Yao und Conrad - 1999 - Thermodynamics of methane production in different


Yao und Conrad - 1999 - Thermodynamics of methane production in different


H. Yao, R. Conrad / Soil Biology and Biochemistry 31 (1999) 463±473

Conrad, R., SchuÈ tz, H., Babbel, M., 1987. Temperature limitation of

hydrogen turnover and methanogenesis in anoxic paddy soil.

FEMS Microbiology Ecology 45, 281±289.

Conrad, R., Wetter, B., 1990. In¯uence of temperature on energetics

of hydrogen metabolism in homoacetogenic, methanogenic and

other anaerobic bacteria. Archives of Microbiology 155, 94±98.

Cord-Ruwisch, R., Seitz, H.J., Conrad, R., 1988. The capacity of

hydrogenotrophic anaerobic bacteria to compete for traces of

hydrogen depends on the redox potential of the terminal electron

acceptor. Archives of Microbiology 149, 350±357.

Fetzer, S., Conrad, R., 1993. E€ect of redox potential on methanogenesis

by Methanosarcina barkeri. Archives of Microbiology 160,


Fetzer, S., Bak, F., Conrad, R., 1993. Sensitivity of methanogenic

bacteria from paddy soil to oxygen and desiccation. FEMS

Microbiology Ecology 12, 107±115.

Garcia, J.-L., Raimbault, M., Jacq, V., Rinaudo, G., Roger, P.,

1974. Activite s microbiennes dans les sols de rizieÁ res du Se ne gal:

relations avec les caracte ristiques physico-chimiques et in¯uence de

la rhizospeÁ re. Revue d'Ecologie et de Biologie du Sol 2, 169±185.

Gaunt, J.L., Neue, H.U., Bragais, J., Grant, I.F., Giller, K.E., 1997.

Soil characteristics that regulate soil reduction and methane production

in wetland rice soils. Soil Science Society of America

Journal 61, 1526±1531.

Groûkopf, R., Janssen, P.H., Liesack, W., 1998. Diversity and structure

of the methanogenic community in anoxic rice paddy soil

microcosms as examined by cultivation and direct 16S rRNA gene

sequence retrieval. Applied and Environmental Microbiology 64,


Hickey, R.F., Switzenbaum, M.S., 1991. Thermodynamics of volatile

fatty acid accumulation in anaerobic digesters subject to increases

in hydraulic and organic loading. Research Journal Water

Pollution Control Federation 63, 141±144.

Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B., 1990. Acetate

threshold and acetate activating enzymes in methanogenic bacteria.

FEMS Microbiology Ecology 73, 339±344.

Joulian, C., Ollivier, B., Neue, H.U., Roger, P.A., 1996.

Microbiological aspects of methane emission by a rice®eld soil

from the Camargue (France). 1. Methanogenesis and related

micro¯ora. European Journal of Soil Biology 32, 61±70.

KluÈ ber, H.D., Conrad, R., 1998. E€ects of nitrate, nitrite, NO and

N 2 O on methanogenesis and other redox processes in anoxic rice

®eld soil. FEMS Microbiology Ecology 25, 301±318.

Kral, T.A., Brink, K.M., Miller, S.L., McKay, C.P., 1998. Hydrogen

consumption by methanogens on the early Earth. Origins of Life

and Evolution of the Biosphere 28, 311±319.

KrumboÈ ck, M., Conrad, R., 1991. Metabolism of position-labelled

glucose in anoxic methanogenic paddy soil and lake sediment.

FEMS Microbiology Ecology 85, 247±256.

Lange, N.A., 1979. Handbook of Chemistry. McGraw-Hill, New


Lovley, D.R., Goodwin, S., 1988. Hydrogen concentrations as an indicator

of the predominant terminal electron-accepting reactions in

aquatic sediments. Geochimica et Cosmochimica Acta 52, 2993±


Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1993. Methane

and nitrous oxide emissions from laboratory measurements of rice

soil suspension: e€ect of soil oxidation±reduction status.

Chemosphere 26, 251±260.

Mayer, H.P., Conrad, R., 1990. Factors in¯uencing the population

of methanogenic bacteria and the initiation of methane production

upon ¯ooding of paddy soil. FEMS Microbiology Ecology 73,


Min, H., Zhao, Y.H., Chen, M.C., Zhao, Y., 1997. Methanogens in

paddy rice soil. Nutrient Cycling in Agroecosystems 49, 163±169.

Mishra, S., Rath, A.K., Adhya, T.K., Rao, V.R., Sethunathan, N.,

1997. E€ect of continuous and alternate water regimes on methane

e‚ux from rice under greenhouse conditions. Biology and Fertility

of Soils 24, 399±405.

Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller,

R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis: Chemical

and Microbiological Properties. American Society of Agronomy,

Madison, pp. 181±196.

Neue, H.U., Bloom, P.R., 1989. Nutrient kinetics and availability in

¯ooded rice soils. In: IRRI (Ed.), Progress in Irrigated Rice. The

International Rice Research Institute, Los Banos, pp. 173±190.

Neue, H.U. and Roger, P.A., 1993. Rice agriculture: factors controlling

emissions. In: Khalil, M.A.K. (Ed.), Atmospheric Methane:

Sources, Sinks and Role in Global Change. Springer, Berlin, pp.


Neue, H.-U., Sass, R.L., 1994. Trace gas emissions from rice ®elds.

In: Prinn, R.G. (Ed.), Global Atmospheric-Biospheric Chemistry.

Plenum, New York, pp. 119±147.

Patrick Jr., W.H., Reddy, C.N., 1978. Chemical changes in rice soils.

In: IRRI (Ed.), Soils and Rice. International Rice Research

Institute, Los Banos, pp. 361±379.

Peters, V., Conrad, R., 1996. Sequential reduction processes and initiation

of CH 4 production upon ¯ooding of oxic upland soils. Soil

Biology & Biochemistry 28, 371±382.

Ponnamperuma, F.N., 1981. Some aspects of the physical chemistry

of paddy soils. In: Sinica Academia (Ed.), Proceedings of

Symposium on Paddy Soil. Science Press-Springer, Beijing, Berlin,

pp. 59±94.

Prinn, R.G., 1994. Global atmospheric±biospheric chemistry. In:

Prinn, R.G. (Ed.), Global Atmospheric±Biospheric Chemistry.

Plenum, New York, pp. 1±18.

Rothfuss, F., Conrad, R., 1993. Thermodynamics of methanogenic

intermediary metabolism in littoral sediment of Lake Constance.

FEMS Microbiology Ecology 12, 265±276.

Roy, R., KluÈ ber, H.D., Conrad, R., 1997. Early initiation of

methane production in anoxic rice soil despite the presence of oxidants.

FEMS Microbiology Ecology 24, 311±320.

Schink, B., 1992. Syntrophism among prokaryotes. In: Balows, A.,

TruÈ per, H.G., Dworkin, M., Harder, W., Schleifer, K.H. (Eds.),

The Prokaryotes, Vol. 1. Springer, New York, pp. 276±299.

Schulz, S., Conrad, R., 1996. In¯uence of temperature on pathways

to methane production in the permanently cold profundal sediment

of Lake Constance. FEMS Microbiology Ecology 20, 1±14.

SchuÈ tz, H., Seiler, W., Conrad, R., 1989. Processes involved in formation

and emission of methane in rice paddies. Biogeochemistry

7, 33±53.

Seitz, H.J., Schink, B., Pfennig, N., Conrad, R., 1990. Energetics of

syntrophic ethanol oxidation in de®ned chemostat cocultures. 1.

Energy requirement for H 2 production and H 2 oxidation. Archives

of Microbiology 155, 82±88.

Smith, D.P., McCarty, P.L., 1989. Energetic and rate e€ects on

methanogenesis of ethanol and propionate in perturbed CSTRs.

Biotechnology and Bioengineering 34, 39±54.

Takai, Y., 1961. Reduction and microbial metabolism in paddy soils

(3). Nogyo Gijutsu (Agricultural Technology) 16, 122±126 (in


Thauer, R.K., Morris, J.G. (1984) Metabolism of chemotrophic

anaerobes: old views and new aspects. In: Kelly, D.P., Carr, N.G.

(Eds.), The Microbe 1984, Part II, Prokaryotes and Eukaryotes.

Cambridge University Press, Cambridge, pp. 123±168.

Thauer, R.K., Jungermann, K., Decker, K., 1977. Energy conservation

in chemotrophic anaerobic bacteria. Bacteriological Reviews

41, 100±180.

Ueki, A., Ono, K., Tsuchiya, A., Ueki, K., 1997. Survival of methanogens

in air-dried paddy ®eld soil and their heat tolerance. Water

Science and Technology 36, 517±522.

Wang, Z.P., DeLaune, R.D., Masscheleyn, P.H., Patrick, W.H.,

1993. Soil redox and pH e€ects on methane production in a

More magazines by this user
Similar magazines