04.06.2016 Views

Suhling et al. - 2000 - Effects of insecticide applications on macroinvert

Suhling et al. - 2000 - Effects of insecticide applications on macroinvert

Suhling et al. - 2000 - Effects of insecticide applications on macroinvert

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hydrobiologia 431: 69–79, <str<strong>on</strong>g>2000</str<strong>on</strong>g>.<br />

H.L. Golterman (ed.), Sediment–Water Interacti<strong>on</strong> 10.<br />

© <str<strong>on</strong>g>2000</str<strong>on</strong>g> Kluwer Academic Publishers. Printed in the N<str<strong>on</strong>g>et</str<strong>on</strong>g>herlands.<br />

69<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>macroinvert</strong>ebrate density<br />

and biomass in rice-fields in the Rhône-delta, France<br />

Frank <str<strong>on</strong>g>Suhling</str<strong>on</strong>g> 1 , Silke Befeld 2 , Matthias Häusler 1 , Katrin Katzur 1 , Sigrit Lepkojus 1<br />

& Francois Mesléard 2<br />

1 Zoologisches Institut, Technische Universität Braunschweig, Fasanenstraße 3, D-38092 Braunschweig, Germany<br />

2 Stati<strong>on</strong> Biologique de la Tour du V<str<strong>on</strong>g>al</str<strong>on</strong>g>at, Le Sambuc, F-13200 Arles, France<br />

Received 2 March 1999; in revised form 10 June 1999; accepted 20 June 1999<br />

Key words: rice-fields, lindane, diazin<strong>on</strong>, <str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine, <strong>macroinvert</strong>ebrate successi<strong>on</strong>, Od<strong>on</strong>ata<br />

Abstract<br />

The density <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 <strong>macroinvert</strong>ebrate species and the tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <strong>macroinvert</strong>ebrate biomass were compared b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween<br />

rice-fields treated with lindane and diazin<strong>on</strong> in June and <str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine in August and untreated c<strong>on</strong>trols. The<br />

<strong>macroinvert</strong>ebrates could be divided into four groups: (1) Taxa, in which the densities were lower in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

treatment in July and August than in the n<strong>on</strong>-<str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment. (2) The Culicidae which occurred in<br />

the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment in significantly lower density in July, but in significantly higher density in August. (3)<br />

Ischnura elegans (Vander L.) which was found in July after the lindane applicati<strong>on</strong> in significantly higher numbers<br />

in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatments, but in significantly lower numbers in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment in August after the<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid. In these three groups, we assumed that direct effects due to the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s toxicity<br />

were the reas<strong>on</strong> for the differences in density. (4) The fourth group included three taxa in which the densities were<br />

significantly higher in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment in July and August than in the c<strong>on</strong>trol. For this, indirect effects<br />

due to reduced biotic interacti<strong>on</strong>s may be resp<strong>on</strong>sible. The biomass was higher in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatments in<br />

July, mainly because <str<strong>on</strong>g>of</str<strong>on</strong>g> a high increase in gastropod density, during the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the seas<strong>on</strong> it was similar b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween<br />

treatments and c<strong>on</strong>trols.<br />

Introducti<strong>on</strong><br />

For aquatic anim<str<strong>on</strong>g>al</str<strong>on</strong>g>s, rice-fields are extreme habitats<br />

with respect to the abiotic c<strong>on</strong>diti<strong>on</strong>s (Fernando,<br />

1993). In many physic<str<strong>on</strong>g>al</str<strong>on</strong>g> and chemic<str<strong>on</strong>g>al</str<strong>on</strong>g> param<str<strong>on</strong>g>et</str<strong>on</strong>g>ers,<br />

like water temperature, O 2 c<strong>on</strong>centrati<strong>on</strong> and particularly<br />

the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding, they are comparable<br />

to typic<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary waters and the invertebrates need<br />

speci<str<strong>on</strong>g>al</str<strong>on</strong>g> adaptati<strong>on</strong>s to survive these c<strong>on</strong>diti<strong>on</strong>s (Williams,<br />

1987). Like natur<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands, the<br />

rice-fields are characterised by a typic<str<strong>on</strong>g>al</str<strong>on</strong>g> cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding<br />

and desiccati<strong>on</strong>, leading to a str<strong>on</strong>g successi<strong>on</strong> in<br />

their fauna (Heckman, 1974, 1979).<br />

Rice-fields in the Mediterranean regi<strong>on</strong> differ in<br />

some respects from natur<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands in<br />

the same regi<strong>on</strong>. (1) They have an aperiodic water<br />

cycle with respect to the rainy seas<strong>on</strong>: whereas<br />

Mediterranean natur<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands are dry in<br />

summer, rice-fields are dry in winter. This difference<br />

may cause problems for those species whose<br />

life-cycles are adapted to natur<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands,<br />

e.g. some drag<strong>on</strong>flies whose larv<str<strong>on</strong>g>al</str<strong>on</strong>g> stages occur during<br />

winter and which are adult and, therefore, independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water, during the dry seas<strong>on</strong> (Aguesse, 1960;<br />

Samraoui <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1998). (2) Agricultur<str<strong>on</strong>g>al</str<strong>on</strong>g> operati<strong>on</strong>s<br />

associated with rice-farming, including pesticide applicati<strong>on</strong>,<br />

soil fertilisati<strong>on</strong> and ploughing, may affect<br />

<strong>macroinvert</strong>ebrates and prevent the col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rice-fields by some species (Aguesse, 1960; Takamura<br />

& Yasuno, 1985; Kurihara, 1989; Simps<strong>on</strong> <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>.,<br />

1994a, b). Insecticides which reduce insect pests reducing<br />

the yield like planthoppers (Cicadidae), leafhoppers<br />

(Orthopteroidea), bugs (H<str<strong>on</strong>g>et</str<strong>on</strong>g>eroptera), moths<br />

(Lepidoptera) and chir<strong>on</strong>omids (Diptera) (Kiritani,<br />

1979; Way <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1991; Cohen <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1994; Way &<br />

He<strong>on</strong>g, 1994) and mosquitoes (Meek & Ols<strong>on</strong>, 1991)


70<br />

particularly affect a shift in <strong>macroinvert</strong>ebrate community<br />

structures because <str<strong>on</strong>g>of</str<strong>on</strong>g> their selective effects <strong>on</strong><br />

different species. According to Takamura & Yasuno<br />

(1985), the densities <str<strong>on</strong>g>of</str<strong>on</strong>g> predators, aquatic be<str<strong>on</strong>g>et</str<strong>on</strong>g>les and<br />

drag<strong>on</strong>flies in a Japanese rice-field decreased due to<br />

pesticide applicati<strong>on</strong>, while that <str<strong>on</strong>g>of</str<strong>on</strong>g> chir<strong>on</strong>omids and<br />

ostracods increased (for the latter see <str<strong>on</strong>g>al</str<strong>on</strong>g>so Simps<strong>on</strong> <str<strong>on</strong>g>et</str<strong>on</strong>g><br />

<str<strong>on</strong>g>al</str<strong>on</strong>g>., 1994b).<br />

The invertebrate fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean rice-fields<br />

in the Rhône and the Ebro deltas is well known.<br />

Some studies de<str<strong>on</strong>g>al</str<strong>on</strong>g> with microcrustacea (P<strong>on</strong>t, 1977,<br />

1985), others provide data <strong>on</strong> the <strong>macroinvert</strong>ebrates<br />

(Aguesse, 1960; Tourenq, 1966, 1970; Marazan<str<strong>on</strong>g>of</str<strong>on</strong>g>,<br />

1969; Vi<str<strong>on</strong>g>al</str<strong>on</strong>g>a, 1978; P<strong>on</strong>t & Vaquer, 1986; G<strong>on</strong>zález-<br />

Solís & Ruiz, 1996). However, few studies de<str<strong>on</strong>g>al</str<strong>on</strong>g> with<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s <strong>on</strong> the invertebrate fauna<br />

(e.g. Schnapauff, 1995). The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was<br />

to d<str<strong>on</strong>g>et</str<strong>on</strong>g>ect the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> <strong>on</strong> the<br />

<strong>macroinvert</strong>ebrate biomass and density in the ricefields<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Rhône delta, with some speci<str<strong>on</strong>g>al</str<strong>on</strong>g> reference<br />

to od<strong>on</strong>ate populati<strong>on</strong>s.<br />

Study area<br />

The study was carried out at the domaine Tour du<br />

V<str<strong>on</strong>g>al</str<strong>on</strong>g>at / P<str<strong>on</strong>g>et</str<strong>on</strong>g>it Bad<strong>on</strong> (43 ◦ 31 ′ N, 4 ◦ 40 ′ E) which is<br />

situated in the Rhône delta (South <str<strong>on</strong>g>of</str<strong>on</strong>g> France). For further<br />

d<str<strong>on</strong>g>et</str<strong>on</strong>g>ails <strong>on</strong> the domaine, see Sinnassamy & Pineau<br />

(1996). Rice farming was developed in the Camargue<br />

after the sec<strong>on</strong>d world war. The area under riziculture<br />

peaked at about 32 000 ha in 1960, but socio-ec<strong>on</strong>omic<br />

changes beginning in 1963 reduced this to 4000 ha<br />

by 1980 (Barbier & Mour<str<strong>on</strong>g>et</str<strong>on</strong>g>, 1992). After 1981, EC<br />

subsides and improved agricultur<str<strong>on</strong>g>al</str<strong>on</strong>g> techniques led to<br />

an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the farming area which reached 24 000<br />

ha in 1997 (16% <str<strong>on</strong>g>of</str<strong>on</strong>g> the tot<str<strong>on</strong>g>al</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> the Camargue).<br />

Another 26 000 ha were covered by dry crops. Sixty<br />

thousand ha were occupied by natur<str<strong>on</strong>g>al</str<strong>on</strong>g> habitats including<br />

marshes and lago<strong>on</strong>s, and 25 000 ha by s<str<strong>on</strong>g>al</str<strong>on</strong>g>t<br />

pans.<br />

Materi<str<strong>on</strong>g>al</str<strong>on</strong>g> and m<str<strong>on</strong>g>et</str<strong>on</strong>g>hods<br />

Experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> rice-fields<br />

To study the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> <strong>on</strong> the<br />

aquatic <strong>macroinvert</strong>ebrate community and biomass experiment<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

rice-fields were s<str<strong>on</strong>g>et</str<strong>on</strong>g> up in January 1997<br />

using existing rice-fields. No pesticides were used in<br />

these fields the preceding 10 years. The study site c<strong>on</strong>sisted<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 18 fields <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.38 ha each. The fields were<br />

separated by dikes and irrigated with water from a<br />

nearby can<str<strong>on</strong>g>al</str<strong>on</strong>g> at 3 day interv<str<strong>on</strong>g>al</str<strong>on</strong>g>s. The water arrived at<br />

an inflow area, which was <str<strong>on</strong>g>al</str<strong>on</strong>g>so sown with rice, and<br />

from there was distributed to the fields by pipes in the<br />

dikes. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> January, the fields were drained<br />

and ploughed and harrowed before sowing <strong>on</strong> May 13.<br />

The experiment included two different treatments,<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> nine rice-fields, varying the factor <str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

applicati<strong>on</strong>. On June 19, Icaz<strong>on</strong> (175 g l −1 lindane and<br />

50 g l −1 diazin<strong>on</strong> active ingredients) in a c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1 l ha −1 was applied in a diluti<strong>on</strong> with water (400<br />

lha −1 ) directly to the flooded surface <str<strong>on</strong>g>of</str<strong>on</strong>g> nine fields<br />

to combat leaf-mining chir<strong>on</strong>omids. With a maximum<br />

mean water level <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 cm the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

active ingredients were c<str<strong>on</strong>g>al</str<strong>on</strong>g>culated to be 116.7 µg l −1<br />

lindane and 33.3 µgl −1 diazin<strong>on</strong>. On August 7, Fastac<br />

(<str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine, a pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid) in a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3<br />

lha −1 was applicated to c<strong>on</strong>trol Chilo suppress<str<strong>on</strong>g>al</str<strong>on</strong>g>is<br />

(Lepidoptera) in a diluti<strong>on</strong> with heliosol (terpen <str<strong>on</strong>g>al</str<strong>on</strong>g>cohol)<br />

0.3 l ha −1 as a fixative and water 500 l ha −1 .The<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine at 15 cm water level<br />

was c<str<strong>on</strong>g>al</str<strong>on</strong>g>culated to be 10 µg l −1 . The adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s to the sediment – which may occur within<br />

a few days (Thybaud, 1990) – was not c<str<strong>on</strong>g>al</str<strong>on</strong>g>culated. No<br />

fertilisers, herbicides or fungicides were used. In additi<strong>on</strong><br />

to rice (Oryza sativa, var.Cig<str<strong>on</strong>g>al</str<strong>on</strong>g><strong>on</strong>)Echinocloa<br />

crus-g<str<strong>on</strong>g>al</str<strong>on</strong>g>li (L.), Cyperus ssp., Polyg<strong>on</strong>ium amphibium<br />

L., Scirpus maritimus L., H<str<strong>on</strong>g>et</str<strong>on</strong>g>eranthera limosa and<br />

Characeae grow in the fields. The fields were drained<br />

1 week before harvesting <strong>on</strong> September 24 and 25.<br />

Macroinvertebrate sampling<br />

To obtain data <strong>on</strong> <strong>macroinvert</strong>ebrate density and biomass,<br />

quantitative samples were taken using a squaresampler.<br />

Three sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampler were closed<br />

with mesh (1.3 mm) and the remaining side with the<br />

sampling n<str<strong>on</strong>g>et</str<strong>on</strong>g> (mesh size: 0.5 mm). The inner area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sampler was 0.325 × 0.325 m (0.1 m 2 ). The frame<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sampler was placed over a randomly chosen plot<br />

<str<strong>on</strong>g>al</str<strong>on</strong>g><strong>on</strong>g a transect (see below) and the veg<str<strong>on</strong>g>et</str<strong>on</strong>g>ati<strong>on</strong> in the<br />

inner frame was cut and, tog<str<strong>on</strong>g>et</str<strong>on</strong>g>her with the sediment,<br />

pushed into the n<str<strong>on</strong>g>et</str<strong>on</strong>g> using a sm<str<strong>on</strong>g>al</str<strong>on</strong>g>l broom. Then the<br />

sampler was lifted out <str<strong>on</strong>g>of</str<strong>on</strong>g> the water and the sediment<br />

transferred to a white bowl and manu<str<strong>on</strong>g>al</str<strong>on</strong>g>ly searched for<br />

the macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. The invertebrate samples were preserved<br />

with 70% Ethanol in 5 ml jars and identified<br />

to the species in the laboratory. The sampling started<br />

just after the flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields in May, 1997.


71<br />

The sampling periods were: (I) 13–17 May, 1997; (II)<br />

17–19 June, 1997; (III) 16–19 July, 1997 and (IV)<br />

21–23 August, 1997. During each sampling period,<br />

four samples were taken per field <str<strong>on</strong>g>al</str<strong>on</strong>g><strong>on</strong>g a transect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 m, so that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples per treatment and<br />

sampling period was 36.<br />

Biomass<br />

Biomass measurements using preserved materi<str<strong>on</strong>g>al</str<strong>on</strong>g> usu<str<strong>on</strong>g>al</str<strong>on</strong>g>ly<br />

suffers from weight loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the organisms due<br />

to the dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fatty acids <str<strong>on</strong>g>et</str<strong>on</strong>g>c. in <str<strong>on</strong>g>al</str<strong>on</strong>g>cohol (e.g.<br />

Schwoerbel, 1986). To minimise this problem, the following<br />

m<str<strong>on</strong>g>et</str<strong>on</strong>g>hod was used: before being filled, the jars<br />

used for preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>macroinvert</strong>ebrate samples<br />

were weighed to the nearest 0.001 g using a M<str<strong>on</strong>g>et</str<strong>on</strong>g>tlerb<str<strong>on</strong>g>al</str<strong>on</strong>g>ance<br />

(precisi<strong>on</strong>: 0.0001 g) and numbered. In the<br />

laboratory, the <str<strong>on</strong>g>al</str<strong>on</strong>g>cohol was vaporised and the samples<br />

dried at 60 ◦ C for 72 h in the jars, which were then<br />

weighed again. Using this m<str<strong>on</strong>g>et</str<strong>on</strong>g>hod, <str<strong>on</strong>g>al</str<strong>on</strong>g>l dissolved materi<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

remained in the jars after drying. The difference<br />

in weight b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween the empty jar and the jar with the<br />

dried organisms was c<strong>on</strong>sidered the dry biomass per<br />

sample.<br />

Od<strong>on</strong>ate emergence<br />

In additi<strong>on</strong> to sampling, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong><br />

was studied by m<strong>on</strong>itoring od<strong>on</strong>ate emergence<br />

in 12 fields. The anisopteran exuviae were<br />

collected <str<strong>on</strong>g>al</str<strong>on</strong>g><strong>on</strong>g 16 m transects at 2-day interv<str<strong>on</strong>g>al</str<strong>on</strong>g>s and<br />

counted and identified in the lab. To g<str<strong>on</strong>g>et</str<strong>on</strong>g> quantitative<br />

data <strong>on</strong> zygopteran emergence, in which exuviae were<br />

much harder to d<str<strong>on</strong>g>et</str<strong>on</strong>g>ect, cages with an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 m<br />

× 0.8 m were placed close to the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> six fields<br />

treated with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s and six untreated fields. The<br />

damselflies emerging in the cages were recorded at<br />

2-day interv<str<strong>on</strong>g>al</str<strong>on</strong>g>s, and identified.<br />

Data an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysis<br />

Sampling data <strong>on</strong> the densities <str<strong>on</strong>g>of</str<strong>on</strong>g> these taxa, as well as<br />

<strong>on</strong> biomass, were an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysed using two-way ANOVAs<br />

with the sampling date and the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong><br />

/ n<strong>on</strong>-applicati<strong>on</strong> as independent variables. In those<br />

taxa where the ANOVAs indicated significant effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> or significant interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

date and <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>, a posteriori an<str<strong>on</strong>g>al</str<strong>on</strong>g>yses’<br />

<strong>on</strong> means were used to d<str<strong>on</strong>g>et</str<strong>on</strong>g>ermine m<strong>on</strong>thly differences<br />

in the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>. The data<br />

<strong>on</strong> anisopteran and zygopteran emergence were com-<br />

Table 1. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-way ANOVAs for the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date and<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> <strong>on</strong> the density <str<strong>on</strong>g>of</str<strong>on</strong>g> selected species. ∗ = P<br />

≤ 0.05, ∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001<br />

Tax<strong>on</strong><br />

ANOVA F-v<str<strong>on</strong>g>al</str<strong>on</strong>g>ue for<br />

Date Insecticide Insect. × Date<br />

(DF=3) (DF=1) (DF=3)<br />

Gyraulus chinensis 17.780 ∗∗∗ 14.649 ∗∗∗ 6.122 ∗∗∗<br />

Physella acuta 5.565 ∗∗ 1.613 0.432<br />

Oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>a 7.992 ∗∗∗ 2.642 0.310<br />

Erpobdella octoculata 13.526 ∗∗∗ 6.737 ∗ 5.297 ∗∗<br />

Hydrachnellae 12.648 ∗∗∗ 0.984 0.940<br />

Caënis sp. 13.815 ∗∗∗ 3.553 7.505 ∗∗∗<br />

Cloë<strong>on</strong> dipterum 14.415 ∗∗∗ 9.074 ∗∗ 9.679 ∗∗∗<br />

Baëtis sp. 7.835 ∗∗∗ 2.667 4.532 ∗∗<br />

Ischnura elegans 32.412 ∗∗∗ 5.783 ∗ 15.149 ∗∗∗<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum <str<strong>on</strong>g>al</str<strong>on</strong>g>bistylum 7.257 ∗∗∗ 1.029 0.825<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum cancellatum 9.255 ∗∗∗ 7.230 ∗∗ 3.437 ∗<br />

Crocothemis erythraea 25.300 ∗∗∗ 0.303 0.366<br />

Symp<str<strong>on</strong>g>et</str<strong>on</strong>g>rum f<strong>on</strong>scolombii 21.150 ∗∗∗ 6.703 ∗ 3.650 ∗<br />

Corixa punctata 1.709 2.831 1.324<br />

Sigara later<str<strong>on</strong>g>al</str<strong>on</strong>g>is 2.660 1.560 1.526<br />

carnivorous H<str<strong>on</strong>g>et</str<strong>on</strong>g>eroptera 7.044 ∗∗∗ 12.195 ∗∗∗ 5.639 ∗∗<br />

Culicidae 15.512 ∗∗∗ 0.330 7.148 ∗∗∗<br />

Chir<strong>on</strong>omidae 7.700 ∗∗∗ 1.239 0.699<br />

Berosus ssp. 7.557 ∗∗∗ 2.027 3.669 ∗<br />

Guignatus pusillus 1.740 0.058 2.662<br />

H<str<strong>on</strong>g>al</str<strong>on</strong>g>iplinus heydeni 6.218 ∗∗∗ 3.158 5.583 ∗∗<br />

Laccophilus sp. 24.576 ∗∗∗ 10.745 ∗∗ 6.921 ∗∗∗<br />

Noterus sp. 19.243 ∗∗∗ 6.263 ∗ 4.324 ∗∗<br />

bined from <str<strong>on</strong>g>al</str<strong>on</strong>g>l six transects and cages, respectively, per<br />

treatment and an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysed with chi 2 -test.<br />

Only species numbering in at least 30 individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s<br />

during <str<strong>on</strong>g>al</str<strong>on</strong>g>l sampling periods tog<str<strong>on</strong>g>et</str<strong>on</strong>g>her were an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysed. In<br />

some cases, when exact identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the species<br />

was not possible, taxa were pooled for further an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysis.<br />

This occurred with the Chir<strong>on</strong>omidae (at least four<br />

species), the Culicidae (at least three species), the Hydrachnellae<br />

(four species) and Berosus spp. (= Berosus<br />

luridens (L.) and B. signaticollis (Charp.)). Carnivorous<br />

H<str<strong>on</strong>g>et</str<strong>on</strong>g>eroptera (= Naucoris maculatus Fabr., Nepa<br />

cinerea L., Not<strong>on</strong>ecta glauca L. and Plea minutissima<br />

Leach) are numbered <str<strong>on</strong>g>al</str<strong>on</strong>g>l below 30 but <str<strong>on</strong>g>al</str<strong>on</strong>g>l showed<br />

the same distributi<strong>on</strong>, so these were <str<strong>on</strong>g>al</str<strong>on</strong>g>so pooled.<br />

In some pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> od<strong>on</strong>ates – Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum cancellatum<br />

(L.) and O. <str<strong>on</strong>g>al</str<strong>on</strong>g>bistylum (Sélys), Crocothemis erythraea<br />

(Brullé) and Symp<str<strong>on</strong>g>et</str<strong>on</strong>g>rum f<strong>on</strong>scolombii (Sélys),<br />

Ischnura elegans (Vander. L.) and I. pumilio (Charp.)<br />

– sm<str<strong>on</strong>g>al</str<strong>on</strong>g>l larvae (below instar 7) could not be correctly


72<br />

classified. The same was true <str<strong>on</strong>g>of</str<strong>on</strong>g> the corixid larvae.<br />

C<strong>on</strong>sequently sm<str<strong>on</strong>g>al</str<strong>on</strong>g>l od<strong>on</strong>ate larvae and corixid larvae<br />

were excluded from the an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysis.<br />

Results<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample date<br />

A tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 84 species <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>macroinvert</strong>ebrates was found<br />

in the experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> rice-fields. In May, 18 taxa were<br />

found and the number increased to 40 in June and 56<br />

in July, decreasing slightly in August to 53. In most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the taxa, fewer than 30 individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s were caught during<br />

the sample periods. Twenty-three taxa were found in<br />

abundance <str<strong>on</strong>g>al</str<strong>on</strong>g>lowing a statistic<str<strong>on</strong>g>al</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sample period and <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> <strong>on</strong><br />

densities. With the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the be<str<strong>on</strong>g>et</str<strong>on</strong>g>le Guignatus<br />

pusillus (Fabr.) and the bugs Corixa punctata (Illiger)<br />

and Sigara later<str<strong>on</strong>g>al</str<strong>on</strong>g>is (Leach) the densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>l <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these 23 taxa varied significantly with the sample dates<br />

(Table 1). Only the oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>es and the chir<strong>on</strong>omids<br />

reached their greatest abundance in May and June, respectively<br />

(see Table 2). Gyraulis chinensis (Dunker),<br />

Ba<str<strong>on</strong>g>et</str<strong>on</strong>g>is sp., Berosus ssp., Laccophilus sp. and the Hydrachnellae<br />

were found in their highest densities in<br />

July and <str<strong>on</strong>g>al</str<strong>on</strong>g>l the others occurred mainly in August,<br />

particularly carnivorous species such as od<strong>on</strong>ates and<br />

some bugs (Not<strong>on</strong>ecta, Naucoris).<br />

Insecticide applicati<strong>on</strong> and <strong>macroinvert</strong>ebrate density<br />

In nine <str<strong>on</strong>g>of</str<strong>on</strong>g> the 23 taxa an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysed, no significant effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the treatment (<str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> / n<strong>on</strong> applicati<strong>on</strong>)<br />

were found (Table 1). These were Physella acuta<br />

(Drap.), Oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>a, Hydrachnellae, Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum <str<strong>on</strong>g>al</str<strong>on</strong>g>bistylum<br />

(Sélys), Crocothemis erythraea (Brullé), C.<br />

punctata, S. later<str<strong>on</strong>g>al</str<strong>on</strong>g>is, Chir<strong>on</strong>omidae and G. pusillus.<br />

In 14 taxa, two-way ANOVAs indicated significant effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the treatment and / or significant treatment ×<br />

date interacti<strong>on</strong>s <strong>on</strong> density (see Table 2). We should<br />

keep in mind that the first <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> was<br />

carried out after the sec<strong>on</strong>d sample period, so, differences<br />

in density b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween treatments not should<br />

be expected before the sample period in July. C<strong>on</strong>sequently<br />

the <strong>macroinvert</strong>ebrates may be divided into<br />

four categories:<br />

1. Taxa in which the densities were gener<str<strong>on</strong>g>al</str<strong>on</strong>g>ly lower<br />

in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatments than in the untreated<br />

samples following the first <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong><br />

in June, and significantly in at least 1 m<strong>on</strong>th.<br />

This group includes three ephemeropterans (Ba<str<strong>on</strong>g>et</str<strong>on</strong>g>is<br />

sp., Cloe<strong>on</strong> dipterum (L.), Caenis sp.), two<br />

od<strong>on</strong>ates (Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum cancellatum (L.), Symp<str<strong>on</strong>g>et</str<strong>on</strong>g>rum<br />

f<strong>on</strong>scolombii (Sélys)), the carnivorous H<str<strong>on</strong>g>et</str<strong>on</strong>g>eroptera<br />

and three coleopterans (Berosus spp., H<str<strong>on</strong>g>al</str<strong>on</strong>g>iplinus<br />

heydeni Wehnke, Noterus sp.) (see Table 2).<br />

2. The Culicidae which occurred in significantly<br />

lower density in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> than in the n<strong>on</strong><str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

treatment following the Icaz<strong>on</strong> applicati<strong>on</strong><br />

in June but in significantly higher density<br />

following the Fastac applicati<strong>on</strong> in July (Table 2).<br />

3. Ischnura elegans (Vander L.) which, in c<strong>on</strong>trast,<br />

was found in significantly higher numbers in July<br />

after the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Icaz<strong>on</strong> in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

treatment, but in significantly lower numbers in<br />

August after the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid<br />

(Table 2).<br />

4. The fin<str<strong>on</strong>g>al</str<strong>on</strong>g> group includes Gyraulus chinensis<br />

(Dunker), Erpobdella octoculata (L.) and Laccophilus<br />

sp., in which the densities were higher in the<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment than in the n<strong>on</strong>-<str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

treatment in July and August.<br />

Results from od<strong>on</strong>ate emergence versus sampling<br />

A tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eleven species <str<strong>on</strong>g>of</str<strong>on</strong>g> od<strong>on</strong>ates occurred in the<br />

fields, and in 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> these emergence was registered<br />

(Table 3). Results from the emergence studies differed<br />

in <strong>on</strong>e aspect from those derived from sampling: in<br />

I. elegans, there was no significant difference in the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> emerged individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween the two treatments<br />

(Table 3). However, in the emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> Anisoptera,<br />

the results resemble those from the sampling:<br />

exuviae <str<strong>on</strong>g>of</str<strong>on</strong>g> S. f<strong>on</strong>scolombii and O. cancellatum were<br />

found in significantly higher numbers in fields without<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s.<br />

Macroinvertebrate community: biomass, density,<br />

diversity<br />

Tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <strong>macroinvert</strong>ebrate biomass and density increased<br />

from May to July (Figure 1). In July both biomass<br />

and tot<str<strong>on</strong>g>al</str<strong>on</strong>g> density were significantly higher in the<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g>-treated fields than in the untreated fields.<br />

In this m<strong>on</strong>th we found the maximum mean biomass<br />

(dry weight) <str<strong>on</strong>g>of</str<strong>on</strong>g> about 3 g m −2 . In the other m<strong>on</strong>ths<br />

there were no significant differences. From July to August,<br />

there was no increase in either param<str<strong>on</strong>g>et</str<strong>on</strong>g>er except<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the biomass in the untreated fields where it reached<br />

its maximum mean v<str<strong>on</strong>g>al</str<strong>on</strong>g>ue in August.<br />

To compare the community diversities b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween the<br />

sample dates and the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>-treated and untreated


73<br />

Table 2. Density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>macroinvert</strong>ebrate taxa (individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s per m 2 ± SD) in rice-fields with and without<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>. For each tax<strong>on</strong>, <strong>on</strong>ly those m<strong>on</strong>ths are given when the species was present. N is<br />

the tot<str<strong>on</strong>g>al</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s per tax<strong>on</strong> and m<strong>on</strong>th. A posteriori an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysis: ∗ = P ≤ 0.05, ∗∗ = P ≤ 0.01<br />

Tax<strong>on</strong> Sample- N Density m −2 [± SD] in rice-fields P<br />

period With <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s Without <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s<br />

Gyraulus chinensis May 31 2.8 ± 3.4 5.8 ± 3.3<br />

June 3057 394.2 ± 215.6 455.0 ± 455.6<br />

July 5644 1122.8 ± 524.6 445.0 ± 281.1 ∗∗<br />

August 3717 800.2 ± 453.2 238.6 ± 187.4 ∗∗<br />

Physella acuta June 95 24.7 ± 38.1 1.7 ± 4.1<br />

July 789 181.9 ± 284.1 43.3 ± 41.2<br />

August 1251 283.9 ± 333.0 203.1 ± 365.2<br />

Oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>a May 1378 174.7 ± 162.8 208.1 ± 159.9<br />

June 125 6.7 ± 12.2 28.1 ± 66.8<br />

July 203 9.7 ± 12.9 46.7 ± 92.8<br />

August 463 19.6 ± 34.6 111.7 ± 219.8<br />

Erpodella octoculata May 3 0.3 ± 0.8 0.6 ± 1.1<br />

June 17 2.5 ± 4.5 3.6 ± 6.1<br />

July 52 9.4 ± 14.0 5.0 ± 8.2<br />

August 180 40.3 ± 30.7 11.1 ± 11.1 ∗<br />

Hydrachnellae May 1 0.0 ± 0.0 0.3 ± 0.8<br />

June 6 1.4 ± 2.5 0.3 ± 0.8<br />

July 44 5.0 ± 5.4 7.2 ± 5.9<br />

August 8 0.3 ± 0.8 1.9 ± 3.5<br />

Ba<str<strong>on</strong>g>et</str<strong>on</strong>g>is sp. June 15 3.9 ± 4.7 0.3 ± 0.8 ∗<br />

July 37 7.2 ± 5.4 3.1 ± 4.3<br />

August 12 0.3 ± 0.8 3.1 ± 3.7 ∗<br />

Caenis sp. June 127 31.4 ± 25.4 3.9 ± 4.5 ∗<br />

July 68 6.9 ± 10.6 11.9 ± 10.2<br />

August 576 32.6 ± 24.8 129.7 ± 112.3 ∗<br />

Cloe<strong>on</strong> dipterum July 1 0.3 ± 0.8 0.0 ± 0.0<br />

August 42 1.4 ± 4.2 13.1 ± 10.5 ∗<br />

Ischnura elegans July 57 11.1 ± 8.4 4.7 ± 3.2 ∗<br />

August 134 8.1 ± 8.8 29.4 ± 13.9 ∗∗<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum <str<strong>on</strong>g>al</str<strong>on</strong>g>bistylum July 7 0.8 ± 2.5 1.1 ± 1.3<br />

August 32 3.2 ± 8.8 6.4 ± 4.4<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum cancellatum July 6 0.0 ± 0.0 1.9 ± 3.5<br />

August 29 1.7 ± 3.5 6.9 ± 6.8 ∗<br />

Crocothemis erythraea July 43 5.3 ± 8.0 6.7 ± 5.4<br />

August 620 100.4 ± 98.7 79.7 ± 35.5<br />

C<strong>on</strong>tinued <strong>on</strong> p. 74


74<br />

Table 2. C<strong>on</strong>tinued<br />

Tax<strong>on</strong> Sample- N Density m −2 [± SD] in rice-fields P<br />

period With <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s Without <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s<br />

Symp<str<strong>on</strong>g>et</str<strong>on</strong>g>rum June 1 0.3 ± 0.8 0.0 ± 0.0<br />

f<strong>on</strong>scolombii July 23 0.8 ± 1.3 6.1 ± 8.8<br />

August 152 12.4 ± 13.9 29.4 ± 19.9 ∗<br />

Corixa punctata June 24 0.8 ± 1.8 5.8 ± 11.2<br />

July 7 1.1 ± 3.3 0.8 ± 2.5<br />

August 9 0.0 ± 0.0 2.5 ± 4.5<br />

Sigara later<str<strong>on</strong>g>al</str<strong>on</strong>g>is May 3 0.8 ± 1.8 0.0 ± 0.0<br />

June 33 1.7 ± 2.5 7.5 ± 13.8<br />

July 5 0.8 ± 1.8 0.6 ± 1.1<br />

August 5 0.0 ± 0.0 1.4 ± 3.3<br />

Carnivorous H<str<strong>on</strong>g>et</str<strong>on</strong>g>eroptera July 9 0.3 ± 0.8 2.2 ± 3.8<br />

August 20 0.3 ± 0.8 5.3 ± 4.4 ∗∗<br />

Culicidae June 3 0.8 ± 1.8 0.0 ± 0.0<br />

July 26 1.1 ± 1.8 6.1 ± 4.4 ∗∗<br />

August 51 10.1 ± 7.1 4.2 ± 2.5 ∗<br />

Chir<strong>on</strong>omidae May 1918 405.0 ± 161.2 127.8 ± 70.8<br />

June 4576 637.8 ± 300.1 633.3 ± 830.9<br />

July 1287 162.8 ± 162.0 194.7 ± 213.8<br />

August 771 182.1 ± 338.4 60.8 ± 35.6<br />

Berosus sp. May 14 1.9 ± 2.4 1.9 ± 2.7<br />

June 56 11.9 ± 6.6 3.6 ± 3.1 ∗∗<br />

July 130 12.5 ± 7.1 23.6 ± 16.1<br />

August 88 6.7 ± 6.3 18.1 ± 14.7 ∗<br />

Guignatus pusillus May 42 5.6 ± 6.3 6.1 ± 3.8<br />

June 83 13.3 ± 9.5 9.7 ± 9.5<br />

July 55 10.0 ± 9.1 5.3 ± 6.1<br />

August 43 1.1 ± 1.3 10.8 ± 15.1<br />

H<str<strong>on</strong>g>al</str<strong>on</strong>g>iplinus heydeni June 20 4.7 ± 5.9 0.8 ± 1.3<br />

July 44 5.6 ± 5.6 6.7 ± 5.0<br />

August 75 2.7 ± 2.7 18.3 ± 19.3 ∗<br />

Laccophilus ssp. May 6 0.6 ± 1.1 1.1 ± 1.3<br />

June 155 29.2 ± 22.3 13.9 ± 10.1<br />

July 281 56.9 ± 31.4 21.1 ± 10.9 ∗∗<br />

August 39 3.1 ± 5.6 7.8 ± 4.9<br />

Noterus sp. May 16 3.1 ± 3.5 1.4 ± 2.8<br />

June 12 2.5 ± 2.5 0.8 ± 1.8<br />

July 128 8.6 ± 7.7 26.9 ± 9.3 ∗∗<br />

August 711 53.5 ± 34.8 144.7 ± 121.8 ∗


75<br />

Table 3. Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> drag<strong>on</strong>fly larvae from the P<str<strong>on</strong>g>et</str<strong>on</strong>g>it Bad<strong>on</strong> rice-fields. Given is the tot<str<strong>on</strong>g>al</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each species emerged from fields with and without pesticide applicati<strong>on</strong>. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the Anax<br />

and Hemianax not <str<strong>on</strong>g>al</str<strong>on</strong>g>l exuviae could be correctly classified to <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> fields because <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

accident. chi 2 -test: ns not significant, ∗∗∗ P ≤ 0.001, – not an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysed<br />

Species Numbers emerged from fields Tot<str<strong>on</strong>g>al</str<strong>on</strong>g> chi 2 -v<str<strong>on</strong>g>al</str<strong>on</strong>g>ue<br />

With pesticide Without pesticide<br />

Lestes sp<strong>on</strong>sa (Hansemann) 1 0 1 –<br />

Ischnura elegans (Vander L.) 156 153 309 0.03 ns<br />

Ischnura pumilio (Charp.) 4 4 8 –<br />

Erythromma viridulum (Charp.) 2 0 2 –<br />

Anax parthenope (Sélys) 89 –<br />

67 83<br />

Hemianax ephippiger (Burm.) 108 –<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum <str<strong>on</strong>g>al</str<strong>on</strong>g>bistylum (Sélys) 1 1 2 –<br />

Orth<str<strong>on</strong>g>et</str<strong>on</strong>g>rum cancellatum (L.) 7 42 49 25.00 ∗∗∗<br />

Crocothemis erythraea (Brullé) 143 111 254 3.58 ns<br />

Symp<str<strong>on</strong>g>et</str<strong>on</strong>g>rum f<strong>on</strong>scolombii (Sélys) 151 250 401 24.44 ∗∗∗<br />

fields, abundance data <strong>on</strong> <str<strong>on</strong>g>al</str<strong>on</strong>g>l taxa were used. It was<br />

found that the diversity (Shann<strong>on</strong>–Weaver, H s )increased<br />

with time. In May, it was comparatively low:<br />

0.86 with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> and 1.08 without. In June, it was<br />

1.44 with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> and 1.18 without. In<br />

c<strong>on</strong>trast, in July and August the diversity was higher<br />

in the untreated fields (July: H s = 2.11, August: H s =<br />

2,72) than in the treated fields (July: H s = 1.58, August:<br />

H s = 1.82).<br />

Discussi<strong>on</strong><br />

Our study showed 1. a str<strong>on</strong>g successi<strong>on</strong> in the<br />

<strong>macroinvert</strong>ebrate community <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> ricefields<br />

during the irrigati<strong>on</strong> period and 2. differences in<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa, as well as differences in<br />

tot<str<strong>on</strong>g>al</str<strong>on</strong>g> density and biomass b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween fields treated with<br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s and <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> free-fields.<br />

Macroinvertebrate community structure and<br />

successi<strong>on</strong><br />

Figure 1. Mean tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <strong>macroinvert</strong>ebrate drymass (A) and density<br />

(B) per m 2 (± SE) in the experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> rice-fields <str<strong>on</strong>g>of</str<strong>on</strong>g> P<str<strong>on</strong>g>et</str<strong>on</strong>g>it Bad<strong>on</strong> during<br />

four sample-periods from May to August, 1997 (see ‘M<str<strong>on</strong>g>et</str<strong>on</strong>g>hods’)<br />

and in fields with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> and without applicati<strong>on</strong><br />

□ (n=36 samples per occasi<strong>on</strong> and type <str<strong>on</strong>g>of</str<strong>on</strong>g> field). Results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2-way-ANOVA are given, additi<strong>on</strong><str<strong>on</strong>g>al</str<strong>on</strong>g>ly, differences per m<strong>on</strong>th are<br />

tested with a posteriori an<str<strong>on</strong>g>al</str<strong>on</strong>g>ysis’: ns = not significant, ∗ = P ≤ 0.05,<br />

∗∗ = P ≤ 0.01, ∗∗∗ = P ≤ 0.001.<br />

The <strong>macroinvert</strong>ebrate community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> temporary<br />

w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands in gener<str<strong>on</strong>g>al</str<strong>on</strong>g> is influenced by the habitat<br />

durati<strong>on</strong> (Williams, 1987, 1997; Schneider & Frost,<br />

1996) and the predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> the dry and w<str<strong>on</strong>g>et</str<strong>on</strong>g> periods<br />

(Williams, 1987). Which species occurs in a given<br />

temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>land depends <strong>on</strong> its life history adaptati<strong>on</strong>s,<br />

e.g. the adaptati<strong>on</strong> to drought, the durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> development, the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> emergence, the ability<br />

to col<strong>on</strong>ise. As a result, the community structure <str<strong>on</strong>g>of</str<strong>on</strong>g>


76<br />

temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands is characterised by a fast successi<strong>on</strong><br />

which is typic<str<strong>on</strong>g>al</str<strong>on</strong>g> for a given type <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat (see<br />

Williams, 1987). For rice-fields, these successi<strong>on</strong>s are<br />

described, e.g. by Heckman (1974, 1979). The community<br />

and its successi<strong>on</strong> in our rice-fields was similar<br />

in most aspects to that recorded from Greek rice-fields<br />

(Schnapauff, 1995) and to those described by Williams<br />

(1997) for temporary waters in England and the U.S.A.<br />

Schneider & Frost (1996) compared data <strong>on</strong> the<br />

presence / absence and the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> species in<br />

different temporary p<strong>on</strong>ds in Wisc<strong>on</strong>sin with three<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> community structure incorporating random<br />

forces, life history and biotic interacti<strong>on</strong>s. They found<br />

that the model <str<strong>on</strong>g>of</str<strong>on</strong>g> life history adaptati<strong>on</strong>s explained<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> species’ occurrence but not <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance<br />

which best fit a model incorporating factors such<br />

as predati<strong>on</strong> and comp<str<strong>on</strong>g>et</str<strong>on</strong>g>iti<strong>on</strong>. These factors became<br />

particularly important with increasing durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

habitat. This pattern seems to be reflected in the P<str<strong>on</strong>g>et</str<strong>on</strong>g>it<br />

Bad<strong>on</strong> rice-fields. The earliest col<strong>on</strong>isers were mostly<br />

oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>s and chir<strong>on</strong>omids. Both are resistant to<br />

drought (Kenk, 1949; Hint<strong>on</strong>, 1953; Williams, 1987)<br />

and due to this, they survived to make up the main part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the community in May. In June, oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>es decreased<br />

while gastropods increased. The latter are <str<strong>on</strong>g>al</str<strong>on</strong>g>so<br />

resistant to drought (e.g. Marazan<str<strong>on</strong>g>of</str<strong>on</strong>g>, 1969) and may<br />

have been able to survive <strong>on</strong> the dried-up fields, but<br />

their entry from irrigati<strong>on</strong> channels can not be ruled<br />

out. In rice-fields <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ebro-delta, Physella acuta<br />

shows a similar increase from May to July (G<strong>on</strong>zález-<br />

Solís & Ruiz, 1996). Other early col<strong>on</strong>isers are aquatic<br />

be<str<strong>on</strong>g>et</str<strong>on</strong>g>les and corixids, which are able to col<strong>on</strong>ise as<br />

adults (Williams, 1987). So, during the first phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flooding period groups with efficient surviv<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

or re-col<strong>on</strong>isati<strong>on</strong> adaptati<strong>on</strong>s, mostly phytophags or<br />

d<str<strong>on</strong>g>et</str<strong>on</strong>g>ritivors, dominate the community, representing ><br />

95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>l <strong>macroinvert</strong>ebrates.<br />

As the seas<strong>on</strong> progressed, the community’s pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

changed: about 15% in July and up to 30% in August<br />

were predators like od<strong>on</strong>ates, some be<str<strong>on</strong>g>et</str<strong>on</strong>g>les and<br />

not<strong>on</strong>ectid bugs. The late appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the od<strong>on</strong>ates<br />

cannot be an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mort<str<strong>on</strong>g>al</str<strong>on</strong>g>ity due to drought in<br />

winter: many species are able to survive those periods<br />

as larvae or eggs (e.g. Corb<str<strong>on</strong>g>et</str<strong>on</strong>g>, 1962; Wats<strong>on</strong>, 1981).<br />

Their scarcity during the first m<strong>on</strong>ths may be due to<br />

ploughing in March or April (see <str<strong>on</strong>g>al</str<strong>on</strong>g>so Aguesse, 1960).<br />

The main sources <str<strong>on</strong>g>of</str<strong>on</strong>g> the rice-field populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

groups are permanent w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands or natur<str<strong>on</strong>g>al</str<strong>on</strong>g> temporary<br />

w<str<strong>on</strong>g>et</str<strong>on</strong>g>lands. Adults there do not emerge before late April<br />

and most species emerge later (see Dommang<str<strong>on</strong>g>et</str<strong>on</strong>g>, 1987)<br />

and c<strong>on</strong>sequently they deposit their eggs in the ricefields<br />

relatively late. In od<strong>on</strong>ates particularly, <strong>on</strong>ly<br />

those species having a short durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> egg and larv<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

stage (less than 100 days) are able to emerge successfully<br />

from rice-fields (Aguesse, 1960; Asahina, 1972;<br />

Schnapauff <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., <str<strong>on</strong>g>2000</str<strong>on</strong>g>). Other species, and <str<strong>on</strong>g>al</str<strong>on</strong>g>l late<br />

oviposit<strong>on</strong>s, cannot survive there is not sufficient time<br />

for to emerge before drainage; in these cases, ricefields<br />

are ecologic<str<strong>on</strong>g>al</str<strong>on</strong>g> traps. Anyway, od<strong>on</strong>ate larvae<br />

<str<strong>on</strong>g>al</str<strong>on</strong>g><strong>on</strong>e made up 18% <str<strong>on</strong>g>of</str<strong>on</strong>g> the community in August in the<br />

untreated fields. In od<strong>on</strong>ates, as well as in other predators,<br />

interspecific and intraspecific comp<str<strong>on</strong>g>et</str<strong>on</strong>g>iti<strong>on</strong> for<br />

space and food and intraguild predati<strong>on</strong> is usu<str<strong>on</strong>g>al</str<strong>on</strong>g>ly an<br />

important factor (Sih, 1987; Johns<strong>on</strong>, 1991). Blaustein<br />

(1990) and Blaustein <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>. (1996) describe that invertebrate<br />

communities <str<strong>on</strong>g>of</str<strong>on</strong>g> rice fields and temporary pools<br />

are organised by predators such as flatworms or s<str<strong>on</strong>g>al</str<strong>on</strong>g>amander<br />

larvae. One can easily imagine that late in the<br />

seas<strong>on</strong>, predati<strong>on</strong> and comp<str<strong>on</strong>g>et</str<strong>on</strong>g>iti<strong>on</strong> become factors as<br />

important in the invertebrate community <str<strong>on</strong>g>of</str<strong>on</strong>g> rice-fields<br />

as in l<strong>on</strong>ger-lasting temporary w<str<strong>on</strong>g>et</str<strong>on</strong>g>land (Schneider &<br />

Frost, 1996).<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong><br />

Insecticides are applied to rice-fields in order to reduce<br />

the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> crops due to phytophagous insects,<br />

am<strong>on</strong>g others, feeding <strong>on</strong> the rice plant (see Way <str<strong>on</strong>g>et</str<strong>on</strong>g><br />

<str<strong>on</strong>g>al</str<strong>on</strong>g>., 1991). C<strong>on</strong>comitantly, so-c<str<strong>on</strong>g>al</str<strong>on</strong>g>led ‘n<strong>on</strong>-targed species’<br />

are <str<strong>on</strong>g>al</str<strong>on</strong>g>so affected. In our study, we found that<br />

in 12 taxa, <str<strong>on</strong>g>al</str<strong>on</strong>g>l <str<strong>on</strong>g>of</str<strong>on</strong>g> them insects, the densities were<br />

significantly lower at least in 1 m<strong>on</strong>th in the fields<br />

in which <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s were used compared to fields<br />

without <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>. On the other hand, in<br />

11 other taxa, the densities did not differ b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween the<br />

treatments after <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>, or were even<br />

higher following the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong>s</str<strong>on</strong>g>. These<br />

differences in the reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different species and<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>macroinvert</strong>ebrates may be caused by sever<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

factors. The first, and most obvious, is selective<br />

toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> to different taxa (e.g. overviews<br />

in Muirhead-Thoms<strong>on</strong>, 1987; Anders<strong>on</strong>, 1989;<br />

Coats <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1989; Schulz & Liess, 1995). However,<br />

a c<strong>on</strong>stant problem in field studies like this <strong>on</strong>e is<br />

that sever<str<strong>on</strong>g>al</str<strong>on</strong>g> other factors may influence the species’<br />

densities. Synergistic effects b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s and<br />

factors like biotic interacti<strong>on</strong>s or farming operati<strong>on</strong>s<br />

may <str<strong>on</strong>g>al</str<strong>on</strong>g>so influence the densities <str<strong>on</strong>g>of</str<strong>on</strong>g> selected species<br />

(Takamura, 1985; Simps<strong>on</strong> <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1994a, b).<br />

In our study, we used three different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s: lindane (γ -HCH) in combinati<strong>on</strong> with<br />

diazin<strong>on</strong> (an organophosphate) in June, and <str<strong>on</strong>g>al</str<strong>on</strong>g>-


77<br />

pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine (a synth<str<strong>on</strong>g>et</str<strong>on</strong>g>ic pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid) in August. In July,<br />

1 m<strong>on</strong>th after the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane and diazin<strong>on</strong>,<br />

we found significant lower densities <str<strong>on</strong>g>of</str<strong>on</strong>g> nine insect taxa<br />

(group 1, see above) in the treated fields than in untreated<br />

fields. An acute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane to many<br />

insects was found at much lower c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lindane than those used in our study (e.g. Maund <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>.,<br />

1992; Schulz & Liess, 1995). Thus, the lower densities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the taxa from group 1 in the treated fields may be<br />

a direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mort<str<strong>on</strong>g>al</str<strong>on</strong>g>ity due to these <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s.<br />

The same may be true for the Culicidae (group 2)<br />

which were <str<strong>on</strong>g>al</str<strong>on</strong>g>so found in lower density in July after<br />

the lindane and diazin<strong>on</strong> treatment.<br />

On the other hand, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa seemed unaffected<br />

by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane and diazin<strong>on</strong>.<br />

In some, including Physella acuta and Crocothemis<br />

erythraea, no significant differences in density were<br />

found at <str<strong>on</strong>g>al</str<strong>on</strong>g>l, while in others, e.g. Gyraulus chinensis<br />

and Ischnura elegans, in July even a higher density<br />

was found in the treated fields. These results may<br />

indicate a high tolerance to lindane in these taxa.<br />

Gastropods are known to be relatively tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s<br />

including lindane, diazin<strong>on</strong> and pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroids<br />

(Bluzat & Seuge, 1979; Arthur <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1983; Coats <str<strong>on</strong>g>et</str<strong>on</strong>g><br />

<str<strong>on</strong>g>al</str<strong>on</strong>g>., 1989). This may <str<strong>on</strong>g>al</str<strong>on</strong>g>so be true in other n<strong>on</strong>-insect<br />

taxa like leeches and oligocha<str<strong>on</strong>g>et</str<strong>on</strong>g>es which were <str<strong>on</strong>g>al</str<strong>on</strong>g>so not<br />

affected. In Lymnea stagn<str<strong>on</strong>g>al</str<strong>on</strong>g>is (L.), Bluzat & Seuge<br />

(1979) found an acute toxicity (48h LC 50 ) at a c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 7300 µg/l. The LC50 for other n<strong>on</strong>-insect<br />

groups was <str<strong>on</strong>g>al</str<strong>on</strong>g>so high: with Daphnia it was 645 µg/l;<br />

with Rana 8630 µg/l (Thybaud, 1990).<br />

The differences in the reacti<strong>on</strong> to the first <str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

applicati<strong>on</strong> may <str<strong>on</strong>g>al</str<strong>on</strong>g>so have been influenced by<br />

different life cycles. This may illustrated by the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> libellulid drag<strong>on</strong>flies. Crocothemis divisa and C.<br />

sanguinolenta studied by Muirhead-Thoms<strong>on</strong> (1973)<br />

were highly susceptible to the organophosphorous <str<strong>on</strong>g>insecticide</str<strong>on</strong>g><br />

fenthi<strong>on</strong>. The mort<str<strong>on</strong>g>al</str<strong>on</strong>g>ity after 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure<br />

at 0.01 ppm fenthi<strong>on</strong> was 70%; after 48 h at 0.005<br />

ppm it was 83%. In our study, the closely related C.<br />

erythraea was not affected in the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> treatment.<br />

Schnapauff <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>. (<str<strong>on</strong>g>2000</str<strong>on</strong>g>) found a similar result with<br />

the organophosphate parathi<strong>on</strong> in Greek rice-fields. In<br />

c<strong>on</strong>trast, in the libellulid S. f<strong>on</strong>scolombii we found<br />

significantly lower densities and emergence in fields<br />

with applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane and diazin<strong>on</strong>. The explanati<strong>on</strong><br />

could be found in the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the rice-fields. Whereas adults <str<strong>on</strong>g>of</str<strong>on</strong>g> S. f<strong>on</strong>scolombii<br />

were observed l<strong>on</strong>g before the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>,<br />

adults <str<strong>on</strong>g>of</str<strong>on</strong>g> C. erythraea in our as well as in the Greek<br />

rice-fields were not registered until the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s (Katzur & Lepkojus, pers. observ.,<br />

Ullmann, 1995). Thus, ovipositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. f<strong>on</strong>scolombii<br />

started before the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s were applied and<br />

the larvae were c<strong>on</strong>taminated by the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s. In<br />

C. erythraea, ovipositi<strong>on</strong> started more than 2 weeks<br />

after the applicati<strong>on</strong> and the larvae were probably<br />

not c<strong>on</strong>taminated with lindane, which has a relatively<br />

short period in which it is effective and even with<br />

diazin<strong>on</strong> (or parathi<strong>on</strong>) in which effects in pure water<br />

were found 2 weeks after applicati<strong>on</strong> (Perkow, 1988).<br />

Moreover, in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended rice-field sediment,<br />

to which lindane is adsorbed to a high extend<br />

after 1 day (see Thybaud, 1990), the c<strong>on</strong>centrati<strong>on</strong><br />

may have been much lower than c<str<strong>on</strong>g>al</str<strong>on</strong>g>culated for pure<br />

water. Other taxa, too, avoided or had <strong>on</strong>ly minor c<strong>on</strong>tact<br />

with lindane and diazin<strong>on</strong>, e.g. Sigara later<str<strong>on</strong>g>al</str<strong>on</strong>g>is<br />

and Corixa punctata which, had their peak before<br />

the first applicati<strong>on</strong> and, after it, were found in low<br />

numbers in both treatments.<br />

In the damselfly Ischnura elegans, the situati<strong>on</strong><br />

seems to be more complex. In July, it occurred in<br />

higher densities in the fields treated with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s,<br />

but in August it was the opposite. It was obviously not<br />

affected by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane and diazin<strong>on</strong>.<br />

Absence <str<strong>on</strong>g>of</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> diazin<strong>on</strong> in the field was <str<strong>on</strong>g>al</str<strong>on</strong>g>so<br />

described for a North American species <str<strong>on</strong>g>of</str<strong>on</strong>g> Ischnura<br />

(Arthur <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1983). The higher density <str<strong>on</strong>g>of</str<strong>on</strong>g> I. elegans<br />

may have been a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potenti<str<strong>on</strong>g>al</str<strong>on</strong>g> predators and / or comp<str<strong>on</strong>g>et</str<strong>on</strong>g>itors due to the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s,<br />

including carnivorous bugs (e.g. Not<strong>on</strong>ecta,<br />

see Thomps<strong>on</strong>, 1987) and other od<strong>on</strong>ate larvae. However,<br />

after the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine, the density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> I. elegans was reduced. This may have been a direct<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid. Am<str<strong>on</strong>g>al</str<strong>on</strong>g>raj (1996) found that <str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine<br />

has acute toxic effects <strong>on</strong> a predatory culicid<br />

at c<strong>on</strong>centrati<strong>on</strong>s below 5 µg/l. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

different sensitivity to the different <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s, the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> emerged individu<str<strong>on</strong>g>al</str<strong>on</strong>g>s did not differ b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween<br />

the treatments (Table 3). According to our results, I.<br />

elegans seems to be the <strong>on</strong>ly species which was affected<br />

by the sec<strong>on</strong>d <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>, <str<strong>on</strong>g>al</str<strong>on</strong>g>though,<br />

it is possible that the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroid <strong>on</strong> other<br />

taxa were not d<str<strong>on</strong>g>et</str<strong>on</strong>g>ectable because these were <str<strong>on</strong>g>al</str<strong>on</strong>g>ready<br />

affected by lindane and / or diazin<strong>on</strong>. In many <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

species, no recovery was found even 2 m<strong>on</strong>ths after<br />

the first applicati<strong>on</strong> and this may be an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>al</str<strong>on</strong>g>pham<str<strong>on</strong>g>et</str<strong>on</strong>g>hine applicati<strong>on</strong> at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> August.<br />

The tot<str<strong>on</strong>g>al</str<strong>on</strong>g> <strong>macroinvert</strong>ebrate biomass <str<strong>on</strong>g>al</str<strong>on</strong>g>so seemed<br />

to be affected by the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong>. In the<br />

treated fields, the biomass peaked in July, while in<br />

the untreated fields the peak was in August. The rapid


78<br />

increase in the former b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween June and July resulted<br />

mainly from an enormous increase in gastropod density<br />

which made up 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole community in<br />

the fields treated with lindane in July. As described<br />

above, the gastropods were not negatively affected by<br />

the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong>s</str<strong>on</strong>g>. However, this tolerance<br />

does not explain why G. chinensis had a higher density<br />

in the fields treated with lindane. The reas<strong>on</strong> for<br />

this may be an indirect effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong><br />

similar to that described for I. elegans: the<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> many predatory species feeding opti<strong>on</strong><str<strong>on</strong>g>al</str<strong>on</strong>g>ly<br />

(e.g. od<strong>on</strong>ates, Blois, 1985) or mainly (e.g. Berosus,<br />

see Klausnitzer, 1996) <strong>on</strong> snails was reduced due to<br />

the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane (see above) and the increase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gastropods in the treated fields may have led to a<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> predators. Comparable results were found<br />

in Japanese rice-fields: chir<strong>on</strong>omid and ostracod densities<br />

increased in rice-fields treated with pesticides<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> a decrease in aquatic be<str<strong>on</strong>g>et</str<strong>on</strong>g>le and drag<strong>on</strong>fly<br />

density (Takamura & Yasuno, 1985).<br />

The <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> clearly influenced the<br />

usu<str<strong>on</strong>g>al</str<strong>on</strong>g> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rice-fields which is described<br />

above. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> increased mort<str<strong>on</strong>g>al</str<strong>on</strong>g>ity in a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> taxa, typic<str<strong>on</strong>g>al</str<strong>on</strong>g> biotic interacti<strong>on</strong>s which influence<br />

the community later in the seas<strong>on</strong> (see above) were<br />

reduced in treated fields and the increased densities<br />

were mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> gastropods, which pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ited from the<br />

decrease in predators. As a result, species diversity<br />

was lower in fields with <str<strong>on</strong>g>insecticide</str<strong>on</strong>g> applicati<strong>on</strong> than in<br />

those without. This decrease in diversity may not <strong>on</strong>ly<br />

have implicati<strong>on</strong>s for envir<strong>on</strong>ment<str<strong>on</strong>g>al</str<strong>on</strong>g> protecti<strong>on</strong>. An increased<br />

diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> predators may <str<strong>on</strong>g>al</str<strong>on</strong>g>so help to c<strong>on</strong>trol<br />

natur<str<strong>on</strong>g>al</str<strong>on</strong>g> pests (Risch <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1983; Way & He<strong>on</strong>g, 1994;<br />

S<str<strong>on</strong>g>et</str<strong>on</strong>g>tle <str<strong>on</strong>g>et</str<strong>on</strong>g> <str<strong>on</strong>g>al</str<strong>on</strong>g>., 1996). C<strong>on</strong>sequently, the over<str<strong>on</strong>g>al</str<strong>on</strong>g>l effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s <strong>on</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pest damage should<br />

be studied carefully in light <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <strong>on</strong> species<br />

diversity.<br />

Acknowledgements<br />

We wish to thank Jens Rolff for some gener<str<strong>on</strong>g>al</str<strong>on</strong>g> comments,<br />

R<str<strong>on</strong>g>al</str<strong>on</strong>g>f Schulz for comments <strong>on</strong> ecotoxicologic<str<strong>on</strong>g>al</str<strong>on</strong>g><br />

aspects and Nicolas Beck for help in the fields. Diana<br />

Wilker kindly corrected the paper. We <str<strong>on</strong>g>al</str<strong>on</strong>g>so thank Inga<br />

Schnapauff and Kerstin Ullmann <str<strong>on</strong>g>al</str<strong>on</strong>g>lowing us to use<br />

data from their unpublished thesis.<br />

References<br />

Aguesse, P., 1960. C<strong>on</strong>tributi<strong>on</strong> a l’<str<strong>on</strong>g>et</str<strong>on</strong>g>ude écologique des zygoptères<br />

de Camargue. PhD thesis, Université de Paris: 156 pp.<br />

Am<str<strong>on</strong>g>al</str<strong>on</strong>g>raj, D. D., 1996. Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s to Toxorhynchites<br />

splendes and three vector mosquitoes and their subl<str<strong>on</strong>g>et</str<strong>on</strong>g>h<str<strong>on</strong>g>al</str<strong>on</strong>g> effect<br />

<strong>on</strong> bioc<strong>on</strong>trol potenti<str<strong>on</strong>g>al</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the predator. SE Asian J. Trop. Med.<br />

Publ. He<str<strong>on</strong>g>al</str<strong>on</strong>g>th 27: 154–159.<br />

Anders<strong>on</strong>, R. L., 1989. Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> synth<str<strong>on</strong>g>et</str<strong>on</strong>g>ic pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroids to freshwater<br />

invertebrates. Envir. Toxicol. Chem. 8: 403–410.<br />

Arthur, J. W., J. A. Zischke, K. N. Allen & R. O. Hermanutz, 1983.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> diazin<strong>on</strong> <strong>on</strong> <strong>macroinvert</strong>ebrates and insect emergence<br />

in outdoor experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> channels. Aquat. Toxicol. 4: 283–301.<br />

Asahina, S., 1972. Indian paddy field Od<strong>on</strong>ata taken by Miss I.<br />

Hattori. Mushi 46: 115–127.<br />

Barbier, J. M. & J. C. Mour<str<strong>on</strong>g>et</str<strong>on</strong>g>, 1992. Le riz <str<strong>on</strong>g>et</str<strong>on</strong>g> la Camargue. Histoire<br />

<str<strong>on</strong>g>et</str<strong>on</strong>g> recheche. INRA mensuel 64/65: 39–51.<br />

Blaustein, L., 1990. Evidence for predatory flatworms as organizers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong> and mosquito community structure in rice fields.<br />

Hydrobiologia 199: 179–191.<br />

Blaustein, L., J. Friedman & T. Fahima, 1996. Larv<str<strong>on</strong>g>al</str<strong>on</strong>g> S<str<strong>on</strong>g>al</str<strong>on</strong>g>amandra<br />

drive temporary pool community dynamics: evidence from an<br />

artifici<str<strong>on</strong>g>al</str<strong>on</strong>g> pool experiment. Oikos 76: 392–402.<br />

Blois, C., 1985. Di<str<strong>on</strong>g>et</str<strong>on</strong>g>s and recource partiti<strong>on</strong>ing b<str<strong>on</strong>g>et</str<strong>on</strong>g>ween larvae <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three anisopteran species. Hydrobiologia 126: 221–227.<br />

Bluzat, R. & J. Seuge, 1979. Eff<str<strong>on</strong>g>et</str<strong>on</strong>g>s de trois <str<strong>on</strong>g>insecticide</str<strong>on</strong>g>s (Lindane,<br />

Fenthi<strong>on</strong> <str<strong>on</strong>g>et</str<strong>on</strong>g> Carbaryl): Toxicité aiguë sur quatre espèces dïinvertébrés<br />

limnique; toxicité chr<strong>on</strong>ique chez le mollusque pulm<strong>on</strong>é<br />

Lymnaea. Envir. Poll. 18: 51–70.<br />

Coats,J.R.,D.M.Sym<strong>on</strong>ik,S.P.Bradbury,S.D.Dyer,L.K.Tims<strong>on</strong><br />

& G. J. Atchis<strong>on</strong>, 1989. Toxicology <str<strong>on</strong>g>of</str<strong>on</strong>g> synth<str<strong>on</strong>g>et</str<strong>on</strong>g>ic pyr<str<strong>on</strong>g>et</str<strong>on</strong>g>hroids<br />

in aquatic organisms: an overview. Envir. Toxicol. Chem. 8:<br />

671–679.<br />

Cohen, J. E., K. Schoenly, K. L. He<strong>on</strong>g, H. Justo, G. Arida, A. T.<br />

Barri<strong>on</strong> & J. A. Litsinger, 1994. A food web approach to ev<str<strong>on</strong>g>al</str<strong>on</strong>g>uating<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> insect pest populati<strong>on</strong> dynamics in a Phillipine<br />

irrigated rice ecosystem. J. appl. Ecol. 31: 747–763.<br />

Corb<str<strong>on</strong>g>et</str<strong>on</strong>g>, P. S., 1962. A Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Drag<strong>on</strong>flies. Witherby, L<strong>on</strong>d<strong>on</strong>:<br />

247 pp.<br />

Dommang<str<strong>on</strong>g>et</str<strong>on</strong>g>, J.-L., 1987. Etude faunistique <str<strong>on</strong>g>et</str<strong>on</strong>g> bibliographique des<br />

od<strong>on</strong>ates de France. Secr<str<strong>on</strong>g>et</str<strong>on</strong>g>ariat de Faune <str<strong>on</strong>g>et</str<strong>on</strong>g> de Flore, Paris: 283<br />

pp.<br />

Fernando, C. H., 1993. Rice-field ecology and fish culture – an<br />

overview. Hydrobiologia 259: 91–113.<br />

G<strong>on</strong>zález-Solís, J. & X. Ruiz, 1996. Successi<strong>on</strong> and sec<strong>on</strong>dary producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gastropods in the Ebro Delta ricefields. Hydrobiologia<br />

337: 85–92.<br />

Heckman, C. W., 1974. The seas<strong>on</strong><str<strong>on</strong>g>al</str<strong>on</strong>g> successi<strong>on</strong> in a rice paddy in<br />

Vientiane, Laos. Int. Rev. ges. Hydrobiol. 59: 489–507.<br />

Heckman, C. W., 1979. Rice-Field Ecology in Northeastern Thailand:<br />

the Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> W<str<strong>on</strong>g>et</str<strong>on</strong>g> and Dry Seas<strong>on</strong> <strong>on</strong> a Cultivated Aquatic<br />

Ecosystem. Dr W. Junk Publishers, The Hague: 228 pp.<br />

Hint<strong>on</strong>, H. E., 1953. Some adapti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> insects to envir<strong>on</strong>ments that<br />

are <str<strong>on</strong>g>al</str<strong>on</strong>g>ternately dry and flooded, with some notes <strong>on</strong> the habits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Stratiomyidae. Trans. Soc. Brit. Entomol. 11: 209–227.<br />

Johns<strong>on</strong>, D. M., 1991. Behavior<str<strong>on</strong>g>al</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> larv<str<strong>on</strong>g>al</str<strong>on</strong>g> drag<strong>on</strong>flies and<br />

damselflies. Trends Ecol. Evol. 6: 8–13.<br />

Kenk, R., 1949. The anim<str<strong>on</strong>g>al</str<strong>on</strong>g> life <str<strong>on</strong>g>of</str<strong>on</strong>g> temporary p<strong>on</strong>ds in southern<br />

Michigan. Misc. Publ. Mus. Zool., Univ. Mich. 71: 1–66.<br />

Kiritani, K., 1979. Pest managment in rice. Ann. rev. Entomol. 24:<br />

279–312.<br />

Klausnitzer, B., 1996. Käfer im und am Wasser. Die Neue Brehm<br />

Bücherei 567. Westarp Wissenschaften, Magdeburg: 200 pp.<br />

Kurihara, Y., 1989. Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> some ricefields in Japan as examplified<br />

by some benthic fauna, with notes <strong>on</strong> managment. Int. Rev.<br />

ges. Hydrobiol. 74: 507–548.<br />

Marazan<str<strong>on</strong>g>of</str<strong>on</strong>g>, F., 1969. C<strong>on</strong>tributi<strong>on</strong> a l’étude écologique des mollusques<br />

des eaux douces <str<strong>on</strong>g>et</str<strong>on</strong>g> saumatres de Camargue. Ann.<br />

Limnol. 5: 201–323.


79<br />

Maund, S. J., A. Peither, E. J. Taylor, I. Jüttner, R. Beyerle-Pfnür,<br />

J. P. Lay & D. Pascoe, 1992. Toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> lindane to freshwater<br />

insects larvae in compartiments <str<strong>on</strong>g>of</str<strong>on</strong>g> an experiment<str<strong>on</strong>g>al</str<strong>on</strong>g> p<strong>on</strong>d.<br />

Ecotoxicol. Envir<strong>on</strong>. Saf<str<strong>on</strong>g>et</str<strong>on</strong>g>y 23: 76–88.<br />

Meek, C. L. & J. K. Ols<strong>on</strong>, 1991. D<str<strong>on</strong>g>et</str<strong>on</strong>g>erminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> riceland<br />

mosquito populati<strong>on</strong> dynamics. In Heinrichs, E. A. & T. A.<br />

Miller (ed.), Rice Insects: Management Strategies. Springer,<br />

Heidelberg: 347 pp.<br />

Muirhead-Thoms<strong>on</strong>, R. C., 1987. Pesticide impact <strong>on</strong> stream fauna:<br />

with speci<str<strong>on</strong>g>al</str<strong>on</strong>g> reference to <strong>macroinvert</strong>ebrates. Cambridge University<br />

Press, Cambridge: 275 pp.<br />

Perkow, W., 1988. Wirksubstanzen der Pflanzenschutz- und<br />

Schädlingsbekämpfungsmittel. Blackwell, Berlin.<br />

P<strong>on</strong>t, D., 1977. Structure <str<strong>on</strong>g>et</str<strong>on</strong>g> évoluti<strong>on</strong> sais<strong>on</strong>nière des populati<strong>on</strong>s de<br />

Copépodes, Cladocères <str<strong>on</strong>g>et</str<strong>on</strong>g> Ostracodes des Rizières de Camargue.<br />

Ann. Limnol. 13: 15–28.<br />

P<strong>on</strong>t, D., 1985. Producti<strong>on</strong> sec<strong>on</strong>daire du cyclopoide Acanthocyclops<br />

robustus (G.O. Sars) dans les rizières de Camargue. Verh.<br />

int. Ver. Limnol. 22: 3206–3209.<br />

P<strong>on</strong>t, D. & A. Vaquer, 1986. Influence du phyllopode Triops cancriformis<br />

(Bosc.) sur la biocénose des rizières de Camargue. Œcol.<br />

Gener. 7: 75–88.<br />

Risch, S. J., D. Andow & M. A. Altieri, 1983. Agroecosystem diversity<br />

and pest c<strong>on</strong>trol: Data, tentative c<strong>on</strong>clusi<strong>on</strong>s, and new<br />

research directi<strong>on</strong>s. Envir. Ent. 12: 625–629.<br />

Samraoui, B., S. Bouzid, R. Boulahb<str<strong>on</strong>g>al</str<strong>on</strong>g> & P. S. Corb<str<strong>on</strong>g>et</str<strong>on</strong>g>, 1998. Postp<strong>on</strong>ed<br />

reproductive maturati<strong>on</strong> in upland refuges maintains lifecycle<br />

c<strong>on</strong>tinuity during hot, dry seas<strong>on</strong> in Algerian drag<strong>on</strong>flies.<br />

Int. J. Od<strong>on</strong>atol. 1: 119–135.<br />

Schnapauff, I., 1995. Auswirkungen unterschiedlicher Bewirtschaftungsm<str<strong>on</strong>g>et</str<strong>on</strong>g>hoden<br />

auf die Makroinvertebratenfauna v<strong>on</strong> Reisfeldern<br />

im Nestos-Delta (Griechenland). Unpublished Diploma-Thesis,<br />

TU Braunschweig: 108 pp.<br />

Schnapauff, I., K. Ullmann & F. <str<strong>on</strong>g>Suhling</str<strong>on</strong>g>, <str<strong>on</strong>g>2000</str<strong>on</strong>g>. Die Libellen-<br />

Lebensgemeinschaft griechischer Reisfelder: Auswirkungen v<strong>on</strong><br />

Überflutungsdauer und Anbaum<str<strong>on</strong>g>et</str<strong>on</strong>g>hoden. Libellula Suppl. 2: in<br />

press.<br />

Schneider, D. W. & T. M. Frost, 1996. Habitat durati<strong>on</strong> and community<br />

structure in temporary p<strong>on</strong>ds. J. n. am. benthol. Soc. 15:<br />

64–86.<br />

Schulz, R. & M. Liess, 1995. Chr<strong>on</strong>ic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> low pesticide c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>on</strong> freshwater caddisfly larvae. Hydrobiologia 299:<br />

103–113.<br />

Schwoerbel, J., 1986. M<str<strong>on</strong>g>et</str<strong>on</strong>g>hoden der Hydrobiologie, Süßwasserbiologie.<br />

Fischer, Stuttgart: 301 pp.<br />

S<str<strong>on</strong>g>et</str<strong>on</strong>g>tle, W. H., H. Ariawan, E. Tri Astuti, W. Cahyana, A. Lukman<br />

Hakim, D. Hindayana, A. Sri Lestari & Pjarningsih, 1996.<br />

Managing tropic<str<strong>on</strong>g>al</str<strong>on</strong>g> rice pests through c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gener<str<strong>on</strong>g>al</str<strong>on</strong>g>ist<br />

natur<str<strong>on</strong>g>al</str<strong>on</strong>g> enemies and <str<strong>on</strong>g>al</str<strong>on</strong>g>ternative prey. Ecology 77: 1975–1988.<br />

Sih, A., 1987. Predators and prey lifestyles: an evoluti<strong>on</strong>ary and<br />

ecologic<str<strong>on</strong>g>al</str<strong>on</strong>g> overview. In Kerfoot, W. C. & A. Sih (eds), Predati<strong>on</strong>:<br />

Direct and Impacts <strong>on</strong> Aquatic Communities. New England<br />

University Press, Hanover: 203–224.<br />

Simps<strong>on</strong>, I. C., P. A. Roger, R. Ofici<str<strong>on</strong>g>al</str<strong>on</strong>g> & I. F. Grant, 1994a. <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen fertilizer and pesticide management <strong>on</strong> floodwater<br />

ecology in a w<str<strong>on</strong>g>et</str<strong>on</strong>g>land ricefield. II. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> microcrustaceans<br />

and dipteran larvae. Biol. Fertil. Soils 17: 138–146.<br />

Simps<strong>on</strong>, I. C., P. A. Roger, R. Ofici<str<strong>on</strong>g>al</str<strong>on</strong>g> & I. F. Grant, 1994b. <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen fertilizer and pesticide management <strong>on</strong> floodwater<br />

ecology in a w<str<strong>on</strong>g>et</str<strong>on</strong>g>land ricefield. III. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic molluscs.<br />

Biol. Fertil. Soils 17: 219–227.<br />

Sinnassamy, J. M. & O. Pineau, 1996. Plan de la gesti<strong>on</strong> de la Tour<br />

du V<str<strong>on</strong>g>al</str<strong>on</strong>g>at 1996–<str<strong>on</strong>g>2000</str<strong>on</strong>g> (Camargue, France). Secti<strong>on</strong> A: approche<br />

descriptive <str<strong>on</strong>g>et</str<strong>on</strong>g> an<str<strong>on</strong>g>al</str<strong>on</strong>g>ytique. Rapport Stati<strong>on</strong> Biologique de la Tour<br />

du V<str<strong>on</strong>g>al</str<strong>on</strong>g>at, Arles: 81 pp.<br />

Takamura, K. & M. Yasuno, 1985. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide applicati<strong>on</strong><br />

<strong>on</strong> Chir<strong>on</strong>omid larvae and Ostracods in rice-fields. Appl.<br />

Entomol. Zool. 21: 370–376.<br />

Thomps<strong>on</strong>, D. J., 1987. Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> damselfly populati<strong>on</strong>s: the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weed density <strong>on</strong> larv<str<strong>on</strong>g>al</str<strong>on</strong>g> mort<str<strong>on</strong>g>al</str<strong>on</strong>g>ity due to predati<strong>on</strong>.<br />

Freshwat. Biol. 17: 367–371.<br />

Thybaud, E., 1990. Ecotoxicologie du lindane <str<strong>on</strong>g>et</str<strong>on</strong>g> de la deltaméthrine<br />

en millieu aquatique. Rev. Sc. Eau 3: 195–210.<br />

Tourenq, J.-N., 1966. Introducti<strong>on</strong> a l’étude écologique des Chir<strong>on</strong>omides<br />

des eaux douces <str<strong>on</strong>g>et</str<strong>on</strong>g> saumatres de Camargues. Ann.<br />

Limnol. 1: 459–465.<br />

Tourenq, J.-N., 1970. Complément a l’inventaire des chir<strong>on</strong>omides<br />

de Camargue (Diptères). Ann. Limnol. 6: 363–370.<br />

Ullmann, K., 1995. Populati<strong>on</strong>sentwicklung v<strong>on</strong> Libellen in Reisfeldern<br />

des Nestos-Deltas Griechenland. Unpublished Diplomathesis,<br />

TU Braunschweig: 106 pp.<br />

Vi<str<strong>on</strong>g>al</str<strong>on</strong>g>a, M., 1978. Structure <str<strong>on</strong>g>et</str<strong>on</strong>g> évoluti<strong>on</strong> sais<strong>on</strong>nière du peuplement<br />

de la macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aune invertébrée de la rizière expériment<str<strong>on</strong>g>al</str<strong>on</strong>g>e du<br />

Centre d’écologie. In: Recherches écologiques sur les rizières<br />

de Camargue. CNRS, Arles: 276–290.<br />

Wats<strong>on</strong>, J. A. L., 1981. Od<strong>on</strong>ata (drag<strong>on</strong>flies and damselflies). In<br />

Keast, A. (ed.), Ecologic<str<strong>on</strong>g>al</str<strong>on</strong>g> Biogeography <str<strong>on</strong>g>of</str<strong>on</strong>g> Austr<str<strong>on</strong>g>al</str<strong>on</strong>g>ia. Dr W.<br />

Junk Publishers, The Hague: 1139–1167.<br />

Way, M. J. & K. L. He<strong>on</strong>g, 1994. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity in the dynamics<br />

and management <str<strong>on</strong>g>of</str<strong>on</strong>g> insect rice pests <str<strong>on</strong>g>of</str<strong>on</strong>g> tropic<str<strong>on</strong>g>al</str<strong>on</strong>g> irrigated<br />

rice – a review. Bull. Ent. Res. 84: 567–587.<br />

Way, M. O., A. A. Grigaric, J. A. Litsinger, F. P<str<strong>on</strong>g>al</str<strong>on</strong>g>is & P. L. Ping<str<strong>on</strong>g>al</str<strong>on</strong>g>i,<br />

1991. Ec<strong>on</strong>omic thresholds and injury levels for insect pests<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rice. In Heinrichs, E. A. & T. A. Miller (eds), Rice Insects:<br />

Management Strategies. Springer, Heidelberg: 347 pp.<br />

Williams, D. D., 1987. The Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Temporary Waters. Croom<br />

Helm, L<strong>on</strong>d<strong>on</strong>: 193 pp.<br />

Williams, D. D., 1997. Temporary p<strong>on</strong>ds and their invertebrate communities.<br />

Aquat. C<strong>on</strong>serv. Mar. Freshw. Ecosyst. 7: 105–117.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!