Yao und Conrad - 1999 - Thermodynamics of methane production in different

geonerd

Yao und Conrad - 1999 - Thermodynamics of methane production in different

472

H. Yao, R. Conrad / Soil Biology and Biochemistry 31 (1999) 463±473

Conrad, R., SchuÈ tz, H., Babbel, M., 1987. Temperature limitation of

hydrogen turnover and methanogenesis in anoxic paddy soil.

FEMS Microbiology Ecology 45, 281±289.

Conrad, R., Wetter, B., 1990. In¯uence of temperature on energetics

of hydrogen metabolism in homoacetogenic, methanogenic and

other anaerobic bacteria. Archives of Microbiology 155, 94±98.

Cord-Ruwisch, R., Seitz, H.J., Conrad, R., 1988. The capacity of

hydrogenotrophic anaerobic bacteria to compete for traces of

hydrogen depends on the redox potential of the terminal electron

acceptor. Archives of Microbiology 149, 350±357.

Fetzer, S., Conrad, R., 1993. E€ect of redox potential on methanogenesis

by Methanosarcina barkeri. Archives of Microbiology 160,

108±113.

Fetzer, S., Bak, F., Conrad, R., 1993. Sensitivity of methanogenic

bacteria from paddy soil to oxygen and desiccation. FEMS

Microbiology Ecology 12, 107±115.

Garcia, J.-L., Raimbault, M., Jacq, V., Rinaudo, G., Roger, P.,

1974. Activite s microbiennes dans les sols de rizieÁ res du Se ne gal:

relations avec les caracte ristiques physico-chimiques et in¯uence de

la rhizospeÁ re. Revue d'Ecologie et de Biologie du Sol 2, 169±185.

Gaunt, J.L., Neue, H.U., Bragais, J., Grant, I.F., Giller, K.E., 1997.

Soil characteristics that regulate soil reduction and methane production

in wetland rice soils. Soil Science Society of America

Journal 61, 1526±1531.

Groûkopf, R., Janssen, P.H., Liesack, W., 1998. Diversity and structure

of the methanogenic community in anoxic rice paddy soil

microcosms as examined by cultivation and direct 16S rRNA gene

sequence retrieval. Applied and Environmental Microbiology 64,

960±969.

Hickey, R.F., Switzenbaum, M.S., 1991. Thermodynamics of volatile

fatty acid accumulation in anaerobic digesters subject to increases

in hydraulic and organic loading. Research Journal Water

Pollution Control Federation 63, 141±144.

Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B., 1990. Acetate

threshold and acetate activating enzymes in methanogenic bacteria.

FEMS Microbiology Ecology 73, 339±344.

Joulian, C., Ollivier, B., Neue, H.U., Roger, P.A., 1996.

Microbiological aspects of methane emission by a rice®eld soil

from the Camargue (France). 1. Methanogenesis and related

micro¯ora. European Journal of Soil Biology 32, 61±70.

KluÈ ber, H.D., Conrad, R., 1998. E€ects of nitrate, nitrite, NO and

N 2 O on methanogenesis and other redox processes in anoxic rice

®eld soil. FEMS Microbiology Ecology 25, 301±318.

Kral, T.A., Brink, K.M., Miller, S.L., McKay, C.P., 1998. Hydrogen

consumption by methanogens on the early Earth. Origins of Life

and Evolution of the Biosphere 28, 311±319.

KrumboÈ ck, M., Conrad, R., 1991. Metabolism of position-labelled

glucose in anoxic methanogenic paddy soil and lake sediment.

FEMS Microbiology Ecology 85, 247±256.

Lange, N.A., 1979. Handbook of Chemistry. McGraw-Hill, New

York.

Lovley, D.R., Goodwin, S., 1988. Hydrogen concentrations as an indicator

of the predominant terminal electron-accepting reactions in

aquatic sediments. Geochimica et Cosmochimica Acta 52, 2993±

3003.

Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1993. Methane

and nitrous oxide emissions from laboratory measurements of rice

soil suspension: e€ect of soil oxidation±reduction status.

Chemosphere 26, 251±260.

Mayer, H.P., Conrad, R., 1990. Factors in¯uencing the population

of methanogenic bacteria and the initiation of methane production

upon ¯ooding of paddy soil. FEMS Microbiology Ecology 73,

103±112.

Min, H., Zhao, Y.H., Chen, M.C., Zhao, Y., 1997. Methanogens in

paddy rice soil. Nutrient Cycling in Agroecosystems 49, 163±169.

Mishra, S., Rath, A.K., Adhya, T.K., Rao, V.R., Sethunathan, N.,

1997. E€ect of continuous and alternate water regimes on methane

e‚ux from rice under greenhouse conditions. Biology and Fertility

of Soils 24, 399±405.

Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller,

R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis: Chemical

and Microbiological Properties. American Society of Agronomy,

Madison, pp. 181±196.

Neue, H.U., Bloom, P.R., 1989. Nutrient kinetics and availability in

¯ooded rice soils. In: IRRI (Ed.), Progress in Irrigated Rice. The

International Rice Research Institute, Los Banos, pp. 173±190.

Neue, H.U. and Roger, P.A., 1993. Rice agriculture: factors controlling

emissions. In: Khalil, M.A.K. (Ed.), Atmospheric Methane:

Sources, Sinks and Role in Global Change. Springer, Berlin, pp.

254±298.

Neue, H.-U., Sass, R.L., 1994. Trace gas emissions from rice ®elds.

In: Prinn, R.G. (Ed.), Global Atmospheric-Biospheric Chemistry.

Plenum, New York, pp. 119±147.

Patrick Jr., W.H., Reddy, C.N., 1978. Chemical changes in rice soils.

In: IRRI (Ed.), Soils and Rice. International Rice Research

Institute, Los Banos, pp. 361±379.

Peters, V., Conrad, R., 1996. Sequential reduction processes and initiation

of CH 4 production upon ¯ooding of oxic upland soils. Soil

Biology & Biochemistry 28, 371±382.

Ponnamperuma, F.N., 1981. Some aspects of the physical chemistry

of paddy soils. In: Sinica Academia (Ed.), Proceedings of

Symposium on Paddy Soil. Science Press-Springer, Beijing, Berlin,

pp. 59±94.

Prinn, R.G., 1994. Global atmospheric±biospheric chemistry. In:

Prinn, R.G. (Ed.), Global Atmospheric±Biospheric Chemistry.

Plenum, New York, pp. 1±18.

Rothfuss, F., Conrad, R., 1993. Thermodynamics of methanogenic

intermediary metabolism in littoral sediment of Lake Constance.

FEMS Microbiology Ecology 12, 265±276.

Roy, R., KluÈ ber, H.D., Conrad, R., 1997. Early initiation of

methane production in anoxic rice soil despite the presence of oxidants.

FEMS Microbiology Ecology 24, 311±320.

Schink, B., 1992. Syntrophism among prokaryotes. In: Balows, A.,

TruÈ per, H.G., Dworkin, M., Harder, W., Schleifer, K.H. (Eds.),

The Prokaryotes, Vol. 1. Springer, New York, pp. 276±299.

Schulz, S., Conrad, R., 1996. In¯uence of temperature on pathways

to methane production in the permanently cold profundal sediment

of Lake Constance. FEMS Microbiology Ecology 20, 1±14.

SchuÈ tz, H., Seiler, W., Conrad, R., 1989. Processes involved in formation

and emission of methane in rice paddies. Biogeochemistry

7, 33±53.

Seitz, H.J., Schink, B., Pfennig, N., Conrad, R., 1990. Energetics of

syntrophic ethanol oxidation in de®ned chemostat cocultures. 1.

Energy requirement for H 2 production and H 2 oxidation. Archives

of Microbiology 155, 82±88.

Smith, D.P., McCarty, P.L., 1989. Energetic and rate e€ects on

methanogenesis of ethanol and propionate in perturbed CSTRs.

Biotechnology and Bioengineering 34, 39±54.

Takai, Y., 1961. Reduction and microbial metabolism in paddy soils

(3). Nogyo Gijutsu (Agricultural Technology) 16, 122±126 (in

Japanese).

Thauer, R.K., Morris, J.G. (1984) Metabolism of chemotrophic

anaerobes: old views and new aspects. In: Kelly, D.P., Carr, N.G.

(Eds.), The Microbe 1984, Part II, Prokaryotes and Eukaryotes.

Cambridge University Press, Cambridge, pp. 123±168.

Thauer, R.K., Jungermann, K., Decker, K., 1977. Energy conservation

in chemotrophic anaerobic bacteria. Bacteriological Reviews

41, 100±180.

Ueki, A., Ono, K., Tsuchiya, A., Ueki, K., 1997. Survival of methanogens

in air-dried paddy ®eld soil and their heat tolerance. Water

Science and Technology 36, 517±522.

Wang, Z.P., DeLaune, R.D., Masscheleyn, P.H., Patrick, W.H.,

1993. Soil redox and pH e€ects on methane production in a

More magazines by this user
Similar magazines