, gra<strong>in</strong> moisture was<br />

d<strong>et</strong>erm<strong>in</strong>ed <strong>an</strong>d gra<strong>in</strong> yields were c<strong>al</strong>culated by correction<br />

<strong>to</strong> 14% moisture content. The number of<br />

productive tillers per hill was d<strong>et</strong>erm<strong>in</strong>ed at harvest<br />

from 10 hills. Filled <strong>an</strong>d non-filled gra<strong>in</strong>s were<br />

counted after thresh<strong>in</strong>g <strong>in</strong>dividu<strong>al</strong> p<strong>an</strong>icles. lOOO-<br />

Gra<strong>in</strong> weight was d<strong>et</strong>erm<strong>in</strong>ed for each treatment.<br />

Roots were separated <strong>in</strong><strong>to</strong> active (white), moderately<br />

active (brown) <strong>an</strong>d less active (black), as suggested<br />

by Cheng (1983). The proportion of differently colored<br />

roots was d<strong>et</strong>erm<strong>in</strong>ed at various growth stages<br />

<strong>an</strong>d was expressed as percentage of the <strong>to</strong>t<strong>al</strong> number<br />

of roots.<br />

In Expt. 4, the roots were carefully r<strong>in</strong>sed <strong>an</strong>d<br />

d<strong>et</strong>ached from their nod<strong>al</strong> bases. Their volume was<br />

measured by the displacement m<strong>et</strong>hod, after remov<strong>in</strong>g<br />

adher<strong>in</strong>g surface moisture. The length <strong>an</strong>d weight<br />

of 10 r<strong>an</strong>domly selected roots were measured. Tot<strong>al</strong><br />

length per pl<strong>an</strong>t was derived from this sub-sample<br />

<strong>an</strong>d <strong>to</strong>t<strong>al</strong> root weight. The diam<strong>et</strong>ers of roots from<br />

the third. fifth <strong>an</strong>d seventh nodes of the culm were<br />

measured, at 3.0 cm from the base. The root CEC<br />

was measured as suggested by Crooke (1964).<br />

The oxidiz<strong>in</strong>g activity of the roots was d<strong>et</strong>erm<strong>in</strong>ed<br />

by measur<strong>in</strong>g oxidation of <strong>al</strong>pha-naphthylam<strong>in</strong>e ( (Y-<br />

NA) as proposed by Ota (1970). One gram of fresh<br />

roots was tr<strong>an</strong>sferred <strong>in</strong><strong>to</strong> a 150 ml flask conta<strong>in</strong><strong>in</strong>g<br />

50 ml of 20 ppm a-NA. The flasks were <strong>in</strong>cubated<br />

for 2 h at room temperature <strong>in</strong> <strong>an</strong> end-over-end<br />

shaker. After <strong>in</strong>oculation, the <strong>al</strong>iquots were filtered<br />

<strong>an</strong>d 2 ml of <strong>al</strong>iquot was mixed with 1 ml NaNO,


68 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>./Field Crops Research 51 (<strong>1997</strong>165-82<br />

(1.18 mmol I- ’ > <strong>an</strong>d 1 ml sulph<strong>an</strong>ilic acid <strong>an</strong>d the<br />

result<strong>in</strong>g color was measured by spectropho<strong>to</strong>m<strong>et</strong>er.<br />

Culm w<strong>al</strong>l thickness was d<strong>et</strong>erm<strong>in</strong>ed by vernier<br />

c<strong>al</strong>iper from the difference <strong>in</strong> diam<strong>et</strong>er of culm <strong>an</strong>d<br />

medullary cavity, at <strong>in</strong>ternodes n - 2, n - 3, n - 4,<br />

where n is the p<strong>an</strong>icle bear<strong>in</strong>g <strong>in</strong>ternode.<br />

3. Results<br />

3.1. Biomass production<br />

Undra<strong>in</strong>ed field conditions <strong>in</strong>duced slightly more<br />

growth dur<strong>in</strong>g the tiller<strong>in</strong>g stage (Fig. 1). The differ-<br />

- DnNlOO - hNI50 - E,, N200 - - -:I. Dw NIOO<br />

---A-.',,wN,50<br />

.-.C’-.,,wN200<br />

s 20000<br />

f<br />

g 15000<br />

3<br />

m 10000<br />

E<br />

z 5000<br />

z<br />

5 0<br />

0 10 20 30 40 50 60 70 80 90<br />

110<br />

s 2oooo<br />

f<br />

g 15000<br />

Expt 2<br />

8<br />

5 a 10000<br />

.-<br />

p 5000<br />

f CI<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

;;i<br />

f<br />

20000<br />

2 15000<br />

In<br />

m 10000<br />

E<br />

a<br />

z<br />

3<br />

5000<br />

0<br />

Expt3<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Days after tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g<br />

Fig. 1. Effects of dra<strong>in</strong>age <strong>an</strong>d N application on <strong>to</strong>t<strong>al</strong> crop biomass of <strong>rice</strong> at Coimba<strong>to</strong>re, Tamil Nadu, India. Expt. 1: <strong>rice</strong> cultivar IR50,<br />

1990; Expt. 2: <strong>rice</strong> cultivar IRZO, 1990-1991: Expt. 3: <strong>rice</strong> cultivar IR50, 1991, St<strong>an</strong>dard error of biomass at harvest: 128 (Expt. I), 125<br />

(Expt. 2). 80 (Expt. 3) kg/ha. For treatment d<strong>et</strong>ails see text.


S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 f I9971 65-82 69<br />

ence narrowed as growth adv<strong>an</strong>ced <strong>an</strong>d reversed<br />

dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g. In Expt. 1, however, the n<strong>et</strong><br />

effect of dra<strong>in</strong>age on f<strong>in</strong><strong>al</strong> biomass was sm<strong>al</strong>l. The<br />

<strong>in</strong>creased <strong>response</strong> (1991 2nd season versus 1990<br />

2nd season) <strong>in</strong>dicates a longer term effect of dra<strong>in</strong>age.<br />

This, however, c<strong>an</strong>not be further subst<strong>an</strong>tiated based<br />

on our current data.<br />

Higher N levels resulted <strong>in</strong> greater biomass<br />

throughout the growth period <strong>in</strong> <strong>al</strong>l three experiments,<br />

but effects were more pronounced under<br />

dra<strong>in</strong>ed conditions. The growth curves <strong>in</strong> D,, <strong>an</strong>d D,<br />

were gener<strong>al</strong>ly very similar up <strong>to</strong> mid-head<strong>in</strong>g <strong>an</strong>d<br />

diverged only thereafter.<br />

3.2. Gra<strong>in</strong> yield, yield attributes <strong>an</strong>d h<strong>an</strong>lest <strong>in</strong>dex<br />

Dra<strong>in</strong>age <strong>in</strong>creased gra<strong>in</strong> yield subst<strong>an</strong>ti<strong>al</strong>ly <strong>in</strong> <strong>al</strong>l<br />

four experiments, with a maximum difference of 1.7<br />

t/ha <strong>in</strong> Expt. 3. The effect was greater <strong>in</strong> the<br />

first-season crop (IR50) th<strong>an</strong> <strong>in</strong> the second-season<br />

crop (IR20). A signific<strong>an</strong>t positive <strong>response</strong> <strong>to</strong> N<br />

application was gener<strong>al</strong>ly seen up <strong>to</strong> 1.50 kg N ha-‘,<br />

particularly <strong>in</strong> Expt. 3. There was a clear negative<br />

effect of N application <strong>in</strong> Expt. 2 at 200 kg N <strong>an</strong>d a<br />

negligible adv<strong>an</strong>tage for 150 over 100 kg <strong>in</strong> that<br />

experiment. There was a positive <strong>in</strong>teraction b<strong>et</strong>ween<br />

the effects of N application <strong>an</strong>d dra<strong>in</strong>age on gra<strong>in</strong><br />

yield (Table 1).<br />

The more pronounced tiller<strong>in</strong>g observed <strong>in</strong> D,<br />

had no effect on the number of productive tillers.<br />

Nor did enh<strong>an</strong>ced tiller<strong>in</strong>g due <strong>to</strong> N application<br />

(Expt. 2) affect the number of productive tillers. The<br />

number of spikel<strong>et</strong>s per p<strong>an</strong>icle was slightly higher<br />

<strong>in</strong> undra<strong>in</strong>ed th<strong>an</strong> <strong>in</strong> dra<strong>in</strong>ed plots, <strong>an</strong>d was gener<strong>al</strong>ly<br />

higher <strong>in</strong> IR20 th<strong>an</strong> <strong>in</strong> IR50. Nitrogen application<br />

<strong>in</strong>creased the number of spikel<strong>et</strong>s per p<strong>an</strong>icle.<br />

Dra<strong>in</strong>ed field conditions raised the number of<br />

filled spikel<strong>et</strong>s per p<strong>an</strong>icle by 13 <strong>to</strong> 17%. Higher N<br />

levels improved this param<strong>et</strong>er under dra<strong>in</strong>ed conditions<br />

(0,). The reverse effect of N application was<br />

found <strong>in</strong> undra<strong>in</strong>ed plots. The largest fraction of<br />

unfilled spikel<strong>et</strong>s (42%) was found <strong>in</strong> the treatment<br />

D, with N200, with cv. IR20. Individu<strong>al</strong> gra<strong>in</strong> weight<br />

was <strong>in</strong>creased by both N application <strong>an</strong>d dra<strong>in</strong>age <strong>in</strong><br />

the first season (Experiments I-3). but more so by<br />

dra<strong>in</strong>age <strong>in</strong> Expt. 2.<br />

Gra<strong>in</strong> yields recorded <strong>in</strong> Expt. 4 were similar <strong>to</strong><br />

those <strong>in</strong> Experiments l-3 for dra<strong>in</strong>ed <strong>an</strong>d undra<strong>in</strong>ed<br />

conditions. The addition<strong>al</strong> N applied at the time of<br />

head<strong>in</strong>g <strong>in</strong>creased the number of filled gra<strong>in</strong>s from<br />

89 <strong>to</strong> 95 per p<strong>an</strong>icle <strong>in</strong> the dra<strong>in</strong>ed plots, with yield<br />

<strong>in</strong>creas<strong>in</strong>g from 7390 <strong>to</strong> 7740 kg/ha, whereas the<br />

effect on both variables was negative <strong>in</strong> the undra<strong>in</strong>ed<br />

plots (Table 1 j. Harvest <strong>in</strong>dex <strong>in</strong>creased <strong>in</strong> <strong>response</strong><br />

<strong>to</strong> dra<strong>in</strong>age. N application decreased this <strong>in</strong>dex <strong>in</strong> <strong>al</strong>l<br />

cases. The effect was more severe <strong>in</strong> undra<strong>in</strong>ed plots.<br />

Short-duration IR50 had a larger harvest <strong>in</strong>dex th<strong>an</strong><br />

IR20.<br />

3.3. Nitrogen uptake<br />

N uptake (Table 2) gener<strong>al</strong>ly cont<strong>in</strong>ued up <strong>to</strong><br />

maturity. Uptake rates peaked b<strong>et</strong>ween maximum<br />

tiller<strong>in</strong>g <strong>an</strong>d p<strong>an</strong>icle <strong>in</strong>itiation (30-40 DAT <strong>in</strong> IR50<br />

<strong>an</strong>d 40-50 DAT <strong>in</strong> IR20), reach<strong>in</strong>g maximum v<strong>al</strong>ues<br />

of 4.1, 6.6 <strong>an</strong>d 5.6 kg N ha-’ dd’ <strong>in</strong> Expts. 1-3,<br />

respectively. Peak v<strong>al</strong>ues were reached a little earlier<br />

(b<strong>et</strong>ween early tiller<strong>in</strong>g <strong>an</strong>d maximum tiller<strong>in</strong>g) <strong>in</strong><br />

undra<strong>in</strong>ed plots. The me<strong>an</strong> (over N levels <strong>an</strong>d time)<br />

uptake rate b<strong>et</strong>ween flower<strong>in</strong>g <strong>an</strong>d maturity was<br />

greater (1.5, 1.2 <strong>an</strong>d 1.2 kg N ha-’ d- ‘) <strong>in</strong> dra<strong>in</strong>ed<br />

th<strong>an</strong> <strong>in</strong> undra<strong>in</strong>ed (1.3, 1.0 <strong>an</strong>d 0.9 kg N ha-’ dd ‘)<br />

plots, for Expts. 1, 2 <strong>an</strong>d 3, respectively.<br />

N uptake b<strong>et</strong>ween flower<strong>in</strong>g <strong>an</strong>d maturity was<br />

relatively sm<strong>al</strong>l under undra<strong>in</strong>ed field conditions<br />

when 200 kg N was applied: 1.2, 0.6 <strong>an</strong>d 0.7 kg N<br />

haa’ d-’ <strong>in</strong> Expts. 1-3, versus 1.3; 1.4 <strong>an</strong>d 1.0 kg<br />

N ha-’ dd’ when only 100 kg fertilizer N was<br />

applied. The correspond<strong>in</strong>g v<strong>al</strong>ues for dra<strong>in</strong>ed fields<br />

were 1.5, 0.9 <strong>an</strong>d 1.0 kg N haa’ d-l for Expts. l-3<br />

at200kgN;<strong>an</strong>d 1.4kgNhaa’dd’ at 100kgN<strong>in</strong><br />

<strong>al</strong>l three experiments.<br />

The highest <strong>to</strong>t<strong>al</strong> N uptake, 243 kg N/ha, was<br />

recorded <strong>in</strong> Expt. 2 <strong>an</strong>d was associated with a sm<strong>al</strong>l<br />

harvest <strong>in</strong>dex. The effect of dra<strong>in</strong>age on <strong>to</strong>t<strong>al</strong> N<br />

uptake was not clearly exposed <strong>in</strong> Expt. 2.<br />

3.4. Lrqf N content; N tr<strong>an</strong>slocation<br />

The <strong>to</strong>t<strong>al</strong> amount of N <strong>in</strong> the green leaf biomass<br />

<strong>in</strong>creased till boot leaf stage (50, 61 <strong>an</strong>d 53 DAT <strong>in</strong><br />

Expts. 1, 2 <strong>an</strong>d 3, respectively) <strong>an</strong>d decreased thereafter<br />

(Fig. 2). Leaf N concentration peaked earlier at<br />

30 <strong>to</strong> 33 DAT. Dur<strong>in</strong>g <strong>in</strong>iti<strong>al</strong> growth stages, the <strong>to</strong>t<strong>al</strong><br />

amount of leaf N was greater <strong>in</strong> undra<strong>in</strong>ed plots but,<br />

after flower<strong>in</strong>g. higher levels were r<strong>et</strong>a<strong>in</strong>ed <strong>in</strong> pl<strong>an</strong>ts


70<br />

S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 (<strong>1997</strong>) 65-82<br />

Table 1<br />

Effects of dra<strong>in</strong>age <strong>an</strong>d nitrogen on yield components <strong>an</strong>d gra<strong>in</strong> yield of <strong>rice</strong>. Coimba<strong>to</strong>re. India, 1990-1992<br />

Treatment Root wt at Productive tillers Spikel<strong>et</strong>s per p<strong>an</strong>icle (No.) Gra<strong>in</strong> weight Harvest Index Gra<strong>in</strong> yield<br />

harvest (kg/ha) (No. per hill)<br />

<strong>to</strong>t<strong>al</strong> filled unfilled<br />

(mg) (ratio) (kg/ha)<br />

Expt. I<br />

D;NlOO 1070<br />

D;Nl50 1150<br />

D;N200 1190<br />

D;N100 1290<br />

Q-N150 1410<br />

Q-N200 1400<br />

10.9 75.5 55.3 20.2 17.8 0.5 1 6990<br />

11.4 76.4 52.8 23.6 18.3 0.48 7140<br />

10.2 76.6 50.0 26.6 18.5 0.44 6680<br />

10.4 73.0 59.8 13.2 18.5 0.53 7500<br />

10.5 77.5 62.6 14.9 18.6 0.53 7860<br />

10.9 78.8 62.7 16.1 18.5 0.53 8140<br />

Dra<strong>in</strong>age (D)<br />

SEd 37<br />

CD 84<br />

0.31 1.37 0.97 0.7 I 0.24 0.02 34<br />

NS NS 2.2 I .h NS 0.04 107<br />

Nitrogen (N)<br />

SEd - 43 0.28 I .36 1.25 0.68 0.14 0.01 103<br />

CD 88 NS 2.8 NS I .4 0.28 0.03 240<br />

D at N<br />

SEd<br />

Cd<br />

N at D<br />

SEd<br />

CD<br />

62 0.45 2.08 I .75 I .Oh 0.29 0.04 165<br />

NS NS NS NS 2.2 NS NS 313<br />

60 0.40 I .92 1.78 0.96 0.19 0.05 144<br />

NS NS NS 3.7 2.0 NS NS 313<br />

Expt. 2<br />

D;N100<br />

D;N150<br />

D,-N200<br />

D;NlOO<br />

D;N 150<br />

D, -N200<br />

1180 9.0 118 75.1<br />

1210 9.2 119 73.7<br />

1200 9.2 120 69.3<br />

1570 8.3 113 83.0<br />

1630 8.4 114 83.2<br />

1700 8.2 115 81.1<br />

43.0<br />

45.2<br />

50.3<br />

30.3<br />

30.7<br />

33.4<br />

19.0 0.38 6230<br />

19.1 0.37 6180<br />

19.0 0.34 5830<br />

20.5 0.39 6740<br />

20.4 0.38 6780<br />

20.5 0.35 6520<br />

Dra<strong>in</strong>age<br />

SEd<br />

CD<br />

55 0.2 1.5 I.2<br />

125 0.5 3.5 2.6<br />

0.8<br />

2.0<br />

0.30 0.01 53<br />

0.68 NS 168<br />

Nitrogen<br />

SEd<br />

CD<br />

43 0.2 1.1 0.9<br />

NS NS NS I .9<br />

I .o<br />

2.1<br />

0.20 0.01 65<br />

NS 0.02 162<br />

D at N<br />

SEd<br />

Cd<br />

74 0.3 1.9 1.x<br />

NS NS NS NS<br />

I .6<br />

3.6<br />

0.47 0.02 169<br />

NS NS 370<br />

N at D<br />

SEd<br />

CD<br />

61 0.4 2.1 2.1<br />

NS NS NS 4.4<br />

2.7<br />

4.6<br />

0.5 1 0.02 152<br />

NS NS NS<br />

Expt. 3<br />

D”.NlOO<br />

D;N150<br />

D;N200<br />

919 10.8 81.2 60.1<br />

1010 11.7 82.4 58.6<br />

1040 10.7 82.7 54.2<br />

21.1<br />

24.8<br />

‘8.5<br />

17.8 0.50 6830<br />

18.3 0.48 7400<br />

18.5 0.44 6370


S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 (<strong>1997</strong>1 65-82 71<br />

Table<br />

Treatment<br />

D;N100<br />

D,-Nl50<br />

D, -N200<br />

1 (cont<strong>in</strong>ued)<br />

Root wt at Productive tillers Spikel<strong>et</strong>s per p<strong>an</strong>icle (No.)<br />

harvest (kg/ha) (No. pa hill)<br />

<strong>to</strong>t<strong>al</strong> filled unfilled<br />

1240 10.8 75.2 65.1<br />

1300 11.1 78.6 66.3<br />

1310 11.5 82.6 67.5<br />

10.2<br />

12.3<br />

15.3<br />

Gra<strong>in</strong> weight Harvest Index Gra<strong>in</strong> yield<br />

hg) (ratio) (kg/ha)<br />

18.5 0.53 8380<br />

18.6 0.52 8460<br />

18.5 0.52 8870<br />

Dra<strong>in</strong>age<br />

SEd<br />

CD<br />

Nitrogen<br />

SEd<br />

CD<br />

D at IX<br />

SEd<br />

Cd<br />

N at D<br />

SEd<br />

CD<br />

31 0.3 0.93 0.71 0.62 0.24 0.01 51<br />

71 NS NS 1.60 1.40 N’s 0.03 162<br />

29 0.3 1.11 0.58 0.73 0.14 0.0 1 79<br />

NS 0.54 2.3 NS 1.5 0.28 0.02 172<br />

4s 0.32 1.59 0.69 1.04 0.29 0.02 160<br />

NS NS NS NS 1.2 NS 0.04 350<br />

39 0.37 1.58 0.82 1.03 0.19 0.03 152<br />

NS NS NS 1.69 2.1 NS NS 331<br />

Expt. 4 *<br />

4<br />

D, + N<br />

DW<br />

D, + N<br />

2. I<br />

2.1<br />

4.3<br />

3.2<br />

9.1<br />

9.1<br />

8.3<br />

8.3<br />

120 71.1<br />

121 70.2<br />

116 89.3<br />

116 95.0<br />

43.2<br />

50.6<br />

26.7<br />

21.2<br />

18.9 n.d. 6500<br />

18.7 n.d. 5850<br />

20.3 n.d. 7390<br />

20.3 n.d. 7740<br />

SEd<br />

CD<br />

0.05<br />

0.11<br />

0.3<br />

0.6<br />

1.3 3.1<br />

2.8 6.7<br />

2.3<br />

4.9<br />

0.35 n.d. 209<br />

0.75 n.d. 455<br />

NS: not signific<strong>an</strong>t at P = 0.05; CD: critic<strong>al</strong> difference at P = 0.05; n.d.: not d<strong>et</strong>erm<strong>in</strong>ed: 0,: undra<strong>in</strong>ed; D,: dra<strong>in</strong>ed; NlOO, N150, N200:<br />

100, 150 <strong>an</strong>d 200 kg fertilizer N ha-’ : + N (Expt. 4): 30 kg N ha ’ at head<strong>in</strong>g.<br />

’ Root oxidiz<strong>in</strong>g power <strong>in</strong> mg h- ’ per g of fresh root.<br />

of the dra<strong>in</strong>ed plots. Larger applications of N resulted<br />

<strong>in</strong> greater leaf N concentrations <strong>an</strong>d <strong>to</strong>t<strong>al</strong><br />

amounts of N <strong>in</strong> leaves. The maximum amount of N<br />

<strong>in</strong> green leaves recorded <strong>in</strong> <strong>al</strong>l three experiments was<br />

68 kg/ha (Expt. 2, at 61 DAT with 200 kg N). The<br />

amount of N <strong>in</strong> green leaves just before harvest was<br />

signific<strong>an</strong>tly larger <strong>in</strong> pl<strong>an</strong>ts from dra<strong>in</strong>ed th<strong>an</strong> <strong>in</strong><br />

those from undra<strong>in</strong>ed plots (Table 3; Fig. 2).<br />

Dra<strong>in</strong>age <strong>in</strong>creased the tr<strong>an</strong>slocation of N accumulated<br />

<strong>in</strong> stems, from 24 <strong>to</strong> 34 kg N haa’ (i.e.<br />

57-64% of accumulated stem N) <strong>to</strong> 46 <strong>to</strong> 56 kg<br />

ha- ’ (SO-82%). More N was tr<strong>an</strong>slocated from stems<br />

th<strong>an</strong> from leaves, under dra<strong>in</strong>ed conditions (Table 3).<br />

3.5. Root growth. color und actidty; culms<br />

The amount of N <strong>in</strong> dead <strong>an</strong>d senescent leaves Tot<strong>al</strong> root dry weight <strong>in</strong>creased up <strong>to</strong> head<strong>in</strong>g <strong>an</strong>d<br />

<strong>an</strong>d <strong>al</strong>so the correspond<strong>in</strong>g N concentrations, <strong>in</strong>- was greater under dra<strong>in</strong>ed conditions. It decreased 14<br />

creased as crop age adv<strong>an</strong>ced. A largest qu<strong>an</strong>tity of <strong>to</strong> 23% <strong>in</strong> dra<strong>in</strong>ed field conditions after reach<strong>in</strong>g its<br />

25 kg N <strong>in</strong> dead <strong>an</strong>d senescent leaves was recorded peak v<strong>al</strong>ue, compared <strong>to</strong> 26 <strong>to</strong> 29% <strong>in</strong> undra<strong>in</strong>ed<br />

for IR20 at harvest (Expt. 2). The N concentration <strong>in</strong> plots, lead<strong>in</strong>g <strong>to</strong> f<strong>in</strong><strong>al</strong> v<strong>al</strong>ues (at harvest) that were 20<br />

these tissues <strong>in</strong>creased from 0.3% of dry matter soon <strong>to</strong> 36% greater <strong>in</strong> dra<strong>in</strong>ed th<strong>an</strong> <strong>in</strong> undra<strong>in</strong>ed treatafter<br />

head<strong>in</strong>g <strong>to</strong> 0.7% at maturity. V<strong>al</strong>ues were ments. Root biomass <strong>in</strong>creased with N application<br />

slightly lower <strong>in</strong> dra<strong>in</strong>ed th<strong>an</strong> undra<strong>in</strong>ed plots. level. The largest amounts were observed <strong>in</strong> Expt. 2


72 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>./ Field Crops Research 51 (<strong>1997</strong>) 65-82<br />

Table 2<br />

Effects of dra<strong>in</strong>age <strong>an</strong>d nitrogen application on N uptake (<strong>in</strong> kg ha- ’ ) by <strong>rice</strong>, Coimba<strong>to</strong>re, India<br />

Treatment a Expt. 1 (IR50, 1990) Expt. 2 (lR20, 1990-91) Expt. 3 (IR50, 1991)<br />

b FF’<br />

f<strong>in</strong><strong>al</strong> MT b FF’ f<strong>in</strong><strong>al</strong> MT b FFc f<strong>in</strong><strong>al</strong><br />

::DAT) (50 DAT) harvest (41 DAT) (71 DAT) harvest (33 DAT) (53 DAT) harvest<br />

(88 DAT) (IIODAT) (91 DAT)<br />

D;NIOO 28.3 84.1 135.1 54.5 171.3 221.9 50.8 100.2 137.7<br />

D;N 150 34.3 102.0 150.1 61.3 186.1 235.2 61.8 115.1 156.0<br />

D,-N200 37.7 107.7 154.9 71.1 188.6 239.4 73.3 127.3 153.3<br />

D,.-NlOO 27.3 89.1 143.8 55.0 169.4 230.4 50.3 110.7 162.8<br />

D;N150 30.0 102.5 157.8 61.6 184.5 236.9 55.7 126.9 110.2<br />

D;N200 33.6 111.0 169.5 70.4 194.1 242.8 61.8 138.8 180.3<br />

Dra<strong>in</strong>age<br />

SEd 0.3 3.4 2.2 0.6 5.5 2.9 1.9 0.6 3.8<br />

CD * 1.0 NS 7.0 NS NS NS 5.9 1.9 12.1<br />

Nitrogen<br />

SEd 0.8 2.3 1.6 1 .O 2.1 3.2 1.1 1.6 2.3<br />

CD 1 .I 4.9 3.6 2.3 5.9 7.0 2.3 3.6 5.1<br />

D at N<br />

SEd 0.9 4.3 2.9 1.3 6.4 4.1 2.2 2.0 4.6<br />

CD NS NS 6.0 NS NS NS 4.8 NS 10.1<br />

N at D<br />

SEd 1.1 3.2 2.3 1.5 3.8 4.5 1.5 2.3 3.3<br />

CD NS NS 4.8 NS NS NS NS NS 7.2<br />

’ 0,: undra<strong>in</strong>ed: D,: dra<strong>in</strong>ed; NlOO, N150 <strong>an</strong>d N200: 100, I50 <strong>an</strong>d 700 kg fertilizer N ha- ’ .’ MT: maximum tiller<strong>in</strong>g stage.’ FF: first<br />

flower<strong>in</strong>g stage.” NS: not signific<strong>an</strong>t at P = 0.05: CD: critic<strong>al</strong> difference at P = 0.05.<br />

(Table 1). The root-shoot mass ratio decreased from<br />

0.20 at active tiller<strong>in</strong>g <strong>to</strong> 0.07 at harvest. It was only<br />

slightly affected by dra<strong>in</strong>age, with v<strong>al</strong>ues 0.01 <strong>to</strong><br />

0.02 higher <strong>in</strong> dra<strong>in</strong>ed plots at <strong>al</strong>l stages. Nitrogen<br />

application had a sm<strong>al</strong>l negative effect on the<br />

root:shoot ratio with differences of up <strong>to</strong> 0.03 b<strong>et</strong>ween<br />

NlOO <strong>an</strong>d N200 treatments. Expt. 4 reve<strong>al</strong>ed<br />

that root volume <strong>in</strong> dra<strong>in</strong>ed plots was 65% larger<br />

th<strong>an</strong> <strong>in</strong> undra<strong>in</strong>ed plots, while root length was 50%<br />

larger (Fig. 3). root diam<strong>et</strong>er was 6-47% larger<br />

(depend<strong>in</strong>g on nod<strong>al</strong> position) <strong>an</strong>d root CEC 69%.<br />

(All v<strong>al</strong>ues d<strong>et</strong>erm<strong>in</strong>ed just before maturity.)<br />

The root oxidiz<strong>in</strong>g power <strong>in</strong> dra<strong>in</strong>ed <strong>an</strong>d undra<strong>in</strong>ed<br />

plots was similar dur<strong>in</strong>g early growth, but fell sharply<br />

after p<strong>an</strong>icle <strong>in</strong>itiation <strong>in</strong> undra<strong>in</strong>ed plots. This was<br />

not <strong>al</strong>tered by N application at head<strong>in</strong>g (Fig. 4).<br />

The effects of dra<strong>in</strong>age on root color were nearly<br />

identic<strong>al</strong> <strong>in</strong> Experiments l-3. Fig. 5 illustrates for<br />

Experiment 3, as <strong>an</strong> example. the larger fraction of<br />

white <strong>an</strong>d brown roots found under dra<strong>in</strong>ed condi-<br />

tions at <strong>al</strong>l stages of crop growth. In undra<strong>in</strong>ed plots,<br />

the proportion of white <strong>an</strong>d brown roots decreased<br />

sharply after head<strong>in</strong>g, <strong>an</strong>d the fraction of black roots<br />

<strong>in</strong>creased <strong>to</strong> 68% at maturity. At that stage, roughly<br />

two thirds of the root mass were still brown <strong>in</strong><br />

dra<strong>in</strong>ed plots. versus one third <strong>in</strong> undra<strong>in</strong>ed plots.<br />

Larger proportions of brown <strong>an</strong>d white roots were<br />

found <strong>in</strong> Expt. 2 th<strong>an</strong> <strong>in</strong> Expts. 1 <strong>an</strong>d 3. This may<br />

<strong>in</strong>dicate a cultivar difference <strong>al</strong>though observed<br />

trends were similar <strong>in</strong> <strong>al</strong>l experiments.<br />

Observations made <strong>in</strong> Expt. 4 on the thickness of<br />

the culm w<strong>al</strong>l <strong>an</strong>d medullary cavity size <strong>in</strong>dicated<br />

differences with dra<strong>in</strong>age treatment. Culm w<strong>al</strong>ls were<br />

thicker <strong>in</strong> dra<strong>in</strong>ed plots <strong>an</strong>d cavity diam<strong>et</strong>er was<br />

sm<strong>al</strong>ler.<br />

4. Growth <strong>an</strong><strong>al</strong>ysis<br />

In <strong>an</strong><strong>al</strong>yz<strong>in</strong>g the above results, gra<strong>in</strong> yield is<br />

viewed as the n<strong>et</strong> result of a series of crop physio-


S. <strong>Ramasamy</strong> <strong>et</strong> ~1. /Field Crops Research 51 (<strong>1997</strong>165-82 73<br />

logic<strong>al</strong> processes. Dur<strong>in</strong>g pre-flower<strong>in</strong>g crop development,<br />

the key processes are light <strong>in</strong>terception, N<br />

uptake <strong>an</strong>d assimilation, dry matter production <strong>an</strong>d<br />

the <strong>formation</strong> of s<strong>in</strong>k capacity (p<strong>an</strong>icles, spikel<strong>et</strong>s).<br />

After flower<strong>in</strong>g, the dom<strong>in</strong><strong>an</strong>t processes are carbohydrate<br />

production, mobilization of s<strong>to</strong>red nonstructur<strong>al</strong><br />

carbohydrate reserves (i.e., starch <strong>in</strong> stems<br />

<strong>an</strong>d leaf sheaths) <strong>an</strong>d the partition<strong>in</strong>g of these subst<strong>an</strong>ces<br />

<strong>to</strong> the grow<strong>in</strong>g spikel<strong>et</strong>s. Susta<strong>in</strong>ed function<strong>in</strong>g<br />

of roots is <strong>in</strong>dispensable for cont<strong>in</strong>ued absorption<br />

of nutrients, notably N, thus delay<strong>in</strong>g leaf senescence<br />

<strong>an</strong>d ensur<strong>in</strong>g cont<strong>in</strong>ued biomass accumulation<br />

(S<strong>in</strong>clair <strong>an</strong>d De Wit, 1975). Roots might, however,<br />

<strong>al</strong>so affect crop processes via other mech<strong>an</strong>isms. The<br />

70 -<br />

- IhNlOO - hN150 -hNZOO ‘--..--.DwNlOO<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

75 60<br />

+ m 50<br />

C<br />

z 40<br />

t 30<br />

; 20<br />

5 10<br />

0<br />

0 IO 20 30 40 50 60 70 80 90 100 110<br />

70<br />

s 60<br />

+ m 50<br />

c<br />

z 40<br />

5<br />

[<br />

30<br />

20<br />

5 10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Days<br />

aftertr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g<br />

Fig. 2. Effects of dra<strong>in</strong>age <strong>an</strong>d N application on N content <strong>in</strong> green leaves of <strong>rice</strong> at Coimba<strong>to</strong>re, Tamil Nadu. India. Expt. 1: <strong>rice</strong> cultivar<br />

IR50, 1990: Expt. 2: <strong>rice</strong> cultivar IR20, 1990- 1991: Expt. 3: <strong>rice</strong> cultivar lR.50. 1991. St<strong>an</strong>dard error of N uptake at peak v<strong>al</strong>ues: 1.6 (Expt.<br />

1, at SO days after tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g (DAT)). 2.3 (Expt. 2, 60 DAT), 1.2 (Expt. 3. 43 DAT) kg N/ha. For treatment d<strong>et</strong>ails see text.


14 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. / Field Crops Research 51 (<strong>1997</strong>165-82<br />

observed effects of dra<strong>in</strong>age on each of the above<br />

<strong>in</strong>termediary processes are summarized <strong>in</strong> Table 4<br />

<strong>an</strong>d discussed below.<br />

4. I. <strong>Yield</strong> components<br />

<strong>Yield</strong> differences b<strong>et</strong>ween dra<strong>in</strong>ed <strong>an</strong>d undra<strong>in</strong>ed<br />

plots were directly related <strong>to</strong> the number of filled<br />

gra<strong>in</strong>s per p<strong>an</strong>icle. The number of p<strong>an</strong>icles per m’<br />

<strong>an</strong>d the number of spikel<strong>et</strong>s per p<strong>an</strong>icle were not<br />

much affected, or were even slightly sm<strong>al</strong>ler under<br />

dra<strong>in</strong>ed conditions. The <strong>formation</strong> of p<strong>an</strong>icles <strong>an</strong>d<br />

spikel<strong>et</strong>s is d<strong>et</strong>erm<strong>in</strong>ed by the rate of crop growth at<br />

the tiller<strong>in</strong>g <strong>an</strong>d early ear development stages, respectively<br />

(e.g., Yoshida <strong>an</strong>d Parao. 1976; Sei<strong>to</strong> <strong>et</strong><br />

<strong>al</strong>., 1990; Islam <strong>an</strong>d Morison, 1992; Hasegawa <strong>et</strong> <strong>al</strong>.,<br />

1994). The absence of differences <strong>in</strong> s<strong>in</strong>k capacity<br />

due <strong>to</strong> dra<strong>in</strong>age is therefore consistent with the absence<br />

of dra<strong>in</strong>age effects on pre-flower<strong>in</strong>g growth.<br />

4.2. Pre-flower<strong>in</strong>g growth, N uptake <strong>an</strong>d leaf area<br />

Dry matter production is d<strong>et</strong>erm<strong>in</strong>ed by light <strong>in</strong>terception<br />

(leaf area) <strong>an</strong>d light use efficiency, both of<br />

which are closely related <strong>to</strong> leaf nitrogen content<br />

(e.g. S<strong>in</strong>clair <strong>an</strong>d Horie, 1989). Dur<strong>in</strong>g the preflower<strong>in</strong>g<br />

stage, dra<strong>in</strong>age did not signific<strong>an</strong>tly affect<br />

growth <strong>in</strong> our experiments, nor did it <strong>al</strong>ter the <strong>to</strong>t<strong>al</strong><br />

amount of N <strong>in</strong> leaves. Leaf area was reduced slightly<br />

<strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age. These observations were<br />

consistent <strong>in</strong> Expts. l-3.<br />

4.3. Post-flower<strong>in</strong>g growth, N uptake <strong>an</strong>d green leaf<br />

urea<br />

Dur<strong>in</strong>g the gra<strong>in</strong> fill<strong>in</strong>g stage, biomass accumulation<br />

<strong>in</strong>creased signific<strong>an</strong>tly due <strong>to</strong> dra<strong>in</strong>age <strong>in</strong> <strong>al</strong>l<br />

three experiments. In Expt. 1, however, the extra<br />

biomass production under dra<strong>in</strong>ed conditions could<br />

account for only 20% of the gra<strong>in</strong> yield <strong>in</strong>crease.<br />

Miyasaka (19701 found that N uptake <strong>in</strong>creased<br />

after the p<strong>an</strong>icle <strong>in</strong>itiation stage with improved<br />

dra<strong>in</strong>age. N uptake <strong>in</strong> dra<strong>in</strong>ed fields was <strong>in</strong>deed<br />

greater <strong>in</strong> our Expts. 1 <strong>an</strong>d 3, but not <strong>in</strong> 2 (Tables 2<br />

<strong>an</strong>d 4). Because larger gra<strong>in</strong> yields were, nevertheless,<br />

<strong>al</strong>so atta<strong>in</strong>ed <strong>in</strong> Expt. 2, it is concluded that<br />

yield <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age is not necessarily based<br />

on <strong>in</strong>creased N uptake.<br />

Table 3<br />

Effects of dra<strong>in</strong>age <strong>an</strong>d N application on tr<strong>an</strong>slocation of stem carbohydrate reserves <strong>an</strong>d nitrogen (N,) <strong>in</strong> race cultivar IR50 (Expt. 3) at<br />

Coimba<strong>to</strong>re, Tamil Nadu. India, dur<strong>in</strong>g 1991<br />

Treatments N,,, N at maturity (kg/ha) a N, (kg/ha) Wkwx Stem carbohydrates<br />

(kg/ha) a<br />

green leaves dead leaves ’<br />

tr<strong>an</strong>slocated (kg/ha)<br />

<strong>to</strong>t<strong>al</strong> h<br />

Leaves<br />

0”.N-loo<br />

D;N150<br />

Q-N200<br />

42.7 I .l 14.2 (0.33) 15.9 26.8 0.63<br />

51.1 2.1 15.2 (0.30) 17.3 33.0 0.66<br />

57.8 2.5 18.8 (0.32) 21.3 36.5 0.63<br />

Q-N100<br />

D;N150<br />

D, -N200<br />

45.2 8.1 12.1 (0.27) 20.2 25.0 0.55<br />

5 1.2 9.3 13.1 (0.26) 22.4 28.8 0.56<br />

51.2 10.0 13.8 (0.24) 23.8 33.4 0.50<br />

Stems<br />

D;NlOO<br />

D;N150<br />

D;N200<br />

D;NIOO<br />

D;N150<br />

D, -N200<br />

40. I 16.7 (0.40) 23.9 0.60 2400<br />

53.2 18.9 (0.36) 34.3 0.64 2647<br />

56.3 - 24.0 (0.43) 32.3 0.57 2483<br />

57.6 - 11.3 (0.20) 46.3 0.80 2857<br />

64.3 - II.3 (0.18) 53.0 0.82 3100<br />

68.6 12.2 CO.18) 56.4 0.82 3187<br />

* N,,, IS the maximum amount of N observed <strong>in</strong> pl<strong>an</strong>t parts (leaves. stems) at <strong>an</strong>y ttme dur<strong>in</strong>g the growth period. C<strong>al</strong>culation of N, is<br />

expla<strong>in</strong>ed <strong>in</strong> the text.<br />

’ Figures <strong>in</strong> parentheses are amount of N <strong>in</strong> dead tissue, relative <strong>to</strong> N mar of the correspond<strong>in</strong>g org<strong>an</strong>.


S. Ramsamy <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 (<strong>1997</strong>) 65-82 15<br />

Nod<strong>al</strong> root length<br />

8;<br />

l- ‘-.<br />

6.<br />

E 5- &\<br />

f 4.<br />

Aa -- D”<br />

E 3- - Dn+N<br />

Flower<strong>in</strong>g<br />

/<br />

;2- FL . -~I--- .~~ =:+,<br />

0 20 40 60 SO 100 120<br />

Days after tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g<br />

Fig. 3. Effects of dra<strong>in</strong>age <strong>an</strong>d N application at head<strong>in</strong>g on the<br />

length of nod<strong>al</strong> roots of <strong>rice</strong> cultivar IR20, Coimba<strong>to</strong>re, Tamil<br />

Nadu, India, 1991- 1992, Expt. 4. D,: undra<strong>in</strong>ed, D,: dra<strong>in</strong>ed, N:<br />

nitrogen application at head<strong>in</strong>g. For further treatment d<strong>et</strong>ails see<br />

text.<br />

Alpha-naphthylam<strong>in</strong>e oxidation power by roots<br />

0 50 100 150<br />

Days after tr<strong>an</strong>spl<strong>an</strong>t<strong>in</strong>g<br />

Fig. 4. Effects of dra<strong>in</strong>age <strong>an</strong>d N application at head<strong>in</strong>g on the<br />

oxidiz<strong>in</strong>g power of roots <strong>in</strong> <strong>rice</strong> cultivar IR20, Coimba<strong>to</strong>re, Tamil<br />

Nadu, India, 1991-1992. Expt. 4. 0,: undra<strong>in</strong>ed, D,: dra<strong>in</strong>ed, N:<br />

nitrogen application at head<strong>in</strong>g. For further treatment d<strong>et</strong>ails see<br />

text<br />

In two experiments (Expts. 1 <strong>an</strong>d 3), dra<strong>in</strong>age was<br />

associated with greater green leaf area <strong>an</strong>d a larger<br />

amount of bulk leaf nitrogen NL (g N per m’ ground<br />

area). To <strong>an</strong><strong>al</strong>yze wh<strong>et</strong>her pho<strong>to</strong>synth<strong>et</strong>ic activity per<br />

unit bulk leaf N <strong>in</strong>creased dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g <strong>in</strong><br />

<strong>response</strong> <strong>to</strong> dra<strong>in</strong>age, we d<strong>et</strong>erm<strong>in</strong>ed the fac<strong>to</strong>r fc,,,<br />

def<strong>in</strong>ed by the relation<br />

G=f,, .p.NL[l -e-EK/(P*v~ ‘1<br />

(Ten Berge <strong>et</strong> <strong>al</strong>., 19961, where G (g m-* d-‘) is<br />

the crop growth rate, R is the daily <strong>in</strong>cident glob<strong>al</strong><br />

radiation (MJ m-’ d-l), p is the <strong>in</strong>iti<strong>al</strong> leaf nitrogen<br />

use coefficient (fixed at 10 g g-’ d-l) <strong>an</strong>d E the<br />

<strong>in</strong>iti<strong>al</strong> glob<strong>al</strong> radiation use coefficient (fixed at 2.5 g<br />

MJ-‘1. The fac<strong>to</strong>r f,, is <strong>an</strong> empiric<strong>al</strong> c<strong>al</strong>ibration<br />

coefficient, account<strong>in</strong>g for <strong>al</strong>l variations <strong>in</strong> growth<br />

aris<strong>in</strong>g from fac<strong>to</strong>rs other th<strong>an</strong> R <strong>an</strong>d N,. This<br />

coefficient was d<strong>et</strong>erm<strong>in</strong>ed by fitt<strong>in</strong>g the growth<br />

curves G(t) c<strong>al</strong>culated by Eq. (1) <strong>to</strong> the observed<br />

growth curves, us<strong>in</strong>g measured time series R(t) <strong>an</strong>d<br />

N,(t). A signific<strong>an</strong>t <strong>in</strong>crease of the post-flower<strong>in</strong>g<br />

f,, v<strong>al</strong>ue <strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age was observed <strong>in</strong><br />

Expts. 2 <strong>an</strong>d 3, but not <strong>in</strong> Expt. 1. (Dur<strong>in</strong>g the<br />

pre-flower<strong>in</strong>g phase, effects of dra<strong>in</strong>age on f,, were<br />

absent <strong>in</strong> <strong>al</strong>l experiments.)<br />

Earlier leaf senescence was recorded <strong>in</strong> the<br />

undra<strong>in</strong>ed plots, but must be elim<strong>in</strong>ated as the primary<br />

cause of poorer gra<strong>in</strong> fill<strong>in</strong>g, because sm<strong>al</strong>ler<br />

gra<strong>in</strong> yields <strong>in</strong> undra<strong>in</strong>ed soil were not <strong>al</strong>ways (Expt.<br />

1) associated with <strong>an</strong> equiv<strong>al</strong>ent decrease <strong>in</strong> <strong>to</strong>t<strong>al</strong> dry<br />

matter production (see <strong>al</strong>so Fig. 1).<br />

Leaf senescence is often viewed as the result of N<br />

extraction from leaves <strong>an</strong>d tr<strong>an</strong>slocation <strong>to</strong> grow<strong>in</strong>g<br />

(1)<br />

p<strong>an</strong>icles (e.g., S<strong>in</strong>clair, 1990). The present study<br />

does not fully confirm this concept, because Expt. 2<br />

produced more gra<strong>in</strong> <strong>in</strong> dra<strong>in</strong>ed conditions, without<br />

addition<strong>al</strong> N uptake, y<strong>et</strong> with less leaf senescence<br />

th<strong>an</strong> <strong>in</strong> undra<strong>in</strong>ed plots. Moreover, N content <strong>in</strong><br />

‘early’ senescent leaves (just after flower<strong>in</strong>g) was<br />

lower (0.3% N) th<strong>an</strong> <strong>in</strong> leaves that senesced later<br />

(0.7% N near maturity); <strong>an</strong>d N concentration <strong>in</strong><br />

senescent leaves was greater <strong>in</strong> undra<strong>in</strong>ed plots.<br />

These observations <strong>in</strong>dicate that senescence is not<br />

just the result of N extraction from leaves. This view<br />

is supported by Herzog <strong>an</strong>d Geisler (1982) who<br />

proposed that leaf senescence <strong>in</strong> wheat is <strong>in</strong>duced by<br />

comp<strong>et</strong>ition (ear versus leaf) for a limited pool of<br />

growth regula<strong>to</strong>rs, rather th<strong>an</strong> carbohydrates or N.<br />

Un-dra<strong>in</strong>ed<br />

Dra<strong>in</strong>ed<br />

AT PI T-F MR<br />

Fig. 5. Effect of dra<strong>in</strong>age on root color <strong>in</strong> <strong>rice</strong> cultivar IR50 at<br />

Coimba<strong>to</strong>re, Tamil Nadu. India, 1991. Expt. 3. at crop stages AT<br />

(active tiller<strong>in</strong>g), PI (p<strong>an</strong>icle imtiation). FF (first flower<strong>in</strong>g) <strong>an</strong>d<br />

MR (maturity). Me<strong>an</strong>s over <strong>al</strong>l N levels. Observations <strong>in</strong> Expts. 1,<br />

2 <strong>an</strong>d 4 were similar. For treatment d<strong>et</strong>ails see text.


76 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>./ Field Crops Research 51 (<strong>1997</strong>165-82<br />

4.4. Tr<strong>an</strong>slocation<br />

Though a large fraction of the carbohydrates accumulated<br />

<strong>in</strong> gra<strong>in</strong>s is derived from pho<strong>to</strong>synthesis<br />

dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g, tr<strong>an</strong>slocation from previously<br />

s<strong>to</strong>red reserves seems essenti<strong>al</strong> (Weng <strong>et</strong> <strong>al</strong>., 1982)<br />

<strong>an</strong>d is highly correlated with gra<strong>in</strong> fill<strong>in</strong>g <strong>an</strong>d spikel<strong>et</strong><br />

sterility (L<strong>in</strong> <strong>et</strong> <strong>al</strong>., 1994). Apart from provid<strong>in</strong>g<br />

carbohydrates for gra<strong>in</strong> fill<strong>in</strong>g, it has been suggested<br />

that tr<strong>an</strong>slocation plays <strong>an</strong> import<strong>an</strong>t role <strong>in</strong> favor<strong>in</strong>g<br />

the tr<strong>an</strong>sport of NADH-dependent glutamate syn-<br />

thase (GOGAT) prote<strong>in</strong>, which <strong>in</strong> turn favors gra<strong>in</strong><br />

fill<strong>in</strong>g (Hayakawa <strong>et</strong> <strong>al</strong>., 1993). Others (Vorob-ev<br />

<strong>an</strong>d Skazhennik, 1987) reported that mobilization,<br />

tr<strong>an</strong>slocation <strong>an</strong>d gra<strong>in</strong> fill<strong>in</strong>g are l<strong>in</strong>ked with crop N,<br />

P <strong>an</strong>d K uptake, but mentioned no mech<strong>an</strong>isms.<br />

Reported contributions of remobilized carbohydrates<br />

<strong>to</strong> gra<strong>in</strong> biomass vary from 20% (Cock <strong>an</strong>d Yoshida,<br />

1972) <strong>to</strong> 54- 62% (Vorob-ev <strong>an</strong>d Skazhennik, 1987).<br />

Starch from veg<strong>et</strong>ative tissues near <strong>to</strong> the p<strong>an</strong>icle is<br />

gener<strong>al</strong>ly mobilized, but remote veg<strong>et</strong>ative parts may<br />

be left with large residues at maturity. Larger resid-<br />

Table 4<br />

The effects of dra<strong>in</strong>age on the key yield <strong>formation</strong> processes, observed <strong>in</strong> <strong>rice</strong> cultivars IR50 (Expts. I. 3) <strong>an</strong>d IR20 (Expts. 2, 4) at<br />

Coimba<strong>to</strong>re.Tamil Nadu. India, dur<strong>in</strong>g 1990- 1992<br />

Gra<strong>in</strong> yield<br />

p<strong>an</strong>icles (m - ’ )<br />

<strong>to</strong>t<strong>al</strong> spikel<strong>et</strong>s cm-‘)<br />

filled spikel<strong>et</strong>s (m ’ )<br />

<strong>in</strong>dividu<strong>al</strong> gra<strong>in</strong> wt<br />

Expt. 1 Expt. 2 Expt. 3 Expt. 4<br />

+<br />

0<br />

-<br />

+<br />

0<br />

-<br />

+<br />

+<br />

+<br />

0<br />

-<br />

+<br />

0<br />

+<br />

-<br />

-<br />

+<br />

+<br />

Pre tlower<strong>in</strong>g biomass accumulation<br />

green leaf area<br />

green leaf N<br />

green leaf f,,<br />

0<br />

-<br />

0<br />

-<br />

0<br />

-<br />

0<br />

0<br />

0<br />

-<br />

0<br />

n.d.<br />

n.d.<br />

n.d.<br />

n.d.<br />

Post flower<strong>in</strong>g biomass accumulation<br />

green leaf area<br />

green leaf N<br />

green leaf f,,<br />

dead leaf biomass<br />

+J<br />

+<br />

+<br />

0 h<br />

-<br />

+<br />

o’h’<br />

+<br />

-<br />

+<br />

+<br />

+<br />

+<br />

-<br />

n.d.<br />

n.d.<br />

n.d.<br />

n.d.<br />

n.d.<br />

Tr<strong>an</strong>slocation of non structur<strong>al</strong> reserves<br />

+<br />

+<br />

+<br />

nd<br />

Root growth<br />

pre flower<strong>in</strong>g<br />

pre flower<strong>in</strong>g<br />

post flower<strong>in</strong>g<br />

post flower<strong>in</strong>g<br />

root mass<br />

root length<br />

root mass<br />

root length<br />

0<br />

n.d.<br />

+<br />

n.d.<br />

0<br />

n.d.<br />

+<br />

n.d.<br />

0<br />

n.d.<br />

+<br />

n.d.<br />

0<br />

0<br />

+<br />

+<br />

Root function. activity<br />

root color after p<strong>an</strong>icle <strong>in</strong>itiation<br />

pre flower<strong>in</strong>g crop N uptake<br />

post flower<strong>in</strong>g crop N uptake<br />

post flower<strong>in</strong>g root N concentration<br />

pre flower<strong>in</strong>g oxidiz<strong>in</strong>g power<br />

post flower<strong>in</strong>g oxidiz<strong>in</strong>g power<br />

N remov<strong>al</strong> from senescent leaves<br />

+<br />

+<br />

+<br />

n.d.<br />

n.d.<br />

+L<br />

+<br />

0<br />

0<br />

+<br />

n.d.<br />

n.d.<br />

+’<br />

+<br />

-<br />

+<br />

+<br />

n.d.<br />

n.d.<br />

+<br />

n.d.<br />

n.d.<br />

n.d.<br />

n.d.<br />

0<br />

+<br />

n.d.<br />

( + ) signific<strong>an</strong>t <strong>in</strong>creas<strong>in</strong>g effect of dra<strong>in</strong>age. (- ) signific<strong>an</strong>t decreas<strong>in</strong>g effect of dra<strong>in</strong>age. 0 no signific<strong>an</strong>t effect of dra<strong>in</strong>age (P = 0.05).<br />

For expl<strong>an</strong>ation of f,, see text.<br />

A Dra<strong>in</strong>age effect on crop biomass (200 kg/ha) was much less th<strong>an</strong> on gra<strong>in</strong> yield (1000 kg/ha).<br />

’ Dra<strong>in</strong>age effect after flower<strong>in</strong>g was first slightly negative, then slightly positive.<br />

L Dra<strong>in</strong>age effect only noticed at end of gra<strong>in</strong> fill<strong>in</strong>g (last 2 weeks).


S. Rarnas<strong>an</strong>q <strong>et</strong> <strong>al</strong>. / Field Crops Resrurch 51 i <strong>1997</strong>1 65-82 71<br />

u<strong>al</strong> starch reserves are <strong>al</strong>so found <strong>in</strong> cultivars of<br />

longer duration (Dat <strong>an</strong>d P<strong>et</strong>erson, 1983).<br />

We did not measure tr<strong>an</strong>slocation of non-structur<strong>al</strong><br />

stem reserves directly, but estimated it as the<br />

decrease <strong>in</strong> stem weight from around flower<strong>in</strong>g.<br />

when peak stem weight is reached, up <strong>to</strong> maturity<br />

(Table 3). This amount was 40 <strong>to</strong> 50% (depend<strong>in</strong>g<br />

on treatment) of peak stem weight <strong>in</strong> Expt. 1; 17 <strong>to</strong><br />

23% <strong>in</strong> Expt. 2; <strong>an</strong>d 45 <strong>to</strong> 55% <strong>in</strong> Expt. 3. These<br />

amounts correspond <strong>to</strong> 25 <strong>to</strong> 40% (Expt. l), 20%<br />

(Expt. 2) <strong>an</strong>d 35 <strong>to</strong> 40% (Expt. 3) of f<strong>in</strong><strong>al</strong> gra<strong>in</strong><br />

weight. Absolute amounts were larger under welldra<strong>in</strong>ed<br />

conditions, <strong>in</strong> <strong>al</strong>l treatments of Expts. l-3.<br />

Of the yield <strong>in</strong>crements result<strong>in</strong>g from dra<strong>in</strong>age,<br />

25-35% could be accounted for by <strong>in</strong>creased<br />

tr<strong>an</strong>slocation from stem reserves <strong>in</strong> Expt. 1. This<br />

figure was 5 <strong>to</strong> 25% <strong>in</strong> Expt. 2 <strong>an</strong>d 30 <strong>to</strong> 40% <strong>in</strong><br />

Expt. 3. A literature survey did not provide us with<br />

mech<strong>an</strong>isms expla<strong>in</strong><strong>in</strong>g effects of dra<strong>in</strong>age on<br />

tr<strong>an</strong>slocation.<br />

4.5. Root growth <strong>an</strong>d root condition<br />

Post-flower<strong>in</strong>g root mass was greater, root N contents<br />

were higher <strong>an</strong>d fewer black roots were found<br />

under dra<strong>in</strong>ed conditions <strong>in</strong> Expts. l-3 (Table 4).<br />

Where root oxidiz<strong>in</strong>g power <strong>an</strong>d root length were<br />

measured (Expt. 4), these were greater, <strong>to</strong>o, under<br />

dra<strong>in</strong>ed conditions.<br />

4.6. Growth <strong>an</strong><strong>al</strong>ysis summarized<br />

Dra<strong>in</strong>age <strong>in</strong>creased post-flower<strong>in</strong>g growth <strong>an</strong>d<br />

yield <strong>in</strong> <strong>al</strong>l experiments, but none of the ‘source-related’<br />

variables - green leaf area, N uptake, green<br />

leaf N <strong>an</strong>d f,, - could be identified as the common<br />

fac<strong>to</strong>r expla<strong>in</strong><strong>in</strong>g, for <strong>al</strong>l experiments, the extra<br />

growth <strong>an</strong>d yield <strong>in</strong> dra<strong>in</strong>ed plots. In Expt. 1. the<br />

<strong>in</strong>crement of <strong>to</strong>t<strong>al</strong> crop biomass was much sm<strong>al</strong>ler<br />

th<strong>an</strong> that of gra<strong>in</strong> yield, render<strong>in</strong>g <strong>in</strong>v<strong>al</strong>id the directly<br />

source-related expl<strong>an</strong>ations. In Expt. 2, crop N uptake<br />

<strong>an</strong>d the amount of N <strong>in</strong> green leaves was<br />

unaffected by dra<strong>in</strong>age <strong>an</strong>d green leaf area was<br />

affected only slightly <strong>an</strong>d at the very end of the<br />

gra<strong>in</strong>-fill<strong>in</strong>g stage. It may well be that positive <strong>response</strong>s<br />

of the source-related variables <strong>to</strong> dra<strong>in</strong>age<br />

have no direct caus<strong>al</strong> relation with the improved<br />

fill<strong>in</strong>g of spikel<strong>et</strong>s.<br />

The association found, however, b<strong>et</strong>ween the<br />

tr<strong>an</strong>slocation of stem reserves <strong>an</strong>d gra<strong>in</strong> yield <strong>in</strong><br />

<strong>response</strong> <strong>to</strong> dra<strong>in</strong>age was consistent <strong>in</strong> Expts. l-3.<br />

The same is concluded for post-flower<strong>in</strong>g root growth<br />

<strong>an</strong>d root condition as expressed <strong>in</strong> root color (Expts.<br />

l-3), N content (Expts. l-3) <strong>an</strong>d a-NA oxidative<br />

activity (Expt. 4). Further research is required <strong>to</strong><br />

reve<strong>al</strong> the mech<strong>an</strong>isms beh<strong>in</strong>d these associations.<br />

5. Discussion<br />

If it is not the uptake <strong>an</strong>d subsequent exploitation<br />

of N by which <strong>rice</strong> crops benefit from <strong>al</strong>tered soil<br />

conditions <strong>in</strong> <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age, expl<strong>an</strong>a<strong>to</strong>ry<br />

mech<strong>an</strong>isms c<strong>an</strong> be sought <strong>in</strong> two other directions:<br />

(i) dra<strong>in</strong>age e n h <strong>an</strong>tes the availability of specific<br />

nutrients other th<strong>an</strong> N, or lowers the crop’s dem<strong>an</strong>d<br />

for these, or <strong>in</strong>creases the ability of roots <strong>to</strong><br />

acquire these (the latter option is supported by<br />

Kumazawa (1984) <strong>an</strong>d Pate1 <strong>et</strong> <strong>al</strong>. (1984)); <strong>an</strong>d<br />

(ii) d rama g e r ed uces the presence of <strong>to</strong>xic compounds<br />

<strong>in</strong> the root zone <strong>an</strong>d <strong>in</strong> the pl<strong>an</strong>t <strong>an</strong>d<br />

thereby affects other gra<strong>in</strong> <strong>formation</strong> processes.<br />

A brief literature review will permit discussion of<br />

these <strong>al</strong>ternatives. Because our experiments reve<strong>al</strong><br />

consistent effects of dra<strong>in</strong>age on <strong>in</strong>dica<strong>to</strong>rs of root<br />

condition. the discussion is limited <strong>to</strong> aspects of<br />

those mech<strong>an</strong>isms where<strong>in</strong> a ch<strong>an</strong>ge of root condition<br />

is explicitly recognized as a cause or as a<br />

symp<strong>to</strong>m.<br />

5.1. Mech<strong>an</strong>isms qf t)?ve fil<br />

Root condition is closely related <strong>to</strong> the redox<br />

status of the soil (Ota, 1970; Y<strong>an</strong>a<strong>to</strong>ri, 1981; Cheng,<br />

1983; Kumazawa, 1984; Tseng <strong>an</strong>d Y<strong>an</strong>g, 1990;<br />

Kludze <strong>et</strong> <strong>al</strong>., 1993; Ji<strong>an</strong>g <strong>et</strong> <strong>al</strong>., 1994a). It seems<br />

likely, therefore, that the benefici<strong>al</strong> effect of dra<strong>in</strong>age<br />

is due <strong>to</strong> improved soil redox conditions. The mech<strong>an</strong>isms<br />

by which this might occur are not qu<strong>an</strong>tified<br />

<strong>in</strong> literature. One aspect is the <strong>in</strong>creased flow of<br />

dissolved oxygen through the root zone via <strong>in</strong>creased<br />

water percolation rate, <strong>in</strong>creas<strong>in</strong>g the redox potenti<strong>al</strong><br />

E,. This lowers the correspond<strong>in</strong>g concentrations of<br />

<strong>to</strong>xic reduction products such as Fe’+, H, S <strong>an</strong>d<br />

org<strong>an</strong>ic compounds. Another aspect is the remov<strong>al</strong> of


78 S. Ramasam~ <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 (<strong>1997</strong>1 65-82<br />

these subst<strong>an</strong>ces through leach<strong>in</strong>g (Gov<strong>in</strong>dasamy <strong>an</strong>d<br />

Ch<strong>an</strong>drasekar<strong>an</strong>, 1979).<br />

He<strong>al</strong>thy <strong>rice</strong> roots oxidize their immediate environment,<br />

develop<strong>in</strong>g a brown coat<strong>in</strong>g of ferric oxides<br />

<strong>an</strong>d hydroxides (Shioiri, 1944). Jap<strong>an</strong>ese literature<br />

refers <strong>to</strong> this ability as ‘oxidiz<strong>in</strong>g power’. It <strong>in</strong>volves<br />

the production <strong>an</strong>d release of both peroxidase <strong>an</strong>d<br />

hydrogen peroxide by root tissues (e.g., Kumazawa,<br />

1984). The oxidized rhizosphere protects the root<br />

aga<strong>in</strong>st free H,S, which <strong>in</strong>hibits root respiration<br />

(Mitsui <strong>et</strong> <strong>al</strong>., 19511, <strong>an</strong>d Fe’+, which <strong>al</strong>so affects<br />

root m<strong>et</strong>abolism (Kumazawa, 1984). Black coloration<br />

is due <strong>to</strong> FeS precipitation, imply<strong>in</strong>g the<br />

presence of high concentrations of Fez+ <strong>an</strong>d S’-<br />

near the root surface. Black roots have low function<strong>al</strong><br />

activity <strong>an</strong>d little oxidiz<strong>in</strong>g power (Y<strong>an</strong>a<strong>to</strong>ri,<br />

1981; Cheng, 1983). Black coloration of roots has<br />

<strong>al</strong>so been attributed <strong>to</strong> other causes, <strong>in</strong>clud<strong>in</strong>g potassium<br />

deficiency (Mitsui <strong>an</strong>d Kumazawa, 1964;<br />

Trolldenier, 1977; Kumazawa, 1984); <strong>an</strong>d, <strong>in</strong> the<br />

speci<strong>al</strong> case of old degraded paddy soils from which<br />

Fe <strong>an</strong>d Mn have been leached out (Kumazawa,<br />

1984), <strong>in</strong>sufficient availability of Fe’+ <strong>to</strong> buffer the<br />

redox potenti<strong>al</strong> above the po<strong>in</strong>t where SOi- is<br />

reduced. The latter cause c<strong>an</strong> be elim<strong>in</strong>ated <strong>in</strong> the<br />

present study, but K deficiency rema<strong>in</strong>s a possible<br />

cause of black coloration <strong>in</strong> our undra<strong>in</strong>ed treatments.<br />

Doberm<strong>an</strong> <strong>et</strong> <strong>al</strong>. (1996a) <strong>in</strong>deed reported that<br />

the K supply rate from soils at Coimba<strong>to</strong>re near the<br />

site of our experiments was only modest. Gra<strong>in</strong><br />

yields <strong>in</strong> their experiment (Doberm<strong>an</strong> <strong>et</strong> <strong>al</strong>., 1996bl<br />

<strong>in</strong>creased from 4840 <strong>to</strong> 5590 kg ha-’ upon application<br />

of 41 kg K ha- ‘. This argument is, however,<br />

weakened by the facts that our yield levels were<br />

1200 <strong>to</strong> 2000 kg ha- ’ greater th<strong>an</strong> those of Doberm<strong>an</strong><br />

<strong>et</strong> <strong>al</strong>., even <strong>in</strong> undra<strong>in</strong>ed plots, <strong>an</strong>d that <strong>al</strong>l plots<br />

<strong>in</strong> our experiment received K at the rate applied <strong>in</strong><br />

Doberm<strong>an</strong>’s ‘plus K’ treatments.<br />

If the K deficiency hypothesis is nevertheless<br />

correct, two mech<strong>an</strong>isms c<strong>an</strong> be forwarded <strong>to</strong> expla<strong>in</strong><br />

why black coloration due <strong>to</strong> K deficiency should be<br />

more pronounced <strong>in</strong> undra<strong>in</strong>ed plots: (a) K’ availability<br />

is likely <strong>to</strong> be less <strong>in</strong> more reduced soil<br />

because higher Fe” concentrations tend <strong>to</strong> elim<strong>in</strong>ate<br />

K+ from the adsorption complex, <strong>an</strong>d subsequently<br />

from the root zone by leach<strong>in</strong>g (high Fe’+ <strong>al</strong>so<br />

impairs K‘ tr<strong>an</strong>sport through the rhizosphere by the<br />

lower<strong>in</strong>g of rhizospheric HCO, concentration, re-<br />

sult<strong>in</strong>g from the acidification associated with Fe*’<br />

oxidation near the root); (b) K is a key fac<strong>to</strong>r <strong>in</strong> the<br />

processes underly<strong>in</strong>g ‘oxidiz<strong>in</strong>g power’ <strong>an</strong>d Kf<br />

would thus be specific<strong>al</strong>ly required <strong>in</strong> reduced conditions<br />

<strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> he<strong>al</strong>thy roots. The second idea is<br />

suggested <strong>in</strong> the summary made by Kumazawa (1984)<br />

about early Jap<strong>an</strong>ese research on rhizosphere oxidation.<br />

Phosphorus deficiency would be <strong>an</strong>other expl<strong>an</strong>ation<br />

of the above type (i), <strong>an</strong>d documentation of<br />

the Coimba<strong>to</strong>re site by Doberm<strong>an</strong> <strong>et</strong> <strong>al</strong>. (1996~) c<strong>an</strong><br />

support this hypothesis, <strong>al</strong>though the same counterarguments<br />

as given <strong>in</strong> the case of K would apply<br />

(i.e., differ<strong>in</strong>g yield levels <strong>an</strong>d bl<strong>an</strong>k<strong>et</strong> P doses applied).<br />

Moreover, <strong>an</strong> expl<strong>an</strong>ation is lack<strong>in</strong>g why P<br />

deficiency would be expressed more under poor<br />

dra<strong>in</strong>age. Y<strong>et</strong>, we c<strong>an</strong>not reject the (K or PI deficiency<br />

hypothesis for our experiments based on<br />

available <strong>in</strong><strong>formation</strong>.<br />

5.2. Mech<strong>an</strong>isms of type (ii)<br />

The presence of <strong>to</strong>xic compounds would <strong>in</strong>volve<br />

<strong>an</strong> adjustment <strong>in</strong> the pl<strong>an</strong>t’s function<strong>in</strong>g, aris<strong>in</strong>g either<br />

from entr<strong>an</strong>ce of the compounds <strong>in</strong> the pl<strong>an</strong>t, or<br />

from d<strong>et</strong>erioration of the root system <strong>in</strong> the low-redox<br />

environment, curtail<strong>in</strong>g root functions other th<strong>an</strong><br />

the uptake of nutrients. An hypothesis c<strong>an</strong> be put<br />

forward that the crop <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age is caused<br />

by <strong>an</strong> effect of soil condition on the production of<br />

growth subst<strong>an</strong>ces <strong>in</strong> roots. Evidence <strong>in</strong> favor of this<br />

mech<strong>an</strong>ism as the primary cause of yield <strong>response</strong> <strong>to</strong><br />

dra<strong>in</strong>age is summarized below.<br />

Gra<strong>in</strong> fill<strong>in</strong>g <strong>in</strong> cere<strong>al</strong>s is mediated <strong>in</strong> part by<br />

cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s (e.g.. Ray <strong>an</strong>d Choudhuri, 1981; Gab<strong>al</strong>i <strong>et</strong><br />

<strong>al</strong>., 1986; Yoshida, 1987; Soejima <strong>et</strong> <strong>al</strong>., 1992; Smiciklas<br />

<strong>an</strong>d Below, 1992). Cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s have a positive<br />

effect on leaf longevity (Ray <strong>an</strong>d Choudhuri, 1981;<br />

Herzog, 1982; Ambler <strong>et</strong> <strong>al</strong>., 1983; Soejima <strong>et</strong> <strong>al</strong>.,<br />

1992): on early cell division <strong>in</strong> develop<strong>in</strong>g gra<strong>in</strong>s<br />

<strong>an</strong>d gra<strong>in</strong> size (Herzog, 1982); on the number of<br />

vascular bundles <strong>in</strong> peduncle cross sections (Kaur<br />

<strong>an</strong>d S<strong>in</strong>gh, 1987); <strong>an</strong>d on s<strong>to</strong>mata1 aperture (Davies<br />

<strong>an</strong>d Zh<strong>an</strong>g, 1991). Cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s are produced <strong>in</strong> roots<br />

<strong>an</strong>d, <strong>in</strong> <strong>rice</strong>, their presence <strong>in</strong> root tissue is strongly<br />

affected by root condition (Soejima <strong>et</strong> <strong>al</strong>., 1992;<br />

B<strong>an</strong>o <strong>et</strong> <strong>al</strong>., 1993) <strong>an</strong>d root development (Ji<strong>an</strong>g <strong>et</strong> <strong>al</strong>.,<br />

1994a; Ji<strong>an</strong>g <strong>et</strong> <strong>al</strong>.. 1994b). These f<strong>in</strong>d<strong>in</strong>gs, comb<strong>in</strong>ed<br />

with our own observations that dra<strong>in</strong>age posi-


S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. /Field Crops Research 8 I (<strong>1997</strong>) 65-82 79<br />

tively affected post-flower<strong>in</strong>g root growth, root condition,<br />

gra<strong>in</strong> fill<strong>in</strong>g, leaf longevity <strong>an</strong>d mobilization<br />

of reserves (Table 41, support the hypothesis. More<br />

specific<strong>al</strong>ly, the primary effect of dra<strong>in</strong>age would be<br />

<strong>to</strong> improve root condition, <strong>in</strong>duc<strong>in</strong>g a prolonged<br />

synthesis <strong>an</strong>d tr<strong>an</strong>sport of cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s, result<strong>in</strong>g <strong>in</strong><br />

extended pho<strong>to</strong>synth<strong>et</strong>ic activity <strong>an</strong>d <strong>in</strong>creased deposition<br />

of carbohydrates <strong>in</strong> gra<strong>in</strong>s. Numerous studies<br />

have demonstrated that gra<strong>in</strong> fill<strong>in</strong>g <strong>an</strong>d gra<strong>in</strong> yield<br />

<strong>in</strong> <strong>rice</strong> improved <strong>in</strong> <strong>response</strong> <strong>to</strong> extern<strong>al</strong>ly applied<br />

cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s (Yoshida, 1987; Kaur <strong>an</strong>d S<strong>in</strong>gh, 1987;<br />

Sam<strong>an</strong>tas<strong>in</strong>har <strong>an</strong>d S<strong>al</strong>-m, 1990), as well as <strong>in</strong> maize<br />

(Smiciklas <strong>an</strong>d Below, 1992), barley (Aufthammer<br />

<strong>an</strong>d Sol<strong>an</strong>sky, 1976) <strong>an</strong>d wheat (e.g., Herzog, 1982).<br />

One way <strong>to</strong> test this hypothesis experiment<strong>al</strong>ly would<br />

be <strong>to</strong> ev<strong>al</strong>uate wh<strong>et</strong>her the yield <strong>response</strong> <strong>to</strong> extern<strong>al</strong><br />

application is stronger <strong>in</strong> poorly dra<strong>in</strong>ed th<strong>an</strong> <strong>in</strong><br />

well-dra<strong>in</strong>ed soils.<br />

5.3. Mech<strong>an</strong>isms of qpes (i) <strong>an</strong>d (ii) comb<strong>in</strong>ed<br />

The possibility c<strong>an</strong>not be ruled out that both<br />

mech<strong>an</strong>isms (i) <strong>an</strong>d (ii) should be l<strong>in</strong>ked <strong>to</strong> expla<strong>in</strong><br />

the effect of dra<strong>in</strong>age on <strong>rice</strong> yield. Thus, strongly<br />

reduced soil conditions might cause <strong>in</strong>creased K<br />

dem<strong>an</strong>d for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g ‘oxidiz<strong>in</strong>g power’; <strong>an</strong>d if<br />

this K dem<strong>an</strong>d is not m<strong>et</strong>, root condition d<strong>et</strong>eriorates<br />

due <strong>to</strong> the entr<strong>an</strong>ce of reduced products <strong>in</strong><strong>to</strong> the root.<br />

As a result, the production <strong>an</strong>d tr<strong>an</strong>sport of cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s<br />

<strong>in</strong> roots decreases, which leads <strong>to</strong> poor gra<strong>in</strong><br />

fill<strong>in</strong>g due <strong>to</strong> decreased s<strong>in</strong>k strength <strong>an</strong>d enh<strong>an</strong>ced<br />

leaf senescence.<br />

5.4. Excess nitrogen<br />

The last po<strong>in</strong>t <strong>to</strong> address is the effect of excess<br />

nitrogen application. In undra<strong>in</strong>ed plots, high N application<br />

levels (200 kg/ha) consistently decreased<br />

gra<strong>in</strong> yield <strong>in</strong> Expts. l-3 (Table 11. N application at<br />

head<strong>in</strong>g (Expt. 4) <strong>al</strong>so lowered gra<strong>in</strong> yield <strong>in</strong><br />

undra<strong>in</strong>ed plots (Table 1). Why did this occur only <strong>in</strong><br />

undra<strong>in</strong>ed plots? Two possible expl<strong>an</strong>ations are derived<br />

from the literature. The first is based on further<br />

lower<strong>in</strong>g of soil redox potenti<strong>al</strong>, triggered by N<br />

application (Trolldenier, 1977). If conditions are <strong>al</strong>ready<br />

poor, the crop may be more susceptible <strong>to</strong><br />

further reduction. The second possible expl<strong>an</strong>ation is<br />

based on <strong>in</strong>creased N uptake lead<strong>in</strong>g <strong>to</strong> lower Si:N<br />

ratios <strong>in</strong> the pl<strong>an</strong>t, subsequent degeneration of p<strong>an</strong>icle<br />

br<strong>an</strong>ches <strong>an</strong>d spikel<strong>et</strong> sterility (Choi <strong>et</strong> <strong>al</strong>., 1986).<br />

For this <strong>to</strong> be a v<strong>al</strong>id expl<strong>an</strong>ation <strong>in</strong> our case, Si<br />

uptake must have been lower <strong>in</strong> undra<strong>in</strong>ed plots.<br />

Lower Si uptake under poor dra<strong>in</strong>age has <strong>in</strong>deed<br />

been reported (Kumazawa, 1984), but c<strong>an</strong>not be<br />

confirmed here as we did not measure Si uptake. The<br />

th<strong>in</strong> culm w<strong>al</strong>ls observed <strong>in</strong> our undra<strong>in</strong>ed plots,<br />

however, are often seen as a symp<strong>to</strong>m of Si deficiency.<br />

Other possibilities <strong>in</strong>clude negative effects of<br />

high soluble N concentrations <strong>in</strong> pl<strong>an</strong>ts per se (Murty<br />

<strong>an</strong>d Murty, 1982); <strong>an</strong>d possible <strong>in</strong>teractions b<strong>et</strong>ween<br />

N nutrition <strong>an</strong>d endogenous cy<strong>to</strong>k<strong>in</strong><strong>in</strong> levels<br />

(Smiciklas <strong>an</strong>d Below, 1992, for maize).<br />

Both experiments show<strong>in</strong>g a negative <strong>response</strong> of<br />

yield <strong>to</strong> high N were second season experiments. We<br />

presume that the soil was <strong>in</strong> a more reduced state<br />

dur<strong>in</strong>g the second season due <strong>to</strong> (a) the greater<br />

supply of org<strong>an</strong>ic matter as the first season’s stubble<br />

was <strong>in</strong>corporated <strong>in</strong><strong>to</strong> the soil <strong>an</strong>d (b) prolonged<br />

flood<strong>in</strong>g as a result of the longer veg<strong>et</strong>ative stage of<br />

IR20 <strong>an</strong>d <strong>an</strong>tecedent (first-season) flood<strong>in</strong>g.<br />

6. Conclusions<br />

Rice gra<strong>in</strong> yields <strong>in</strong>creased <strong>in</strong> <strong>response</strong> <strong>to</strong> improved<br />

<strong>in</strong>tern<strong>al</strong> field dra<strong>in</strong>age, <strong>in</strong> <strong>al</strong>l four experiments<br />

<strong>an</strong>d at <strong>al</strong>l N application levels. The number of<br />

p<strong>an</strong>icles <strong>an</strong>d the number of spikel<strong>et</strong>s per p<strong>an</strong>icle<br />

were not - or negatively - affected by improved<br />

dra<strong>in</strong>age <strong>an</strong>d the <strong>in</strong>creases <strong>in</strong> gra<strong>in</strong> yield could thus<br />

be attributed fully <strong>to</strong> b<strong>et</strong>ter gra<strong>in</strong> fill<strong>in</strong>g <strong>in</strong> <strong>al</strong>l cases.<br />

<strong>Yield</strong> <strong>response</strong>s <strong>to</strong> dra<strong>in</strong>age were <strong>al</strong>ways associated<br />

with larger numbers of filled gra<strong>in</strong>s, <strong>in</strong>creased<br />

tr<strong>an</strong>slocation of s<strong>to</strong>red reserves <strong>an</strong>d improved root<br />

condition.<br />

<strong>Yield</strong> <strong>response</strong> <strong>to</strong> N application <strong>in</strong> <strong>rice</strong> was larger<br />

under well-dra<strong>in</strong>ed th<strong>an</strong> poorly dra<strong>in</strong>ed soil conditions.<br />

It seems that <strong>in</strong> ‘second season’ crops (i.e.,<br />

after prolonged flood<strong>in</strong>g) under poor dra<strong>in</strong>age, large<br />

N doses should be avoided because they may lead <strong>to</strong><br />

yield loss. N application at head<strong>in</strong>g, <strong>to</strong>o. appears <strong>to</strong><br />

be effective only <strong>in</strong> well-dra<strong>in</strong>ed soils <strong>an</strong>d should<br />

otherwise probably be avoided.<br />

<strong>Yield</strong> <strong>in</strong>creases were often associated with <strong>in</strong>creases<br />

<strong>in</strong> crop biomass, green leaf area <strong>an</strong>d leaf area<br />

duration. leaf N content, crop N uptake; <strong>an</strong>d <strong>al</strong>so


80 S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>./ Field Crops Research 51 (<strong>1997</strong>) 65-82<br />

with <strong>in</strong>creased efficiency (f,,) by which leaf N<br />

converted radiation <strong>in</strong><strong>to</strong> dry matter. Y<strong>et</strong>, it is concluded<br />

that yield <strong>response</strong> <strong>to</strong> dra<strong>in</strong>age c<strong>an</strong>not, or not<br />

exclusively, be attributed <strong>to</strong> <strong>in</strong>creased N uptake <strong>an</strong>d<br />

the enh<strong>an</strong>ced ‘source capacity’ norm<strong>al</strong>ly associated<br />

with it. This observation, comb<strong>in</strong>ed with consistently<br />

positive <strong>response</strong>s of <strong>in</strong>dica<strong>to</strong>rs of root condition <strong>to</strong><br />

dra<strong>in</strong>age, <strong>in</strong>dicates that the benefici<strong>al</strong> effect of<br />

dra<strong>in</strong>age is via root functions other th<strong>an</strong> N uptake.<br />

One possible mech<strong>an</strong>ism is that dra<strong>in</strong>age <strong>in</strong>creases<br />

K availability or reduces the crop’s K requirement.<br />

The other is that dra<strong>in</strong>age improves root<br />

condition, which leads <strong>in</strong> turn <strong>to</strong> a larger flow of<br />

cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s <strong>to</strong> the shoot, where they r<strong>et</strong>ard leaf senescence<br />

<strong>an</strong>d stimulate tr<strong>an</strong>slocation of reserves from<br />

stems <strong>to</strong> gra<strong>in</strong>s. The two mech<strong>an</strong>isms are possibly<br />

l<strong>in</strong>ked, K deficiency trigger<strong>in</strong>g the d<strong>et</strong>erioration of<br />

root condition. Although poor dra<strong>in</strong>age, cy<strong>to</strong>k<strong>in</strong><strong>in</strong><br />

production <strong>in</strong> roots <strong>an</strong>d gra<strong>in</strong> yield have not been<br />

connected explicitly <strong>in</strong> <strong>rice</strong> literature, the caus<strong>al</strong><br />

relations b<strong>et</strong>ween dra<strong>in</strong>age <strong>an</strong>d root condition, b<strong>et</strong>ween<br />

root condition <strong>an</strong>d cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s production, <strong>an</strong>d<br />

b<strong>et</strong>ween cy<strong>to</strong>k<strong>in</strong><strong>in</strong> levels, gra<strong>in</strong> fill<strong>in</strong>g <strong>an</strong>d leaf senescence<br />

are each well documented <strong>an</strong>d provide the<br />

basis for the cy<strong>to</strong>k<strong>in</strong><strong>in</strong> hypothesis. The various hypotheses<br />

were not explicitly tested <strong>in</strong> this study.<br />

References<br />

Ambler, J.R., Morg<strong>an</strong>, P.W. <strong>an</strong>d Jord<strong>an</strong>, W.R., 1983. Cy<strong>to</strong>k<strong>in</strong><strong>in</strong><br />

concentrations <strong>in</strong> xylem sap of senescent <strong>an</strong>d nonsenescent<br />

sorghums. Pl<strong>an</strong>t Physiol. Suppl., 72: 168.<br />

Aufthammer, W. <strong>an</strong>d Sol<strong>an</strong>sky, S.. 1976. Effect of k<strong>in</strong><strong>et</strong><strong>in</strong> on<br />

assimilate accumulation <strong>in</strong> ears of spr<strong>in</strong>g barley. Z. Pfl<strong>an</strong>zenem&r.<br />

Bodenkd., 1976(41: 5033515.<br />

B<strong>an</strong>o, A.. DoertIl<strong>in</strong>g, K., B<strong>et</strong>t<strong>in</strong>d, D. <strong>an</strong>d Hahn, H., 1993. Abscisic<br />

acid <strong>an</strong>d cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s as possible root-<strong>to</strong>-shoot sign<strong>al</strong>s <strong>in</strong><br />

xylem sap of <strong>rice</strong> pl<strong>an</strong>ts <strong>in</strong> dry<strong>in</strong>g soil. Austr. J. Pl<strong>an</strong>t Physiol.<br />

20: 109-115.<br />

Cheng, Y.S., 1983. Effects of dra<strong>in</strong>age on the characteristics of<br />

paddy soils <strong>in</strong> Ch<strong>in</strong>a. In: Org<strong>an</strong>ic Matter of Rice. IRRI, P.O.<br />

Box 933, M<strong>an</strong>ila, pp. 417-427.<br />

Choi, S.I., Wh<strong>an</strong>g, C.J. <strong>an</strong>d Lee, J.H., 1986. Studies on the growth<br />

characters <strong>an</strong>d nutrient uptake related <strong>to</strong> source <strong>an</strong>d s<strong>in</strong>k by<br />

cool water temperature at reproductive growth stage. II. Influence<br />

of cool water irrigation on the <strong>in</strong>org<strong>an</strong>ic element content<br />

of leaf blades, rachis br<strong>an</strong>ches <strong>an</strong>d chaff of <strong>rice</strong>. Kore<strong>an</strong> J.<br />

Crop Sci.. 31: 1-8.<br />

Cock, J.H. <strong>an</strong>d Yoshida, S., 1972. Accumulation of “C-1abelled<br />

carbohydrate before flower<strong>in</strong>g <strong>an</strong>d its subsequent redistribution<br />

<strong>an</strong>d respiration <strong>in</strong> the <strong>rice</strong> pl<strong>an</strong>t. Proc. Crop Sci. Sot. Jpn.,<br />

41: 226-234.<br />

Crooke. V.M., 1964. The measurement of cation exch<strong>an</strong>ge capacity<br />

of pl<strong>an</strong>t roots. Pl<strong>an</strong>t Soil, 21: 34-49.<br />

Dat, T.V. <strong>an</strong>d P<strong>et</strong>erson, M.L.. 1983. Perform<strong>an</strong>ce of near-isogenic<br />

genotypes of <strong>rice</strong> differ<strong>in</strong>g <strong>in</strong> growth duration. II. Carbohydrate<br />

partition<strong>in</strong>g dur<strong>in</strong>g gra<strong>in</strong> fill<strong>in</strong>g. Crop Sci., 23: 243-246.<br />

Davies. W. <strong>an</strong>d Zh<strong>an</strong>g, J., 1991. Root sign<strong>al</strong>s <strong>an</strong>d regulation of<br />

growth <strong>an</strong>d development of pl<strong>an</strong>ts <strong>in</strong> dry<strong>in</strong>g soil. Annu. Rev.<br />

Pl<strong>an</strong>t Physiol. Pl<strong>an</strong>t Mol. Biol., 42: 55-76.<br />

De Datta, S.K., 1981. Pr<strong>in</strong>ciples <strong>an</strong>d practices of <strong>rice</strong> production.<br />

John Wiley <strong>an</strong>d Sons, New York.<br />

Doberm<strong>an</strong>, A., Sta Cruz, PC. <strong>an</strong>d Cassm<strong>an</strong>, K.G., 1996a. Fertilizer<br />

<strong>in</strong>puts, nutrient b<strong>al</strong><strong>an</strong>ce <strong>an</strong>d soil nutrient supply<strong>in</strong>g power<br />

<strong>in</strong> <strong>in</strong>tensive irrigated <strong>rice</strong> systems. I. Potassium uptake <strong>an</strong>d K<br />

b<strong>al</strong><strong>an</strong>ce. Nut. Cycl. Agroecosyst.. 46: l-10.<br />

Doberm<strong>an</strong>, A., Cassm<strong>an</strong>, K.G. <strong>an</strong>d Sta Cruz, P.C., 1996b. Fertilizer<br />

<strong>in</strong>puts, nutrient b<strong>al</strong><strong>an</strong>ce <strong>an</strong>d soil nutrient supply<strong>in</strong>g power<br />

<strong>in</strong> <strong>in</strong>tensive irrigated <strong>rice</strong> systems. II. Effective soil K supply<strong>in</strong>g<br />

capacity. Nut. Cycl. Agroecosyst., 46 : 11-21.<br />

Doberm<strong>an</strong>, A., Sta Cruz, P.C. <strong>an</strong>d Cassm<strong>an</strong>, K.G., 1996~. Fertilizer<br />

<strong>in</strong>puts, nutrient b<strong>al</strong><strong>an</strong>ce <strong>an</strong>d soil nutrient supply<strong>in</strong>g power<br />

<strong>in</strong> <strong>in</strong>tensive irrigated <strong>rice</strong> systems. III. Phosphorus uptake <strong>an</strong>d<br />

P b<strong>al</strong><strong>an</strong>ce. Nut. Cycl. Agroecosyst., 46: 11 l-121.<br />

Doi, K., M<strong>an</strong>abe, H., Sa<strong>to</strong>, H. <strong>an</strong>d Chigura S., 1988. Cultivation<br />

techniques by direct under ground sow<strong>in</strong>g m<strong>et</strong>hod of <strong>rice</strong> pl<strong>an</strong>t<br />

<strong>in</strong> submerged paddy fields <strong>an</strong>d water m<strong>an</strong>agement. Fakuoka<br />

ken Nogyo Sogo Shikenjo kenkyu Hokoku, A. Sakumotsu.<br />

Fakuoka Agric. Res. Cent., Fakuoka, Jpn.. 7: 25-80.<br />

Gab<strong>al</strong>i, S.A.M., Bakka, A.K. <strong>an</strong>d Bharatwaj, S.N., 1986. Hormon<strong>al</strong><br />

basis of gra<strong>in</strong> growth <strong>an</strong>d development <strong>in</strong> wheat. Indi<strong>an</strong><br />

J. Pl<strong>an</strong>t Physiol., 29: 387-396.<br />

Gov<strong>in</strong>dasamy, R. <strong>an</strong>d Ch<strong>an</strong>drasekar<strong>an</strong>. S., 1979. Inhibi<strong>to</strong>ry effect<br />

of <strong>rice</strong> straw <strong>in</strong>corporation <strong>in</strong> ill-dra<strong>in</strong>ed (Annam<strong>al</strong>ai clay) soil<br />

on <strong>rice</strong>. J. Indi<strong>an</strong>. Sot. Soil Sci., 27: 92-94.<br />

Habibullah, A.K.M.. Rahm<strong>an</strong>, S.M., Ah, MI., Enay<strong>et</strong>ullah, M.,<br />

Hussa<strong>in</strong>, K.M.M. <strong>an</strong>d Biswas, M.R., 1977. Studies on the<br />

<strong>in</strong>fluence of dra<strong>in</strong>age as a cultur<strong>al</strong> practice <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g <strong>rice</strong><br />

yields. Curr. Sci., 46(14): 469-471.<br />

Hasegawa, T., Koroda, Y., Seligm<strong>an</strong>, N.G. <strong>an</strong>d Horie, T., 1994.<br />

Response of spikel<strong>et</strong> number <strong>to</strong> pl<strong>an</strong>t nitrogen concentration<br />

<strong>an</strong>d dry weight <strong>in</strong> paddy <strong>rice</strong>. Agron. J. 86: 673-676.<br />

Hasehawa, S., Th<strong>an</strong>garaj, M. <strong>an</strong>d O’Toole, J.C., 1985. Root<br />

behaviour: field <strong>an</strong>d labora<strong>to</strong>ry studies for <strong>rice</strong> <strong>an</strong>d non-<strong>rice</strong><br />

crops. In: Soil Physics <strong>an</strong>d Rice. Internation<strong>al</strong> Rice Research<br />

Institute, P.O. Box 933. 1099 M<strong>an</strong>ila.<br />

Hayakawa, T., Yamaya, M., Mae, T. <strong>an</strong>d Ojima, K., 1993.<br />

Ch<strong>an</strong>ges <strong>in</strong> the content of two glutamate synthase prote<strong>in</strong>s <strong>in</strong><br />

spikel<strong>et</strong>s of <strong>rice</strong> pl<strong>an</strong>ts dur<strong>in</strong>g ripen<strong>in</strong>g. Pl<strong>an</strong>t Physiol., 101:<br />

1257-1262.<br />

Herzog, H. <strong>an</strong>d Geisler, G., 1982. Influence of ear size, leaf area<br />

<strong>an</strong>d cy<strong>to</strong>k<strong>in</strong><strong>in</strong> applications on the flag leaf development <strong>in</strong><br />

wheat. Z. Acker. Ptl<strong>an</strong>zenbau, 151(2): 128-136.<br />

Herzog, H., 1982. Influence of ear <strong>an</strong>d size. leaf area <strong>an</strong>d cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s<br />

applications on the kem<strong>al</strong> development <strong>in</strong> wheat. Z.<br />

Acker. Ptl<strong>an</strong>zenhau, 151(31: 205-215.


S. <strong>Ramasamy</strong> <strong>et</strong> <strong>al</strong>. /Field Crops Research 51 (<strong>1997</strong>165-82 81<br />

Humphries, E.C.. 1956. Modem M<strong>et</strong>hods of Pl<strong>an</strong>t An<strong>al</strong>ysis.<br />

Spr<strong>in</strong>ger Verlag Berl<strong>in</strong> 1, pp. 4688502.<br />

Iida, S., Sh<strong>in</strong>mura, Y., Uemori. A. <strong>an</strong>d Kuzuna, K., 1990. Influence<br />

of irrigation m<strong>an</strong>agement at the middle grow<strong>in</strong>g stage on<br />

<strong>rice</strong> pl<strong>an</strong>t growth <strong>an</strong>d yield. Jpn. J. Crop Sci., 59(3): 413-418.<br />

Islam, MS. <strong>an</strong>d Morison, J.I.L., 1992. Influence of solar radiation<br />

<strong>an</strong>d temperature on irrigated <strong>rice</strong> gra<strong>in</strong> yield <strong>in</strong> B<strong>an</strong>gladesh,<br />

Field Crops Res.. 30: 13-28.<br />

Ji<strong>an</strong>g, D.N.. Hirasawa, T. <strong>an</strong>d Ishihara, K., 1994a. Depression of<br />

pho<strong>to</strong>synthesis <strong>in</strong> <strong>rice</strong> pl<strong>an</strong>t with low root activity follow<strong>in</strong>g<br />

soluble starch application <strong>to</strong> the soil. Jpn. J. Crop Sci. 63:<br />

531-538.<br />

Ji<strong>an</strong>g, D.N., Hirasawa, T. <strong>an</strong>d Ishihara, K., 1994b. The difference<br />

<strong>in</strong> diurn<strong>al</strong> ch<strong>an</strong>ges <strong>in</strong> pho<strong>to</strong>synthesis <strong>in</strong> <strong>rice</strong> pl<strong>an</strong>ts with different<br />

root activities <strong>in</strong>duced by soluble starch application <strong>to</strong> the<br />

soil. Jpn. J. Crop Sci. 63: 539-545.<br />

Kaur, J. <strong>an</strong>d S<strong>in</strong>gh, G., 1987. Hormon<strong>al</strong> regulations of gra<strong>in</strong><br />

fill<strong>in</strong>g <strong>in</strong> relation <strong>to</strong> peduncle <strong>an</strong>a<strong>to</strong>my <strong>in</strong> <strong>rice</strong> cultivars. Indi<strong>an</strong><br />

J. Exp. Biol., 25: 63-65.<br />

Kh<strong>in</strong>d. C.S. <strong>an</strong>d Kazibwe, M.F., 1983. Efficiency of different urea<br />

fertilizers <strong>in</strong> lowl<strong>an</strong>d <strong>rice</strong>. Int. Rice Res. Newsl<strong>et</strong>t.. 8(5):<br />

21-22.<br />

Kludze, H.K., Delaune, R.D. <strong>an</strong>d Patrick. W.H., 1993.<br />

Aerenchyma <strong>formation</strong> <strong>an</strong>d m<strong>et</strong>h<strong>an</strong>e <strong>an</strong>d oxygen exch<strong>an</strong>ge <strong>in</strong><br />

<strong>rice</strong>. Soil Sci. Sot. Am. J., 57: 386-391.<br />

Kog<strong>an</strong>o. K., Toriyama, K. <strong>an</strong>d Sekiya, H.. 1991. Studies on<br />

nitrogen application on clayey gley paddy soil <strong>an</strong>d very early<br />

dra<strong>in</strong>age for <strong>rice</strong>. Bull. Hokuriku Nat]. Agric. Exp. Stn.,<br />

Jo<strong>et</strong>su, Niigata, Jap<strong>an</strong>, 33: 107-125.<br />

Kudeyarov, V.N., Welte, E. <strong>an</strong>d Szabolcs. I., 1989. Nitrogen<br />

migration with waters due <strong>to</strong> nitrogen fertilizer tr<strong>an</strong>s<strong>formation</strong><br />

<strong>in</strong> paddy soils. In: E. Welte <strong>an</strong>d I. Snabolcs (Edi<strong>to</strong>rs), Proc. of<br />

the 5th Int. Symp. of CIEC on Protection of Water Qu<strong>al</strong>ity<br />

from Harmful Emissions with Speci<strong>al</strong> Regard <strong>to</strong> Nitrate <strong>an</strong>d<br />

Heavy M<strong>et</strong><strong>al</strong>s. CIEC. Budapest, 1989, pp. 159-163.<br />

Kumazawa, K.. 1984. Physiologic<strong>al</strong> specificity of <strong>rice</strong> root <strong>in</strong><br />

relation <strong>to</strong> oxidiz<strong>in</strong>g power <strong>an</strong>d nutrient uptake, In: S. Tsunoda<br />

<strong>an</strong>d N. Takahasi (Edi<strong>to</strong>rs), Biology of Rice. Development <strong>in</strong><br />

Crop Science 7. Jap<strong>an</strong> Scientific Soci<strong>et</strong>ies Press, Tokyo. pp.<br />

117-131.<br />

Lee, S.Y.. Choi, D.H., Kwon, O.T., So, J.D.. Park. N.P. <strong>an</strong>d Ham,<br />

Y.S.. 1979. The effects of mole dra<strong>in</strong>age <strong>an</strong>d deep plough<strong>in</strong>g<br />

with heavy fertilizer <strong>an</strong>d soil amendment applications <strong>to</strong> <strong>rice</strong><br />

on degraded fluvio-mar<strong>in</strong>e deposit soils. Research Reports of<br />

the Office of Rur<strong>al</strong> Development. Soil Science, Fertilizer,<br />

Pl<strong>an</strong>t Protection <strong>an</strong>d Microbiology 1979. Honam Crop Exp.<br />

Stn.. Iri, S. Korea.. 21: 39-55.<br />

Li<strong>an</strong>. S., 1977. A study on productivity of paddy soils <strong>in</strong> relation<br />

<strong>to</strong> cropp<strong>in</strong>g system. 1. Effect of f<strong>al</strong>low on growth <strong>an</strong>d yield of<br />

second crop <strong>rice</strong> <strong>in</strong> some slate <strong>al</strong>luvia1 soils. J. Agric. Res.<br />

Ch<strong>in</strong>a. 26(2): 85-99.<br />

L<strong>in</strong>. J.Y., Chen. C.G. <strong>an</strong>d L<strong>in</strong>, J.L., 1994. Post-head<strong>in</strong>g production<br />

<strong>an</strong>d distribution of assimilates <strong>in</strong> <strong>rice</strong> pl<strong>an</strong>ts as <strong>in</strong>fluenced by<br />

s<strong>in</strong>k m<strong>an</strong>ipulation. J. Agric. Assoc. Ch<strong>in</strong>a. 166: 27-40 (<strong>in</strong><br />

Ch<strong>in</strong>ese).<br />

Mitsui, S., Aso, S. <strong>an</strong>d Kumazawa, K., 1951. J. Sci. Soil M<strong>an</strong>ure<br />

Jpn.. 22: 42-5 1.<br />

Mitsui. S. <strong>an</strong>d K. Kumazawa. 1964. J. S<strong>et</strong>. Soil M<strong>an</strong>ure Jpn., 38,<br />

115-118.<br />

Miyasaka, A., 1970. Effects of dra<strong>in</strong>age on the growth of <strong>rice</strong> <strong>in</strong><br />

ill-dra<strong>in</strong>ed paddy soil. Bull. Hokuriku Agric. Exp. Stn., 12:<br />

l-80.<br />

Murty. P.S.S. <strong>an</strong>d Murty. K.S.. 1982.. Spikel<strong>et</strong> sterility <strong>in</strong> relation<br />

<strong>to</strong> nitrogen <strong>an</strong>d carbohydrate contents <strong>in</strong> <strong>rice</strong>. lndi<strong>an</strong> J. Pl<strong>an</strong>t<br />

Physiol., 25(1 l: 40-48.<br />

Nho. S.P., W<strong>an</strong>g, C.J., Nha, J.S.. Lee, L.B. <strong>an</strong>d Jung, J.Y., 1975.<br />

Morphologic<strong>al</strong> <strong>response</strong> of paddy <strong>rice</strong> <strong>to</strong> mar<strong>in</strong>e deposit soil.<br />

Research reports of the office of Rur<strong>al</strong> Development, Crop<br />

1975. Jeonbuk Prov<strong>in</strong>ci<strong>al</strong> Office of Rur<strong>al</strong> Development, hi, S.<br />

Korea. 17: 151-159.<br />

Onikura, Y.. 1976. Soil, characteristics concern<strong>in</strong>g with the benefici<strong>al</strong><br />

effect of water m<strong>an</strong>agement <strong>in</strong> <strong>rice</strong> cultivation. Proc. of<br />

the Symp. on Tropic<strong>al</strong> Agriculture Researches. August, 1975.<br />

Tropic<strong>al</strong> Agricultur<strong>al</strong> Centre, Ibaraki. Jap<strong>an</strong>. pp. 117-129.<br />

Ota. Y.. 1970. Diagnostic m<strong>et</strong>hods for the measurement of root<br />

activity <strong>in</strong> <strong>rice</strong> pl<strong>an</strong>t. Jpn. Agric. Res. Q.. 5: 1-6.<br />

Patel, C.L.. Ghildhy<strong>al</strong>. B.P. <strong>an</strong>d Tomar. V.S.. 1979. Water use,<br />

nutrient b<strong>al</strong><strong>an</strong>ce <strong>an</strong>d growth of <strong>rice</strong> <strong>in</strong> different dra<strong>in</strong>age<br />

conditions. Riso. 28: 291-296.<br />

Pate]. C.L.. Ghildhy<strong>al</strong>. B.P. <strong>an</strong>d Tomar. VS.. 1984. Nutrient flowrates<br />

<strong>in</strong> <strong>rice</strong> roots under vary<strong>in</strong>g dra<strong>in</strong>age conditions. Pl<strong>an</strong>t<br />

Soil.. 77: 243-252.<br />

Rai. R.V.S. <strong>an</strong>d Murty. KS.. 1979. Growth <strong>an</strong>d yield <strong>in</strong> <strong>rice</strong> as<br />

<strong>in</strong>fluenced by higher nitrogen application under norm<strong>al</strong> <strong>an</strong>d<br />

water logged conditions. Indi<strong>an</strong> J. Agric. Res.. 13: 133-137.<br />

Ray. S. <strong>an</strong>d Choudhuri. M.A., 1981. Effects of pl<strong>an</strong>t growth<br />

regula<strong>to</strong>rs on gra<strong>in</strong> till<strong>in</strong>g <strong>an</strong>d yield of <strong>rice</strong>. Ann. Bot., 47:<br />

7555758.<br />

Sam<strong>an</strong>taa<strong>in</strong>har. B. <strong>an</strong>d Sahu. G.. 1990. Effect of foliar application<br />

of growth regula<strong>to</strong>rs on gra<strong>in</strong> fill<strong>in</strong>g <strong>an</strong>d gram density <strong>in</strong> <strong>rice</strong>.<br />

Indi<strong>an</strong> J. Agric. Sci.. 60: 217-219.<br />

Sei<strong>to</strong>. F.. Nakagori, T.. K<strong>in</strong>ota, N. <strong>an</strong>d K<strong>an</strong>aJawa, T., 1990. The<br />

relationship b<strong>et</strong>ween number of spikel<strong>et</strong>s <strong>an</strong>d growth mea-<br />

,ured at p<strong>an</strong>icle <strong>in</strong>itiation <strong>in</strong> <strong>rice</strong> cv. Mutsuhomare. Report of<br />

the Tohoku Br<strong>an</strong>ch Crop Science Sot. Jap<strong>an</strong>. 1990, No. 33.<br />

pp. 68-69 (<strong>in</strong> Jap<strong>an</strong>ese).<br />

Shioiri. M.. 1944. Nogyo No. 769. 8. Referred <strong>in</strong>: Kumazawa, K.,<br />

1984. Physiologic<strong>al</strong> specificity of <strong>rice</strong> root <strong>in</strong> relation <strong>to</strong><br />

oxidtzmg power <strong>an</strong>d nutrient uptake. In: S. Tsunoda <strong>an</strong>d N.<br />

Takahasi (Edi<strong>to</strong>rs). Biology of Rice. Development <strong>in</strong> Crop<br />

Science 7. Jap<strong>an</strong> Scientific Soci<strong>et</strong>ies Press, Tokyo. p. 121.<br />

Shirakura, J.. Shikui. H. <strong>an</strong>d Otaki., M., 1977. Studies on the<br />

high-level utilization of clay paddy fields <strong>in</strong> Ntigata prefecture.<br />

3. <strong>in</strong>fluence of dra<strong>in</strong>age by simple sh<strong>al</strong>low under-dra<strong>in</strong>s<br />

on the physics <strong>an</strong>d chemistry of soil <strong>an</strong>d on ch<strong>an</strong>ges <strong>in</strong> crop<br />

growth. J. Niigata Agric. Exp. Stn., 26: 1 l-27.<br />

S<strong>in</strong>clair. T.R. <strong>an</strong>d De Wit, C.T.. 1975. Pho<strong>to</strong>synthate <strong>an</strong>d nitrogen<br />

requuement:, for seed production by various crops. Science<br />

189: 56.5-567.<br />

S<strong>in</strong>clair. T.R. <strong>an</strong>d Horie. T.. 1989. Leaf nitrogen, pho<strong>to</strong>synthesis<br />

<strong>an</strong>d crop radiation use efficiency: a review. Crop Sci., 29:<br />

90-98.<br />

S<strong>in</strong>clair, T.R.. 1990. Nitrogen <strong>in</strong>fluence on the physiology of crop<br />

yield. ln: R. Rabb<strong>in</strong>ge. J. Goudria<strong>an</strong>, H. v<strong>an</strong> Kluen, F.W.T.


82 S. Ramas<strong>an</strong>y <strong>et</strong> <strong>al</strong>. / Field Crops Research 51 f <strong>1997</strong>165-82<br />

Penn<strong>in</strong>g de Vries <strong>an</strong>d H.H. v<strong>an</strong> Laar (Edi<strong>to</strong>rs). Theor<strong>et</strong>ic<strong>al</strong><br />

production ecology: reflections <strong>an</strong>d prospects. Pudoc, Wagen<strong>in</strong>gen,<br />

pp. 41-55.<br />

S<strong>in</strong>g<strong>an</strong>dhupe, R.B. <strong>an</strong>d Rajput, R.K., 1987. Response of <strong>rice</strong> <strong>to</strong><br />

irrigation schedule <strong>an</strong>d nitrogen <strong>in</strong> sodic soil. Indi<strong>an</strong> J. Agron..<br />

32: 130-133.<br />

Smiciklas, K.D. <strong>an</strong>d Below F.E.. 1992. Role of cy<strong>to</strong>kimn <strong>in</strong><br />

enh<strong>an</strong>ced productivity of maize supplied with NH: <strong>an</strong>d NO;.<br />

Pl<strong>an</strong>t Soil, 142: 307-313.<br />

Snitwongse. P. <strong>an</strong>d Jirath<strong>an</strong>a, P., 198 1. The study on the effect of<br />

water m<strong>an</strong>agement <strong>an</strong>d nitrogen fertilizer practices on the<br />

efficiency of fertilizer utilization. Thai J. Agric. Sci., 14(2):<br />

107-121.<br />

Soejima, H., Sugiyama, T. <strong>an</strong>d Ishihara, K.. 1992. Ch<strong>an</strong>ges <strong>in</strong><br />

cy<strong>to</strong>k<strong>in</strong><strong>in</strong> activities <strong>an</strong>d mass spectrom<strong>et</strong>ric <strong>an</strong><strong>al</strong>ysis of cy<strong>to</strong>k<strong>in</strong><strong>in</strong>s<br />

<strong>in</strong> root exudates of <strong>rice</strong> pl<strong>an</strong>t. Pl<strong>an</strong>t Physiol.. 100:<br />

1724-1729.<br />

Ten Berge, H.F.M., Tbiyagaraj<strong>an</strong>, T.M., Shi, Q., Wopereis.<br />

M.C.S.. Drenth, H. <strong>an</strong>d J<strong>an</strong>sen, M.J.W., 1996. Numeric<strong>al</strong><br />

optimisation of nitrogen application <strong>to</strong> <strong>rice</strong>. Part I. Description<br />

of MANAGE-N. Field Crops Res., this issue.<br />

Trolldenier, G.. 1977. M<strong>in</strong>er<strong>al</strong> nutrition <strong>an</strong>d reduction processes <strong>in</strong><br />

the rhizosphere of <strong>rice</strong>. Pl<strong>an</strong>t Soil, 47: 193-202.<br />

Tseng, K.J. <strong>an</strong>d Y<strong>an</strong>g, T.C., 1990. Studies on the effect of soil E,<br />

<strong>an</strong>d bulk density on <strong>rice</strong> root development, J. Agric. Chem.<br />

Sot., 28(2): 160-165 (<strong>in</strong> Ch<strong>in</strong>ese).<br />

Upadhya, G.S., Datta, N.P. <strong>an</strong>d Deb. D.L., 1973. Note on the<br />

effect of selected dra<strong>in</strong>age practices on yield of <strong>rice</strong> <strong>an</strong>d the<br />

efficiency of nitrogen use. Indi<strong>an</strong> J. Agric. Sci. 43: 888-889.<br />

Veltkamp, H.J. <strong>an</strong>d M<strong>an</strong>nies<strong>in</strong>g, K.. 1974. Rice. In: L<strong>an</strong>dbouw<br />

proefstation: Annu<strong>al</strong> Report 1972. Jaarverslag. L<strong>an</strong>dbouwproefst.<br />

Sur<strong>in</strong>ame Bull., 95: 46-5 1<br />

Vorob-ev. N.V. <strong>an</strong>d Skazhennik, M.A., 1987. Fiziol. Biokhim.<br />

Kul’t. Rast., 19(6): 588-593.<br />

Wat<strong>an</strong>abe, K., Fukuzawa, S.. Higuchi, F., Sai<strong>to</strong>. S. <strong>an</strong>d Wat<strong>an</strong>abe<br />

S., 1974. Effect of percolation on the growth <strong>an</strong>d gra<strong>in</strong> yields<br />

of <strong>rice</strong> pl<strong>an</strong>t <strong>an</strong>d physico-chemic<strong>al</strong> properties of paddy soil. J.<br />

Sci. Soil M<strong>an</strong>ure Jpn., 45(10): 44-446.<br />

Weng, J.H., Takeda, T., Agata, W. <strong>an</strong>d Hakoyama, S., 1982.<br />

Studies on dry matter <strong>an</strong>d gra<strong>in</strong> production of <strong>rice</strong> pl<strong>an</strong>ts. Jpn.<br />

J. Crop Sci., 51: 500-509.<br />

Will<strong>et</strong>t, I.R. <strong>an</strong>d Muirhead, W.A., 1984. Nutrient tr<strong>an</strong>s<strong>formation</strong><br />

<strong>in</strong> a grey clay soil dur<strong>in</strong>g <strong>rice</strong> rotation <strong>to</strong> fertilizer requirements<br />

of post <strong>rice</strong> crops. Rev. Rur<strong>al</strong> Sci., 5: 240-246.<br />

Yamamuro, S., 1983. Nitrogen cycle <strong>in</strong> paddy fields. Jpn. Agric.<br />

Res. Q,, 17: 106-111.<br />

Y<strong>an</strong>a<strong>to</strong>ri, S., 1981. D<strong>et</strong>erm<strong>in</strong>ation of oxidation activity of <strong>rice</strong><br />

roots <strong>to</strong> ferrous solution. Jpn. J. Crop Sci., 50: 509-513.<br />

Yoshida, R., 1987. Effects of zeat<strong>in</strong> <strong>an</strong>d abscisic acid on gra<strong>in</strong><br />

ripen<strong>in</strong>g <strong>in</strong> <strong>rice</strong>. Proc. of the Pl<strong>an</strong>t Growth Regula<strong>to</strong>r Soci<strong>et</strong>y<br />

of America, 1987, pp. Y l-96.<br />

Yoshida. S. <strong>an</strong>d Parao, F.T., 1976. Climatic <strong>in</strong>fluence on yield <strong>an</strong>d<br />

yield components of lowl<strong>an</strong>d <strong>rice</strong> <strong>in</strong> the tropics. In: Climate<br />

<strong>an</strong>d Rice. IRRI, P.O. Box 933. M<strong>an</strong>ila, pp 471-494.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!